| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import argparse
- import contextlib
- import json
- import os
- import re
- import sys
- from enum import IntEnum
- from pathlib import Path
- from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
- import numpy as np
- import torch
- if TYPE_CHECKING:
- from torch import Tensor
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
- import gguf
- ###### MODEL DEFINITIONS ######
- class SentencePieceTokenTypes(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- class Model:
- def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
- self.dir_model = dir_model
- self.ftype = ftype
- self.fname_out = fname_out
- self.is_big_endian = is_big_endian
- self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
- self.is_safetensors = self._is_model_safetensors()
- self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
- self.part_names = self._get_part_names()
- self.hparams = Model.load_hparams(self.dir_model)
- self.model_arch = self._get_model_architecture()
- self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
- def set_vocab(self):
- self._set_vocab_gpt2()
- def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
- for part_name in self.part_names:
- print(f"gguf: loading model part '{part_name}'")
- ctx: ContextManager[Any]
- if self.is_safetensors:
- from safetensors import safe_open
- ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
- else:
- ctx = contextlib.nullcontext(torch.load(self.dir_model / part_name, map_location="cpu"))
- with ctx as model_part:
- for name in model_part.keys():
- data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
- yield name, data
- def set_gguf_parameters(self):
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_block_count(self.hparams.get(
- "n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
- ))
- if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
- self.gguf_writer.add_context_length(n_ctx)
- if (n_embd := self.hparams.get("hidden_size")) is not None:
- self.gguf_writer.add_embedding_length(n_embd)
- if (n_ff := self.hparams.get("intermediate_size")) is not None:
- self.gguf_writer.add_feed_forward_length(n_ff)
- if (n_head := self.hparams.get("num_attention_head")) is not None:
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def write(self):
- self.write_tensors()
- self.gguf_writer.write_header_to_file()
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.write_tensors_to_file()
- self.gguf_writer.close()
- def write_vocab(self):
- self.gguf_writer.write_header_to_file()
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.close()
- @staticmethod
- def count_model_parts(dir_model: Path, prefix: str) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.endswith(prefix):
- num_parts += 1
- return num_parts
- @staticmethod
- def load_hparams(dir_model):
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- return json.load(f)
- @staticmethod
- def from_model_architecture(model_architecture):
- if model_architecture == "StableLMEpochForCausalLM":
- return StableLMModel
- if model_architecture == "GPTNeoXForCausalLM":
- return GPTNeoXModel
- if model_architecture == "BloomForCausalLM":
- return BloomModel
- if model_architecture == "MPTForCausalLM":
- return MPTModel
- if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
- return BaichuanModel
- if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
- return FalconModel
- if model_architecture == "GPTBigCodeForCausalLM":
- return StarCoderModel
- if model_architecture == "GPTRefactForCausalLM":
- return RefactModel
- if model_architecture == "PersimmonForCausalLM":
- return PersimmonModel
- return Model
- def _is_model_safetensors(self) -> bool:
- return Model.count_model_parts(self.dir_model, ".safetensors") > 0
- def _get_part_names(self):
- if self.is_safetensors:
- if self.num_parts == 1: # there's only one .safetensors file
- return ("model.safetensors",)
- return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
- if self.num_parts == 1: # there's only one .bin file
- return ("pytorch_model.bin",)
- return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
- def _get_model_architecture(self) -> gguf.MODEL_ARCH:
- arch = self.hparams["architectures"][0]
- if arch == "GPTNeoXForCausalLM":
- return gguf.MODEL_ARCH.GPTNEOX
- if arch == "BloomForCausalLM":
- return gguf.MODEL_ARCH.BLOOM
- if arch == "MPTForCausalLM":
- return gguf.MODEL_ARCH.MPT
- if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
- return gguf.MODEL_ARCH.BAICHUAN
- if arch == "FalconForCausalLM":
- return gguf.MODEL_ARCH.FALCON
- if arch == "GPTBigCodeForCausalLM":
- return gguf.MODEL_ARCH.STARCODER
- if arch == "GPTRefactForCausalLM":
- return gguf.MODEL_ARCH.REFACT
- if arch == "PersimmonForCausalLM":
- return gguf.MODEL_ARCH.PERSIMMON
- raise NotImplementedError(f'Architecture "{arch}" not supported!')
- def _set_vocab_gpt2(self):
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[bytearray] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer # type: ignore[attr-defined]
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
- reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
- for i in range(vocab_size):
- if i not in reverse_vocab:
- pad_token = f"[PAD{i}]".encode('utf-8')
- tokens.append(bytearray(pad_token))
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_sentencepiece(self):
- from sentencepiece import SentencePieceProcessor
- tokenizer_path = self.dir_model / 'tokenizer.model'
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
- if not tokenizer_path.is_file():
- print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
- sys.exit(1)
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- for token_id in range(vocab_size):
- piece = tokenizer.id_to_piece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.is_unknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.is_control(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.is_unused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.is_byte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- tokens.append(key.encode("utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- class StableLMModel(Model):
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_rope_dimension_count(
- int(self.hparams["rope_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
- )
- self.gguf_writer.add_layer_norm_eps(1e-5)
- class GPTNeoXModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(
- int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
- )
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
- class BloomModel(Model):
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("Bloom")
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
- self.gguf_writer.add_embedding_length(n_embed)
- self.gguf_writer.add_feed_forward_length(4 * n_embed)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams["n_layer"]
- tensors = dict(self.get_tensors())
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- has_lm_head = True
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- for name, data_torch in tensors.items():
- if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
- has_lm_head = False
- name = re.sub(r'transformer\.', '', name)
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
- data = np.concatenate(
- (
- qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
- ),
- axis=0,
- )
- print("re-format attention.linear_qkv.weight")
- elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
- qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
- data = np.concatenate(
- (
- qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,)),
- ),
- axis=0,
- )
- print("re-format attention.linear_qkv.bias")
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- if not has_lm_head and name == "word_embeddings.weight":
- self.gguf_writer.add_tensor("output.weight", data)
- print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- class MPTModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
- self.gguf_writer.add_head_count_kv(kv_n_heads)
- self.gguf_writer.add_layer_norm_eps(1e-5)
- if self.hparams["attn_config"]["clip_qkv"] is not None:
- self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
- self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- # note: MPT output is tied to (same as) wte in original model;
- # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
- if new_name == "token_embd.weight":
- self.gguf_writer.add_tensor("output.weight", data)
- class BaichuanModel(Model):
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- print("gguf: can not find ctx length parameter.")
- sys.exit()
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- def write_tensors(self):
- # Collect tensors from generator object
- model_kv = dict(self.get_tensors())
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- for i in range(block_count):
- if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
- print(f"Unpacking and permuting layer {i}")
- model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
- self._reverse_hf_permute_part(w, 0, head_count, head_count)
- model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
- self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
- model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
- self._reverse_hf_part(w, 2)
- del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- def _reverse_hf_permute_part(
- self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
- ) -> Tensor:
- r = weights.shape[0] // 3
- return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
- def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
- r = weights.shape[0] // 3
- return weights[r * n_part:r * n_part + r, ...]
- class FalconModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
- self.gguf_writer.add_name("Falcon")
- self.gguf_writer.add_context_length(2048) # not in config.json
- self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
- head_dim = self.hparams["hidden_size"] // n_head
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # QKV tensor transform
- # The original query_key_value tensor contains n_head_kv "kv groups",
- # each consisting of n_head/n_head_kv query weights followed by one key
- # and one value weight (shared by all query heads in the kv group).
- # This layout makes it a big pain to work with in GGML.
- # So we rearrange them here,, so that we have n_head query weights
- # followed by n_head_kv key weights followed by n_head_kv value weights,
- # in contiguous fashion.
- # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
- if "query_key_value" in name:
- qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
- q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
- k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
- v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
- data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class StarCoderModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("StarCoder")
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- class RefactModel(Model):
- def set_gguf_parameters(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("Refact")
- # refact uses Alibi. So this is from config.json which might be used by training.
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(ff_dim)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- n_head = self.hparams["n_head"]
- n_head_kv = 1
- head_dim = self.hparams["n_embd"] // n_head
- block_count = self.hparams["n_layer"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- tensors = dict(self.get_tensors())
- for i in range(block_count):
- if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
- tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
- tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
- del tensors[f"transformer.h.{i}.attn.kv.weight"]
- if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
- tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
- del tensors[f"transformer.h.{i}.attn.q.weight"]
- if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
- tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
- tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
- del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
- for name, data_torch in tensors.items():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class PersimmonModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = head_count
- hidden_size = self.hparams["hidden_size"]
- self.gguf_writer.add_name('persimmon-8b-chat')
- self.gguf_writer.add_embedding_length(hidden_size)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- # self.gguf_writer.add_bos_token_id(71013)
- # self.gguf_writer.add_eos_token_id(71013)
- def write_tensors(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- if name.endswith(".self_attention.rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
- data = data_torch.to(torch.float32).squeeze().numpy()
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- ###### CONVERSION LOGIC ######
- def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "--outtype", type=str, choices=["f32", "f16"], default="f16",
- help="output format - use f32 for float32, f16 for float16",
- )
- parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file",
- )
- return parser.parse_args()
- args = parse_args()
- dir_model = args.model
- if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file=sys.stderr)
- sys.exit(1)
- ftype_map = {
- "f32": gguf.GGMLQuantizationType.F32,
- "f16": gguf.GGMLQuantizationType.F16,
- }
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
- print(f"Loading model: {dir_model.name}")
- hparams = Model.load_hparams(dir_model)
- model_class = Model.from_model_architecture(hparams["architectures"][0])
- model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
- print("Set model parameters")
- model_instance.set_gguf_parameters()
- print("Set model tokenizer")
- model_instance.set_vocab()
- if args.vocab_only:
- print(f"Exporting model vocab to '{fname_out}'")
- model_instance.write_vocab()
- else:
- print(f"Exporting model to '{fname_out}'")
- model_instance.write()
- print(f"Model successfully exported to '{fname_out}'")
|