| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732 |
- #include "llama-graph.h"
- #include "llama-impl.h"
- #include "llama-batch.h"
- #include "llama-cparams.h"
- #include "llama-kv-cache.h"
- #include <cassert>
- #include <cmath>
- #include <cstring>
- static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
- // TODO move to hparams if a T5 variant appears that uses a different value
- const int64_t max_distance = 128;
- if (bidirectional) {
- n_buckets >>= 1;
- }
- const int64_t max_exact = n_buckets >> 1;
- int32_t relative_position = x - y;
- int32_t relative_bucket = 0;
- if (bidirectional) {
- relative_bucket += (relative_position > 0) * n_buckets;
- relative_position = abs(relative_position);
- } else {
- relative_position = -std::min<int32_t>(relative_position, 0);
- }
- int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
- relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
- relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
- return relative_bucket;
- }
- void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
- if (ubatch->token) {
- const int64_t n_tokens = ubatch->n_tokens;
- ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
- }
- if (ubatch->embd) {
- const int64_t n_embd = embd->ne[0];
- const int64_t n_tokens = ubatch->n_tokens;
- ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
- }
- }
- void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
- if (ubatch->pos && pos) {
- const int64_t n_tokens = ubatch->n_tokens;
- if (ubatch->token && n_pos_per_embd == 4) {
- // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
- // the 3 first dims are the same, and 4th dim is all 0
- std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
- // copy the first dimension
- for (int i = 0; i < n_tokens; ++i) {
- pos_data[ i] = ubatch->pos[i];
- pos_data[ n_tokens + i] = ubatch->pos[i];
- pos_data[2 * n_tokens + i] = ubatch->pos[i];
- pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
- }
- ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
- } else {
- ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
- }
- }
- }
- void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
- if (ubatch->pos && attn_scale) {
- const int64_t n_tokens = ubatch->n_tokens;
- std::vector<float> attn_scale_data(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
- const float pos = ubatch->pos[i];
- attn_scale_data[i] = std::log(
- std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
- ) * f_attn_temp_scale + 1.0;
- }
- ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
- }
- }
- void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
- if (pos_bucket) {
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
- GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
- int32_t * data = (int32_t *) pos_bucket->data;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- for (int i = 0; i < n_tokens; ++i) {
- data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
- }
- }
- }
- }
- }
- void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
- if (pos_bucket) {
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
- GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
- int32_t * data = (int32_t *) pos_bucket->data;
- const int64_t n_kv = kv_self->n;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- for (int i = 0; i < n_kv; ++i) {
- data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(kv_self->cells[i].pos, ubatch->pos[j], hparams.n_rel_attn_bkts, false);
- }
- }
- }
- }
- }
- void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
- if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
- //GGML_ASSERT(out_ids && "every model that can must skip unused outputs");
- if (!out_ids) {
- LLAMA_LOG_WARN("%s: 'out_ids' is not created\n", __func__);
- } else {
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
- int32_t * data = (int32_t *) out_ids->data;
- if (n_outputs == n_tokens) {
- for (int i = 0; i < n_tokens; ++i) {
- data[i] = i;
- }
- } else if (ubatch->output) {
- int32_t n_outputs = 0;
- for (int i = 0; i < n_tokens; ++i) {
- if (ubatch->output[i]) {
- data[n_outputs++] = i;
- }
- }
- // the graph needs to have been passed the correct number of outputs
- GGML_ASSERT(n_outputs == n_outputs);
- } else if (n_outputs == 1) {
- // only keep last output
- data[0] = n_tokens - 1;
- } else {
- GGML_ASSERT(n_outputs == 0);
- }
- }
- }
- }
- void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
- if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs = ubatch->n_seqs;
- GGML_ASSERT(mean);
- GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
- float * data = (float *) mean->data;
- memset(mean->data, 0, n_tokens * n_tokens * ggml_element_size(mean));
- std::vector<uint64_t> sum(n_tokens, 0);
- for (int s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[s][0];
- // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
- sum[seq_id] += ubatch->n_seq_tokens;
- }
- std::vector<float> div(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
- const uint64_t s = sum[i];
- if (s > 0) {
- div[i] = 1.0f/float(s);
- }
- }
- for (int s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[s][0];
- for (int i = 0; i < n_seq_tokens; ++i) {
- data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
- }
- }
- }
- }
- void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
- if (cparams.embeddings && (
- cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
- cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs = ubatch->n_seqs;
- GGML_ASSERT(cls);
- GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
- uint32_t * data = (uint32_t *) cls->data;
- memset(cls->data, 0, n_tokens * ggml_element_size(cls));
- for (int s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[s][0];
- // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
- for (int i = 0; i < n_seq_tokens; ++i) {
- const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
- if (pos == 0) {
- data[seq_id] = s*n_seq_tokens + i;
- }
- }
- }
- }
- if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs = ubatch->n_seqs;
- GGML_ASSERT(cls);
- GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
- uint32_t * data = (uint32_t *) cls->data;
- memset(cls->data, 0, n_tokens * ggml_element_size(cls));
- std::vector<int> last_pos(n_tokens, -1);
- std::vector<int> last_row(n_tokens, -1);
- for (int s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[s][0];
- // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
- for (int i = 0; i < n_seq_tokens; ++i) {
- const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
- if (pos >= last_pos[seq_id]) {
- last_pos[seq_id] = pos;
- last_row[seq_id] = s*n_seq_tokens + i;
- }
- }
- }
- for (int i = 0; i < n_tokens; ++i) {
- if (last_row[i] >= 0) {
- data[i] = last_row[i];
- }
- }
- }
- }
- void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
- GGML_UNUSED(ubatch);
- const int64_t n_kv = kv_self->n;
- if (s_copy) {
- GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
- int32_t * data = (int32_t *) s_copy->data;
- // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
- for (uint32_t i = 0; i < n_kv; ++i) {
- const uint32_t cell_id = i + kv_self->head;
- //////////////////////////////////////////////
- // TODO: this should not mutate the KV cache !
- llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
- // prevent out-of-bound sources
- if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
- kv_cell.src = cell_id;
- }
- data[i] = kv_cell.src;
- // TODO: do not mutate the KV cache
- // ensure copy only happens once
- if (kv_cell.src != (int32_t) cell_id) {
- kv_cell.src = cell_id;
- }
- }
- }
- }
- void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
- GGML_UNUSED(ubatch);
- const int64_t n_kv = kv_self->n;
- if (s_mask) {
- GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer));
- float * data = (float *) s_mask->data;
- // clear unused states
- for (int i = 0; i < n_kv; ++i) {
- const uint32_t cell_id = i + kv_self->head;
- //////////////////////////////////////////////
- // TODO: this should not mutate the KV cache !
- llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
- data[i] = (float) (kv_cell.src >= 0);
- // only clear once
- if (kv_cell.src < 0) {
- kv_cell.src = cell_id;
- }
- }
- }
- }
- void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
- GGML_UNUSED(ubatch);
- if (cross_embd && !cross->v_embd.empty()) {
- assert(cross_embd->type == GGML_TYPE_F32);
- ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
- }
- }
- void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
- if (kq_mask) {
- if (cparams.causal_attn) {
- const int64_t n_kv = ubatch->n_tokens;
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs = ubatch->n_seqs;
- GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
- float * data = (float *) kq_mask->data;
- for (int h = 0; h < 1; ++h) {
- for (int s1 = 0; s1 < n_seqs; ++s1) {
- const llama_seq_id seq_id = ubatch->seq_id[s1][0];
- for (int j = 0; j < n_seq_tokens; ++j) {
- const int32_t tj = s1*n_seq_tokens + j;
- for (int s0 = 0; s0 < n_seqs; ++s0) {
- for (int i = 0; i < n_seq_tokens; ++i) {
- const int32_t ti = s0*n_seq_tokens + i;
- float f = -INFINITY;
- for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
- if (ubatch->seq_id[s0][s] == seq_id && ubatch->pos[ti] <= ubatch->pos[tj]) {
- if (hparams.use_alibi) {
- f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
- } else {
- f = 0.0f;
- }
- break;
- }
- }
- data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
- }
- }
- }
- }
- }
- } else {
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs = ubatch->n_seqs;
- const int64_t n_stride = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
- float * data = (float *) kq_mask->data;
- for (int h = 0; h < 1; ++h) {
- for (int s1 = 0; s1 < n_seqs; ++s1) {
- const llama_seq_id seq_id = ubatch->seq_id[s1][0];
- for (int j = 0; j < n_seq_tokens; ++j) {
- const int32_t tj = s1*n_seq_tokens + j;
- for (int s0 = 0; s0 < n_seqs; ++s0) {
- for (int i = 0; i < n_seq_tokens; ++i) {
- const int32_t ti = s0*n_seq_tokens + i;
- float f = -INFINITY;
- for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
- if (ubatch->seq_id[s0][s] == seq_id) {
- if (hparams.use_alibi) {
- f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
- } else {
- f = 0.0f;
- }
- break;
- }
- }
- data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
- }
- }
- for (int i = n_tokens; i < n_stride; ++i) {
- data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
- }
- }
- }
- }
- }
- }
- }
- void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
- if (self_kq_mask || self_kq_mask_swa) {
- const int64_t n_kv = kv_self->n;
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs = ubatch->n_seqs;
- float * data = nullptr;
- float * data_swa = nullptr;
- if (self_kq_mask) {
- GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));
- data = (float *) self_kq_mask->data;
- }
- if (self_kq_mask_swa) {
- GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));
- data_swa = (float *) self_kq_mask_swa->data;
- }
- // Use only the previous KV cells of the correct sequence for each token of the ubatch.
- // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
- // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
- // Causal mask:
- // xxx-------
- // xxxx------
- // xxxxx-----
- // Non-causal mask:
- // xxxxx-----
- // xxxxx-----
- // xxxxx-----
- // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
- for (int h = 0; h < 1; ++h) {
- for (int s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[s][0];
- for (int j = 0; j < n_seq_tokens; ++j) {
- const llama_pos pos = ubatch->pos[s*n_seq_tokens + j];
- for (int i = 0; i < n_kv; ++i) {
- float f;
- // mask the token if:
- if (!kv_self->cells[i].has_seq_id(seq_id) // not the correct sequence
- || (cparams.causal_attn && kv_self->cells[i].pos > pos) // for causal, mask future tokens
- ) {
- f = -INFINITY;
- } else {
- if (hparams.use_alibi) {
- f = -std::abs(kv_self->cells[i].pos - pos);
- } else {
- f = 0.0f;
- }
- }
- if (data) {
- data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
- }
- // may need to cut off old tokens for sliding window
- // TODO @ngxson : we are currently re-using the swa logic to store the chunked mask, we should rename SWA to something more generic like "aux mask"
- if (data_swa) {
- if (hparams.n_attn_chunk) {
- llama_pos pos_chunk_start = (pos / hparams.n_attn_chunk) * hparams.n_attn_chunk;
- if (kv_self->cells[i].pos < pos_chunk_start || pos < pos_chunk_start) {
- f = -INFINITY;
- }
- } else {
- if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
- f = -INFINITY;
- }
- }
- data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
- }
- }
- }
- }
- // mask padded tokens
- if (data) {
- for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
- for (int j = 0; j < n_kv; ++j) {
- data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
- }
- }
- }
- // mask padded tokens
- if (data_swa) {
- for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
- for (int j = 0; j < n_kv; ++j) {
- data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
- }
- }
- }
- }
- }
- }
- void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
- if (cross_kq_mask) {
- const int64_t n_enc = cross_kq_mask->ne[0];
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
- GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
- float * data = (float *) cross_kq_mask->data;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- for (int i = 0; i < n_enc; ++i) {
- float f = -INFINITY;
- for (int s = 0; s < ubatch->n_seq_id[j]; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[j][s];
- if (cross->seq_ids_enc[i].find(seq_id) != cross->seq_ids_enc[i].end()) {
- f = 0.0f;
- }
- }
- data[h*(n_enc*n_tokens) + j*n_enc + i] = f;
- }
- }
- for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
- for (int j = 0; j < n_enc; ++j) {
- data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
- }
- }
- }
- }
- }
- //
- // llm_graph_context
- //
- llm_graph_context::llm_graph_context(const llm_graph_params & params) :
- arch (params.arch),
- hparams (params.hparams),
- cparams (params.cparams),
- ubatch (params.ubatch),
- n_embd (hparams.n_embd),
- n_layer (hparams.n_layer),
- n_rot (hparams.n_rot),
- n_ctx (cparams.n_ctx),
- n_ctx_per_seq (cparams.n_ctx / cparams.n_seq_max),
- n_head (hparams.n_head()),
- n_head_kv (hparams.n_head_kv()),
- n_embd_head_k (hparams.n_embd_head_k),
- n_embd_k_gqa (hparams.n_embd_k_gqa()),
- n_embd_head_v (hparams.n_embd_head_v),
- n_embd_v_gqa (hparams.n_embd_v_gqa()),
- n_expert (hparams.n_expert),
- n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
- freq_base (cparams.rope_freq_base),
- freq_scale (cparams.rope_freq_scale),
- ext_factor (cparams.yarn_ext_factor),
- attn_factor (cparams.yarn_attn_factor),
- beta_fast (cparams.yarn_beta_fast),
- beta_slow (cparams.yarn_beta_slow),
- norm_eps (hparams.f_norm_eps),
- norm_rms_eps (hparams.f_norm_rms_eps),
- n_tokens (ubatch.n_tokens),
- n_outputs (params.n_outputs),
- n_ctx_orig (cparams.n_ctx_orig_yarn),
- pooling_type (cparams.pooling_type),
- rope_type (hparams.rope_type),
- ctx0 (params.ctx),
- sched (params.sched),
- backend_cpu (params.backend_cpu),
- cvec (params.cvec),
- loras (params.loras),
- memory (params.memory),
- cross (params.cross),
- cb_func (params.cb),
- res (std::make_unique<llm_graph_result>()) {
- }
- int64_t llm_graph_context::n_pos_per_embd() const {
- return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
- }
- void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
- if (cb_func) {
- cb_func(ubatch, cur, name, il);
- }
- }
- ggml_tensor * llm_graph_context::build_cvec(
- ggml_tensor * cur,
- int il) const {
- return cvec->apply_to(ctx0, cur, il);
- }
- ggml_tensor * llm_graph_context::build_lora_mm(
- ggml_tensor * w,
- ggml_tensor * cur) const {
- ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
- for (const auto & lora : *loras) {
- llama_adapter_lora_weight * lw = lora.first->get_weight(w);
- if (lw == nullptr) {
- continue;
- }
- const float adapter_scale = lora.second;
- const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
- ggml_tensor * ab_cur = ggml_mul_mat(
- ctx0, lw->b,
- ggml_mul_mat(ctx0, lw->a, cur)
- );
- ab_cur = ggml_scale(ctx0, ab_cur, scale);
- res = ggml_add(ctx0, res, ab_cur);
- }
- return res;
- }
- ggml_tensor * llm_graph_context::build_lora_mm_id(
- ggml_tensor * w, // ggml_tensor * as
- ggml_tensor * cur, // ggml_tensor * b
- ggml_tensor * ids) const {
- ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
- for (const auto & lora : *loras) {
- llama_adapter_lora_weight * lw = lora.first->get_weight(w);
- if (lw == nullptr) {
- continue;
- }
- const float alpha = lora.first->alpha;
- const float rank = (float) lw->b->ne[0];
- const float scale = alpha ? lora.second * alpha / rank : lora.second;
- ggml_tensor * ab_cur = ggml_mul_mat_id(
- ctx0, lw->b,
- ggml_mul_mat_id(ctx0, lw->a, cur, ids),
- ids
- );
- ab_cur = ggml_scale(ctx0, ab_cur, scale);
- res = ggml_add(ctx0, res, ab_cur);
- }
- return res;
- }
- ggml_tensor * llm_graph_context::build_norm(
- ggml_tensor * cur,
- ggml_tensor * mw,
- ggml_tensor * mb,
- llm_norm_type type,
- int il) const {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
- case LLM_NORM_GROUP:
- {
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
- cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
- } break;
- }
- if (mw || mb) {
- cb(cur, "norm", il);
- }
- if (mw) {
- cur = ggml_mul(ctx0, cur, mw);
- if (mb) {
- cb(cur, "norm_w", il);
- }
- }
- if (mb) {
- cur = ggml_add(ctx0, cur, mb);
- }
- return cur;
- }
- ggml_tensor * llm_graph_context::build_ffn(
- ggml_tensor * cur,
- ggml_tensor * up,
- ggml_tensor * up_b,
- ggml_tensor * up_s,
- ggml_tensor * gate,
- ggml_tensor * gate_b,
- ggml_tensor * gate_s,
- ggml_tensor * down,
- ggml_tensor * down_b,
- ggml_tensor * down_s,
- ggml_tensor * act_scales,
- llm_ffn_op_type type_op,
- llm_ffn_gate_type type_gate,
- int il) const {
- ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
- cb(tmp, "ffn_up", il);
- if (up_b) {
- tmp = ggml_add(ctx0, tmp, up_b);
- cb(tmp, "ffn_up_b", il);
- }
- if (up_s) {
- tmp = ggml_mul(ctx0, tmp, up_s);
- cb(tmp, "ffn_up_s", il);
- }
- if (gate) {
- switch (type_gate) {
- case LLM_FFN_SEQ:
- {
- cur = build_lora_mm(gate, tmp);
- cb(cur, "ffn_gate", il);
- } break;
- case LLM_FFN_PAR:
- {
- cur = build_lora_mm(gate, cur);
- cb(cur, "ffn_gate", il);
- } break;
- }
- if (gate_b) {
- cur = ggml_add(ctx0, cur, gate_b);
- cb(cur, "ffn_gate_b", il);
- }
- if (gate_s) {
- cur = ggml_mul(ctx0, cur, gate_s);
- cb(cur, "ffn_gate_s", il);
- }
- } else {
- cur = tmp;
- }
- switch (type_op) {
- case LLM_FFN_SILU:
- {
- cur = ggml_silu(ctx0, cur);
- cb(cur, "ffn_silu", il);
- } break;
- case LLM_FFN_GELU:
- {
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "ffn_gelu", il);
- if (act_scales != NULL) {
- cur = ggml_div(ctx0, cur, act_scales);
- cb(cur, "ffn_act", il);
- }
- } break;
- case LLM_FFN_RELU:
- {
- cur = ggml_relu(ctx0, cur);
- cb(cur, "ffn_relu", il);
- } break;
- case LLM_FFN_RELU_SQR:
- {
- cur = ggml_relu(ctx0, cur);
- cb(cur, "ffn_relu", il);
- cur = ggml_sqr(ctx0, cur);
- cb(cur, "ffn_sqr(relu)", il);
- } break;
- case LLM_FFN_SWIGLU:
- {
- // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
- int64_t split_point = cur->ne[0] / 2;
- ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
- ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
- x0 = ggml_silu(ctx0, x0);
- cb(cur, "ffn_silu", il);
- cur = ggml_mul(ctx0, x0, x1);
- cb(cur, "ffn_mul", il);
- } break;
- }
- if (type_gate == LLM_FFN_PAR) {
- cur = ggml_mul(ctx0, cur, tmp);
- cb(cur, "ffn_gate_par", il);
- }
- if (down) {
- cur = build_lora_mm(down, cur);
- if (arch == LLM_ARCH_GLM4) {
- // GLM4 seems to have numerical issues with half-precision accumulators
- ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
- }
- }
- if (down_b) {
- cb(cur, "ffn_down", il);
- }
- if (down_b) {
- cur = ggml_add(ctx0, cur, down_b);
- }
- if (down_s) {
- cur = ggml_mul(ctx0, cur, down_s);
- cb(cur, "ffn_down_s", il);
- }
- return cur;
- }
- ggml_tensor * llm_graph_context::build_moe_ffn(
- ggml_tensor * cur,
- ggml_tensor * gate_inp,
- ggml_tensor * up_exps,
- ggml_tensor * gate_exps,
- ggml_tensor * down_exps,
- ggml_tensor * exp_probs_b,
- int64_t n_expert,
- int64_t n_expert_used,
- llm_ffn_op_type type_op,
- bool norm_w,
- bool scale_w,
- float w_scale,
- llama_expert_gating_func_type gating_op,
- int il) const {
- const int64_t n_embd = cur->ne[0];
- const int64_t n_tokens = cur->ne[1];
- const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
- ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
- cb(logits, "ffn_moe_logits", il);
- ggml_tensor * probs = nullptr;
- switch (gating_op) {
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
- {
- probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
- } break;
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
- {
- probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- cb(probs, "ffn_moe_probs", il);
- // add experts selection bias - introduced in DeepSeek V3
- // leave probs unbiased as it's later used to get expert weights
- ggml_tensor * selection_probs = probs;
- if (exp_probs_b != nullptr) {
- selection_probs = ggml_add(ctx0, probs, exp_probs_b);
- cb(selection_probs, "ffn_moe_probs_biased", il);
- }
- // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
- // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
- if (arch == LLM_ARCH_LLAMA4) {
- selection_probs = logits;
- }
- // select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
- cb(selected_experts->src[0], "ffn_moe_argsort", il);
- cb(selected_experts, "ffn_moe_topk", il);
- ggml_tensor * weights = ggml_get_rows(ctx0,
- ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights", il);
- if (norm_w) {
- weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
- ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
- cb(weights_sum, "ffn_moe_weights_sum", il);
- weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights_norm", il);
- weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
- }
- if (scale_w) {
- weights = ggml_scale(ctx0, weights, w_scale);
- cb(weights, "ffn_moe_weights_scaled", il);
- }
- cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
- if (weight_before_ffn) {
- // TODO: this is a workaround as we don't yet have a repeat op that takes custom dim (ggml_repeat_4d)
- ggml_tensor * repeated = ggml_new_tensor_3d(ctx0, cur->type, n_embd, n_expert_used, n_tokens);
- repeated = ggml_repeat(ctx0, cur, repeated); // [n_embd, n_expert_used, n_tokens]
- cur = ggml_mul(ctx0, repeated, weights);
- cb(cur, "ffn_moe_weighted", il);
- }
- ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(up, "ffn_moe_up", il);
- ggml_tensor * experts = nullptr;
- if (gate_exps) {
- cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(cur, "ffn_moe_gate", il);
- } else {
- cur = up;
- }
- switch (type_op) {
- case LLM_FFN_SILU:
- {
- cur = ggml_silu(ctx0, cur);
- cb(cur, "ffn_moe_silu", il);
- } break;
- case LLM_FFN_GELU:
- {
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "ffn_moe_gelu", il);
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- if (gate_exps) {
- cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
- cb(cur, "ffn_moe_gate_par", il);
- }
- experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
- cb(experts, "ffn_moe_down", il);
- if (!weight_before_ffn) {
- experts = ggml_mul(ctx0, experts, weights);
- cb(cur, "ffn_moe_weighted", il);
- }
- // aggregate experts
- ggml_tensor * moe_out = nullptr;
- for (int i = 0; i < n_expert_used; ++i) {
- ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
- experts->nb[2], i*experts->nb[1]);
- if (i == 0) {
- moe_out = cur_expert;
- } else {
- moe_out = ggml_add(ctx0, moe_out, cur_expert);
- }
- }
- if (n_expert_used == 1) {
- // avoid returning a non-contiguous tensor
- moe_out = ggml_cont(ctx0, moe_out);
- }
- cb(moe_out, "ffn_moe_out", il);
- return moe_out;
- }
- // input embeddings with optional lora
- ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
- const int64_t n_embd = hparams.n_embd;
- auto inp = std::make_unique<llm_graph_input_embd>();
- ggml_tensor * cur = nullptr;
- if (ubatch.token) {
- inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
- //cb(inp->tokens, "inp_tokens", -1);
- ggml_set_input(inp->tokens);
- cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
- // apply lora for embedding tokens if needed
- for (const auto & lora : *loras) {
- llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
- if (lw == nullptr) {
- continue;
- }
- const float adapter_scale = lora.second;
- const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
- ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
- ctx0, lw->b, // non-transposed lora_b
- ggml_get_rows(ctx0, lw->a, inp->tokens)
- ), scale);
- cur = ggml_add(ctx0, cur, inpL_delta);
- }
- } else {
- inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
- ggml_set_input(inp->embd);
- cur = inp->embd;
- }
- // For Granite architecture
- if (hparams.f_embedding_scale != 0.0f) {
- cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
- }
- cb(cur, "inp_embd", -1);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_pos() const {
- auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_embd());
- auto & cur = inp->pos;
- cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_embd());
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
- auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
- auto & cur = inp->attn_scale;
- // this need to be 1x1xN for broadcasting
- cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_out_ids() const {
- auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
- auto & cur = inp->out_ids;
- cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_mean() const {
- auto inp = std::make_unique<llm_graph_input_mean>(cparams);
- auto & cur = inp->mean;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_cls() const {
- auto inp = std::make_unique<llm_graph_input_cls>(cparams);
- auto & cur = inp->cls;
- cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_s_copy() const {
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
- const auto n_kv = kv_self->n;
- auto & cur = inp->s_copy;
- cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_s_mask() const {
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
- const auto n_kv = kv_self->n;
- auto & cur = inp->s_mask;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
- auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
- auto & cur = inp->cross_embd;
- // if we have the output embeddings from the encoder, use them directly
- // TODO: needs more work to be correct, for now just use the tensor shape
- //if (cross->t_embd) {
- // cur = ggml_view_tensor(ctx0, cross->t_embd);
- // return cur;
- //}
- const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
- const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
- auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
- auto & cur = inp->pos_bucket;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_self);
- const auto n_kv = kv_self->n;
- auto & cur = inp->pos_bucket;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
- ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
- cb(pos_bucket_1d, "pos_bucket_1d", -1);
- ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
- pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
- pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
- pos_bias = ggml_cont (ctx0, pos_bias);
- cb(pos_bias, "pos_bias", -1);
- return pos_bias;
- }
- ggml_tensor * llm_graph_context::build_attn_mha(
- ggml_cgraph * gf,
- ggml_tensor * q,
- ggml_tensor * k,
- ggml_tensor * v,
- ggml_tensor * kq_b,
- ggml_tensor * kq_mask,
- ggml_tensor * v_mla,
- bool v_trans,
- float kq_scale) const {
- //const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- //const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- //const int64_t n_head = hparams.n_head(il);
- //const int64_t n_head_kv = hparams.n_head_kv(il);
- //const auto & n_embd_head_k = hparams.n_embd_head_k;
- //const auto & n_embd_head_v = hparams.n_embd_head_v;
- const auto n_tokens = q->ne[1];
- const auto n_head = q->ne[2];
- const auto n_kv = k->ne[1];
- ggml_tensor * cur;
- // TODO: replace hardcoded padding with ggml-provided padding
- if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
- GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
- if (v_trans) {
- v = ggml_transpose(ctx0, v);
- }
- // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
- if (k->type == GGML_TYPE_F32) {
- k = ggml_cast(ctx0, k, GGML_TYPE_F16);
- }
- if (v->type == GGML_TYPE_F32) {
- v = ggml_cast(ctx0, v, GGML_TYPE_F16);
- }
- cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
- hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
- ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
- if (v_mla) {
- cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
- cur = ggml_mul_mat(ctx0, v_mla, cur);
- }
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
- } else {
- ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- // note: this op tends to require high floating point range
- // while for some models F16 is enough, for others it is not, so we default to F32 here
- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- if (arch == LLM_ARCH_GROK) {
- // need to do the following:
- // multiply by attn_output_multiplyer of 0.08838834764831845
- // and then :
- // kq = 30 * tanh(kq / 30)
- // before the softmax below
- kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
- kq = ggml_scale(ctx0, kq, 30);
- }
- if (hparams.attn_soft_cap) {
- kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
- kq = ggml_tanh (ctx0, kq);
- kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
- }
- if (kq_b) {
- kq = ggml_add(ctx0, kq, kq_b);
- }
- kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
- if (!v_trans) {
- // note: avoid this branch
- v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
- }
- ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
- // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
- if (v_mla) {
- kqv = ggml_mul_mat(ctx0, v_mla, kqv);
- }
- cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
- cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
- if (!cparams.offload_kqv) {
- // all nodes between the KV store and the attention output are run on the CPU
- ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
- }
- }
- ggml_build_forward_expand(gf, cur);
- return cur;
- }
- llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
- auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
- // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
- inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
- //cb(inp_kq_mask, "KQ_mask", -1);
- ggml_set_input(inp->kq_mask);
- inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
- return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_attn(
- llm_graph_input_attn_no_cache * inp,
- ggml_cgraph * gf,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_b,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- GGML_UNUSED(n_tokens);
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- const auto & kq_mask = inp->get_kq_mask();
- ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
- //cb(q, "q", il);
- ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
- //cb(k, "k", il);
- ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
- //cb(k, "v", il);
- ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, false, kq_scale);
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = build_lora_mm(wo, cur);
- }
- if (wo_b) {
- //cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_self);
- const auto n_kv = kv_self->n;
- inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
- //cb(inp->self_kq_mask, "KQ_mask", -1);
- ggml_set_input(inp->self_kq_mask);
- inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
- if (hparams.n_swa_pattern > 1) {
- GGML_ASSERT(hparams.n_swa > 0);
- inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
- //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
- ggml_set_input(inp->self_kq_mask_swa);
- inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
- }
- return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_attn(
- llm_graph_input_attn_kv_unified * inp,
- ggml_cgraph * gf,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_b,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- const auto & n_ctx = cparams.n_ctx;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- const auto n_tokens = q_cur->ne[2];
- const bool v_trans = !cparams.flash_attn;
- // store to KV cache
- {
- GGML_ASSERT(!kv_self->recurrent);
- const auto kv_head = kv_self->head;
- GGML_ASSERT(kv_self->size == n_ctx);
- ggml_tensor * k_cache_view = ggml_view_1d(ctx0, kv_self->k_l[il], n_tokens*n_embd_k_gqa, ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa)*kv_head);
- //cb(k_cache_view, "k_cache_view", il);
- // note: storing RoPE-ed version of K in the KV cache
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, k_cur, k_cache_view));
- v_cur = ggml_reshape_2d(ctx0, v_cur, n_embd_v_gqa, n_tokens);
- ggml_tensor * v_cache_view = nullptr;
- if (!v_trans) {
- v_cache_view = ggml_view_1d(ctx0, kv_self->v_l[il], n_tokens*n_embd_v_gqa, ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa)*kv_head);
- } else {
- // note: the V cache is transposed when not using flash attention
- v_cache_view = ggml_view_2d(ctx0, kv_self->v_l[il], n_tokens, n_embd_v_gqa,
- ( n_ctx)*ggml_element_size(kv_self->v_l[il]),
- (kv_head)*ggml_element_size(kv_self->v_l[il]));
- v_cur = ggml_transpose(ctx0, v_cur);
- }
- //cb(v_cache_view, "v_cache_view", il);
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, v_cur, v_cache_view));
- }
- const bool is_swa = hparams.is_swa(il);
- const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
- const auto n_kv = kv_self->n;
- const int64_t n_head_kv = hparams.n_head_kv(il);
- const auto & n_embd_head_k = hparams.n_embd_head_k;
- const auto & n_embd_head_v = hparams.n_embd_head_v;
- ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
- //cb(q, "q", il);
- ggml_tensor * k =
- ggml_view_3d(ctx0, kv_self->k_l[il],
- n_embd_head_k, n_kv, n_head_kv,
- ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
- 0);
- //cb(k, "k", il);
- ggml_tensor * v = !v_trans ?
- ggml_view_3d(ctx0, kv_self->v_l[il],
- n_embd_head_v, n_kv, n_head_kv,
- ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(kv_self->v_l[il]->type, n_embd_head_v),
- 0) :
- ggml_view_3d(ctx0, kv_self->v_l[il],
- n_kv, n_embd_head_v, n_head_kv,
- ggml_element_size(kv_self->v_l[il])*n_ctx,
- ggml_element_size(kv_self->v_l[il])*n_ctx*n_embd_head_v,
- 0);
- ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, v_trans, kq_scale);
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = build_lora_mm(wo, cur);
- }
- if (wo_b) {
- //cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
- auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
- const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
- inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
- ggml_set_input(inp->cross_kq_mask);
- inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
- return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_attn(
- llm_graph_input_attn_cross * inp,
- ggml_cgraph * gf,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_b,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- const auto & kq_mask = inp->get_kq_mask_cross();
- ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
- //cb(q, "q", il);
- ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
- //cb(k, "k", il);
- ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
- //cb(k, "v", il);
- ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, false, kq_scale);
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = build_lora_mm(wo, cur);
- }
- if (wo_b) {
- //cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- ggml_tensor * llm_graph_context::build_copy_mask_state(
- ggml_cgraph * gf,
- ggml_tensor * s,
- ggml_tensor * state_copy,
- ggml_tensor * state_mask,
- int32_t n_state,
- int32_t n_seqs) const {
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- const auto n_kv = kv_self->n;
- const auto kv_head = kv_self->head;
- ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self->size);
- // copy states
- // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
- // this shrinks the tensors's ne[1] to n_kv
- states = ggml_get_rows(ctx0, states, state_copy);
- // clear states of sequences which are starting at the beginning of this batch
- // FIXME: zero-out NANs?
- states = ggml_mul(ctx0, states, state_mask);
- // copy states which won't be changed further (between n_seqs and n_kv)
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0,
- ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs )*n_state*ggml_element_size(states)),
- ggml_view_1d(ctx0, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
- // the part of the states that will be used and modified
- return ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0);
- }
- ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
- ggml_cgraph * gf,
- ggml_tensor * state_copy,
- ggml_tensor * state_mask,
- const llama_ubatch & ubatch,
- int il) const {
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- const auto token_shift_count = hparams.token_shift_count;
- const int64_t n_seqs = ubatch.n_seqs;
- ggml_tensor * token_shift_all = kv_self->k_l[il];
- ggml_tensor * token_shift = build_copy_mask_state(
- gf, token_shift_all, state_copy, state_mask,
- hparams.n_embd_k_s(), n_seqs);
- token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
- return token_shift;
- }
- ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
- ggml_tensor * token_shift,
- const llama_ubatch & ubatch,
- int il) const {
- const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
- const auto token_shift_count = hparams.token_shift_count;
- const auto n_embd = hparams.n_embd;
- const int64_t n_seqs = ubatch.n_seqs;
- const auto kv_head = kv_self->head;
- return ggml_cpy(
- ctx0,
- ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
- ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self->k_l[il]))
- );
- }
- void llm_graph_context::build_pooling(
- ggml_cgraph * gf,
- ggml_tensor * cls,
- ggml_tensor * cls_b,
- ggml_tensor * cls_out,
- ggml_tensor * cls_out_b) const {
- if (!cparams.embeddings) {
- return;
- }
- ggml_tensor * inp = res->t_embd;
- //// find result_norm tensor for input
- //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
- // inp = ggml_graph_node(gf, i);
- // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
- // break;
- // }
- // inp = nullptr;
- //}
- GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
- ggml_tensor * cur;
- switch (pooling_type) {
- case LLAMA_POOLING_TYPE_NONE:
- {
- cur = inp;
- } break;
- case LLAMA_POOLING_TYPE_MEAN:
- {
- ggml_tensor * inp_mean = build_inp_mean();
- cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
- } break;
- case LLAMA_POOLING_TYPE_CLS:
- case LLAMA_POOLING_TYPE_LAST:
- {
- ggml_tensor * inp_cls = build_inp_cls();
- cur = ggml_get_rows(ctx0, inp, inp_cls);
- } break;
- case LLAMA_POOLING_TYPE_RANK:
- {
- ggml_tensor * inp_cls = build_inp_cls();
- inp = ggml_get_rows(ctx0, inp, inp_cls);
- // classification head
- // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
- GGML_ASSERT(cls != nullptr);
- GGML_ASSERT(cls_b != nullptr);
- cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls, inp), cls_b);
- cur = ggml_tanh(ctx0, cur);
- // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
- // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
- if (cls_out) {
- GGML_ASSERT(cls_out_b != nullptr);
- cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls_out, cur), cls_out_b);
- }
- } break;
- default:
- {
- GGML_ABORT("unknown pooling type");
- }
- }
- cb(cur, "result_embd_pooled", -1);
- res->t_embd_pooled = cur;
- ggml_build_forward_expand(gf, cur);
- }
|