| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943 |
- #pragma once
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #ifndef NDEBUG
- // crash the server in debug mode, otherwise send an http 500 error
- #define CPPHTTPLIB_NO_EXCEPTIONS 1
- #endif
- // increase max payload length to allow use of larger context size
- #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
- #include "httplib.h"
- // Change JSON_ASSERT from assert() to GGML_ASSERT:
- #define JSON_ASSERT GGML_ASSERT
- #include "json.hpp"
- #include <random>
- #include <sstream>
- #include <string>
- #include <vector>
- #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
- using json = nlohmann::ordered_json;
- using llama_tokens = std::vector<llama_token>;
- #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
- enum error_type {
- ERROR_TYPE_INVALID_REQUEST,
- ERROR_TYPE_AUTHENTICATION,
- ERROR_TYPE_SERVER,
- ERROR_TYPE_NOT_FOUND,
- ERROR_TYPE_PERMISSION,
- ERROR_TYPE_UNAVAILABLE, // custom error
- ERROR_TYPE_NOT_SUPPORTED, // custom error
- };
- template <typename T>
- static T json_value(const json & body, const std::string & key, const T & default_value) {
- // Fallback null to default value
- if (body.contains(key) && !body.at(key).is_null()) {
- try {
- return body.at(key);
- } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
- LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
- return default_value;
- }
- } else {
- return default_value;
- }
- }
- //
- // tokenizer and input processing utils
- //
- static bool json_is_array_of_numbers(const json & data) {
- if (data.is_array()) {
- for (const auto & e : data) {
- if (!e.is_number_integer()) {
- return false;
- }
- }
- return true;
- }
- return false;
- }
- // is array having BOTH numbers & strings?
- static bool json_is_array_of_mixed_numbers_strings(const json & data) {
- bool seen_string = false;
- bool seen_number = false;
- if (data.is_array()) {
- for (const auto & e : data) {
- seen_string |= e.is_string();
- seen_number |= e.is_number_integer();
- if (seen_number && seen_string) {
- return true;
- }
- }
- }
- return false;
- }
- /**
- * this handles 2 cases:
- * - only string, example: "string"
- * - mixed string and tokens, example: [12, 34, "string", 56, 78]
- */
- static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
- // If `add_bos` is true, we only add BOS, when json_prompt is a string,
- // or the first element of the json_prompt array is a string.
- llama_tokens prompt_tokens;
- if (json_prompt.is_array()) {
- bool first = true;
- for (const auto & p : json_prompt) {
- if (p.is_string()) {
- auto s = p.template get<std::string>();
- llama_tokens p;
- if (first) {
- p = common_tokenize(ctx, s, add_special, parse_special);
- first = false;
- } else {
- p = common_tokenize(ctx, s, false, parse_special);
- }
- prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
- } else {
- if (first) {
- first = false;
- }
- prompt_tokens.push_back(p.template get<llama_token>());
- }
- }
- } else {
- auto s = json_prompt.template get<std::string>();
- prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
- }
- return prompt_tokens;
- }
- /**
- * break the input "prompt" object into multiple prompt if needed, then tokenize them
- * this supports these cases:
- * - "prompt": "string"
- * - "prompt": [12, 34, 56]
- * - "prompt": [12, 34, "string", 56, 78]
- * and multiple prompts (multi-tasks):
- * - "prompt": ["string1", "string2"]
- * - "prompt": ["string1", [12, 34, 56]]
- * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
- */
- static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
- std::vector<llama_tokens> result;
- if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
- // string or mixed
- result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special));
- } else if (json_is_array_of_numbers(json_prompt)) {
- // array of tokens
- result.push_back(json_prompt.get<llama_tokens>());
- } else if (json_prompt.is_array()) {
- // array of prompts
- result.reserve(json_prompt.size());
- for (const auto & p : json_prompt) {
- if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
- result.push_back(tokenize_mixed(ctx, p, add_special, parse_special));
- } else if (json_is_array_of_numbers(p)) {
- // array of tokens
- result.push_back(p.get<llama_tokens>());
- } else {
- throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
- }
- }
- } else {
- throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
- }
- return result;
- }
- //
- // template utils
- //
- // format rerank task: [BOS]query[EOS][SEP]doc[EOS]
- static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) {
- llama_tokens result;
- result.reserve(doc.size() + query.size() + 4);
- result.push_back(llama_token_bos(model));
- result.insert(result.end(), query.begin(), query.end());
- result.push_back(llama_token_eos(model));
- result.push_back(llama_token_sep(model));
- result.insert(result.end(), doc.begin(), doc.end());
- result.push_back(llama_token_eos(model));
- return result;
- }
- // format infill task
- static llama_tokens format_infill(
- const llama_context * ctx,
- const json & input_prefix,
- const json & input_suffix,
- const json & input_extra,
- const int n_batch,
- const int n_predict,
- const int n_ctx,
- const bool spm_infill,
- const llama_tokens & tokens_prompt
- ) {
- // TODO: optimize this block by reducing memory allocations and movement
- // use FIM repo-level pattern:
- // ref: https://arxiv.org/pdf/2409.12186
- //
- // [FIM_REP]myproject
- // [FIM_SEP]filename0
- // extra chunk 0
- // [FIM_SEP]filename1
- // extra chunk 1
- // ...
- // [FIM_SEP]filename
- // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
- //
- llama_tokens extra_tokens;
- extra_tokens.reserve(n_ctx);
- auto model = llama_get_model(ctx);
- auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false);
- auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false);
- if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
- // TODO: make project name an input
- static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false);
- extra_tokens.push_back(llama_token_fim_rep(model));
- extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
- }
- for (const auto & chunk : input_extra) {
- // { "text": string, "filename": string }
- const std::string text = json_value(chunk, "text", std::string());
- const std::string filename = json_value(chunk, "filename", std::string("tmp"));
- if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
- const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false);
- extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
- extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
- } else {
- // chunk separator in binary form to avoid confusing the AI
- static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
- static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false);
- extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
- }
- const auto chunk_tokens = common_tokenize(ctx, text, false, false);
- extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
- }
- if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
- // TODO: current filename
- static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false);
- extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
- extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
- }
- // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
- const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
- const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
- SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
- // fill the rest of the context with extra chunks
- const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
- tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
- tokens_suffix.resize(n_suffix_take);
- tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
- tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
- tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
- auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
- auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
- if (llama_add_bos_token(model)) {
- embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
- }
- SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
- // put the extra context before the FIM prefix
- embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
- embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
- embd_inp.push_back(llama_token_fim_mid(model));
- return embd_inp;
- }
- // Format given chat. If tmpl is empty, we take the template from model metadata
- inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
- std::vector<common_chat_msg> chat;
- for (size_t i = 0; i < messages.size(); ++i) {
- const auto & curr_msg = messages[i];
- std::string role = json_value(curr_msg, "role", std::string(""));
- std::string content;
- if (curr_msg.contains("content")) {
- if (curr_msg["content"].is_string()) {
- content = curr_msg["content"].get<std::string>();
- } else if (curr_msg["content"].is_array()) {
- for (const auto & part : curr_msg["content"]) {
- if (part.contains("text")) {
- content += "\n" + part["text"].get<std::string>();
- }
- }
- } else {
- throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
- }
- } else {
- throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
- }
- chat.push_back({role, content});
- }
- const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
- LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
- return formatted_chat;
- }
- static std::string llama_get_chat_template(const struct llama_model * model) {
- std::string template_key = "tokenizer.chat_template";
- // call with NULL buffer to get the total size of the string
- int32_t res = llama_model_meta_val_str(model, template_key.c_str(), NULL, 0);
- if (res < 0) {
- return "";
- } else {
- std::vector<char> model_template(res, 0);
- llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
- return std::string(model_template.data(), model_template.size());
- }
- }
- //
- // base64 utils (TODO: move to common in the future)
- //
- static const std::string base64_chars =
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "abcdefghijklmnopqrstuvwxyz"
- "0123456789+/";
- static inline bool is_base64(uint8_t c) {
- return (isalnum(c) || (c == '+') || (c == '/'));
- }
- static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
- int i = 0;
- int j = 0;
- int in_ = 0;
- int in_len = encoded_string.size();
- uint8_t char_array_4[4];
- uint8_t char_array_3[3];
- std::vector<uint8_t> ret;
- while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
- char_array_4[i++] = encoded_string[in_]; in_++;
- if (i == 4) {
- for (i = 0; i < 4; i++) {
- char_array_4[i] = base64_chars.find(char_array_4[i]);
- }
- char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
- char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
- char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
- for (i = 0; (i < 3); i++) {
- ret.push_back(char_array_3[i]);
- }
- i = 0;
- }
- }
- if (i) {
- for (j = i; j < 4; j++) {
- char_array_4[j] = 0;
- }
- for (j = 0; j < 4; j++) {
- char_array_4[j] = base64_chars.find(char_array_4[j]);
- }
- char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
- char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
- char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
- for (j = 0; j < i - 1; j++) {
- ret.push_back(char_array_3[j]);
- }
- }
- return ret;
- }
- //
- // random string / id
- //
- static std::string random_string() {
- static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
- std::random_device rd;
- std::mt19937 generator(rd());
- std::string result(32, ' ');
- for (int i = 0; i < 32; ++i) {
- result[i] = str[generator() % str.size()];
- }
- return result;
- }
- static std::string gen_chatcmplid() {
- return "chatcmpl-" + random_string();
- }
- //
- // other common utils
- //
- static size_t longest_common_prefix(const llama_tokens & a, const llama_tokens & b) {
- size_t i;
- for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
- return i;
- }
- static size_t longest_common_subsequence(const llama_tokens & a, const llama_tokens & b) {
- // check for empty sequences
- if (a.empty() || b.empty()) {
- return 0;
- }
- // get the lengths of the input sequences
- size_t a_len = a.size();
- size_t b_len = b.size();
- // initialize the maximum length of the longest common subsequence (LCS)
- size_t max_length = 0;
- // use two rows instead of a 2D matrix to optimize space
- std::vector<size_t> prev_row(b_len + 1, 0);
- std::vector<size_t> curr_row(b_len + 1, 0);
- // iterate through the elements of a
- for (size_t i = 1; i <= a_len; i++) {
- // iterate through the elements of b
- for (size_t j = 1; j <= b_len; j++) {
- // if elements at the current positions match
- if (a[i - 1] == b[j - 1]) {
- // if it's the first element of either sequences, set LCS length to 1
- if (i == 1 || j == 1) {
- curr_row[j] = 1;
- } else {
- // increment LCS length by 1 compared to the previous element
- curr_row[j] = prev_row[j - 1] + 1;
- }
- // update max_length if necessary
- if (curr_row[j] > max_length) {
- max_length = curr_row[j];
- }
- } else {
- // reset LCS length if elements don't match
- curr_row[j] = 0;
- }
- }
- // update the previous row for the next iteration
- prev_row = curr_row;
- }
- // return the maximum length of the LCS
- return max_length;
- }
- static bool ends_with(const std::string & str, const std::string & suffix) {
- return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
- }
- static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
- if (!text.empty() && !stop.empty()) {
- const char text_last_char = text.back();
- for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
- if (stop[char_index] == text_last_char) {
- const std::string current_partial = stop.substr(0, char_index + 1);
- if (ends_with(text, current_partial)) {
- return text.size() - char_index - 1;
- }
- }
- }
- }
- return std::string::npos;
- }
- // TODO: reuse llama_detokenize
- template <class Iter>
- static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
- std::string ret;
- for (; begin != end; ++begin) {
- ret += common_token_to_piece(ctx, *begin);
- }
- return ret;
- }
- // format incomplete utf-8 multibyte character for output
- static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
- std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
- // if the size is 1 and first bit is 1, meaning it's a partial character
- // (size > 1 meaning it's already a known token)
- if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
- std::stringstream ss;
- ss << std::hex << (out[0] & 0xff);
- std::string res(ss.str());
- out = "byte: \\x" + res;
- }
- return out;
- }
- struct completion_token_output {
- llama_token tok;
- std::string text_to_send;
- struct token_prob {
- llama_token tok;
- float prob;
- };
- std::vector<token_prob> probs;
- };
- // convert a vector of completion_token_output to json
- static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) {
- json out = json::array();
- for (const auto & prob : probs) {
- json probs_for_token = json::array();
- for (const auto & p : prob.probs) {
- const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
- probs_for_token.push_back(json {
- {"tok_str", tok_str},
- {"prob", p.prob},
- });
- }
- const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
- out.push_back(json {
- {"content", tok_str},
- {"probs", probs_for_token},
- });
- }
- return out;
- }
- static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
- const std::string str =
- std::string(event) + ": " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n"; // note: these newlines are important (not sure why though, if you know, add a comment to explain)
- LOG_DBG("data stream, to_send: %s", str.c_str());
- return sink.write(str.c_str(), str.size());
- }
- //
- // OAI utils
- //
- static json oaicompat_completion_params_parse(
- const struct llama_model * model,
- const json & body, /* openai api json semantics */
- const std::string & chat_template) {
- json llama_params;
- llama_params["__oaicompat"] = true;
- // Apply chat template to the list of messages
- llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
- // Handle "stop" field
- if (body.contains("stop") && body.at("stop").is_string()) {
- llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
- } else {
- llama_params["stop"] = json_value(body, "stop", json::array());
- }
- // Handle "response_format" field
- if (body.contains("response_format")) {
- json response_format = json_value(body, "response_format", json::object());
- std::string response_type = json_value(response_format, "type", std::string());
- if (response_type == "json_object") {
- llama_params["json_schema"] = json_value(response_format, "schema", json::object());
- } else if (response_type == "json_schema") {
- json json_schema = json_value(response_format, "json_schema", json::object());
- llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
- } else if (!response_type.empty() && response_type != "text") {
- throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
- }
- }
- // Handle "n" field
- int n_choices = json_value(body, "n", 1);
- if (n_choices != 1) {
- throw std::runtime_error("Only one completion choice is allowed");
- }
- // Handle "logprobs" field
- // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
- if (json_value(body, "logprobs", false)) {
- llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
- } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
- throw std::runtime_error("top_logprobs requires logprobs to be set to true");
- }
- // Params supported by OAI but unsupported by llama.cpp
- static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
- for (const auto & param : unsupported_params) {
- if (body.contains(param)) {
- throw std::runtime_error("Unsupported param: " + param);
- }
- }
- // Copy remaining properties to llama_params
- // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
- // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
- for (const auto & item : body.items()) {
- // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
- if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
- llama_params[item.key()] = item.value();
- }
- }
- return llama_params;
- }
- static json format_final_response_oaicompat(const json & request, const json & result, const std::string & completion_id, bool streaming = false, bool verbose = false) {
- bool stopped_word = result.count("stopped_word") != 0;
- bool stopped_eos = json_value(result, "stopped_eos", false);
- int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
- int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
- std::string content = json_value(result, "content", std::string(""));
- std::string finish_reason = "length";
- if (stopped_word || stopped_eos) {
- finish_reason = "stop";
- }
- json choices =
- streaming ? json::array({json{{"finish_reason", finish_reason},
- {"index", 0},
- {"delta", json::object()}}})
- : json::array({json{{"finish_reason", finish_reason},
- {"index", 0},
- {"message", json{{"content", content},
- {"role", "assistant"}}}}});
- std::time_t t = std::time(0);
- json res = json {
- {"choices", choices},
- {"created", t},
- {"model",
- json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
- {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
- {"usage", json {
- {"completion_tokens", num_tokens_predicted},
- {"prompt_tokens", num_prompt_tokens},
- {"total_tokens", num_tokens_predicted + num_prompt_tokens}
- }},
- {"id", completion_id}
- };
- // extra fields for debugging purposes
- if (verbose) {
- res["__verbose"] = result;
- }
- if (result.contains("completion_probabilities")) {
- res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
- }
- return res;
- }
- // return value is vector as there is one case where we might need to generate two responses
- static std::vector<json> format_partial_response_oaicompat(const json & result, const std::string & completion_id) {
- if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
- return std::vector<json>({result});
- }
- bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
- std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
- bool stopped_word = json_value(result, "stopped_word", false);
- bool stopped_eos = json_value(result, "stopped_eos", false);
- bool stopped_limit = json_value(result, "stopped_limit", false);
- std::string content = json_value(result, "content", std::string(""));
- std::string finish_reason;
- if (stopped_word || stopped_eos) {
- finish_reason = "stop";
- }
- if (stopped_limit) {
- finish_reason = "length";
- }
- std::time_t t = std::time(0);
- json choices;
- if (!finish_reason.empty()) {
- choices = json::array({json{{"finish_reason", finish_reason},
- {"index", 0},
- {"delta", json::object()}}});
- } else {
- if (first) {
- if (content.empty()) {
- choices = json::array({json{{"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{{"role", "assistant"}}}}});
- } else {
- // We have to send this as two updates to conform to openai behavior
- json initial_ret = json{{"choices", json::array({json{
- {"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{
- {"role", "assistant"}
- }}}})},
- {"created", t},
- {"id", completion_id},
- {"model", modelname},
- {"object", "chat.completion.chunk"}};
- json second_ret = json{
- {"choices", json::array({json{{"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{
- {"content", content}}}
- }})},
- {"created", t},
- {"id", completion_id},
- {"model", modelname},
- {"object", "chat.completion.chunk"}};
- return std::vector<json>({initial_ret, second_ret});
- }
- } else {
- // Some idiosyncrasy in task processing logic makes several trailing calls
- // with empty content, we ignore these at the calee site.
- if (content.empty()) {
- return std::vector<json>({json::object()});
- }
- choices = json::array({json{
- {"finish_reason", nullptr},
- {"index", 0},
- {"delta",
- json{
- {"content", content},
- }},
- }});
- }
- }
- json ret = json {
- {"choices", choices},
- {"created", t},
- {"id", completion_id},
- {"model", modelname},
- {"object", "chat.completion.chunk"}
- };
- if (!finish_reason.empty()) {
- int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
- int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
- ret.push_back({"usage", json {
- {"completion_tokens", num_tokens_predicted},
- {"prompt_tokens", num_prompt_tokens},
- {"total_tokens", num_tokens_predicted + num_prompt_tokens}
- }});
- }
- return std::vector<json>({ret});
- }
- static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
- json data = json::array();
- int i = 0;
- for (const auto & elem : embeddings) {
- data.push_back(json{
- {"embedding", json_value(elem, "embedding", json::array())},
- {"index", i++},
- {"object", "embedding"}
- });
- }
- json res = json {
- {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
- {"object", "list"},
- {"usage", json { // TODO: fill
- {"prompt_tokens", 0},
- {"total_tokens", 0}
- }},
- {"data", data}
- };
- return res;
- }
- static json format_response_rerank(const json & request, const json & ranks) {
- json data = json::array();
- int i = 0;
- for (const auto & rank : ranks) {
- data.push_back(json{
- {"index", i++},
- {"relevance_score", json_value(rank, "score", 0.0)},
- });
- }
- json res = json {
- {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
- {"object", "list"},
- {"usage", json { // TODO: fill
- {"prompt_tokens", 0},
- {"total_tokens", 0}
- }},
- {"results", data}
- };
- return res;
- }
- static bool is_valid_utf8(const std::string & str) {
- const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
- const unsigned char* end = bytes + str.length();
- while (bytes < end) {
- if (*bytes <= 0x7F) {
- // 1-byte sequence (0xxxxxxx)
- bytes++;
- } else if ((*bytes & 0xE0) == 0xC0) {
- // 2-byte sequence (110xxxxx 10xxxxxx)
- if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
- return false;
- bytes += 2;
- } else if ((*bytes & 0xF0) == 0xE0) {
- // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
- if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
- return false;
- bytes += 3;
- } else if ((*bytes & 0xF8) == 0xF0) {
- // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
- if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
- (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
- return false;
- bytes += 4;
- } else {
- // Invalid UTF-8 lead byte
- return false;
- }
- }
- return true;
- }
- static json format_tokenizer_response(const json & tokens) {
- return json {
- {"tokens", tokens}
- };
- }
- static json format_detokenized_response(const std::string & content) {
- return json {
- {"content", content}
- };
- }
- static json format_error_response(const std::string & message, const enum error_type type) {
- std::string type_str;
- int code = 500;
- switch (type) {
- case ERROR_TYPE_INVALID_REQUEST:
- type_str = "invalid_request_error";
- code = 400;
- break;
- case ERROR_TYPE_AUTHENTICATION:
- type_str = "authentication_error";
- code = 401;
- break;
- case ERROR_TYPE_NOT_FOUND:
- type_str = "not_found_error";
- code = 404;
- break;
- case ERROR_TYPE_SERVER:
- type_str = "server_error";
- code = 500;
- break;
- case ERROR_TYPE_PERMISSION:
- type_str = "permission_error";
- code = 403;
- break;
- case ERROR_TYPE_NOT_SUPPORTED:
- type_str = "not_supported_error";
- code = 501;
- break;
- case ERROR_TYPE_UNAVAILABLE:
- type_str = "unavailable_error";
- code = 503;
- break;
- }
- return json {
- {"code", code},
- {"message", message},
- {"type", type_str},
- };
- }
|