ggml.c 631 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnigns
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. /*#define GGML_PERF*/
  84. #define GGML_DEBUG 0
  85. #define GGML_GELU_FP16
  86. #define GGML_GELU_QUICK_FP16
  87. #define GGML_SILU_FP16
  88. // #define GGML_CROSS_ENTROPY_EXP_FP16
  89. // #define GGML_FLASH_ATTN_EXP_FP16
  90. #define GGML_SOFT_MAX_UNROLL 4
  91. #define GGML_VEC_DOT_UNROLL 2
  92. #define GGML_VEC_MAD_UNROLL 32
  93. //
  94. // logging
  95. //
  96. #if (GGML_DEBUG >= 1)
  97. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  98. #else
  99. #define GGML_PRINT_DEBUG(...)
  100. #endif
  101. #if (GGML_DEBUG >= 5)
  102. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  103. #else
  104. #define GGML_PRINT_DEBUG_5(...)
  105. #endif
  106. #if (GGML_DEBUG >= 10)
  107. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG_10(...)
  110. #endif
  111. #define GGML_PRINT(...) printf(__VA_ARGS__)
  112. //
  113. // end of logging block
  114. //
  115. #ifdef GGML_USE_ACCELERATE
  116. // uncomment to use vDSP for soft max computation
  117. // note: not sure if it is actually faster
  118. //#define GGML_SOFT_MAX_ACCELERATE
  119. #endif
  120. #if defined(_MSC_VER) || defined(__MINGW32__)
  121. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  122. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  123. #else
  124. inline static void * ggml_aligned_malloc(size_t size) {
  125. if (size == 0) {
  126. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  127. return NULL;
  128. }
  129. void * aligned_memory = NULL;
  130. #ifdef GGML_USE_CPU_HBM
  131. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  132. #elif GGML_USE_METAL
  133. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  134. #else
  135. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  136. #endif
  137. if (result != 0) {
  138. // Handle allocation failure
  139. const char *error_desc = "unknown allocation error";
  140. switch (result) {
  141. case EINVAL:
  142. error_desc = "invalid alignment value";
  143. break;
  144. case ENOMEM:
  145. error_desc = "insufficient memory";
  146. break;
  147. }
  148. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  149. return NULL;
  150. }
  151. return aligned_memory;
  152. }
  153. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  154. #ifdef GGML_USE_CPU_HBM
  155. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  156. #else
  157. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  158. #endif
  159. #endif
  160. #define UNUSED GGML_UNUSED
  161. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  162. //
  163. // tensor access macros
  164. //
  165. #define GGML_TENSOR_UNARY_OP_LOCALS \
  166. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  167. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  168. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  169. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  170. #define GGML_TENSOR_BINARY_OP_LOCALS \
  171. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  172. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  173. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  174. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  175. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  176. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  177. #if defined(GGML_USE_ACCELERATE)
  178. #include <Accelerate/Accelerate.h>
  179. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  180. #include "ggml-opencl.h"
  181. #endif
  182. #elif defined(GGML_USE_OPENBLAS)
  183. #if defined(GGML_BLAS_USE_MKL)
  184. #include <mkl.h>
  185. #else
  186. #include <cblas.h>
  187. #endif
  188. #elif defined(GGML_USE_CUBLAS)
  189. #include "ggml-cuda.h"
  190. #elif defined(GGML_USE_CLBLAST)
  191. #include "ggml-opencl.h"
  192. #endif
  193. // floating point type used to accumulate sums
  194. typedef double ggml_float;
  195. //
  196. // global data
  197. //
  198. // precomputed gelu table for f16 (128 KB)
  199. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  200. // precomputed quick gelu table for f16 (128 KB)
  201. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  202. // precomputed silu table for f16 (128 KB)
  203. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  204. // precomputed exp table for f16 (128 KB)
  205. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  206. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  207. float ggml_table_f32_f16[1 << 16];
  208. // note: do not use these inside ggml.c
  209. // these are meant to be used via the ggml.h API
  210. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  211. return (float) GGML_FP16_TO_FP32(x);
  212. }
  213. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  214. return GGML_FP32_TO_FP16(x);
  215. }
  216. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  217. for (int i = 0; i < n; i++) {
  218. y[i] = GGML_FP16_TO_FP32(x[i]);
  219. }
  220. }
  221. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  222. int i = 0;
  223. #if defined(__F16C__)
  224. for (; i + 7 < n; i += 8) {
  225. __m256 x_vec = _mm256_loadu_ps(x + i);
  226. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  227. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  228. }
  229. for(; i + 3 < n; i += 4) {
  230. __m128 x_vec = _mm_loadu_ps(x + i);
  231. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  232. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  233. }
  234. #endif
  235. for (; i < n; i++) {
  236. y[i] = GGML_FP32_TO_FP16(x[i]);
  237. }
  238. }
  239. //
  240. // timing
  241. //
  242. #if defined(_MSC_VER) || defined(__MINGW32__)
  243. static int64_t timer_freq, timer_start;
  244. void ggml_time_init(void) {
  245. LARGE_INTEGER t;
  246. QueryPerformanceFrequency(&t);
  247. timer_freq = t.QuadPart;
  248. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  249. // and the uptime is high enough.
  250. // We subtract the program start time to reduce the likelihood of that happening.
  251. QueryPerformanceCounter(&t);
  252. timer_start = t.QuadPart;
  253. }
  254. int64_t ggml_time_ms(void) {
  255. LARGE_INTEGER t;
  256. QueryPerformanceCounter(&t);
  257. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  258. }
  259. int64_t ggml_time_us(void) {
  260. LARGE_INTEGER t;
  261. QueryPerformanceCounter(&t);
  262. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  263. }
  264. #else
  265. void ggml_time_init(void) {}
  266. int64_t ggml_time_ms(void) {
  267. struct timespec ts;
  268. clock_gettime(CLOCK_MONOTONIC, &ts);
  269. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  270. }
  271. int64_t ggml_time_us(void) {
  272. struct timespec ts;
  273. clock_gettime(CLOCK_MONOTONIC, &ts);
  274. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  275. }
  276. #endif
  277. int64_t ggml_cycles(void) {
  278. return clock();
  279. }
  280. int64_t ggml_cycles_per_ms(void) {
  281. return CLOCKS_PER_SEC/1000;
  282. }
  283. #ifdef GGML_PERF
  284. #define ggml_perf_time_ms() ggml_time_ms()
  285. #define ggml_perf_time_us() ggml_time_us()
  286. #define ggml_perf_cycles() ggml_cycles()
  287. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  288. #else
  289. #define ggml_perf_time_ms() 0
  290. #define ggml_perf_time_us() 0
  291. #define ggml_perf_cycles() 0
  292. #define ggml_perf_cycles_per_ms() 0
  293. #endif
  294. //
  295. // cache line
  296. //
  297. #if defined(__cpp_lib_hardware_interference_size)
  298. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  299. #else
  300. #if defined(__POWER9_VECTOR__)
  301. #define CACHE_LINE_SIZE 128
  302. #else
  303. #define CACHE_LINE_SIZE 64
  304. #endif
  305. #endif
  306. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  307. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  308. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  309. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  310. [GGML_TYPE_I8] = {
  311. .type_name = "i8",
  312. .blck_size = 1,
  313. .type_size = sizeof(int8_t),
  314. .is_quantized = false,
  315. },
  316. [GGML_TYPE_I16] = {
  317. .type_name = "i16",
  318. .blck_size = 1,
  319. .type_size = sizeof(int16_t),
  320. .is_quantized = false,
  321. },
  322. [GGML_TYPE_I32] = {
  323. .type_name = "i32",
  324. .blck_size = 1,
  325. .type_size = sizeof(int32_t),
  326. .is_quantized = false,
  327. },
  328. [GGML_TYPE_F32] = {
  329. .type_name = "f32",
  330. .blck_size = 1,
  331. .type_size = sizeof(float),
  332. .is_quantized = false,
  333. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  334. .vec_dot_type = GGML_TYPE_F32,
  335. },
  336. [GGML_TYPE_F16] = {
  337. .type_name = "f16",
  338. .blck_size = 1,
  339. .type_size = sizeof(ggml_fp16_t),
  340. .is_quantized = false,
  341. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  342. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  343. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  344. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  345. .vec_dot_type = GGML_TYPE_F16,
  346. },
  347. [GGML_TYPE_Q4_0] = {
  348. .type_name = "q4_0",
  349. .blck_size = QK4_0,
  350. .type_size = sizeof(block_q4_0),
  351. .is_quantized = true,
  352. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  353. .from_float = quantize_row_q4_0,
  354. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  355. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  356. .vec_dot_type = GGML_TYPE_Q8_0,
  357. },
  358. [GGML_TYPE_Q4_1] = {
  359. .type_name = "q4_1",
  360. .blck_size = QK4_1,
  361. .type_size = sizeof(block_q4_1),
  362. .is_quantized = true,
  363. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  364. .from_float = quantize_row_q4_1,
  365. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  366. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  367. .vec_dot_type = GGML_TYPE_Q8_1,
  368. },
  369. [4] = { // GGML_TYPE_Q4_2
  370. .type_name = "DEPRECATED",
  371. .blck_size = 0,
  372. .type_size = 0,
  373. .is_quantized = false,
  374. .to_float = NULL,
  375. .from_float = NULL,
  376. .from_float_reference = NULL,
  377. .vec_dot = NULL,
  378. .vec_dot_type = GGML_TYPE_COUNT,
  379. },
  380. [5] = { // GGML_TYPE_Q4_3
  381. .type_name = "DEPRECATED",
  382. .blck_size = 0,
  383. .type_size = 0,
  384. .is_quantized = false,
  385. .to_float = NULL,
  386. .from_float = NULL,
  387. .from_float_reference = NULL,
  388. .vec_dot = NULL,
  389. .vec_dot_type = GGML_TYPE_COUNT,
  390. },
  391. [GGML_TYPE_Q5_0] = {
  392. .type_name = "q5_0",
  393. .blck_size = QK5_0,
  394. .type_size = sizeof(block_q5_0),
  395. .is_quantized = true,
  396. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  397. .from_float = quantize_row_q5_0,
  398. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  399. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  400. .vec_dot_type = GGML_TYPE_Q8_0,
  401. },
  402. [GGML_TYPE_Q5_1] = {
  403. .type_name = "q5_1",
  404. .blck_size = QK5_1,
  405. .type_size = sizeof(block_q5_1),
  406. .is_quantized = true,
  407. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  408. .from_float = quantize_row_q5_1,
  409. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  410. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  411. .vec_dot_type = GGML_TYPE_Q8_1,
  412. },
  413. [GGML_TYPE_Q8_0] = {
  414. .type_name = "q8_0",
  415. .blck_size = QK8_0,
  416. .type_size = sizeof(block_q8_0),
  417. .is_quantized = true,
  418. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  419. .from_float = quantize_row_q8_0,
  420. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  421. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  422. .vec_dot_type = GGML_TYPE_Q8_0,
  423. },
  424. [GGML_TYPE_Q8_1] = {
  425. .type_name = "q8_1",
  426. .blck_size = QK8_1,
  427. .type_size = sizeof(block_q8_1),
  428. .is_quantized = true,
  429. .from_float = quantize_row_q8_1,
  430. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  431. .vec_dot_type = GGML_TYPE_Q8_1,
  432. },
  433. [GGML_TYPE_Q2_K] = {
  434. .type_name = "q2_K",
  435. .blck_size = QK_K,
  436. .type_size = sizeof(block_q2_K),
  437. .is_quantized = true,
  438. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  439. .from_float = quantize_row_q2_K,
  440. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  441. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  442. .vec_dot_type = GGML_TYPE_Q8_K,
  443. },
  444. [GGML_TYPE_Q3_K] = {
  445. .type_name = "q3_K",
  446. .blck_size = QK_K,
  447. .type_size = sizeof(block_q3_K),
  448. .is_quantized = true,
  449. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  450. .from_float = quantize_row_q3_K,
  451. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  452. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  453. .vec_dot_type = GGML_TYPE_Q8_K,
  454. },
  455. [GGML_TYPE_Q4_K] = {
  456. .type_name = "q4_K",
  457. .blck_size = QK_K,
  458. .type_size = sizeof(block_q4_K),
  459. .is_quantized = true,
  460. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  461. .from_float = quantize_row_q4_K,
  462. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  463. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  464. .vec_dot_type = GGML_TYPE_Q8_K,
  465. },
  466. [GGML_TYPE_Q5_K] = {
  467. .type_name = "q5_K",
  468. .blck_size = QK_K,
  469. .type_size = sizeof(block_q5_K),
  470. .is_quantized = true,
  471. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  472. .from_float = quantize_row_q5_K,
  473. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  474. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  475. .vec_dot_type = GGML_TYPE_Q8_K,
  476. },
  477. [GGML_TYPE_Q6_K] = {
  478. .type_name = "q6_K",
  479. .blck_size = QK_K,
  480. .type_size = sizeof(block_q6_K),
  481. .is_quantized = true,
  482. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  483. .from_float = quantize_row_q6_K,
  484. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  485. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  486. .vec_dot_type = GGML_TYPE_Q8_K,
  487. },
  488. [GGML_TYPE_Q8_K] = {
  489. .type_name = "q8_K",
  490. .blck_size = QK_K,
  491. .type_size = sizeof(block_q8_K),
  492. .is_quantized = true,
  493. .from_float = quantize_row_q8_K,
  494. }
  495. };
  496. // For internal test use
  497. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  498. GGML_ASSERT(type < GGML_TYPE_COUNT);
  499. return type_traits[type];
  500. }
  501. //
  502. // simd mappings
  503. //
  504. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  505. // we then implement the fundamental computation operations below using only these macros
  506. // adding support for new architectures requires to define the corresponding SIMD macros
  507. //
  508. // GGML_F32_STEP / GGML_F16_STEP
  509. // number of elements to process in a single step
  510. //
  511. // GGML_F32_EPR / GGML_F16_EPR
  512. // number of elements to fit in a single register
  513. //
  514. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  515. #define GGML_SIMD
  516. // F32 NEON
  517. #define GGML_F32_STEP 16
  518. #define GGML_F32_EPR 4
  519. #define GGML_F32x4 float32x4_t
  520. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  521. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  522. #define GGML_F32x4_LOAD vld1q_f32
  523. #define GGML_F32x4_STORE vst1q_f32
  524. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  525. #define GGML_F32x4_ADD vaddq_f32
  526. #define GGML_F32x4_MUL vmulq_f32
  527. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  528. #define GGML_F32x4_REDUCE(res, x) \
  529. { \
  530. int offset = GGML_F32_ARR >> 1; \
  531. for (int i = 0; i < offset; ++i) { \
  532. x[i] = vaddq_f32(x[i], x[offset+i]); \
  533. } \
  534. offset >>= 1; \
  535. for (int i = 0; i < offset; ++i) { \
  536. x[i] = vaddq_f32(x[i], x[offset+i]); \
  537. } \
  538. offset >>= 1; \
  539. for (int i = 0; i < offset; ++i) { \
  540. x[i] = vaddq_f32(x[i], x[offset+i]); \
  541. } \
  542. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  543. }
  544. #define GGML_F32_VEC GGML_F32x4
  545. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  546. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  547. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  548. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  549. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  550. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  551. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  552. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  553. // F16 NEON
  554. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  555. #define GGML_F16_STEP 32
  556. #define GGML_F16_EPR 8
  557. #define GGML_F16x8 float16x8_t
  558. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  559. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  560. #define GGML_F16x8_LOAD vld1q_f16
  561. #define GGML_F16x8_STORE vst1q_f16
  562. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  563. #define GGML_F16x8_ADD vaddq_f16
  564. #define GGML_F16x8_MUL vmulq_f16
  565. #define GGML_F16x8_REDUCE(res, x) \
  566. do { \
  567. int offset = GGML_F16_ARR >> 1; \
  568. for (int i = 0; i < offset; ++i) { \
  569. x[i] = vaddq_f16(x[i], x[offset+i]); \
  570. } \
  571. offset >>= 1; \
  572. for (int i = 0; i < offset; ++i) { \
  573. x[i] = vaddq_f16(x[i], x[offset+i]); \
  574. } \
  575. offset >>= 1; \
  576. for (int i = 0; i < offset; ++i) { \
  577. x[i] = vaddq_f16(x[i], x[offset+i]); \
  578. } \
  579. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  580. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  581. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  582. } while (0)
  583. #define GGML_F16_VEC GGML_F16x8
  584. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  585. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  586. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  587. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  588. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  589. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  590. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  591. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  592. #else
  593. // if FP16 vector arithmetic is not supported, we use FP32 instead
  594. // and take advantage of the vcvt_ functions to convert to/from FP16
  595. #define GGML_F16_STEP 16
  596. #define GGML_F16_EPR 4
  597. #define GGML_F32Cx4 float32x4_t
  598. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  599. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  600. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  601. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  602. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  603. #define GGML_F32Cx4_ADD vaddq_f32
  604. #define GGML_F32Cx4_MUL vmulq_f32
  605. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  606. #define GGML_F16_VEC GGML_F32Cx4
  607. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  608. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  609. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  610. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  611. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  612. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  613. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  614. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  615. #endif
  616. #elif defined(__AVX__)
  617. #define GGML_SIMD
  618. // F32 AVX
  619. #define GGML_F32_STEP 32
  620. #define GGML_F32_EPR 8
  621. #define GGML_F32x8 __m256
  622. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  623. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  624. #define GGML_F32x8_LOAD _mm256_loadu_ps
  625. #define GGML_F32x8_STORE _mm256_storeu_ps
  626. #if defined(__FMA__)
  627. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  628. #else
  629. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  630. #endif
  631. #define GGML_F32x8_ADD _mm256_add_ps
  632. #define GGML_F32x8_MUL _mm256_mul_ps
  633. #define GGML_F32x8_REDUCE(res, x) \
  634. do { \
  635. int offset = GGML_F32_ARR >> 1; \
  636. for (int i = 0; i < offset; ++i) { \
  637. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  638. } \
  639. offset >>= 1; \
  640. for (int i = 0; i < offset; ++i) { \
  641. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  642. } \
  643. offset >>= 1; \
  644. for (int i = 0; i < offset; ++i) { \
  645. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  646. } \
  647. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  648. _mm256_extractf128_ps(x[0], 1)); \
  649. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  650. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  651. } while (0)
  652. // TODO: is this optimal ?
  653. #define GGML_F32_VEC GGML_F32x8
  654. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  655. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  656. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  657. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  658. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  659. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  660. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  661. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  662. // F16 AVX
  663. #define GGML_F16_STEP 32
  664. #define GGML_F16_EPR 8
  665. // F16 arithmetic is not supported by AVX, so we use F32 instead
  666. #define GGML_F32Cx8 __m256
  667. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  668. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  669. #if defined(__F16C__)
  670. // the _mm256_cvt intrinsics require F16C
  671. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  672. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  673. #else
  674. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  675. float tmp[8];
  676. for (int i = 0; i < 8; i++) {
  677. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  678. }
  679. return _mm256_loadu_ps(tmp);
  680. }
  681. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  682. float arr[8];
  683. _mm256_storeu_ps(arr, y);
  684. for (int i = 0; i < 8; i++)
  685. x[i] = GGML_FP32_TO_FP16(arr[i]);
  686. }
  687. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  688. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  689. #endif
  690. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  691. #define GGML_F32Cx8_ADD _mm256_add_ps
  692. #define GGML_F32Cx8_MUL _mm256_mul_ps
  693. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  694. #define GGML_F16_VEC GGML_F32Cx8
  695. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  696. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  697. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  698. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  699. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  700. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  701. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  702. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  703. #elif defined(__POWER9_VECTOR__)
  704. #define GGML_SIMD
  705. // F32 POWER9
  706. #define GGML_F32_STEP 32
  707. #define GGML_F32_EPR 4
  708. #define GGML_F32x4 vector float
  709. #define GGML_F32x4_ZERO 0.0f
  710. #define GGML_F32x4_SET1 vec_splats
  711. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  712. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  713. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  714. #define GGML_F32x4_ADD vec_add
  715. #define GGML_F32x4_MUL vec_mul
  716. #define GGML_F32x4_REDUCE(res, x) \
  717. { \
  718. int offset = GGML_F32_ARR >> 1; \
  719. for (int i = 0; i < offset; ++i) { \
  720. x[i] = vec_add(x[i], x[offset+i]); \
  721. } \
  722. offset >>= 1; \
  723. for (int i = 0; i < offset; ++i) { \
  724. x[i] = vec_add(x[i], x[offset+i]); \
  725. } \
  726. offset >>= 1; \
  727. for (int i = 0; i < offset; ++i) { \
  728. x[i] = vec_add(x[i], x[offset+i]); \
  729. } \
  730. res = vec_extract(x[0], 0) + \
  731. vec_extract(x[0], 1) + \
  732. vec_extract(x[0], 2) + \
  733. vec_extract(x[0], 3); \
  734. }
  735. #define GGML_F32_VEC GGML_F32x4
  736. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  737. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  738. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  739. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  740. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  741. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  742. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  743. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  744. // F16 POWER9
  745. #define GGML_F16_STEP GGML_F32_STEP
  746. #define GGML_F16_EPR GGML_F32_EPR
  747. #define GGML_F16_VEC GGML_F32x4
  748. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  749. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  750. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  751. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  752. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  753. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  754. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  755. vec_extract_fp32_from_shortl(vec_xl(0, p))
  756. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  757. #define GGML_F16_VEC_STORE(p, r, i) \
  758. if (i & 0x1) \
  759. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  760. r[i - GGML_ENDIAN_BYTE(0)]), \
  761. 0, p - GGML_F16_EPR)
  762. #elif defined(__wasm_simd128__)
  763. #define GGML_SIMD
  764. // F32 WASM
  765. #define GGML_F32_STEP 16
  766. #define GGML_F32_EPR 4
  767. #define GGML_F32x4 v128_t
  768. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  769. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  770. #define GGML_F32x4_LOAD wasm_v128_load
  771. #define GGML_F32x4_STORE wasm_v128_store
  772. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  773. #define GGML_F32x4_ADD wasm_f32x4_add
  774. #define GGML_F32x4_MUL wasm_f32x4_mul
  775. #define GGML_F32x4_REDUCE(res, x) \
  776. { \
  777. int offset = GGML_F32_ARR >> 1; \
  778. for (int i = 0; i < offset; ++i) { \
  779. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  780. } \
  781. offset >>= 1; \
  782. for (int i = 0; i < offset; ++i) { \
  783. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  784. } \
  785. offset >>= 1; \
  786. for (int i = 0; i < offset; ++i) { \
  787. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  788. } \
  789. res = wasm_f32x4_extract_lane(x[0], 0) + \
  790. wasm_f32x4_extract_lane(x[0], 1) + \
  791. wasm_f32x4_extract_lane(x[0], 2) + \
  792. wasm_f32x4_extract_lane(x[0], 3); \
  793. }
  794. #define GGML_F32_VEC GGML_F32x4
  795. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  796. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  797. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  798. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  799. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  800. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  801. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  802. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  803. // F16 WASM
  804. #define GGML_F16_STEP 16
  805. #define GGML_F16_EPR 4
  806. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  807. float tmp[4];
  808. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  809. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  810. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  811. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  812. return wasm_v128_load(tmp);
  813. }
  814. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  815. float tmp[4];
  816. wasm_v128_store(tmp, x);
  817. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  818. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  819. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  820. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  821. }
  822. #define GGML_F16x4 v128_t
  823. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  824. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  825. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  826. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  827. #define GGML_F16x4_FMA GGML_F32x4_FMA
  828. #define GGML_F16x4_ADD wasm_f32x4_add
  829. #define GGML_F16x4_MUL wasm_f32x4_mul
  830. #define GGML_F16x4_REDUCE(res, x) \
  831. { \
  832. int offset = GGML_F16_ARR >> 1; \
  833. for (int i = 0; i < offset; ++i) { \
  834. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  835. } \
  836. offset >>= 1; \
  837. for (int i = 0; i < offset; ++i) { \
  838. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  839. } \
  840. offset >>= 1; \
  841. for (int i = 0; i < offset; ++i) { \
  842. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  843. } \
  844. res = wasm_f32x4_extract_lane(x[0], 0) + \
  845. wasm_f32x4_extract_lane(x[0], 1) + \
  846. wasm_f32x4_extract_lane(x[0], 2) + \
  847. wasm_f32x4_extract_lane(x[0], 3); \
  848. }
  849. #define GGML_F16_VEC GGML_F16x4
  850. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  851. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  852. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  853. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  854. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  855. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  856. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  857. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  858. #elif defined(__SSE3__)
  859. #define GGML_SIMD
  860. // F32 SSE
  861. #define GGML_F32_STEP 32
  862. #define GGML_F32_EPR 4
  863. #define GGML_F32x4 __m128
  864. #define GGML_F32x4_ZERO _mm_setzero_ps()
  865. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  866. #define GGML_F32x4_LOAD _mm_loadu_ps
  867. #define GGML_F32x4_STORE _mm_storeu_ps
  868. #if defined(__FMA__)
  869. // TODO: Does this work?
  870. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  871. #else
  872. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  873. #endif
  874. #define GGML_F32x4_ADD _mm_add_ps
  875. #define GGML_F32x4_MUL _mm_mul_ps
  876. #define GGML_F32x4_REDUCE(res, x) \
  877. { \
  878. int offset = GGML_F32_ARR >> 1; \
  879. for (int i = 0; i < offset; ++i) { \
  880. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  881. } \
  882. offset >>= 1; \
  883. for (int i = 0; i < offset; ++i) { \
  884. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  885. } \
  886. offset >>= 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  889. } \
  890. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  891. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  892. }
  893. // TODO: is this optimal ?
  894. #define GGML_F32_VEC GGML_F32x4
  895. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  896. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  897. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  898. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  899. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  900. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  901. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  902. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  903. // F16 SSE
  904. #define GGML_F16_STEP 32
  905. #define GGML_F16_EPR 4
  906. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  907. float tmp[4];
  908. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  909. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  910. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  911. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  912. return _mm_loadu_ps(tmp);
  913. }
  914. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  915. float arr[4];
  916. _mm_storeu_ps(arr, y);
  917. x[0] = GGML_FP32_TO_FP16(arr[0]);
  918. x[1] = GGML_FP32_TO_FP16(arr[1]);
  919. x[2] = GGML_FP32_TO_FP16(arr[2]);
  920. x[3] = GGML_FP32_TO_FP16(arr[3]);
  921. }
  922. #define GGML_F32Cx4 __m128
  923. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  924. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  925. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  926. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  927. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  928. #define GGML_F32Cx4_ADD _mm_add_ps
  929. #define GGML_F32Cx4_MUL _mm_mul_ps
  930. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  931. #define GGML_F16_VEC GGML_F32Cx4
  932. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  933. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  934. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  935. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  936. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  937. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  938. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  939. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  940. #endif
  941. // GGML_F32_ARR / GGML_F16_ARR
  942. // number of registers to use per step
  943. #ifdef GGML_SIMD
  944. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  945. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  946. #endif
  947. //
  948. // fundamental operations
  949. //
  950. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  951. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  952. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  953. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  954. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  955. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  956. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  957. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  958. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  959. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  960. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  961. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  962. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  963. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  964. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  965. #ifdef GGML_SIMD
  966. float sumf = 0.0f;
  967. const int np = (n & ~(GGML_F32_STEP - 1));
  968. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  969. GGML_F32_VEC ax[GGML_F32_ARR];
  970. GGML_F32_VEC ay[GGML_F32_ARR];
  971. for (int i = 0; i < np; i += GGML_F32_STEP) {
  972. for (int j = 0; j < GGML_F32_ARR; j++) {
  973. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  974. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  975. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  976. }
  977. }
  978. // reduce sum0..sum3 to sum0
  979. GGML_F32_VEC_REDUCE(sumf, sum);
  980. // leftovers
  981. for (int i = np; i < n; ++i) {
  982. sumf += x[i]*y[i];
  983. }
  984. #else
  985. // scalar
  986. ggml_float sumf = 0.0;
  987. for (int i = 0; i < n; ++i) {
  988. sumf += (ggml_float)(x[i]*y[i]);
  989. }
  990. #endif
  991. *s = sumf;
  992. }
  993. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  994. ggml_float sumf = 0.0;
  995. #if defined(GGML_SIMD)
  996. const int np = (n & ~(GGML_F16_STEP - 1));
  997. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  998. GGML_F16_VEC ax[GGML_F16_ARR];
  999. GGML_F16_VEC ay[GGML_F16_ARR];
  1000. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1001. for (int j = 0; j < GGML_F16_ARR; j++) {
  1002. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1003. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1004. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1005. }
  1006. }
  1007. // reduce sum0..sum3 to sum0
  1008. GGML_F16_VEC_REDUCE(sumf, sum);
  1009. // leftovers
  1010. for (int i = np; i < n; ++i) {
  1011. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1012. }
  1013. #else
  1014. for (int i = 0; i < n; ++i) {
  1015. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1016. }
  1017. #endif
  1018. *s = sumf;
  1019. }
  1020. // compute GGML_VEC_DOT_UNROLL dot products at once
  1021. // xs - x row stride in bytes
  1022. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1023. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1024. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1025. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1026. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1027. }
  1028. #if defined(GGML_SIMD)
  1029. const int np = (n & ~(GGML_F16_STEP - 1));
  1030. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1031. GGML_F16_VEC ax[GGML_F16_ARR];
  1032. GGML_F16_VEC ay[GGML_F16_ARR];
  1033. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1034. for (int j = 0; j < GGML_F16_ARR; j++) {
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1037. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1038. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1039. }
  1040. }
  1041. }
  1042. // reduce sum0..sum3 to sum0
  1043. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1044. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1045. }
  1046. // leftovers
  1047. for (int i = np; i < n; ++i) {
  1048. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1049. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1050. }
  1051. }
  1052. #else
  1053. for (int i = 0; i < n; ++i) {
  1054. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1055. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1056. }
  1057. }
  1058. #endif
  1059. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1060. s[i] = sumf[i];
  1061. }
  1062. }
  1063. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1064. #if defined(GGML_SIMD)
  1065. const int np = (n & ~(GGML_F32_STEP - 1));
  1066. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1067. GGML_F32_VEC ax[GGML_F32_ARR];
  1068. GGML_F32_VEC ay[GGML_F32_ARR];
  1069. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1070. for (int j = 0; j < GGML_F32_ARR; j++) {
  1071. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1072. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1073. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1074. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1075. }
  1076. }
  1077. // leftovers
  1078. for (int i = np; i < n; ++i) {
  1079. y[i] += x[i]*v;
  1080. }
  1081. #else
  1082. // scalar
  1083. for (int i = 0; i < n; ++i) {
  1084. y[i] += x[i]*v;
  1085. }
  1086. #endif
  1087. }
  1088. // xs and vs are byte strides of x and v
  1089. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1090. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1091. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1092. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1093. x[i] = (const float *) ((const char *) xv + i*xs);
  1094. v[i] = (const float *) ((const char *) vv + i*vs);
  1095. }
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1099. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1100. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1101. }
  1102. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1103. GGML_F32_VEC ay[GGML_F32_ARR];
  1104. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1105. for (int j = 0; j < GGML_F32_ARR; j++) {
  1106. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1107. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1108. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1109. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1110. }
  1111. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1112. }
  1113. }
  1114. // leftovers
  1115. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1116. for (int i = np; i < n; ++i) {
  1117. y[i] += x[k][i]*v[k][0];
  1118. }
  1119. }
  1120. #else
  1121. // scalar
  1122. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1123. for (int i = 0; i < n; ++i) {
  1124. y[i] += x[k][i]*v[k][0];
  1125. }
  1126. }
  1127. #endif
  1128. }
  1129. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1130. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1131. #if defined(GGML_USE_ACCELERATE)
  1132. vDSP_vsmul(y, 1, &v, y, 1, n);
  1133. #elif defined(GGML_SIMD)
  1134. const int np = (n & ~(GGML_F32_STEP - 1));
  1135. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1136. GGML_F32_VEC ay[GGML_F32_ARR];
  1137. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1138. for (int j = 0; j < GGML_F32_ARR; j++) {
  1139. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1140. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1141. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1142. }
  1143. }
  1144. // leftovers
  1145. for (int i = np; i < n; ++i) {
  1146. y[i] *= v;
  1147. }
  1148. #else
  1149. // scalar
  1150. for (int i = 0; i < n; ++i) {
  1151. y[i] *= v;
  1152. }
  1153. #endif
  1154. }
  1155. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1156. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1157. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1158. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1159. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1160. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1161. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1162. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1163. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1164. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1165. static const float GELU_COEF_A = 0.044715f;
  1166. static const float GELU_QUICK_COEF = -1.702f;
  1167. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1168. inline static float ggml_gelu_f32(float x) {
  1169. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1170. }
  1171. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1172. const uint16_t * i16 = (const uint16_t *) x;
  1173. for (int i = 0; i < n; ++i) {
  1174. y[i] = ggml_table_gelu_f16[i16[i]];
  1175. }
  1176. }
  1177. #ifdef GGML_GELU_FP16
  1178. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1179. uint16_t t;
  1180. for (int i = 0; i < n; ++i) {
  1181. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1182. memcpy(&t, &fp16, sizeof(uint16_t));
  1183. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1184. }
  1185. }
  1186. #else
  1187. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1188. for (int i = 0; i < n; ++i) {
  1189. y[i] = ggml_gelu_f32(x[i]);
  1190. }
  1191. }
  1192. #endif
  1193. inline static float ggml_gelu_quick_f32(float x) {
  1194. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1195. }
  1196. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1197. // const uint16_t * i16 = (const uint16_t *) x;
  1198. // for (int i = 0; i < n; ++i) {
  1199. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1200. // }
  1201. //}
  1202. #ifdef GGML_GELU_QUICK_FP16
  1203. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1204. uint16_t t;
  1205. for (int i = 0; i < n; ++i) {
  1206. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1207. memcpy(&t, &fp16, sizeof(uint16_t));
  1208. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1209. }
  1210. }
  1211. #else
  1212. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1213. for (int i = 0; i < n; ++i) {
  1214. y[i] = ggml_gelu_quick_f32(x[i]);
  1215. }
  1216. }
  1217. #endif
  1218. // Sigmoid Linear Unit (SiLU) function
  1219. inline static float ggml_silu_f32(float x) {
  1220. return x/(1.0f + expf(-x));
  1221. }
  1222. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1223. // const uint16_t * i16 = (const uint16_t *) x;
  1224. // for (int i = 0; i < n; ++i) {
  1225. // y[i] = ggml_table_silu_f16[i16[i]];
  1226. // }
  1227. //}
  1228. #ifdef GGML_SILU_FP16
  1229. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1230. uint16_t t;
  1231. for (int i = 0; i < n; ++i) {
  1232. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1233. memcpy(&t, &fp16, sizeof(uint16_t));
  1234. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1235. }
  1236. }
  1237. #else
  1238. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1239. for (int i = 0; i < n; ++i) {
  1240. y[i] = ggml_silu_f32(x[i]);
  1241. }
  1242. }
  1243. #endif
  1244. inline static float ggml_silu_backward_f32(float x, float dy) {
  1245. const float s = 1.0f/(1.0f + expf(-x));
  1246. return dy*s*(1.0f + x*(1.0f - s));
  1247. }
  1248. #ifdef GGML_SILU_FP16
  1249. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1250. for (int i = 0; i < n; ++i) {
  1251. // we did not use x[i] to compute forward silu but its f16 equivalent
  1252. // take derivative at f16 of x[i]:
  1253. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1254. float usedx = GGML_FP16_TO_FP32(fp16);
  1255. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1256. }
  1257. }
  1258. #else
  1259. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1260. for (int i = 0; i < n; ++i) {
  1261. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1262. }
  1263. }
  1264. #endif
  1265. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1266. #ifndef GGML_USE_ACCELERATE
  1267. ggml_float sum = 0.0;
  1268. for (int i = 0; i < n; ++i) {
  1269. sum += (ggml_float)x[i];
  1270. }
  1271. *s = sum;
  1272. #else
  1273. vDSP_sve(x, 1, s, n);
  1274. #endif
  1275. }
  1276. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1277. ggml_float sum = 0.0;
  1278. for (int i = 0; i < n; ++i) {
  1279. sum += (ggml_float)x[i];
  1280. }
  1281. *s = sum;
  1282. }
  1283. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1284. float sum = 0.0f;
  1285. for (int i = 0; i < n; ++i) {
  1286. sum += GGML_FP16_TO_FP32(x[i]);
  1287. }
  1288. *s = sum;
  1289. }
  1290. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1291. #ifndef GGML_USE_ACCELERATE
  1292. float max = -INFINITY;
  1293. for (int i = 0; i < n; ++i) {
  1294. max = MAX(max, x[i]);
  1295. }
  1296. *s = max;
  1297. #else
  1298. vDSP_maxv(x, 1, s, n);
  1299. #endif
  1300. }
  1301. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1302. ggml_vec_norm_f32(n, s, x);
  1303. *s = 1.f/(*s);
  1304. }
  1305. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1306. float max = -INFINITY;
  1307. int idx = 0;
  1308. for (int i = 0; i < n; ++i) {
  1309. max = MAX(max, x[i]);
  1310. if (max == x[i]) { idx = i; }
  1311. }
  1312. *s = idx;
  1313. }
  1314. //
  1315. // data types
  1316. //
  1317. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1318. "NONE",
  1319. "DUP",
  1320. "ADD",
  1321. "ADD1",
  1322. "ACC",
  1323. "SUB",
  1324. "MUL",
  1325. "DIV",
  1326. "SQR",
  1327. "SQRT",
  1328. "LOG",
  1329. "SUM",
  1330. "SUM_ROWS",
  1331. "MEAN",
  1332. "ARGMAX",
  1333. "REPEAT",
  1334. "REPEAT_BACK",
  1335. "CONCAT",
  1336. "SILU_BACK",
  1337. "NORM",
  1338. "RMS_NORM",
  1339. "RMS_NORM_BACK",
  1340. "GROUP_NORM",
  1341. "MUL_MAT",
  1342. "OUT_PROD",
  1343. "SCALE",
  1344. "SET",
  1345. "CPY",
  1346. "CONT",
  1347. "RESHAPE",
  1348. "VIEW",
  1349. "PERMUTE",
  1350. "TRANSPOSE",
  1351. "GET_ROWS",
  1352. "GET_ROWS_BACK",
  1353. "DIAG",
  1354. "DIAG_MASK_INF",
  1355. "DIAG_MASK_ZERO",
  1356. "SOFT_MAX",
  1357. "SOFT_MAX_BACK",
  1358. "ROPE",
  1359. "ROPE_BACK",
  1360. "ALIBI",
  1361. "CLAMP",
  1362. "CONV_1D",
  1363. "CONV_1D_STAGE_0",
  1364. "CONV_1D_STAGE_1",
  1365. "CONV_TRANSPOSE_1D",
  1366. "CONV_2D",
  1367. "CONV_2D_STAGE_0",
  1368. "CONV_2D_STAGE_1",
  1369. "CONV_TRANSPOSE_2D",
  1370. "POOL_1D",
  1371. "POOL_2D",
  1372. "UPSCALE",
  1373. "FLASH_ATTN",
  1374. "FLASH_FF",
  1375. "FLASH_ATTN_BACK",
  1376. "WIN_PART",
  1377. "WIN_UNPART",
  1378. "GET_REL_POS",
  1379. "ADD_REL_POS",
  1380. "UNARY",
  1381. "MAP_UNARY",
  1382. "MAP_BINARY",
  1383. "MAP_CUSTOM1_F32",
  1384. "MAP_CUSTOM2_F32",
  1385. "MAP_CUSTOM3_F32",
  1386. "MAP_CUSTOM1",
  1387. "MAP_CUSTOM2",
  1388. "MAP_CUSTOM3",
  1389. "CROSS_ENTROPY_LOSS",
  1390. "CROSS_ENTROPY_LOSS_BACK",
  1391. };
  1392. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1393. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1394. "none",
  1395. "x",
  1396. "x+y",
  1397. "x+y",
  1398. "view(x,nb,offset)+=y->x",
  1399. "x-y",
  1400. "x*y",
  1401. "x/y",
  1402. "x^2",
  1403. "√x",
  1404. "log(x)",
  1405. "Σx",
  1406. "Σx_k",
  1407. "Σx/n",
  1408. "argmax(x)",
  1409. "repeat(x)",
  1410. "repeat_back(x)",
  1411. "concat(x, y)",
  1412. "silu_back(x)",
  1413. "norm(x)",
  1414. "rms_norm(x)",
  1415. "rms_norm_back(x)",
  1416. "group_norm(x)",
  1417. "X*Y",
  1418. "X*Y",
  1419. "x*v",
  1420. "y-\\>view(x)",
  1421. "x-\\>y",
  1422. "cont(x)",
  1423. "reshape(x)",
  1424. "view(x)",
  1425. "permute(x)",
  1426. "transpose(x)",
  1427. "get_rows(x)",
  1428. "get_rows_back(x)",
  1429. "diag(x)",
  1430. "diag_mask_inf(x)",
  1431. "diag_mask_zero(x)",
  1432. "soft_max(x)",
  1433. "soft_max_back(x)",
  1434. "rope(x)",
  1435. "rope_back(x)",
  1436. "alibi(x)",
  1437. "clamp(x)",
  1438. "conv_1d(x)",
  1439. "conv_1d_stage_0(x)",
  1440. "conv_1d_stage_1(x)",
  1441. "conv_transpose_1d(x)",
  1442. "conv_2d(x)",
  1443. "conv_2d_stage_0(x)",
  1444. "conv_2d_stage_1(x)",
  1445. "conv_transpose_2d(x)",
  1446. "pool_1d(x)",
  1447. "pool_2d(x)",
  1448. "upscale(x)",
  1449. "flash_attn(x)",
  1450. "flash_ff(x)",
  1451. "flash_attn_back(x)",
  1452. "win_part(x)",
  1453. "win_unpart(x)",
  1454. "get_rel_pos(x)",
  1455. "add_rel_pos(x)",
  1456. "unary(x)",
  1457. "f(x)",
  1458. "f(x,y)",
  1459. "custom_f32(x)",
  1460. "custom_f32(x,y)",
  1461. "custom_f32(x,y,z)",
  1462. "custom(x)",
  1463. "custom(x,y)",
  1464. "custom(x,y,z)",
  1465. "cross_entropy_loss(x,y)",
  1466. "cross_entropy_loss_back(x,y)",
  1467. };
  1468. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1469. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1470. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1471. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1472. // WARN:
  1473. // Mis-confguration can lead to problem that's hard to reason about:
  1474. // * At best it crash or talks nosense.
  1475. // * At worst it talks slightly difference but hard to perceive.
  1476. //
  1477. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1478. // Take care about compile options (e.g., GGML_USE_xxx).
  1479. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1480. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1481. static void ggml_setup_op_has_task_pass(void) {
  1482. { // INIT
  1483. bool * p = GGML_OP_HAS_INIT;
  1484. p[GGML_OP_ACC ] = true;
  1485. p[GGML_OP_MUL_MAT ] = true;
  1486. p[GGML_OP_OUT_PROD ] = true;
  1487. p[GGML_OP_SET ] = true;
  1488. p[GGML_OP_GET_ROWS_BACK ] = true;
  1489. p[GGML_OP_DIAG_MASK_INF ] = true;
  1490. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1491. p[GGML_OP_CONV_1D ] = true;
  1492. p[GGML_OP_CONV_1D_STAGE_0 ] = true;
  1493. p[GGML_OP_CONV_1D_STAGE_1 ] = true;
  1494. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1495. p[GGML_OP_CONV_2D ] = true;
  1496. p[GGML_OP_CONV_2D_STAGE_0 ] = true;
  1497. p[GGML_OP_CONV_2D_STAGE_1 ] = true;
  1498. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1499. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1500. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1501. p[GGML_OP_ADD_REL_POS ] = true;
  1502. }
  1503. { // FINALIZE
  1504. bool * p = GGML_OP_HAS_FINALIZE;
  1505. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1506. }
  1507. }
  1508. //
  1509. // ggml context
  1510. //
  1511. struct ggml_context {
  1512. size_t mem_size;
  1513. void * mem_buffer;
  1514. bool mem_buffer_owned;
  1515. bool no_alloc;
  1516. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1517. int n_objects;
  1518. struct ggml_object * objects_begin;
  1519. struct ggml_object * objects_end;
  1520. struct ggml_scratch scratch;
  1521. struct ggml_scratch scratch_save;
  1522. };
  1523. struct ggml_context_container {
  1524. bool used;
  1525. struct ggml_context context;
  1526. };
  1527. //
  1528. // NUMA support
  1529. //
  1530. #define GGML_NUMA_MAX_NODES 8
  1531. #define GGML_NUMA_MAX_CPUS 512
  1532. struct ggml_numa_node {
  1533. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1534. uint32_t n_cpus;
  1535. };
  1536. struct ggml_numa_nodes {
  1537. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1538. uint32_t n_nodes;
  1539. uint32_t total_cpus; // hardware threads on system
  1540. };
  1541. //
  1542. // ggml state
  1543. //
  1544. struct ggml_state {
  1545. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1546. struct ggml_numa_nodes numa;
  1547. };
  1548. // global state
  1549. static struct ggml_state g_state;
  1550. static atomic_int g_state_barrier = 0;
  1551. // barrier via spin lock
  1552. inline static void ggml_critical_section_start(void) {
  1553. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1554. while (processing > 0) {
  1555. // wait for other threads to finish
  1556. atomic_fetch_sub(&g_state_barrier, 1);
  1557. sched_yield(); // TODO: reconsider this
  1558. processing = atomic_fetch_add(&g_state_barrier, 1);
  1559. }
  1560. }
  1561. // TODO: make this somehow automatically executed
  1562. // some sort of "sentry" mechanism
  1563. inline static void ggml_critical_section_end(void) {
  1564. atomic_fetch_sub(&g_state_barrier, 1);
  1565. }
  1566. void ggml_numa_init(void) {
  1567. if (g_state.numa.n_nodes > 0) {
  1568. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1569. return;
  1570. }
  1571. #ifdef __linux__
  1572. struct stat st;
  1573. char path[256];
  1574. int rv;
  1575. // enumerate nodes
  1576. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1577. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1578. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1579. if (stat(path, &st) != 0) { break; }
  1580. ++g_state.numa.n_nodes;
  1581. }
  1582. // enumerate CPUs
  1583. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1584. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1585. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1586. if (stat(path, &st) != 0) { break; }
  1587. ++g_state.numa.total_cpus;
  1588. }
  1589. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1590. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1591. g_state.numa.n_nodes = 0;
  1592. return;
  1593. }
  1594. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1595. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1596. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1597. node->n_cpus = 0;
  1598. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1599. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1600. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1601. if (stat(path, &st) == 0) {
  1602. node->cpus[node->n_cpus++] = c;
  1603. GGML_PRINT_DEBUG(" %u", c);
  1604. }
  1605. }
  1606. GGML_PRINT_DEBUG("\n");
  1607. }
  1608. if (ggml_is_numa()) {
  1609. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1610. if (fptr != NULL) {
  1611. char buf[42];
  1612. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1613. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1614. }
  1615. fclose(fptr);
  1616. }
  1617. }
  1618. #else
  1619. // TODO
  1620. #endif
  1621. }
  1622. bool ggml_is_numa(void) {
  1623. return g_state.numa.n_nodes > 1;
  1624. }
  1625. ////////////////////////////////////////////////////////////////////////////////
  1626. void ggml_print_object(const struct ggml_object * obj) {
  1627. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1628. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1629. }
  1630. void ggml_print_objects(const struct ggml_context * ctx) {
  1631. struct ggml_object * obj = ctx->objects_begin;
  1632. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1633. while (obj != NULL) {
  1634. ggml_print_object(obj);
  1635. obj = obj->next;
  1636. }
  1637. GGML_PRINT("%s: --- end ---\n", __func__);
  1638. }
  1639. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1640. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1641. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1642. }
  1643. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1644. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1645. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1646. }
  1647. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1648. size_t nbytes;
  1649. size_t blck_size = ggml_blck_size(tensor->type);
  1650. if (blck_size == 1) {
  1651. nbytes = ggml_type_size(tensor->type);
  1652. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1653. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1654. }
  1655. }
  1656. else {
  1657. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1658. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1659. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1660. }
  1661. }
  1662. return nbytes;
  1663. }
  1664. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1665. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1666. }
  1667. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1668. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1669. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1670. }
  1671. int ggml_blck_size(enum ggml_type type) {
  1672. return type_traits[type].blck_size;
  1673. }
  1674. size_t ggml_type_size(enum ggml_type type) {
  1675. return type_traits[type].type_size;
  1676. }
  1677. float ggml_type_sizef(enum ggml_type type) {
  1678. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1679. }
  1680. const char * ggml_type_name(enum ggml_type type) {
  1681. return type_traits[type].type_name;
  1682. }
  1683. bool ggml_is_quantized(enum ggml_type type) {
  1684. return type_traits[type].is_quantized;
  1685. }
  1686. const char * ggml_op_name(enum ggml_op op) {
  1687. return GGML_OP_NAME[op];
  1688. }
  1689. const char * ggml_op_symbol(enum ggml_op op) {
  1690. return GGML_OP_SYMBOL[op];
  1691. }
  1692. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1693. return ggml_type_size(tensor->type);
  1694. }
  1695. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1696. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1697. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1698. }
  1699. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1700. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1701. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1702. }
  1703. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1704. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1705. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1706. }
  1707. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1708. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1709. return (t0->ne[0] == t1->ne[0]) &&
  1710. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1711. (t1->ne[3]%t0->ne[3] == 0);
  1712. }
  1713. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1715. return (t0->ne[1] == t1->ne[1]) &&
  1716. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1717. (t1->ne[3]%t0->ne[3] == 0);
  1718. }
  1719. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1720. enum ggml_type wtype = GGML_TYPE_COUNT;
  1721. switch (ftype) {
  1722. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1723. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1724. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1725. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1726. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1727. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1728. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1729. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1730. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1731. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1732. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1733. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1734. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1735. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1736. }
  1737. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1738. return wtype;
  1739. }
  1740. size_t ggml_tensor_overhead(void) {
  1741. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1742. }
  1743. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1744. return tensor->nb[0] > tensor->nb[1];
  1745. }
  1746. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1747. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1748. return
  1749. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1750. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1751. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1752. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1753. }
  1754. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1755. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1756. return
  1757. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1758. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1759. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1760. }
  1761. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1762. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1763. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1764. }
  1765. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1766. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1767. return
  1768. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1769. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1770. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1771. }
  1772. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1773. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1774. return
  1775. (t0->ne[0] == t1->ne[0] ) &&
  1776. (t0->ne[1] == t1->ne[1] ) &&
  1777. (t0->ne[2] == t1->ne[2] ) &&
  1778. (t0->ne[3] == t1->ne[3] );
  1779. }
  1780. // check if t1 can be represented as a repeatition of t0
  1781. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1783. return
  1784. (t1->ne[0]%t0->ne[0] == 0) &&
  1785. (t1->ne[1]%t0->ne[1] == 0) &&
  1786. (t1->ne[2]%t0->ne[2] == 0) &&
  1787. (t1->ne[3]%t0->ne[3] == 0);
  1788. }
  1789. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1790. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1791. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1792. }
  1793. static inline int ggml_up32(int n) {
  1794. return (n + 31) & ~31;
  1795. }
  1796. //static inline int ggml_up64(int n) {
  1797. // return (n + 63) & ~63;
  1798. //}
  1799. static inline int ggml_up(int n, int m) {
  1800. // assert m is a power of 2
  1801. GGML_ASSERT((m & (m - 1)) == 0);
  1802. return (n + m - 1) & ~(m - 1);
  1803. }
  1804. // assert that pointer is aligned to GGML_MEM_ALIGN
  1805. #define ggml_assert_aligned(ptr) \
  1806. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1807. ////////////////////////////////////////////////////////////////////////////////
  1808. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1809. // make this function thread safe
  1810. ggml_critical_section_start();
  1811. static bool is_first_call = true;
  1812. if (is_first_call) {
  1813. // initialize time system (required on Windows)
  1814. ggml_time_init();
  1815. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1816. {
  1817. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1818. ggml_fp16_t ii;
  1819. for (int i = 0; i < (1 << 16); ++i) {
  1820. uint16_t ui = i;
  1821. memcpy(&ii, &ui, sizeof(ii));
  1822. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1823. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1824. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1825. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1826. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1827. }
  1828. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1829. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1830. }
  1831. // initialize g_state
  1832. {
  1833. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1834. g_state = (struct ggml_state) {
  1835. /*.contexts =*/ { { 0 } },
  1836. /*.numa =*/ {
  1837. .n_nodes = 0,
  1838. .total_cpus = 0,
  1839. },
  1840. };
  1841. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1842. g_state.contexts[i].used = false;
  1843. }
  1844. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1845. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1846. }
  1847. #if defined(GGML_USE_CUBLAS)
  1848. ggml_init_cublas();
  1849. #elif defined(GGML_USE_CLBLAST)
  1850. ggml_cl_init();
  1851. #endif
  1852. ggml_setup_op_has_task_pass();
  1853. is_first_call = false;
  1854. }
  1855. // find non-used context in g_state
  1856. struct ggml_context * ctx = NULL;
  1857. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1858. if (!g_state.contexts[i].used) {
  1859. g_state.contexts[i].used = true;
  1860. ctx = &g_state.contexts[i].context;
  1861. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1862. break;
  1863. }
  1864. }
  1865. if (ctx == NULL) {
  1866. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1867. ggml_critical_section_end();
  1868. return NULL;
  1869. }
  1870. // allow to call ggml_init with 0 size
  1871. if (params.mem_size == 0) {
  1872. params.mem_size = GGML_MEM_ALIGN;
  1873. }
  1874. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1875. *ctx = (struct ggml_context) {
  1876. /*.mem_size =*/ mem_size,
  1877. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1878. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1879. /*.no_alloc =*/ params.no_alloc,
  1880. /*.no_alloc_save =*/ params.no_alloc,
  1881. /*.n_objects =*/ 0,
  1882. /*.objects_begin =*/ NULL,
  1883. /*.objects_end =*/ NULL,
  1884. /*.scratch =*/ { 0, 0, NULL, },
  1885. /*.scratch_save =*/ { 0, 0, NULL, },
  1886. };
  1887. GGML_ASSERT(ctx->mem_buffer != NULL);
  1888. ggml_assert_aligned(ctx->mem_buffer);
  1889. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1890. ggml_critical_section_end();
  1891. return ctx;
  1892. }
  1893. void ggml_free(struct ggml_context * ctx) {
  1894. // make this function thread safe
  1895. ggml_critical_section_start();
  1896. bool found = false;
  1897. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1898. if (&g_state.contexts[i].context == ctx) {
  1899. g_state.contexts[i].used = false;
  1900. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1901. __func__, i, ggml_used_mem(ctx));
  1902. if (ctx->mem_buffer_owned) {
  1903. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1904. }
  1905. found = true;
  1906. break;
  1907. }
  1908. }
  1909. if (!found) {
  1910. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1911. }
  1912. ggml_critical_section_end();
  1913. }
  1914. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1915. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1916. }
  1917. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1918. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1919. ctx->scratch = scratch;
  1920. return result;
  1921. }
  1922. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1923. return ctx->no_alloc;
  1924. }
  1925. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1926. ctx->no_alloc = no_alloc;
  1927. }
  1928. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1929. return ctx->mem_buffer;
  1930. }
  1931. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1932. return ctx->mem_size;
  1933. }
  1934. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1935. size_t max_size = 0;
  1936. struct ggml_object * obj = ctx->objects_begin;
  1937. while (obj != NULL) {
  1938. if (obj->type == GGML_OBJECT_TENSOR) {
  1939. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1940. const size_t size = ggml_nbytes(tensor);
  1941. if (max_size < size) {
  1942. max_size = size;
  1943. }
  1944. }
  1945. obj = obj->next;
  1946. }
  1947. return max_size;
  1948. }
  1949. // IMPORTANT:
  1950. // when creating "opt" tensors, always save and load the scratch buffer
  1951. // this is an error prone process, but it is necessary to support inplace
  1952. // operators when using scratch buffers
  1953. // TODO: implement a better way
  1954. static void ggml_scratch_save(struct ggml_context * ctx) {
  1955. // this is needed to allow opt tensors to store their data
  1956. // TODO: again, need to find a better way
  1957. ctx->no_alloc_save = ctx->no_alloc;
  1958. ctx->no_alloc = false;
  1959. ctx->scratch_save = ctx->scratch;
  1960. ctx->scratch.data = NULL;
  1961. }
  1962. static void ggml_scratch_load(struct ggml_context * ctx) {
  1963. ctx->no_alloc = ctx->no_alloc_save;
  1964. ctx->scratch = ctx->scratch_save;
  1965. }
  1966. ////////////////////////////////////////////////////////////////////////////////
  1967. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  1968. // always insert objects at the end of the context's memory pool
  1969. struct ggml_object * obj_cur = ctx->objects_end;
  1970. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  1971. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  1972. const size_t cur_end = cur_offs + cur_size;
  1973. // align to GGML_MEM_ALIGN
  1974. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  1975. char * const mem_buffer = ctx->mem_buffer;
  1976. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  1977. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  1978. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  1979. __func__, cur_end + size_needed, ctx->mem_size);
  1980. assert(false);
  1981. return NULL;
  1982. }
  1983. *obj_new = (struct ggml_object) {
  1984. .offs = cur_end + GGML_OBJECT_SIZE,
  1985. .size = size_needed,
  1986. .next = NULL,
  1987. .type = type,
  1988. };
  1989. ggml_assert_aligned(mem_buffer + obj_new->offs);
  1990. if (obj_cur != NULL) {
  1991. obj_cur->next = obj_new;
  1992. } else {
  1993. // this is the first object in this context
  1994. ctx->objects_begin = obj_new;
  1995. }
  1996. ctx->objects_end = obj_new;
  1997. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  1998. return obj_new;
  1999. }
  2000. static struct ggml_tensor * ggml_new_tensor_impl(
  2001. struct ggml_context * ctx,
  2002. enum ggml_type type,
  2003. int n_dims,
  2004. const int64_t * ne,
  2005. struct ggml_tensor * view_src,
  2006. size_t view_offs) {
  2007. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2008. // find the base tensor and absolute offset
  2009. if (view_src != NULL && view_src->view_src != NULL) {
  2010. view_offs += view_src->view_offs;
  2011. view_src = view_src->view_src;
  2012. }
  2013. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2014. for (int i = 1; i < n_dims; i++) {
  2015. data_size *= ne[i];
  2016. }
  2017. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2018. void * data = view_src != NULL ? view_src->data : NULL;
  2019. if (data != NULL) {
  2020. data = (char *) data + view_offs;
  2021. }
  2022. size_t obj_alloc_size = 0;
  2023. if (view_src == NULL && !ctx->no_alloc) {
  2024. if (ctx->scratch.data != NULL) {
  2025. // allocate tensor data in the scratch buffer
  2026. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2027. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2028. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2029. assert(false);
  2030. return NULL;
  2031. }
  2032. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2033. ctx->scratch.offs += data_size;
  2034. } else {
  2035. // allocate tensor data in the context's memory pool
  2036. obj_alloc_size = data_size;
  2037. }
  2038. }
  2039. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2040. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2041. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2042. *result = (struct ggml_tensor) {
  2043. /*.type =*/ type,
  2044. /*.backend =*/ GGML_BACKEND_CPU,
  2045. /*.buffer =*/ NULL,
  2046. /*.n_dims =*/ n_dims,
  2047. /*.ne =*/ { 1, 1, 1, 1 },
  2048. /*.nb =*/ { 0, 0, 0, 0 },
  2049. /*.op =*/ GGML_OP_NONE,
  2050. /*.op_params =*/ { 0 },
  2051. /*.is_param =*/ false,
  2052. /*.grad =*/ NULL,
  2053. /*.src =*/ { NULL },
  2054. /*.perf_runs =*/ 0,
  2055. /*.perf_cycles =*/ 0,
  2056. /*.perf_time_us =*/ 0,
  2057. /*.view_src =*/ view_src,
  2058. /*.view_offs =*/ view_offs,
  2059. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2060. /*.name =*/ { 0 },
  2061. /*.extra =*/ NULL,
  2062. /*.padding =*/ { 0 },
  2063. };
  2064. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2065. //ggml_assert_aligned(result->data);
  2066. for (int i = 0; i < n_dims; i++) {
  2067. result->ne[i] = ne[i];
  2068. }
  2069. result->nb[0] = ggml_type_size(type);
  2070. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2071. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2072. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2073. }
  2074. ctx->n_objects++;
  2075. return result;
  2076. }
  2077. struct ggml_tensor * ggml_new_tensor(
  2078. struct ggml_context * ctx,
  2079. enum ggml_type type,
  2080. int n_dims,
  2081. const int64_t * ne) {
  2082. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2083. }
  2084. struct ggml_tensor * ggml_new_tensor_1d(
  2085. struct ggml_context * ctx,
  2086. enum ggml_type type,
  2087. int64_t ne0) {
  2088. return ggml_new_tensor(ctx, type, 1, &ne0);
  2089. }
  2090. struct ggml_tensor * ggml_new_tensor_2d(
  2091. struct ggml_context * ctx,
  2092. enum ggml_type type,
  2093. int64_t ne0,
  2094. int64_t ne1) {
  2095. const int64_t ne[2] = { ne0, ne1 };
  2096. return ggml_new_tensor(ctx, type, 2, ne);
  2097. }
  2098. struct ggml_tensor * ggml_new_tensor_3d(
  2099. struct ggml_context * ctx,
  2100. enum ggml_type type,
  2101. int64_t ne0,
  2102. int64_t ne1,
  2103. int64_t ne2) {
  2104. const int64_t ne[3] = { ne0, ne1, ne2 };
  2105. return ggml_new_tensor(ctx, type, 3, ne);
  2106. }
  2107. struct ggml_tensor * ggml_new_tensor_4d(
  2108. struct ggml_context * ctx,
  2109. enum ggml_type type,
  2110. int64_t ne0,
  2111. int64_t ne1,
  2112. int64_t ne2,
  2113. int64_t ne3) {
  2114. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2115. return ggml_new_tensor(ctx, type, 4, ne);
  2116. }
  2117. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2118. ggml_scratch_save(ctx);
  2119. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2120. ggml_scratch_load(ctx);
  2121. ggml_set_i32(result, value);
  2122. return result;
  2123. }
  2124. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2125. ggml_scratch_save(ctx);
  2126. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2127. ggml_scratch_load(ctx);
  2128. ggml_set_f32(result, value);
  2129. return result;
  2130. }
  2131. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2132. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2133. }
  2134. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2135. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2136. assert(params_size <= GGML_MAX_OP_PARAMS);
  2137. memcpy(tensor->op_params, params, params_size);
  2138. }
  2139. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2140. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2141. return ((const int32_t *)(tensor->op_params))[i];
  2142. }
  2143. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2144. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2145. ((int32_t *)(tensor->op_params))[i] = value;
  2146. }
  2147. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2148. memset(tensor->data, 0, ggml_nbytes(tensor));
  2149. return tensor;
  2150. }
  2151. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2152. const int n = ggml_nrows(tensor);
  2153. const int nc = tensor->ne[0];
  2154. const size_t n1 = tensor->nb[1];
  2155. char * const data = tensor->data;
  2156. switch (tensor->type) {
  2157. case GGML_TYPE_I8:
  2158. {
  2159. assert(tensor->nb[0] == sizeof(int8_t));
  2160. for (int i = 0; i < n; i++) {
  2161. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2162. }
  2163. } break;
  2164. case GGML_TYPE_I16:
  2165. {
  2166. assert(tensor->nb[0] == sizeof(int16_t));
  2167. for (int i = 0; i < n; i++) {
  2168. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2169. }
  2170. } break;
  2171. case GGML_TYPE_I32:
  2172. {
  2173. assert(tensor->nb[0] == sizeof(int32_t));
  2174. for (int i = 0; i < n; i++) {
  2175. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2176. }
  2177. } break;
  2178. case GGML_TYPE_F16:
  2179. {
  2180. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2181. for (int i = 0; i < n; i++) {
  2182. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2183. }
  2184. } break;
  2185. case GGML_TYPE_F32:
  2186. {
  2187. assert(tensor->nb[0] == sizeof(float));
  2188. for (int i = 0; i < n; i++) {
  2189. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2190. }
  2191. } break;
  2192. default:
  2193. {
  2194. GGML_ASSERT(false);
  2195. } break;
  2196. }
  2197. return tensor;
  2198. }
  2199. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2200. const int n = ggml_nrows(tensor);
  2201. const int nc = tensor->ne[0];
  2202. const size_t n1 = tensor->nb[1];
  2203. char * const data = tensor->data;
  2204. switch (tensor->type) {
  2205. case GGML_TYPE_I8:
  2206. {
  2207. assert(tensor->nb[0] == sizeof(int8_t));
  2208. for (int i = 0; i < n; i++) {
  2209. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2210. }
  2211. } break;
  2212. case GGML_TYPE_I16:
  2213. {
  2214. assert(tensor->nb[0] == sizeof(int16_t));
  2215. for (int i = 0; i < n; i++) {
  2216. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2217. }
  2218. } break;
  2219. case GGML_TYPE_I32:
  2220. {
  2221. assert(tensor->nb[0] == sizeof(int32_t));
  2222. for (int i = 0; i < n; i++) {
  2223. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2224. }
  2225. } break;
  2226. case GGML_TYPE_F16:
  2227. {
  2228. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2229. for (int i = 0; i < n; i++) {
  2230. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2231. }
  2232. } break;
  2233. case GGML_TYPE_F32:
  2234. {
  2235. assert(tensor->nb[0] == sizeof(float));
  2236. for (int i = 0; i < n; i++) {
  2237. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2238. }
  2239. } break;
  2240. default:
  2241. {
  2242. GGML_ASSERT(false);
  2243. } break;
  2244. }
  2245. return tensor;
  2246. }
  2247. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2248. const int64_t ne2 = tensor->ne[2];
  2249. const int64_t ne1 = tensor->ne[1];
  2250. const int64_t ne0 = tensor->ne[0];
  2251. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2252. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2253. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2254. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2255. if (i0) {
  2256. * i0 = i0_;
  2257. }
  2258. if (i1) {
  2259. * i1 = i1_;
  2260. }
  2261. if (i2) {
  2262. * i2 = i2_;
  2263. }
  2264. if (i3) {
  2265. * i3 = i3_;
  2266. }
  2267. }
  2268. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2269. if (!ggml_is_contiguous(tensor)) {
  2270. int64_t id[4] = { 0, 0, 0, 0 };
  2271. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2272. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2273. }
  2274. switch (tensor->type) {
  2275. case GGML_TYPE_I8:
  2276. {
  2277. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2278. return ((int8_t *)(tensor->data))[i];
  2279. }
  2280. case GGML_TYPE_I16:
  2281. {
  2282. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2283. return ((int16_t *)(tensor->data))[i];
  2284. }
  2285. case GGML_TYPE_I32:
  2286. {
  2287. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2288. return ((int32_t *)(tensor->data))[i];
  2289. }
  2290. case GGML_TYPE_F16:
  2291. {
  2292. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2293. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2294. }
  2295. case GGML_TYPE_F32:
  2296. {
  2297. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2298. return ((float *)(tensor->data))[i];
  2299. }
  2300. default:
  2301. {
  2302. GGML_ASSERT(false);
  2303. }
  2304. }
  2305. return 0.0f;
  2306. }
  2307. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2308. if (!ggml_is_contiguous(tensor)) {
  2309. int64_t id[4] = { 0, 0, 0, 0 };
  2310. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2311. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2312. return;
  2313. }
  2314. switch (tensor->type) {
  2315. case GGML_TYPE_I8:
  2316. {
  2317. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2318. ((int8_t *)(tensor->data))[i] = value;
  2319. } break;
  2320. case GGML_TYPE_I16:
  2321. {
  2322. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2323. ((int16_t *)(tensor->data))[i] = value;
  2324. } break;
  2325. case GGML_TYPE_I32:
  2326. {
  2327. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2328. ((int32_t *)(tensor->data))[i] = value;
  2329. } break;
  2330. case GGML_TYPE_F16:
  2331. {
  2332. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2333. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2334. } break;
  2335. case GGML_TYPE_F32:
  2336. {
  2337. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2338. ((float *)(tensor->data))[i] = value;
  2339. } break;
  2340. default:
  2341. {
  2342. GGML_ASSERT(false);
  2343. } break;
  2344. }
  2345. }
  2346. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2347. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2348. switch (tensor->type) {
  2349. case GGML_TYPE_I8:
  2350. return ((int8_t *) data)[0];
  2351. case GGML_TYPE_I16:
  2352. return ((int16_t *) data)[0];
  2353. case GGML_TYPE_I32:
  2354. return ((int32_t *) data)[0];
  2355. case GGML_TYPE_F16:
  2356. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2357. case GGML_TYPE_F32:
  2358. return ((float *) data)[0];
  2359. default:
  2360. GGML_ASSERT(false);
  2361. }
  2362. return 0.0f;
  2363. }
  2364. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2365. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2366. switch (tensor->type) {
  2367. case GGML_TYPE_I8:
  2368. {
  2369. ((int8_t *)(data))[0] = value;
  2370. } break;
  2371. case GGML_TYPE_I16:
  2372. {
  2373. ((int16_t *)(data))[0] = value;
  2374. } break;
  2375. case GGML_TYPE_I32:
  2376. {
  2377. ((int32_t *)(data))[0] = value;
  2378. } break;
  2379. case GGML_TYPE_F16:
  2380. {
  2381. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2382. } break;
  2383. case GGML_TYPE_F32:
  2384. {
  2385. ((float *)(data))[0] = value;
  2386. } break;
  2387. default:
  2388. {
  2389. GGML_ASSERT(false);
  2390. } break;
  2391. }
  2392. }
  2393. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2394. if (!ggml_is_contiguous(tensor)) {
  2395. int64_t id[4] = { 0, 0, 0, 0 };
  2396. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2397. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2398. }
  2399. switch (tensor->type) {
  2400. case GGML_TYPE_I8:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2403. return ((int8_t *)(tensor->data))[i];
  2404. }
  2405. case GGML_TYPE_I16:
  2406. {
  2407. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2408. return ((int16_t *)(tensor->data))[i];
  2409. }
  2410. case GGML_TYPE_I32:
  2411. {
  2412. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2413. return ((int32_t *)(tensor->data))[i];
  2414. }
  2415. case GGML_TYPE_F16:
  2416. {
  2417. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2418. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2419. }
  2420. case GGML_TYPE_F32:
  2421. {
  2422. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2423. return ((float *)(tensor->data))[i];
  2424. }
  2425. default:
  2426. {
  2427. GGML_ASSERT(false);
  2428. }
  2429. }
  2430. return 0.0f;
  2431. }
  2432. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2433. if (!ggml_is_contiguous(tensor)) {
  2434. int64_t id[4] = { 0, 0, 0, 0 };
  2435. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2436. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2437. return;
  2438. }
  2439. switch (tensor->type) {
  2440. case GGML_TYPE_I8:
  2441. {
  2442. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2443. ((int8_t *)(tensor->data))[i] = value;
  2444. } break;
  2445. case GGML_TYPE_I16:
  2446. {
  2447. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2448. ((int16_t *)(tensor->data))[i] = value;
  2449. } break;
  2450. case GGML_TYPE_I32:
  2451. {
  2452. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2453. ((int32_t *)(tensor->data))[i] = value;
  2454. } break;
  2455. case GGML_TYPE_F16:
  2456. {
  2457. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2458. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2459. } break;
  2460. case GGML_TYPE_F32:
  2461. {
  2462. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2463. ((float *)(tensor->data))[i] = value;
  2464. } break;
  2465. default:
  2466. {
  2467. GGML_ASSERT(false);
  2468. } break;
  2469. }
  2470. }
  2471. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2472. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2473. switch (tensor->type) {
  2474. case GGML_TYPE_I8:
  2475. return ((int8_t *) data)[0];
  2476. case GGML_TYPE_I16:
  2477. return ((int16_t *) data)[0];
  2478. case GGML_TYPE_I32:
  2479. return ((int32_t *) data)[0];
  2480. case GGML_TYPE_F16:
  2481. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2482. case GGML_TYPE_F32:
  2483. return ((float *) data)[0];
  2484. default:
  2485. GGML_ASSERT(false);
  2486. }
  2487. return 0.0f;
  2488. }
  2489. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2490. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2491. switch (tensor->type) {
  2492. case GGML_TYPE_I8:
  2493. {
  2494. ((int8_t *)(data))[0] = value;
  2495. } break;
  2496. case GGML_TYPE_I16:
  2497. {
  2498. ((int16_t *)(data))[0] = value;
  2499. } break;
  2500. case GGML_TYPE_I32:
  2501. {
  2502. ((int32_t *)(data))[0] = value;
  2503. } break;
  2504. case GGML_TYPE_F16:
  2505. {
  2506. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2507. } break;
  2508. case GGML_TYPE_F32:
  2509. {
  2510. ((float *)(data))[0] = value;
  2511. } break;
  2512. default:
  2513. {
  2514. GGML_ASSERT(false);
  2515. } break;
  2516. }
  2517. }
  2518. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2519. return tensor->data;
  2520. }
  2521. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2522. assert(tensor->type == GGML_TYPE_F32);
  2523. return (float *)(tensor->data);
  2524. }
  2525. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2526. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2527. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2528. }
  2529. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2530. return tensor->name;
  2531. }
  2532. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2533. strncpy(tensor->name, name, sizeof(tensor->name));
  2534. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2535. return tensor;
  2536. }
  2537. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2538. va_list args;
  2539. va_start(args, fmt);
  2540. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2541. va_end(args);
  2542. return tensor;
  2543. }
  2544. struct ggml_tensor * ggml_view_tensor(
  2545. struct ggml_context * ctx,
  2546. struct ggml_tensor * src) {
  2547. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2548. ggml_format_name(result, "%s (view)", src->name);
  2549. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2550. result->nb[i] = src->nb[i];
  2551. }
  2552. return result;
  2553. }
  2554. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2555. struct ggml_object * obj = ctx->objects_begin;
  2556. char * const mem_buffer = ctx->mem_buffer;
  2557. while (obj != NULL) {
  2558. if (obj->type == GGML_OBJECT_TENSOR) {
  2559. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2560. }
  2561. obj = obj->next;
  2562. }
  2563. return NULL;
  2564. }
  2565. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2566. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2567. obj = obj->next;
  2568. char * const mem_buffer = ctx->mem_buffer;
  2569. while (obj != NULL) {
  2570. if (obj->type == GGML_OBJECT_TENSOR) {
  2571. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2572. }
  2573. obj = obj->next;
  2574. }
  2575. return NULL;
  2576. }
  2577. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2578. struct ggml_object * obj = ctx->objects_begin;
  2579. char * const mem_buffer = ctx->mem_buffer;
  2580. while (obj != NULL) {
  2581. if (obj->type == GGML_OBJECT_TENSOR) {
  2582. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2583. if (strcmp(cur->name, name) == 0) {
  2584. return cur;
  2585. }
  2586. }
  2587. obj = obj->next;
  2588. }
  2589. return NULL;
  2590. }
  2591. ////////////////////////////////////////////////////////////////////////////////
  2592. // ggml_dup
  2593. static struct ggml_tensor * ggml_dup_impl(
  2594. struct ggml_context * ctx,
  2595. struct ggml_tensor * a,
  2596. bool inplace) {
  2597. bool is_node = false;
  2598. if (!inplace && (a->grad)) {
  2599. is_node = true;
  2600. }
  2601. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2602. result->op = GGML_OP_DUP;
  2603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2604. result->src[0] = a;
  2605. return result;
  2606. }
  2607. struct ggml_tensor * ggml_dup(
  2608. struct ggml_context * ctx,
  2609. struct ggml_tensor * a) {
  2610. return ggml_dup_impl(ctx, a, false);
  2611. }
  2612. struct ggml_tensor * ggml_dup_inplace(
  2613. struct ggml_context * ctx,
  2614. struct ggml_tensor * a) {
  2615. return ggml_dup_impl(ctx, a, true);
  2616. }
  2617. // ggml_add
  2618. static struct ggml_tensor * ggml_add_impl(
  2619. struct ggml_context * ctx,
  2620. struct ggml_tensor * a,
  2621. struct ggml_tensor * b,
  2622. bool inplace) {
  2623. // TODO: support less-strict constraint
  2624. // GGML_ASSERT(ggml_can_repeat(b, a));
  2625. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2626. bool is_node = false;
  2627. if (!inplace && (a->grad || b->grad)) {
  2628. // TODO: support backward pass for broadcasting
  2629. GGML_ASSERT(ggml_are_same_shape(a, b));
  2630. is_node = true;
  2631. }
  2632. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2633. result->op = GGML_OP_ADD;
  2634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2635. result->src[0] = a;
  2636. result->src[1] = b;
  2637. return result;
  2638. }
  2639. struct ggml_tensor * ggml_add(
  2640. struct ggml_context * ctx,
  2641. struct ggml_tensor * a,
  2642. struct ggml_tensor * b) {
  2643. return ggml_add_impl(ctx, a, b, false);
  2644. }
  2645. struct ggml_tensor * ggml_add_inplace(
  2646. struct ggml_context * ctx,
  2647. struct ggml_tensor * a,
  2648. struct ggml_tensor * b) {
  2649. return ggml_add_impl(ctx, a, b, true);
  2650. }
  2651. // ggml_add_cast
  2652. static struct ggml_tensor * ggml_add_cast_impl(
  2653. struct ggml_context * ctx,
  2654. struct ggml_tensor * a,
  2655. struct ggml_tensor * b,
  2656. enum ggml_type type) {
  2657. // TODO: support less-strict constraint
  2658. // GGML_ASSERT(ggml_can_repeat(b, a));
  2659. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2660. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2661. bool is_node = false;
  2662. if (a->grad || b->grad) {
  2663. // TODO: support backward pass for broadcasting
  2664. GGML_ASSERT(ggml_are_same_shape(a, b));
  2665. is_node = true;
  2666. }
  2667. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2668. result->op = GGML_OP_ADD;
  2669. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2670. result->src[0] = a;
  2671. result->src[1] = b;
  2672. return result;
  2673. }
  2674. struct ggml_tensor * ggml_add_cast(
  2675. struct ggml_context * ctx,
  2676. struct ggml_tensor * a,
  2677. struct ggml_tensor * b,
  2678. enum ggml_type type) {
  2679. return ggml_add_cast_impl(ctx, a, b, type);
  2680. }
  2681. // ggml_add1
  2682. static struct ggml_tensor * ggml_add1_impl(
  2683. struct ggml_context * ctx,
  2684. struct ggml_tensor * a,
  2685. struct ggml_tensor * b,
  2686. bool inplace) {
  2687. GGML_ASSERT(ggml_is_scalar(b));
  2688. GGML_ASSERT(ggml_is_padded_1d(a));
  2689. bool is_node = false;
  2690. if (a->grad || b->grad) {
  2691. is_node = true;
  2692. }
  2693. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2694. result->op = GGML_OP_ADD1;
  2695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2696. result->src[0] = a;
  2697. result->src[1] = b;
  2698. return result;
  2699. }
  2700. struct ggml_tensor * ggml_add1(
  2701. struct ggml_context * ctx,
  2702. struct ggml_tensor * a,
  2703. struct ggml_tensor * b) {
  2704. return ggml_add1_impl(ctx, a, b, false);
  2705. }
  2706. struct ggml_tensor * ggml_add1_inplace(
  2707. struct ggml_context * ctx,
  2708. struct ggml_tensor * a,
  2709. struct ggml_tensor * b) {
  2710. return ggml_add1_impl(ctx, a, b, true);
  2711. }
  2712. // ggml_acc
  2713. static struct ggml_tensor * ggml_acc_impl(
  2714. struct ggml_context * ctx,
  2715. struct ggml_tensor * a,
  2716. struct ggml_tensor * b,
  2717. size_t nb1,
  2718. size_t nb2,
  2719. size_t nb3,
  2720. size_t offset,
  2721. bool inplace) {
  2722. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2723. GGML_ASSERT(ggml_is_contiguous(a));
  2724. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2725. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2726. bool is_node = false;
  2727. if (!inplace && (a->grad || b->grad)) {
  2728. is_node = true;
  2729. }
  2730. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2731. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2732. ggml_set_op_params(result, params, sizeof(params));
  2733. result->op = GGML_OP_ACC;
  2734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2735. result->src[0] = a;
  2736. result->src[1] = b;
  2737. return result;
  2738. }
  2739. struct ggml_tensor * ggml_acc(
  2740. struct ggml_context * ctx,
  2741. struct ggml_tensor * a,
  2742. struct ggml_tensor * b,
  2743. size_t nb1,
  2744. size_t nb2,
  2745. size_t nb3,
  2746. size_t offset) {
  2747. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2748. }
  2749. struct ggml_tensor * ggml_acc_inplace(
  2750. struct ggml_context * ctx,
  2751. struct ggml_tensor * a,
  2752. struct ggml_tensor * b,
  2753. size_t nb1,
  2754. size_t nb2,
  2755. size_t nb3,
  2756. size_t offset) {
  2757. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2758. }
  2759. // ggml_sub
  2760. static struct ggml_tensor * ggml_sub_impl(
  2761. struct ggml_context * ctx,
  2762. struct ggml_tensor * a,
  2763. struct ggml_tensor * b,
  2764. bool inplace) {
  2765. GGML_ASSERT(ggml_are_same_shape(a, b));
  2766. bool is_node = false;
  2767. if (!inplace && (a->grad || b->grad)) {
  2768. is_node = true;
  2769. }
  2770. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2771. result->op = GGML_OP_SUB;
  2772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2773. result->src[0] = a;
  2774. result->src[1] = b;
  2775. return result;
  2776. }
  2777. struct ggml_tensor * ggml_sub(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b) {
  2781. return ggml_sub_impl(ctx, a, b, false);
  2782. }
  2783. struct ggml_tensor * ggml_sub_inplace(
  2784. struct ggml_context * ctx,
  2785. struct ggml_tensor * a,
  2786. struct ggml_tensor * b) {
  2787. return ggml_sub_impl(ctx, a, b, true);
  2788. }
  2789. // ggml_mul
  2790. static struct ggml_tensor * ggml_mul_impl(
  2791. struct ggml_context * ctx,
  2792. struct ggml_tensor * a,
  2793. struct ggml_tensor * b,
  2794. bool inplace) {
  2795. // TODO: support less-strict constraint
  2796. // GGML_ASSERT(ggml_can_repeat(b, a));
  2797. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2798. bool is_node = false;
  2799. if (!inplace && (a->grad || b->grad)) {
  2800. // TODO: support backward pass for broadcasting
  2801. GGML_ASSERT(ggml_are_same_shape(a, b));
  2802. is_node = true;
  2803. }
  2804. if (inplace) {
  2805. GGML_ASSERT(!is_node);
  2806. }
  2807. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2808. result->op = GGML_OP_MUL;
  2809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2810. result->src[0] = a;
  2811. result->src[1] = b;
  2812. return result;
  2813. }
  2814. struct ggml_tensor * ggml_mul(
  2815. struct ggml_context * ctx,
  2816. struct ggml_tensor * a,
  2817. struct ggml_tensor * b) {
  2818. return ggml_mul_impl(ctx, a, b, false);
  2819. }
  2820. struct ggml_tensor * ggml_mul_inplace(
  2821. struct ggml_context * ctx,
  2822. struct ggml_tensor * a,
  2823. struct ggml_tensor * b) {
  2824. return ggml_mul_impl(ctx, a, b, true);
  2825. }
  2826. // ggml_div
  2827. static struct ggml_tensor * ggml_div_impl(
  2828. struct ggml_context * ctx,
  2829. struct ggml_tensor * a,
  2830. struct ggml_tensor * b,
  2831. bool inplace) {
  2832. GGML_ASSERT(ggml_are_same_shape(a, b));
  2833. bool is_node = false;
  2834. if (!inplace && (a->grad || b->grad)) {
  2835. is_node = true;
  2836. }
  2837. if (inplace) {
  2838. GGML_ASSERT(!is_node);
  2839. }
  2840. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2841. result->op = GGML_OP_DIV;
  2842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2843. result->src[0] = a;
  2844. result->src[1] = b;
  2845. return result;
  2846. }
  2847. struct ggml_tensor * ggml_div(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * a,
  2850. struct ggml_tensor * b) {
  2851. return ggml_div_impl(ctx, a, b, false);
  2852. }
  2853. struct ggml_tensor * ggml_div_inplace(
  2854. struct ggml_context * ctx,
  2855. struct ggml_tensor * a,
  2856. struct ggml_tensor * b) {
  2857. return ggml_div_impl(ctx, a, b, true);
  2858. }
  2859. // ggml_sqr
  2860. static struct ggml_tensor * ggml_sqr_impl(
  2861. struct ggml_context * ctx,
  2862. struct ggml_tensor * a,
  2863. bool inplace) {
  2864. bool is_node = false;
  2865. if (!inplace && (a->grad)) {
  2866. is_node = true;
  2867. }
  2868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2869. result->op = GGML_OP_SQR;
  2870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2871. result->src[0] = a;
  2872. return result;
  2873. }
  2874. struct ggml_tensor * ggml_sqr(
  2875. struct ggml_context * ctx,
  2876. struct ggml_tensor * a) {
  2877. return ggml_sqr_impl(ctx, a, false);
  2878. }
  2879. struct ggml_tensor * ggml_sqr_inplace(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a) {
  2882. return ggml_sqr_impl(ctx, a, true);
  2883. }
  2884. // ggml_sqrt
  2885. static struct ggml_tensor * ggml_sqrt_impl(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. bool inplace) {
  2889. bool is_node = false;
  2890. if (!inplace && (a->grad)) {
  2891. is_node = true;
  2892. }
  2893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2894. result->op = GGML_OP_SQRT;
  2895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2896. result->src[0] = a;
  2897. return result;
  2898. }
  2899. struct ggml_tensor * ggml_sqrt(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a) {
  2902. return ggml_sqrt_impl(ctx, a, false);
  2903. }
  2904. struct ggml_tensor * ggml_sqrt_inplace(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a) {
  2907. return ggml_sqrt_impl(ctx, a, true);
  2908. }
  2909. // ggml_log
  2910. static struct ggml_tensor * ggml_log_impl(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a,
  2913. bool inplace) {
  2914. bool is_node = false;
  2915. if (!inplace && (a->grad)) {
  2916. is_node = true;
  2917. }
  2918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2919. result->op = GGML_OP_LOG;
  2920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2921. result->src[0] = a;
  2922. return result;
  2923. }
  2924. struct ggml_tensor * ggml_log(
  2925. struct ggml_context * ctx,
  2926. struct ggml_tensor * a) {
  2927. return ggml_log_impl(ctx, a, false);
  2928. }
  2929. struct ggml_tensor * ggml_log_inplace(
  2930. struct ggml_context * ctx,
  2931. struct ggml_tensor * a) {
  2932. return ggml_log_impl(ctx, a, true);
  2933. }
  2934. // ggml_sum
  2935. struct ggml_tensor * ggml_sum(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a) {
  2938. bool is_node = false;
  2939. if (a->grad) {
  2940. is_node = true;
  2941. }
  2942. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2943. result->op = GGML_OP_SUM;
  2944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2945. result->src[0] = a;
  2946. return result;
  2947. }
  2948. // ggml_sum_rows
  2949. struct ggml_tensor * ggml_sum_rows(
  2950. struct ggml_context * ctx,
  2951. struct ggml_tensor * a) {
  2952. bool is_node = false;
  2953. if (a->grad) {
  2954. is_node = true;
  2955. }
  2956. int64_t ne[4] = {1,1,1,1};
  2957. for (int i=1; i<a->n_dims; ++i) {
  2958. ne[i] = a->ne[i];
  2959. }
  2960. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2961. result->op = GGML_OP_SUM_ROWS;
  2962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2963. result->src[0] = a;
  2964. return result;
  2965. }
  2966. // ggml_mean
  2967. struct ggml_tensor * ggml_mean(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a) {
  2970. bool is_node = false;
  2971. if (a->grad) {
  2972. GGML_ASSERT(false); // TODO: implement
  2973. is_node = true;
  2974. }
  2975. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2976. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2977. result->op = GGML_OP_MEAN;
  2978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2979. result->src[0] = a;
  2980. return result;
  2981. }
  2982. // ggml_argmax
  2983. struct ggml_tensor * ggml_argmax(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a) {
  2986. GGML_ASSERT(ggml_is_matrix(a));
  2987. bool is_node = false;
  2988. if (a->grad) {
  2989. GGML_ASSERT(false);
  2990. is_node = true;
  2991. }
  2992. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  2993. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  2994. result->op = GGML_OP_ARGMAX;
  2995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2996. result->src[0] = a;
  2997. return result;
  2998. }
  2999. // ggml_repeat
  3000. struct ggml_tensor * ggml_repeat(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a,
  3003. struct ggml_tensor * b) {
  3004. GGML_ASSERT(ggml_can_repeat(a, b));
  3005. bool is_node = false;
  3006. if (a->grad) {
  3007. is_node = true;
  3008. }
  3009. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3010. result->op = GGML_OP_REPEAT;
  3011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3012. result->src[0] = a;
  3013. return result;
  3014. }
  3015. // ggml_repeat_back
  3016. struct ggml_tensor * ggml_repeat_back(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a,
  3019. struct ggml_tensor * b) {
  3020. GGML_ASSERT(ggml_can_repeat(b, a));
  3021. bool is_node = false;
  3022. if (a->grad) {
  3023. is_node = true;
  3024. }
  3025. if (ggml_are_same_shape(a, b) && !is_node) {
  3026. return a;
  3027. }
  3028. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3029. result->op = GGML_OP_REPEAT_BACK;
  3030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3031. result->src[0] = a;
  3032. return result;
  3033. }
  3034. // ggml_concat
  3035. struct ggml_tensor * ggml_concat(
  3036. struct ggml_context* ctx,
  3037. struct ggml_tensor* a,
  3038. struct ggml_tensor* b) {
  3039. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3040. bool is_node = false;
  3041. if (a->grad || b->grad) {
  3042. is_node = true;
  3043. }
  3044. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3045. result->op = GGML_OP_CONCAT;
  3046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3047. result->src[0] = a;
  3048. result->src[1] = b;
  3049. return result;
  3050. }
  3051. // ggml_abs
  3052. struct ggml_tensor * ggml_abs(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a) {
  3055. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3056. }
  3057. struct ggml_tensor * ggml_abs_inplace(
  3058. struct ggml_context * ctx,
  3059. struct ggml_tensor * a) {
  3060. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3061. }
  3062. // ggml_sgn
  3063. struct ggml_tensor * ggml_sgn(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a) {
  3066. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3067. }
  3068. struct ggml_tensor * ggml_sgn_inplace(
  3069. struct ggml_context * ctx,
  3070. struct ggml_tensor * a) {
  3071. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3072. }
  3073. // ggml_neg
  3074. struct ggml_tensor * ggml_neg(
  3075. struct ggml_context * ctx,
  3076. struct ggml_tensor * a) {
  3077. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3078. }
  3079. struct ggml_tensor * ggml_neg_inplace(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a) {
  3082. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3083. }
  3084. // ggml_step
  3085. struct ggml_tensor * ggml_step(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a) {
  3088. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3089. }
  3090. struct ggml_tensor * ggml_step_inplace(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a) {
  3093. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3094. }
  3095. // ggml_tanh
  3096. struct ggml_tensor * ggml_tanh(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a) {
  3099. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3100. }
  3101. struct ggml_tensor * ggml_tanh_inplace(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a) {
  3104. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3105. }
  3106. // ggml_elu
  3107. struct ggml_tensor * ggml_elu(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a) {
  3110. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3111. }
  3112. struct ggml_tensor * ggml_elu_inplace(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3116. }
  3117. // ggml_relu
  3118. struct ggml_tensor * ggml_relu(
  3119. struct ggml_context * ctx,
  3120. struct ggml_tensor * a) {
  3121. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3122. }
  3123. struct ggml_tensor * ggml_relu_inplace(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3127. }
  3128. // ggml_gelu
  3129. struct ggml_tensor * ggml_gelu(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a) {
  3132. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3133. }
  3134. struct ggml_tensor * ggml_gelu_inplace(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a) {
  3137. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3138. }
  3139. // ggml_gelu_quick
  3140. struct ggml_tensor * ggml_gelu_quick(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3144. }
  3145. struct ggml_tensor * ggml_gelu_quick_inplace(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3149. }
  3150. // ggml_silu
  3151. struct ggml_tensor * ggml_silu(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a) {
  3154. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3155. }
  3156. struct ggml_tensor * ggml_silu_inplace(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3160. }
  3161. // ggml_silu_back
  3162. struct ggml_tensor * ggml_silu_back(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b) {
  3166. bool is_node = false;
  3167. if (a->grad || b->grad) {
  3168. // TODO: implement backward
  3169. is_node = true;
  3170. }
  3171. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3172. result->op = GGML_OP_SILU_BACK;
  3173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3174. result->src[0] = a;
  3175. result->src[1] = b;
  3176. return result;
  3177. }
  3178. // ggml_norm
  3179. static struct ggml_tensor * ggml_norm_impl(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a,
  3182. float eps,
  3183. bool inplace) {
  3184. bool is_node = false;
  3185. if (!inplace && (a->grad)) {
  3186. GGML_ASSERT(false); // TODO: implement backward
  3187. is_node = true;
  3188. }
  3189. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3190. ggml_set_op_params(result, &eps, sizeof(eps));
  3191. result->op = GGML_OP_NORM;
  3192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3193. result->src[0] = a;
  3194. return result;
  3195. }
  3196. struct ggml_tensor * ggml_norm(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a,
  3199. float eps) {
  3200. return ggml_norm_impl(ctx, a, eps, false);
  3201. }
  3202. struct ggml_tensor * ggml_norm_inplace(
  3203. struct ggml_context * ctx,
  3204. struct ggml_tensor * a,
  3205. float eps) {
  3206. return ggml_norm_impl(ctx, a, eps, true);
  3207. }
  3208. // ggml_rms_norm
  3209. static struct ggml_tensor * ggml_rms_norm_impl(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a,
  3212. float eps,
  3213. bool inplace) {
  3214. bool is_node = false;
  3215. if (!inplace && (a->grad)) {
  3216. is_node = true;
  3217. }
  3218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3219. ggml_set_op_params(result, &eps, sizeof(eps));
  3220. result->op = GGML_OP_RMS_NORM;
  3221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3222. result->src[0] = a;
  3223. return result;
  3224. }
  3225. struct ggml_tensor * ggml_rms_norm(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. float eps) {
  3229. return ggml_rms_norm_impl(ctx, a, eps, false);
  3230. }
  3231. struct ggml_tensor * ggml_rms_norm_inplace(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a,
  3234. float eps) {
  3235. return ggml_rms_norm_impl(ctx, a, eps, true);
  3236. }
  3237. // ggml_rms_norm_back
  3238. struct ggml_tensor * ggml_rms_norm_back(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a,
  3241. struct ggml_tensor * b,
  3242. float eps) {
  3243. bool is_node = false;
  3244. if (a->grad) {
  3245. // TODO: implement backward
  3246. is_node = true;
  3247. }
  3248. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3249. ggml_set_op_params(result, &eps, sizeof(eps));
  3250. result->op = GGML_OP_RMS_NORM_BACK;
  3251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3252. result->src[0] = a;
  3253. result->src[1] = b;
  3254. return result;
  3255. }
  3256. // ggml_group_norm
  3257. static struct ggml_tensor * ggml_group_norm_impl(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. int n_groups,
  3261. bool inplace) {
  3262. bool is_node = false;
  3263. if (!inplace && (a->grad)) {
  3264. GGML_ASSERT(false); // TODO: implement backward
  3265. is_node = true;
  3266. }
  3267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3268. result->op = GGML_OP_GROUP_NORM;
  3269. result->op_params[0] = n_groups;
  3270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3271. result->src[0] = a;
  3272. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3273. return result;
  3274. }
  3275. struct ggml_tensor * ggml_group_norm(
  3276. struct ggml_context * ctx,
  3277. struct ggml_tensor * a,
  3278. int n_groups) {
  3279. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3280. }
  3281. struct ggml_tensor * ggml_group_norm_inplace(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. int n_groups) {
  3285. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3286. }
  3287. // ggml_mul_mat
  3288. struct ggml_tensor * ggml_mul_mat(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. struct ggml_tensor * b) {
  3292. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3293. GGML_ASSERT(!ggml_is_transposed(a));
  3294. bool is_node = false;
  3295. if (a->grad || b->grad) {
  3296. is_node = true;
  3297. }
  3298. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3299. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3300. result->op = GGML_OP_MUL_MAT;
  3301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3302. result->src[0] = a;
  3303. result->src[1] = b;
  3304. return result;
  3305. }
  3306. // ggml_out_prod
  3307. struct ggml_tensor * ggml_out_prod(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. struct ggml_tensor * b) {
  3311. GGML_ASSERT(ggml_can_out_prod(a, b));
  3312. GGML_ASSERT(!ggml_is_transposed(a));
  3313. bool is_node = false;
  3314. if (a->grad || b->grad) {
  3315. is_node = true;
  3316. }
  3317. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3318. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3319. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3320. result->op = GGML_OP_OUT_PROD;
  3321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3322. result->src[0] = a;
  3323. result->src[1] = b;
  3324. return result;
  3325. }
  3326. // ggml_scale
  3327. static struct ggml_tensor * ggml_scale_impl(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. struct ggml_tensor * b,
  3331. bool inplace) {
  3332. GGML_ASSERT(ggml_is_scalar(b));
  3333. GGML_ASSERT(ggml_is_padded_1d(a));
  3334. bool is_node = false;
  3335. if (a->grad || b->grad) {
  3336. is_node = true;
  3337. }
  3338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3339. result->op = GGML_OP_SCALE;
  3340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3341. result->src[0] = a;
  3342. result->src[1] = b;
  3343. return result;
  3344. }
  3345. struct ggml_tensor * ggml_scale(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. struct ggml_tensor * b) {
  3349. return ggml_scale_impl(ctx, a, b, false);
  3350. }
  3351. struct ggml_tensor * ggml_scale_inplace(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a,
  3354. struct ggml_tensor * b) {
  3355. return ggml_scale_impl(ctx, a, b, true);
  3356. }
  3357. // ggml_set
  3358. static struct ggml_tensor * ggml_set_impl(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. struct ggml_tensor * b,
  3362. size_t nb1,
  3363. size_t nb2,
  3364. size_t nb3,
  3365. size_t offset,
  3366. bool inplace) {
  3367. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3368. bool is_node = false;
  3369. if (a->grad || b->grad) {
  3370. is_node = true;
  3371. }
  3372. // make a view of the destination
  3373. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3374. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3375. ggml_set_op_params(result, params, sizeof(params));
  3376. result->op = GGML_OP_SET;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src[0] = a;
  3379. result->src[1] = b;
  3380. return result;
  3381. }
  3382. struct ggml_tensor * ggml_set(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a,
  3385. struct ggml_tensor * b,
  3386. size_t nb1,
  3387. size_t nb2,
  3388. size_t nb3,
  3389. size_t offset) {
  3390. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3391. }
  3392. struct ggml_tensor * ggml_set_inplace(
  3393. struct ggml_context * ctx,
  3394. struct ggml_tensor * a,
  3395. struct ggml_tensor * b,
  3396. size_t nb1,
  3397. size_t nb2,
  3398. size_t nb3,
  3399. size_t offset) {
  3400. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3401. }
  3402. struct ggml_tensor * ggml_set_1d(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a,
  3405. struct ggml_tensor * b,
  3406. size_t offset) {
  3407. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3408. }
  3409. struct ggml_tensor * ggml_set_1d_inplace(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a,
  3412. struct ggml_tensor * b,
  3413. size_t offset) {
  3414. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3415. }
  3416. struct ggml_tensor * ggml_set_2d(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a,
  3419. struct ggml_tensor * b,
  3420. size_t nb1,
  3421. size_t offset) {
  3422. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3423. }
  3424. struct ggml_tensor * ggml_set_2d_inplace(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a,
  3427. struct ggml_tensor * b,
  3428. size_t nb1,
  3429. size_t offset) {
  3430. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3431. }
  3432. // ggml_cpy
  3433. static struct ggml_tensor * ggml_cpy_impl(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a,
  3436. struct ggml_tensor * b,
  3437. bool inplace) {
  3438. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3439. bool is_node = false;
  3440. if (!inplace && (a->grad || b->grad)) {
  3441. is_node = true;
  3442. }
  3443. // make a view of the destination
  3444. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3445. if (strlen(b->name) > 0) {
  3446. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3447. } else {
  3448. ggml_format_name(result, "%s (copy)", a->name);
  3449. }
  3450. result->op = GGML_OP_CPY;
  3451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3452. result->src[0] = a;
  3453. result->src[1] = b;
  3454. return result;
  3455. }
  3456. struct ggml_tensor * ggml_cpy(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a,
  3459. struct ggml_tensor * b) {
  3460. return ggml_cpy_impl(ctx, a, b, false);
  3461. }
  3462. struct ggml_tensor * ggml_cpy_inplace(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b) {
  3466. return ggml_cpy_impl(ctx, a, b, true);
  3467. }
  3468. // ggml_cont
  3469. static struct ggml_tensor * ggml_cont_impl(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. bool inplace) {
  3473. bool is_node = false;
  3474. if (!inplace && a->grad) {
  3475. is_node = true;
  3476. }
  3477. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3478. ggml_format_name(result, "%s (cont)", a->name);
  3479. result->op = GGML_OP_CONT;
  3480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3481. result->src[0] = a;
  3482. return result;
  3483. }
  3484. struct ggml_tensor * ggml_cont(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a) {
  3487. return ggml_cont_impl(ctx, a, false);
  3488. }
  3489. struct ggml_tensor * ggml_cont_inplace(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a) {
  3492. return ggml_cont_impl(ctx, a, true);
  3493. }
  3494. // make contiguous, with new shape
  3495. GGML_API struct ggml_tensor * ggml_cont_1d(
  3496. struct ggml_context * ctx,
  3497. struct ggml_tensor * a,
  3498. int64_t ne0) {
  3499. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3500. }
  3501. GGML_API struct ggml_tensor * ggml_cont_2d(
  3502. struct ggml_context * ctx,
  3503. struct ggml_tensor * a,
  3504. int64_t ne0,
  3505. int64_t ne1) {
  3506. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3507. }
  3508. GGML_API struct ggml_tensor * ggml_cont_3d(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. int64_t ne0,
  3512. int64_t ne1,
  3513. int64_t ne2) {
  3514. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3515. }
  3516. struct ggml_tensor * ggml_cont_4d(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a,
  3519. int64_t ne0,
  3520. int64_t ne1,
  3521. int64_t ne2,
  3522. int64_t ne3) {
  3523. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3524. bool is_node = false;
  3525. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3526. ggml_format_name(result, "%s (cont)", a->name);
  3527. result->op = GGML_OP_CONT;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src[0] = a;
  3530. return result;
  3531. }
  3532. // ggml_reshape
  3533. struct ggml_tensor * ggml_reshape(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. struct ggml_tensor * b) {
  3537. GGML_ASSERT(ggml_is_contiguous(a));
  3538. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3539. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3540. bool is_node = false;
  3541. if (a->grad) {
  3542. is_node = true;
  3543. }
  3544. if (b->grad) {
  3545. // gradient propagation is not supported
  3546. //GGML_ASSERT(false);
  3547. }
  3548. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3549. ggml_format_name(result, "%s (reshaped)", a->name);
  3550. result->op = GGML_OP_RESHAPE;
  3551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3552. result->src[0] = a;
  3553. return result;
  3554. }
  3555. struct ggml_tensor * ggml_reshape_1d(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a,
  3558. int64_t ne0) {
  3559. GGML_ASSERT(ggml_is_contiguous(a));
  3560. GGML_ASSERT(ggml_nelements(a) == ne0);
  3561. bool is_node = false;
  3562. if (a->grad) {
  3563. is_node = true;
  3564. }
  3565. const int64_t ne[1] = { ne0 };
  3566. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3567. ggml_format_name(result, "%s (reshaped)", a->name);
  3568. result->op = GGML_OP_RESHAPE;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src[0] = a;
  3571. return result;
  3572. }
  3573. struct ggml_tensor * ggml_reshape_2d(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. int64_t ne0,
  3577. int64_t ne1) {
  3578. GGML_ASSERT(ggml_is_contiguous(a));
  3579. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3580. bool is_node = false;
  3581. if (a->grad) {
  3582. is_node = true;
  3583. }
  3584. const int64_t ne[2] = { ne0, ne1 };
  3585. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3586. ggml_format_name(result, "%s (reshaped)", a->name);
  3587. result->op = GGML_OP_RESHAPE;
  3588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3589. result->src[0] = a;
  3590. return result;
  3591. }
  3592. struct ggml_tensor * ggml_reshape_3d(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. int64_t ne0,
  3596. int64_t ne1,
  3597. int64_t ne2) {
  3598. GGML_ASSERT(ggml_is_contiguous(a));
  3599. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3600. bool is_node = false;
  3601. if (a->grad) {
  3602. is_node = true;
  3603. }
  3604. const int64_t ne[3] = { ne0, ne1, ne2 };
  3605. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3606. ggml_format_name(result, "%s (reshaped)", a->name);
  3607. result->op = GGML_OP_RESHAPE;
  3608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3609. result->src[0] = a;
  3610. return result;
  3611. }
  3612. struct ggml_tensor * ggml_reshape_4d(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a,
  3615. int64_t ne0,
  3616. int64_t ne1,
  3617. int64_t ne2,
  3618. int64_t ne3) {
  3619. GGML_ASSERT(ggml_is_contiguous(a));
  3620. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3621. bool is_node = false;
  3622. if (a->grad) {
  3623. is_node = true;
  3624. }
  3625. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3626. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3627. ggml_format_name(result, "%s (reshaped)", a->name);
  3628. result->op = GGML_OP_RESHAPE;
  3629. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3630. result->src[0] = a;
  3631. return result;
  3632. }
  3633. static struct ggml_tensor * ggml_view_impl(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a,
  3636. int n_dims,
  3637. const int64_t * ne,
  3638. size_t offset) {
  3639. bool is_node = false;
  3640. if (a->grad) {
  3641. is_node = true;
  3642. }
  3643. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3644. ggml_format_name(result, "%s (view)", a->name);
  3645. ggml_set_op_params(result, &offset, sizeof(offset));
  3646. result->op = GGML_OP_VIEW;
  3647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3648. result->src[0] = a;
  3649. return result;
  3650. }
  3651. // ggml_view_1d
  3652. struct ggml_tensor * ggml_view_1d(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. int64_t ne0,
  3656. size_t offset) {
  3657. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3658. return result;
  3659. }
  3660. // ggml_view_2d
  3661. struct ggml_tensor * ggml_view_2d(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. int64_t ne0,
  3665. int64_t ne1,
  3666. size_t nb1,
  3667. size_t offset) {
  3668. const int64_t ne[2] = { ne0, ne1 };
  3669. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3670. result->nb[1] = nb1;
  3671. result->nb[2] = result->nb[1]*ne1;
  3672. result->nb[3] = result->nb[2];
  3673. return result;
  3674. }
  3675. // ggml_view_3d
  3676. struct ggml_tensor * ggml_view_3d(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a,
  3679. int64_t ne0,
  3680. int64_t ne1,
  3681. int64_t ne2,
  3682. size_t nb1,
  3683. size_t nb2,
  3684. size_t offset) {
  3685. const int64_t ne[3] = { ne0, ne1, ne2 };
  3686. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3687. result->nb[1] = nb1;
  3688. result->nb[2] = nb2;
  3689. result->nb[3] = result->nb[2]*ne2;
  3690. return result;
  3691. }
  3692. // ggml_view_4d
  3693. struct ggml_tensor * ggml_view_4d(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. int64_t ne0,
  3697. int64_t ne1,
  3698. int64_t ne2,
  3699. int64_t ne3,
  3700. size_t nb1,
  3701. size_t nb2,
  3702. size_t nb3,
  3703. size_t offset) {
  3704. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3705. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3706. result->nb[1] = nb1;
  3707. result->nb[2] = nb2;
  3708. result->nb[3] = nb3;
  3709. return result;
  3710. }
  3711. // ggml_permute
  3712. struct ggml_tensor * ggml_permute(
  3713. struct ggml_context * ctx,
  3714. struct ggml_tensor * a,
  3715. int axis0,
  3716. int axis1,
  3717. int axis2,
  3718. int axis3) {
  3719. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3720. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3721. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3722. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3723. GGML_ASSERT(axis0 != axis1);
  3724. GGML_ASSERT(axis0 != axis2);
  3725. GGML_ASSERT(axis0 != axis3);
  3726. GGML_ASSERT(axis1 != axis2);
  3727. GGML_ASSERT(axis1 != axis3);
  3728. GGML_ASSERT(axis2 != axis3);
  3729. bool is_node = false;
  3730. if (a->grad) {
  3731. is_node = true;
  3732. }
  3733. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3734. ggml_format_name(result, "%s (permuted)", a->name);
  3735. int ne[GGML_MAX_DIMS];
  3736. int nb[GGML_MAX_DIMS];
  3737. ne[axis0] = a->ne[0];
  3738. ne[axis1] = a->ne[1];
  3739. ne[axis2] = a->ne[2];
  3740. ne[axis3] = a->ne[3];
  3741. nb[axis0] = a->nb[0];
  3742. nb[axis1] = a->nb[1];
  3743. nb[axis2] = a->nb[2];
  3744. nb[axis3] = a->nb[3];
  3745. result->ne[0] = ne[0];
  3746. result->ne[1] = ne[1];
  3747. result->ne[2] = ne[2];
  3748. result->ne[3] = ne[3];
  3749. result->nb[0] = nb[0];
  3750. result->nb[1] = nb[1];
  3751. result->nb[2] = nb[2];
  3752. result->nb[3] = nb[3];
  3753. result->op = GGML_OP_PERMUTE;
  3754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3755. result->src[0] = a;
  3756. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3757. ggml_set_op_params(result, params, sizeof(params));
  3758. return result;
  3759. }
  3760. // ggml_transpose
  3761. struct ggml_tensor * ggml_transpose(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a) {
  3764. bool is_node = false;
  3765. if (a->grad) {
  3766. is_node = true;
  3767. }
  3768. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3769. ggml_format_name(result, "%s (transposed)", a->name);
  3770. result->ne[0] = a->ne[1];
  3771. result->ne[1] = a->ne[0];
  3772. result->nb[0] = a->nb[1];
  3773. result->nb[1] = a->nb[0];
  3774. result->op = GGML_OP_TRANSPOSE;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src[0] = a;
  3777. return result;
  3778. }
  3779. // ggml_get_rows
  3780. struct ggml_tensor * ggml_get_rows(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b) {
  3784. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3785. bool is_node = false;
  3786. if (a->grad || b->grad) {
  3787. is_node = true;
  3788. }
  3789. // TODO: implement non F32 return
  3790. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3791. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3792. result->op = GGML_OP_GET_ROWS;
  3793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3794. result->src[0] = a;
  3795. result->src[1] = b;
  3796. return result;
  3797. }
  3798. // ggml_get_rows_back
  3799. struct ggml_tensor * ggml_get_rows_back(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b,
  3803. struct ggml_tensor * c) {
  3804. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3805. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3806. bool is_node = false;
  3807. if (a->grad || b->grad) {
  3808. is_node = true;
  3809. }
  3810. // TODO: implement non F32 return
  3811. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3812. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3813. result->op = GGML_OP_GET_ROWS_BACK;
  3814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3815. result->src[0] = a;
  3816. result->src[1] = b;
  3817. return result;
  3818. }
  3819. // ggml_diag
  3820. struct ggml_tensor * ggml_diag(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a) {
  3823. GGML_ASSERT(a->ne[1] == 1);
  3824. bool is_node = false;
  3825. if (a->grad) {
  3826. is_node = true;
  3827. }
  3828. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3829. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3830. result->op = GGML_OP_DIAG;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src[0] = a;
  3833. return result;
  3834. }
  3835. // ggml_diag_mask_inf
  3836. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a,
  3839. int n_past,
  3840. bool inplace) {
  3841. bool is_node = false;
  3842. if (a->grad) {
  3843. is_node = true;
  3844. }
  3845. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3846. int32_t params[] = { n_past };
  3847. ggml_set_op_params(result, params, sizeof(params));
  3848. result->op = GGML_OP_DIAG_MASK_INF;
  3849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3850. result->src[0] = a;
  3851. return result;
  3852. }
  3853. struct ggml_tensor * ggml_diag_mask_inf(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a,
  3856. int n_past) {
  3857. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3858. }
  3859. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int n_past) {
  3863. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3864. }
  3865. // ggml_diag_mask_zero
  3866. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. int n_past,
  3870. bool inplace) {
  3871. bool is_node = false;
  3872. if (a->grad) {
  3873. is_node = true;
  3874. }
  3875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3876. int32_t params[] = { n_past };
  3877. ggml_set_op_params(result, params, sizeof(params));
  3878. result->op = GGML_OP_DIAG_MASK_ZERO;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src[0] = a;
  3881. return result;
  3882. }
  3883. struct ggml_tensor * ggml_diag_mask_zero(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. int n_past) {
  3887. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3888. }
  3889. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int n_past) {
  3893. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3894. }
  3895. // ggml_soft_max
  3896. static struct ggml_tensor * ggml_soft_max_impl(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. bool inplace) {
  3900. bool is_node = false;
  3901. if (a->grad) {
  3902. is_node = true;
  3903. }
  3904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3905. result->op = GGML_OP_SOFT_MAX;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src[0] = a;
  3908. return result;
  3909. }
  3910. struct ggml_tensor * ggml_soft_max(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a) {
  3913. return ggml_soft_max_impl(ctx, a, false);
  3914. }
  3915. struct ggml_tensor * ggml_soft_max_inplace(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a) {
  3918. return ggml_soft_max_impl(ctx, a, true);
  3919. }
  3920. // ggml_soft_max_back
  3921. static struct ggml_tensor * ggml_soft_max_back_impl(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b,
  3925. bool inplace) {
  3926. bool is_node = false;
  3927. if (a->grad || b->grad) {
  3928. is_node = true; // TODO : implement backward pass
  3929. }
  3930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3931. result->op = GGML_OP_SOFT_MAX_BACK;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src[0] = a;
  3934. result->src[1] = b;
  3935. return result;
  3936. }
  3937. struct ggml_tensor * ggml_soft_max_back(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b) {
  3941. return ggml_soft_max_back_impl(ctx, a, b, false);
  3942. }
  3943. struct ggml_tensor * ggml_soft_max_back_inplace(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. struct ggml_tensor * b) {
  3947. return ggml_soft_max_back_impl(ctx, a, b, true);
  3948. }
  3949. // ggml_rope
  3950. static struct ggml_tensor * ggml_rope_impl(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b,
  3954. int n_dims,
  3955. int mode,
  3956. int n_ctx,
  3957. int n_orig_ctx,
  3958. float freq_base,
  3959. float freq_scale,
  3960. float ext_factor,
  3961. float attn_factor,
  3962. float beta_fast,
  3963. float beta_slow,
  3964. float xpos_base,
  3965. bool xpos_down,
  3966. bool inplace) {
  3967. GGML_ASSERT(ggml_is_vector(b));
  3968. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3969. GGML_ASSERT(a->ne[2] == b->ne[0]);
  3970. bool is_node = false;
  3971. if (a->grad) {
  3972. is_node = true;
  3973. }
  3974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3975. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  3976. memcpy(params + 5, &freq_base, sizeof(float));
  3977. memcpy(params + 6, &freq_scale, sizeof(float));
  3978. memcpy(params + 7, &ext_factor, sizeof(float));
  3979. memcpy(params + 8, &attn_factor, sizeof(float));
  3980. memcpy(params + 9, &beta_fast, sizeof(float));
  3981. memcpy(params + 10, &beta_slow, sizeof(float));
  3982. memcpy(params + 11, &xpos_base, sizeof(float));
  3983. memcpy(params + 12, &xpos_down, sizeof(bool));
  3984. ggml_set_op_params(result, params, sizeof(params));
  3985. result->op = GGML_OP_ROPE;
  3986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3987. result->src[0] = a;
  3988. result->src[1] = b;
  3989. return result;
  3990. }
  3991. struct ggml_tensor * ggml_rope(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. struct ggml_tensor * b,
  3995. int n_dims,
  3996. int mode,
  3997. int n_ctx) {
  3998. return ggml_rope_impl(
  3999. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4000. );
  4001. }
  4002. struct ggml_tensor * ggml_rope_inplace(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. struct ggml_tensor * b,
  4006. int n_dims,
  4007. int mode,
  4008. int n_ctx) {
  4009. return ggml_rope_impl(
  4010. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4011. );
  4012. }
  4013. struct ggml_tensor * ggml_rope_custom(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. struct ggml_tensor * b,
  4017. int n_dims,
  4018. int mode,
  4019. int n_ctx,
  4020. int n_orig_ctx,
  4021. float freq_base,
  4022. float freq_scale,
  4023. float ext_factor,
  4024. float attn_factor,
  4025. float beta_fast,
  4026. float beta_slow) {
  4027. return ggml_rope_impl(
  4028. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4029. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4030. );
  4031. }
  4032. struct ggml_tensor * ggml_rope_custom_inplace(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. struct ggml_tensor * b,
  4036. int n_dims,
  4037. int mode,
  4038. int n_ctx,
  4039. int n_orig_ctx,
  4040. float freq_base,
  4041. float freq_scale,
  4042. float ext_factor,
  4043. float attn_factor,
  4044. float beta_fast,
  4045. float beta_slow) {
  4046. return ggml_rope_impl(
  4047. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4048. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4049. );
  4050. }
  4051. struct ggml_tensor * ggml_rope_xpos_inplace(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b,
  4055. int n_dims,
  4056. float base,
  4057. bool down) {
  4058. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4059. }
  4060. // ggml_rope_back
  4061. struct ggml_tensor * ggml_rope_back(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. struct ggml_tensor * b,
  4065. int n_dims,
  4066. int mode,
  4067. int n_ctx,
  4068. int n_orig_ctx,
  4069. float freq_base,
  4070. float freq_scale,
  4071. float ext_factor,
  4072. float attn_factor,
  4073. float beta_fast,
  4074. float beta_slow,
  4075. float xpos_base,
  4076. bool xpos_down) {
  4077. GGML_ASSERT(ggml_is_vector(b));
  4078. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4079. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4080. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = false; // TODO: implement backward
  4084. }
  4085. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4086. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4087. memcpy(params + 5, &freq_base, sizeof(float));
  4088. memcpy(params + 6, &freq_scale, sizeof(float));
  4089. memcpy(params + 7, &ext_factor, sizeof(float));
  4090. memcpy(params + 8, &attn_factor, sizeof(float));
  4091. memcpy(params + 9, &beta_fast, sizeof(float));
  4092. memcpy(params + 10, &beta_slow, sizeof(float));
  4093. memcpy(params + 11, &xpos_base, sizeof(float));
  4094. memcpy(params + 12, &xpos_down, sizeof(bool));
  4095. ggml_set_op_params(result, params, sizeof(params));
  4096. result->op = GGML_OP_ROPE_BACK;
  4097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4098. result->src[0] = a;
  4099. result->src[1] = b;
  4100. return result;
  4101. }
  4102. // ggml_alibi
  4103. struct ggml_tensor * ggml_alibi(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. int n_past,
  4107. int n_head,
  4108. float bias_max) {
  4109. GGML_ASSERT(n_past >= 0);
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. GGML_ASSERT(false); // TODO: implement backward
  4113. is_node = true;
  4114. }
  4115. // TODO: when implement backward, fix this:
  4116. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4117. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4118. int32_t op_params[3] = { n_past, n_head };
  4119. memcpy(op_params + 2, &bias_max, sizeof(float));
  4120. ggml_set_op_params(result, op_params, sizeof(op_params));
  4121. result->op = GGML_OP_ALIBI;
  4122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4123. result->src[0] = a;
  4124. return result;
  4125. }
  4126. // ggml_clamp
  4127. struct ggml_tensor * ggml_clamp(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a,
  4130. float min,
  4131. float max) {
  4132. bool is_node = false;
  4133. if (a->grad) {
  4134. GGML_ASSERT(false); // TODO: implement backward
  4135. is_node = true;
  4136. }
  4137. // TODO: when implement backward, fix this:
  4138. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4139. float params[] = { min, max };
  4140. ggml_set_op_params(result, params, sizeof(params));
  4141. result->op = GGML_OP_CLAMP;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src[0] = a;
  4144. return result;
  4145. }
  4146. // ggml_conv_1d
  4147. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4148. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4149. }
  4150. // im2col: [N, IC, IL] => [N, OL, IC*K]
  4151. // a: [OC,IC, K]
  4152. // b: [N, IC, IL]
  4153. // result: [N, OL, IC*K]
  4154. static struct ggml_tensor * ggml_conv_1d_stage_0(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. struct ggml_tensor * b,
  4158. int s0,
  4159. int p0,
  4160. int d0) {
  4161. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4162. bool is_node = false;
  4163. if (a->grad || b->grad) {
  4164. GGML_ASSERT(false); // TODO: implement backward
  4165. is_node = true;
  4166. }
  4167. const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4168. const int64_t ne[4] = {
  4169. a->ne[1] * a->ne[0],
  4170. OL,
  4171. b->ne[2],
  4172. 1,
  4173. };
  4174. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4175. int32_t params[] = { s0, p0, d0 };
  4176. ggml_set_op_params(result, params, sizeof(params));
  4177. result->op = GGML_OP_CONV_1D_STAGE_0;
  4178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4179. result->src[0] = a;
  4180. result->src[1] = b;
  4181. return result;
  4182. }
  4183. // ggml_conv_1d_stage_1
  4184. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  4185. // a: [OC, IC, K]
  4186. // b: [N, OL, IC * K]
  4187. // result: [N, OC, OL]
  4188. static struct ggml_tensor * ggml_conv_1d_stage_1(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b) {
  4192. bool is_node = false;
  4193. if (a->grad || b->grad) {
  4194. GGML_ASSERT(false); // TODO: implement backward
  4195. is_node = true;
  4196. }
  4197. const int64_t ne[4] = {
  4198. b->ne[1],
  4199. a->ne[2],
  4200. b->ne[2],
  4201. 1,
  4202. };
  4203. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4204. result->op = GGML_OP_CONV_1D_STAGE_1;
  4205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. result->src[0] = a;
  4207. result->src[1] = b;
  4208. return result;
  4209. }
  4210. // ggml_conv_1d
  4211. GGML_API struct ggml_tensor * ggml_conv_1d(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. int s0,
  4216. int p0,
  4217. int d0) {
  4218. struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
  4219. result = ggml_conv_1d_stage_1(ctx, a, result);
  4220. return result;
  4221. }
  4222. // GGML_API struct ggml_tensor * ggml_conv_1d(
  4223. // struct ggml_context * ctx,
  4224. // struct ggml_tensor * a,
  4225. // struct ggml_tensor * b,
  4226. // int s0,
  4227. // int p0,
  4228. // int d0) {
  4229. // GGML_ASSERT(ggml_is_matrix(b));
  4230. // GGML_ASSERT(a->ne[1] == b->ne[1]);
  4231. // bool is_node = false;
  4232. // if (a->grad || b->grad) {
  4233. // GGML_ASSERT(false); // TODO: implement backward
  4234. // is_node = true;
  4235. // }
  4236. // const int64_t ne[4] = {
  4237. // ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  4238. // a->ne[2], 1, 1,
  4239. // };
  4240. // struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4241. // int32_t params[] = { s0, p0, d0 };
  4242. // ggml_set_op_params(result, params, sizeof(params));
  4243. // result->op = GGML_OP_CONV_1D;
  4244. // result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4245. // result->src[0] = a;
  4246. // result->src[1] = b;
  4247. // return result;
  4248. // }
  4249. // ggml_conv_1d_ph
  4250. struct ggml_tensor* ggml_conv_1d_ph(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b,
  4254. int s,
  4255. int d) {
  4256. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4257. }
  4258. // ggml_conv_transpose_1d
  4259. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4260. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4261. }
  4262. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a,
  4265. struct ggml_tensor * b,
  4266. int s0,
  4267. int p0,
  4268. int d0) {
  4269. GGML_ASSERT(ggml_is_matrix(b));
  4270. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4271. GGML_ASSERT(a->ne[3] == 1);
  4272. GGML_ASSERT(p0 == 0);
  4273. GGML_ASSERT(d0 == 1);
  4274. bool is_node = false;
  4275. if (a->grad || b->grad) {
  4276. GGML_ASSERT(false); // TODO: implement backward
  4277. is_node = true;
  4278. }
  4279. const int64_t ne[4] = {
  4280. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4281. a->ne[1], b->ne[2], 1,
  4282. };
  4283. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4284. int32_t params[] = { s0, p0, d0 };
  4285. ggml_set_op_params(result, params, sizeof(params));
  4286. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4288. result->src[0] = a;
  4289. result->src[1] = b;
  4290. return result;
  4291. }
  4292. // ggml_conv_2d
  4293. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4294. // a: [OC,IC, KH, KW]
  4295. // b: [N, IC, IH, IW]
  4296. // result: [N, OH, OW, IC*KH*KW]
  4297. static struct ggml_tensor * ggml_conv_2d_stage_0(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a,
  4300. struct ggml_tensor * b,
  4301. int s0,
  4302. int s1,
  4303. int p0,
  4304. int p1,
  4305. int d0,
  4306. int d1) {
  4307. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4308. bool is_node = false;
  4309. if (a->grad || b->grad) {
  4310. GGML_ASSERT(false); // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
  4314. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4315. const int64_t ne[4] = {
  4316. a->ne[2] * a->ne[1] * a->ne[0],
  4317. OW,
  4318. OH,
  4319. b->ne[3],
  4320. };
  4321. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4322. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  4323. ggml_set_op_params(result, params, sizeof(params));
  4324. result->op = GGML_OP_CONV_2D_STAGE_0;
  4325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4326. result->src[0] = a;
  4327. result->src[1] = b;
  4328. return result;
  4329. }
  4330. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  4331. // a: [OC, IC, KH, KW]
  4332. // b: [N, OH, OW, IC * KH * KW]
  4333. // result: [N, OC, OH, OW]
  4334. static struct ggml_tensor * ggml_conv_2d_stage_1(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. struct ggml_tensor * b) {
  4338. bool is_node = false;
  4339. if (a->grad || b->grad) {
  4340. GGML_ASSERT(false); // TODO: implement backward
  4341. is_node = true;
  4342. }
  4343. const int64_t ne[4] = {
  4344. b->ne[1],
  4345. b->ne[2],
  4346. a->ne[3],
  4347. b->ne[3],
  4348. };
  4349. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4350. result->op = GGML_OP_CONV_2D_STAGE_1;
  4351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4352. result->src[0] = a;
  4353. result->src[1] = b;
  4354. return result;
  4355. }
  4356. // a: [OC,IC, KH, KW]
  4357. // b: [N, IC, IH, IW]
  4358. // result: [N, OC, OH, OW]
  4359. struct ggml_tensor * ggml_conv_2d(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a,
  4362. struct ggml_tensor * b,
  4363. int s0,
  4364. int s1,
  4365. int p0,
  4366. int p1,
  4367. int d0,
  4368. int d1) {
  4369. struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW]
  4370. result = ggml_conv_2d_stage_1(ctx, a, result);
  4371. return result;
  4372. }
  4373. // ggml_conv_2d_sk_p0
  4374. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b) {
  4378. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4379. }
  4380. // ggml_conv_2d_s1_ph
  4381. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. struct ggml_tensor * b) {
  4385. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4386. }
  4387. // ggml_conv_transpose_2d_p0
  4388. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4389. return (ins - 1) * s - 2 * p + ks;
  4390. }
  4391. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. struct ggml_tensor * b,
  4395. int stride) {
  4396. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4397. bool is_node = false;
  4398. if (a->grad || b->grad) {
  4399. GGML_ASSERT(false); // TODO: implement backward
  4400. is_node = true;
  4401. }
  4402. const int64_t ne[4] = {
  4403. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4404. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4405. a->ne[2], b->ne[3],
  4406. };
  4407. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4408. ggml_set_op_params_i32(result, 0, stride);
  4409. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src[0] = a;
  4412. result->src[1] = b;
  4413. return result;
  4414. }
  4415. // ggml_pool_*
  4416. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  4417. return (ins + 2 * p - ks) / s + 1;
  4418. }
  4419. // ggml_pool_1d
  4420. struct ggml_tensor * ggml_pool_1d(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. enum ggml_op_pool op,
  4424. int k0,
  4425. int s0,
  4426. int p0) {
  4427. bool is_node = false;
  4428. if (a->grad) {
  4429. GGML_ASSERT(false); // TODO: implement backward
  4430. is_node = true;
  4431. }
  4432. const int64_t ne[3] = {
  4433. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4434. a->ne[1],
  4435. };
  4436. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4437. int32_t params[] = { op, k0, s0, p0 };
  4438. ggml_set_op_params(result, params, sizeof(params));
  4439. result->op = GGML_OP_POOL_1D;
  4440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4441. result->src[0] = a;
  4442. return result;
  4443. }
  4444. // ggml_pool_2d
  4445. struct ggml_tensor * ggml_pool_2d(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. enum ggml_op_pool op,
  4449. int k0,
  4450. int k1,
  4451. int s0,
  4452. int s1,
  4453. int p0,
  4454. int p1) {
  4455. bool is_node = false;
  4456. if (a->grad) {
  4457. GGML_ASSERT(false); // TODO: implement backward
  4458. is_node = true;
  4459. }
  4460. const int64_t ne[3] = {
  4461. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4462. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4463. a->ne[2],
  4464. };
  4465. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4466. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4467. ggml_set_op_params(result, params, sizeof(params));
  4468. result->op = GGML_OP_POOL_2D;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src[0] = a;
  4471. return result;
  4472. }
  4473. // ggml_upscale
  4474. static struct ggml_tensor * ggml_upscale_impl(
  4475. struct ggml_context * ctx,
  4476. struct ggml_tensor * a,
  4477. int scale_factor) {
  4478. bool is_node = false;
  4479. if (a->grad) {
  4480. GGML_ASSERT(false); // TODO: implement backward
  4481. is_node = true;
  4482. }
  4483. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4484. a->ne[0] * scale_factor,
  4485. a->ne[1] * scale_factor,
  4486. a->ne[2], a->ne[3]);
  4487. result->op = GGML_OP_UPSCALE;
  4488. result->op_params[0] = scale_factor;
  4489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4490. result->src[0] = a;
  4491. result->src[1] = NULL;
  4492. return result;
  4493. }
  4494. struct ggml_tensor * ggml_upscale(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. int scale_factor) {
  4498. return ggml_upscale_impl(ctx, a, scale_factor);
  4499. }
  4500. // ggml_flash_attn
  4501. struct ggml_tensor * ggml_flash_attn(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * q,
  4504. struct ggml_tensor * k,
  4505. struct ggml_tensor * v,
  4506. bool masked) {
  4507. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4508. // TODO: check if vT can be multiplied by (k*qT)
  4509. bool is_node = false;
  4510. if (q->grad || k->grad || v->grad) {
  4511. is_node = true;
  4512. }
  4513. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4514. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4515. int32_t t = masked ? 1 : 0;
  4516. ggml_set_op_params(result, &t, sizeof(t));
  4517. result->op = GGML_OP_FLASH_ATTN;
  4518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4519. result->src[0] = q;
  4520. result->src[1] = k;
  4521. result->src[2] = v;
  4522. return result;
  4523. }
  4524. // ggml_flash_ff
  4525. struct ggml_tensor * ggml_flash_ff(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a,
  4528. struct ggml_tensor * b0,
  4529. struct ggml_tensor * b1,
  4530. struct ggml_tensor * c0,
  4531. struct ggml_tensor * c1) {
  4532. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4533. // TODO: more checks
  4534. bool is_node = false;
  4535. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4536. is_node = true;
  4537. }
  4538. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4539. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4540. result->op = GGML_OP_FLASH_FF;
  4541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4542. result->src[0] = a;
  4543. result->src[1] = b0;
  4544. result->src[2] = b1;
  4545. result->src[3] = c0;
  4546. result->src[4] = c1;
  4547. return result;
  4548. }
  4549. // ggml_flash_attn_back
  4550. struct ggml_tensor * ggml_flash_attn_back(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * q,
  4553. struct ggml_tensor * k,
  4554. struct ggml_tensor * v,
  4555. struct ggml_tensor * d,
  4556. bool masked) {
  4557. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4558. // TODO: check if vT can be multiplied by (k*qT)
  4559. // d shape [D,N,ne2,ne3]
  4560. // q shape [D,N,ne2,ne3]
  4561. // k shape [D,M,kvne2,ne3]
  4562. // v shape [M,D,kvne2,ne3]
  4563. const int64_t D = q->ne[0];
  4564. const int64_t N = q->ne[1];
  4565. const int64_t M = k->ne[1];
  4566. const int64_t ne2 = q->ne[2];
  4567. const int64_t ne3 = q->ne[3];
  4568. const int64_t kvne2 = k->ne[2];
  4569. GGML_ASSERT(k->ne[0] == D);
  4570. GGML_ASSERT(v->ne[0] == M);
  4571. GGML_ASSERT(v->ne[1] == D);
  4572. GGML_ASSERT(d->ne[0] == D);
  4573. GGML_ASSERT(d->ne[1] == N);
  4574. GGML_ASSERT(k->ne[2] == kvne2);
  4575. GGML_ASSERT(k->ne[3] == ne3);
  4576. GGML_ASSERT(v->ne[2] == kvne2);
  4577. GGML_ASSERT(v->ne[3] == ne3);
  4578. GGML_ASSERT(d->ne[2] == ne2);
  4579. GGML_ASSERT(d->ne[3] == ne3);
  4580. GGML_ASSERT(ne2 % kvne2 == 0);
  4581. bool is_node = false;
  4582. if (q->grad || k->grad || v->grad) {
  4583. // when using this operation (in backwards pass) these grads are set.
  4584. // we don't want to create (big) grad of our result, so is_node is false.
  4585. is_node = false;
  4586. }
  4587. // store gradients of q, k and v as continuous tensors concatenated in result.
  4588. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4589. const int64_t elem_q = ggml_nelements(q);
  4590. const int64_t elem_k = ggml_nelements(k);
  4591. const int64_t elem_v = ggml_nelements(v);
  4592. enum ggml_type result_type = GGML_TYPE_F32;
  4593. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4594. const size_t tsize = ggml_type_size(result_type);
  4595. const size_t offs_q = 0;
  4596. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4597. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4598. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4599. const size_t nelements = (end + tsize - 1)/tsize;
  4600. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4601. int32_t masked_i = masked ? 1 : 0;
  4602. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4603. result->op = GGML_OP_FLASH_ATTN_BACK;
  4604. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4605. result->src[0] = q;
  4606. result->src[1] = k;
  4607. result->src[2] = v;
  4608. result->src[3] = d;
  4609. return result;
  4610. }
  4611. // ggml_win_part
  4612. struct ggml_tensor * ggml_win_part(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. int w) {
  4616. GGML_ASSERT(a->ne[3] == 1);
  4617. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4618. bool is_node = false;
  4619. if (a->grad) {
  4620. GGML_ASSERT(false); // TODO: implement backward
  4621. is_node = true;
  4622. }
  4623. // padding
  4624. const int px = (w - a->ne[1]%w)%w;
  4625. const int py = (w - a->ne[2]%w)%w;
  4626. const int npx = (px + a->ne[1])/w;
  4627. const int npy = (py + a->ne[2])/w;
  4628. const int np = npx*npy;
  4629. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4630. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4631. int32_t params[] = { npx, npy, w };
  4632. ggml_set_op_params(result, params, sizeof(params));
  4633. result->op = GGML_OP_WIN_PART;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src[0] = a;
  4636. return result;
  4637. }
  4638. // ggml_win_unpart
  4639. struct ggml_tensor * ggml_win_unpart(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a,
  4642. int w0,
  4643. int h0,
  4644. int w) {
  4645. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4646. bool is_node = false;
  4647. if (a->grad) {
  4648. GGML_ASSERT(false); // TODO: implement backward
  4649. is_node = true;
  4650. }
  4651. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4652. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4653. int32_t params[] = { w };
  4654. ggml_set_op_params(result, params, sizeof(params));
  4655. result->op = GGML_OP_WIN_UNPART;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src[0] = a;
  4658. return result;
  4659. }
  4660. // ggml_get_rel_pos
  4661. struct ggml_tensor * ggml_get_rel_pos(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a,
  4664. int qh,
  4665. int kh) {
  4666. GGML_ASSERT(qh == kh);
  4667. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4668. bool is_node = false;
  4669. if (a->grad) {
  4670. GGML_ASSERT(false); // TODO: implement backward
  4671. is_node = true;
  4672. }
  4673. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4674. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4675. result->op = GGML_OP_GET_REL_POS;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src[0] = a;
  4678. result->src[1] = NULL;
  4679. return result;
  4680. }
  4681. // ggml_add_rel_pos
  4682. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. struct ggml_tensor * pw,
  4686. struct ggml_tensor * ph,
  4687. bool inplace) {
  4688. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4689. GGML_ASSERT(ggml_is_contiguous(a));
  4690. GGML_ASSERT(ggml_is_contiguous(pw));
  4691. GGML_ASSERT(ggml_is_contiguous(ph));
  4692. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4693. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4694. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4695. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4696. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4697. bool is_node = false;
  4698. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4699. is_node = true;
  4700. }
  4701. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4702. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4703. result->op = GGML_OP_ADD_REL_POS;
  4704. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4705. result->src[0] = a;
  4706. result->src[1] = pw;
  4707. result->src[2] = ph;
  4708. return result;
  4709. }
  4710. struct ggml_tensor * ggml_add_rel_pos(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a,
  4713. struct ggml_tensor * pw,
  4714. struct ggml_tensor * ph) {
  4715. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4716. }
  4717. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a,
  4720. struct ggml_tensor * pw,
  4721. struct ggml_tensor * ph) {
  4722. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4723. }
  4724. // gmml_unary
  4725. static struct ggml_tensor * ggml_unary_impl(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. enum ggml_unary_op op,
  4729. bool inplace) {
  4730. bool is_node = false;
  4731. if (!inplace && (a->grad)) {
  4732. is_node = true;
  4733. }
  4734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4735. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4736. result->op = GGML_OP_UNARY;
  4737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4738. result->src[0] = a;
  4739. return result;
  4740. }
  4741. struct ggml_tensor * ggml_unary(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. enum ggml_unary_op op) {
  4745. return ggml_unary_impl(ctx, a, op, false);
  4746. }
  4747. struct ggml_tensor * ggml_unary_inplace(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. enum ggml_unary_op op) {
  4751. return ggml_unary_impl(ctx, a, op, true);
  4752. }
  4753. // ggml_map_unary
  4754. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. const ggml_unary_op_f32_t fun,
  4758. bool inplace) {
  4759. bool is_node = false;
  4760. if (!inplace && a->grad) {
  4761. is_node = true;
  4762. }
  4763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4764. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4765. result->op = GGML_OP_MAP_UNARY;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src[0] = a;
  4768. return result;
  4769. }
  4770. struct ggml_tensor * ggml_map_unary_f32(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. const ggml_unary_op_f32_t fun) {
  4774. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4775. }
  4776. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. const ggml_unary_op_f32_t fun) {
  4780. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4781. }
  4782. // ggml_map_binary
  4783. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. struct ggml_tensor * b,
  4787. const ggml_binary_op_f32_t fun,
  4788. bool inplace) {
  4789. GGML_ASSERT(ggml_are_same_shape(a, b));
  4790. bool is_node = false;
  4791. if (!inplace && (a->grad || b->grad)) {
  4792. is_node = true;
  4793. }
  4794. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4795. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4796. result->op = GGML_OP_MAP_BINARY;
  4797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4798. result->src[0] = a;
  4799. result->src[1] = b;
  4800. return result;
  4801. }
  4802. struct ggml_tensor * ggml_map_binary_f32(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a,
  4805. struct ggml_tensor * b,
  4806. const ggml_binary_op_f32_t fun) {
  4807. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4808. }
  4809. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. struct ggml_tensor * b,
  4813. const ggml_binary_op_f32_t fun) {
  4814. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4815. }
  4816. // ggml_map_custom1_f32
  4817. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. const ggml_custom1_op_f32_t fun,
  4821. bool inplace) {
  4822. bool is_node = false;
  4823. if (!inplace && a->grad) {
  4824. is_node = true;
  4825. }
  4826. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4827. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4828. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src[0] = a;
  4831. return result;
  4832. }
  4833. struct ggml_tensor * ggml_map_custom1_f32(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a,
  4836. const ggml_custom1_op_f32_t fun) {
  4837. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4838. }
  4839. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. const ggml_custom1_op_f32_t fun) {
  4843. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4844. }
  4845. // ggml_map_custom2_f32
  4846. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. struct ggml_tensor * b,
  4850. const ggml_custom2_op_f32_t fun,
  4851. bool inplace) {
  4852. bool is_node = false;
  4853. if (!inplace && (a->grad || b->grad)) {
  4854. is_node = true;
  4855. }
  4856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4857. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4858. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4860. result->src[0] = a;
  4861. result->src[1] = b;
  4862. return result;
  4863. }
  4864. struct ggml_tensor * ggml_map_custom2_f32(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. struct ggml_tensor * b,
  4868. const ggml_custom2_op_f32_t fun) {
  4869. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4870. }
  4871. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. struct ggml_tensor * b,
  4875. const ggml_custom2_op_f32_t fun) {
  4876. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4877. }
  4878. // ggml_map_custom3_f32
  4879. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a,
  4882. struct ggml_tensor * b,
  4883. struct ggml_tensor * c,
  4884. const ggml_custom3_op_f32_t fun,
  4885. bool inplace) {
  4886. bool is_node = false;
  4887. if (!inplace && (a->grad || b->grad || c->grad)) {
  4888. is_node = true;
  4889. }
  4890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4891. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4892. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src[0] = a;
  4895. result->src[1] = b;
  4896. result->src[2] = c;
  4897. return result;
  4898. }
  4899. struct ggml_tensor * ggml_map_custom3_f32(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. struct ggml_tensor * b,
  4903. struct ggml_tensor * c,
  4904. const ggml_custom3_op_f32_t fun) {
  4905. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4906. }
  4907. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * a,
  4910. struct ggml_tensor * b,
  4911. struct ggml_tensor * c,
  4912. const ggml_custom3_op_f32_t fun) {
  4913. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4914. }
  4915. // ggml_map_custom1
  4916. struct ggml_map_custom1_op_params {
  4917. ggml_custom1_op_t fun;
  4918. int n_tasks;
  4919. void * userdata;
  4920. };
  4921. static struct ggml_tensor * ggml_map_custom1_impl(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a,
  4924. const ggml_custom1_op_t fun,
  4925. int n_tasks,
  4926. void * userdata,
  4927. bool inplace) {
  4928. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4929. bool is_node = false;
  4930. if (!inplace && a->grad) {
  4931. is_node = true;
  4932. }
  4933. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4934. struct ggml_map_custom1_op_params params = {
  4935. /*.fun =*/ fun,
  4936. /*.n_tasks =*/ n_tasks,
  4937. /*.userdata =*/ userdata
  4938. };
  4939. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4940. result->op = GGML_OP_MAP_CUSTOM1;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src[0] = a;
  4943. return result;
  4944. }
  4945. struct ggml_tensor * ggml_map_custom1(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. const ggml_custom1_op_t fun,
  4949. int n_tasks,
  4950. void * userdata) {
  4951. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4952. }
  4953. struct ggml_tensor * ggml_map_custom1_inplace(
  4954. struct ggml_context * ctx,
  4955. struct ggml_tensor * a,
  4956. const ggml_custom1_op_t fun,
  4957. int n_tasks,
  4958. void * userdata) {
  4959. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4960. }
  4961. // ggml_map_custom2
  4962. struct ggml_map_custom2_op_params {
  4963. ggml_custom2_op_t fun;
  4964. int n_tasks;
  4965. void * userdata;
  4966. };
  4967. static struct ggml_tensor * ggml_map_custom2_impl(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b,
  4971. const ggml_custom2_op_t fun,
  4972. int n_tasks,
  4973. void * userdata,
  4974. bool inplace) {
  4975. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4976. bool is_node = false;
  4977. if (!inplace && (a->grad || b->grad)) {
  4978. is_node = true;
  4979. }
  4980. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4981. struct ggml_map_custom2_op_params params = {
  4982. /*.fun =*/ fun,
  4983. /*.n_tasks =*/ n_tasks,
  4984. /*.userdata =*/ userdata
  4985. };
  4986. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4987. result->op = GGML_OP_MAP_CUSTOM2;
  4988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4989. result->src[0] = a;
  4990. result->src[1] = b;
  4991. return result;
  4992. }
  4993. struct ggml_tensor * ggml_map_custom2(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b,
  4997. const ggml_custom2_op_t fun,
  4998. int n_tasks,
  4999. void * userdata) {
  5000. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5001. }
  5002. struct ggml_tensor * ggml_map_custom2_inplace(
  5003. struct ggml_context * ctx,
  5004. struct ggml_tensor * a,
  5005. struct ggml_tensor * b,
  5006. const ggml_custom2_op_t fun,
  5007. int n_tasks,
  5008. void * userdata) {
  5009. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5010. }
  5011. // ggml_map_custom3
  5012. struct ggml_map_custom3_op_params {
  5013. ggml_custom3_op_t fun;
  5014. int n_tasks;
  5015. void * userdata;
  5016. };
  5017. static struct ggml_tensor * ggml_map_custom3_impl(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. struct ggml_tensor * b,
  5021. struct ggml_tensor * c,
  5022. const ggml_custom3_op_t fun,
  5023. int n_tasks,
  5024. void * userdata,
  5025. bool inplace) {
  5026. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5027. bool is_node = false;
  5028. if (!inplace && (a->grad || b->grad || c->grad)) {
  5029. is_node = true;
  5030. }
  5031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5032. struct ggml_map_custom3_op_params params = {
  5033. /*.fun =*/ fun,
  5034. /*.n_tasks =*/ n_tasks,
  5035. /*.userdata =*/ userdata
  5036. };
  5037. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5038. result->op = GGML_OP_MAP_CUSTOM3;
  5039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5040. result->src[0] = a;
  5041. result->src[1] = b;
  5042. result->src[2] = c;
  5043. return result;
  5044. }
  5045. struct ggml_tensor * ggml_map_custom3(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. struct ggml_tensor * b,
  5049. struct ggml_tensor * c,
  5050. const ggml_custom3_op_t fun,
  5051. int n_tasks,
  5052. void * userdata) {
  5053. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5054. }
  5055. struct ggml_tensor * ggml_map_custom3_inplace(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. struct ggml_tensor * b,
  5059. struct ggml_tensor * c,
  5060. const ggml_custom3_op_t fun,
  5061. int n_tasks,
  5062. void * userdata) {
  5063. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5064. }
  5065. // ggml_cross_entropy_loss
  5066. struct ggml_tensor * ggml_cross_entropy_loss(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. struct ggml_tensor * b) {
  5070. GGML_ASSERT(ggml_are_same_shape(a, b));
  5071. bool is_node = false;
  5072. if (a->grad || b->grad) {
  5073. is_node = true;
  5074. }
  5075. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5076. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5078. result->src[0] = a;
  5079. result->src[1] = b;
  5080. return result;
  5081. }
  5082. // ggml_cross_entropy_loss_back
  5083. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. struct ggml_tensor * b,
  5087. struct ggml_tensor * c) {
  5088. GGML_ASSERT(ggml_are_same_shape(a, b));
  5089. GGML_ASSERT(ggml_is_scalar(c));
  5090. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5091. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5092. result->grad = NULL;
  5093. result->src[0] = a;
  5094. result->src[1] = b;
  5095. result->src[2] = c;
  5096. return result;
  5097. }
  5098. ////////////////////////////////////////////////////////////////////////////////
  5099. void ggml_set_param(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * tensor) {
  5102. tensor->is_param = true;
  5103. GGML_ASSERT(tensor->grad == NULL);
  5104. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5105. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5106. }
  5107. // ggml_compute_forward_dup
  5108. static void ggml_compute_forward_dup_same_cont(
  5109. const struct ggml_compute_params * params,
  5110. const struct ggml_tensor * src0,
  5111. struct ggml_tensor * dst) {
  5112. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5113. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5114. GGML_ASSERT(src0->type == dst->type);
  5115. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5116. return;
  5117. }
  5118. const size_t nb00 = src0->nb[0];
  5119. const size_t nb0 = dst->nb[0];
  5120. const int ith = params->ith; // thread index
  5121. const int nth = params->nth; // number of threads
  5122. // parallelize by elements
  5123. const int ne = ggml_nelements(dst);
  5124. const int dr = (ne + nth - 1) / nth;
  5125. const int ie0 = dr * ith;
  5126. const int ie1 = MIN(ie0 + dr, ne);
  5127. if (ie0 < ie1) {
  5128. memcpy(
  5129. ((char *) dst->data + ie0*nb0),
  5130. ((char *) src0->data + ie0*nb00),
  5131. (ie1 - ie0) * ggml_type_size(src0->type));
  5132. }
  5133. }
  5134. static void ggml_compute_forward_dup_f16(
  5135. const struct ggml_compute_params * params,
  5136. const struct ggml_tensor * src0,
  5137. struct ggml_tensor * dst) {
  5138. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5140. return;
  5141. }
  5142. GGML_TENSOR_UNARY_OP_LOCALS
  5143. const int ith = params->ith; // thread index
  5144. const int nth = params->nth; // number of threads
  5145. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5146. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5147. return;
  5148. }
  5149. // parallelize by rows
  5150. const int nr = ne01;
  5151. // number of rows per thread
  5152. const int dr = (nr + nth - 1) / nth;
  5153. // row range for this thread
  5154. const int ir0 = dr * ith;
  5155. const int ir1 = MIN(ir0 + dr, nr);
  5156. if (src0->type == dst->type &&
  5157. ne00 == ne0 &&
  5158. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5159. // copy by rows
  5160. const size_t rs = ne00*nb00;
  5161. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5162. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5163. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5164. memcpy(
  5165. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5166. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5167. rs);
  5168. }
  5169. }
  5170. }
  5171. return;
  5172. }
  5173. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5174. if (ggml_is_contiguous(dst)) {
  5175. if (nb00 == sizeof(ggml_fp16_t)) {
  5176. if (dst->type == GGML_TYPE_F16) {
  5177. size_t id = 0;
  5178. const size_t rs = ne00 * nb00;
  5179. char * dst_ptr = (char *) dst->data;
  5180. for (int i03 = 0; i03 < ne03; i03++) {
  5181. for (int i02 = 0; i02 < ne02; i02++) {
  5182. id += rs * ir0;
  5183. for (int i01 = ir0; i01 < ir1; i01++) {
  5184. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5185. memcpy(dst_ptr + id, src0_ptr, rs);
  5186. id += rs;
  5187. }
  5188. id += rs * (ne01 - ir1);
  5189. }
  5190. }
  5191. } else if (dst->type == GGML_TYPE_F32) {
  5192. size_t id = 0;
  5193. float * dst_ptr = (float *) dst->data;
  5194. for (int i03 = 0; i03 < ne03; i03++) {
  5195. for (int i02 = 0; i02 < ne02; i02++) {
  5196. id += ne00 * ir0;
  5197. for (int i01 = ir0; i01 < ir1; i01++) {
  5198. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5199. for (int i00 = 0; i00 < ne00; i00++) {
  5200. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5201. id++;
  5202. }
  5203. }
  5204. id += ne00 * (ne01 - ir1);
  5205. }
  5206. }
  5207. } else if (type_traits[dst->type].from_float) {
  5208. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5209. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5210. size_t id = 0;
  5211. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5212. char * dst_ptr = (char *) dst->data;
  5213. for (int i03 = 0; i03 < ne03; i03++) {
  5214. for (int i02 = 0; i02 < ne02; i02++) {
  5215. id += rs * ir0;
  5216. for (int i01 = ir0; i01 < ir1; i01++) {
  5217. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5218. for (int i00 = 0; i00 < ne00; i00++) {
  5219. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5220. }
  5221. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5222. id += rs;
  5223. }
  5224. id += rs * (ne01 - ir1);
  5225. }
  5226. }
  5227. } else {
  5228. GGML_ASSERT(false); // TODO: implement
  5229. }
  5230. } else {
  5231. //printf("%s: this is not optimal - fix me\n", __func__);
  5232. if (dst->type == GGML_TYPE_F32) {
  5233. size_t id = 0;
  5234. float * dst_ptr = (float *) dst->data;
  5235. for (int i03 = 0; i03 < ne03; i03++) {
  5236. for (int i02 = 0; i02 < ne02; i02++) {
  5237. id += ne00 * ir0;
  5238. for (int i01 = ir0; i01 < ir1; i01++) {
  5239. for (int i00 = 0; i00 < ne00; i00++) {
  5240. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5241. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5242. id++;
  5243. }
  5244. }
  5245. id += ne00 * (ne01 - ir1);
  5246. }
  5247. }
  5248. } else if (dst->type == GGML_TYPE_F16) {
  5249. size_t id = 0;
  5250. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5251. for (int i03 = 0; i03 < ne03; i03++) {
  5252. for (int i02 = 0; i02 < ne02; i02++) {
  5253. id += ne00 * ir0;
  5254. for (int i01 = ir0; i01 < ir1; i01++) {
  5255. for (int i00 = 0; i00 < ne00; i00++) {
  5256. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5257. dst_ptr[id] = *src0_ptr;
  5258. id++;
  5259. }
  5260. }
  5261. id += ne00 * (ne01 - ir1);
  5262. }
  5263. }
  5264. } else {
  5265. GGML_ASSERT(false); // TODO: implement
  5266. }
  5267. }
  5268. return;
  5269. }
  5270. // dst counters
  5271. int64_t i10 = 0;
  5272. int64_t i11 = 0;
  5273. int64_t i12 = 0;
  5274. int64_t i13 = 0;
  5275. if (dst->type == GGML_TYPE_F16) {
  5276. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5277. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5278. i10 += ne00 * ir0;
  5279. while (i10 >= ne0) {
  5280. i10 -= ne0;
  5281. if (++i11 == ne1) {
  5282. i11 = 0;
  5283. if (++i12 == ne2) {
  5284. i12 = 0;
  5285. if (++i13 == ne3) {
  5286. i13 = 0;
  5287. }
  5288. }
  5289. }
  5290. }
  5291. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5292. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5293. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5294. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5295. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5296. if (++i10 == ne00) {
  5297. i10 = 0;
  5298. if (++i11 == ne01) {
  5299. i11 = 0;
  5300. if (++i12 == ne02) {
  5301. i12 = 0;
  5302. if (++i13 == ne03) {
  5303. i13 = 0;
  5304. }
  5305. }
  5306. }
  5307. }
  5308. }
  5309. }
  5310. i10 += ne00 * (ne01 - ir1);
  5311. while (i10 >= ne0) {
  5312. i10 -= ne0;
  5313. if (++i11 == ne1) {
  5314. i11 = 0;
  5315. if (++i12 == ne2) {
  5316. i12 = 0;
  5317. if (++i13 == ne3) {
  5318. i13 = 0;
  5319. }
  5320. }
  5321. }
  5322. }
  5323. }
  5324. }
  5325. } else if (dst->type == GGML_TYPE_F32) {
  5326. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5327. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5328. i10 += ne00 * ir0;
  5329. while (i10 >= ne0) {
  5330. i10 -= ne0;
  5331. if (++i11 == ne1) {
  5332. i11 = 0;
  5333. if (++i12 == ne2) {
  5334. i12 = 0;
  5335. if (++i13 == ne3) {
  5336. i13 = 0;
  5337. }
  5338. }
  5339. }
  5340. }
  5341. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5342. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5343. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5344. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5345. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5346. if (++i10 == ne0) {
  5347. i10 = 0;
  5348. if (++i11 == ne1) {
  5349. i11 = 0;
  5350. if (++i12 == ne2) {
  5351. i12 = 0;
  5352. if (++i13 == ne3) {
  5353. i13 = 0;
  5354. }
  5355. }
  5356. }
  5357. }
  5358. }
  5359. }
  5360. i10 += ne00 * (ne01 - ir1);
  5361. while (i10 >= ne0) {
  5362. i10 -= ne0;
  5363. if (++i11 == ne1) {
  5364. i11 = 0;
  5365. if (++i12 == ne2) {
  5366. i12 = 0;
  5367. if (++i13 == ne3) {
  5368. i13 = 0;
  5369. }
  5370. }
  5371. }
  5372. }
  5373. }
  5374. }
  5375. } else {
  5376. GGML_ASSERT(false); // TODO: implement
  5377. }
  5378. }
  5379. static void ggml_compute_forward_dup_f32(
  5380. const struct ggml_compute_params * params,
  5381. const struct ggml_tensor * src0,
  5382. struct ggml_tensor * dst) {
  5383. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5384. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5385. return;
  5386. }
  5387. GGML_TENSOR_UNARY_OP_LOCALS
  5388. const int ith = params->ith; // thread index
  5389. const int nth = params->nth; // number of threads
  5390. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5391. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5392. return;
  5393. }
  5394. // parallelize by rows
  5395. const int nr = ne01;
  5396. // number of rows per thread
  5397. const int dr = (nr + nth - 1) / nth;
  5398. // row range for this thread
  5399. const int ir0 = dr * ith;
  5400. const int ir1 = MIN(ir0 + dr, nr);
  5401. if (src0->type == dst->type &&
  5402. ne00 == ne0 &&
  5403. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5404. // copy by rows
  5405. const size_t rs = ne00*nb00;
  5406. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5408. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5409. memcpy(
  5410. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5411. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5412. rs);
  5413. }
  5414. }
  5415. }
  5416. return;
  5417. }
  5418. if (ggml_is_contiguous(dst)) {
  5419. // TODO: simplify
  5420. if (nb00 == sizeof(float)) {
  5421. if (dst->type == GGML_TYPE_F32) {
  5422. size_t id = 0;
  5423. const size_t rs = ne00 * nb00;
  5424. char * dst_ptr = (char *) dst->data;
  5425. for (int i03 = 0; i03 < ne03; i03++) {
  5426. for (int i02 = 0; i02 < ne02; i02++) {
  5427. id += rs * ir0;
  5428. for (int i01 = ir0; i01 < ir1; i01++) {
  5429. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5430. memcpy(dst_ptr + id, src0_ptr, rs);
  5431. id += rs;
  5432. }
  5433. id += rs * (ne01 - ir1);
  5434. }
  5435. }
  5436. } else if (type_traits[dst->type].from_float) {
  5437. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5438. size_t id = 0;
  5439. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5440. char * dst_ptr = (char *) dst->data;
  5441. for (int i03 = 0; i03 < ne03; i03++) {
  5442. for (int i02 = 0; i02 < ne02; i02++) {
  5443. id += rs * ir0;
  5444. for (int i01 = ir0; i01 < ir1; i01++) {
  5445. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5446. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5447. id += rs;
  5448. }
  5449. id += rs * (ne01 - ir1);
  5450. }
  5451. }
  5452. } else {
  5453. GGML_ASSERT(false); // TODO: implement
  5454. }
  5455. } else {
  5456. //printf("%s: this is not optimal - fix me\n", __func__);
  5457. if (dst->type == GGML_TYPE_F32) {
  5458. size_t id = 0;
  5459. float * dst_ptr = (float *) dst->data;
  5460. for (int i03 = 0; i03 < ne03; i03++) {
  5461. for (int i02 = 0; i02 < ne02; i02++) {
  5462. id += ne00 * ir0;
  5463. for (int i01 = ir0; i01 < ir1; i01++) {
  5464. for (int i00 = 0; i00 < ne00; i00++) {
  5465. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5466. dst_ptr[id] = *src0_ptr;
  5467. id++;
  5468. }
  5469. }
  5470. id += ne00 * (ne01 - ir1);
  5471. }
  5472. }
  5473. } else if (dst->type == GGML_TYPE_F16) {
  5474. size_t id = 0;
  5475. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5476. for (int i03 = 0; i03 < ne03; i03++) {
  5477. for (int i02 = 0; i02 < ne02; i02++) {
  5478. id += ne00 * ir0;
  5479. for (int i01 = ir0; i01 < ir1; i01++) {
  5480. for (int i00 = 0; i00 < ne00; i00++) {
  5481. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5482. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5483. id++;
  5484. }
  5485. }
  5486. id += ne00 * (ne01 - ir1);
  5487. }
  5488. }
  5489. } else {
  5490. GGML_ASSERT(false); // TODO: implement
  5491. }
  5492. }
  5493. return;
  5494. }
  5495. // dst counters
  5496. int64_t i10 = 0;
  5497. int64_t i11 = 0;
  5498. int64_t i12 = 0;
  5499. int64_t i13 = 0;
  5500. if (dst->type == GGML_TYPE_F32) {
  5501. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5502. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5503. i10 += ne00 * ir0;
  5504. while (i10 >= ne0) {
  5505. i10 -= ne0;
  5506. if (++i11 == ne1) {
  5507. i11 = 0;
  5508. if (++i12 == ne2) {
  5509. i12 = 0;
  5510. if (++i13 == ne3) {
  5511. i13 = 0;
  5512. }
  5513. }
  5514. }
  5515. }
  5516. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5517. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5518. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5519. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5520. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5521. if (++i10 == ne0) {
  5522. i10 = 0;
  5523. if (++i11 == ne1) {
  5524. i11 = 0;
  5525. if (++i12 == ne2) {
  5526. i12 = 0;
  5527. if (++i13 == ne3) {
  5528. i13 = 0;
  5529. }
  5530. }
  5531. }
  5532. }
  5533. }
  5534. }
  5535. i10 += ne00 * (ne01 - ir1);
  5536. while (i10 >= ne0) {
  5537. i10 -= ne0;
  5538. if (++i11 == ne1) {
  5539. i11 = 0;
  5540. if (++i12 == ne2) {
  5541. i12 = 0;
  5542. if (++i13 == ne3) {
  5543. i13 = 0;
  5544. }
  5545. }
  5546. }
  5547. }
  5548. }
  5549. }
  5550. } else if (dst->type == GGML_TYPE_F16) {
  5551. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5552. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5553. i10 += ne00 * ir0;
  5554. while (i10 >= ne0) {
  5555. i10 -= ne0;
  5556. if (++i11 == ne1) {
  5557. i11 = 0;
  5558. if (++i12 == ne2) {
  5559. i12 = 0;
  5560. if (++i13 == ne3) {
  5561. i13 = 0;
  5562. }
  5563. }
  5564. }
  5565. }
  5566. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5567. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5568. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5569. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5570. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5571. if (++i10 == ne0) {
  5572. i10 = 0;
  5573. if (++i11 == ne1) {
  5574. i11 = 0;
  5575. if (++i12 == ne2) {
  5576. i12 = 0;
  5577. if (++i13 == ne3) {
  5578. i13 = 0;
  5579. }
  5580. }
  5581. }
  5582. }
  5583. }
  5584. }
  5585. i10 += ne00 * (ne01 - ir1);
  5586. while (i10 >= ne0) {
  5587. i10 -= ne0;
  5588. if (++i11 == ne1) {
  5589. i11 = 0;
  5590. if (++i12 == ne2) {
  5591. i12 = 0;
  5592. if (++i13 == ne3) {
  5593. i13 = 0;
  5594. }
  5595. }
  5596. }
  5597. }
  5598. }
  5599. }
  5600. } else {
  5601. GGML_ASSERT(false); // TODO: implement
  5602. }
  5603. }
  5604. static void ggml_compute_forward_dup(
  5605. const struct ggml_compute_params * params,
  5606. const struct ggml_tensor * src0,
  5607. struct ggml_tensor * dst) {
  5608. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5609. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5610. return;
  5611. }
  5612. switch (src0->type) {
  5613. case GGML_TYPE_F16:
  5614. {
  5615. ggml_compute_forward_dup_f16(params, src0, dst);
  5616. } break;
  5617. case GGML_TYPE_F32:
  5618. {
  5619. ggml_compute_forward_dup_f32(params, src0, dst);
  5620. } break;
  5621. default:
  5622. {
  5623. GGML_ASSERT(false);
  5624. } break;
  5625. }
  5626. }
  5627. // ggml_compute_forward_add
  5628. static void ggml_compute_forward_add_f32(
  5629. const struct ggml_compute_params * params,
  5630. const struct ggml_tensor * src0,
  5631. const struct ggml_tensor * src1,
  5632. struct ggml_tensor * dst) {
  5633. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5635. return;
  5636. }
  5637. const int ith = params->ith;
  5638. const int nth = params->nth;
  5639. const int nr = ggml_nrows(src0);
  5640. GGML_TENSOR_BINARY_OP_LOCALS
  5641. GGML_ASSERT( nb0 == sizeof(float));
  5642. GGML_ASSERT(nb00 == sizeof(float));
  5643. // rows per thread
  5644. const int dr = (nr + nth - 1)/nth;
  5645. // row range for this thread
  5646. const int ir0 = dr*ith;
  5647. const int ir1 = MIN(ir0 + dr, nr);
  5648. if (nb10 == sizeof(float)) {
  5649. for (int ir = ir0; ir < ir1; ++ir) {
  5650. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5651. const int64_t i03 = ir/(ne02*ne01);
  5652. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5653. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5654. const int64_t i13 = i03 % ne13;
  5655. const int64_t i12 = i02 % ne12;
  5656. const int64_t i11 = i01 % ne11;
  5657. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5658. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5659. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5660. #ifdef GGML_USE_ACCELERATE
  5661. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5662. #else
  5663. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5664. #endif
  5665. }
  5666. } else {
  5667. // src1 is not contiguous
  5668. for (int ir = ir0; ir < ir1; ++ir) {
  5669. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5670. const int64_t i03 = ir/(ne02*ne01);
  5671. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5672. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5673. const int64_t i13 = i03 % ne13;
  5674. const int64_t i12 = i02 % ne12;
  5675. const int64_t i11 = i01 % ne11;
  5676. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5677. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5678. for (int i0 = 0; i0 < ne0; i0++) {
  5679. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5680. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5681. }
  5682. }
  5683. }
  5684. }
  5685. static void ggml_compute_forward_add_f16_f32(
  5686. const struct ggml_compute_params * params,
  5687. const struct ggml_tensor * src0,
  5688. const struct ggml_tensor * src1,
  5689. struct ggml_tensor * dst) {
  5690. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5692. return;
  5693. }
  5694. const int ith = params->ith;
  5695. const int nth = params->nth;
  5696. const int nr = ggml_nrows(src0);
  5697. GGML_TENSOR_BINARY_OP_LOCALS
  5698. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5699. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5700. if (dst->type == GGML_TYPE_F32) {
  5701. GGML_ASSERT( nb0 == sizeof(float));
  5702. }
  5703. else {
  5704. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5705. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5706. }
  5707. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5708. // rows per thread
  5709. const int dr = (nr + nth - 1)/nth;
  5710. // row range for this thread
  5711. const int ir0 = dr*ith;
  5712. const int ir1 = MIN(ir0 + dr, nr);
  5713. if (nb10 == sizeof(float)) {
  5714. if (dst->type == GGML_TYPE_F16) {
  5715. for (int ir = ir0; ir < ir1; ++ir) {
  5716. // src0, src1 and dst are same shape => same indices
  5717. const int i3 = ir/(ne2*ne1);
  5718. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5719. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5720. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5721. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5722. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5723. for (int i = 0; i < ne0; i++) {
  5724. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5725. }
  5726. }
  5727. } else {
  5728. for (int ir = ir0; ir < ir1; ++ir) {
  5729. // src0, src1 and dst are same shape => same indices
  5730. const int i3 = ir/(ne2*ne1);
  5731. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5732. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5733. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5734. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5735. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5736. for (int i = 0; i < ne0; i++) {
  5737. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5738. }
  5739. }
  5740. }
  5741. }
  5742. else {
  5743. // src1 is not contiguous
  5744. GGML_ASSERT(false);
  5745. }
  5746. }
  5747. static void ggml_compute_forward_add_f16_f16(
  5748. const struct ggml_compute_params * params,
  5749. const struct ggml_tensor * src0,
  5750. const struct ggml_tensor * src1,
  5751. struct ggml_tensor * dst) {
  5752. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5753. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5754. return;
  5755. }
  5756. const int ith = params->ith;
  5757. const int nth = params->nth;
  5758. const int nr = ggml_nrows(src0);
  5759. GGML_TENSOR_BINARY_OP_LOCALS
  5760. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5761. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5762. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5763. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5764. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5765. // rows per thread
  5766. const int dr = (nr + nth - 1)/nth;
  5767. // row range for this thread
  5768. const int ir0 = dr*ith;
  5769. const int ir1 = MIN(ir0 + dr, nr);
  5770. if (nb10 == sizeof(ggml_fp16_t)) {
  5771. for (int ir = ir0; ir < ir1; ++ir) {
  5772. // src0, src1 and dst are same shape => same indices
  5773. const int i3 = ir/(ne2*ne1);
  5774. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5775. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5776. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5777. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5778. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5779. for (int i = 0; i < ne0; i++) {
  5780. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5781. }
  5782. }
  5783. }
  5784. else {
  5785. // src1 is not contiguous
  5786. GGML_ASSERT(false);
  5787. }
  5788. }
  5789. static void ggml_compute_forward_add_q_f32(
  5790. const struct ggml_compute_params * params,
  5791. const struct ggml_tensor * src0,
  5792. const struct ggml_tensor * src1,
  5793. struct ggml_tensor * dst) {
  5794. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5796. return;
  5797. }
  5798. const int nr = ggml_nrows(src0);
  5799. GGML_TENSOR_BINARY_OP_LOCALS
  5800. const int ith = params->ith;
  5801. const int nth = params->nth;
  5802. const enum ggml_type type = src0->type;
  5803. const enum ggml_type dtype = dst->type;
  5804. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5805. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5806. // we don't support permuted src0 or src1
  5807. GGML_ASSERT(nb00 == ggml_type_size(type));
  5808. GGML_ASSERT(nb10 == sizeof(float));
  5809. // dst cannot be transposed or permuted
  5810. GGML_ASSERT(nb0 <= nb1);
  5811. GGML_ASSERT(nb1 <= nb2);
  5812. GGML_ASSERT(nb2 <= nb3);
  5813. GGML_ASSERT(ggml_is_quantized(src0->type));
  5814. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5815. // rows per thread
  5816. const int dr = (nr + nth - 1)/nth;
  5817. // row range for this thread
  5818. const int ir0 = dr*ith;
  5819. const int ir1 = MIN(ir0 + dr, nr);
  5820. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5821. for (int ir = ir0; ir < ir1; ++ir) {
  5822. // src0 indices
  5823. const int i03 = ir/(ne02*ne01);
  5824. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5825. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5826. // src1 and dst are same shape as src0 => same indices
  5827. const int i13 = i03;
  5828. const int i12 = i02;
  5829. const int i11 = i01;
  5830. const int i3 = i03;
  5831. const int i2 = i02;
  5832. const int i1 = i01;
  5833. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5834. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5835. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5836. assert(ne00 % 32 == 0);
  5837. // unquantize row from src0 to temp buffer
  5838. dequantize_row_q(src0_row, wdata, ne00);
  5839. // add src1
  5840. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5841. // quantize row to dst
  5842. if (quantize_row_q != NULL) {
  5843. quantize_row_q(wdata, dst_row, ne00);
  5844. } else {
  5845. memcpy(dst_row, wdata, ne0*nb0);
  5846. }
  5847. }
  5848. }
  5849. static void ggml_compute_forward_add(
  5850. const struct ggml_compute_params * params,
  5851. const struct ggml_tensor * src0,
  5852. const struct ggml_tensor * src1,
  5853. struct ggml_tensor * dst) {
  5854. switch (src0->type) {
  5855. case GGML_TYPE_F32:
  5856. {
  5857. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5858. } break;
  5859. case GGML_TYPE_F16:
  5860. {
  5861. if (src1->type == GGML_TYPE_F16) {
  5862. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5863. }
  5864. else if (src1->type == GGML_TYPE_F32) {
  5865. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5866. }
  5867. else {
  5868. GGML_ASSERT(false);
  5869. }
  5870. } break;
  5871. case GGML_TYPE_Q4_0:
  5872. case GGML_TYPE_Q4_1:
  5873. case GGML_TYPE_Q5_0:
  5874. case GGML_TYPE_Q5_1:
  5875. case GGML_TYPE_Q8_0:
  5876. case GGML_TYPE_Q2_K:
  5877. case GGML_TYPE_Q3_K:
  5878. case GGML_TYPE_Q4_K:
  5879. case GGML_TYPE_Q5_K:
  5880. case GGML_TYPE_Q6_K:
  5881. {
  5882. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5883. } break;
  5884. default:
  5885. {
  5886. GGML_ASSERT(false);
  5887. } break;
  5888. }
  5889. }
  5890. // ggml_compute_forward_add1
  5891. static void ggml_compute_forward_add1_f32(
  5892. const struct ggml_compute_params * params,
  5893. const struct ggml_tensor * src0,
  5894. const struct ggml_tensor * src1,
  5895. struct ggml_tensor * dst) {
  5896. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5897. GGML_ASSERT(ggml_is_scalar(src1));
  5898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5899. return;
  5900. }
  5901. const int ith = params->ith;
  5902. const int nth = params->nth;
  5903. const int nr = ggml_nrows(src0);
  5904. GGML_TENSOR_UNARY_OP_LOCALS
  5905. GGML_ASSERT( nb0 == sizeof(float));
  5906. GGML_ASSERT(nb00 == sizeof(float));
  5907. // rows per thread
  5908. const int dr = (nr + nth - 1)/nth;
  5909. // row range for this thread
  5910. const int ir0 = dr*ith;
  5911. const int ir1 = MIN(ir0 + dr, nr);
  5912. for (int ir = ir0; ir < ir1; ++ir) {
  5913. // src0 and dst are same shape => same indices
  5914. const int i3 = ir/(ne2*ne1);
  5915. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5916. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5917. #ifdef GGML_USE_ACCELERATE
  5918. UNUSED(ggml_vec_add1_f32);
  5919. vDSP_vadd(
  5920. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5921. (float *) ((char *) src1->data), 0,
  5922. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5923. ne0);
  5924. #else
  5925. ggml_vec_add1_f32(ne0,
  5926. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5927. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5928. *(float *) src1->data);
  5929. #endif
  5930. }
  5931. }
  5932. static void ggml_compute_forward_add1_f16_f32(
  5933. const struct ggml_compute_params * params,
  5934. const struct ggml_tensor * src0,
  5935. const struct ggml_tensor * src1,
  5936. struct ggml_tensor * dst) {
  5937. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5938. GGML_ASSERT(ggml_is_scalar(src1));
  5939. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5940. return;
  5941. }
  5942. // scalar to add
  5943. const float v = *(float *) src1->data;
  5944. const int ith = params->ith;
  5945. const int nth = params->nth;
  5946. const int nr = ggml_nrows(src0);
  5947. GGML_TENSOR_UNARY_OP_LOCALS
  5948. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5949. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5950. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5951. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5952. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5953. // rows per thread
  5954. const int dr = (nr + nth - 1)/nth;
  5955. // row range for this thread
  5956. const int ir0 = dr*ith;
  5957. const int ir1 = MIN(ir0 + dr, nr);
  5958. for (int ir = ir0; ir < ir1; ++ir) {
  5959. // src0 and dst are same shape => same indices
  5960. const int i3 = ir/(ne2*ne1);
  5961. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5962. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5963. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5964. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5965. for (int i = 0; i < ne0; i++) {
  5966. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5967. }
  5968. }
  5969. }
  5970. static void ggml_compute_forward_add1_f16_f16(
  5971. const struct ggml_compute_params * params,
  5972. const struct ggml_tensor * src0,
  5973. const struct ggml_tensor * src1,
  5974. struct ggml_tensor * dst) {
  5975. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5976. GGML_ASSERT(ggml_is_scalar(src1));
  5977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5978. return;
  5979. }
  5980. // scalar to add
  5981. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5982. const int ith = params->ith;
  5983. const int nth = params->nth;
  5984. const int nr = ggml_nrows(src0);
  5985. GGML_TENSOR_UNARY_OP_LOCALS
  5986. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5987. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5988. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5989. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5990. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5991. // rows per thread
  5992. const int dr = (nr + nth - 1)/nth;
  5993. // row range for this thread
  5994. const int ir0 = dr*ith;
  5995. const int ir1 = MIN(ir0 + dr, nr);
  5996. for (int ir = ir0; ir < ir1; ++ir) {
  5997. // src0 and dst are same shape => same indices
  5998. const int i3 = ir/(ne2*ne1);
  5999. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6000. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6001. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6002. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6003. for (int i = 0; i < ne0; i++) {
  6004. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6005. }
  6006. }
  6007. }
  6008. static void ggml_compute_forward_add1_q_f32(
  6009. const struct ggml_compute_params * params,
  6010. const struct ggml_tensor * src0,
  6011. const struct ggml_tensor * src1,
  6012. struct ggml_tensor * dst) {
  6013. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6014. GGML_ASSERT(ggml_is_scalar(src1));
  6015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6016. return;
  6017. }
  6018. // scalar to add
  6019. const float v = *(float *) src1->data;
  6020. const int ith = params->ith;
  6021. const int nth = params->nth;
  6022. const int nr = ggml_nrows(src0);
  6023. GGML_TENSOR_UNARY_OP_LOCALS
  6024. const enum ggml_type type = src0->type;
  6025. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6026. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6027. // we don't support permuted src0
  6028. GGML_ASSERT(nb00 == ggml_type_size(type));
  6029. // dst cannot be transposed or permuted
  6030. GGML_ASSERT(nb0 <= nb1);
  6031. GGML_ASSERT(nb1 <= nb2);
  6032. GGML_ASSERT(nb2 <= nb3);
  6033. GGML_ASSERT(ggml_is_quantized(src0->type));
  6034. GGML_ASSERT(dst->type == src0->type);
  6035. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6036. // rows per thread
  6037. const int dr = (nr + nth - 1)/nth;
  6038. // row range for this thread
  6039. const int ir0 = dr*ith;
  6040. const int ir1 = MIN(ir0 + dr, nr);
  6041. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6042. for (int ir = ir0; ir < ir1; ++ir) {
  6043. // src0 and dst are same shape => same indices
  6044. const int i3 = ir/(ne2*ne1);
  6045. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6046. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6047. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6048. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6049. assert(ne0 % 32 == 0);
  6050. // unquantize row from src0 to temp buffer
  6051. dequantize_row_q(src0_row, wdata, ne0);
  6052. // add src1
  6053. ggml_vec_acc1_f32(ne0, wdata, v);
  6054. // quantize row to dst
  6055. quantize_row_q(wdata, dst_row, ne0);
  6056. }
  6057. }
  6058. static void ggml_compute_forward_add1(
  6059. const struct ggml_compute_params * params,
  6060. const struct ggml_tensor * src0,
  6061. const struct ggml_tensor * src1,
  6062. struct ggml_tensor * dst) {
  6063. switch (src0->type) {
  6064. case GGML_TYPE_F32:
  6065. {
  6066. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6067. } break;
  6068. case GGML_TYPE_F16:
  6069. {
  6070. if (src1->type == GGML_TYPE_F16) {
  6071. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6072. }
  6073. else if (src1->type == GGML_TYPE_F32) {
  6074. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6075. }
  6076. else {
  6077. GGML_ASSERT(false);
  6078. }
  6079. } break;
  6080. case GGML_TYPE_Q4_0:
  6081. case GGML_TYPE_Q4_1:
  6082. case GGML_TYPE_Q5_0:
  6083. case GGML_TYPE_Q5_1:
  6084. case GGML_TYPE_Q8_0:
  6085. case GGML_TYPE_Q8_1:
  6086. case GGML_TYPE_Q2_K:
  6087. case GGML_TYPE_Q3_K:
  6088. case GGML_TYPE_Q4_K:
  6089. case GGML_TYPE_Q5_K:
  6090. case GGML_TYPE_Q6_K:
  6091. {
  6092. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6093. } break;
  6094. default:
  6095. {
  6096. GGML_ASSERT(false);
  6097. } break;
  6098. }
  6099. }
  6100. // ggml_compute_forward_acc
  6101. static void ggml_compute_forward_acc_f32(
  6102. const struct ggml_compute_params * params,
  6103. const struct ggml_tensor * src0,
  6104. const struct ggml_tensor * src1,
  6105. struct ggml_tensor * dst) {
  6106. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6107. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6108. // view src0 and dst with these strides and data offset inbytes during acc
  6109. // nb0 is implicitely element_size because src0 and dst are contiguous
  6110. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6111. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6112. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6113. size_t offset = ((int32_t *) dst->op_params)[3];
  6114. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6115. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6116. // memcpy needs to be synchronized across threads to avoid race conditions.
  6117. // => do it in INIT phase
  6118. memcpy(
  6119. ((char *) dst->data),
  6120. ((char *) src0->data),
  6121. ggml_nbytes(dst));
  6122. }
  6123. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6124. return;
  6125. }
  6126. const int ith = params->ith;
  6127. const int nth = params->nth;
  6128. const int nr = ggml_nrows(src1);
  6129. const int nc = src1->ne[0];
  6130. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6131. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6132. // src0 and dst as viewed during acc
  6133. const size_t nb0 = ggml_element_size(src0);
  6134. const size_t nb00 = nb0;
  6135. const size_t nb01 = nb1;
  6136. const size_t nb02 = nb2;
  6137. const size_t nb03 = nb3;
  6138. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6139. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6140. GGML_ASSERT(nb10 == sizeof(float));
  6141. // rows per thread
  6142. const int dr = (nr + nth - 1)/nth;
  6143. // row range for this thread
  6144. const int ir0 = dr*ith;
  6145. const int ir1 = MIN(ir0 + dr, nr);
  6146. for (int ir = ir0; ir < ir1; ++ir) {
  6147. // src0 and dst are viewed with shape of src1 and offset
  6148. // => same indices
  6149. const int i3 = ir/(ne12*ne11);
  6150. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6151. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6152. #ifdef GGML_USE_ACCELERATE
  6153. vDSP_vadd(
  6154. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6155. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6156. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6157. #else
  6158. ggml_vec_add_f32(nc,
  6159. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6160. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6161. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6162. #endif
  6163. }
  6164. }
  6165. static void ggml_compute_forward_acc(
  6166. const struct ggml_compute_params * params,
  6167. const struct ggml_tensor * src0,
  6168. const struct ggml_tensor * src1,
  6169. struct ggml_tensor * dst) {
  6170. switch (src0->type) {
  6171. case GGML_TYPE_F32:
  6172. {
  6173. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6174. } break;
  6175. case GGML_TYPE_F16:
  6176. case GGML_TYPE_Q4_0:
  6177. case GGML_TYPE_Q4_1:
  6178. case GGML_TYPE_Q5_0:
  6179. case GGML_TYPE_Q5_1:
  6180. case GGML_TYPE_Q8_0:
  6181. case GGML_TYPE_Q8_1:
  6182. case GGML_TYPE_Q2_K:
  6183. case GGML_TYPE_Q3_K:
  6184. case GGML_TYPE_Q4_K:
  6185. case GGML_TYPE_Q5_K:
  6186. case GGML_TYPE_Q6_K:
  6187. default:
  6188. {
  6189. GGML_ASSERT(false);
  6190. } break;
  6191. }
  6192. }
  6193. // ggml_compute_forward_sub
  6194. static void ggml_compute_forward_sub_f32(
  6195. const struct ggml_compute_params * params,
  6196. const struct ggml_tensor * src0,
  6197. const struct ggml_tensor * src1,
  6198. struct ggml_tensor * dst) {
  6199. assert(params->ith == 0);
  6200. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6202. return;
  6203. }
  6204. const int nr = ggml_nrows(src0);
  6205. GGML_TENSOR_BINARY_OP_LOCALS
  6206. GGML_ASSERT( nb0 == sizeof(float));
  6207. GGML_ASSERT(nb00 == sizeof(float));
  6208. if (nb10 == sizeof(float)) {
  6209. for (int ir = 0; ir < nr; ++ir) {
  6210. // src0, src1 and dst are same shape => same indices
  6211. const int i3 = ir/(ne2*ne1);
  6212. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6213. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6214. #ifdef GGML_USE_ACCELERATE
  6215. vDSP_vsub(
  6216. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6217. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6218. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6219. ne0);
  6220. #else
  6221. ggml_vec_sub_f32(ne0,
  6222. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6223. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6224. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6225. #endif
  6226. // }
  6227. // }
  6228. }
  6229. } else {
  6230. // src1 is not contiguous
  6231. for (int ir = 0; ir < nr; ++ir) {
  6232. // src0, src1 and dst are same shape => same indices
  6233. const int i3 = ir/(ne2*ne1);
  6234. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6235. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6236. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6237. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6238. for (int i0 = 0; i0 < ne0; i0++) {
  6239. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6240. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6241. }
  6242. }
  6243. }
  6244. }
  6245. static void ggml_compute_forward_sub(
  6246. const struct ggml_compute_params * params,
  6247. const struct ggml_tensor * src0,
  6248. const struct ggml_tensor * src1,
  6249. struct ggml_tensor * dst) {
  6250. switch (src0->type) {
  6251. case GGML_TYPE_F32:
  6252. {
  6253. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6254. } break;
  6255. default:
  6256. {
  6257. GGML_ASSERT(false);
  6258. } break;
  6259. }
  6260. }
  6261. // ggml_compute_forward_mul
  6262. static void ggml_compute_forward_mul_f32(
  6263. const struct ggml_compute_params * params,
  6264. const struct ggml_tensor * src0,
  6265. const struct ggml_tensor * src1,
  6266. struct ggml_tensor * dst) {
  6267. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6269. return;
  6270. }
  6271. const int ith = params->ith;
  6272. const int nth = params->nth;
  6273. #ifdef GGML_USE_CLBLAST
  6274. if (src1->backend == GGML_BACKEND_GPU) {
  6275. if (ith == 0) {
  6276. ggml_cl_mul(src0, src1, dst);
  6277. }
  6278. return;
  6279. }
  6280. #endif
  6281. const int64_t nr = ggml_nrows(src0);
  6282. GGML_TENSOR_BINARY_OP_LOCALS
  6283. GGML_ASSERT( nb0 == sizeof(float));
  6284. GGML_ASSERT(nb00 == sizeof(float));
  6285. GGML_ASSERT(ne00 == ne10);
  6286. if (nb10 == sizeof(float)) {
  6287. for (int64_t ir = ith; ir < nr; ir += nth) {
  6288. // src0 and dst are same shape => same indices
  6289. const int64_t i03 = ir/(ne02*ne01);
  6290. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6291. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6292. const int64_t i13 = i03 % ne13;
  6293. const int64_t i12 = i02 % ne12;
  6294. const int64_t i11 = i01 % ne11;
  6295. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6296. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6297. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6298. #ifdef GGML_USE_ACCELERATE
  6299. UNUSED(ggml_vec_mul_f32);
  6300. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6301. #else
  6302. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6303. #endif
  6304. // }
  6305. // }
  6306. }
  6307. } else {
  6308. // src1 is not contiguous
  6309. for (int64_t ir = ith; ir < nr; ir += nth) {
  6310. // src0 and dst are same shape => same indices
  6311. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6312. const int64_t i03 = ir/(ne02*ne01);
  6313. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6314. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6315. const int64_t i13 = i03 % ne13;
  6316. const int64_t i12 = i02 % ne12;
  6317. const int64_t i11 = i01 % ne11;
  6318. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6319. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6320. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6321. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6322. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6323. }
  6324. }
  6325. }
  6326. }
  6327. static void ggml_compute_forward_mul(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. const struct ggml_tensor * src1,
  6331. struct ggml_tensor * dst) {
  6332. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6333. switch (src0->type) {
  6334. case GGML_TYPE_F32:
  6335. {
  6336. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6337. } break;
  6338. default:
  6339. {
  6340. GGML_ASSERT(false);
  6341. } break;
  6342. }
  6343. }
  6344. // ggml_compute_forward_div
  6345. static void ggml_compute_forward_div_f32(
  6346. const struct ggml_compute_params * params,
  6347. const struct ggml_tensor * src0,
  6348. const struct ggml_tensor * src1,
  6349. struct ggml_tensor * dst) {
  6350. assert(params->ith == 0);
  6351. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6352. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6353. return;
  6354. }
  6355. const int nr = ggml_nrows(src0);
  6356. GGML_TENSOR_BINARY_OP_LOCALS
  6357. GGML_ASSERT( nb0 == sizeof(float));
  6358. GGML_ASSERT(nb00 == sizeof(float));
  6359. if (nb10 == sizeof(float)) {
  6360. for (int ir = 0; ir < nr; ++ir) {
  6361. // src0, src1 and dst are same shape => same indices
  6362. const int i3 = ir/(ne2*ne1);
  6363. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6364. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6365. #ifdef GGML_USE_ACCELERATE
  6366. UNUSED(ggml_vec_div_f32);
  6367. vDSP_vdiv(
  6368. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6369. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6370. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6371. ne0);
  6372. #else
  6373. ggml_vec_div_f32(ne0,
  6374. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6375. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6376. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6377. #endif
  6378. // }
  6379. // }
  6380. }
  6381. } else {
  6382. // src1 is not contiguous
  6383. for (int ir = 0; ir < nr; ++ir) {
  6384. // src0, src1 and dst are same shape => same indices
  6385. const int i3 = ir/(ne2*ne1);
  6386. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6387. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6388. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6389. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6390. for (int i0 = 0; i0 < ne0; i0++) {
  6391. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6392. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6393. }
  6394. }
  6395. }
  6396. }
  6397. static void ggml_compute_forward_div(
  6398. const struct ggml_compute_params * params,
  6399. const struct ggml_tensor * src0,
  6400. const struct ggml_tensor * src1,
  6401. struct ggml_tensor * dst) {
  6402. switch (src0->type) {
  6403. case GGML_TYPE_F32:
  6404. {
  6405. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6406. } break;
  6407. default:
  6408. {
  6409. GGML_ASSERT(false);
  6410. } break;
  6411. }
  6412. }
  6413. // ggml_compute_forward_sqr
  6414. static void ggml_compute_forward_sqr_f32(
  6415. const struct ggml_compute_params * params,
  6416. const struct ggml_tensor * src0,
  6417. struct ggml_tensor * dst) {
  6418. assert(params->ith == 0);
  6419. assert(ggml_are_same_shape(src0, dst));
  6420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6421. return;
  6422. }
  6423. const int n = ggml_nrows(src0);
  6424. const int nc = src0->ne[0];
  6425. assert( dst->nb[0] == sizeof(float));
  6426. assert(src0->nb[0] == sizeof(float));
  6427. for (int i = 0; i < n; i++) {
  6428. ggml_vec_sqr_f32(nc,
  6429. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6430. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6431. }
  6432. }
  6433. static void ggml_compute_forward_sqr(
  6434. const struct ggml_compute_params * params,
  6435. const struct ggml_tensor * src0,
  6436. struct ggml_tensor * dst) {
  6437. switch (src0->type) {
  6438. case GGML_TYPE_F32:
  6439. {
  6440. ggml_compute_forward_sqr_f32(params, src0, dst);
  6441. } break;
  6442. default:
  6443. {
  6444. GGML_ASSERT(false);
  6445. } break;
  6446. }
  6447. }
  6448. // ggml_compute_forward_sqrt
  6449. static void ggml_compute_forward_sqrt_f32(
  6450. const struct ggml_compute_params * params,
  6451. const struct ggml_tensor * src0,
  6452. struct ggml_tensor * dst) {
  6453. assert(params->ith == 0);
  6454. assert(ggml_are_same_shape(src0, dst));
  6455. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6456. return;
  6457. }
  6458. const int n = ggml_nrows(src0);
  6459. const int nc = src0->ne[0];
  6460. assert( dst->nb[0] == sizeof(float));
  6461. assert(src0->nb[0] == sizeof(float));
  6462. for (int i = 0; i < n; i++) {
  6463. ggml_vec_sqrt_f32(nc,
  6464. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6465. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6466. }
  6467. }
  6468. static void ggml_compute_forward_sqrt(
  6469. const struct ggml_compute_params * params,
  6470. const struct ggml_tensor * src0,
  6471. struct ggml_tensor * dst) {
  6472. switch (src0->type) {
  6473. case GGML_TYPE_F32:
  6474. {
  6475. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6476. } break;
  6477. default:
  6478. {
  6479. GGML_ASSERT(false);
  6480. } break;
  6481. }
  6482. }
  6483. // ggml_compute_forward_log
  6484. static void ggml_compute_forward_log_f32(
  6485. const struct ggml_compute_params * params,
  6486. const struct ggml_tensor * src0,
  6487. struct ggml_tensor * dst) {
  6488. GGML_ASSERT(params->ith == 0);
  6489. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6490. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6491. return;
  6492. }
  6493. const int n = ggml_nrows(src0);
  6494. const int nc = src0->ne[0];
  6495. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6496. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6497. for (int i = 0; i < n; i++) {
  6498. ggml_vec_log_f32(nc,
  6499. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6500. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6501. }
  6502. }
  6503. static void ggml_compute_forward_log(
  6504. const struct ggml_compute_params * params,
  6505. const struct ggml_tensor * src0,
  6506. struct ggml_tensor * dst) {
  6507. switch (src0->type) {
  6508. case GGML_TYPE_F32:
  6509. {
  6510. ggml_compute_forward_log_f32(params, src0, dst);
  6511. } break;
  6512. default:
  6513. {
  6514. GGML_ASSERT(false);
  6515. } break;
  6516. }
  6517. }
  6518. // ggml_compute_forward_sum
  6519. static void ggml_compute_forward_sum_f32(
  6520. const struct ggml_compute_params * params,
  6521. const struct ggml_tensor * src0,
  6522. struct ggml_tensor * dst) {
  6523. assert(params->ith == 0);
  6524. assert(ggml_is_scalar(dst));
  6525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6526. return;
  6527. }
  6528. assert(ggml_is_scalar(dst));
  6529. assert(src0->nb[0] == sizeof(float));
  6530. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6531. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6532. ggml_float sum = 0;
  6533. ggml_float row_sum = 0;
  6534. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6535. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6536. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6537. ggml_vec_sum_f32_ggf(ne00,
  6538. &row_sum,
  6539. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6540. sum += row_sum;
  6541. }
  6542. }
  6543. }
  6544. ((float *) dst->data)[0] = sum;
  6545. }
  6546. static void ggml_compute_forward_sum_f16(
  6547. const struct ggml_compute_params * params,
  6548. const struct ggml_tensor * src0,
  6549. struct ggml_tensor * dst) {
  6550. assert(params->ith == 0);
  6551. assert(ggml_is_scalar(dst));
  6552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6553. return;
  6554. }
  6555. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6556. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6557. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6558. float sum = 0;
  6559. float row_sum = 0;
  6560. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6561. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6562. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6563. ggml_vec_sum_f16_ggf(ne00,
  6564. &row_sum,
  6565. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6566. sum += row_sum;
  6567. }
  6568. }
  6569. }
  6570. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6571. }
  6572. static void ggml_compute_forward_sum(
  6573. const struct ggml_compute_params * params,
  6574. const struct ggml_tensor * src0,
  6575. struct ggml_tensor * dst) {
  6576. switch (src0->type) {
  6577. case GGML_TYPE_F32:
  6578. {
  6579. ggml_compute_forward_sum_f32(params, src0, dst);
  6580. } break;
  6581. case GGML_TYPE_F16:
  6582. {
  6583. ggml_compute_forward_sum_f16(params, src0, dst);
  6584. } break;
  6585. default:
  6586. {
  6587. GGML_ASSERT(false);
  6588. } break;
  6589. }
  6590. }
  6591. // ggml_compute_forward_sum_rows
  6592. static void ggml_compute_forward_sum_rows_f32(
  6593. const struct ggml_compute_params * params,
  6594. const struct ggml_tensor * src0,
  6595. struct ggml_tensor * dst) {
  6596. GGML_ASSERT(params->ith == 0);
  6597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6598. return;
  6599. }
  6600. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6601. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6602. GGML_TENSOR_UNARY_OP_LOCALS
  6603. GGML_ASSERT(ne0 == 1);
  6604. GGML_ASSERT(ne1 == ne01);
  6605. GGML_ASSERT(ne2 == ne02);
  6606. GGML_ASSERT(ne3 == ne03);
  6607. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6608. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6609. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6610. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6611. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6612. float row_sum = 0;
  6613. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6614. dst_row[0] = row_sum;
  6615. }
  6616. }
  6617. }
  6618. }
  6619. static void ggml_compute_forward_sum_rows(
  6620. const struct ggml_compute_params * params,
  6621. const struct ggml_tensor * src0,
  6622. struct ggml_tensor * dst) {
  6623. switch (src0->type) {
  6624. case GGML_TYPE_F32:
  6625. {
  6626. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6627. } break;
  6628. default:
  6629. {
  6630. GGML_ASSERT(false);
  6631. } break;
  6632. }
  6633. }
  6634. // ggml_compute_forward_mean
  6635. static void ggml_compute_forward_mean_f32(
  6636. const struct ggml_compute_params * params,
  6637. const struct ggml_tensor * src0,
  6638. struct ggml_tensor * dst) {
  6639. assert(params->ith == 0);
  6640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6641. return;
  6642. }
  6643. assert(src0->nb[0] == sizeof(float));
  6644. GGML_TENSOR_UNARY_OP_LOCALS
  6645. assert(ne0 == 1);
  6646. assert(ne1 == ne01);
  6647. assert(ne2 == ne02);
  6648. assert(ne3 == ne03);
  6649. UNUSED(ne0);
  6650. UNUSED(ne1);
  6651. UNUSED(ne2);
  6652. UNUSED(ne3);
  6653. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6654. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6655. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6656. ggml_vec_sum_f32(ne00,
  6657. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6658. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6659. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6660. }
  6661. }
  6662. }
  6663. }
  6664. static void ggml_compute_forward_mean(
  6665. const struct ggml_compute_params * params,
  6666. const struct ggml_tensor * src0,
  6667. struct ggml_tensor * dst) {
  6668. switch (src0->type) {
  6669. case GGML_TYPE_F32:
  6670. {
  6671. ggml_compute_forward_mean_f32(params, src0, dst);
  6672. } break;
  6673. default:
  6674. {
  6675. GGML_ASSERT(false);
  6676. } break;
  6677. }
  6678. }
  6679. // ggml_compute_forward_argmax
  6680. static void ggml_compute_forward_argmax_f32(
  6681. const struct ggml_compute_params * params,
  6682. const struct ggml_tensor * src0,
  6683. struct ggml_tensor * dst) {
  6684. assert(params->ith == 0);
  6685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6686. return;
  6687. }
  6688. assert(src0->nb[0] == sizeof(float));
  6689. assert(dst->nb[0] == sizeof(float));
  6690. const int64_t ne00 = src0->ne[0];
  6691. const int64_t ne01 = src0->ne[1];
  6692. const size_t nb01 = src0->nb[1];
  6693. const size_t nb0 = dst->nb[0];
  6694. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6695. float * src = (float *) ((char *) src0->data + i1*nb01);
  6696. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6697. int v = 0;
  6698. ggml_vec_argmax_f32(ne00, &v, src);
  6699. dst_[0] = v;
  6700. }
  6701. }
  6702. static void ggml_compute_forward_argmax(
  6703. const struct ggml_compute_params * params,
  6704. const struct ggml_tensor * src0,
  6705. struct ggml_tensor * dst) {
  6706. switch (src0->type) {
  6707. case GGML_TYPE_F32:
  6708. {
  6709. ggml_compute_forward_argmax_f32(params, src0, dst);
  6710. } break;
  6711. default:
  6712. {
  6713. GGML_ASSERT(false);
  6714. } break;
  6715. }
  6716. }
  6717. // ggml_compute_forward_repeat
  6718. static void ggml_compute_forward_repeat_f32(
  6719. const struct ggml_compute_params * params,
  6720. const struct ggml_tensor * src0,
  6721. struct ggml_tensor * dst) {
  6722. GGML_ASSERT(params->ith == 0);
  6723. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6725. return;
  6726. }
  6727. GGML_TENSOR_UNARY_OP_LOCALS
  6728. // guaranteed to be an integer due to the check in ggml_can_repeat
  6729. const int nr0 = (int)(ne0/ne00);
  6730. const int nr1 = (int)(ne1/ne01);
  6731. const int nr2 = (int)(ne2/ne02);
  6732. const int nr3 = (int)(ne3/ne03);
  6733. // TODO: support for transposed / permuted tensors
  6734. GGML_ASSERT(nb0 == sizeof(float));
  6735. GGML_ASSERT(nb00 == sizeof(float));
  6736. // TODO: maybe this is not optimal?
  6737. for (int i3 = 0; i3 < nr3; i3++) {
  6738. for (int k3 = 0; k3 < ne03; k3++) {
  6739. for (int i2 = 0; i2 < nr2; i2++) {
  6740. for (int k2 = 0; k2 < ne02; k2++) {
  6741. for (int i1 = 0; i1 < nr1; i1++) {
  6742. for (int k1 = 0; k1 < ne01; k1++) {
  6743. for (int i0 = 0; i0 < nr0; i0++) {
  6744. ggml_vec_cpy_f32(ne00,
  6745. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6746. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6747. }
  6748. }
  6749. }
  6750. }
  6751. }
  6752. }
  6753. }
  6754. }
  6755. static void ggml_compute_forward_repeat_f16(
  6756. const struct ggml_compute_params * params,
  6757. const struct ggml_tensor * src0,
  6758. struct ggml_tensor * dst) {
  6759. GGML_ASSERT(params->ith == 0);
  6760. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6762. return;
  6763. }
  6764. GGML_TENSOR_UNARY_OP_LOCALS;
  6765. // guaranteed to be an integer due to the check in ggml_can_repeat
  6766. const int nr0 = (int)(ne0/ne00);
  6767. const int nr1 = (int)(ne1/ne01);
  6768. const int nr2 = (int)(ne2/ne02);
  6769. const int nr3 = (int)(ne3/ne03);
  6770. // TODO: support for transposed / permuted tensors
  6771. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6772. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6773. // TODO: maybe this is not optimal?
  6774. for (int i3 = 0; i3 < nr3; i3++) {
  6775. for (int k3 = 0; k3 < ne03; k3++) {
  6776. for (int i2 = 0; i2 < nr2; i2++) {
  6777. for (int k2 = 0; k2 < ne02; k2++) {
  6778. for (int i1 = 0; i1 < nr1; i1++) {
  6779. for (int k1 = 0; k1 < ne01; k1++) {
  6780. for (int i0 = 0; i0 < nr0; i0++) {
  6781. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6782. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6783. // ggml_vec_cpy_f16(ne00, y, x)
  6784. for (int i = 0; i < ne00; ++i) {
  6785. y[i] = x[i];
  6786. }
  6787. }
  6788. }
  6789. }
  6790. }
  6791. }
  6792. }
  6793. }
  6794. }
  6795. static void ggml_compute_forward_repeat(
  6796. const struct ggml_compute_params * params,
  6797. const struct ggml_tensor * src0,
  6798. struct ggml_tensor * dst) {
  6799. switch (src0->type) {
  6800. case GGML_TYPE_F16:
  6801. {
  6802. ggml_compute_forward_repeat_f16(params, src0, dst);
  6803. } break;
  6804. case GGML_TYPE_F32:
  6805. {
  6806. ggml_compute_forward_repeat_f32(params, src0, dst);
  6807. } break;
  6808. default:
  6809. {
  6810. GGML_ASSERT(false);
  6811. } break;
  6812. }
  6813. }
  6814. // ggml_compute_forward_repeat_back
  6815. static void ggml_compute_forward_repeat_back_f32(
  6816. const struct ggml_compute_params * params,
  6817. const struct ggml_tensor * src0,
  6818. struct ggml_tensor * dst) {
  6819. GGML_ASSERT(params->ith == 0);
  6820. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6821. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6822. return;
  6823. }
  6824. GGML_TENSOR_UNARY_OP_LOCALS
  6825. // guaranteed to be an integer due to the check in ggml_can_repeat
  6826. const int nr0 = (int)(ne00/ne0);
  6827. const int nr1 = (int)(ne01/ne1);
  6828. const int nr2 = (int)(ne02/ne2);
  6829. const int nr3 = (int)(ne03/ne3);
  6830. // TODO: support for transposed / permuted tensors
  6831. GGML_ASSERT(nb0 == sizeof(float));
  6832. GGML_ASSERT(nb00 == sizeof(float));
  6833. if (ggml_is_contiguous(dst)) {
  6834. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6835. } else {
  6836. for (int k3 = 0; k3 < ne3; k3++) {
  6837. for (int k2 = 0; k2 < ne2; k2++) {
  6838. for (int k1 = 0; k1 < ne1; k1++) {
  6839. ggml_vec_set_f32(ne0,
  6840. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6841. 0);
  6842. }
  6843. }
  6844. }
  6845. }
  6846. // TODO: maybe this is not optimal?
  6847. for (int i3 = 0; i3 < nr3; i3++) {
  6848. for (int k3 = 0; k3 < ne3; k3++) {
  6849. for (int i2 = 0; i2 < nr2; i2++) {
  6850. for (int k2 = 0; k2 < ne2; k2++) {
  6851. for (int i1 = 0; i1 < nr1; i1++) {
  6852. for (int k1 = 0; k1 < ne1; k1++) {
  6853. for (int i0 = 0; i0 < nr0; i0++) {
  6854. ggml_vec_acc_f32(ne0,
  6855. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6856. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6857. }
  6858. }
  6859. }
  6860. }
  6861. }
  6862. }
  6863. }
  6864. }
  6865. static void ggml_compute_forward_repeat_back(
  6866. const struct ggml_compute_params * params,
  6867. const struct ggml_tensor * src0,
  6868. struct ggml_tensor * dst) {
  6869. switch (src0->type) {
  6870. case GGML_TYPE_F32:
  6871. {
  6872. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6873. } break;
  6874. default:
  6875. {
  6876. GGML_ASSERT(false);
  6877. } break;
  6878. }
  6879. }
  6880. // ggml_compute_forward_concat
  6881. static void ggml_compute_forward_concat_f32(
  6882. const struct ggml_compute_params * params,
  6883. const struct ggml_tensor * src0,
  6884. const struct ggml_tensor * src1,
  6885. struct ggml_tensor * dst) {
  6886. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6887. return;
  6888. }
  6889. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6890. const int ith = params->ith;
  6891. GGML_TENSOR_BINARY_OP_LOCALS
  6892. // TODO: support for transposed / permuted tensors
  6893. GGML_ASSERT(nb0 == sizeof(float));
  6894. GGML_ASSERT(nb00 == sizeof(float));
  6895. GGML_ASSERT(nb10 == sizeof(float));
  6896. for (int i3 = 0; i3 < ne3; i3++) {
  6897. for (int i2 = ith; i2 < ne2; i2++) {
  6898. if (i2 < ne02) { // src0
  6899. for (int i1 = 0; i1 < ne1; i1++) {
  6900. for (int i0 = 0; i0 < ne0; i0++) {
  6901. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6902. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6903. *y = *x;
  6904. }
  6905. }
  6906. } // src1
  6907. else {
  6908. for (int i1 = 0; i1 < ne1; i1++) {
  6909. for (int i0 = 0; i0 < ne0; i0++) {
  6910. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6911. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6912. *y = *x;
  6913. }
  6914. }
  6915. }
  6916. }
  6917. }
  6918. }
  6919. static void ggml_compute_forward_concat(
  6920. const struct ggml_compute_params* params,
  6921. const struct ggml_tensor* src0,
  6922. const struct ggml_tensor* src1,
  6923. struct ggml_tensor* dst) {
  6924. switch (src0->type) {
  6925. case GGML_TYPE_F32:
  6926. {
  6927. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6928. } break;
  6929. default:
  6930. {
  6931. GGML_ASSERT(false);
  6932. } break;
  6933. }
  6934. }
  6935. // ggml_compute_forward_abs
  6936. static void ggml_compute_forward_abs_f32(
  6937. const struct ggml_compute_params * params,
  6938. const struct ggml_tensor * src0,
  6939. struct ggml_tensor * dst) {
  6940. assert(params->ith == 0);
  6941. assert(ggml_are_same_shape(src0, dst));
  6942. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6943. return;
  6944. }
  6945. const int n = ggml_nrows(src0);
  6946. const int nc = src0->ne[0];
  6947. assert(dst->nb[0] == sizeof(float));
  6948. assert(src0->nb[0] == sizeof(float));
  6949. for (int i = 0; i < n; i++) {
  6950. ggml_vec_abs_f32(nc,
  6951. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6952. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6953. }
  6954. }
  6955. static void ggml_compute_forward_abs(
  6956. const struct ggml_compute_params * params,
  6957. const struct ggml_tensor * src0,
  6958. struct ggml_tensor * dst) {
  6959. switch (src0->type) {
  6960. case GGML_TYPE_F32:
  6961. {
  6962. ggml_compute_forward_abs_f32(params, src0, dst);
  6963. } break;
  6964. default:
  6965. {
  6966. GGML_ASSERT(false);
  6967. } break;
  6968. }
  6969. }
  6970. // ggml_compute_forward_sgn
  6971. static void ggml_compute_forward_sgn_f32(
  6972. const struct ggml_compute_params * params,
  6973. const struct ggml_tensor * src0,
  6974. struct ggml_tensor * dst) {
  6975. assert(params->ith == 0);
  6976. assert(ggml_are_same_shape(src0, dst));
  6977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6978. return;
  6979. }
  6980. const int n = ggml_nrows(src0);
  6981. const int nc = src0->ne[0];
  6982. assert(dst->nb[0] == sizeof(float));
  6983. assert(src0->nb[0] == sizeof(float));
  6984. for (int i = 0; i < n; i++) {
  6985. ggml_vec_sgn_f32(nc,
  6986. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6987. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6988. }
  6989. }
  6990. static void ggml_compute_forward_sgn(
  6991. const struct ggml_compute_params * params,
  6992. const struct ggml_tensor * src0,
  6993. struct ggml_tensor * dst) {
  6994. switch (src0->type) {
  6995. case GGML_TYPE_F32:
  6996. {
  6997. ggml_compute_forward_sgn_f32(params, src0, dst);
  6998. } break;
  6999. default:
  7000. {
  7001. GGML_ASSERT(false);
  7002. } break;
  7003. }
  7004. }
  7005. // ggml_compute_forward_neg
  7006. static void ggml_compute_forward_neg_f32(
  7007. const struct ggml_compute_params * params,
  7008. const struct ggml_tensor * src0,
  7009. struct ggml_tensor * dst) {
  7010. assert(params->ith == 0);
  7011. assert(ggml_are_same_shape(src0, dst));
  7012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7013. return;
  7014. }
  7015. const int n = ggml_nrows(src0);
  7016. const int nc = src0->ne[0];
  7017. assert(dst->nb[0] == sizeof(float));
  7018. assert(src0->nb[0] == sizeof(float));
  7019. for (int i = 0; i < n; i++) {
  7020. ggml_vec_neg_f32(nc,
  7021. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7022. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7023. }
  7024. }
  7025. static void ggml_compute_forward_neg(
  7026. const struct ggml_compute_params * params,
  7027. const struct ggml_tensor * src0,
  7028. struct ggml_tensor * dst) {
  7029. switch (src0->type) {
  7030. case GGML_TYPE_F32:
  7031. {
  7032. ggml_compute_forward_neg_f32(params, src0, dst);
  7033. } break;
  7034. default:
  7035. {
  7036. GGML_ASSERT(false);
  7037. } break;
  7038. }
  7039. }
  7040. // ggml_compute_forward_step
  7041. static void ggml_compute_forward_step_f32(
  7042. const struct ggml_compute_params * params,
  7043. const struct ggml_tensor * src0,
  7044. struct ggml_tensor * dst) {
  7045. assert(params->ith == 0);
  7046. assert(ggml_are_same_shape(src0, dst));
  7047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7048. return;
  7049. }
  7050. const int n = ggml_nrows(src0);
  7051. const int nc = src0->ne[0];
  7052. assert(dst->nb[0] == sizeof(float));
  7053. assert(src0->nb[0] == sizeof(float));
  7054. for (int i = 0; i < n; i++) {
  7055. ggml_vec_step_f32(nc,
  7056. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7057. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7058. }
  7059. }
  7060. static void ggml_compute_forward_step(
  7061. const struct ggml_compute_params * params,
  7062. const struct ggml_tensor * src0,
  7063. struct ggml_tensor * dst) {
  7064. switch (src0->type) {
  7065. case GGML_TYPE_F32:
  7066. {
  7067. ggml_compute_forward_step_f32(params, src0, dst);
  7068. } break;
  7069. default:
  7070. {
  7071. GGML_ASSERT(false);
  7072. } break;
  7073. }
  7074. }
  7075. // ggml_compute_forward_tanh
  7076. static void ggml_compute_forward_tanh_f32(
  7077. const struct ggml_compute_params * params,
  7078. const struct ggml_tensor * src0,
  7079. struct ggml_tensor * dst) {
  7080. assert(params->ith == 0);
  7081. assert(ggml_are_same_shape(src0, dst));
  7082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7083. return;
  7084. }
  7085. const int n = ggml_nrows(src0);
  7086. const int nc = src0->ne[0];
  7087. assert(dst->nb[0] == sizeof(float));
  7088. assert(src0->nb[0] == sizeof(float));
  7089. for (int i = 0; i < n; i++) {
  7090. ggml_vec_tanh_f32(nc,
  7091. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7092. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7093. }
  7094. }
  7095. static void ggml_compute_forward_tanh(
  7096. const struct ggml_compute_params * params,
  7097. const struct ggml_tensor * src0,
  7098. struct ggml_tensor * dst) {
  7099. switch (src0->type) {
  7100. case GGML_TYPE_F32:
  7101. {
  7102. ggml_compute_forward_tanh_f32(params, src0, dst);
  7103. } break;
  7104. default:
  7105. {
  7106. GGML_ASSERT(false);
  7107. } break;
  7108. }
  7109. }
  7110. // ggml_compute_forward_elu
  7111. static void ggml_compute_forward_elu_f32(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * src0,
  7114. struct ggml_tensor * dst) {
  7115. assert(params->ith == 0);
  7116. assert(ggml_are_same_shape(src0, dst));
  7117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7118. return;
  7119. }
  7120. const int n = ggml_nrows(src0);
  7121. const int nc = src0->ne[0];
  7122. assert(dst->nb[0] == sizeof(float));
  7123. assert(src0->nb[0] == sizeof(float));
  7124. for (int i = 0; i < n; i++) {
  7125. ggml_vec_elu_f32(nc,
  7126. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7127. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7128. }
  7129. }
  7130. static void ggml_compute_forward_elu(
  7131. const struct ggml_compute_params * params,
  7132. const struct ggml_tensor * src0,
  7133. struct ggml_tensor * dst) {
  7134. switch (src0->type) {
  7135. case GGML_TYPE_F32:
  7136. {
  7137. ggml_compute_forward_elu_f32(params, src0, dst);
  7138. } break;
  7139. default:
  7140. {
  7141. GGML_ASSERT(false);
  7142. } break;
  7143. }
  7144. }
  7145. // ggml_compute_forward_relu
  7146. static void ggml_compute_forward_relu_f32(
  7147. const struct ggml_compute_params * params,
  7148. const struct ggml_tensor * src0,
  7149. struct ggml_tensor * dst) {
  7150. assert(params->ith == 0);
  7151. assert(ggml_are_same_shape(src0, dst));
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. const int n = ggml_nrows(src0);
  7156. const int nc = src0->ne[0];
  7157. assert(dst->nb[0] == sizeof(float));
  7158. assert(src0->nb[0] == sizeof(float));
  7159. for (int i = 0; i < n; i++) {
  7160. ggml_vec_relu_f32(nc,
  7161. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7162. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7163. }
  7164. }
  7165. static void ggml_compute_forward_relu(
  7166. const struct ggml_compute_params * params,
  7167. const struct ggml_tensor * src0,
  7168. struct ggml_tensor * dst) {
  7169. switch (src0->type) {
  7170. case GGML_TYPE_F32:
  7171. {
  7172. ggml_compute_forward_relu_f32(params, src0, dst);
  7173. } break;
  7174. default:
  7175. {
  7176. GGML_ASSERT(false);
  7177. } break;
  7178. }
  7179. }
  7180. // ggml_compute_forward_gelu
  7181. static void ggml_compute_forward_gelu_f32(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. struct ggml_tensor * dst) {
  7185. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7186. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7187. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7188. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7189. return;
  7190. }
  7191. const int ith = params->ith;
  7192. const int nth = params->nth;
  7193. const int nc = src0->ne[0];
  7194. const int nr = ggml_nrows(src0);
  7195. // rows per thread
  7196. const int dr = (nr + nth - 1)/nth;
  7197. // row range for this thread
  7198. const int ir0 = dr*ith;
  7199. const int ir1 = MIN(ir0 + dr, nr);
  7200. for (int i1 = ir0; i1 < ir1; i1++) {
  7201. ggml_vec_gelu_f32(nc,
  7202. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7203. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7204. #ifndef NDEBUG
  7205. for (int k = 0; k < nc; k++) {
  7206. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7207. UNUSED(x);
  7208. assert(!isnan(x));
  7209. assert(!isinf(x));
  7210. }
  7211. #endif
  7212. }
  7213. }
  7214. static void ggml_compute_forward_gelu(
  7215. const struct ggml_compute_params * params,
  7216. const struct ggml_tensor * src0,
  7217. struct ggml_tensor * dst) {
  7218. switch (src0->type) {
  7219. case GGML_TYPE_F32:
  7220. {
  7221. ggml_compute_forward_gelu_f32(params, src0, dst);
  7222. } break;
  7223. default:
  7224. {
  7225. GGML_ASSERT(false);
  7226. } break;
  7227. }
  7228. }
  7229. // ggml_compute_forward_gelu_quick
  7230. static void ggml_compute_forward_gelu_quick_f32(
  7231. const struct ggml_compute_params * params,
  7232. const struct ggml_tensor * src0,
  7233. struct ggml_tensor * dst) {
  7234. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7235. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7236. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7238. return;
  7239. }
  7240. const int ith = params->ith;
  7241. const int nth = params->nth;
  7242. const int nc = src0->ne[0];
  7243. const int nr = ggml_nrows(src0);
  7244. // rows per thread
  7245. const int dr = (nr + nth - 1)/nth;
  7246. // row range for this thread
  7247. const int ir0 = dr*ith;
  7248. const int ir1 = MIN(ir0 + dr, nr);
  7249. for (int i1 = ir0; i1 < ir1; i1++) {
  7250. ggml_vec_gelu_quick_f32(nc,
  7251. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7252. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7253. #ifndef NDEBUG
  7254. for (int k = 0; k < nc; k++) {
  7255. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7256. UNUSED(x);
  7257. assert(!isnan(x));
  7258. assert(!isinf(x));
  7259. }
  7260. #endif
  7261. }
  7262. }
  7263. static void ggml_compute_forward_gelu_quick(
  7264. const struct ggml_compute_params * params,
  7265. const struct ggml_tensor * src0,
  7266. struct ggml_tensor * dst) {
  7267. switch (src0->type) {
  7268. case GGML_TYPE_F32:
  7269. {
  7270. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7271. } break;
  7272. default:
  7273. {
  7274. GGML_ASSERT(false);
  7275. } break;
  7276. }
  7277. }
  7278. // ggml_compute_forward_silu
  7279. static void ggml_compute_forward_silu_f32(
  7280. const struct ggml_compute_params * params,
  7281. const struct ggml_tensor * src0,
  7282. struct ggml_tensor * dst) {
  7283. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7284. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7285. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7287. return;
  7288. }
  7289. const int ith = params->ith;
  7290. const int nth = params->nth;
  7291. const int nc = src0->ne[0];
  7292. const int nr = ggml_nrows(src0);
  7293. // rows per thread
  7294. const int dr = (nr + nth - 1)/nth;
  7295. // row range for this thread
  7296. const int ir0 = dr*ith;
  7297. const int ir1 = MIN(ir0 + dr, nr);
  7298. for (int i1 = ir0; i1 < ir1; i1++) {
  7299. ggml_vec_silu_f32(nc,
  7300. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7301. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7302. #ifndef NDEBUG
  7303. for (int k = 0; k < nc; k++) {
  7304. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7305. UNUSED(x);
  7306. assert(!isnan(x));
  7307. assert(!isinf(x));
  7308. }
  7309. #endif
  7310. }
  7311. }
  7312. static void ggml_compute_forward_silu(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. struct ggml_tensor * dst) {
  7316. switch (src0->type) {
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_silu_f32(params, src0, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. // ggml_compute_forward_silu_back
  7328. static void ggml_compute_forward_silu_back_f32(
  7329. const struct ggml_compute_params * params,
  7330. const struct ggml_tensor * src0,
  7331. const struct ggml_tensor * grad,
  7332. struct ggml_tensor * dst) {
  7333. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7334. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7335. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7336. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7337. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7339. return;
  7340. }
  7341. const int ith = params->ith;
  7342. const int nth = params->nth;
  7343. const int nc = src0->ne[0];
  7344. const int nr = ggml_nrows(src0);
  7345. // rows per thread
  7346. const int dr = (nr + nth - 1)/nth;
  7347. // row range for this thread
  7348. const int ir0 = dr*ith;
  7349. const int ir1 = MIN(ir0 + dr, nr);
  7350. for (int i1 = ir0; i1 < ir1; i1++) {
  7351. ggml_vec_silu_backward_f32(nc,
  7352. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7353. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7354. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7355. #ifndef NDEBUG
  7356. for (int k = 0; k < nc; k++) {
  7357. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7358. UNUSED(x);
  7359. assert(!isnan(x));
  7360. assert(!isinf(x));
  7361. }
  7362. #endif
  7363. }
  7364. }
  7365. static void ggml_compute_forward_silu_back(
  7366. const struct ggml_compute_params * params,
  7367. const struct ggml_tensor * src0,
  7368. const struct ggml_tensor * grad,
  7369. struct ggml_tensor * dst) {
  7370. switch (src0->type) {
  7371. case GGML_TYPE_F32:
  7372. {
  7373. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7374. } break;
  7375. default:
  7376. {
  7377. GGML_ASSERT(false);
  7378. } break;
  7379. }
  7380. }
  7381. // ggml_compute_forward_norm
  7382. static void ggml_compute_forward_norm_f32(
  7383. const struct ggml_compute_params * params,
  7384. const struct ggml_tensor * src0,
  7385. struct ggml_tensor * dst) {
  7386. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7388. return;
  7389. }
  7390. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7391. const int ith = params->ith;
  7392. const int nth = params->nth;
  7393. GGML_TENSOR_UNARY_OP_LOCALS
  7394. float eps;
  7395. memcpy(&eps, dst->op_params, sizeof(float));
  7396. // TODO: optimize
  7397. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7398. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7399. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7400. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7401. ggml_float sum = 0.0;
  7402. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7403. sum += (ggml_float)x[i00];
  7404. }
  7405. float mean = sum/ne00;
  7406. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7407. ggml_float sum2 = 0.0;
  7408. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7409. float v = x[i00] - mean;
  7410. y[i00] = v;
  7411. sum2 += (ggml_float)(v*v);
  7412. }
  7413. float variance = sum2/ne00;
  7414. const float scale = 1.0f/sqrtf(variance + eps);
  7415. ggml_vec_scale_f32(ne00, y, scale);
  7416. }
  7417. }
  7418. }
  7419. }
  7420. static void ggml_compute_forward_norm(
  7421. const struct ggml_compute_params * params,
  7422. const struct ggml_tensor * src0,
  7423. struct ggml_tensor * dst) {
  7424. switch (src0->type) {
  7425. case GGML_TYPE_F32:
  7426. {
  7427. ggml_compute_forward_norm_f32(params, src0, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_group_rms_norm
  7436. static void ggml_compute_forward_rms_norm_f32(
  7437. const struct ggml_compute_params * params,
  7438. const struct ggml_tensor * src0,
  7439. struct ggml_tensor * dst) {
  7440. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7442. return;
  7443. }
  7444. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7445. const int ith = params->ith;
  7446. const int nth = params->nth;
  7447. GGML_TENSOR_UNARY_OP_LOCALS
  7448. float eps;
  7449. memcpy(&eps, dst->op_params, sizeof(float));
  7450. // TODO: optimize
  7451. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7452. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7453. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7454. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7455. ggml_float sum = 0.0;
  7456. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7457. sum += (ggml_float)(x[i00] * x[i00]);
  7458. }
  7459. const float mean = sum/ne00;
  7460. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7461. memcpy(y, x, ne00 * sizeof(float));
  7462. // for (int i00 = 0; i00 < ne00; i00++) {
  7463. // y[i00] = x[i00];
  7464. // }
  7465. const float scale = 1.0f/sqrtf(mean + eps);
  7466. ggml_vec_scale_f32(ne00, y, scale);
  7467. }
  7468. }
  7469. }
  7470. }
  7471. static void ggml_compute_forward_rms_norm(
  7472. const struct ggml_compute_params * params,
  7473. const struct ggml_tensor * src0,
  7474. struct ggml_tensor * dst) {
  7475. switch (src0->type) {
  7476. case GGML_TYPE_F32:
  7477. {
  7478. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7479. } break;
  7480. default:
  7481. {
  7482. GGML_ASSERT(false);
  7483. } break;
  7484. }
  7485. }
  7486. static void ggml_compute_forward_rms_norm_back_f32(
  7487. const struct ggml_compute_params * params,
  7488. const struct ggml_tensor * src0,
  7489. const struct ggml_tensor * src1,
  7490. struct ggml_tensor * dst) {
  7491. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7493. return;
  7494. }
  7495. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7496. const int ith = params->ith;
  7497. const int nth = params->nth;
  7498. GGML_TENSOR_BINARY_OP_LOCALS
  7499. float eps;
  7500. memcpy(&eps, dst->op_params, sizeof(float));
  7501. // TODO: optimize
  7502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7504. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7505. // src1 is same shape as src0 => same indices
  7506. const int64_t i11 = i01;
  7507. const int64_t i12 = i02;
  7508. const int64_t i13 = i03;
  7509. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7510. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7511. ggml_float sum_xx = 0.0;
  7512. ggml_float sum_xdz = 0.0;
  7513. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7514. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7515. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7516. }
  7517. //const float mean = (float)(sum_xx)/ne00;
  7518. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7519. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7520. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7521. // we could cache rms from forward pass to improve performance.
  7522. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7523. //const float rms = sqrtf(mean_eps);
  7524. const float rrms = 1.0f / sqrtf(mean_eps);
  7525. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7526. {
  7527. // z = rms_norm(x)
  7528. //
  7529. // rms_norm(src0) =
  7530. // scale(
  7531. // src0,
  7532. // div(
  7533. // 1,
  7534. // sqrt(
  7535. // add(
  7536. // scale(
  7537. // sum(
  7538. // sqr(
  7539. // src0)),
  7540. // (1.0/N)),
  7541. // eps))));
  7542. // postorder:
  7543. // ## op args grad
  7544. // 00 param src0 grad[#00]
  7545. // 01 const 1
  7546. // 02 sqr (#00) grad[#02]
  7547. // 03 sum (#02) grad[#03]
  7548. // 04 const 1/N
  7549. // 05 scale (#03, #04) grad[#05]
  7550. // 06 const eps
  7551. // 07 add (#05, #06) grad[#07]
  7552. // 08 sqrt (#07) grad[#08]
  7553. // 09 div (#01,#08) grad[#09]
  7554. // 10 scale (#00,#09) grad[#10]
  7555. //
  7556. // backward pass, given grad[#10]
  7557. // #10: scale
  7558. // grad[#00] += scale(grad[#10],#09)
  7559. // grad[#09] += sum(mul(grad[#10],#00))
  7560. // #09: div
  7561. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7562. // #08: sqrt
  7563. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7564. // #07: add
  7565. // grad[#05] += grad[#07]
  7566. // #05: scale
  7567. // grad[#03] += scale(grad[#05],#04)
  7568. // #03: sum
  7569. // grad[#02] += repeat(grad[#03], #02)
  7570. // #02:
  7571. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7572. //
  7573. // substitute and simplify:
  7574. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7575. // grad[#02] = repeat(grad[#03], #02)
  7576. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7577. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7578. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7579. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7580. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7581. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7582. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7583. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7584. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7585. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7586. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7587. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7588. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7589. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7590. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7591. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7592. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7593. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7594. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7595. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7596. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7597. // a = b*c + d*e
  7598. // a = b*c*f/f + d*e*f/f
  7599. // a = (b*c*f + d*e*f)*(1/f)
  7600. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7601. // a = (b + d*e/c)*c
  7602. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7603. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7604. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7605. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7606. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7607. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7608. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7609. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7610. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7611. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7612. }
  7613. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7614. // post-order:
  7615. // dx := x
  7616. // dx := scale(dx,-mean_xdz/mean_eps)
  7617. // dx := add(dx, dz)
  7618. // dx := scale(dx, rrms)
  7619. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7620. ggml_vec_cpy_f32 (ne00, dx, x);
  7621. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7622. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7623. ggml_vec_acc_f32 (ne00, dx, dz);
  7624. ggml_vec_scale_f32(ne00, dx, rrms);
  7625. }
  7626. }
  7627. }
  7628. }
  7629. static void ggml_compute_forward_rms_norm_back(
  7630. const struct ggml_compute_params * params,
  7631. const struct ggml_tensor * src0,
  7632. const struct ggml_tensor * src1,
  7633. struct ggml_tensor * dst) {
  7634. switch (src0->type) {
  7635. case GGML_TYPE_F32:
  7636. {
  7637. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7638. } break;
  7639. default:
  7640. {
  7641. GGML_ASSERT(false);
  7642. } break;
  7643. }
  7644. }
  7645. // ggml_compute_forward_group_norm
  7646. static void ggml_compute_forward_group_norm_f32(
  7647. const struct ggml_compute_params * params,
  7648. const struct ggml_tensor * src0,
  7649. struct ggml_tensor * dst) {
  7650. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7652. return;
  7653. }
  7654. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7655. const int ith = params->ith;
  7656. const int nth = params->nth;
  7657. GGML_TENSOR_UNARY_OP_LOCALS
  7658. const float eps = 1e-6f; // TODO: make this a parameter
  7659. // TODO: optimize
  7660. int n_channels = src0->ne[2];
  7661. int n_groups = dst->op_params[0];
  7662. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7663. for (int i = ith; i < n_groups; i+=nth) {
  7664. int start = i * n_channels_per_group;
  7665. int end = start + n_channels_per_group;
  7666. if (end > n_channels) {
  7667. end = n_channels;
  7668. }
  7669. int step = end - start;
  7670. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7671. ggml_float sum = 0.0;
  7672. for (int64_t i02 = start; i02 < end; i02++) {
  7673. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7674. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7675. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7676. sum += (ggml_float)x[i00];
  7677. }
  7678. }
  7679. }
  7680. float mean = sum / (ne00 * ne01 * step);
  7681. ggml_float sum2 = 0.0;
  7682. for (int64_t i02 = start; i02 < end; i02++) {
  7683. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7684. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7685. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7686. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7687. float v = x[i00] - mean;
  7688. y[i00] = v;
  7689. sum2 += (ggml_float)(v * v);
  7690. }
  7691. }
  7692. }
  7693. float variance = sum2 / (ne00 * ne01 * step);
  7694. const float scale = 1.0f / sqrtf(variance + eps);
  7695. for (int64_t i02 = start; i02 < end; i02++) {
  7696. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7697. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7698. ggml_vec_scale_f32(ne00, y, scale);
  7699. }
  7700. }
  7701. }
  7702. }
  7703. }
  7704. static void ggml_compute_forward_group_norm(
  7705. const struct ggml_compute_params * params,
  7706. const struct ggml_tensor * src0,
  7707. struct ggml_tensor * dst) {
  7708. switch (src0->type) {
  7709. case GGML_TYPE_F32:
  7710. {
  7711. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7712. } break;
  7713. default:
  7714. {
  7715. GGML_ASSERT(false);
  7716. } break;
  7717. }
  7718. }
  7719. // ggml_compute_forward_mul_mat
  7720. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7721. // helper function to determine if it is better to use BLAS or not
  7722. // for large matrices, BLAS is faster
  7723. static bool ggml_compute_forward_mul_mat_use_blas(
  7724. const struct ggml_tensor * src0,
  7725. const struct ggml_tensor * src1,
  7726. struct ggml_tensor * dst) {
  7727. //const int64_t ne00 = src0->ne[0];
  7728. //const int64_t ne01 = src0->ne[1];
  7729. const int64_t ne10 = src1->ne[0];
  7730. const int64_t ne0 = dst->ne[0];
  7731. const int64_t ne1 = dst->ne[1];
  7732. // TODO: find the optimal values for these
  7733. if (ggml_is_contiguous(src0) &&
  7734. ggml_is_contiguous(src1) &&
  7735. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7736. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7737. return true;
  7738. }
  7739. return false;
  7740. }
  7741. #endif
  7742. static void ggml_compute_forward_mul_mat(
  7743. const struct ggml_compute_params * params,
  7744. const struct ggml_tensor * src0,
  7745. const struct ggml_tensor * src1,
  7746. struct ggml_tensor * dst) {
  7747. int64_t t0 = ggml_perf_time_us();
  7748. UNUSED(t0);
  7749. GGML_TENSOR_BINARY_OP_LOCALS
  7750. const int ith = params->ith;
  7751. const int nth = params->nth;
  7752. const enum ggml_type type = src0->type;
  7753. const bool src1_cont = ggml_is_contiguous(src1);
  7754. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7755. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7756. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7757. GGML_ASSERT(ne0 == ne01);
  7758. GGML_ASSERT(ne1 == ne11);
  7759. GGML_ASSERT(ne2 == ne12);
  7760. GGML_ASSERT(ne3 == ne13);
  7761. // we don't support permuted src0 or src1
  7762. GGML_ASSERT(nb00 == ggml_type_size(type));
  7763. GGML_ASSERT(nb10 == sizeof(float));
  7764. // dst cannot be transposed or permuted
  7765. GGML_ASSERT(nb0 == sizeof(float));
  7766. GGML_ASSERT(nb0 <= nb1);
  7767. GGML_ASSERT(nb1 <= nb2);
  7768. GGML_ASSERT(nb2 <= nb3);
  7769. // broadcast factors
  7770. const int64_t r2 = ne12/ne02;
  7771. const int64_t r3 = ne13/ne03;
  7772. // nb01 >= nb00 - src0 is not transposed
  7773. // compute by src0 rows
  7774. #if defined(GGML_USE_CLBLAST)
  7775. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7776. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7777. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7778. }
  7779. return;
  7780. }
  7781. #endif
  7782. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7783. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7784. if (params->ith != 0) {
  7785. return;
  7786. }
  7787. if (params->type == GGML_TASK_INIT) {
  7788. return;
  7789. }
  7790. if (params->type == GGML_TASK_FINALIZE) {
  7791. return;
  7792. }
  7793. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7794. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7795. // broadcast src0 into src1 across 2nd,3rd dimension
  7796. const int64_t i03 = i13/r3;
  7797. const int64_t i02 = i12/r2;
  7798. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7799. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7800. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7801. if (type != GGML_TYPE_F32) {
  7802. float * const wdata = params->wdata;
  7803. ggml_to_float_t const to_float = type_traits[type].to_float;
  7804. size_t id = 0;
  7805. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7806. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7807. id += ne00;
  7808. }
  7809. assert(id*sizeof(float) <= params->wsize);
  7810. x = wdata;
  7811. }
  7812. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7813. ne11, ne01, ne10,
  7814. 1.0f, y, ne10,
  7815. x, ne00,
  7816. 0.0f, d, ne01);
  7817. }
  7818. }
  7819. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7820. return;
  7821. }
  7822. #endif
  7823. if (params->type == GGML_TASK_INIT) {
  7824. if (src1->type != vec_dot_type) {
  7825. char * wdata = params->wdata;
  7826. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7827. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7828. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7829. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7830. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7831. wdata += row_size;
  7832. }
  7833. }
  7834. }
  7835. }
  7836. return;
  7837. }
  7838. if (params->type == GGML_TASK_FINALIZE) {
  7839. return;
  7840. }
  7841. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7842. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7843. const int64_t nr0 = ne01; // src0 rows
  7844. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7845. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7846. // distribute the thread work across the inner or outer loop based on which one is larger
  7847. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7848. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7849. const int64_t ith0 = ith % nth0;
  7850. const int64_t ith1 = ith / nth0;
  7851. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7852. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7853. const int64_t ir010 = dr0*ith0;
  7854. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7855. const int64_t ir110 = dr1*ith1;
  7856. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7857. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7858. // threads with no work simply yield (not sure if it helps)
  7859. if (ir010 >= ir011 || ir110 >= ir111) {
  7860. sched_yield();
  7861. return;
  7862. }
  7863. assert(ne12 % ne02 == 0);
  7864. assert(ne13 % ne03 == 0);
  7865. // block-tiling attempt
  7866. const int64_t blck_0 = 16;
  7867. const int64_t blck_1 = 16;
  7868. // attempt to reduce false-sharing (does not seem to make a difference)
  7869. float tmp[16];
  7870. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7871. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7872. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7873. const int64_t i13 = (ir1/(ne12*ne11));
  7874. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7875. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7876. // broadcast src0 into src1
  7877. const int64_t i03 = i13/r3;
  7878. const int64_t i02 = i12/r2;
  7879. const int64_t i1 = i11;
  7880. const int64_t i2 = i12;
  7881. const int64_t i3 = i13;
  7882. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7883. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7884. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7885. // the original src1 data pointer, so we should index using the indices directly
  7886. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7887. const char * src1_col = (const char *) wdata +
  7888. (src1_cont || src1->type != vec_dot_type
  7889. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7890. : (i11*nb11 + i12*nb12 + i13*nb13));
  7891. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7892. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7893. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7894. //}
  7895. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7896. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7897. }
  7898. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7899. }
  7900. }
  7901. }
  7902. }
  7903. // ggml_compute_forward_out_prod
  7904. static void ggml_compute_forward_out_prod_f32(
  7905. const struct ggml_compute_params * params,
  7906. const struct ggml_tensor * src0,
  7907. const struct ggml_tensor * src1,
  7908. struct ggml_tensor * dst) {
  7909. // int64_t t0 = ggml_perf_time_us();
  7910. // UNUSED(t0);
  7911. GGML_TENSOR_BINARY_OP_LOCALS
  7912. const int ith = params->ith;
  7913. const int nth = params->nth;
  7914. GGML_ASSERT(ne02 == ne12);
  7915. GGML_ASSERT(ne03 == ne13);
  7916. GGML_ASSERT(ne2 == ne12);
  7917. GGML_ASSERT(ne3 == ne13);
  7918. // we don't support permuted src0 or src1
  7919. GGML_ASSERT(nb00 == sizeof(float));
  7920. // dst cannot be transposed or permuted
  7921. GGML_ASSERT(nb0 == sizeof(float));
  7922. // GGML_ASSERT(nb0 <= nb1);
  7923. // GGML_ASSERT(nb1 <= nb2);
  7924. // GGML_ASSERT(nb2 <= nb3);
  7925. GGML_ASSERT(ne0 == ne00);
  7926. GGML_ASSERT(ne1 == ne10);
  7927. GGML_ASSERT(ne2 == ne02);
  7928. GGML_ASSERT(ne3 == ne03);
  7929. // nb01 >= nb00 - src0 is not transposed
  7930. // compute by src0 rows
  7931. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7932. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7933. if (params->type == GGML_TASK_INIT) {
  7934. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7935. return;
  7936. }
  7937. if (params->type == GGML_TASK_FINALIZE) {
  7938. return;
  7939. }
  7940. // dst[:,:,:,:] = 0
  7941. // for i2,i3:
  7942. // for i1:
  7943. // for i01:
  7944. // for i0:
  7945. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  7946. // parallelize by last three dimensions
  7947. // total rows in dst
  7948. const int64_t nr = ne1*ne2*ne3;
  7949. // rows per thread
  7950. const int64_t dr = (nr + nth - 1)/nth;
  7951. // row range for this thread
  7952. const int64_t ir0 = dr*ith;
  7953. const int64_t ir1 = MIN(ir0 + dr, nr);
  7954. // block-tiling attempt
  7955. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  7956. const int64_t blck_1 = 16;
  7957. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  7958. const int64_t bir1 = MIN(bir + blck_1, ir1);
  7959. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  7960. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  7961. for (int64_t ir = bir; ir < bir1; ++ir) {
  7962. // dst indices
  7963. const int64_t i3 = ir/(ne2*ne1);
  7964. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  7965. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7966. const int64_t i02 = i2;
  7967. const int64_t i03 = i3;
  7968. //const int64_t i10 = i1;
  7969. const int64_t i12 = i2;
  7970. const int64_t i13 = i3;
  7971. #if GGML_VEC_MAD_UNROLL > 2
  7972. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  7973. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  7974. const int64_t i11 = i01;
  7975. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7976. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7977. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7978. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  7979. }
  7980. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  7981. const int64_t i11 = i01;
  7982. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7983. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7984. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7985. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7986. }
  7987. #else
  7988. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  7989. const int64_t i11 = i01;
  7990. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7991. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7992. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7993. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7994. }
  7995. #endif
  7996. }
  7997. }
  7998. }
  7999. //int64_t t1 = ggml_perf_time_us();
  8000. //static int64_t acc = 0;
  8001. //acc += t1 - t0;
  8002. //if (t1 - t0 > 10) {
  8003. // printf("\n");
  8004. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8005. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8006. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8007. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8008. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8009. //}
  8010. }
  8011. static void ggml_compute_forward_out_prod_q_f32(
  8012. const struct ggml_compute_params * params,
  8013. const struct ggml_tensor * src0,
  8014. const struct ggml_tensor * src1,
  8015. struct ggml_tensor * dst) {
  8016. // int64_t t0 = ggml_perf_time_us();
  8017. // UNUSED(t0);
  8018. GGML_TENSOR_BINARY_OP_LOCALS;
  8019. const int ith = params->ith;
  8020. const int nth = params->nth;
  8021. const enum ggml_type type = src0->type;
  8022. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8023. GGML_ASSERT(ne02 == ne12);
  8024. GGML_ASSERT(ne03 == ne13);
  8025. GGML_ASSERT(ne2 == ne12);
  8026. GGML_ASSERT(ne3 == ne13);
  8027. // we don't support permuted src0 dim0
  8028. GGML_ASSERT(nb00 == ggml_type_size(type));
  8029. // dst dim0 cannot be transposed or permuted
  8030. GGML_ASSERT(nb0 == sizeof(float));
  8031. // GGML_ASSERT(nb0 <= nb1);
  8032. // GGML_ASSERT(nb1 <= nb2);
  8033. // GGML_ASSERT(nb2 <= nb3);
  8034. GGML_ASSERT(ne0 == ne00);
  8035. GGML_ASSERT(ne1 == ne10);
  8036. GGML_ASSERT(ne2 == ne02);
  8037. GGML_ASSERT(ne3 == ne03);
  8038. // nb01 >= nb00 - src0 is not transposed
  8039. // compute by src0 rows
  8040. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8041. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8042. if (params->type == GGML_TASK_INIT) {
  8043. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8044. return;
  8045. }
  8046. if (params->type == GGML_TASK_FINALIZE) {
  8047. return;
  8048. }
  8049. // parallelize by last three dimensions
  8050. // total rows in dst
  8051. const int64_t nr = ne1*ne2*ne3;
  8052. // rows per thread
  8053. const int64_t dr = (nr + nth - 1)/nth;
  8054. // row range for this thread
  8055. const int64_t ir0 = dr*ith;
  8056. const int64_t ir1 = MIN(ir0 + dr, nr);
  8057. // dst[:,:,:,:] = 0
  8058. // for i2,i3:
  8059. // for i1:
  8060. // for i01:
  8061. // for i0:
  8062. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8063. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8064. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8065. // dst indices
  8066. const int64_t i3 = ir/(ne2*ne1);
  8067. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8068. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8069. const int64_t i02 = i2;
  8070. const int64_t i03 = i3;
  8071. //const int64_t i10 = i1;
  8072. const int64_t i12 = i2;
  8073. const int64_t i13 = i3;
  8074. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8075. const int64_t i11 = i01;
  8076. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8077. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8078. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8079. dequantize_row_q(s0, wdata, ne0);
  8080. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8081. }
  8082. }
  8083. //int64_t t1 = ggml_perf_time_us();
  8084. //static int64_t acc = 0;
  8085. //acc += t1 - t0;
  8086. //if (t1 - t0 > 10) {
  8087. // printf("\n");
  8088. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8089. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8090. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8091. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8092. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8093. //}
  8094. }
  8095. static void ggml_compute_forward_out_prod(
  8096. const struct ggml_compute_params * params,
  8097. const struct ggml_tensor * src0,
  8098. const struct ggml_tensor * src1,
  8099. struct ggml_tensor * dst) {
  8100. switch (src0->type) {
  8101. case GGML_TYPE_Q4_0:
  8102. case GGML_TYPE_Q4_1:
  8103. case GGML_TYPE_Q5_0:
  8104. case GGML_TYPE_Q5_1:
  8105. case GGML_TYPE_Q8_0:
  8106. case GGML_TYPE_Q2_K:
  8107. case GGML_TYPE_Q3_K:
  8108. case GGML_TYPE_Q4_K:
  8109. case GGML_TYPE_Q5_K:
  8110. case GGML_TYPE_Q6_K:
  8111. {
  8112. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8113. } break;
  8114. case GGML_TYPE_F16:
  8115. {
  8116. GGML_ASSERT(false); // todo
  8117. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8118. } break;
  8119. case GGML_TYPE_F32:
  8120. {
  8121. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8122. } break;
  8123. default:
  8124. {
  8125. GGML_ASSERT(false);
  8126. } break;
  8127. }
  8128. }
  8129. // ggml_compute_forward_scale
  8130. static void ggml_compute_forward_scale_f32(
  8131. const struct ggml_compute_params * params,
  8132. const struct ggml_tensor * src0,
  8133. const struct ggml_tensor * src1,
  8134. struct ggml_tensor * dst) {
  8135. GGML_ASSERT(ggml_is_contiguous(src0));
  8136. GGML_ASSERT(ggml_is_contiguous(dst));
  8137. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8138. GGML_ASSERT(ggml_is_scalar(src1));
  8139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8140. return;
  8141. }
  8142. // scale factor
  8143. const float v = *(float *) src1->data;
  8144. const int ith = params->ith;
  8145. const int nth = params->nth;
  8146. const int nc = src0->ne[0];
  8147. const int nr = ggml_nrows(src0);
  8148. // rows per thread
  8149. const int dr = (nr + nth - 1)/nth;
  8150. // row range for this thread
  8151. const int ir0 = dr*ith;
  8152. const int ir1 = MIN(ir0 + dr, nr);
  8153. const size_t nb01 = src0->nb[1];
  8154. const size_t nb1 = dst->nb[1];
  8155. for (int i1 = ir0; i1 < ir1; i1++) {
  8156. if (dst->data != src0->data) {
  8157. // src0 is same shape as dst => same indices
  8158. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8159. }
  8160. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8161. }
  8162. }
  8163. static void ggml_compute_forward_scale(
  8164. const struct ggml_compute_params * params,
  8165. const struct ggml_tensor * src0,
  8166. const struct ggml_tensor * src1,
  8167. struct ggml_tensor * dst) {
  8168. switch (src0->type) {
  8169. case GGML_TYPE_F32:
  8170. {
  8171. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8172. } break;
  8173. default:
  8174. {
  8175. GGML_ASSERT(false);
  8176. } break;
  8177. }
  8178. }
  8179. // ggml_compute_forward_set
  8180. static void ggml_compute_forward_set_f32(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * src1,
  8184. struct ggml_tensor * dst) {
  8185. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8186. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8187. // view src0 and dst with these strides and data offset inbytes during set
  8188. // nb0 is implicitely element_size because src0 and dst are contiguous
  8189. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8190. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8191. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8192. size_t offset = ((int32_t *) dst->op_params)[3];
  8193. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8194. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8195. // memcpy needs to be synchronized across threads to avoid race conditions.
  8196. // => do it in INIT phase
  8197. memcpy(
  8198. ((char *) dst->data),
  8199. ((char *) src0->data),
  8200. ggml_nbytes(dst));
  8201. }
  8202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8203. return;
  8204. }
  8205. const int ith = params->ith;
  8206. const int nth = params->nth;
  8207. const int nr = ggml_nrows(src1);
  8208. const int nc = src1->ne[0];
  8209. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8210. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8211. // src0 and dst as viewed during set
  8212. const size_t nb0 = ggml_element_size(src0);
  8213. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8214. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8215. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8216. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8217. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8218. GGML_ASSERT(nb10 == sizeof(float));
  8219. // rows per thread
  8220. const int dr = (nr + nth - 1)/nth;
  8221. // row range for this thread
  8222. const int ir0 = dr*ith;
  8223. const int ir1 = MIN(ir0 + dr, nr);
  8224. for (int ir = ir0; ir < ir1; ++ir) {
  8225. // src0 and dst are viewed with shape of src1 and offset
  8226. // => same indices
  8227. const int i3 = ir/(ne12*ne11);
  8228. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8229. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8230. ggml_vec_cpy_f32(nc,
  8231. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8232. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8233. }
  8234. }
  8235. static void ggml_compute_forward_set(
  8236. const struct ggml_compute_params * params,
  8237. const struct ggml_tensor * src0,
  8238. const struct ggml_tensor * src1,
  8239. struct ggml_tensor * dst) {
  8240. switch (src0->type) {
  8241. case GGML_TYPE_F32:
  8242. {
  8243. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8244. } break;
  8245. case GGML_TYPE_F16:
  8246. case GGML_TYPE_Q4_0:
  8247. case GGML_TYPE_Q4_1:
  8248. case GGML_TYPE_Q5_0:
  8249. case GGML_TYPE_Q5_1:
  8250. case GGML_TYPE_Q8_0:
  8251. case GGML_TYPE_Q8_1:
  8252. case GGML_TYPE_Q2_K:
  8253. case GGML_TYPE_Q3_K:
  8254. case GGML_TYPE_Q4_K:
  8255. case GGML_TYPE_Q5_K:
  8256. case GGML_TYPE_Q6_K:
  8257. default:
  8258. {
  8259. GGML_ASSERT(false);
  8260. } break;
  8261. }
  8262. }
  8263. // ggml_compute_forward_cpy
  8264. static void ggml_compute_forward_cpy(
  8265. const struct ggml_compute_params * params,
  8266. const struct ggml_tensor * src0,
  8267. struct ggml_tensor * dst) {
  8268. ggml_compute_forward_dup(params, src0, dst);
  8269. }
  8270. // ggml_compute_forward_cont
  8271. static void ggml_compute_forward_cont(
  8272. const struct ggml_compute_params * params,
  8273. const struct ggml_tensor * src0,
  8274. struct ggml_tensor * dst) {
  8275. ggml_compute_forward_dup(params, src0, dst);
  8276. }
  8277. // ggml_compute_forward_reshape
  8278. static void ggml_compute_forward_reshape(
  8279. const struct ggml_compute_params * params,
  8280. const struct ggml_tensor * src0,
  8281. struct ggml_tensor * dst) {
  8282. // NOP
  8283. UNUSED(params);
  8284. UNUSED(src0);
  8285. UNUSED(dst);
  8286. }
  8287. // ggml_compute_forward_view
  8288. static void ggml_compute_forward_view(
  8289. const struct ggml_compute_params * params,
  8290. const struct ggml_tensor * src0) {
  8291. // NOP
  8292. UNUSED(params);
  8293. UNUSED(src0);
  8294. }
  8295. // ggml_compute_forward_permute
  8296. static void ggml_compute_forward_permute(
  8297. const struct ggml_compute_params * params,
  8298. const struct ggml_tensor * src0) {
  8299. // NOP
  8300. UNUSED(params);
  8301. UNUSED(src0);
  8302. }
  8303. // ggml_compute_forward_transpose
  8304. static void ggml_compute_forward_transpose(
  8305. const struct ggml_compute_params * params,
  8306. const struct ggml_tensor * src0) {
  8307. // NOP
  8308. UNUSED(params);
  8309. UNUSED(src0);
  8310. }
  8311. // ggml_compute_forward_get_rows
  8312. static void ggml_compute_forward_get_rows_q(
  8313. const struct ggml_compute_params * params,
  8314. const struct ggml_tensor * src0,
  8315. const struct ggml_tensor * src1,
  8316. struct ggml_tensor * dst) {
  8317. assert(params->ith == 0);
  8318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8319. return;
  8320. }
  8321. const int nc = src0->ne[0];
  8322. const int nr = ggml_nelements(src1);
  8323. const enum ggml_type type = src0->type;
  8324. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8325. assert( dst->ne[0] == nc);
  8326. assert( dst->ne[1] == nr);
  8327. assert(src0->nb[0] == ggml_type_size(type));
  8328. for (int i = 0; i < nr; ++i) {
  8329. const int r = ((int32_t *) src1->data)[i];
  8330. dequantize_row_q(
  8331. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8332. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8333. }
  8334. }
  8335. static void ggml_compute_forward_get_rows_f16(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0,
  8338. const struct ggml_tensor * src1,
  8339. struct ggml_tensor * dst) {
  8340. assert(params->ith == 0);
  8341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8342. return;
  8343. }
  8344. const int nc = src0->ne[0];
  8345. const int nr = ggml_nelements(src1);
  8346. assert( dst->ne[0] == nc);
  8347. assert( dst->ne[1] == nr);
  8348. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8349. for (int i = 0; i < nr; ++i) {
  8350. const int r = ((int32_t *) src1->data)[i];
  8351. for (int j = 0; j < nc; ++j) {
  8352. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8353. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8354. }
  8355. }
  8356. }
  8357. static void ggml_compute_forward_get_rows_f32(
  8358. const struct ggml_compute_params * params,
  8359. const struct ggml_tensor * src0,
  8360. const struct ggml_tensor * src1,
  8361. struct ggml_tensor * dst) {
  8362. assert(params->ith == 0);
  8363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8364. return;
  8365. }
  8366. const int nc = src0->ne[0];
  8367. const int nr = ggml_nelements(src1);
  8368. assert( dst->ne[0] == nc);
  8369. assert( dst->ne[1] == nr);
  8370. assert(src0->nb[0] == sizeof(float));
  8371. for (int i = 0; i < nr; ++i) {
  8372. const int r = ((int32_t *) src1->data)[i];
  8373. ggml_vec_cpy_f32(nc,
  8374. (float *) ((char *) dst->data + i*dst->nb[1]),
  8375. (float *) ((char *) src0->data + r*src0->nb[1]));
  8376. }
  8377. }
  8378. static void ggml_compute_forward_get_rows(
  8379. const struct ggml_compute_params * params,
  8380. const struct ggml_tensor * src0,
  8381. const struct ggml_tensor * src1,
  8382. struct ggml_tensor * dst) {
  8383. switch (src0->type) {
  8384. case GGML_TYPE_Q4_0:
  8385. case GGML_TYPE_Q4_1:
  8386. case GGML_TYPE_Q5_0:
  8387. case GGML_TYPE_Q5_1:
  8388. case GGML_TYPE_Q8_0:
  8389. case GGML_TYPE_Q8_1:
  8390. case GGML_TYPE_Q2_K:
  8391. case GGML_TYPE_Q3_K:
  8392. case GGML_TYPE_Q4_K:
  8393. case GGML_TYPE_Q5_K:
  8394. case GGML_TYPE_Q6_K:
  8395. {
  8396. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8397. } break;
  8398. case GGML_TYPE_F16:
  8399. {
  8400. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8401. } break;
  8402. case GGML_TYPE_F32:
  8403. {
  8404. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8405. } break;
  8406. default:
  8407. {
  8408. GGML_ASSERT(false);
  8409. } break;
  8410. }
  8411. //static bool first = true;
  8412. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8413. //if (first) {
  8414. // first = false;
  8415. //} else {
  8416. // for (int k = 0; k < dst->ne[1]; ++k) {
  8417. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8418. // for (int i = 0; i < 16; ++i) {
  8419. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8420. // }
  8421. // printf("\n");
  8422. // }
  8423. // printf("\n");
  8424. // }
  8425. // printf("\n");
  8426. // exit(0);
  8427. //}
  8428. }
  8429. // ggml_compute_forward_get_rows_back
  8430. static void ggml_compute_forward_get_rows_back_f32_f16(
  8431. const struct ggml_compute_params * params,
  8432. const struct ggml_tensor * src0,
  8433. const struct ggml_tensor * src1,
  8434. struct ggml_tensor * dst) {
  8435. GGML_ASSERT(params->ith == 0);
  8436. GGML_ASSERT(ggml_is_contiguous(dst));
  8437. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8438. if (params->type == GGML_TASK_INIT) {
  8439. memset(dst->data, 0, ggml_nbytes(dst));
  8440. }
  8441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8442. return;
  8443. }
  8444. const int nc = src0->ne[0];
  8445. const int nr = ggml_nelements(src1);
  8446. GGML_ASSERT( dst->ne[0] == nc);
  8447. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8448. for (int i = 0; i < nr; ++i) {
  8449. const int r = ((int32_t *) src1->data)[i];
  8450. for (int j = 0; j < nc; ++j) {
  8451. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8452. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8453. }
  8454. }
  8455. }
  8456. static void ggml_compute_forward_get_rows_back_f32(
  8457. const struct ggml_compute_params * params,
  8458. const struct ggml_tensor * src0,
  8459. const struct ggml_tensor * src1,
  8460. struct ggml_tensor * dst) {
  8461. GGML_ASSERT(params->ith == 0);
  8462. GGML_ASSERT(ggml_is_contiguous(dst));
  8463. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8464. if (params->type == GGML_TASK_INIT) {
  8465. memset(dst->data, 0, ggml_nbytes(dst));
  8466. }
  8467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8468. return;
  8469. }
  8470. const int nc = src0->ne[0];
  8471. const int nr = ggml_nelements(src1);
  8472. GGML_ASSERT( dst->ne[0] == nc);
  8473. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8474. for (int i = 0; i < nr; ++i) {
  8475. const int r = ((int32_t *) src1->data)[i];
  8476. ggml_vec_add_f32(nc,
  8477. (float *) ((char *) dst->data + r*dst->nb[1]),
  8478. (float *) ((char *) dst->data + r*dst->nb[1]),
  8479. (float *) ((char *) src0->data + i*src0->nb[1]));
  8480. }
  8481. }
  8482. static void ggml_compute_forward_get_rows_back(
  8483. const struct ggml_compute_params * params,
  8484. const struct ggml_tensor * src0,
  8485. const struct ggml_tensor * src1,
  8486. struct ggml_tensor * dst) {
  8487. switch (src0->type) {
  8488. case GGML_TYPE_F16:
  8489. {
  8490. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8491. } break;
  8492. case GGML_TYPE_F32:
  8493. {
  8494. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8495. } break;
  8496. default:
  8497. {
  8498. GGML_ASSERT(false);
  8499. } break;
  8500. }
  8501. //static bool first = true;
  8502. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8503. //if (first) {
  8504. // first = false;
  8505. //} else {
  8506. // for (int k = 0; k < dst->ne[1]; ++k) {
  8507. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8508. // for (int i = 0; i < 16; ++i) {
  8509. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8510. // }
  8511. // printf("\n");
  8512. // }
  8513. // printf("\n");
  8514. // }
  8515. // printf("\n");
  8516. // exit(0);
  8517. //}
  8518. }
  8519. // ggml_compute_forward_diag
  8520. static void ggml_compute_forward_diag_f32(
  8521. const struct ggml_compute_params * params,
  8522. const struct ggml_tensor * src0,
  8523. struct ggml_tensor * dst) {
  8524. GGML_ASSERT(params->ith == 0);
  8525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8526. return;
  8527. }
  8528. // TODO: handle transposed/permuted matrices
  8529. GGML_TENSOR_UNARY_OP_LOCALS
  8530. GGML_ASSERT(ne00 == ne0);
  8531. GGML_ASSERT(ne00 == ne1);
  8532. GGML_ASSERT(ne01 == 1);
  8533. GGML_ASSERT(ne02 == ne2);
  8534. GGML_ASSERT(ne03 == ne3);
  8535. GGML_ASSERT(nb00 == sizeof(float));
  8536. GGML_ASSERT(nb0 == sizeof(float));
  8537. for (int i3 = 0; i3 < ne3; i3++) {
  8538. for (int i2 = 0; i2 < ne2; i2++) {
  8539. for (int i1 = 0; i1 < ne1; i1++) {
  8540. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8541. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8542. for (int i0 = 0; i0 < i1; i0++) {
  8543. d[i0] = 0;
  8544. }
  8545. d[i1] = s[i1];
  8546. for (int i0 = i1+1; i0 < ne0; i0++) {
  8547. d[i0] = 0;
  8548. }
  8549. }
  8550. }
  8551. }
  8552. }
  8553. static void ggml_compute_forward_diag(
  8554. const struct ggml_compute_params * params,
  8555. const struct ggml_tensor * src0,
  8556. struct ggml_tensor * dst) {
  8557. switch (src0->type) {
  8558. case GGML_TYPE_F32:
  8559. {
  8560. ggml_compute_forward_diag_f32(params, src0, dst);
  8561. } break;
  8562. default:
  8563. {
  8564. GGML_ASSERT(false);
  8565. } break;
  8566. }
  8567. }
  8568. // ggml_compute_forward_diag_mask_inf
  8569. static void ggml_compute_forward_diag_mask_f32(
  8570. const struct ggml_compute_params * params,
  8571. const struct ggml_tensor * src0,
  8572. struct ggml_tensor * dst,
  8573. const float value) {
  8574. const int ith = params->ith;
  8575. const int nth = params->nth;
  8576. const int n_past = ((int32_t *) dst->op_params)[0];
  8577. const bool inplace = src0->data == dst->data;
  8578. GGML_ASSERT(n_past >= 0);
  8579. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8580. // memcpy needs to be synchronized across threads to avoid race conditions.
  8581. // => do it in INIT phase
  8582. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8583. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8584. memcpy(
  8585. ((char *) dst->data),
  8586. ((char *) src0->data),
  8587. ggml_nbytes(dst));
  8588. }
  8589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8590. return;
  8591. }
  8592. // TODO: handle transposed/permuted matrices
  8593. const int n = ggml_nrows(src0);
  8594. const int nc = src0->ne[0];
  8595. const int nr = src0->ne[1];
  8596. const int nz = n/nr;
  8597. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8598. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8599. for (int k = 0; k < nz; k++) {
  8600. for (int j = ith; j < nr; j += nth) {
  8601. for (int i = n_past; i < nc; i++) {
  8602. if (i > n_past + j) {
  8603. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8604. }
  8605. }
  8606. }
  8607. }
  8608. }
  8609. static void ggml_compute_forward_diag_mask_inf(
  8610. const struct ggml_compute_params * params,
  8611. const struct ggml_tensor * src0,
  8612. struct ggml_tensor * dst) {
  8613. switch (src0->type) {
  8614. case GGML_TYPE_F32:
  8615. {
  8616. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. static void ggml_compute_forward_diag_mask_zero(
  8625. const struct ggml_compute_params * params,
  8626. const struct ggml_tensor * src0,
  8627. struct ggml_tensor * dst) {
  8628. switch (src0->type) {
  8629. case GGML_TYPE_F32:
  8630. {
  8631. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8632. } break;
  8633. default:
  8634. {
  8635. GGML_ASSERT(false);
  8636. } break;
  8637. }
  8638. }
  8639. // ggml_compute_forward_soft_max
  8640. static void ggml_compute_forward_soft_max_f32(
  8641. const struct ggml_compute_params * params,
  8642. const struct ggml_tensor * src0,
  8643. struct ggml_tensor * dst) {
  8644. GGML_ASSERT(ggml_is_contiguous(src0));
  8645. GGML_ASSERT(ggml_is_contiguous(dst));
  8646. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8648. return;
  8649. }
  8650. // TODO: handle transposed/permuted matrices
  8651. const int ith = params->ith;
  8652. const int nth = params->nth;
  8653. const int nc = src0->ne[0];
  8654. const int nr = ggml_nrows(src0);
  8655. // rows per thread
  8656. const int dr = (nr + nth - 1)/nth;
  8657. // row range for this thread
  8658. const int ir0 = dr*ith;
  8659. const int ir1 = MIN(ir0 + dr, nr);
  8660. for (int i1 = ir0; i1 < ir1; i1++) {
  8661. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8662. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8663. #ifndef NDEBUG
  8664. for (int i = 0; i < nc; ++i) {
  8665. //printf("p[%d] = %f\n", i, p[i]);
  8666. assert(!isnan(sp[i]));
  8667. }
  8668. #endif
  8669. float max = -INFINITY;
  8670. ggml_vec_max_f32(nc, &max, sp);
  8671. ggml_float sum = 0.0;
  8672. uint16_t scvt;
  8673. for (int i = 0; i < nc; i++) {
  8674. if (sp[i] == -INFINITY) {
  8675. dp[i] = 0.0f;
  8676. } else {
  8677. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8678. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8679. memcpy(&scvt, &s, sizeof(scvt));
  8680. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8681. sum += (ggml_float)val;
  8682. dp[i] = val;
  8683. }
  8684. }
  8685. assert(sum > 0.0);
  8686. sum = 1.0/sum;
  8687. ggml_vec_scale_f32(nc, dp, sum);
  8688. #ifndef NDEBUG
  8689. for (int i = 0; i < nc; ++i) {
  8690. assert(!isnan(dp[i]));
  8691. assert(!isinf(dp[i]));
  8692. }
  8693. #endif
  8694. }
  8695. }
  8696. static void ggml_compute_forward_soft_max(
  8697. const struct ggml_compute_params * params,
  8698. const struct ggml_tensor * src0,
  8699. struct ggml_tensor * dst) {
  8700. switch (src0->type) {
  8701. case GGML_TYPE_F32:
  8702. {
  8703. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8704. } break;
  8705. default:
  8706. {
  8707. GGML_ASSERT(false);
  8708. } break;
  8709. }
  8710. }
  8711. // ggml_compute_forward_soft_max_back
  8712. static void ggml_compute_forward_soft_max_back_f32(
  8713. const struct ggml_compute_params * params,
  8714. const struct ggml_tensor * src0,
  8715. const struct ggml_tensor * src1,
  8716. struct ggml_tensor * dst) {
  8717. GGML_ASSERT(ggml_is_contiguous(src0));
  8718. GGML_ASSERT(ggml_is_contiguous(src1));
  8719. GGML_ASSERT(ggml_is_contiguous(dst));
  8720. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8721. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8723. return;
  8724. }
  8725. // TODO: handle transposed/permuted matrices
  8726. const int ith = params->ith;
  8727. const int nth = params->nth;
  8728. const int nc = src0->ne[0];
  8729. const int nr = ggml_nrows(src0);
  8730. // rows per thread
  8731. const int dr = (nr + nth - 1)/nth;
  8732. // row range for this thread
  8733. const int ir0 = dr*ith;
  8734. const int ir1 = MIN(ir0 + dr, nr);
  8735. for (int i1 = ir0; i1 < ir1; i1++) {
  8736. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8737. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8738. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8739. #ifndef NDEBUG
  8740. for (int i = 0; i < nc; ++i) {
  8741. //printf("p[%d] = %f\n", i, p[i]);
  8742. assert(!isnan(dy[i]));
  8743. assert(!isnan(y[i]));
  8744. }
  8745. #endif
  8746. // Jii = yi - yi*yi
  8747. // Jij = -yi*yj
  8748. // J = diag(y)-y.T*y
  8749. // dx = J * dy
  8750. // dxk = sum_i(Jki * dyi)
  8751. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8752. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8753. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8754. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8755. // dxk = -yk * dot(y, dy) + yk*dyk
  8756. // dxk = yk * (- dot(y, dy) + dyk)
  8757. // dxk = yk * (dyk - dot(y, dy))
  8758. //
  8759. // post-order:
  8760. // dot_y_dy := dot(y, dy)
  8761. // dx := dy
  8762. // dx := dx - dot_y_dy
  8763. // dx := dx * y
  8764. // linear runtime, no additional memory
  8765. float dot_y_dy = 0;
  8766. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8767. ggml_vec_cpy_f32 (nc, dx, dy);
  8768. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8769. ggml_vec_mul_f32 (nc, dx, dx, y);
  8770. #ifndef NDEBUG
  8771. for (int i = 0; i < nc; ++i) {
  8772. assert(!isnan(dx[i]));
  8773. assert(!isinf(dx[i]));
  8774. }
  8775. #endif
  8776. }
  8777. }
  8778. static void ggml_compute_forward_soft_max_back(
  8779. const struct ggml_compute_params * params,
  8780. const struct ggml_tensor * src0,
  8781. const struct ggml_tensor * src1,
  8782. struct ggml_tensor * dst) {
  8783. switch (src0->type) {
  8784. case GGML_TYPE_F32:
  8785. {
  8786. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8787. } break;
  8788. default:
  8789. {
  8790. GGML_ASSERT(false);
  8791. } break;
  8792. }
  8793. }
  8794. // ggml_compute_forward_alibi
  8795. static void ggml_compute_forward_alibi_f32(
  8796. const struct ggml_compute_params * params,
  8797. const struct ggml_tensor * src0,
  8798. struct ggml_tensor * dst) {
  8799. assert(params->ith == 0);
  8800. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8801. return;
  8802. }
  8803. //const int n_past = ((int32_t *) dst->op_params)[0];
  8804. const int n_head = ((int32_t *) dst->op_params)[1];
  8805. float max_bias;
  8806. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8807. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8808. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8809. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8810. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8811. const int64_t n = ggml_nrows(src0);
  8812. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8813. const size_t nb0 = src0->nb[0];
  8814. const size_t nb1 = src0->nb[1];
  8815. const size_t nb2 = src0->nb[2];
  8816. //const int nb3 = src0->nb[3];
  8817. GGML_ASSERT(nb0 == sizeof(float));
  8818. GGML_ASSERT(n_head == ne2);
  8819. // add alibi to src0 (KQ_scaled)
  8820. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8821. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8822. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8823. for (int64_t i = 0; i < ne0; i++) {
  8824. for (int64_t j = 0; j < ne1; j++) {
  8825. for (int64_t k = 0; k < ne2_ne3; k++) {
  8826. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8827. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8828. // TODO: k*nb2 or k*nb3
  8829. float m_k;
  8830. if (k < n_heads_log2_floor) {
  8831. m_k = powf(m0, k + 1);
  8832. } else {
  8833. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8834. }
  8835. pdst[0] = i * m_k + src[0];
  8836. }
  8837. }
  8838. }
  8839. }
  8840. static void ggml_compute_forward_alibi_f16(
  8841. const struct ggml_compute_params * params,
  8842. const struct ggml_tensor * src0,
  8843. struct ggml_tensor * dst) {
  8844. assert(params->ith == 0);
  8845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8846. return;
  8847. }
  8848. //const int n_past = ((int32_t *) dst->op_params)[0];
  8849. const int n_head = ((int32_t *) dst->op_params)[1];
  8850. float max_bias;
  8851. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8852. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8853. const int ne1 = src0->ne[1]; // seq_len_without_past
  8854. const int ne2 = src0->ne[2]; // n_head -> this is k
  8855. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8856. const int n = ggml_nrows(src0);
  8857. const int ne2_ne3 = n/ne1; // ne2*ne3
  8858. const int nb0 = src0->nb[0];
  8859. const int nb1 = src0->nb[1];
  8860. const int nb2 = src0->nb[2];
  8861. //const int nb3 = src0->nb[3];
  8862. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8863. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8864. GGML_ASSERT(n_head == ne2);
  8865. // add alibi to src0 (KQ_scaled)
  8866. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8867. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8868. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8869. for (int i = 0; i < ne0; i++) {
  8870. for (int j = 0; j < ne1; j++) {
  8871. for (int k = 0; k < ne2_ne3; k++) {
  8872. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8873. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8874. // TODO: k*nb2 or k*nb3
  8875. float m_k;
  8876. if (k < n_heads_log2_floor) {
  8877. m_k = powf(m0, k + 1);
  8878. } else {
  8879. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8880. }
  8881. // we return F32
  8882. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8883. }
  8884. }
  8885. }
  8886. }
  8887. static void ggml_compute_forward_alibi(
  8888. const struct ggml_compute_params * params,
  8889. const struct ggml_tensor * src0,
  8890. struct ggml_tensor * dst) {
  8891. switch (src0->type) {
  8892. case GGML_TYPE_F16:
  8893. {
  8894. ggml_compute_forward_alibi_f16(params, src0, dst);
  8895. } break;
  8896. case GGML_TYPE_F32:
  8897. {
  8898. ggml_compute_forward_alibi_f32(params, src0, dst);
  8899. } break;
  8900. case GGML_TYPE_Q4_0:
  8901. case GGML_TYPE_Q4_1:
  8902. case GGML_TYPE_Q5_0:
  8903. case GGML_TYPE_Q5_1:
  8904. case GGML_TYPE_Q8_0:
  8905. case GGML_TYPE_Q8_1:
  8906. case GGML_TYPE_Q2_K:
  8907. case GGML_TYPE_Q3_K:
  8908. case GGML_TYPE_Q4_K:
  8909. case GGML_TYPE_Q5_K:
  8910. case GGML_TYPE_Q6_K:
  8911. case GGML_TYPE_Q8_K:
  8912. case GGML_TYPE_I8:
  8913. case GGML_TYPE_I16:
  8914. case GGML_TYPE_I32:
  8915. case GGML_TYPE_COUNT:
  8916. {
  8917. GGML_ASSERT(false);
  8918. } break;
  8919. }
  8920. }
  8921. // ggml_compute_forward_clamp
  8922. static void ggml_compute_forward_clamp_f32(
  8923. const struct ggml_compute_params * params,
  8924. const struct ggml_tensor * src0,
  8925. struct ggml_tensor * dst) {
  8926. assert(params->ith == 0);
  8927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8928. return;
  8929. }
  8930. float min;
  8931. float max;
  8932. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  8933. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  8934. const int ith = params->ith;
  8935. const int nth = params->nth;
  8936. const int n = ggml_nrows(src0);
  8937. const int nc = src0->ne[0];
  8938. const size_t nb00 = src0->nb[0];
  8939. const size_t nb01 = src0->nb[1];
  8940. const size_t nb0 = dst->nb[0];
  8941. const size_t nb1 = dst->nb[1];
  8942. GGML_ASSERT( nb0 == sizeof(float));
  8943. GGML_ASSERT(nb00 == sizeof(float));
  8944. for (int j = ith; j < n; j += nth) {
  8945. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8946. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8947. for (int i = 0; i < nc; i++) {
  8948. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8949. }
  8950. }
  8951. }
  8952. static void ggml_compute_forward_clamp(
  8953. const struct ggml_compute_params * params,
  8954. const struct ggml_tensor * src0,
  8955. struct ggml_tensor * dst) {
  8956. switch (src0->type) {
  8957. case GGML_TYPE_F32:
  8958. {
  8959. ggml_compute_forward_clamp_f32(params, src0, dst);
  8960. } break;
  8961. case GGML_TYPE_F16:
  8962. case GGML_TYPE_Q4_0:
  8963. case GGML_TYPE_Q4_1:
  8964. case GGML_TYPE_Q5_0:
  8965. case GGML_TYPE_Q5_1:
  8966. case GGML_TYPE_Q8_0:
  8967. case GGML_TYPE_Q8_1:
  8968. case GGML_TYPE_Q2_K:
  8969. case GGML_TYPE_Q3_K:
  8970. case GGML_TYPE_Q4_K:
  8971. case GGML_TYPE_Q5_K:
  8972. case GGML_TYPE_Q6_K:
  8973. case GGML_TYPE_Q8_K:
  8974. case GGML_TYPE_I8:
  8975. case GGML_TYPE_I16:
  8976. case GGML_TYPE_I32:
  8977. case GGML_TYPE_COUNT:
  8978. {
  8979. GGML_ASSERT(false);
  8980. } break;
  8981. }
  8982. }
  8983. // ggml_compute_forward_rope
  8984. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  8985. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  8986. return 1 - MIN(1, MAX(0, y));
  8987. }
  8988. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  8989. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  8990. static void rope_yarn(
  8991. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  8992. float * cos_theta, float * sin_theta
  8993. ) {
  8994. // Get n-d rotational scaling corrected for extrapolation
  8995. float theta_interp = freq_scale * theta_extrap;
  8996. float theta = theta_interp;
  8997. if (ext_factor != 0.0f) {
  8998. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  8999. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9000. // Get n-d magnitude scaling corrected for interpolation
  9001. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9002. }
  9003. *cos_theta = cosf(theta) * mscale;
  9004. *sin_theta = sinf(theta) * mscale;
  9005. }
  9006. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9007. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9008. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9009. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9010. }
  9011. void ggml_rope_yarn_corr_dims(
  9012. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9013. ) {
  9014. // start and end correction dims
  9015. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9016. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9017. }
  9018. static void ggml_compute_forward_rope_f32(
  9019. const struct ggml_compute_params * params,
  9020. const struct ggml_tensor * src0,
  9021. const struct ggml_tensor * src1,
  9022. struct ggml_tensor * dst,
  9023. const bool forward) {
  9024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9025. return;
  9026. }
  9027. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9028. // these two only relevant for xPos RoPE:
  9029. float xpos_base;
  9030. bool xpos_down;
  9031. //const int n_past = ((int32_t *) dst->op_params)[0];
  9032. const int n_dims = ((int32_t *) dst->op_params)[1];
  9033. const int mode = ((int32_t *) dst->op_params)[2];
  9034. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9035. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9036. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9037. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9038. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9039. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9040. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9041. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9042. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9043. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9044. GGML_TENSOR_UNARY_OP_LOCALS
  9045. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9046. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9047. GGML_ASSERT(nb00 == sizeof(float));
  9048. const int ith = params->ith;
  9049. const int nth = params->nth;
  9050. const int nr = ggml_nrows(dst);
  9051. GGML_ASSERT(n_dims <= ne0);
  9052. GGML_ASSERT(n_dims % 2 == 0);
  9053. // rows per thread
  9054. const int dr = (nr + nth - 1)/nth;
  9055. // row range for this thread
  9056. const int ir0 = dr*ith;
  9057. const int ir1 = MIN(ir0 + dr, nr);
  9058. // row index used to determine which thread to use
  9059. int ir = 0;
  9060. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9061. const float inv_ndims = -1.f/n_dims;
  9062. float corr_dims[2];
  9063. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9064. const bool is_neox = mode & 2;
  9065. const bool is_glm = mode & 4;
  9066. // backward process uses inverse rotation by cos and sin.
  9067. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9068. // this essentially just switches the sign of sin.
  9069. const float sin_sign = forward ? 1.0f : -1.0f;
  9070. const int32_t * pos = (const int32_t *) src1->data;
  9071. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9072. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9073. const int64_t p = pos[i2];
  9074. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9075. if (ir++ < ir0) continue;
  9076. if (ir > ir1) break;
  9077. float theta_base = (float)p;
  9078. if (is_glm) {
  9079. theta_base = MIN(p, n_ctx - 2);
  9080. float block_theta = MAX(p - (n_ctx - 2), 0);
  9081. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9082. const float cos_theta = cosf(theta_base);
  9083. const float sin_theta = sinf(theta_base) * sin_sign;
  9084. const float cos_block_theta = cosf(block_theta);
  9085. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9086. theta_base *= theta_scale;
  9087. block_theta *= theta_scale;
  9088. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9089. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9090. const float x0 = src[0];
  9091. const float x1 = src[n_dims/2];
  9092. const float x2 = src[n_dims];
  9093. const float x3 = src[n_dims/2*3];
  9094. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9095. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9096. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9097. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9098. }
  9099. } else if (!is_neox) {
  9100. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9101. float cos_theta, sin_theta;
  9102. rope_yarn(
  9103. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9104. );
  9105. sin_theta *= sin_sign;
  9106. // zeta scaling for xPos only:
  9107. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9108. if (xpos_down) zeta = 1.0f / zeta;
  9109. theta_base *= theta_scale;
  9110. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9111. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9112. const float x0 = src[0];
  9113. const float x1 = src[1];
  9114. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9115. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9116. }
  9117. } else {
  9118. // TODO: this might be wrong for ne0 != n_dims - need double check
  9119. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9120. theta_base *= freq_scale;
  9121. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9122. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9123. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9124. float cur_rot = inv_ndims * ic - ib;
  9125. float cos_theta, sin_theta;
  9126. rope_yarn(
  9127. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9128. &cos_theta, &sin_theta
  9129. );
  9130. sin_theta *= sin_sign;
  9131. theta_base *= theta_scale;
  9132. const int64_t i0 = ib*n_dims + ic/2;
  9133. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9134. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9135. const float x0 = src[0];
  9136. const float x1 = src[n_dims/2];
  9137. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9138. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9139. }
  9140. }
  9141. }
  9142. }
  9143. }
  9144. }
  9145. }
  9146. static void ggml_compute_forward_rope_f16(
  9147. const struct ggml_compute_params * params,
  9148. const struct ggml_tensor * src0,
  9149. const struct ggml_tensor * src1,
  9150. struct ggml_tensor * dst,
  9151. const bool forward) {
  9152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9153. return;
  9154. }
  9155. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9156. //const int n_past = ((int32_t *) dst->op_params)[0];
  9157. const int n_dims = ((int32_t *) dst->op_params)[1];
  9158. const int mode = ((int32_t *) dst->op_params)[2];
  9159. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9160. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9161. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9162. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9163. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9164. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9165. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9166. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9167. GGML_TENSOR_UNARY_OP_LOCALS
  9168. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9169. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9170. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9171. const int ith = params->ith;
  9172. const int nth = params->nth;
  9173. const int nr = ggml_nrows(dst);
  9174. GGML_ASSERT(n_dims <= ne0);
  9175. GGML_ASSERT(n_dims % 2 == 0);
  9176. // rows per thread
  9177. const int dr = (nr + nth - 1)/nth;
  9178. // row range for this thread
  9179. const int ir0 = dr*ith;
  9180. const int ir1 = MIN(ir0 + dr, nr);
  9181. // row index used to determine which thread to use
  9182. int ir = 0;
  9183. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9184. const float inv_ndims = -1.f/n_dims;
  9185. float corr_dims[2];
  9186. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9187. const bool is_neox = mode & 2;
  9188. const bool is_glm = mode & 4;
  9189. // backward process uses inverse rotation by cos and sin.
  9190. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9191. // this essentially just switches the sign of sin.
  9192. const float sin_sign = forward ? 1.0f : -1.0f;
  9193. const int32_t * pos = (const int32_t *) src1->data;
  9194. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9195. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9196. const int64_t p = pos[i2];
  9197. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9198. if (ir++ < ir0) continue;
  9199. if (ir > ir1) break;
  9200. float theta_base = (float)p;
  9201. if (is_glm) {
  9202. theta_base = MIN(p, n_ctx - 2);
  9203. float block_theta = MAX(p - (n_ctx - 2), 0);
  9204. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9205. const float cos_theta = cosf(theta_base);
  9206. const float sin_theta = sinf(theta_base) * sin_sign;
  9207. const float cos_block_theta = cosf(block_theta);
  9208. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9209. theta_base *= theta_scale;
  9210. block_theta *= theta_scale;
  9211. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9212. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9213. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9214. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9215. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9216. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9217. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9218. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9219. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9220. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9221. }
  9222. } else if (!is_neox) {
  9223. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9224. float cos_theta, sin_theta;
  9225. rope_yarn(
  9226. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9227. );
  9228. sin_theta *= sin_sign;
  9229. theta_base *= theta_scale;
  9230. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9231. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9232. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9233. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9234. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9235. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9236. }
  9237. } else {
  9238. // TODO: this might be wrong for ne0 != n_dims - need double check
  9239. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9240. theta_base *= freq_scale;
  9241. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9242. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9243. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9244. float cur_rot = inv_ndims * ic - ib;
  9245. float cos_theta, sin_theta;
  9246. rope_yarn(
  9247. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9248. &cos_theta, &sin_theta
  9249. );
  9250. sin_theta *= sin_sign;
  9251. theta_base *= theta_scale;
  9252. const int64_t i0 = ib*n_dims + ic/2;
  9253. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9254. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9255. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9256. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9257. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9258. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9259. }
  9260. }
  9261. }
  9262. }
  9263. }
  9264. }
  9265. }
  9266. static void ggml_compute_forward_rope(
  9267. const struct ggml_compute_params * params,
  9268. const struct ggml_tensor * src0,
  9269. const struct ggml_tensor * src1,
  9270. struct ggml_tensor * dst) {
  9271. switch (src0->type) {
  9272. case GGML_TYPE_F16:
  9273. {
  9274. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9275. } break;
  9276. case GGML_TYPE_F32:
  9277. {
  9278. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9279. } break;
  9280. default:
  9281. {
  9282. GGML_ASSERT(false);
  9283. } break;
  9284. }
  9285. }
  9286. // ggml_compute_forward_rope_back
  9287. static void ggml_compute_forward_rope_back(
  9288. const struct ggml_compute_params * params,
  9289. const struct ggml_tensor * src0,
  9290. const struct ggml_tensor * src1,
  9291. struct ggml_tensor * dst) {
  9292. switch (src0->type) {
  9293. case GGML_TYPE_F16:
  9294. {
  9295. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9296. } break;
  9297. case GGML_TYPE_F32:
  9298. {
  9299. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9300. } break;
  9301. default:
  9302. {
  9303. GGML_ASSERT(false);
  9304. } break;
  9305. }
  9306. }
  9307. // ggml_compute_forward_conv_1d
  9308. static void ggml_compute_forward_conv_1d_f16_f32(
  9309. const struct ggml_compute_params * params,
  9310. const struct ggml_tensor * src0,
  9311. const struct ggml_tensor * src1,
  9312. struct ggml_tensor * dst) {
  9313. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9314. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9315. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9316. int64_t t0 = ggml_perf_time_us();
  9317. UNUSED(t0);
  9318. GGML_TENSOR_BINARY_OP_LOCALS
  9319. const int ith = params->ith;
  9320. const int nth = params->nth;
  9321. const int nk = ne00;
  9322. // size of the convolution row - the kernel size unrolled across all input channels
  9323. const int ew0 = nk*ne01;
  9324. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9325. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9326. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9327. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9328. GGML_ASSERT(nb10 == sizeof(float));
  9329. if (params->type == GGML_TASK_INIT) {
  9330. memset(params->wdata, 0, params->wsize);
  9331. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9332. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9333. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9334. ggml_fp16_t * dst_data = wdata;
  9335. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9336. for (int64_t ik = 0; ik < nk; ik++) {
  9337. const int idx0 = i0*s0 + ik*d0 - p0;
  9338. if(!(idx0 < 0 || idx0 >= ne10)) {
  9339. dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
  9340. }
  9341. }
  9342. }
  9343. }
  9344. return;
  9345. }
  9346. if (params->type == GGML_TASK_FINALIZE) {
  9347. return;
  9348. }
  9349. // total rows in dst
  9350. const int nr = ne2;
  9351. // rows per thread
  9352. const int dr = (nr + nth - 1)/nth;
  9353. // row range for this thread
  9354. const int ir0 = dr*ith;
  9355. const int ir1 = MIN(ir0 + dr, nr);
  9356. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9357. for (int i2 = 0; i2 < ne2; i2++) {
  9358. for (int i1 = ir0; i1 < ir1; i1++) {
  9359. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9360. for (int i0 = 0; i0 < ne0; i0++) {
  9361. ggml_vec_dot_f16(ew0, dst_data + i0,
  9362. (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
  9363. (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
  9364. }
  9365. }
  9366. }
  9367. }
  9368. static void ggml_compute_forward_conv_1d_f32(
  9369. const struct ggml_compute_params * params,
  9370. const struct ggml_tensor * src0,
  9371. const struct ggml_tensor * src1,
  9372. struct ggml_tensor * dst) {
  9373. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9374. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9375. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9376. int64_t t0 = ggml_perf_time_us();
  9377. UNUSED(t0);
  9378. GGML_TENSOR_BINARY_OP_LOCALS
  9379. const int ith = params->ith;
  9380. const int nth = params->nth;
  9381. const int nk = ne00;
  9382. const int ew0 = nk*ne01;
  9383. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9384. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9385. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9386. GGML_ASSERT(nb00 == sizeof(float));
  9387. GGML_ASSERT(nb10 == sizeof(float));
  9388. if (params->type == GGML_TASK_INIT) {
  9389. memset(params->wdata, 0, params->wsize);
  9390. float * const wdata = (float *) params->wdata + 0;
  9391. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9392. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9393. float * dst_data = wdata;
  9394. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9395. for (int64_t ik = 0; ik < nk; ik++) {
  9396. const int idx0 = i0*s0 + ik*d0 - p0;
  9397. if(!(idx0 < 0 || idx0 >= ne10)) {
  9398. dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
  9399. }
  9400. }
  9401. }
  9402. }
  9403. return;
  9404. }
  9405. if (params->type == GGML_TASK_FINALIZE) {
  9406. return;
  9407. }
  9408. // total rows in dst
  9409. const int nr = ne02;
  9410. // rows per thread
  9411. const int dr = (nr + nth - 1)/nth;
  9412. // row range for this thread
  9413. const int ir0 = dr*ith;
  9414. const int ir1 = MIN(ir0 + dr, nr);
  9415. float * const wdata = (float *) params->wdata + 0;
  9416. for (int i2 = 0; i2 < ne2; i2++) {
  9417. for (int i1 = ir0; i1 < ir1; i1++) {
  9418. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9419. for (int i0 = 0; i0 < ne0; i0++) {
  9420. ggml_vec_dot_f32(ew0, dst_data + i0,
  9421. (float *) ((char *) src0->data + i1*nb02),
  9422. (float *) wdata + i2*nb2 + i0*ew0);
  9423. }
  9424. }
  9425. }
  9426. }
  9427. // TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1
  9428. static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
  9429. ggml_fp16_t * A,
  9430. ggml_fp16_t * B,
  9431. float * C,
  9432. const int ith, const int nth) {
  9433. // does not seem to make a difference
  9434. int64_t m0, m1, n0, n1;
  9435. // patches per thread
  9436. if (m > n) {
  9437. n0 = 0;
  9438. n1 = n;
  9439. // total patches in dst
  9440. const int np = m;
  9441. // patches per thread
  9442. const int dp = (np + nth - 1)/nth;
  9443. // patch range for this thread
  9444. m0 = dp*ith;
  9445. m1 = MIN(m0 + dp, np);
  9446. } else {
  9447. m0 = 0;
  9448. m1 = m;
  9449. // total patches in dst
  9450. const int np = n;
  9451. // patches per thread
  9452. const int dp = (np + nth - 1)/nth;
  9453. // patch range for this thread
  9454. n0 = dp*ith;
  9455. n1 = MIN(n0 + dp, np);
  9456. }
  9457. // block-tiling attempt
  9458. int64_t blck_n = 16;
  9459. int64_t blck_m = 16;
  9460. // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
  9461. // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
  9462. // if (blck_size > 0) {
  9463. // blck_0 = 4;
  9464. // blck_1 = blck_size / blck_0;
  9465. // if (blck_1 < 0) {
  9466. // blck_1 = 1;
  9467. // }
  9468. // // blck_0 = (int64_t)sqrt(blck_size);
  9469. // // blck_1 = blck_0;
  9470. // }
  9471. // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
  9472. for (int j = n0; j < n1; j+=blck_n) {
  9473. for (int i = m0; i < m1; i+=blck_m) {
  9474. // printf("i j k => %d %d %d\n", i, j, K);
  9475. for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
  9476. for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
  9477. ggml_vec_dot_f16(k,
  9478. C + ii*n + jj,
  9479. A + ii * k,
  9480. B + jj * k);
  9481. }
  9482. }
  9483. }
  9484. }
  9485. }
  9486. // src0: kernel [OC, IC, K]
  9487. // src1: signal [N, IC, IL]
  9488. // dst: result [N, OL, IC*K]
  9489. static void ggml_compute_forward_conv_1d_stage_0_f32(
  9490. const struct ggml_compute_params * params,
  9491. const struct ggml_tensor * src0,
  9492. const struct ggml_tensor * src1,
  9493. struct ggml_tensor * dst) {
  9494. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9495. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9496. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9497. int64_t t0 = ggml_perf_time_us();
  9498. UNUSED(t0);
  9499. GGML_TENSOR_BINARY_OP_LOCALS;
  9500. const int64_t N = ne12;
  9501. const int64_t IC = ne11;
  9502. const int64_t IL = ne10;
  9503. const int64_t K = ne00;
  9504. const int64_t OL = ne1;
  9505. const int ith = params->ith;
  9506. const int nth = params->nth;
  9507. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9508. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9509. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9510. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9511. GGML_ASSERT(nb10 == sizeof(float));
  9512. if (params->type == GGML_TASK_INIT) {
  9513. memset(dst->data, 0, ggml_nbytes(dst));
  9514. return;
  9515. }
  9516. if (params->type == GGML_TASK_FINALIZE) {
  9517. return;
  9518. }
  9519. // im2col: [N, IC, IL] => [N, OL, IC*K]
  9520. {
  9521. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9522. for (int64_t in = 0; in < N; in++) {
  9523. for (int64_t iol = 0; iol < OL; iol++) {
  9524. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9525. // micro kernel
  9526. ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
  9527. const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
  9528. for (int64_t ik = 0; ik < K; ik++) {
  9529. const int64_t iil = iol*s0 + ik*d0 - p0;
  9530. if (!(iil < 0 || iil >= IL)) {
  9531. dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
  9532. }
  9533. }
  9534. }
  9535. }
  9536. }
  9537. }
  9538. }
  9539. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9540. // src0: [OC, IC, K]
  9541. // src1: [N, OL, IC * K]
  9542. // result: [N, OC, OL]
  9543. static void ggml_compute_forward_conv_1d_stage_1_f16(
  9544. const struct ggml_compute_params * params,
  9545. const struct ggml_tensor * src0,
  9546. const struct ggml_tensor * src1,
  9547. struct ggml_tensor * dst) {
  9548. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9549. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9550. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9551. int64_t t0 = ggml_perf_time_us();
  9552. UNUSED(t0);
  9553. if (params->type == GGML_TASK_INIT) {
  9554. return;
  9555. }
  9556. if (params->type == GGML_TASK_FINALIZE) {
  9557. return;
  9558. }
  9559. GGML_TENSOR_BINARY_OP_LOCALS;
  9560. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9561. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9562. GGML_ASSERT(nb0 == sizeof(float));
  9563. const int N = ne12;
  9564. const int OL = ne11;
  9565. const int OC = ne02;
  9566. const int IC = ne01;
  9567. const int K = ne00;
  9568. const int ith = params->ith;
  9569. const int nth = params->nth;
  9570. int64_t m = OC;
  9571. int64_t n = OL;
  9572. int64_t k = IC * K;
  9573. // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9574. for (int i = 0; i < N; i++) {
  9575. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9576. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9577. float * C = (float *)dst->data + i * m * n; // [m, n]
  9578. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9579. }
  9580. }
  9581. static void ggml_compute_forward_conv_1d(
  9582. const struct ggml_compute_params * params,
  9583. const struct ggml_tensor * src0,
  9584. const struct ggml_tensor * src1,
  9585. struct ggml_tensor * dst) {
  9586. switch(src0->type) {
  9587. case GGML_TYPE_F16:
  9588. {
  9589. ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
  9590. } break;
  9591. case GGML_TYPE_F32:
  9592. {
  9593. ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
  9594. } break;
  9595. default:
  9596. {
  9597. GGML_ASSERT(false);
  9598. } break;
  9599. }
  9600. }
  9601. static void ggml_compute_forward_conv_1d_stage_0(
  9602. const struct ggml_compute_params * params,
  9603. const struct ggml_tensor * src0,
  9604. const struct ggml_tensor * src1,
  9605. struct ggml_tensor * dst) {
  9606. switch(src0->type) {
  9607. case GGML_TYPE_F16:
  9608. {
  9609. ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
  9610. } break;
  9611. default:
  9612. {
  9613. GGML_ASSERT(false);
  9614. } break;
  9615. }
  9616. }
  9617. static void ggml_compute_forward_conv_1d_stage_1(
  9618. const struct ggml_compute_params * params,
  9619. const struct ggml_tensor * src0,
  9620. const struct ggml_tensor * src1,
  9621. struct ggml_tensor * dst) {
  9622. switch(src0->type) {
  9623. case GGML_TYPE_F16:
  9624. {
  9625. ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
  9626. } break;
  9627. default:
  9628. {
  9629. GGML_ASSERT(false);
  9630. } break;
  9631. }
  9632. }
  9633. // ggml_compute_forward_conv_transpose_1d
  9634. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9635. const struct ggml_compute_params * params,
  9636. const struct ggml_tensor * src0,
  9637. const struct ggml_tensor * src1,
  9638. struct ggml_tensor * dst) {
  9639. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9640. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9641. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9642. int64_t t0 = ggml_perf_time_us();
  9643. UNUSED(t0);
  9644. GGML_TENSOR_BINARY_OP_LOCALS
  9645. const int ith = params->ith;
  9646. const int nth = params->nth;
  9647. const int nk = ne00*ne01*ne02;
  9648. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9649. GGML_ASSERT(nb10 == sizeof(float));
  9650. if (params->type == GGML_TASK_INIT) {
  9651. memset(params->wdata, 0, params->wsize);
  9652. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9653. {
  9654. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9655. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9656. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9657. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9658. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9659. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9660. dst_data[i00*ne02 + i02] = src[i00];
  9661. }
  9662. }
  9663. }
  9664. }
  9665. // permute source data (src1) from (L x Cin) to (Cin x L)
  9666. {
  9667. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9668. ggml_fp16_t * dst_data = wdata;
  9669. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9670. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9671. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9672. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9673. }
  9674. }
  9675. }
  9676. // need to zero dst since we are accumulating into it
  9677. memset(dst->data, 0, ggml_nbytes(dst));
  9678. return;
  9679. }
  9680. if (params->type == GGML_TASK_FINALIZE) {
  9681. return;
  9682. }
  9683. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9684. // total rows in dst
  9685. const int nr = ne1;
  9686. // rows per thread
  9687. const int dr = (nr + nth - 1)/nth;
  9688. // row range for this thread
  9689. const int ir0 = dr*ith;
  9690. const int ir1 = MIN(ir0 + dr, nr);
  9691. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9692. ggml_fp16_t * const wdata_src = wdata + nk;
  9693. for (int i1 = ir0; i1 < ir1; i1++) {
  9694. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9695. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9696. for (int i10 = 0; i10 < ne10; i10++) {
  9697. const int i1n = i10*ne11;
  9698. for (int i00 = 0; i00 < ne00; i00++) {
  9699. float v = 0;
  9700. ggml_vec_dot_f16(ne02, &v,
  9701. (ggml_fp16_t *) wdata_src + i1n,
  9702. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9703. dst_data[i10*s0 + i00] += v;
  9704. }
  9705. }
  9706. }
  9707. }
  9708. static void ggml_compute_forward_conv_transpose_1d_f32(
  9709. const struct ggml_compute_params * params,
  9710. const struct ggml_tensor * src0,
  9711. const struct ggml_tensor * src1,
  9712. struct ggml_tensor * dst) {
  9713. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9714. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9715. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9716. int64_t t0 = ggml_perf_time_us();
  9717. UNUSED(t0);
  9718. GGML_TENSOR_BINARY_OP_LOCALS
  9719. const int ith = params->ith;
  9720. const int nth = params->nth;
  9721. const int nk = ne00*ne01*ne02;
  9722. GGML_ASSERT(nb00 == sizeof(float));
  9723. GGML_ASSERT(nb10 == sizeof(float));
  9724. if (params->type == GGML_TASK_INIT) {
  9725. memset(params->wdata, 0, params->wsize);
  9726. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9727. {
  9728. float * const wdata = (float *) params->wdata + 0;
  9729. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9730. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9731. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9732. float * dst_data = wdata + i01*ne00*ne02;
  9733. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9734. dst_data[i00*ne02 + i02] = src[i00];
  9735. }
  9736. }
  9737. }
  9738. }
  9739. // prepare source data (src1)
  9740. {
  9741. float * const wdata = (float *) params->wdata + nk;
  9742. float * dst_data = wdata;
  9743. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9744. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9745. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9746. dst_data[i10*ne11 + i11] = src[i10];
  9747. }
  9748. }
  9749. }
  9750. // need to zero dst since we are accumulating into it
  9751. memset(dst->data, 0, ggml_nbytes(dst));
  9752. return;
  9753. }
  9754. if (params->type == GGML_TASK_FINALIZE) {
  9755. return;
  9756. }
  9757. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9758. // total rows in dst
  9759. const int nr = ne1;
  9760. // rows per thread
  9761. const int dr = (nr + nth - 1)/nth;
  9762. // row range for this thread
  9763. const int ir0 = dr*ith;
  9764. const int ir1 = MIN(ir0 + dr, nr);
  9765. float * const wdata = (float *) params->wdata + 0;
  9766. float * const wdata_src = wdata + nk;
  9767. for (int i1 = ir0; i1 < ir1; i1++) {
  9768. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9769. float * wdata_kernel = wdata + i1*ne02*ne00;
  9770. for (int i10 = 0; i10 < ne10; i10++) {
  9771. const int i1n = i10*ne11;
  9772. for (int i00 = 0; i00 < ne00; i00++) {
  9773. float v = 0;
  9774. ggml_vec_dot_f32(ne02, &v,
  9775. wdata_src + i1n,
  9776. wdata_kernel + i00*ne02);
  9777. dst_data[i10*s0 + i00] += v;
  9778. }
  9779. }
  9780. }
  9781. }
  9782. static void ggml_compute_forward_conv_transpose_1d(
  9783. const struct ggml_compute_params * params,
  9784. const struct ggml_tensor * src0,
  9785. const struct ggml_tensor * src1,
  9786. struct ggml_tensor * dst) {
  9787. switch (src0->type) {
  9788. case GGML_TYPE_F16:
  9789. {
  9790. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9791. } break;
  9792. case GGML_TYPE_F32:
  9793. {
  9794. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9795. } break;
  9796. default:
  9797. {
  9798. GGML_ASSERT(false);
  9799. } break;
  9800. }
  9801. }
  9802. // ggml_compute_forward_conv_2d
  9803. // src0: kernel [OC, IC, KH, KW]
  9804. // src1: image [N, IC, IH, IW]
  9805. // dst: result [N, OH, OW, IC*KH*KW]
  9806. static void ggml_compute_forward_conv_2d_stage_0_f32(
  9807. const struct ggml_compute_params * params,
  9808. const struct ggml_tensor * src0,
  9809. const struct ggml_tensor * src1,
  9810. struct ggml_tensor * dst) {
  9811. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9812. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9813. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9814. int64_t t0 = ggml_perf_time_us();
  9815. UNUSED(t0);
  9816. GGML_TENSOR_BINARY_OP_LOCALS;
  9817. const int64_t N = ne13;
  9818. const int64_t IC = ne12;
  9819. const int64_t IH = ne11;
  9820. const int64_t IW = ne10;
  9821. // const int64_t OC = ne03;
  9822. // const int64_t IC = ne02;
  9823. const int64_t KH = ne01;
  9824. const int64_t KW = ne00;
  9825. const int64_t OH = ne2;
  9826. const int64_t OW = ne1;
  9827. const int ith = params->ith;
  9828. const int nth = params->nth;
  9829. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9830. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9831. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9832. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9833. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9834. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9835. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9836. GGML_ASSERT(nb10 == sizeof(float));
  9837. if (params->type == GGML_TASK_INIT) {
  9838. memset(dst->data, 0, ggml_nbytes(dst));
  9839. return;
  9840. }
  9841. if (params->type == GGML_TASK_FINALIZE) {
  9842. return;
  9843. }
  9844. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9845. {
  9846. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9847. for (int64_t in = 0; in < N; in++) {
  9848. for (int64_t ioh = 0; ioh < OH; ioh++) {
  9849. for (int64_t iow = 0; iow < OW; iow++) {
  9850. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9851. // micro kernel
  9852. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9853. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  9854. for (int64_t ikh = 0; ikh < KH; ikh++) {
  9855. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9856. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9857. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9858. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  9859. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9860. }
  9861. }
  9862. }
  9863. }
  9864. }
  9865. }
  9866. }
  9867. }
  9868. }
  9869. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9870. // src0: [OC, IC, KH, KW]
  9871. // src1: [N, OH, OW, IC * KH * KW]
  9872. // result: [N, OC, OH, OW]
  9873. static void ggml_compute_forward_conv_2d_stage_1_f16(
  9874. const struct ggml_compute_params * params,
  9875. const struct ggml_tensor * src0,
  9876. const struct ggml_tensor * src1,
  9877. struct ggml_tensor * dst) {
  9878. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9879. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9880. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9881. int64_t t0 = ggml_perf_time_us();
  9882. UNUSED(t0);
  9883. if (params->type == GGML_TASK_INIT) {
  9884. return;
  9885. }
  9886. if (params->type == GGML_TASK_FINALIZE) {
  9887. return;
  9888. }
  9889. GGML_TENSOR_BINARY_OP_LOCALS;
  9890. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9891. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9892. GGML_ASSERT(nb0 == sizeof(float));
  9893. const int N = ne13;
  9894. const int OH = ne12;
  9895. const int OW = ne11;
  9896. const int OC = ne03;
  9897. const int IC = ne02;
  9898. const int KH = ne01;
  9899. const int KW = ne00;
  9900. const int ith = params->ith;
  9901. const int nth = params->nth;
  9902. int64_t m = OC;
  9903. int64_t n = OH * OW;
  9904. int64_t k = IC * KH * KW;
  9905. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9906. for (int i = 0; i < N; i++) {
  9907. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9908. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9909. float * C = (float *)dst->data + i * m * n; // [m, n]
  9910. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9911. }
  9912. }
  9913. static void ggml_compute_forward_conv_2d_f16_f32(
  9914. const struct ggml_compute_params * params,
  9915. const struct ggml_tensor * src0,
  9916. const struct ggml_tensor * src1,
  9917. struct ggml_tensor * dst) {
  9918. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9919. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9920. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9921. int64_t t0 = ggml_perf_time_us();
  9922. UNUSED(t0);
  9923. GGML_TENSOR_BINARY_OP_LOCALS
  9924. // src1: image [N, IC, IH, IW]
  9925. // src0: kernel [OC, IC, KH, KW]
  9926. // dst: result [N, OC, OH, OW]
  9927. // ne12: IC
  9928. // ne0: OW
  9929. // ne1: OH
  9930. // nk0: KW
  9931. // nk1: KH
  9932. // ne13: N
  9933. const int N = ne13;
  9934. const int IC = ne12;
  9935. const int IH = ne11;
  9936. const int IW = ne10;
  9937. const int OC = ne03;
  9938. // const int IC = ne02;
  9939. const int KH = ne01;
  9940. const int KW = ne00;
  9941. const int OH = ne1;
  9942. const int OW = ne0;
  9943. const int ith = params->ith;
  9944. const int nth = params->nth;
  9945. // const int nk0 = ne00;
  9946. // const int nk1 = ne01;
  9947. // size of the convolution row - the kernel size unrolled across all channels
  9948. // const int ew0 = nk0*nk1*ne02;
  9949. // ew0: IC*KH*KW
  9950. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9951. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9952. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9953. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9954. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9955. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9956. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9957. GGML_ASSERT(nb10 == sizeof(float));
  9958. if (params->type == GGML_TASK_INIT) {
  9959. memset(params->wdata, 0, params->wsize);
  9960. // prepare source data (src1)
  9961. // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW]
  9962. {
  9963. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9964. for (int in = 0; in < N; in++) {
  9965. for (int iic = 0; iic < IC; iic++) {
  9966. for (int ioh = 0; ioh < OH; ioh++) {
  9967. for (int iow = 0; iow < OW; iow++) {
  9968. // micro kernel
  9969. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9970. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  9971. for (int ikh = 0; ikh < KH; ikh++) {
  9972. for (int ikw = 0; ikw < KW; ikw++) {
  9973. const int iiw = iow*s0 + ikw*d0 - p0;
  9974. const int iih = ioh*s1 + ikh*d1 - p1;
  9975. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  9976. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9977. }
  9978. }
  9979. }
  9980. }
  9981. }
  9982. }
  9983. }
  9984. }
  9985. return;
  9986. }
  9987. if (params->type == GGML_TASK_FINALIZE) {
  9988. return;
  9989. }
  9990. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9991. // wdata: [N*OH*OW, IC*KH*KW]
  9992. // dst: result [N, OC, OH, OW]
  9993. // src0: kernel [OC, IC, KH, KW]
  9994. int64_t m = OC;
  9995. int64_t n = OH * OW;
  9996. int64_t k = IC * KH * KW;
  9997. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9998. for (int i = 0; i < N; i++) {
  9999. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10000. ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k]
  10001. float * C = (float *)dst->data + i * m * n; // [m * k]
  10002. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10003. }
  10004. }
  10005. static void ggml_compute_forward_conv_2d(
  10006. const struct ggml_compute_params * params,
  10007. const struct ggml_tensor * src0,
  10008. const struct ggml_tensor * src1,
  10009. struct ggml_tensor * dst) {
  10010. switch (src0->type) {
  10011. case GGML_TYPE_F16:
  10012. {
  10013. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10014. } break;
  10015. case GGML_TYPE_F32:
  10016. {
  10017. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10018. GGML_ASSERT(false);
  10019. } break;
  10020. default:
  10021. {
  10022. GGML_ASSERT(false);
  10023. } break;
  10024. }
  10025. }
  10026. static void ggml_compute_forward_conv_2d_stage_0(
  10027. const struct ggml_compute_params * params,
  10028. const struct ggml_tensor * src0,
  10029. const struct ggml_tensor * src1,
  10030. struct ggml_tensor * dst) {
  10031. switch (src0->type) {
  10032. case GGML_TYPE_F16:
  10033. {
  10034. ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst);
  10035. } break;
  10036. case GGML_TYPE_F32:
  10037. {
  10038. GGML_ASSERT(false);
  10039. } break;
  10040. default:
  10041. {
  10042. GGML_ASSERT(false);
  10043. } break;
  10044. }
  10045. }
  10046. static void ggml_compute_forward_conv_2d_stage_1(
  10047. const struct ggml_compute_params * params,
  10048. const struct ggml_tensor * src0,
  10049. const struct ggml_tensor * src1,
  10050. struct ggml_tensor * dst) {
  10051. switch (src0->type) {
  10052. case GGML_TYPE_F16:
  10053. {
  10054. ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst);
  10055. } break;
  10056. case GGML_TYPE_F32:
  10057. {
  10058. GGML_ASSERT(false);
  10059. } break;
  10060. default:
  10061. {
  10062. GGML_ASSERT(false);
  10063. } break;
  10064. }
  10065. }
  10066. // ggml_compute_forward_conv_transpose_2d
  10067. static void ggml_compute_forward_conv_transpose_2d(
  10068. const struct ggml_compute_params * params,
  10069. const struct ggml_tensor * src0,
  10070. const struct ggml_tensor * src1,
  10071. struct ggml_tensor * dst) {
  10072. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10073. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10074. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10075. int64_t t0 = ggml_perf_time_us();
  10076. UNUSED(t0);
  10077. GGML_TENSOR_BINARY_OP_LOCALS
  10078. const int ith = params->ith;
  10079. const int nth = params->nth;
  10080. const int nk = ne00*ne01*ne02*ne03;
  10081. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10082. GGML_ASSERT(nb10 == sizeof(float));
  10083. if (params->type == GGML_TASK_INIT) {
  10084. memset(params->wdata, 0, params->wsize);
  10085. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10086. {
  10087. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10088. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10089. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10090. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10091. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10092. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10093. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10094. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10095. }
  10096. }
  10097. }
  10098. }
  10099. }
  10100. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10101. {
  10102. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10103. for (int i12 = 0; i12 < ne12; i12++) {
  10104. for (int i11 = 0; i11 < ne11; i11++) {
  10105. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10106. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10107. for (int i10 = 0; i10 < ne10; i10++) {
  10108. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10109. }
  10110. }
  10111. }
  10112. }
  10113. memset(dst->data, 0, ggml_nbytes(dst));
  10114. return;
  10115. }
  10116. if (params->type == GGML_TASK_FINALIZE) {
  10117. return;
  10118. }
  10119. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10120. // total patches in dst
  10121. const int np = ne2;
  10122. // patches per thread
  10123. const int dp = (np + nth - 1)/nth;
  10124. // patch range for this thread
  10125. const int ip0 = dp*ith;
  10126. const int ip1 = MIN(ip0 + dp, np);
  10127. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10128. ggml_fp16_t * const wdata_src = wdata + nk;
  10129. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10130. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10131. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10132. for (int i11 = 0; i11 < ne11; i11++) {
  10133. for (int i10 = 0; i10 < ne10; i10++) {
  10134. const int i1n = i11*ne10*ne12 + i10*ne12;
  10135. for (int i01 = 0; i01 < ne01; i01++) {
  10136. for (int i00 = 0; i00 < ne00; i00++) {
  10137. float v = 0;
  10138. ggml_vec_dot_f16(ne03, &v,
  10139. wdata_src + i1n,
  10140. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10141. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10142. }
  10143. }
  10144. }
  10145. }
  10146. }
  10147. }
  10148. // ggml_compute_forward_pool_1d_sk_p0
  10149. static void ggml_compute_forward_pool_1d_sk_p0(
  10150. const struct ggml_compute_params * params,
  10151. const enum ggml_op_pool op,
  10152. const struct ggml_tensor * src,
  10153. const int k,
  10154. struct ggml_tensor * dst) {
  10155. assert(src->type == GGML_TYPE_F32);
  10156. assert(params->ith == 0);
  10157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10158. return;
  10159. }
  10160. const char * cdata = (const char *)src->data;
  10161. const char * const data_end = cdata + ggml_nbytes(src);
  10162. float * drow = (float *)dst->data;
  10163. const int64_t rs = dst->ne[0];
  10164. while (cdata < data_end) {
  10165. const float * const srow = (const float *)cdata;
  10166. int j = 0;
  10167. for (int64_t i = 0; i < rs; ++i) {
  10168. switch (op) {
  10169. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10170. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10171. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10172. }
  10173. for (int ki = 0; ki < k; ++ki) {
  10174. switch (op) {
  10175. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10176. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10177. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10178. }
  10179. ++j;
  10180. }
  10181. switch (op) {
  10182. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10183. case GGML_OP_POOL_MAX: break;
  10184. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10185. }
  10186. }
  10187. cdata += src->nb[1];
  10188. drow += rs;
  10189. }
  10190. }
  10191. // ggml_compute_forward_pool_1d
  10192. static void ggml_compute_forward_pool_1d(
  10193. const struct ggml_compute_params * params,
  10194. const struct ggml_tensor * src0,
  10195. struct ggml_tensor * dst) {
  10196. const int32_t * opts = (const int32_t *)dst->op_params;
  10197. enum ggml_op_pool op = opts[0];
  10198. const int k0 = opts[1];
  10199. const int s0 = opts[2];
  10200. const int p0 = opts[3];
  10201. GGML_ASSERT(p0 == 0); // padding not supported
  10202. GGML_ASSERT(k0 == s0); // only s = k supported
  10203. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10204. }
  10205. // ggml_compute_forward_pool_2d_sk_p0
  10206. static void ggml_compute_forward_pool_2d_sk_p0(
  10207. const struct ggml_compute_params * params,
  10208. const enum ggml_op_pool op,
  10209. const struct ggml_tensor * src,
  10210. const int k0,
  10211. const int k1,
  10212. struct ggml_tensor * dst) {
  10213. assert(src->type == GGML_TYPE_F32);
  10214. assert(params->ith == 0);
  10215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10216. return;
  10217. }
  10218. const char * cdata = (const char*)src->data;
  10219. const char * const data_end = cdata + ggml_nbytes(src);
  10220. const int64_t px = dst->ne[0];
  10221. const int64_t py = dst->ne[1];
  10222. const int64_t pa = px * py;
  10223. float * dplane = (float *)dst->data;
  10224. const int ka = k0 * k1;
  10225. while (cdata < data_end) {
  10226. for (int oy = 0; oy < py; ++oy) {
  10227. float * const drow = dplane + oy * px;
  10228. for (int ox = 0; ox < px; ++ox) {
  10229. float * const out = drow + ox;
  10230. switch (op) {
  10231. case GGML_OP_POOL_AVG: *out = 0; break;
  10232. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10233. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10234. }
  10235. const int ix = ox * k0;
  10236. const int iy = oy * k1;
  10237. for (int ky = 0; ky < k1; ++ky) {
  10238. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10239. for (int kx = 0; kx < k0; ++kx) {
  10240. int j = ix + kx;
  10241. switch (op) {
  10242. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10243. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10244. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10245. }
  10246. }
  10247. }
  10248. switch (op) {
  10249. case GGML_OP_POOL_AVG: *out /= ka; break;
  10250. case GGML_OP_POOL_MAX: break;
  10251. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10252. }
  10253. }
  10254. }
  10255. cdata += src->nb[2];
  10256. dplane += pa;
  10257. }
  10258. }
  10259. // ggml_compute_forward_pool_2d
  10260. static void ggml_compute_forward_pool_2d(
  10261. const struct ggml_compute_params * params,
  10262. const struct ggml_tensor * src0,
  10263. struct ggml_tensor * dst) {
  10264. const int32_t * opts = (const int32_t *)dst->op_params;
  10265. enum ggml_op_pool op = opts[0];
  10266. const int k0 = opts[1];
  10267. const int k1 = opts[2];
  10268. const int s0 = opts[3];
  10269. const int s1 = opts[4];
  10270. const int p0 = opts[5];
  10271. const int p1 = opts[6];
  10272. GGML_ASSERT(p0 == 0);
  10273. GGML_ASSERT(p1 == 0); // padding not supported
  10274. GGML_ASSERT(k0 == s0);
  10275. GGML_ASSERT(k1 == s1); // only s = k supported
  10276. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10277. }
  10278. // ggml_compute_forward_upscale
  10279. static void ggml_compute_forward_upscale_f32(
  10280. const struct ggml_compute_params * params,
  10281. const struct ggml_tensor * src0,
  10282. struct ggml_tensor * dst) {
  10283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10284. return;
  10285. }
  10286. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10287. const int ith = params->ith;
  10288. GGML_TENSOR_UNARY_OP_LOCALS
  10289. const int scale_factor = dst->op_params[0];
  10290. // TODO: optimize
  10291. for (int i03 = 0; i03 < ne03; i03++) {
  10292. for (int i02 = ith; i02 < ne02; i02++) {
  10293. for (int m = 0; m < dst->ne[1]; m++) {
  10294. int i01 = m / scale_factor;
  10295. for (int n = 0; n < dst->ne[0]; n++) {
  10296. int i00 = n / scale_factor;
  10297. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  10298. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  10299. *y = *x;
  10300. }
  10301. }
  10302. }
  10303. }
  10304. }
  10305. static void ggml_compute_forward_upscale(
  10306. const struct ggml_compute_params * params,
  10307. const struct ggml_tensor * src0,
  10308. struct ggml_tensor * dst) {
  10309. switch (src0->type) {
  10310. case GGML_TYPE_F32:
  10311. {
  10312. ggml_compute_forward_upscale_f32(params, src0, dst);
  10313. } break;
  10314. default:
  10315. {
  10316. GGML_ASSERT(false);
  10317. } break;
  10318. }
  10319. }
  10320. // ggml_compute_forward_flash_attn
  10321. static void ggml_compute_forward_flash_attn_f32(
  10322. const struct ggml_compute_params * params,
  10323. const struct ggml_tensor * q,
  10324. const struct ggml_tensor * k,
  10325. const struct ggml_tensor * v,
  10326. const bool masked,
  10327. struct ggml_tensor * dst) {
  10328. int64_t t0 = ggml_perf_time_us();
  10329. UNUSED(t0);
  10330. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10331. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10332. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10333. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10334. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10335. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10336. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10337. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10338. const int ith = params->ith;
  10339. const int nth = params->nth;
  10340. const int64_t D = neq0;
  10341. const int64_t N = neq1;
  10342. const int64_t P = nek1 - N;
  10343. const int64_t M = P + N;
  10344. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10345. GGML_ASSERT(ne0 == D);
  10346. GGML_ASSERT(ne1 == N);
  10347. GGML_ASSERT(P >= 0);
  10348. GGML_ASSERT(nbq0 == sizeof(float));
  10349. GGML_ASSERT(nbk0 == sizeof(float));
  10350. GGML_ASSERT(nbv0 == sizeof(float));
  10351. GGML_ASSERT(neq0 == D);
  10352. GGML_ASSERT(nek0 == D);
  10353. GGML_ASSERT(nev1 == D);
  10354. GGML_ASSERT(neq1 == N);
  10355. GGML_ASSERT(nek1 == N + P);
  10356. GGML_ASSERT(nev1 == D);
  10357. // dst cannot be transposed or permuted
  10358. GGML_ASSERT(nb0 == sizeof(float));
  10359. GGML_ASSERT(nb0 <= nb1);
  10360. GGML_ASSERT(nb1 <= nb2);
  10361. GGML_ASSERT(nb2 <= nb3);
  10362. if (params->type == GGML_TASK_INIT) {
  10363. return;
  10364. }
  10365. if (params->type == GGML_TASK_FINALIZE) {
  10366. return;
  10367. }
  10368. // parallelize by q rows using ggml_vec_dot_f32
  10369. // total rows in q
  10370. const int nr = neq1*neq2*neq3;
  10371. // rows per thread
  10372. const int dr = (nr + nth - 1)/nth;
  10373. // row range for this thread
  10374. const int ir0 = dr*ith;
  10375. const int ir1 = MIN(ir0 + dr, nr);
  10376. const float scale = 1.0f/sqrtf(D);
  10377. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10378. for (int ir = ir0; ir < ir1; ++ir) {
  10379. // q indices
  10380. const int iq3 = ir/(neq2*neq1);
  10381. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10382. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10383. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10384. for (int i = M; i < Mup; ++i) {
  10385. S[i] = -INFINITY;
  10386. }
  10387. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10388. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10389. // k indices
  10390. const int ik3 = iq3;
  10391. const int ik2 = iq2 % nek2;
  10392. const int ik1 = ic;
  10393. // S indices
  10394. const int i1 = ik1;
  10395. ggml_vec_dot_f32(neq0,
  10396. S + i1,
  10397. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10398. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10399. }
  10400. // scale
  10401. ggml_vec_scale_f32(masked_begin, S, scale);
  10402. for (int64_t i = masked_begin; i < M; i++) {
  10403. S[i] = -INFINITY;
  10404. }
  10405. // softmax
  10406. // exclude known -INF S[..] values from max and loop
  10407. // dont forget to set their SW values to zero
  10408. {
  10409. float max = -INFINITY;
  10410. ggml_vec_max_f32(masked_begin, &max, S);
  10411. ggml_float sum = 0.0;
  10412. {
  10413. #ifdef GGML_SOFT_MAX_ACCELERATE
  10414. max = -max;
  10415. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10416. vvexpf(S, S, &Mup);
  10417. ggml_vec_sum_f32(Mup, &sum, S);
  10418. #else
  10419. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10420. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10421. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10422. if (i >= masked_begin) {
  10423. break;
  10424. }
  10425. float * SS = S + i;
  10426. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10427. if (i + j >= masked_begin) {
  10428. break;
  10429. } else if (SS[j] == -INFINITY) {
  10430. SS[j] = 0.0f;
  10431. } else {
  10432. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10433. const float val = expf(SS[j] - max);
  10434. #else
  10435. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10436. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10437. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10438. #endif
  10439. sump[j] += (ggml_float)val;
  10440. SS[j] = val;
  10441. }
  10442. }
  10443. }
  10444. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10445. sum += sump[i];
  10446. }
  10447. #endif
  10448. }
  10449. assert(sum > 0.0);
  10450. sum = 1.0/sum;
  10451. ggml_vec_scale_f32(masked_begin, S, sum);
  10452. #ifndef NDEBUG
  10453. for (int i = 0; i < masked_begin; ++i) {
  10454. assert(!isnan(S[i]));
  10455. assert(!isinf(S[i]));
  10456. }
  10457. #endif
  10458. }
  10459. for (int64_t ic = 0; ic < nev1; ++ic) {
  10460. // dst indices
  10461. const int i1 = iq1;
  10462. const int i2 = iq2;
  10463. const int i3 = iq3;
  10464. // v indices
  10465. const int iv2 = iq2 % nev2;
  10466. const int iv3 = iq3;
  10467. ggml_vec_dot_f32(masked_begin,
  10468. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10469. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10470. S);
  10471. }
  10472. }
  10473. }
  10474. static void ggml_compute_forward_flash_attn_f16(
  10475. const struct ggml_compute_params * params,
  10476. const struct ggml_tensor * q,
  10477. const struct ggml_tensor * k,
  10478. const struct ggml_tensor * v,
  10479. const bool masked,
  10480. struct ggml_tensor * dst) {
  10481. int64_t t0 = ggml_perf_time_us();
  10482. UNUSED(t0);
  10483. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10484. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10485. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10486. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10487. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10488. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10489. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10490. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10491. const int ith = params->ith;
  10492. const int nth = params->nth;
  10493. const int64_t D = neq0;
  10494. const int64_t N = neq1;
  10495. const int64_t P = nek1 - N;
  10496. const int64_t M = P + N;
  10497. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10498. GGML_ASSERT(ne0 == D);
  10499. GGML_ASSERT(ne1 == N);
  10500. GGML_ASSERT(P >= 0);
  10501. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10502. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10503. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10504. GGML_ASSERT(neq0 == D);
  10505. GGML_ASSERT(nek0 == D);
  10506. GGML_ASSERT(nev1 == D);
  10507. GGML_ASSERT(neq1 == N);
  10508. GGML_ASSERT(nek1 == N + P);
  10509. GGML_ASSERT(nev1 == D);
  10510. // dst cannot be transposed or permuted
  10511. GGML_ASSERT(nb0 == sizeof(float));
  10512. GGML_ASSERT(nb0 <= nb1);
  10513. GGML_ASSERT(nb1 <= nb2);
  10514. GGML_ASSERT(nb2 <= nb3);
  10515. if (params->type == GGML_TASK_INIT) {
  10516. return;
  10517. }
  10518. if (params->type == GGML_TASK_FINALIZE) {
  10519. return;
  10520. }
  10521. // parallelize by q rows using ggml_vec_dot_f32
  10522. // total rows in q
  10523. const int nr = neq1*neq2*neq3;
  10524. // rows per thread
  10525. const int dr = (nr + nth - 1)/nth;
  10526. // row range for this thread
  10527. const int ir0 = dr*ith;
  10528. const int ir1 = MIN(ir0 + dr, nr);
  10529. const float scale = 1.0f/sqrtf(D);
  10530. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10531. for (int ir = ir0; ir < ir1; ++ir) {
  10532. // q indices
  10533. const int iq3 = ir/(neq2*neq1);
  10534. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10535. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10536. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10537. for (int i = M; i < Mup; ++i) {
  10538. S[i] = -INFINITY;
  10539. }
  10540. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10541. for (int64_t ic = 0; ic < nek1; ++ic) {
  10542. // k indices
  10543. const int ik3 = iq3;
  10544. const int ik2 = iq2 % nek2;
  10545. const int ik1 = ic;
  10546. // S indices
  10547. const int i1 = ik1;
  10548. ggml_vec_dot_f16(neq0,
  10549. S + i1,
  10550. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10551. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10552. }
  10553. } else {
  10554. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10555. // k indices
  10556. const int ik3 = iq3;
  10557. const int ik2 = iq2 % nek2;
  10558. const int ik1 = ic;
  10559. // S indices
  10560. const int i1 = ik1;
  10561. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10562. S + i1,
  10563. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10564. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10565. }
  10566. }
  10567. // scale
  10568. ggml_vec_scale_f32(nek1, S, scale);
  10569. if (masked) {
  10570. for (int64_t i = P; i < M; i++) {
  10571. if (i > P + iq1) {
  10572. S[i] = -INFINITY;
  10573. }
  10574. }
  10575. }
  10576. // softmax
  10577. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10578. // dont forget to set their S values to zero
  10579. {
  10580. float max = -INFINITY;
  10581. ggml_vec_max_f32(M, &max, S);
  10582. ggml_float sum = 0.0;
  10583. {
  10584. #ifdef GGML_SOFT_MAX_ACCELERATE
  10585. max = -max;
  10586. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10587. vvexpf(S, S, &Mup);
  10588. ggml_vec_sum_f32(Mup, &sum, S);
  10589. #else
  10590. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10591. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10592. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10593. float * SS = S + i;
  10594. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10595. if (SS[j] == -INFINITY) {
  10596. SS[j] = 0.0f;
  10597. } else {
  10598. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10599. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10600. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10601. sump[j] += (ggml_float)val;
  10602. SS[j] = val;
  10603. }
  10604. }
  10605. }
  10606. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10607. sum += sump[i];
  10608. }
  10609. #endif
  10610. }
  10611. assert(sum > 0.0);
  10612. sum = 1.0/sum;
  10613. ggml_vec_scale_f32(M, S, sum);
  10614. #ifndef NDEBUG
  10615. for (int i = 0; i < M; ++i) {
  10616. assert(!isnan(S[i]));
  10617. assert(!isinf(S[i]));
  10618. }
  10619. #endif
  10620. }
  10621. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10622. for (int64_t i = 0; i < M; i++) {
  10623. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10624. }
  10625. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10626. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10627. for (int64_t ic = 0; ic < nev1; ++ic) {
  10628. // dst indices
  10629. const int i1 = iq1;
  10630. const int i2 = iq2;
  10631. const int i3 = iq3;
  10632. // v indices
  10633. const int iv2 = iq2 % nev2;
  10634. const int iv3 = iq3;
  10635. ggml_vec_dot_f16(nev0,
  10636. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10637. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10638. S16);
  10639. }
  10640. } else {
  10641. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10642. // dst indices
  10643. const int i1 = iq1;
  10644. const int i2 = iq2;
  10645. const int i3 = iq3;
  10646. // v indices
  10647. const int iv2 = iq2 % nev2;
  10648. const int iv3 = iq3;
  10649. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10650. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10651. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10652. S16);
  10653. }
  10654. }
  10655. }
  10656. }
  10657. static void ggml_compute_forward_flash_attn(
  10658. const struct ggml_compute_params * params,
  10659. const struct ggml_tensor * q,
  10660. const struct ggml_tensor * k,
  10661. const struct ggml_tensor * v,
  10662. const bool masked,
  10663. struct ggml_tensor * dst) {
  10664. switch (q->type) {
  10665. case GGML_TYPE_F16:
  10666. {
  10667. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10668. } break;
  10669. case GGML_TYPE_F32:
  10670. {
  10671. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10672. } break;
  10673. default:
  10674. {
  10675. GGML_ASSERT(false);
  10676. } break;
  10677. }
  10678. }
  10679. // ggml_compute_forward_flash_ff
  10680. static void ggml_compute_forward_flash_ff_f16(
  10681. const struct ggml_compute_params * params,
  10682. const struct ggml_tensor * a, // F16
  10683. const struct ggml_tensor * b0, // F16 fc_w
  10684. const struct ggml_tensor * b1, // F32 fc_b
  10685. const struct ggml_tensor * c0, // F16 proj_w
  10686. const struct ggml_tensor * c1, // F32 proj_b
  10687. struct ggml_tensor * dst) {
  10688. int64_t t0 = ggml_perf_time_us();
  10689. UNUSED(t0);
  10690. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10691. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10692. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10693. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10694. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10695. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10696. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10697. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10698. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10699. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10700. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10701. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10702. const int ith = params->ith;
  10703. const int nth = params->nth;
  10704. const int64_t D = nea0;
  10705. //const int64_t N = nea1;
  10706. const int64_t M = neb01;
  10707. GGML_ASSERT(ne0 == nea0);
  10708. GGML_ASSERT(ne1 == nea1);
  10709. GGML_ASSERT(ne2 == nea2);
  10710. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10711. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10712. GGML_ASSERT(nbb10 == sizeof(float));
  10713. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10714. GGML_ASSERT(nbc10 == sizeof(float));
  10715. GGML_ASSERT(neb00 == D);
  10716. GGML_ASSERT(neb01 == M);
  10717. GGML_ASSERT(neb10 == M);
  10718. GGML_ASSERT(neb11 == 1);
  10719. GGML_ASSERT(nec00 == M);
  10720. GGML_ASSERT(nec01 == D);
  10721. GGML_ASSERT(nec10 == D);
  10722. GGML_ASSERT(nec11 == 1);
  10723. // dst cannot be transposed or permuted
  10724. GGML_ASSERT(nb0 == sizeof(float));
  10725. GGML_ASSERT(nb0 <= nb1);
  10726. GGML_ASSERT(nb1 <= nb2);
  10727. GGML_ASSERT(nb2 <= nb3);
  10728. if (params->type == GGML_TASK_INIT) {
  10729. return;
  10730. }
  10731. if (params->type == GGML_TASK_FINALIZE) {
  10732. return;
  10733. }
  10734. // parallelize by a rows using ggml_vec_dot_f32
  10735. // total rows in a
  10736. const int nr = nea1*nea2*nea3;
  10737. // rows per thread
  10738. const int dr = (nr + nth - 1)/nth;
  10739. // row range for this thread
  10740. const int ir0 = dr*ith;
  10741. const int ir1 = MIN(ir0 + dr, nr);
  10742. for (int ir = ir0; ir < ir1; ++ir) {
  10743. // a indices
  10744. const int ia3 = ir/(nea2*nea1);
  10745. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10746. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10747. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10748. for (int64_t ic = 0; ic < neb01; ++ic) {
  10749. // b0 indices
  10750. const int ib03 = ia3;
  10751. const int ib02 = ia2;
  10752. const int ib01 = ic;
  10753. // S indices
  10754. const int i1 = ib01;
  10755. ggml_vec_dot_f16(nea0,
  10756. S + i1,
  10757. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10758. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10759. }
  10760. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10761. //ggml_vec_gelu_f32(neb01, S, S);
  10762. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10763. for (int64_t i = 0; i < M; i++) {
  10764. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10765. }
  10766. ggml_vec_gelu_f16(neb01, S16, S16);
  10767. {
  10768. // dst indices
  10769. const int i1 = ia1;
  10770. const int i2 = ia2;
  10771. const int i3 = ia3;
  10772. for (int64_t ic = 0; ic < nec01; ++ic) {
  10773. ggml_vec_dot_f16(neb01,
  10774. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10775. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10776. S16);
  10777. }
  10778. ggml_vec_add_f32(nec01,
  10779. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10780. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10781. (float *) c1->data);
  10782. }
  10783. }
  10784. }
  10785. static void ggml_compute_forward_flash_ff(
  10786. const struct ggml_compute_params * params,
  10787. const struct ggml_tensor * a,
  10788. const struct ggml_tensor * b0,
  10789. const struct ggml_tensor * b1,
  10790. const struct ggml_tensor * c0,
  10791. const struct ggml_tensor * c1,
  10792. struct ggml_tensor * dst) {
  10793. switch (b0->type) {
  10794. case GGML_TYPE_F16:
  10795. {
  10796. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10797. } break;
  10798. case GGML_TYPE_F32:
  10799. {
  10800. GGML_ASSERT(false); // TODO
  10801. } break;
  10802. default:
  10803. {
  10804. GGML_ASSERT(false);
  10805. } break;
  10806. }
  10807. }
  10808. // ggml_compute_forward_flash_attn_back
  10809. static void ggml_compute_forward_flash_attn_back_f32(
  10810. const struct ggml_compute_params * params,
  10811. const struct ggml_tensor * q,
  10812. const struct ggml_tensor * k,
  10813. const struct ggml_tensor * v,
  10814. const struct ggml_tensor * d,
  10815. const bool masked,
  10816. struct ggml_tensor * dst) {
  10817. int64_t t0 = ggml_perf_time_us();
  10818. UNUSED(t0);
  10819. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10820. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10821. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10822. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10823. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10824. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10825. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10826. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10827. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10828. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10829. const int ith = params->ith;
  10830. const int nth = params->nth;
  10831. const int64_t D = neq0;
  10832. const int64_t N = neq1;
  10833. const int64_t P = nek1 - N;
  10834. const int64_t M = P + N;
  10835. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10836. const int mxDM = MAX(D, Mup);
  10837. // GGML_ASSERT(ne0 == D);
  10838. // GGML_ASSERT(ne1 == N);
  10839. GGML_ASSERT(P >= 0);
  10840. GGML_ASSERT(nbq0 == sizeof(float));
  10841. GGML_ASSERT(nbk0 == sizeof(float));
  10842. GGML_ASSERT(nbv0 == sizeof(float));
  10843. GGML_ASSERT(neq0 == D);
  10844. GGML_ASSERT(nek0 == D);
  10845. GGML_ASSERT(nev1 == D);
  10846. GGML_ASSERT(ned0 == D);
  10847. GGML_ASSERT(neq1 == N);
  10848. GGML_ASSERT(nek1 == N + P);
  10849. GGML_ASSERT(nev1 == D);
  10850. GGML_ASSERT(ned1 == N);
  10851. // dst cannot be transposed or permuted
  10852. GGML_ASSERT(nb0 == sizeof(float));
  10853. GGML_ASSERT(nb0 <= nb1);
  10854. GGML_ASSERT(nb1 <= nb2);
  10855. GGML_ASSERT(nb2 <= nb3);
  10856. if (params->type == GGML_TASK_INIT) {
  10857. if (ith == 0) {
  10858. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10859. }
  10860. return;
  10861. }
  10862. if (params->type == GGML_TASK_FINALIZE) {
  10863. return;
  10864. }
  10865. const int64_t elem_q = ggml_nelements(q);
  10866. const int64_t elem_k = ggml_nelements(k);
  10867. enum ggml_type result_type = dst->type;
  10868. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10869. const size_t tsize = ggml_type_size(result_type);
  10870. const size_t offs_q = 0;
  10871. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10872. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10873. void * grad_q = (char *) dst->data;
  10874. void * grad_k = (char *) dst->data + offs_k;
  10875. void * grad_v = (char *) dst->data + offs_v;
  10876. const size_t nbgq1 = nb0*neq0;
  10877. const size_t nbgq2 = nb0*neq0*neq1;
  10878. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10879. const size_t nbgk1 = nb0*nek0;
  10880. const size_t nbgk2 = nb0*nek0*nek1;
  10881. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10882. const size_t nbgv1 = nb0*nev0;
  10883. const size_t nbgv2 = nb0*nev0*nev1;
  10884. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10885. // parallelize by k rows using ggml_vec_dot_f32
  10886. // total rows in k
  10887. const int nr = nek2*nek3;
  10888. // rows per thread
  10889. const int dr = (nr + nth - 1)/nth;
  10890. // row range for this thread
  10891. const int ir0 = dr*ith;
  10892. const int ir1 = MIN(ir0 + dr, nr);
  10893. const float scale = 1.0f/sqrtf(D);
  10894. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10895. // how often k2 (and v2) is repeated in q2
  10896. int nrep = neq2/nek2;
  10897. for (int ir = ir0; ir < ir1; ++ir) {
  10898. // q indices
  10899. const int ik3 = ir/(nek2);
  10900. const int ik2 = ir - ik3*nek2;
  10901. const int iq3 = ik3;
  10902. const int id3 = ik3;
  10903. const int iv3 = ik3;
  10904. const int iv2 = ik2;
  10905. for (int irep = 0; irep < nrep; ++irep) {
  10906. const int iq2 = ik2 + irep*nek2;
  10907. const int id2 = iq2;
  10908. // (ik2 + irep*nek2) % nek2 == ik2
  10909. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10910. const int id1 = iq1;
  10911. // not sure about CACHE_LINE_SIZE_F32..
  10912. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10913. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10914. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10915. for (int i = M; i < Mup; ++i) {
  10916. S[i] = -INFINITY;
  10917. }
  10918. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10919. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10920. // k indices
  10921. const int ik1 = ic;
  10922. // S indices
  10923. const int i1 = ik1;
  10924. ggml_vec_dot_f32(neq0,
  10925. S + i1,
  10926. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10927. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10928. }
  10929. // scale
  10930. ggml_vec_scale_f32(masked_begin, S, scale);
  10931. for (int64_t i = masked_begin; i < M; i++) {
  10932. S[i] = -INFINITY;
  10933. }
  10934. // softmax
  10935. // exclude known -INF S[..] values from max and loop
  10936. // dont forget to set their SM values to zero
  10937. {
  10938. float max = -INFINITY;
  10939. ggml_vec_max_f32(masked_begin, &max, S);
  10940. ggml_float sum = 0.0;
  10941. {
  10942. #ifdef GGML_SOFT_MAX_ACCELERATE
  10943. max = -max;
  10944. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10945. vvexpf(SM, SM, &Mup);
  10946. ggml_vec_sum_f32(Mup, &sum, SM);
  10947. #else
  10948. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10949. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10950. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10951. if (i >= masked_begin) {
  10952. break;
  10953. }
  10954. float * SR = S + i;
  10955. float * SW = SM + i;
  10956. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10957. if (i + j >= masked_begin) {
  10958. break;
  10959. } else if (SR[j] == -INFINITY) {
  10960. SW[j] = 0.0f;
  10961. } else {
  10962. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10963. const float val = expf(SR[j] - max);
  10964. #else
  10965. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10966. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10967. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10968. #endif
  10969. sump[j] += (ggml_float)val;
  10970. SW[j] = val;
  10971. }
  10972. }
  10973. }
  10974. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10975. sum += sump[i];
  10976. }
  10977. #endif
  10978. }
  10979. assert(sum > 0.0);
  10980. sum = 1.0/sum;
  10981. ggml_vec_scale_f32(masked_begin, SM, sum);
  10982. }
  10983. // step-by-step explanation
  10984. {
  10985. // forward-process shape grads from backward process
  10986. // parallel_for ik2,ik3:
  10987. // for irep:
  10988. // iq2 = ik2 + irep*nek2
  10989. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10990. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10991. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10992. // for iq1:
  10993. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10994. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10995. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10996. // S0 = -Inf [D,1,1,1]
  10997. // ~S1[i] = dot(kcur[:D,i], qcur)
  10998. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10999. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11000. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11001. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11002. // ~S5[i] = dot(vcur[:,i], S4)
  11003. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11004. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11005. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11006. // dst backward-/ grad[dst] = d
  11007. //
  11008. // output gradients with their dependencies:
  11009. //
  11010. // grad[kcur] = grad[S1].T @ qcur
  11011. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11012. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11013. // grad[S4] = grad[S5] @ vcur
  11014. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11015. // grad[qcur] = grad[S1] @ kcur
  11016. // grad[vcur] = grad[S5].T @ S4
  11017. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11018. //
  11019. // in post-order:
  11020. //
  11021. // S1 = qcur @ kcur.T
  11022. // S2 = S1 * scale
  11023. // S3 = diag_mask_inf(S2, P)
  11024. // S4 = softmax(S3)
  11025. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11026. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11027. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11028. // grad[qcur] = grad[S1] @ kcur
  11029. // grad[kcur] = grad[S1].T @ qcur
  11030. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11031. //
  11032. // using less variables (SM=S4):
  11033. //
  11034. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11035. // SM = softmax(S)
  11036. // S = d[:D,iq1,iq2,iq3] @ vcur
  11037. // dot_SM_gradSM = dot(SM, S)
  11038. // S = SM * (S - dot(SM, S))
  11039. // S = diag_mask_zero(S, P) * scale
  11040. //
  11041. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11042. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11043. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11044. }
  11045. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11046. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11047. // for ic:
  11048. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11049. // exclude known future zero S[..] values from operation
  11050. ggml_vec_set_f32(masked_begin, S, 0);
  11051. for (int64_t ic = 0; ic < D; ++ic) {
  11052. ggml_vec_mad_f32(masked_begin,
  11053. S,
  11054. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11055. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11056. }
  11057. // S = SM * (S - dot(SM, S))
  11058. float dot_SM_gradSM = 0;
  11059. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11060. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11061. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11062. // S = diag_mask_zero(S, P) * scale
  11063. // already done by above ggml_vec_set_f32
  11064. // exclude known zero S[..] values from operation
  11065. ggml_vec_scale_f32(masked_begin, S, scale);
  11066. // S shape [M,1]
  11067. // SM shape [M,1]
  11068. // kcur shape [D,M]
  11069. // qcur shape [D,1]
  11070. // vcur shape [M,D]
  11071. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11072. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11073. // for ic:
  11074. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11075. // exclude known zero S[..] values from loop
  11076. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11077. ggml_vec_mad_f32(D,
  11078. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11079. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11080. S[ic]);
  11081. }
  11082. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11083. // for ic:
  11084. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11085. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11086. // exclude known zero S[..] values from loop
  11087. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11088. ggml_vec_mad_f32(D,
  11089. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11090. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11091. S[ic]);
  11092. }
  11093. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11094. // for ic:
  11095. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11096. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11097. // exclude known zero SM[..] values from mad
  11098. for (int64_t ic = 0; ic < D; ++ic) {
  11099. ggml_vec_mad_f32(masked_begin,
  11100. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11101. SM,
  11102. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11103. }
  11104. }
  11105. }
  11106. }
  11107. }
  11108. static void ggml_compute_forward_flash_attn_back(
  11109. const struct ggml_compute_params * params,
  11110. const struct ggml_tensor * q,
  11111. const struct ggml_tensor * k,
  11112. const struct ggml_tensor * v,
  11113. const struct ggml_tensor * d,
  11114. const bool masked,
  11115. struct ggml_tensor * dst) {
  11116. switch (q->type) {
  11117. case GGML_TYPE_F32:
  11118. {
  11119. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11120. } break;
  11121. default:
  11122. {
  11123. GGML_ASSERT(false);
  11124. } break;
  11125. }
  11126. }
  11127. // ggml_compute_forward_win_part
  11128. static void ggml_compute_forward_win_part_f32(
  11129. const struct ggml_compute_params * params,
  11130. const struct ggml_tensor * src0,
  11131. struct ggml_tensor * dst) {
  11132. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11133. return;
  11134. }
  11135. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11136. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11137. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11138. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11139. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11140. assert(ne00 == ne0);
  11141. assert(ne3 == nep0*nep1);
  11142. // TODO: optimize / multi-thread
  11143. for (int py = 0; py < nep1; ++py) {
  11144. for (int px = 0; px < nep0; ++px) {
  11145. const int64_t i3 = py*nep0 + px;
  11146. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11147. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11148. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11149. const int64_t i02 = py*w + i2;
  11150. const int64_t i01 = px*w + i1;
  11151. const int64_t i00 = i0;
  11152. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11153. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11154. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11155. ((float *) dst->data)[i] = 0.0f;
  11156. } else {
  11157. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11158. }
  11159. }
  11160. }
  11161. }
  11162. }
  11163. }
  11164. }
  11165. static void ggml_compute_forward_win_part(
  11166. const struct ggml_compute_params * params,
  11167. const struct ggml_tensor * src0,
  11168. struct ggml_tensor * dst) {
  11169. switch (src0->type) {
  11170. case GGML_TYPE_F32:
  11171. {
  11172. ggml_compute_forward_win_part_f32(params, src0, dst);
  11173. } break;
  11174. default:
  11175. {
  11176. GGML_ASSERT(false);
  11177. } break;
  11178. }
  11179. }
  11180. // ggml_compute_forward_win_unpart
  11181. static void ggml_compute_forward_win_unpart_f32(
  11182. const struct ggml_compute_params * params,
  11183. const struct ggml_tensor * src0,
  11184. struct ggml_tensor * dst) {
  11185. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11186. return;
  11187. }
  11188. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11189. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11190. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11191. // padding
  11192. const int px = (w - ne1%w)%w;
  11193. //const int py = (w - ne2%w)%w;
  11194. const int npx = (px + ne1)/w;
  11195. //const int npy = (py + ne2)/w;
  11196. assert(ne0 == ne00);
  11197. // TODO: optimize / multi-thread
  11198. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11199. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11200. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11201. const int ip2 = i2/w;
  11202. const int ip1 = i1/w;
  11203. const int64_t i02 = i2%w;
  11204. const int64_t i01 = i1%w;
  11205. const int64_t i00 = i0;
  11206. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11207. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11208. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11209. }
  11210. }
  11211. }
  11212. }
  11213. static void ggml_compute_forward_win_unpart(
  11214. const struct ggml_compute_params * params,
  11215. const struct ggml_tensor * src0,
  11216. struct ggml_tensor * dst) {
  11217. switch (src0->type) {
  11218. case GGML_TYPE_F32:
  11219. {
  11220. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11221. } break;
  11222. default:
  11223. {
  11224. GGML_ASSERT(false);
  11225. } break;
  11226. }
  11227. }
  11228. //gmml_compute_forward_unary
  11229. static void ggml_compute_forward_unary(
  11230. const struct ggml_compute_params * params,
  11231. const struct ggml_tensor * src0,
  11232. struct ggml_tensor * dst) {
  11233. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11234. switch (op) {
  11235. case GGML_UNARY_OP_ABS:
  11236. {
  11237. ggml_compute_forward_abs(params, src0, dst);
  11238. } break;
  11239. case GGML_UNARY_OP_SGN:
  11240. {
  11241. ggml_compute_forward_sgn(params, src0, dst);
  11242. } break;
  11243. case GGML_UNARY_OP_NEG:
  11244. {
  11245. ggml_compute_forward_neg(params, src0, dst);
  11246. } break;
  11247. case GGML_UNARY_OP_STEP:
  11248. {
  11249. ggml_compute_forward_step(params, src0, dst);
  11250. } break;
  11251. case GGML_UNARY_OP_TANH:
  11252. {
  11253. ggml_compute_forward_tanh(params, src0, dst);
  11254. } break;
  11255. case GGML_UNARY_OP_ELU:
  11256. {
  11257. ggml_compute_forward_elu(params, src0, dst);
  11258. } break;
  11259. case GGML_UNARY_OP_RELU:
  11260. {
  11261. ggml_compute_forward_relu(params, src0, dst);
  11262. } break;
  11263. case GGML_UNARY_OP_GELU:
  11264. {
  11265. ggml_compute_forward_gelu(params, src0, dst);
  11266. } break;
  11267. case GGML_UNARY_OP_GELU_QUICK:
  11268. {
  11269. ggml_compute_forward_gelu_quick(params, src0, dst);
  11270. } break;
  11271. case GGML_UNARY_OP_SILU:
  11272. {
  11273. ggml_compute_forward_silu(params, src0, dst);
  11274. } break;
  11275. default:
  11276. {
  11277. GGML_ASSERT(false);
  11278. } break;
  11279. }
  11280. }
  11281. // ggml_compute_forward_get_rel_pos
  11282. static void ggml_compute_forward_get_rel_pos_f16(
  11283. const struct ggml_compute_params * params,
  11284. const struct ggml_tensor * src0,
  11285. struct ggml_tensor * dst) {
  11286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11287. return;
  11288. }
  11289. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11290. GGML_TENSOR_UNARY_OP_LOCALS
  11291. const int64_t w = ne1;
  11292. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11293. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11294. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11295. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11296. const int64_t pos = (w - i1 - 1) + i2;
  11297. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11298. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11299. }
  11300. }
  11301. }
  11302. }
  11303. static void ggml_compute_forward_get_rel_pos(
  11304. const struct ggml_compute_params * params,
  11305. const struct ggml_tensor * src0,
  11306. struct ggml_tensor * dst) {
  11307. switch (src0->type) {
  11308. case GGML_TYPE_F16:
  11309. {
  11310. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11311. } break;
  11312. default:
  11313. {
  11314. GGML_ASSERT(false);
  11315. } break;
  11316. }
  11317. }
  11318. // ggml_compute_forward_add_rel_pos
  11319. static void ggml_compute_forward_add_rel_pos_f32(
  11320. const struct ggml_compute_params * params,
  11321. const struct ggml_tensor * src0,
  11322. const struct ggml_tensor * src1,
  11323. const struct ggml_tensor * src2,
  11324. struct ggml_tensor * dst) {
  11325. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11326. if (!inplace && params->type == GGML_TASK_INIT) {
  11327. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11328. return;
  11329. }
  11330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11331. return;
  11332. }
  11333. int64_t t0 = ggml_perf_time_us();
  11334. UNUSED(t0);
  11335. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11336. float * src1_data = (float *) src1->data;
  11337. float * src2_data = (float *) src2->data;
  11338. float * dst_data = (float *) dst->data;
  11339. const int64_t ne10 = src1->ne[0];
  11340. const int64_t ne11 = src1->ne[1];
  11341. const int64_t ne12 = src1->ne[2];
  11342. const int64_t ne13 = src1->ne[3];
  11343. const int ith = params->ith;
  11344. const int nth = params->nth;
  11345. // total patches in dst
  11346. const int np = ne13;
  11347. // patches per thread
  11348. const int dp = (np + nth - 1)/nth;
  11349. // patch range for this thread
  11350. const int ip0 = dp*ith;
  11351. const int ip1 = MIN(ip0 + dp, np);
  11352. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11353. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11354. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11355. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11356. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11357. const int64_t jp0 = jp1 + i10;
  11358. const float src1_e = src1_data[jp0];
  11359. const float src2_e = src2_data[jp0];
  11360. const int64_t jdh = jp0 * ne10;
  11361. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11362. for (int64_t j = 0; j < ne10; ++j) {
  11363. dst_data[jdh + j ] += src2_e;
  11364. dst_data[jdw + j*ne10] += src1_e;
  11365. }
  11366. }
  11367. }
  11368. }
  11369. }
  11370. }
  11371. static void ggml_compute_forward_add_rel_pos(
  11372. const struct ggml_compute_params * params,
  11373. const struct ggml_tensor * src0,
  11374. const struct ggml_tensor * src1,
  11375. const struct ggml_tensor * src2,
  11376. struct ggml_tensor * dst) {
  11377. switch (src0->type) {
  11378. case GGML_TYPE_F32:
  11379. {
  11380. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11381. } break;
  11382. default:
  11383. {
  11384. GGML_ASSERT(false);
  11385. } break;
  11386. }
  11387. }
  11388. // ggml_compute_forward_map_unary
  11389. static void ggml_compute_forward_map_unary_f32(
  11390. const struct ggml_compute_params * params,
  11391. const struct ggml_tensor * src0,
  11392. struct ggml_tensor * dst,
  11393. const ggml_unary_op_f32_t fun) {
  11394. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11396. return;
  11397. }
  11398. const int n = ggml_nrows(src0);
  11399. const int nc = src0->ne[0];
  11400. assert( dst->nb[0] == sizeof(float));
  11401. assert(src0->nb[0] == sizeof(float));
  11402. for (int i = 0; i < n; i++) {
  11403. fun(nc,
  11404. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11405. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11406. }
  11407. }
  11408. static void ggml_compute_forward_map_unary(
  11409. const struct ggml_compute_params * params,
  11410. const struct ggml_tensor * src0,
  11411. struct ggml_tensor * dst,
  11412. const ggml_unary_op_f32_t fun) {
  11413. switch (src0->type) {
  11414. case GGML_TYPE_F32:
  11415. {
  11416. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11417. } break;
  11418. default:
  11419. {
  11420. GGML_ASSERT(false);
  11421. } break;
  11422. }
  11423. }
  11424. // ggml_compute_forward_map_binary
  11425. static void ggml_compute_forward_map_binary_f32(
  11426. const struct ggml_compute_params * params,
  11427. const struct ggml_tensor * src0,
  11428. const struct ggml_tensor * src1,
  11429. struct ggml_tensor * dst,
  11430. const ggml_binary_op_f32_t fun) {
  11431. assert(params->ith == 0);
  11432. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11434. return;
  11435. }
  11436. const int n = ggml_nrows(src0);
  11437. const int nc = src0->ne[0];
  11438. assert( dst->nb[0] == sizeof(float));
  11439. assert(src0->nb[0] == sizeof(float));
  11440. assert(src1->nb[0] == sizeof(float));
  11441. for (int i = 0; i < n; i++) {
  11442. fun(nc,
  11443. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11444. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11445. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11446. }
  11447. }
  11448. static void ggml_compute_forward_map_binary(
  11449. const struct ggml_compute_params * params,
  11450. const struct ggml_tensor * src0,
  11451. const struct ggml_tensor * src1,
  11452. struct ggml_tensor * dst,
  11453. const ggml_binary_op_f32_t fun) {
  11454. switch (src0->type) {
  11455. case GGML_TYPE_F32:
  11456. {
  11457. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11458. } break;
  11459. default:
  11460. {
  11461. GGML_ASSERT(false);
  11462. } break;
  11463. }
  11464. }
  11465. // ggml_compute_forward_map_custom1
  11466. static void ggml_compute_forward_map_custom1_f32(
  11467. const struct ggml_compute_params * params,
  11468. const struct ggml_tensor * a,
  11469. struct ggml_tensor * dst,
  11470. const ggml_custom1_op_f32_t fun) {
  11471. assert(params->ith == 0);
  11472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11473. return;
  11474. }
  11475. fun(dst, a);
  11476. }
  11477. // ggml_compute_forward_map_custom2
  11478. static void ggml_compute_forward_map_custom2_f32(
  11479. const struct ggml_compute_params * params,
  11480. const struct ggml_tensor * a,
  11481. const struct ggml_tensor * b,
  11482. struct ggml_tensor * dst,
  11483. const ggml_custom2_op_f32_t fun) {
  11484. assert(params->ith == 0);
  11485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11486. return;
  11487. }
  11488. fun(dst, a, b);
  11489. }
  11490. // ggml_compute_forward_map_custom3
  11491. static void ggml_compute_forward_map_custom3_f32(
  11492. const struct ggml_compute_params * params,
  11493. const struct ggml_tensor * a,
  11494. const struct ggml_tensor * b,
  11495. const struct ggml_tensor * c,
  11496. struct ggml_tensor * dst,
  11497. const ggml_custom3_op_f32_t fun) {
  11498. assert(params->ith == 0);
  11499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11500. return;
  11501. }
  11502. fun(dst, a, b, c);
  11503. }
  11504. // ggml_compute_forward_map_custom1
  11505. static void ggml_compute_forward_map_custom1(
  11506. const struct ggml_compute_params * params,
  11507. const struct ggml_tensor * a,
  11508. struct ggml_tensor * dst) {
  11509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11510. return;
  11511. }
  11512. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11513. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11514. }
  11515. // ggml_compute_forward_map_custom2
  11516. static void ggml_compute_forward_map_custom2(
  11517. const struct ggml_compute_params * params,
  11518. const struct ggml_tensor * a,
  11519. const struct ggml_tensor * b,
  11520. struct ggml_tensor * dst) {
  11521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11522. return;
  11523. }
  11524. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11525. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11526. }
  11527. // ggml_compute_forward_map_custom3
  11528. static void ggml_compute_forward_map_custom3(
  11529. const struct ggml_compute_params * params,
  11530. const struct ggml_tensor * a,
  11531. const struct ggml_tensor * b,
  11532. const struct ggml_tensor * c,
  11533. struct ggml_tensor * dst) {
  11534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11535. return;
  11536. }
  11537. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11538. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11539. }
  11540. // ggml_compute_forward_cross_entropy_loss
  11541. static void ggml_compute_forward_cross_entropy_loss_f32(
  11542. const struct ggml_compute_params * params,
  11543. const struct ggml_tensor * src0,
  11544. const struct ggml_tensor * src1,
  11545. struct ggml_tensor * dst) {
  11546. GGML_ASSERT(ggml_is_contiguous(src0));
  11547. GGML_ASSERT(ggml_is_contiguous(src1));
  11548. GGML_ASSERT(ggml_is_scalar(dst));
  11549. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11550. const int ith = params->ith;
  11551. const int nth = params->nth;
  11552. float * sums = (float *) params->wdata;
  11553. // TODO: handle transposed/permuted matrices
  11554. const int nc = src0->ne[0];
  11555. const int nr = ggml_nrows(src0);
  11556. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11557. if (params->type == GGML_TASK_INIT) {
  11558. if (ith == 0) {
  11559. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11560. }
  11561. return;
  11562. }
  11563. if (params->type == GGML_TASK_FINALIZE) {
  11564. if (ith == 0) {
  11565. float * dp = (float *) dst->data;
  11566. ggml_vec_sum_f32(nth, dp, sums);
  11567. dp[0] *= -1.0f / (float) nr;
  11568. }
  11569. return;
  11570. }
  11571. const double eps = 1e-9;
  11572. // rows per thread
  11573. const int dr = (nr + nth - 1)/nth;
  11574. // row range for this thread
  11575. const int ir0 = dr*ith;
  11576. const int ir1 = MIN(ir0 + dr, nr);
  11577. for (int i1 = ir0; i1 < ir1; i1++) {
  11578. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11579. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11580. float * st = ((float *) params->wdata) + nth + ith*nc;
  11581. #ifndef NDEBUG
  11582. for (int i = 0; i < nc; ++i) {
  11583. //printf("p[%d] = %f\n", i, p[i]);
  11584. assert(!isnan(s0[i]));
  11585. assert(!isnan(s1[i]));
  11586. }
  11587. #endif
  11588. // soft_max
  11589. ggml_float sum = 0.0;
  11590. {
  11591. float max = -INFINITY;
  11592. ggml_vec_max_f32(nc, &max, s0);
  11593. uint16_t scvt; UNUSED(scvt);
  11594. for (int i = 0; i < nc; i++) {
  11595. if (s0[i] == -INFINITY) {
  11596. st[i] = 0.0f;
  11597. } else {
  11598. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11599. const float s = s0[i] - max;
  11600. const float val = expf(s);
  11601. #else
  11602. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11603. memcpy(&scvt, &s, sizeof(scvt));
  11604. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11605. #endif
  11606. sum += (ggml_float)val;
  11607. st[i] = val;
  11608. }
  11609. }
  11610. assert(sum > 0.0);
  11611. // sum = 1.0/sum;
  11612. }
  11613. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11614. sum = (1.0 - eps) / sum;
  11615. ggml_vec_scale_f32(nc, st, sum);
  11616. ggml_vec_add1_f32(nc, st, st, eps);
  11617. ggml_vec_log_f32(nc, st, st);
  11618. ggml_vec_mul_f32(nc, st, st, s1);
  11619. float st_sum = 0;
  11620. ggml_vec_sum_f32(nc, &st_sum, st);
  11621. sums[ith] += st_sum;
  11622. #ifndef NDEBUG
  11623. for (int i = 0; i < nc; ++i) {
  11624. assert(!isnan(st[i]));
  11625. assert(!isinf(st[i]));
  11626. }
  11627. #endif
  11628. }
  11629. }
  11630. static void ggml_compute_forward_cross_entropy_loss(
  11631. const struct ggml_compute_params * params,
  11632. const struct ggml_tensor * src0,
  11633. const struct ggml_tensor * src1,
  11634. struct ggml_tensor * dst) {
  11635. switch (src0->type) {
  11636. case GGML_TYPE_F32:
  11637. {
  11638. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11639. } break;
  11640. default:
  11641. {
  11642. GGML_ASSERT(false);
  11643. } break;
  11644. }
  11645. }
  11646. // ggml_compute_forward_cross_entropy_loss_back
  11647. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11648. const struct ggml_compute_params * params,
  11649. const struct ggml_tensor * src0,
  11650. const struct ggml_tensor * src1,
  11651. const struct ggml_tensor * opt0,
  11652. struct ggml_tensor * dst) {
  11653. GGML_ASSERT(ggml_is_contiguous(dst));
  11654. GGML_ASSERT(ggml_is_contiguous(src0));
  11655. GGML_ASSERT(ggml_is_contiguous(src1));
  11656. GGML_ASSERT(ggml_is_contiguous(opt0));
  11657. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11658. const int64_t ith = params->ith;
  11659. const int64_t nth = params->nth;
  11660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11661. return;
  11662. }
  11663. const double eps = 1e-9;
  11664. // TODO: handle transposed/permuted matrices
  11665. const int64_t nc = src0->ne[0];
  11666. const int64_t nr = ggml_nrows(src0);
  11667. // rows per thread
  11668. const int64_t dr = (nr + nth - 1)/nth;
  11669. // row range for this thread
  11670. const int64_t ir0 = dr*ith;
  11671. const int64_t ir1 = MIN(ir0 + dr, nr);
  11672. float * d = (float *) opt0->data;
  11673. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11674. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11675. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11676. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11677. #ifndef NDEBUG
  11678. for (int i = 0; i < nc; ++i) {
  11679. //printf("p[%d] = %f\n", i, p[i]);
  11680. assert(!isnan(s0[i]));
  11681. assert(!isnan(s1[i]));
  11682. }
  11683. #endif
  11684. // soft_max
  11685. ggml_float sum = 0.0;
  11686. {
  11687. float max = -INFINITY;
  11688. ggml_vec_max_f32(nc, &max, s0);
  11689. uint16_t scvt; UNUSED(scvt);
  11690. for (int i = 0; i < nc; i++) {
  11691. if (s0[i] == -INFINITY) {
  11692. ds0[i] = 0.0f;
  11693. } else {
  11694. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11695. const float s = s0[i] - max;
  11696. const float val = expf(s);
  11697. #else
  11698. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11699. memcpy(&scvt, &s, sizeof(scvt));
  11700. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11701. #endif
  11702. sum += (ggml_float)val;
  11703. ds0[i] = val;
  11704. }
  11705. }
  11706. assert(sum > 0.0);
  11707. sum = (1.0 - eps)/sum;
  11708. }
  11709. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11710. ggml_vec_scale_f32(nc, ds0, sum);
  11711. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11712. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11713. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11714. #ifndef NDEBUG
  11715. for (int i = 0; i < nc; ++i) {
  11716. assert(!isnan(ds0[i]));
  11717. assert(!isinf(ds0[i]));
  11718. }
  11719. #endif
  11720. }
  11721. }
  11722. static void ggml_compute_forward_cross_entropy_loss_back(
  11723. const struct ggml_compute_params * params,
  11724. const struct ggml_tensor * src0,
  11725. const struct ggml_tensor * src1,
  11726. const struct ggml_tensor * opt0,
  11727. struct ggml_tensor * dst) {
  11728. switch (src0->type) {
  11729. case GGML_TYPE_F32:
  11730. {
  11731. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11732. } break;
  11733. default:
  11734. {
  11735. GGML_ASSERT(false);
  11736. } break;
  11737. }
  11738. }
  11739. /////////////////////////////////
  11740. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11741. GGML_ASSERT(params);
  11742. if (tensor->op == GGML_OP_NONE) {
  11743. return;
  11744. }
  11745. #ifdef GGML_USE_CUBLAS
  11746. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11747. if (skip_cpu) {
  11748. return;
  11749. }
  11750. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11751. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11752. #endif // GGML_USE_CUBLAS
  11753. switch (tensor->op) {
  11754. case GGML_OP_DUP:
  11755. {
  11756. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11757. } break;
  11758. case GGML_OP_ADD:
  11759. {
  11760. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11761. } break;
  11762. case GGML_OP_ADD1:
  11763. {
  11764. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11765. } break;
  11766. case GGML_OP_ACC:
  11767. {
  11768. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11769. } break;
  11770. case GGML_OP_SUB:
  11771. {
  11772. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11773. } break;
  11774. case GGML_OP_MUL:
  11775. {
  11776. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11777. } break;
  11778. case GGML_OP_DIV:
  11779. {
  11780. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11781. } break;
  11782. case GGML_OP_SQR:
  11783. {
  11784. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11785. } break;
  11786. case GGML_OP_SQRT:
  11787. {
  11788. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11789. } break;
  11790. case GGML_OP_LOG:
  11791. {
  11792. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11793. } break;
  11794. case GGML_OP_SUM:
  11795. {
  11796. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11797. } break;
  11798. case GGML_OP_SUM_ROWS:
  11799. {
  11800. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11801. } break;
  11802. case GGML_OP_MEAN:
  11803. {
  11804. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11805. } break;
  11806. case GGML_OP_ARGMAX:
  11807. {
  11808. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11809. } break;
  11810. case GGML_OP_REPEAT:
  11811. {
  11812. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11813. } break;
  11814. case GGML_OP_REPEAT_BACK:
  11815. {
  11816. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11817. } break;
  11818. case GGML_OP_CONCAT:
  11819. {
  11820. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11821. } break;
  11822. case GGML_OP_SILU_BACK:
  11823. {
  11824. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11825. } break;
  11826. case GGML_OP_NORM:
  11827. {
  11828. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11829. } break;
  11830. case GGML_OP_RMS_NORM:
  11831. {
  11832. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11833. } break;
  11834. case GGML_OP_RMS_NORM_BACK:
  11835. {
  11836. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11837. } break;
  11838. case GGML_OP_GROUP_NORM:
  11839. {
  11840. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11841. } break;
  11842. case GGML_OP_MUL_MAT:
  11843. {
  11844. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11845. } break;
  11846. case GGML_OP_OUT_PROD:
  11847. {
  11848. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11849. } break;
  11850. case GGML_OP_SCALE:
  11851. {
  11852. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11853. } break;
  11854. case GGML_OP_SET:
  11855. {
  11856. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11857. } break;
  11858. case GGML_OP_CPY:
  11859. {
  11860. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11861. } break;
  11862. case GGML_OP_CONT:
  11863. {
  11864. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11865. } break;
  11866. case GGML_OP_RESHAPE:
  11867. {
  11868. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11869. } break;
  11870. case GGML_OP_VIEW:
  11871. {
  11872. ggml_compute_forward_view(params, tensor->src[0]);
  11873. } break;
  11874. case GGML_OP_PERMUTE:
  11875. {
  11876. ggml_compute_forward_permute(params, tensor->src[0]);
  11877. } break;
  11878. case GGML_OP_TRANSPOSE:
  11879. {
  11880. ggml_compute_forward_transpose(params, tensor->src[0]);
  11881. } break;
  11882. case GGML_OP_GET_ROWS:
  11883. {
  11884. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11885. } break;
  11886. case GGML_OP_GET_ROWS_BACK:
  11887. {
  11888. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11889. } break;
  11890. case GGML_OP_DIAG:
  11891. {
  11892. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11893. } break;
  11894. case GGML_OP_DIAG_MASK_INF:
  11895. {
  11896. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11897. } break;
  11898. case GGML_OP_DIAG_MASK_ZERO:
  11899. {
  11900. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11901. } break;
  11902. case GGML_OP_SOFT_MAX:
  11903. {
  11904. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  11905. } break;
  11906. case GGML_OP_SOFT_MAX_BACK:
  11907. {
  11908. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11909. } break;
  11910. case GGML_OP_ROPE:
  11911. {
  11912. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11913. } break;
  11914. case GGML_OP_ROPE_BACK:
  11915. {
  11916. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11917. } break;
  11918. case GGML_OP_ALIBI:
  11919. {
  11920. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11921. } break;
  11922. case GGML_OP_CLAMP:
  11923. {
  11924. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11925. } break;
  11926. case GGML_OP_CONV_1D:
  11927. {
  11928. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  11929. } break;
  11930. case GGML_OP_CONV_1D_STAGE_0:
  11931. {
  11932. ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  11933. } break;
  11934. case GGML_OP_CONV_1D_STAGE_1:
  11935. {
  11936. ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  11937. } break;
  11938. case GGML_OP_CONV_TRANSPOSE_1D:
  11939. {
  11940. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11941. } break;
  11942. case GGML_OP_CONV_2D:
  11943. {
  11944. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  11945. } break;
  11946. case GGML_OP_CONV_2D_STAGE_0:
  11947. {
  11948. ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  11949. } break;
  11950. case GGML_OP_CONV_2D_STAGE_1:
  11951. {
  11952. ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  11953. } break;
  11954. case GGML_OP_CONV_TRANSPOSE_2D:
  11955. {
  11956. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11957. } break;
  11958. case GGML_OP_POOL_1D:
  11959. {
  11960. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11961. } break;
  11962. case GGML_OP_POOL_2D:
  11963. {
  11964. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11965. } break;
  11966. case GGML_OP_UPSCALE:
  11967. {
  11968. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11969. } break;
  11970. case GGML_OP_FLASH_ATTN:
  11971. {
  11972. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11973. GGML_ASSERT(t == 0 || t == 1);
  11974. const bool masked = t != 0;
  11975. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11976. } break;
  11977. case GGML_OP_FLASH_FF:
  11978. {
  11979. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11980. } break;
  11981. case GGML_OP_FLASH_ATTN_BACK:
  11982. {
  11983. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11984. GGML_ASSERT(t == 0 || t == 1);
  11985. bool masked = t != 0;
  11986. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11987. } break;
  11988. case GGML_OP_WIN_PART:
  11989. {
  11990. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11991. } break;
  11992. case GGML_OP_WIN_UNPART:
  11993. {
  11994. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11995. } break;
  11996. case GGML_OP_UNARY:
  11997. {
  11998. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11999. } break;
  12000. case GGML_OP_GET_REL_POS:
  12001. {
  12002. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12003. } break;
  12004. case GGML_OP_ADD_REL_POS:
  12005. {
  12006. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12007. } break;
  12008. case GGML_OP_MAP_UNARY:
  12009. {
  12010. ggml_unary_op_f32_t fun;
  12011. memcpy(&fun, tensor->op_params, sizeof(fun));
  12012. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12013. }
  12014. break;
  12015. case GGML_OP_MAP_BINARY:
  12016. {
  12017. ggml_binary_op_f32_t fun;
  12018. memcpy(&fun, tensor->op_params, sizeof(fun));
  12019. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12020. }
  12021. break;
  12022. case GGML_OP_MAP_CUSTOM1_F32:
  12023. {
  12024. ggml_custom1_op_f32_t fun;
  12025. memcpy(&fun, tensor->op_params, sizeof(fun));
  12026. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12027. }
  12028. break;
  12029. case GGML_OP_MAP_CUSTOM2_F32:
  12030. {
  12031. ggml_custom2_op_f32_t fun;
  12032. memcpy(&fun, tensor->op_params, sizeof(fun));
  12033. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12034. }
  12035. break;
  12036. case GGML_OP_MAP_CUSTOM3_F32:
  12037. {
  12038. ggml_custom3_op_f32_t fun;
  12039. memcpy(&fun, tensor->op_params, sizeof(fun));
  12040. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12041. }
  12042. break;
  12043. case GGML_OP_MAP_CUSTOM1:
  12044. {
  12045. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12046. }
  12047. break;
  12048. case GGML_OP_MAP_CUSTOM2:
  12049. {
  12050. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12051. }
  12052. break;
  12053. case GGML_OP_MAP_CUSTOM3:
  12054. {
  12055. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12056. }
  12057. break;
  12058. case GGML_OP_CROSS_ENTROPY_LOSS:
  12059. {
  12060. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12061. }
  12062. break;
  12063. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12064. {
  12065. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12066. }
  12067. break;
  12068. case GGML_OP_NONE:
  12069. {
  12070. // nop
  12071. } break;
  12072. case GGML_OP_COUNT:
  12073. {
  12074. GGML_ASSERT(false);
  12075. } break;
  12076. }
  12077. }
  12078. ////////////////////////////////////////////////////////////////////////////////
  12079. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12080. static size_t hash(void * p) {
  12081. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12082. }
  12083. static size_t hash_find(void * hash_table[], void * p) {
  12084. size_t h = hash(p);
  12085. // linear probing
  12086. size_t i = h;
  12087. while (hash_table[i] != NULL && hash_table[i] != p) {
  12088. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12089. if (i == h) {
  12090. // visited all hash table entries -> not found
  12091. return GGML_GRAPH_HASHTABLE_SIZE;
  12092. }
  12093. }
  12094. return i;
  12095. }
  12096. static bool hash_insert(void * hash_table[], void * p) {
  12097. size_t i = hash_find(hash_table, p);
  12098. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12099. if (hash_table[i] == p) {
  12100. return true;
  12101. }
  12102. // insert
  12103. GGML_ASSERT(hash_table[i] == NULL);
  12104. hash_table[i] = p;
  12105. return false;
  12106. }
  12107. static bool hash_contains(void * hash_table[], void * p) {
  12108. size_t i = hash_find(hash_table, p);
  12109. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  12110. }
  12111. struct hash_map {
  12112. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  12113. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  12114. };
  12115. static struct hash_map * new_hash_map(void) {
  12116. struct hash_map * result = malloc(sizeof(struct hash_map));
  12117. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  12118. result->keys[i] = NULL;
  12119. result->vals[i] = NULL;
  12120. }
  12121. return result;
  12122. }
  12123. static void free_hash_map(struct hash_map * map) {
  12124. free(map);
  12125. }
  12126. // gradient checkpointing
  12127. static struct ggml_tensor * ggml_recompute_graph_node(
  12128. struct ggml_context * ctx,
  12129. struct ggml_cgraph * graph,
  12130. struct hash_map * replacements,
  12131. struct ggml_tensor * node) {
  12132. if (node == NULL) {
  12133. return NULL;
  12134. }
  12135. if (node->is_param) {
  12136. return node;
  12137. }
  12138. if (!hash_contains(graph->visited_hash_table, node)) {
  12139. return node;
  12140. }
  12141. int count_children = 0;
  12142. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12143. if (node->src[k]) {
  12144. ++count_children;
  12145. }
  12146. }
  12147. if (count_children == 0) {
  12148. return node;
  12149. }
  12150. size_t i = hash_find(replacements->keys, node);
  12151. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12152. if (replacements->keys[i] == node) {
  12153. return (struct ggml_tensor *) replacements->vals[i];
  12154. }
  12155. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  12156. // insert clone into replacements
  12157. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  12158. replacements->keys[i] = node;
  12159. replacements->vals[i] = clone;
  12160. clone->op = node->op;
  12161. clone->grad = node->grad;
  12162. clone->is_param = node->is_param;
  12163. clone->extra = node->extra;
  12164. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12165. clone->nb[k] = node->nb[k];
  12166. }
  12167. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12168. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12169. }
  12170. if (node->view_src != NULL) {
  12171. clone->data = (node->view_src->data == NULL)
  12172. ? NULL // view_src not yet allocated
  12173. : (char *) node->view_src->data // view_src already allocated
  12174. + node->view_offs;
  12175. clone->view_src = node->view_src;
  12176. clone->view_offs = node->view_offs;
  12177. }
  12178. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12179. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12180. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12181. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12182. return clone;
  12183. }
  12184. void ggml_build_backward_gradient_checkpointing(
  12185. struct ggml_context * ctx,
  12186. struct ggml_cgraph * gf,
  12187. struct ggml_cgraph * gb,
  12188. struct ggml_cgraph * gb_tmp,
  12189. struct ggml_tensor * * checkpoints,
  12190. int n_checkpoints) {
  12191. *gb_tmp = *gf;
  12192. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12193. if (n_checkpoints <= 0) {
  12194. *gb = *gb_tmp;
  12195. return;
  12196. }
  12197. struct hash_map * replacements = new_hash_map();
  12198. // insert checkpoints in replacements
  12199. for (int i = 0; i < n_checkpoints; ++i) {
  12200. size_t k = hash_find(replacements->keys, checkpoints[i]);
  12201. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12202. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  12203. replacements->keys[k] = checkpoints[i];
  12204. replacements->vals[k] = checkpoints[i];
  12205. }
  12206. *gb = *gf;
  12207. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12208. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12209. // by recomputing them from checkpoints
  12210. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12211. struct ggml_tensor * node = gb_tmp->nodes[i];
  12212. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12213. // insert new tensors recomputing src, reusing already made replacements,
  12214. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12215. // recurse for input tensors,
  12216. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  12217. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12218. }
  12219. // insert rewritten backward node with replacements made into resulting backward graph gb
  12220. ggml_build_forward_expand(gb, node);
  12221. }
  12222. free_hash_map(replacements);
  12223. }
  12224. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12225. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12226. if (hash_contains(zero_table, a)) {
  12227. return b;
  12228. } else {
  12229. return ggml_add_impl(ctx, a, b, false);
  12230. }
  12231. }
  12232. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  12233. if (hash_contains(zero_table, a)) {
  12234. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12235. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12236. } else {
  12237. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12238. }
  12239. }
  12240. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12241. if (hash_contains(zero_table, a)) {
  12242. return ggml_repeat(ctx, b, a);
  12243. } else {
  12244. return ggml_add1_impl(ctx, a, b, false);
  12245. }
  12246. }
  12247. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12248. if (hash_contains(zero_table, a)) {
  12249. return ggml_neg(ctx, b);
  12250. } else {
  12251. return ggml_sub_impl(ctx, a, b, false);
  12252. }
  12253. }
  12254. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  12255. struct ggml_tensor * src0 = tensor->src[0];
  12256. struct ggml_tensor * src1 = tensor->src[1];
  12257. switch (tensor->op) {
  12258. case GGML_OP_DUP:
  12259. {
  12260. if (src0->grad) {
  12261. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12262. }
  12263. } break;
  12264. case GGML_OP_ADD:
  12265. {
  12266. if (src0->grad) {
  12267. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12268. }
  12269. if (src1->grad) {
  12270. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12271. }
  12272. } break;
  12273. case GGML_OP_ADD1:
  12274. {
  12275. if (src0->grad) {
  12276. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12277. }
  12278. if (src1->grad) {
  12279. src1->grad = ggml_add_or_set(ctx,
  12280. src1->grad,
  12281. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12282. zero_table);
  12283. }
  12284. } break;
  12285. case GGML_OP_ACC:
  12286. {
  12287. if (src0->grad) {
  12288. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12289. }
  12290. if (src1->grad) {
  12291. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12292. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12293. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12294. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12295. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12296. tensor->grad,
  12297. src1->grad->ne[0],
  12298. src1->grad->ne[1],
  12299. src1->grad->ne[2],
  12300. src1->grad->ne[3],
  12301. nb1, nb2, nb3, offset);
  12302. src1->grad =
  12303. ggml_add_or_set(ctx,
  12304. src1->grad,
  12305. ggml_reshape(ctx,
  12306. ggml_cont(ctx, tensor_grad_view),
  12307. src1->grad),
  12308. zero_table);
  12309. }
  12310. } break;
  12311. case GGML_OP_SUB:
  12312. {
  12313. if (src0->grad) {
  12314. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12315. }
  12316. if (src1->grad) {
  12317. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12318. }
  12319. } break;
  12320. case GGML_OP_MUL:
  12321. {
  12322. if (src0->grad) {
  12323. src0->grad =
  12324. ggml_add_or_set(ctx,
  12325. src0->grad,
  12326. ggml_mul(ctx, src1, tensor->grad),
  12327. zero_table);
  12328. }
  12329. if (src1->grad) {
  12330. src1->grad =
  12331. ggml_add_or_set(ctx,
  12332. src1->grad,
  12333. ggml_mul(ctx, src0, tensor->grad),
  12334. zero_table);
  12335. }
  12336. } break;
  12337. case GGML_OP_DIV:
  12338. {
  12339. if (src0->grad) {
  12340. src0->grad =
  12341. ggml_add_or_set(ctx,
  12342. src0->grad,
  12343. ggml_div(ctx, tensor->grad, src1),
  12344. zero_table);
  12345. }
  12346. if (src1->grad) {
  12347. src1->grad =
  12348. ggml_sub_or_set(ctx,
  12349. src1->grad,
  12350. ggml_mul(ctx,
  12351. tensor->grad,
  12352. ggml_div(ctx, tensor, src1)),
  12353. zero_table);
  12354. }
  12355. } break;
  12356. case GGML_OP_SQR:
  12357. {
  12358. if (src0->grad) {
  12359. src0->grad =
  12360. ggml_add_or_set(ctx,
  12361. src0->grad,
  12362. ggml_scale(ctx,
  12363. ggml_mul(ctx, src0, tensor->grad),
  12364. ggml_new_f32(ctx, 2.0f)),
  12365. zero_table);
  12366. }
  12367. } break;
  12368. case GGML_OP_SQRT:
  12369. {
  12370. if (src0->grad) {
  12371. src0->grad =
  12372. ggml_add_or_set(ctx,
  12373. src0->grad,
  12374. ggml_scale(ctx,
  12375. ggml_div(ctx,
  12376. tensor->grad,
  12377. tensor),
  12378. ggml_new_f32(ctx, 0.5f)),
  12379. zero_table);
  12380. }
  12381. } break;
  12382. case GGML_OP_LOG:
  12383. {
  12384. if (src0->grad) {
  12385. src0->grad =
  12386. ggml_add_or_set(ctx,
  12387. src0->grad,
  12388. ggml_div(ctx,
  12389. tensor->grad,
  12390. src0),
  12391. zero_table);
  12392. }
  12393. } break;
  12394. case GGML_OP_SUM:
  12395. {
  12396. if (src0->grad) {
  12397. src0->grad =
  12398. ggml_add1_or_set(ctx,
  12399. src0->grad,
  12400. tensor->grad,
  12401. zero_table);
  12402. }
  12403. } break;
  12404. case GGML_OP_SUM_ROWS:
  12405. {
  12406. if (src0->grad) {
  12407. src0->grad =
  12408. ggml_add_or_set(ctx,
  12409. src0->grad,
  12410. ggml_repeat(ctx,
  12411. tensor->grad,
  12412. src0->grad),
  12413. zero_table);
  12414. }
  12415. } break;
  12416. case GGML_OP_MEAN:
  12417. case GGML_OP_ARGMAX:
  12418. {
  12419. GGML_ASSERT(false); // TODO: implement
  12420. } break;
  12421. case GGML_OP_REPEAT:
  12422. {
  12423. // necessary for llama
  12424. if (src0->grad) {
  12425. src0->grad = ggml_add_or_set(ctx,
  12426. src0->grad,
  12427. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12428. zero_table);
  12429. }
  12430. } break;
  12431. case GGML_OP_REPEAT_BACK:
  12432. {
  12433. if (src0->grad) {
  12434. // TODO: test this
  12435. src0->grad = ggml_add_or_set(ctx,
  12436. src0->grad,
  12437. ggml_repeat(ctx, tensor->grad, src0->grad),
  12438. zero_table);
  12439. }
  12440. } break;
  12441. case GGML_OP_CONCAT:
  12442. {
  12443. GGML_ASSERT(false); // TODO: implement
  12444. } break;
  12445. case GGML_OP_SILU_BACK:
  12446. {
  12447. GGML_ASSERT(false); // TODO: not implemented
  12448. } break;
  12449. case GGML_OP_NORM:
  12450. {
  12451. GGML_ASSERT(false); // TODO: not implemented
  12452. } break;
  12453. case GGML_OP_RMS_NORM:
  12454. {
  12455. // necessary for llama
  12456. if (src0->grad) {
  12457. float eps;
  12458. memcpy(&eps, tensor->op_params, sizeof(float));
  12459. src0->grad = ggml_add_or_set(ctx,
  12460. src0->grad,
  12461. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12462. zero_table);
  12463. }
  12464. } break;
  12465. case GGML_OP_RMS_NORM_BACK:
  12466. {
  12467. GGML_ASSERT(false); // TODO: not implemented
  12468. } break;
  12469. case GGML_OP_GROUP_NORM:
  12470. {
  12471. GGML_ASSERT(false); // TODO: not implemented
  12472. } break;
  12473. case GGML_OP_MUL_MAT:
  12474. {
  12475. // https://cs231n.github.io/optimization-2/#staged
  12476. // # forward pass
  12477. // s0 = np.random.randn(5, 10)
  12478. // s1 = np.random.randn(10, 3)
  12479. // t = s0.dot(s1)
  12480. // # now suppose we had the gradient on t from above in the circuit
  12481. // dt = np.random.randn(*t.shape) # same shape as t
  12482. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12483. // ds1 = t.T.dot(dt)
  12484. // tensor.shape [m,p,qq,rr]
  12485. // src0.shape [n,m,q1,r1]
  12486. // src1.shape [n,p,qq,rr]
  12487. // necessary for llama
  12488. if (src0->grad) {
  12489. struct ggml_tensor * s1_tg =
  12490. ggml_out_prod(ctx, // [n,m,qq,rr]
  12491. src1, // [n,p,qq,rr]
  12492. tensor->grad); // [m,p,qq,rr]
  12493. const int64_t qq = s1_tg->ne[2];
  12494. const int64_t rr = s1_tg->ne[3];
  12495. const int64_t q1 = src0->ne[2];
  12496. const int64_t r1 = src0->ne[3];
  12497. const bool ne2_broadcasted = qq > q1;
  12498. const bool ne3_broadcasted = rr > r1;
  12499. if (ne2_broadcasted || ne3_broadcasted) {
  12500. // sum broadcast repetitions of s1_tg into shape of src0
  12501. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12502. }
  12503. src0->grad =
  12504. ggml_add_or_set(ctx,
  12505. src0->grad, // [n,m,q1,r1]
  12506. s1_tg, // [n,m,q1,r1]
  12507. zero_table);
  12508. }
  12509. if (src1->grad) {
  12510. src1->grad =
  12511. ggml_add_or_set(ctx,
  12512. src1->grad, // [n,p,qq,rr]
  12513. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12514. // ggml_cont(ctx, // [m,n,q1,r1]
  12515. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12516. // tensor->grad), // [m,p,qq,rr]
  12517. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12518. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12519. // // and then use ggml_out_prod
  12520. ggml_out_prod(ctx, // [n,p,qq,rr]
  12521. src0, // [n,m,q1,r1]
  12522. ggml_transpose(ctx, // [p,m,qq,rr]
  12523. tensor->grad)), // [m,p,qq,rr]
  12524. zero_table);
  12525. }
  12526. } break;
  12527. case GGML_OP_OUT_PROD:
  12528. {
  12529. GGML_ASSERT(false); // TODO: not implemented
  12530. } break;
  12531. case GGML_OP_SCALE:
  12532. {
  12533. // necessary for llama
  12534. if (src0->grad) {
  12535. src0->grad =
  12536. ggml_add_or_set(ctx,
  12537. src0->grad,
  12538. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12539. zero_table);
  12540. }
  12541. if (src1->grad) {
  12542. src1->grad =
  12543. ggml_add_or_set(ctx,
  12544. src1->grad,
  12545. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12546. zero_table);
  12547. }
  12548. } break;
  12549. case GGML_OP_SET:
  12550. {
  12551. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12552. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12553. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12554. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12555. struct ggml_tensor * tensor_grad_view = NULL;
  12556. if (src0->grad || src1->grad) {
  12557. GGML_ASSERT(src0->type == tensor->type);
  12558. GGML_ASSERT(tensor->grad->type == tensor->type);
  12559. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12560. tensor_grad_view = ggml_view_4d(ctx,
  12561. tensor->grad,
  12562. src1->grad->ne[0],
  12563. src1->grad->ne[1],
  12564. src1->grad->ne[2],
  12565. src1->grad->ne[3],
  12566. nb1, nb2, nb3, offset);
  12567. }
  12568. if (src0->grad) {
  12569. src0->grad = ggml_add_or_set(ctx,
  12570. src0->grad,
  12571. ggml_acc_impl(ctx,
  12572. tensor->grad,
  12573. ggml_neg(ctx, tensor_grad_view),
  12574. nb1, nb2, nb3, offset, false),
  12575. zero_table);
  12576. }
  12577. if (src1->grad) {
  12578. src1->grad =
  12579. ggml_add_or_set(ctx,
  12580. src1->grad,
  12581. ggml_reshape(ctx,
  12582. ggml_cont(ctx, tensor_grad_view),
  12583. src1->grad),
  12584. zero_table);
  12585. }
  12586. } break;
  12587. case GGML_OP_CPY:
  12588. {
  12589. // necessary for llama
  12590. // cpy overwrites value of src1 by src0 and returns view(src1)
  12591. // the overwriting is mathematically equivalent to:
  12592. // tensor = src0 * 1 + src1 * 0
  12593. if (src0->grad) {
  12594. // dsrc0 = dtensor * 1
  12595. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12596. }
  12597. if (src1->grad) {
  12598. // dsrc1 = dtensor * 0 -> noop
  12599. }
  12600. } break;
  12601. case GGML_OP_CONT:
  12602. {
  12603. // same as cpy
  12604. if (src0->grad) {
  12605. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12606. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12607. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12608. }
  12609. } break;
  12610. case GGML_OP_RESHAPE:
  12611. {
  12612. // necessary for llama
  12613. if (src0->grad) {
  12614. src0->grad =
  12615. ggml_add_or_set(ctx, src0->grad,
  12616. ggml_reshape(ctx,
  12617. ggml_is_contiguous(tensor->grad)
  12618. ? tensor->grad
  12619. : ggml_cont(ctx, tensor->grad),
  12620. src0->grad),
  12621. zero_table);
  12622. }
  12623. } break;
  12624. case GGML_OP_VIEW:
  12625. {
  12626. // necessary for llama
  12627. if (src0->grad) {
  12628. size_t offset;
  12629. memcpy(&offset, tensor->op_params, sizeof(offset));
  12630. size_t nb1 = tensor->nb[1];
  12631. size_t nb2 = tensor->nb[2];
  12632. size_t nb3 = tensor->nb[3];
  12633. if (src0->type != src0->grad->type) {
  12634. // gradient is typically F32, but src0 could be other type
  12635. size_t ng = ggml_element_size(src0->grad);
  12636. size_t n0 = ggml_element_size(src0);
  12637. GGML_ASSERT(offset % n0 == 0);
  12638. GGML_ASSERT(nb1 % n0 == 0);
  12639. GGML_ASSERT(nb2 % n0 == 0);
  12640. GGML_ASSERT(nb3 % n0 == 0);
  12641. offset = (offset / n0) * ng;
  12642. nb1 = (nb1 / n0) * ng;
  12643. nb2 = (nb2 / n0) * ng;
  12644. nb3 = (nb3 / n0) * ng;
  12645. }
  12646. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12647. }
  12648. } break;
  12649. case GGML_OP_PERMUTE:
  12650. {
  12651. // necessary for llama
  12652. if (src0->grad) {
  12653. int32_t * axes = (int32_t *) tensor->op_params;
  12654. int axis0 = axes[0] & 0x3;
  12655. int axis1 = axes[1] & 0x3;
  12656. int axis2 = axes[2] & 0x3;
  12657. int axis3 = axes[3] & 0x3;
  12658. int axes_backward[4] = {0,0,0,0};
  12659. axes_backward[axis0] = 0;
  12660. axes_backward[axis1] = 1;
  12661. axes_backward[axis2] = 2;
  12662. axes_backward[axis3] = 3;
  12663. src0->grad =
  12664. ggml_add_or_set(ctx, src0->grad,
  12665. ggml_permute(ctx,
  12666. tensor->grad,
  12667. axes_backward[0],
  12668. axes_backward[1],
  12669. axes_backward[2],
  12670. axes_backward[3]),
  12671. zero_table);
  12672. }
  12673. } break;
  12674. case GGML_OP_TRANSPOSE:
  12675. {
  12676. // necessary for llama
  12677. if (src0->grad) {
  12678. src0->grad =
  12679. ggml_add_or_set(ctx, src0->grad,
  12680. ggml_transpose(ctx, tensor->grad),
  12681. zero_table);
  12682. }
  12683. } break;
  12684. case GGML_OP_GET_ROWS:
  12685. {
  12686. // necessary for llama (only for tokenizer)
  12687. if (src0->grad) {
  12688. src0->grad =
  12689. ggml_add_or_set(ctx, src0->grad,
  12690. // last ggml_get_rows_back argument src0->grad is only
  12691. // necessary to setup correct output shape
  12692. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12693. zero_table);
  12694. }
  12695. if (src1->grad) {
  12696. // noop
  12697. }
  12698. } break;
  12699. case GGML_OP_GET_ROWS_BACK:
  12700. {
  12701. GGML_ASSERT(false); // TODO: not implemented
  12702. } break;
  12703. case GGML_OP_DIAG:
  12704. {
  12705. GGML_ASSERT(false); // TODO: not implemented
  12706. } break;
  12707. case GGML_OP_DIAG_MASK_INF:
  12708. {
  12709. // necessary for llama
  12710. if (src0->grad) {
  12711. const int n_past = ((int32_t *) tensor->op_params)[0];
  12712. src0->grad =
  12713. ggml_add_or_set(ctx, src0->grad,
  12714. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12715. zero_table);
  12716. }
  12717. } break;
  12718. case GGML_OP_DIAG_MASK_ZERO:
  12719. {
  12720. // necessary for llama
  12721. if (src0->grad) {
  12722. const int n_past = ((int32_t *) tensor->op_params)[0];
  12723. src0->grad =
  12724. ggml_add_or_set(ctx, src0->grad,
  12725. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12726. zero_table);
  12727. }
  12728. } break;
  12729. case GGML_OP_SOFT_MAX:
  12730. {
  12731. // necessary for llama
  12732. if (src0->grad) {
  12733. src0->grad =
  12734. ggml_add_or_set(ctx, src0->grad,
  12735. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12736. zero_table);
  12737. }
  12738. } break;
  12739. case GGML_OP_SOFT_MAX_BACK:
  12740. {
  12741. GGML_ASSERT(false); // TODO: not implemented
  12742. } break;
  12743. case GGML_OP_ROPE:
  12744. {
  12745. // necessary for llama
  12746. if (src0->grad) {
  12747. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12748. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12749. const int mode = ((int32_t *) tensor->op_params)[2];
  12750. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12751. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12752. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12753. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12754. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12755. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12756. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12757. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12758. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12759. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12760. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12761. src0->grad = ggml_add_or_set(ctx,
  12762. src0->grad,
  12763. ggml_rope_back(ctx,
  12764. tensor->grad,
  12765. src1,
  12766. n_dims,
  12767. mode,
  12768. n_ctx,
  12769. n_orig_ctx,
  12770. freq_base,
  12771. freq_scale,
  12772. ext_factor,
  12773. attn_factor,
  12774. beta_fast,
  12775. beta_slow,
  12776. xpos_base,
  12777. xpos_down),
  12778. zero_table);
  12779. }
  12780. } break;
  12781. case GGML_OP_ROPE_BACK:
  12782. {
  12783. if (src0->grad) {
  12784. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12785. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12786. const int mode = ((int32_t *) tensor->op_params)[2];
  12787. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12788. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12789. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12790. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12791. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12792. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12793. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12794. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12795. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12796. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12797. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12798. src0->grad = ggml_add_or_set(ctx,
  12799. src0->grad,
  12800. ggml_rope_impl(ctx,
  12801. tensor->grad,
  12802. src1,
  12803. n_dims,
  12804. mode,
  12805. n_ctx,
  12806. n_orig_ctx,
  12807. freq_base,
  12808. freq_scale,
  12809. ext_factor,
  12810. attn_factor,
  12811. beta_fast,
  12812. beta_slow,
  12813. xpos_base,
  12814. xpos_down,
  12815. false),
  12816. zero_table);
  12817. }
  12818. } break;
  12819. case GGML_OP_ALIBI:
  12820. {
  12821. GGML_ASSERT(false); // TODO: not implemented
  12822. } break;
  12823. case GGML_OP_CLAMP:
  12824. {
  12825. GGML_ASSERT(false); // TODO: not implemented
  12826. } break;
  12827. case GGML_OP_CONV_1D:
  12828. {
  12829. GGML_ASSERT(false); // TODO: not implemented
  12830. } break;
  12831. case GGML_OP_CONV_1D_STAGE_0:
  12832. {
  12833. GGML_ASSERT(false); // TODO: not implemented
  12834. } break;
  12835. case GGML_OP_CONV_1D_STAGE_1:
  12836. {
  12837. GGML_ASSERT(false); // TODO: not implemented
  12838. } break;
  12839. case GGML_OP_CONV_TRANSPOSE_1D:
  12840. {
  12841. GGML_ASSERT(false); // TODO: not implemented
  12842. } break;
  12843. case GGML_OP_CONV_2D:
  12844. {
  12845. GGML_ASSERT(false); // TODO: not implemented
  12846. } break;
  12847. case GGML_OP_CONV_2D_STAGE_0:
  12848. {
  12849. GGML_ASSERT(false); // TODO: not implemented
  12850. } break;
  12851. case GGML_OP_CONV_2D_STAGE_1:
  12852. {
  12853. GGML_ASSERT(false); // TODO: not implemented
  12854. } break;
  12855. case GGML_OP_CONV_TRANSPOSE_2D:
  12856. {
  12857. GGML_ASSERT(false); // TODO: not implemented
  12858. } break;
  12859. case GGML_OP_POOL_1D:
  12860. {
  12861. GGML_ASSERT(false); // TODO: not implemented
  12862. } break;
  12863. case GGML_OP_POOL_2D:
  12864. {
  12865. GGML_ASSERT(false); // TODO: not implemented
  12866. } break;
  12867. case GGML_OP_UPSCALE:
  12868. {
  12869. GGML_ASSERT(false); // TODO: not implemented
  12870. } break;
  12871. case GGML_OP_FLASH_ATTN:
  12872. {
  12873. struct ggml_tensor * flash_grad = NULL;
  12874. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12875. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12876. GGML_ASSERT(t == 0 || t == 1);
  12877. bool masked = t != 0;
  12878. flash_grad =
  12879. ggml_flash_attn_back(ctx,
  12880. src0,
  12881. src1,
  12882. tensor->src[2],
  12883. tensor->grad,
  12884. masked);
  12885. }
  12886. struct ggml_tensor * src2 = tensor->src[2];
  12887. const int64_t elem_q = ggml_nelements(src0);
  12888. const int64_t elem_k = ggml_nelements(src1);
  12889. const int64_t elem_v = ggml_nelements(src2);
  12890. enum ggml_type result_type = flash_grad->type;
  12891. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12892. const size_t tsize = ggml_type_size(result_type);
  12893. const size_t offs_q = 0;
  12894. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12895. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12896. if (src0->grad) {
  12897. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12898. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12899. src0->grad = ggml_add_or_set(ctx,
  12900. src0->grad,
  12901. grad_q,
  12902. zero_table);
  12903. }
  12904. if (src1->grad) {
  12905. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12906. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12907. src1->grad = ggml_add_or_set(ctx,
  12908. src1->grad,
  12909. grad_k,
  12910. zero_table);
  12911. }
  12912. if (src2->grad) {
  12913. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12914. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12915. src2->grad = ggml_add_or_set(ctx,
  12916. src2->grad,
  12917. grad_v,
  12918. zero_table);
  12919. }
  12920. } break;
  12921. case GGML_OP_FLASH_FF:
  12922. {
  12923. GGML_ASSERT(false); // not supported
  12924. } break;
  12925. case GGML_OP_FLASH_ATTN_BACK:
  12926. {
  12927. GGML_ASSERT(false); // not supported
  12928. } break;
  12929. case GGML_OP_WIN_PART:
  12930. case GGML_OP_WIN_UNPART:
  12931. case GGML_OP_UNARY:
  12932. {
  12933. switch (ggml_get_unary_op(tensor)) {
  12934. case GGML_UNARY_OP_ABS:
  12935. {
  12936. if (src0->grad) {
  12937. src0->grad =
  12938. ggml_add_or_set(ctx,
  12939. src0->grad,
  12940. ggml_mul(ctx,
  12941. ggml_sgn(ctx, src0),
  12942. tensor->grad),
  12943. zero_table);
  12944. }
  12945. } break;
  12946. case GGML_UNARY_OP_SGN:
  12947. {
  12948. if (src0->grad) {
  12949. // noop
  12950. }
  12951. } break;
  12952. case GGML_UNARY_OP_NEG:
  12953. {
  12954. if (src0->grad) {
  12955. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12956. }
  12957. } break;
  12958. case GGML_UNARY_OP_STEP:
  12959. {
  12960. if (src0->grad) {
  12961. // noop
  12962. }
  12963. } break;
  12964. case GGML_UNARY_OP_TANH:
  12965. {
  12966. GGML_ASSERT(false); // TODO: not implemented
  12967. } break;
  12968. case GGML_UNARY_OP_ELU:
  12969. {
  12970. GGML_ASSERT(false); // TODO: not implemented
  12971. } break;
  12972. case GGML_UNARY_OP_RELU:
  12973. {
  12974. if (src0->grad) {
  12975. src0->grad = ggml_add_or_set(ctx,
  12976. src0->grad,
  12977. ggml_mul(ctx,
  12978. ggml_step(ctx, src0),
  12979. tensor->grad),
  12980. zero_table);
  12981. }
  12982. } break;
  12983. case GGML_UNARY_OP_GELU:
  12984. {
  12985. GGML_ASSERT(false); // TODO: not implemented
  12986. } break;
  12987. case GGML_UNARY_OP_GELU_QUICK:
  12988. {
  12989. GGML_ASSERT(false); // TODO: not implemented
  12990. } break;
  12991. case GGML_UNARY_OP_SILU:
  12992. {
  12993. // necessary for llama
  12994. if (src0->grad) {
  12995. src0->grad = ggml_add_or_set(ctx,
  12996. src0->grad,
  12997. ggml_silu_back(ctx, src0, tensor->grad),
  12998. zero_table);
  12999. }
  13000. } break;
  13001. default:
  13002. GGML_ASSERT(false);
  13003. }
  13004. } break;
  13005. case GGML_OP_GET_REL_POS:
  13006. case GGML_OP_ADD_REL_POS:
  13007. case GGML_OP_MAP_UNARY:
  13008. case GGML_OP_MAP_BINARY:
  13009. case GGML_OP_MAP_CUSTOM1_F32:
  13010. case GGML_OP_MAP_CUSTOM2_F32:
  13011. case GGML_OP_MAP_CUSTOM3_F32:
  13012. case GGML_OP_MAP_CUSTOM1:
  13013. case GGML_OP_MAP_CUSTOM2:
  13014. case GGML_OP_MAP_CUSTOM3:
  13015. {
  13016. GGML_ASSERT(false); // not supported
  13017. } break;
  13018. case GGML_OP_CROSS_ENTROPY_LOSS:
  13019. {
  13020. if (src0->grad) {
  13021. src0->grad = ggml_add_or_set(ctx,
  13022. src0->grad,
  13023. ggml_cross_entropy_loss_back(ctx,
  13024. src0,
  13025. src1,
  13026. tensor->grad),
  13027. zero_table);
  13028. }
  13029. } break;
  13030. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13031. {
  13032. GGML_ASSERT(false); // not supported
  13033. } break;
  13034. case GGML_OP_NONE:
  13035. {
  13036. // nop
  13037. } break;
  13038. case GGML_OP_COUNT:
  13039. {
  13040. GGML_ASSERT(false);
  13041. } break;
  13042. }
  13043. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13044. if (tensor->src[i] && tensor->src[i]->grad) {
  13045. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13046. }
  13047. }
  13048. }
  13049. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13050. if (node->grad == NULL) {
  13051. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13052. // it can also happen during forward pass, if the user performs computations with constants
  13053. if (node->op != GGML_OP_NONE) {
  13054. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13055. }
  13056. }
  13057. // check if already visited
  13058. if (hash_insert(cgraph->visited_hash_table, node)) {
  13059. return;
  13060. }
  13061. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13062. const int k =
  13063. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13064. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13065. /* unknown order, just fall back to using i*/ i;
  13066. if (node->src[k]) {
  13067. ggml_visit_parents(cgraph, node->src[k]);
  13068. }
  13069. }
  13070. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13071. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13072. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13073. if (strlen(node->name) == 0) {
  13074. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13075. }
  13076. cgraph->leafs[cgraph->n_leafs] = node;
  13077. cgraph->n_leafs++;
  13078. } else {
  13079. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13080. if (strlen(node->name) == 0) {
  13081. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13082. }
  13083. cgraph->nodes[cgraph->n_nodes] = node;
  13084. cgraph->grads[cgraph->n_nodes] = node->grad;
  13085. cgraph->n_nodes++;
  13086. }
  13087. }
  13088. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13089. if (!expand) {
  13090. cgraph->n_nodes = 0;
  13091. cgraph->n_leafs = 0;
  13092. }
  13093. const int n0 = cgraph->n_nodes;
  13094. UNUSED(n0);
  13095. ggml_visit_parents(cgraph, tensor);
  13096. const int n_new = cgraph->n_nodes - n0;
  13097. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13098. if (n_new > 0) {
  13099. // the last added node should always be starting point
  13100. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13101. }
  13102. }
  13103. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13104. ggml_build_forward_impl(cgraph, tensor, true);
  13105. }
  13106. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13107. struct ggml_cgraph result = {
  13108. /*.n_nodes =*/ 0,
  13109. /*.n_leafs =*/ 0,
  13110. /*.nodes =*/ { NULL },
  13111. /*.grads =*/ { NULL },
  13112. /*.leafs =*/ { NULL },
  13113. /*.hash_table =*/ { NULL },
  13114. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13115. /*.perf_runs =*/ 0,
  13116. /*.perf_cycles =*/ 0,
  13117. /*.perf_time_us =*/ 0,
  13118. };
  13119. ggml_build_forward_impl(&result, tensor, false);
  13120. return result;
  13121. }
  13122. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13123. GGML_ASSERT(gf->n_nodes > 0);
  13124. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13125. if (keep) {
  13126. for (int i = 0; i < gf->n_nodes; i++) {
  13127. struct ggml_tensor * node = gf->nodes[i];
  13128. if (node->grad) {
  13129. node->grad = ggml_dup_tensor(ctx, node);
  13130. gf->grads[i] = node->grad;
  13131. }
  13132. }
  13133. }
  13134. // remember original gradients which start with zero values
  13135. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  13136. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  13137. for (int i = 0; i < gf->n_nodes; i++) {
  13138. if (gf->grads[i]) {
  13139. hash_insert(zero_table, gf->grads[i]);
  13140. }
  13141. }
  13142. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13143. struct ggml_tensor * node = gf->nodes[i];
  13144. // inplace operations to add gradients are not created by ggml_compute_backward
  13145. // use allocator to automatically make inplace operations
  13146. if (node->grad) {
  13147. ggml_compute_backward(ctx, node, zero_table);
  13148. }
  13149. }
  13150. for (int i = 0; i < gf->n_nodes; i++) {
  13151. struct ggml_tensor * node = gf->nodes[i];
  13152. if (node->is_param) {
  13153. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13154. ggml_build_forward_expand(gb, node->grad);
  13155. }
  13156. }
  13157. free(zero_table);
  13158. }
  13159. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13160. struct ggml_cgraph result = *gf;
  13161. ggml_build_backward_expand(ctx, gf, &result, keep);
  13162. return result;
  13163. }
  13164. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13165. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13166. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13167. *cgraph = (struct ggml_cgraph) {
  13168. /*.n_nodes =*/ 0,
  13169. /*.n_leafs =*/ 0,
  13170. /*.nodes =*/ { NULL },
  13171. /*.grads =*/ { NULL },
  13172. /*.leafs =*/ { NULL },
  13173. /*.hash_table =*/ { NULL },
  13174. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13175. /*.perf_runs =*/ 0,
  13176. /*.perf_cycles =*/ 0,
  13177. /*.perf_time_us =*/ 0,
  13178. };
  13179. return cgraph;
  13180. }
  13181. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13182. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13183. ggml_build_forward_impl(cgraph, tensor, false);
  13184. return cgraph;
  13185. }
  13186. size_t ggml_graph_overhead(void) {
  13187. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13188. }
  13189. //
  13190. // thread data
  13191. //
  13192. // synchronization is done via busy loops
  13193. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13194. //
  13195. #ifdef __APPLE__
  13196. //#include <os/lock.h>
  13197. //
  13198. //typedef os_unfair_lock ggml_lock_t;
  13199. //
  13200. //#define ggml_lock_init(x) UNUSED(x)
  13201. //#define ggml_lock_destroy(x) UNUSED(x)
  13202. //#define ggml_lock_lock os_unfair_lock_lock
  13203. //#define ggml_lock_unlock os_unfair_lock_unlock
  13204. //
  13205. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13206. typedef int ggml_lock_t;
  13207. #define ggml_lock_init(x) UNUSED(x)
  13208. #define ggml_lock_destroy(x) UNUSED(x)
  13209. #define ggml_lock_lock(x) UNUSED(x)
  13210. #define ggml_lock_unlock(x) UNUSED(x)
  13211. #define GGML_LOCK_INITIALIZER 0
  13212. typedef pthread_t ggml_thread_t;
  13213. #define ggml_thread_create pthread_create
  13214. #define ggml_thread_join pthread_join
  13215. #else
  13216. //typedef pthread_spinlock_t ggml_lock_t;
  13217. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13218. //#define ggml_lock_destroy pthread_spin_destroy
  13219. //#define ggml_lock_lock pthread_spin_lock
  13220. //#define ggml_lock_unlock pthread_spin_unlock
  13221. typedef int ggml_lock_t;
  13222. #define ggml_lock_init(x) UNUSED(x)
  13223. #define ggml_lock_destroy(x) UNUSED(x)
  13224. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13225. #define ggml_lock_lock(x) _mm_pause()
  13226. #else
  13227. #define ggml_lock_lock(x) UNUSED(x)
  13228. #endif
  13229. #define ggml_lock_unlock(x) UNUSED(x)
  13230. #define GGML_LOCK_INITIALIZER 0
  13231. typedef pthread_t ggml_thread_t;
  13232. #define ggml_thread_create pthread_create
  13233. #define ggml_thread_join pthread_join
  13234. #endif
  13235. // Android's libc implementation "bionic" does not support setting affinity
  13236. #if defined(__linux__) && !defined(__BIONIC__)
  13237. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13238. if (!ggml_is_numa()) {
  13239. return;
  13240. }
  13241. // run thread on node_num thread_n / (threads per node)
  13242. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13243. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13244. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13245. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13246. CPU_ZERO_S(setsize, cpus);
  13247. for (size_t i = 0; i < node->n_cpus; ++i) {
  13248. CPU_SET_S(node->cpus[i], setsize, cpus);
  13249. }
  13250. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13251. if (rv) {
  13252. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13253. strerror(rv));
  13254. }
  13255. CPU_FREE(cpus);
  13256. }
  13257. static void clear_numa_thread_affinity(void) {
  13258. if (!ggml_is_numa()) {
  13259. return;
  13260. }
  13261. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13262. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13263. CPU_ZERO_S(setsize, cpus);
  13264. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13265. CPU_SET_S(i, setsize, cpus);
  13266. }
  13267. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13268. if (rv) {
  13269. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13270. strerror(rv));
  13271. }
  13272. CPU_FREE(cpus);
  13273. }
  13274. #else
  13275. // TODO: Windows etc.
  13276. // (the linux implementation may also work on BSD, someone should test)
  13277. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13278. static void clear_numa_thread_affinity(void) {}
  13279. #endif
  13280. struct ggml_compute_state_shared {
  13281. const struct ggml_cgraph * cgraph;
  13282. const struct ggml_cplan * cplan;
  13283. int64_t perf_node_start_cycles;
  13284. int64_t perf_node_start_time_us;
  13285. const int n_threads;
  13286. // synchronization primitives
  13287. atomic_int n_active; // num active threads
  13288. atomic_int node_n; // active graph node
  13289. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13290. void * abort_callback_data;
  13291. };
  13292. struct ggml_compute_state {
  13293. ggml_thread_t thrd;
  13294. int ith;
  13295. struct ggml_compute_state_shared * shared;
  13296. };
  13297. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13298. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13299. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13300. node->perf_runs++;
  13301. node->perf_cycles += cycles_cur;
  13302. node->perf_time_us += time_us_cur;
  13303. }
  13304. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13305. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13306. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13307. const struct ggml_cplan * cplan = state->shared->cplan;
  13308. const int * n_tasks_arr = cplan->n_tasks;
  13309. const int n_threads = state->shared->n_threads;
  13310. set_numa_thread_affinity(state->ith, n_threads);
  13311. int node_n = -1;
  13312. while (true) {
  13313. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13314. state->shared->node_n += 1;
  13315. return (thread_ret_t) GGML_EXIT_ABORTED;
  13316. }
  13317. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13318. // all other threads are finished and spinning
  13319. // do finalize and init here so we don't have synchronize again
  13320. struct ggml_compute_params params = {
  13321. /*.type =*/ GGML_TASK_FINALIZE,
  13322. /*.ith =*/ 0,
  13323. /*.nth =*/ 0,
  13324. /*.wsize =*/ cplan->work_size,
  13325. /*.wdata =*/ cplan->work_data,
  13326. };
  13327. if (node_n != -1) {
  13328. /* FINALIZE */
  13329. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13330. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13331. params.nth = n_tasks_arr[node_n];
  13332. ggml_compute_forward(&params, node);
  13333. }
  13334. ggml_graph_compute_perf_stats_node(node, state->shared);
  13335. }
  13336. // distribute new work or execute it direct if 1T
  13337. while (++node_n < cgraph->n_nodes) {
  13338. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13339. struct ggml_tensor * node = cgraph->nodes[node_n];
  13340. const int n_tasks = n_tasks_arr[node_n];
  13341. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13342. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13343. params.nth = n_tasks;
  13344. /* INIT */
  13345. if (GGML_OP_HAS_INIT[node->op]) {
  13346. params.type = GGML_TASK_INIT;
  13347. ggml_compute_forward(&params, node);
  13348. }
  13349. if (n_tasks == 1) {
  13350. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13351. // they do something more efficient than spinning (?)
  13352. params.type = GGML_TASK_COMPUTE;
  13353. ggml_compute_forward(&params, node);
  13354. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13355. params.type = GGML_TASK_FINALIZE;
  13356. ggml_compute_forward(&params, node);
  13357. }
  13358. ggml_graph_compute_perf_stats_node(node, state->shared);
  13359. } else {
  13360. break;
  13361. }
  13362. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13363. break;
  13364. }
  13365. }
  13366. atomic_store(&state->shared->n_active, n_threads);
  13367. atomic_store(&state->shared->node_n, node_n);
  13368. } else {
  13369. // wait for other threads to finish
  13370. const int last = node_n;
  13371. while (true) {
  13372. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13373. // depending on the workload and the operating system.
  13374. // since it is not clear what is the best approach, it should potentially become user-configurable
  13375. // ref: https://github.com/ggerganov/ggml/issues/291
  13376. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13377. sched_yield();
  13378. #endif
  13379. node_n = atomic_load(&state->shared->node_n);
  13380. if (node_n != last) break;
  13381. };
  13382. }
  13383. // check if we should stop
  13384. if (node_n >= cgraph->n_nodes) break;
  13385. /* COMPUTE */
  13386. struct ggml_tensor * node = cgraph->nodes[node_n];
  13387. const int n_tasks = n_tasks_arr[node_n];
  13388. struct ggml_compute_params params = {
  13389. /*.type =*/ GGML_TASK_COMPUTE,
  13390. /*.ith =*/ state->ith,
  13391. /*.nth =*/ n_tasks,
  13392. /*.wsize =*/ cplan->work_size,
  13393. /*.wdata =*/ cplan->work_data,
  13394. };
  13395. if (state->ith < n_tasks) {
  13396. ggml_compute_forward(&params, node);
  13397. }
  13398. }
  13399. return GGML_EXIT_SUCCESS;
  13400. }
  13401. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13402. if (n_threads <= 0) {
  13403. n_threads = GGML_DEFAULT_N_THREADS;
  13404. }
  13405. size_t work_size = 0;
  13406. struct ggml_cplan cplan;
  13407. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13408. // thread scheduling for the different operations + work buffer size estimation
  13409. for (int i = 0; i < cgraph->n_nodes; i++) {
  13410. int n_tasks = 1;
  13411. struct ggml_tensor * node = cgraph->nodes[i];
  13412. switch (node->op) {
  13413. case GGML_OP_CPY:
  13414. case GGML_OP_DUP:
  13415. {
  13416. n_tasks = n_threads;
  13417. size_t cur = 0;
  13418. if (ggml_is_quantized(node->type)) {
  13419. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13420. }
  13421. work_size = MAX(work_size, cur);
  13422. } break;
  13423. case GGML_OP_ADD:
  13424. case GGML_OP_ADD1:
  13425. {
  13426. n_tasks = n_threads;
  13427. size_t cur = 0;
  13428. if (ggml_is_quantized(node->src[0]->type)) {
  13429. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13430. }
  13431. work_size = MAX(work_size, cur);
  13432. } break;
  13433. case GGML_OP_ACC:
  13434. {
  13435. n_tasks = n_threads;
  13436. size_t cur = 0;
  13437. if (ggml_is_quantized(node->src[0]->type)) {
  13438. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13439. }
  13440. work_size = MAX(work_size, cur);
  13441. } break;
  13442. case GGML_OP_SUB:
  13443. case GGML_OP_DIV:
  13444. case GGML_OP_SQR:
  13445. case GGML_OP_SQRT:
  13446. case GGML_OP_LOG:
  13447. case GGML_OP_SUM:
  13448. case GGML_OP_SUM_ROWS:
  13449. case GGML_OP_MEAN:
  13450. case GGML_OP_ARGMAX:
  13451. case GGML_OP_REPEAT:
  13452. case GGML_OP_REPEAT_BACK:
  13453. {
  13454. n_tasks = 1;
  13455. } break;
  13456. case GGML_OP_UNARY:
  13457. {
  13458. switch (ggml_get_unary_op(node)) {
  13459. case GGML_UNARY_OP_ABS:
  13460. case GGML_UNARY_OP_SGN:
  13461. case GGML_UNARY_OP_NEG:
  13462. case GGML_UNARY_OP_STEP:
  13463. case GGML_UNARY_OP_TANH:
  13464. case GGML_UNARY_OP_ELU:
  13465. case GGML_UNARY_OP_RELU:
  13466. {
  13467. n_tasks = 1;
  13468. } break;
  13469. case GGML_UNARY_OP_GELU:
  13470. case GGML_UNARY_OP_GELU_QUICK:
  13471. case GGML_UNARY_OP_SILU:
  13472. {
  13473. n_tasks = n_threads;
  13474. } break;
  13475. }
  13476. } break;
  13477. case GGML_OP_SILU_BACK:
  13478. case GGML_OP_MUL:
  13479. case GGML_OP_NORM:
  13480. case GGML_OP_RMS_NORM:
  13481. case GGML_OP_RMS_NORM_BACK:
  13482. case GGML_OP_GROUP_NORM:
  13483. {
  13484. n_tasks = n_threads;
  13485. } break;
  13486. case GGML_OP_CONCAT:
  13487. case GGML_OP_MUL_MAT:
  13488. {
  13489. n_tasks = n_threads;
  13490. // TODO: use different scheduling for different matrix sizes
  13491. //const int nr0 = ggml_nrows(node->src[0]);
  13492. //const int nr1 = ggml_nrows(node->src[1]);
  13493. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13494. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13495. size_t cur = 0;
  13496. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13497. #if defined(GGML_USE_CUBLAS)
  13498. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13499. n_tasks = 1; // TODO: this actually is doing nothing
  13500. // the threads are still spinning
  13501. } else
  13502. #elif defined(GGML_USE_CLBLAST)
  13503. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13504. n_tasks = 1; // TODO: this actually is doing nothing
  13505. // the threads are still spinning
  13506. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13507. } else
  13508. #endif
  13509. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13510. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13511. n_tasks = 1; // TODO: this actually is doing nothing
  13512. // the threads are still spinning
  13513. if (node->src[0]->type != GGML_TYPE_F32) {
  13514. // here we need memory just for single 2D matrix from src0
  13515. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13516. }
  13517. } else
  13518. #endif
  13519. if (node->src[1]->type != vec_dot_type) {
  13520. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13521. } else {
  13522. cur = 0;
  13523. }
  13524. work_size = MAX(work_size, cur);
  13525. } break;
  13526. case GGML_OP_OUT_PROD:
  13527. {
  13528. n_tasks = n_threads;
  13529. size_t cur = 0;
  13530. if (ggml_is_quantized(node->src[0]->type)) {
  13531. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13532. }
  13533. work_size = MAX(work_size, cur);
  13534. } break;
  13535. case GGML_OP_SCALE:
  13536. {
  13537. n_tasks = 1;
  13538. } break;
  13539. case GGML_OP_SET:
  13540. case GGML_OP_CONT:
  13541. case GGML_OP_RESHAPE:
  13542. case GGML_OP_VIEW:
  13543. case GGML_OP_PERMUTE:
  13544. case GGML_OP_TRANSPOSE:
  13545. case GGML_OP_GET_ROWS:
  13546. case GGML_OP_GET_ROWS_BACK:
  13547. case GGML_OP_DIAG:
  13548. {
  13549. n_tasks = 1;
  13550. } break;
  13551. case GGML_OP_DIAG_MASK_ZERO:
  13552. case GGML_OP_DIAG_MASK_INF:
  13553. case GGML_OP_SOFT_MAX:
  13554. case GGML_OP_SOFT_MAX_BACK:
  13555. case GGML_OP_ROPE:
  13556. case GGML_OP_ROPE_BACK:
  13557. case GGML_OP_ADD_REL_POS:
  13558. {
  13559. n_tasks = n_threads;
  13560. } break;
  13561. case GGML_OP_ALIBI:
  13562. {
  13563. n_tasks = 1; //TODO
  13564. } break;
  13565. case GGML_OP_CLAMP:
  13566. {
  13567. n_tasks = 1; //TODO
  13568. } break;
  13569. case GGML_OP_CONV_1D:
  13570. {
  13571. n_tasks = n_threads;
  13572. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13573. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13574. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13575. const int64_t ne00 = node->src[0]->ne[0];
  13576. const int64_t ne01 = node->src[0]->ne[1];
  13577. const int64_t ne02 = node->src[0]->ne[2];
  13578. const int64_t ne10 = node->src[1]->ne[0];
  13579. const int64_t ne11 = node->src[1]->ne[1];
  13580. const int64_t ne0 = node->ne[0];
  13581. const int64_t ne1 = node->ne[1];
  13582. const int64_t nk = ne00;
  13583. const int64_t ew0 = nk * ne01;
  13584. UNUSED(ne02);
  13585. UNUSED(ne10);
  13586. UNUSED(ne11);
  13587. size_t cur = 0;
  13588. if (node->src[0]->type == GGML_TYPE_F16 &&
  13589. node->src[1]->type == GGML_TYPE_F32) {
  13590. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13591. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13592. node->src[1]->type == GGML_TYPE_F32) {
  13593. cur = sizeof(float)*(ne0*ne1*ew0);
  13594. } else {
  13595. GGML_ASSERT(false);
  13596. }
  13597. work_size = MAX(work_size, cur);
  13598. } break;
  13599. case GGML_OP_CONV_1D_STAGE_0:
  13600. {
  13601. n_tasks = n_threads;
  13602. } break;
  13603. case GGML_OP_CONV_1D_STAGE_1:
  13604. {
  13605. n_tasks = n_threads;
  13606. } break;
  13607. case GGML_OP_CONV_TRANSPOSE_1D:
  13608. {
  13609. n_tasks = n_threads;
  13610. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13611. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13612. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13613. const int64_t ne00 = node->src[0]->ne[0]; // K
  13614. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13615. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13616. const int64_t ne10 = node->src[1]->ne[0]; // L
  13617. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13618. size_t cur = 0;
  13619. if (node->src[0]->type == GGML_TYPE_F16 &&
  13620. node->src[1]->type == GGML_TYPE_F32) {
  13621. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13622. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13623. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13624. node->src[1]->type == GGML_TYPE_F32) {
  13625. cur += sizeof(float)*ne00*ne01*ne02;
  13626. cur += sizeof(float)*ne10*ne11;
  13627. } else {
  13628. GGML_ASSERT(false);
  13629. }
  13630. work_size = MAX(work_size, cur);
  13631. } break;
  13632. case GGML_OP_CONV_2D:
  13633. {
  13634. n_tasks = n_threads;
  13635. const int64_t ne00 = node->src[0]->ne[0]; // W
  13636. const int64_t ne01 = node->src[0]->ne[1]; // H
  13637. const int64_t ne02 = node->src[0]->ne[2]; // C
  13638. const int64_t ne03 = node->src[0]->ne[3]; // N
  13639. const int64_t ne10 = node->src[1]->ne[0]; // W
  13640. const int64_t ne11 = node->src[1]->ne[1]; // H
  13641. const int64_t ne12 = node->src[1]->ne[2]; // C
  13642. const int64_t ne0 = node->ne[0];
  13643. const int64_t ne1 = node->ne[1];
  13644. const int64_t ne2 = node->ne[2];
  13645. const int64_t ne3 = node->ne[3];
  13646. const int64_t nk = ne00*ne01;
  13647. const int64_t ew0 = nk * ne02;
  13648. UNUSED(ne03);
  13649. UNUSED(ne2);
  13650. size_t cur = 0;
  13651. if (node->src[0]->type == GGML_TYPE_F16 &&
  13652. node->src[1]->type == GGML_TYPE_F32) {
  13653. // im2col: [N*OH*OW, IC*KH*KW]
  13654. cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0);
  13655. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13656. node->src[1]->type == GGML_TYPE_F32) {
  13657. cur = sizeof(float)* (ne10*ne11*ne12);
  13658. } else {
  13659. GGML_ASSERT(false);
  13660. }
  13661. work_size = MAX(work_size, cur);
  13662. } break;
  13663. case GGML_OP_CONV_2D_STAGE_0:
  13664. {
  13665. n_tasks = n_threads;
  13666. } break;
  13667. case GGML_OP_CONV_2D_STAGE_1:
  13668. {
  13669. n_tasks = n_threads;
  13670. } break;
  13671. case GGML_OP_CONV_TRANSPOSE_2D:
  13672. {
  13673. n_tasks = n_threads;
  13674. const int64_t ne00 = node->src[0]->ne[0]; // W
  13675. const int64_t ne01 = node->src[0]->ne[1]; // H
  13676. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13677. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13678. const int64_t ne10 = node->src[1]->ne[0]; // W
  13679. const int64_t ne11 = node->src[1]->ne[1]; // H
  13680. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13681. size_t cur = 0;
  13682. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13683. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13684. work_size = MAX(work_size, cur);
  13685. } break;
  13686. case GGML_OP_POOL_1D:
  13687. case GGML_OP_POOL_2D:
  13688. {
  13689. n_tasks = 1;
  13690. } break;
  13691. case GGML_OP_UPSCALE:
  13692. {
  13693. n_tasks = n_threads;
  13694. } break;
  13695. case GGML_OP_FLASH_ATTN:
  13696. {
  13697. n_tasks = n_threads;
  13698. size_t cur = 0;
  13699. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13700. if (node->src[1]->type == GGML_TYPE_F32) {
  13701. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13702. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13703. }
  13704. if (node->src[1]->type == GGML_TYPE_F16) {
  13705. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13706. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13707. }
  13708. work_size = MAX(work_size, cur);
  13709. } break;
  13710. case GGML_OP_FLASH_FF:
  13711. {
  13712. n_tasks = n_threads;
  13713. size_t cur = 0;
  13714. if (node->src[1]->type == GGML_TYPE_F32) {
  13715. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13716. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13717. }
  13718. if (node->src[1]->type == GGML_TYPE_F16) {
  13719. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13720. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13721. }
  13722. work_size = MAX(work_size, cur);
  13723. } break;
  13724. case GGML_OP_FLASH_ATTN_BACK:
  13725. {
  13726. n_tasks = n_threads;
  13727. size_t cur = 0;
  13728. const int64_t D = node->src[0]->ne[0];
  13729. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13730. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13731. if (node->src[1]->type == GGML_TYPE_F32) {
  13732. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13733. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13734. }
  13735. if (node->src[1]->type == GGML_TYPE_F16) {
  13736. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13737. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13738. }
  13739. work_size = MAX(work_size, cur);
  13740. } break;
  13741. case GGML_OP_WIN_PART:
  13742. case GGML_OP_WIN_UNPART:
  13743. case GGML_OP_GET_REL_POS:
  13744. case GGML_OP_MAP_UNARY:
  13745. case GGML_OP_MAP_BINARY:
  13746. case GGML_OP_MAP_CUSTOM1_F32:
  13747. case GGML_OP_MAP_CUSTOM2_F32:
  13748. case GGML_OP_MAP_CUSTOM3_F32:
  13749. {
  13750. n_tasks = 1;
  13751. } break;
  13752. case GGML_OP_MAP_CUSTOM1:
  13753. {
  13754. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13755. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13756. n_tasks = n_threads;
  13757. } else {
  13758. n_tasks = MIN(p->n_tasks, n_threads);
  13759. }
  13760. } break;
  13761. case GGML_OP_MAP_CUSTOM2:
  13762. {
  13763. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13764. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13765. n_tasks = n_threads;
  13766. } else {
  13767. n_tasks = MIN(p->n_tasks, n_threads);
  13768. }
  13769. } break;
  13770. case GGML_OP_MAP_CUSTOM3:
  13771. {
  13772. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13773. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13774. n_tasks = n_threads;
  13775. } else {
  13776. n_tasks = MIN(p->n_tasks, n_threads);
  13777. }
  13778. } break;
  13779. case GGML_OP_CROSS_ENTROPY_LOSS:
  13780. {
  13781. n_tasks = n_threads;
  13782. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13783. work_size = MAX(work_size, cur);
  13784. } break;
  13785. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13786. {
  13787. n_tasks = n_threads;
  13788. } break;
  13789. case GGML_OP_NONE:
  13790. {
  13791. n_tasks = 1;
  13792. } break;
  13793. case GGML_OP_COUNT:
  13794. {
  13795. GGML_ASSERT(false);
  13796. } break;
  13797. }
  13798. cplan.n_tasks[i] = n_tasks;
  13799. }
  13800. if (work_size > 0) {
  13801. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13802. }
  13803. cplan.n_threads = n_threads;
  13804. cplan.work_size = work_size;
  13805. cplan.work_data = NULL;
  13806. return cplan;
  13807. }
  13808. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13809. {
  13810. GGML_ASSERT(cplan);
  13811. GGML_ASSERT(cplan->n_threads > 0);
  13812. if (cplan->work_size > 0) {
  13813. GGML_ASSERT(cplan->work_data);
  13814. }
  13815. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13816. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13817. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13818. }
  13819. }
  13820. }
  13821. const int n_threads = cplan->n_threads;
  13822. struct ggml_compute_state_shared state_shared = {
  13823. /*.cgraph =*/ cgraph,
  13824. /*.cgraph_plan =*/ cplan,
  13825. /*.perf_node_start_cycles =*/ 0,
  13826. /*.perf_node_start_time_us =*/ 0,
  13827. /*.n_threads =*/ n_threads,
  13828. /*.n_active =*/ n_threads,
  13829. /*.node_n =*/ -1,
  13830. /*.abort_callback =*/ NULL,
  13831. /*.abort_callback_data =*/ NULL,
  13832. };
  13833. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13834. // create thread pool
  13835. if (n_threads > 1) {
  13836. for (int j = 1; j < n_threads; ++j) {
  13837. workers[j] = (struct ggml_compute_state) {
  13838. .thrd = 0,
  13839. .ith = j,
  13840. .shared = &state_shared,
  13841. };
  13842. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13843. GGML_ASSERT(rc == 0);
  13844. UNUSED(rc);
  13845. }
  13846. }
  13847. workers[0].ith = 0;
  13848. workers[0].shared = &state_shared;
  13849. const int64_t perf_start_cycles = ggml_perf_cycles();
  13850. const int64_t perf_start_time_us = ggml_perf_time_us();
  13851. // this is a work thread too
  13852. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13853. // don't leave affinity set on the main thread
  13854. clear_numa_thread_affinity();
  13855. // join or kill thread pool
  13856. if (n_threads > 1) {
  13857. for (int j = 1; j < n_threads; j++) {
  13858. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13859. GGML_ASSERT(rc == 0);
  13860. }
  13861. }
  13862. // performance stats (graph)
  13863. {
  13864. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13865. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13866. cgraph->perf_runs++;
  13867. cgraph->perf_cycles += perf_cycles_cur;
  13868. cgraph->perf_time_us += perf_time_us_cur;
  13869. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13870. __func__, cgraph->perf_runs,
  13871. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13872. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13873. (double) perf_time_us_cur / 1000.0,
  13874. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13875. }
  13876. return compute_status;
  13877. }
  13878. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13879. for (int i = 0; i < cgraph->n_nodes; i++) {
  13880. struct ggml_tensor * grad = cgraph->grads[i];
  13881. if (grad) {
  13882. ggml_set_zero(grad);
  13883. }
  13884. }
  13885. }
  13886. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13887. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13888. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13889. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13890. ggml_graph_compute(cgraph, &cplan);
  13891. }
  13892. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13893. for (int i = 0; i < cgraph->n_leafs; i++) {
  13894. struct ggml_tensor * leaf = cgraph->leafs[i];
  13895. if (strcmp(leaf->name, name) == 0) {
  13896. return leaf;
  13897. }
  13898. }
  13899. for (int i = 0; i < cgraph->n_nodes; i++) {
  13900. struct ggml_tensor * node = cgraph->nodes[i];
  13901. if (strcmp(node->name, name) == 0) {
  13902. return node;
  13903. }
  13904. }
  13905. return NULL;
  13906. }
  13907. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13908. const int64_t * ne = tensor->ne;
  13909. const size_t * nb = tensor->nb;
  13910. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13911. ggml_type_name(tensor->type),
  13912. ggml_op_name (tensor->op),
  13913. tensor->n_dims,
  13914. ne[0], ne[1], ne[2], ne[3],
  13915. nb[0], nb[1], nb[2], nb[3],
  13916. tensor->data,
  13917. tensor->name);
  13918. }
  13919. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13920. const int64_t * ne = tensor->ne;
  13921. const size_t * nb = tensor->nb;
  13922. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13923. arg,
  13924. ggml_type_name(tensor->type),
  13925. ggml_op_name (tensor->op),
  13926. tensor->n_dims,
  13927. ne[0], ne[1], ne[2], ne[3],
  13928. nb[0], nb[1], nb[2], nb[3],
  13929. tensor->data,
  13930. tensor->name);
  13931. }
  13932. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13933. uint64_t size_eval = 0;
  13934. // compute size of intermediate results
  13935. // TODO: does not take into account scratch buffers !!!!
  13936. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13937. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13938. }
  13939. // print
  13940. {
  13941. FILE * fout = stdout;
  13942. fprintf(fout, "\n");
  13943. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13944. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13945. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13946. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13947. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13948. // header
  13949. fprintf(fout, "\n");
  13950. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13951. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13952. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13953. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13954. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13955. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13956. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13957. }
  13958. // header
  13959. fprintf(fout, "\n");
  13960. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13961. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13962. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13963. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13964. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13965. if (cgraph->nodes[i]->src[j]) {
  13966. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13967. }
  13968. }
  13969. fprintf(fout, "\n");
  13970. }
  13971. fprintf(fout, "\n");
  13972. }
  13973. // write binary data
  13974. {
  13975. FILE * fout = fopen(fname, "wb");
  13976. if (!fout) {
  13977. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13978. return;
  13979. }
  13980. // header
  13981. {
  13982. const uint32_t magic = GGML_FILE_MAGIC;
  13983. const uint32_t version = GGML_FILE_VERSION;
  13984. const uint32_t n_leafs = cgraph->n_leafs;
  13985. const uint32_t nodes = cgraph->n_nodes;
  13986. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13987. fwrite(&version, sizeof(uint32_t), 1, fout);
  13988. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13989. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13990. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13991. }
  13992. // leafs
  13993. {
  13994. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13995. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13996. const uint32_t type = tensor->type;
  13997. const uint32_t op = tensor->op;
  13998. const uint32_t n_dims = tensor->n_dims;
  13999. fwrite(&type, sizeof(uint32_t), 1, fout);
  14000. fwrite(&op, sizeof(uint32_t), 1, fout);
  14001. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14002. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14003. const uint64_t ne = tensor->ne[j];
  14004. const uint64_t nb = tensor->nb[j];
  14005. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14006. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14007. }
  14008. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14009. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14010. // dump the data
  14011. // TODO: pad this to 32 byte boundary
  14012. {
  14013. const size_t size = ggml_nbytes(tensor);
  14014. fwrite(tensor->data, sizeof(char), size, fout);
  14015. }
  14016. }
  14017. }
  14018. // nodes
  14019. {
  14020. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14021. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14022. const uint32_t type = tensor->type;
  14023. const uint32_t op = tensor->op;
  14024. const uint32_t n_dims = tensor->n_dims;
  14025. fwrite(&type, sizeof(uint32_t), 1, fout);
  14026. fwrite(&op, sizeof(uint32_t), 1, fout);
  14027. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14028. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14029. const uint64_t ne = tensor->ne[j];
  14030. const uint64_t nb = tensor->nb[j];
  14031. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14032. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14033. }
  14034. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14035. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14036. // output the op arguments
  14037. {
  14038. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14039. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14040. args[j] = tensor->src[j];
  14041. }
  14042. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14043. if (args[j]) {
  14044. int32_t idx = -1;
  14045. // check if leaf
  14046. {
  14047. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14048. if (args[j] == cgraph->leafs[k]) {
  14049. idx = k;
  14050. break;
  14051. }
  14052. }
  14053. }
  14054. // check if node
  14055. if (idx == -1) {
  14056. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14057. if (args[j] == cgraph->nodes[k]) {
  14058. idx = GGML_MAX_NODES + k;
  14059. break;
  14060. }
  14061. }
  14062. }
  14063. if (idx == -1) {
  14064. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14065. fclose(fout);
  14066. return;
  14067. }
  14068. fwrite(&idx, sizeof(int32_t), 1, fout);
  14069. } else {
  14070. const int32_t nul = -1;
  14071. fwrite(&nul, sizeof(int32_t), 1, fout);
  14072. }
  14073. }
  14074. }
  14075. }
  14076. }
  14077. fclose(fout);
  14078. }
  14079. }
  14080. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14081. assert(*ctx_data == NULL);
  14082. assert(*ctx_eval == NULL);
  14083. struct ggml_cgraph result = { 0 };
  14084. struct ggml_tensor * data = NULL;
  14085. // read file into data
  14086. {
  14087. FILE * fin = fopen(fname, "rb");
  14088. if (!fin) {
  14089. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14090. return result;
  14091. }
  14092. size_t fsize = 0;
  14093. fseek(fin, 0, SEEK_END);
  14094. fsize = ftell(fin);
  14095. fseek(fin, 0, SEEK_SET);
  14096. // create the data context
  14097. {
  14098. const size_t overhead = 1*ggml_tensor_overhead();
  14099. struct ggml_init_params params = {
  14100. .mem_size = fsize + overhead,
  14101. .mem_buffer = NULL,
  14102. .no_alloc = false,
  14103. };
  14104. *ctx_data = ggml_init(params);
  14105. if (!*ctx_data) {
  14106. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14107. fclose(fin);
  14108. return result;
  14109. }
  14110. }
  14111. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14112. {
  14113. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14114. if (ret != fsize) {
  14115. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14116. fclose(fin);
  14117. return result;
  14118. }
  14119. }
  14120. fclose(fin);
  14121. }
  14122. // populate result
  14123. {
  14124. char * ptr = (char *) data->data;
  14125. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14126. if (magic != GGML_FILE_MAGIC) {
  14127. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14128. return result;
  14129. }
  14130. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14131. if (version != GGML_FILE_VERSION) {
  14132. fprintf(stderr, "%s: invalid version number\n", __func__);
  14133. return result;
  14134. }
  14135. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14136. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14137. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14138. result.n_leafs = n_leafs;
  14139. result.n_nodes = n_nodes;
  14140. // create the data context
  14141. {
  14142. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14143. struct ggml_init_params params = {
  14144. .mem_size = size_eval + overhead,
  14145. .mem_buffer = NULL,
  14146. .no_alloc = true,
  14147. };
  14148. *ctx_eval = ggml_init(params);
  14149. if (!*ctx_eval) {
  14150. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14151. return result;
  14152. }
  14153. }
  14154. // leafs
  14155. {
  14156. uint32_t type;
  14157. uint32_t op;
  14158. uint32_t n_dims;
  14159. for (uint32_t i = 0; i < n_leafs; ++i) {
  14160. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14161. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14162. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14163. int64_t ne[GGML_MAX_DIMS];
  14164. size_t nb[GGML_MAX_DIMS];
  14165. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14166. uint64_t ne_cur;
  14167. uint64_t nb_cur;
  14168. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14169. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14170. ne[j] = ne_cur;
  14171. nb[j] = nb_cur;
  14172. }
  14173. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14174. tensor->op = (enum ggml_op) op;
  14175. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14176. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14177. tensor->data = (void *) ptr;
  14178. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14179. tensor->nb[j] = nb[j];
  14180. }
  14181. result.leafs[i] = tensor;
  14182. ptr += ggml_nbytes(tensor);
  14183. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14184. }
  14185. }
  14186. ggml_set_no_alloc(*ctx_eval, false);
  14187. // nodes
  14188. {
  14189. uint32_t type;
  14190. uint32_t op;
  14191. uint32_t n_dims;
  14192. for (uint32_t i = 0; i < n_nodes; ++i) {
  14193. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14194. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14195. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14196. enum ggml_op eop = (enum ggml_op) op;
  14197. int64_t ne[GGML_MAX_DIMS];
  14198. size_t nb[GGML_MAX_DIMS];
  14199. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14200. uint64_t ne_cur;
  14201. uint64_t nb_cur;
  14202. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14203. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14204. ne[j] = ne_cur;
  14205. nb[j] = nb_cur;
  14206. }
  14207. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14208. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14209. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14210. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14211. // parse args
  14212. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14213. const int32_t arg_idx = ptr_arg_idx[j];
  14214. if (arg_idx == -1) {
  14215. continue;
  14216. }
  14217. if (arg_idx < GGML_MAX_NODES) {
  14218. args[j] = result.leafs[arg_idx];
  14219. } else {
  14220. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14221. }
  14222. }
  14223. // create the tensor
  14224. // "view" operations are handled differently
  14225. // TODO: handle inplace ops - currently a copy is always made
  14226. struct ggml_tensor * tensor = NULL;
  14227. switch (eop) {
  14228. // TODO: implement other view ops
  14229. case GGML_OP_RESHAPE:
  14230. {
  14231. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14232. } break;
  14233. case GGML_OP_VIEW:
  14234. {
  14235. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14236. size_t offs;
  14237. memcpy(&offs, ptr_op_params, sizeof(offs));
  14238. tensor->data = ((char *) tensor->data) + offs;
  14239. } break;
  14240. case GGML_OP_TRANSPOSE:
  14241. {
  14242. tensor = ggml_transpose(*ctx_eval, args[0]);
  14243. } break;
  14244. case GGML_OP_PERMUTE:
  14245. {
  14246. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14247. } break;
  14248. default:
  14249. {
  14250. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14251. tensor->op = eop;
  14252. } break;
  14253. }
  14254. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14255. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14256. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14257. tensor->nb[j] = nb[j];
  14258. }
  14259. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14260. tensor->src[j] = args[j];
  14261. }
  14262. result.nodes[i] = tensor;
  14263. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14264. }
  14265. }
  14266. }
  14267. return result;
  14268. }
  14269. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14270. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14271. GGML_PRINT("=== GRAPH ===\n");
  14272. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14273. for (int i = 0; i < cgraph->n_nodes; i++) {
  14274. struct ggml_tensor * node = cgraph->nodes[i];
  14275. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14276. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14277. i,
  14278. node->ne[0], node->ne[1], node->ne[2],
  14279. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14280. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14281. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14282. (double) node->perf_time_us / 1000.0,
  14283. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14284. }
  14285. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14286. for (int i = 0; i < cgraph->n_leafs; i++) {
  14287. struct ggml_tensor * node = cgraph->leafs[i];
  14288. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14289. i,
  14290. node->ne[0], node->ne[1],
  14291. ggml_op_name(node->op),
  14292. ggml_get_name(node));
  14293. }
  14294. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14295. if (perf_total_per_op_us[i] == 0) {
  14296. continue;
  14297. }
  14298. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14299. }
  14300. GGML_PRINT("========================================\n");
  14301. }
  14302. // check if node is part of the graph
  14303. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14304. if (cgraph == NULL) {
  14305. return true;
  14306. }
  14307. for (int i = 0; i < cgraph->n_nodes; i++) {
  14308. if (cgraph->nodes[i] == node) {
  14309. return true;
  14310. }
  14311. }
  14312. return false;
  14313. }
  14314. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14315. for (int i = 0; i < cgraph->n_nodes; i++) {
  14316. struct ggml_tensor * parent = cgraph->nodes[i];
  14317. if (parent->grad == node) {
  14318. return parent;
  14319. }
  14320. }
  14321. return NULL;
  14322. }
  14323. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14324. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14325. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14326. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14327. gparent0 ? (void *) gparent0 : (void *) parent,
  14328. gparent0 ? "g" : "x",
  14329. gparent ? (void *) gparent : (void *) node,
  14330. gparent ? "g" : "x",
  14331. gparent ? "empty" : "vee",
  14332. gparent ? "dashed" : "solid",
  14333. label);
  14334. }
  14335. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14336. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14337. (void *) parent, "x",
  14338. (void *) node, "x",
  14339. label);
  14340. }
  14341. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14342. char color[16];
  14343. FILE * fp = fopen(filename, "w");
  14344. GGML_ASSERT(fp);
  14345. fprintf(fp, "digraph G {\n");
  14346. fprintf(fp, " newrank = true;\n");
  14347. fprintf(fp, " rankdir = LR;\n");
  14348. for (int i = 0; i < gb->n_nodes; i++) {
  14349. struct ggml_tensor * node = gb->nodes[i];
  14350. if (ggml_graph_get_parent(gb, node) != NULL) {
  14351. continue;
  14352. }
  14353. if (node->is_param) {
  14354. snprintf(color, sizeof(color), "yellow");
  14355. } else if (node->grad) {
  14356. if (ggml_graph_find(gf, node)) {
  14357. snprintf(color, sizeof(color), "green");
  14358. } else {
  14359. snprintf(color, sizeof(color), "lightblue");
  14360. }
  14361. } else {
  14362. snprintf(color, sizeof(color), "white");
  14363. }
  14364. fprintf(fp, " \"%p\" [ "
  14365. "style = filled; fillcolor = %s; shape = record; "
  14366. "label=\"",
  14367. (void *) node, color);
  14368. if (strlen(node->name) > 0) {
  14369. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14370. } else {
  14371. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14372. }
  14373. if (node->n_dims == 2) {
  14374. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14375. } else {
  14376. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14377. }
  14378. if (node->grad) {
  14379. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14380. } else {
  14381. fprintf(fp, "\"; ]\n");
  14382. }
  14383. }
  14384. for (int i = 0; i < gb->n_leafs; i++) {
  14385. struct ggml_tensor * node = gb->leafs[i];
  14386. snprintf(color, sizeof(color), "pink");
  14387. fprintf(fp, " \"%p\" [ "
  14388. "style = filled; fillcolor = %s; shape = record; "
  14389. "label=\"<x>",
  14390. (void *) node, color);
  14391. if (strlen(node->name) > 0) {
  14392. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14393. } else {
  14394. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14395. }
  14396. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14397. if (ggml_nelements(node) < 5) {
  14398. fprintf(fp, " | (");
  14399. for (int j = 0; j < ggml_nelements(node); j++) {
  14400. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14401. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14402. }
  14403. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14404. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14405. }
  14406. else {
  14407. fprintf(fp, "#");
  14408. }
  14409. if (j < ggml_nelements(node) - 1) {
  14410. fprintf(fp, ", ");
  14411. }
  14412. }
  14413. fprintf(fp, ")");
  14414. }
  14415. fprintf(fp, "\"; ]\n");
  14416. }
  14417. for (int i = 0; i < gb->n_nodes; i++) {
  14418. struct ggml_tensor * node = gb->nodes[i];
  14419. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14420. if (node->src[j]) {
  14421. char label[16];
  14422. snprintf(label, sizeof(label), "src %d", j);
  14423. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14424. }
  14425. }
  14426. }
  14427. for (int i = 0; i < gb->n_leafs; i++) {
  14428. struct ggml_tensor * node = gb->leafs[i];
  14429. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14430. if (node->src[j]) {
  14431. char label[16];
  14432. snprintf(label, sizeof(label), "src %d", j);
  14433. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14434. }
  14435. }
  14436. }
  14437. fprintf(fp, "}\n");
  14438. fclose(fp);
  14439. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14440. }
  14441. ////////////////////////////////////////////////////////////////////////////////
  14442. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14443. int i = 0;
  14444. for (int p = 0; p < np; ++p) {
  14445. const int64_t ne = ggml_nelements(ps[p]) ;
  14446. // TODO: add function to set tensor from array
  14447. for (int64_t j = 0; j < ne; ++j) {
  14448. ggml_set_f32_1d(ps[p], j, x[i++]);
  14449. }
  14450. }
  14451. }
  14452. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14453. int i = 0;
  14454. for (int p = 0; p < np; ++p) {
  14455. const int64_t ne = ggml_nelements(ps[p]) ;
  14456. // TODO: add function to get all elements at once
  14457. for (int64_t j = 0; j < ne; ++j) {
  14458. x[i++] = ggml_get_f32_1d(ps[p], j);
  14459. }
  14460. }
  14461. }
  14462. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14463. int64_t i = 0;
  14464. for (int p = 0; p < np; ++p) {
  14465. const int64_t ne = ggml_nelements(ps[p]) ;
  14466. // TODO: add function to get all elements at once
  14467. for (int64_t j = 0; j < ne; ++j) {
  14468. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14469. }
  14470. }
  14471. }
  14472. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14473. int64_t i = 0;
  14474. for (int p = 0; p < np; ++p) {
  14475. const int64_t ne = ggml_nelements(ps[p]) ;
  14476. // TODO: add function to get all elements at once
  14477. for (int64_t j = 0; j < ne; ++j) {
  14478. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14479. }
  14480. }
  14481. }
  14482. //
  14483. // ADAM
  14484. //
  14485. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14486. //
  14487. static enum ggml_opt_result ggml_opt_adam(
  14488. struct ggml_context * ctx,
  14489. struct ggml_opt_context * opt,
  14490. struct ggml_opt_params params,
  14491. struct ggml_tensor * f,
  14492. struct ggml_cgraph * gf,
  14493. struct ggml_cgraph * gb,
  14494. ggml_opt_callback callback,
  14495. void * callback_data) {
  14496. GGML_ASSERT(ggml_is_scalar(f));
  14497. // these will store the parameters we want to optimize
  14498. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14499. int np = 0;
  14500. int64_t nx = 0;
  14501. for (int i = 0; i < gf->n_nodes; ++i) {
  14502. if (gf->nodes[i]->is_param) {
  14503. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14504. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14505. ps[np++] = gf->nodes[i];
  14506. nx += ggml_nelements(gf->nodes[i]);
  14507. }
  14508. }
  14509. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14510. int iter = opt->iter;
  14511. ggml_opt_init(opt->ctx, opt, params, nx);
  14512. opt->iter = iter;
  14513. }
  14514. // constants
  14515. float sched = params.adam.sched;
  14516. const float alpha = params.adam.alpha;
  14517. const float decay = params.adam.decay * alpha;
  14518. const float beta1 = params.adam.beta1;
  14519. const float beta2 = params.adam.beta2;
  14520. const float eps = params.adam.eps;
  14521. const float gclip = params.adam.gclip;
  14522. const int decay_min_ndim = params.adam.decay_min_ndim;
  14523. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14524. const float accum_norm = 1.0f / (float) n_accum;
  14525. float * g = opt->adam.g->data; // gradients
  14526. float * m = opt->adam.m->data; // first moment
  14527. float * v = opt->adam.v->data; // second moment
  14528. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14529. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14530. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14531. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14532. bool cancel = false;
  14533. // compute the function value
  14534. float fx = 0;
  14535. ggml_set_zero(opt->adam.g);
  14536. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14537. if (callback) {
  14538. callback(callback_data, accum_step, &sched, &cancel);
  14539. if (cancel) {
  14540. return GGML_OPT_CANCEL;
  14541. }
  14542. }
  14543. // ggml_graph_reset (gf);
  14544. ggml_set_f32 (f->grad, 1.0f);
  14545. ggml_graph_compute(gb, &cplan);
  14546. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14547. fx += ggml_get_f32_1d(f, 0);
  14548. }
  14549. fx *= accum_norm;
  14550. opt->adam.fx_prev = fx;
  14551. opt->adam.fx_best = opt->adam.fx_prev;
  14552. if (pf) {
  14553. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14554. }
  14555. opt->loss_before = opt->adam.fx_prev;
  14556. opt->loss_after = opt->adam.fx_prev;
  14557. // initialize
  14558. if (opt->just_initialized) {
  14559. opt->adam.n_no_improvement = 0;
  14560. opt->just_initialized = false;
  14561. }
  14562. float * fx_best = &opt->adam.fx_best;
  14563. float * fx_prev = &opt->adam.fx_prev;
  14564. int * n_no_improvement = &opt->adam.n_no_improvement;
  14565. int iter0 = opt->iter;
  14566. // run the optimizer
  14567. for (int t = 0; t < params.adam.n_iter; ++t) {
  14568. opt->iter = iter0 + t + 1;
  14569. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14570. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14571. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14572. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14573. for (int i = 0; i < np; ++i) {
  14574. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14575. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14576. }
  14577. const int64_t t_start_wall = ggml_time_us();
  14578. const int64_t t_start_cpu = ggml_cycles();
  14579. UNUSED(t_start_wall);
  14580. UNUSED(t_start_cpu);
  14581. {
  14582. float gnorm = 1.0f;
  14583. if (gclip > 0.0f) {
  14584. // gradient clipping
  14585. ggml_float sum = 0.0;
  14586. for (int64_t i = 0; i < nx; ++i) {
  14587. sum += (ggml_float)(g[i]*g[i]);
  14588. }
  14589. ggml_float norm = sqrt(sum);
  14590. if (norm > (ggml_float) gclip) {
  14591. gnorm = (float) ((ggml_float) gclip / norm);
  14592. }
  14593. }
  14594. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14595. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14596. int64_t i = 0;
  14597. for (int p = 0; p < np; ++p) {
  14598. const int64_t ne = ggml_nelements(ps[p]);
  14599. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14600. for (int64_t j = 0; j < ne; ++j) {
  14601. float x = ggml_get_f32_1d(ps[p], j);
  14602. float g_ = g[i]*gnorm;
  14603. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14604. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14605. float mh = m[i]*beta1h;
  14606. float vh = v[i]*beta2h;
  14607. vh = sqrtf(vh) + eps;
  14608. x = x*(1.0f - p_decay) - mh/vh;
  14609. ggml_set_f32_1d(ps[p], j, x);
  14610. ++i;
  14611. }
  14612. }
  14613. }
  14614. fx = 0;
  14615. ggml_set_zero(opt->adam.g);
  14616. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14617. if (callback) {
  14618. callback(callback_data, accum_step, &sched, &cancel);
  14619. if (cancel) {
  14620. return GGML_OPT_CANCEL;;
  14621. }
  14622. }
  14623. // ggml_graph_reset (gf);
  14624. ggml_set_f32 (f->grad, 1.0f);
  14625. ggml_graph_compute(gb, &cplan);
  14626. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14627. fx += ggml_get_f32_1d(f, 0);
  14628. }
  14629. fx *= accum_norm;
  14630. opt->loss_after = fx;
  14631. // check convergence
  14632. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14633. GGML_PRINT_DEBUG("converged\n");
  14634. return GGML_OPT_OK;
  14635. }
  14636. // delta-based convergence test
  14637. if (pf != NULL) {
  14638. // need at least params.past iterations to start checking for convergence
  14639. if (params.past <= iter0 + t) {
  14640. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14641. if (fabsf(rate) < params.delta) {
  14642. return GGML_OPT_OK;
  14643. }
  14644. }
  14645. pf[(iter0 + t)%params.past] = fx;
  14646. }
  14647. // check for improvement
  14648. if (params.max_no_improvement > 0) {
  14649. if (fx_best[0] > fx) {
  14650. fx_best[0] = fx;
  14651. n_no_improvement[0] = 0;
  14652. } else {
  14653. ++n_no_improvement[0];
  14654. if (n_no_improvement[0] >= params.max_no_improvement) {
  14655. return GGML_OPT_OK;
  14656. }
  14657. }
  14658. }
  14659. fx_prev[0] = fx;
  14660. {
  14661. const int64_t t_end_cpu = ggml_cycles();
  14662. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14663. UNUSED(t_end_cpu);
  14664. const int64_t t_end_wall = ggml_time_us();
  14665. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14666. UNUSED(t_end_wall);
  14667. }
  14668. }
  14669. return GGML_OPT_DID_NOT_CONVERGE;
  14670. }
  14671. //
  14672. // L-BFGS
  14673. //
  14674. // the L-BFGS implementation below is based on the following implementation:
  14675. //
  14676. // https://github.com/chokkan/liblbfgs
  14677. //
  14678. struct ggml_lbfgs_iteration_data {
  14679. float alpha;
  14680. float ys;
  14681. float * s;
  14682. float * y;
  14683. };
  14684. static enum ggml_opt_result linesearch_backtracking(
  14685. const struct ggml_opt_params * params,
  14686. int nx,
  14687. float * x,
  14688. float * fx,
  14689. float * g,
  14690. float * d,
  14691. float * step,
  14692. const float * xp,
  14693. struct ggml_tensor * f,
  14694. struct ggml_cgraph * gb,
  14695. struct ggml_cplan * cplan,
  14696. const int np,
  14697. struct ggml_tensor * ps[],
  14698. bool * cancel,
  14699. ggml_opt_callback callback,
  14700. void * callback_data) {
  14701. int count = 0;
  14702. float width = 0.0f;
  14703. float dg = 0.0f;
  14704. float finit = 0.0f;
  14705. float dginit = 0.0f;
  14706. float dgtest = 0.0f;
  14707. const float dec = 0.5f;
  14708. const float inc = 2.1f;
  14709. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14710. const float accum_norm = 1.0f / (float) n_accum;
  14711. if (*step <= 0.f) {
  14712. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14713. }
  14714. // compute the initial gradient in the search direction
  14715. ggml_vec_dot_f32(nx, &dginit, g, d);
  14716. // make sure that d points to a descent direction
  14717. if (0 < dginit) {
  14718. return GGML_LINESEARCH_FAIL;
  14719. }
  14720. // initialize local variables
  14721. finit = *fx;
  14722. dgtest = params->lbfgs.ftol*dginit;
  14723. while (true) {
  14724. ggml_vec_cpy_f32(nx, x, xp);
  14725. ggml_vec_mad_f32(nx, x, d, *step);
  14726. // evaluate the function and gradient values
  14727. {
  14728. ggml_opt_set_params(np, ps, x);
  14729. *fx = 0;
  14730. memset(g, 0, sizeof(float)*nx);
  14731. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14732. if (callback) {
  14733. // LBFG-S does not support learning rate -> ignore learning schedule
  14734. float sched = 0;
  14735. callback(callback_data, accum_step, &sched, cancel);
  14736. if (*cancel) {
  14737. return GGML_OPT_CANCEL;
  14738. }
  14739. }
  14740. // ggml_graph_reset (gf);
  14741. ggml_set_f32 (f->grad, 1.0f);
  14742. ggml_graph_compute(gb, cplan);
  14743. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14744. *fx += ggml_get_f32_1d(f, 0);
  14745. }
  14746. *fx *= accum_norm;
  14747. }
  14748. ++count;
  14749. if (*fx > finit + (*step)*dgtest) {
  14750. width = dec;
  14751. } else {
  14752. // Armijo condition is satisfied
  14753. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14754. return count;
  14755. }
  14756. ggml_vec_dot_f32(nx, &dg, g, d);
  14757. // check the Wolfe condition
  14758. if (dg < params->lbfgs.wolfe * dginit) {
  14759. width = inc;
  14760. } else {
  14761. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14762. // regular Wolfe conditions
  14763. return count;
  14764. }
  14765. if(dg > -params->lbfgs.wolfe*dginit) {
  14766. width = dec;
  14767. } else {
  14768. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14769. return count;
  14770. }
  14771. }
  14772. }
  14773. if (*step < params->lbfgs.min_step) {
  14774. return GGML_LINESEARCH_MINIMUM_STEP;
  14775. }
  14776. if (*step > params->lbfgs.max_step) {
  14777. return GGML_LINESEARCH_MAXIMUM_STEP;
  14778. }
  14779. if (params->lbfgs.max_linesearch <= count) {
  14780. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14781. }
  14782. (*step) *= width;
  14783. }
  14784. GGML_UNREACHABLE();
  14785. }
  14786. static enum ggml_opt_result ggml_opt_lbfgs(
  14787. struct ggml_context * ctx,
  14788. struct ggml_opt_context * opt,
  14789. struct ggml_opt_params params,
  14790. struct ggml_tensor * f,
  14791. struct ggml_cgraph * gf,
  14792. struct ggml_cgraph * gb,
  14793. ggml_opt_callback callback,
  14794. void * callback_data) {
  14795. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14796. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14797. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14798. return GGML_OPT_INVALID_WOLFE;
  14799. }
  14800. }
  14801. const int m = params.lbfgs.m;
  14802. // these will store the parameters we want to optimize
  14803. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14804. int np = 0;
  14805. int nx = 0;
  14806. for (int i = 0; i < gf->n_nodes; ++i) {
  14807. if (gf->nodes[i]->is_param) {
  14808. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14809. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14810. ps[np++] = gf->nodes[i];
  14811. nx += ggml_nelements(gf->nodes[i]);
  14812. }
  14813. }
  14814. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14815. int iter = opt->iter;
  14816. ggml_opt_init(ctx, opt, params, nx);
  14817. opt->iter = iter;
  14818. }
  14819. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14820. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14821. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14822. float * x = opt->lbfgs.x->data; // current parameters
  14823. float * xp = opt->lbfgs.xp->data; // previous parameters
  14824. float * g = opt->lbfgs.g->data; // current gradient
  14825. float * gp = opt->lbfgs.gp->data; // previous gradient
  14826. float * d = opt->lbfgs.d->data; // search direction
  14827. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14828. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14829. const float accum_norm = 1.0f / (float) n_accum;
  14830. float fx = 0.0f; // cost function value
  14831. float xnorm = 0.0f; // ||x||
  14832. float gnorm = 0.0f; // ||g||
  14833. // initialize x from the graph nodes
  14834. ggml_opt_get_params(np, ps, x);
  14835. // the L-BFGS memory
  14836. float * lm_alpha = opt->lbfgs.lmal->data;
  14837. float * lm_ys = opt->lbfgs.lmys->data;
  14838. float * lm_s = opt->lbfgs.lms->data;
  14839. float * lm_y = opt->lbfgs.lmy->data;
  14840. bool cancel = false;
  14841. // evaluate the function value and its gradient
  14842. {
  14843. ggml_opt_set_params(np, ps, x);
  14844. fx = 0;
  14845. memset(g, 0, sizeof(float)*nx);
  14846. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14847. if (callback) {
  14848. // LBFG-S does not support learning rate -> ignore learning schedule
  14849. float sched = 0;
  14850. callback(callback_data, accum_step, &sched, &cancel);
  14851. if (cancel) {
  14852. return GGML_OPT_CANCEL;
  14853. }
  14854. }
  14855. // ggml_graph_reset (gf);
  14856. ggml_set_f32 (f->grad, 1.0f);
  14857. ggml_graph_compute(gb, &cplan);
  14858. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14859. fx += ggml_get_f32_1d(f, 0);
  14860. }
  14861. fx *= accum_norm;
  14862. opt->loss_before = fx;
  14863. opt->loss_after = fx;
  14864. }
  14865. // search direction = -gradient
  14866. ggml_vec_neg_f32(nx, d, g);
  14867. // ||x||, ||g||
  14868. ggml_vec_norm_f32(nx, &xnorm, x);
  14869. ggml_vec_norm_f32(nx, &gnorm, g);
  14870. if (xnorm < 1.0f) {
  14871. xnorm = 1.0f;
  14872. }
  14873. // already optimized
  14874. if (gnorm/xnorm <= params.lbfgs.eps) {
  14875. return GGML_OPT_OK;
  14876. }
  14877. if (opt->just_initialized) {
  14878. if (pf) {
  14879. pf[0] = fx;
  14880. }
  14881. opt->lbfgs.fx_best = fx;
  14882. // initial step
  14883. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14884. opt->lbfgs.j = 0;
  14885. opt->lbfgs.k = 1;
  14886. opt->lbfgs.end = 0;
  14887. opt->lbfgs.n_no_improvement = 0;
  14888. opt->just_initialized = false;
  14889. }
  14890. float * fx_best = &opt->lbfgs.fx_best;
  14891. float * step = &opt->lbfgs.step;
  14892. int * j = &opt->lbfgs.j;
  14893. int * k = &opt->lbfgs.k;
  14894. int * end = &opt->lbfgs.end;
  14895. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14896. int ls = 0;
  14897. int bound = 0;
  14898. float ys = 0.0f;
  14899. float yy = 0.0f;
  14900. float beta = 0.0f;
  14901. int it = 0;
  14902. while (true) {
  14903. // store the current position and gradient vectors
  14904. ggml_vec_cpy_f32(nx, xp, x);
  14905. ggml_vec_cpy_f32(nx, gp, g);
  14906. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14907. // to determine if the optimization should be cancelled
  14908. // this is a simple change, but not doing this atm, since I don't have a nice
  14909. // way to test and don't want to break something with so many changes lined up
  14910. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14911. if (cancel) {
  14912. return GGML_OPT_CANCEL;
  14913. }
  14914. if (ls < 0) {
  14915. // linesearch failed - go back to the previous point and return
  14916. ggml_vec_cpy_f32(nx, x, xp);
  14917. ggml_vec_cpy_f32(nx, g, gp);
  14918. return ls;
  14919. }
  14920. opt->loss_after = fx;
  14921. ggml_vec_norm_f32(nx, &xnorm, x);
  14922. ggml_vec_norm_f32(nx, &gnorm, g);
  14923. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14924. if (xnorm < 1.0f) {
  14925. xnorm = 1.0f;
  14926. }
  14927. if (gnorm/xnorm <= params.lbfgs.eps) {
  14928. // converged
  14929. return GGML_OPT_OK;
  14930. }
  14931. // delta-based convergence test
  14932. if (pf != NULL) {
  14933. // need at least params.past iterations to start checking for convergence
  14934. if (params.past <= k[0]) {
  14935. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14936. if (fabsf(rate) < params.delta) {
  14937. return GGML_OPT_OK;
  14938. }
  14939. }
  14940. pf[k[0]%params.past] = fx;
  14941. }
  14942. // check for improvement
  14943. if (params.max_no_improvement > 0) {
  14944. if (fx < fx_best[0]) {
  14945. fx_best[0] = fx;
  14946. n_no_improvement[0] = 0;
  14947. } else {
  14948. n_no_improvement[0]++;
  14949. if (n_no_improvement[0] >= params.max_no_improvement) {
  14950. return GGML_OPT_OK;
  14951. }
  14952. }
  14953. }
  14954. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14955. // reached the maximum number of iterations
  14956. return GGML_OPT_DID_NOT_CONVERGE;
  14957. }
  14958. // update vectors s and y:
  14959. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14960. // y_{k+1} = g_{k+1} - g_{k}.
  14961. //
  14962. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14963. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14964. // compute scalars ys and yy:
  14965. // ys = y^t \cdot s -> 1 / \rho.
  14966. // yy = y^t \cdot y.
  14967. //
  14968. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14969. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14970. lm_ys[end[0]] = ys;
  14971. // find new search direction
  14972. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14973. bound = (m <= k[0]) ? m : k[0];
  14974. k[0]++;
  14975. it++;
  14976. end[0] = (end[0] + 1)%m;
  14977. // initialize search direction with -g
  14978. ggml_vec_neg_f32(nx, d, g);
  14979. j[0] = end[0];
  14980. for (int i = 0; i < bound; ++i) {
  14981. j[0] = (j[0] + m - 1) % m;
  14982. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14983. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14984. lm_alpha[j[0]] /= lm_ys[j[0]];
  14985. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14986. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14987. }
  14988. ggml_vec_scale_f32(nx, d, ys/yy);
  14989. for (int i = 0; i < bound; ++i) {
  14990. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14991. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14992. beta /= lm_ys[j[0]];
  14993. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14994. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14995. j[0] = (j[0] + 1)%m;
  14996. }
  14997. step[0] = 1.0;
  14998. }
  14999. GGML_UNREACHABLE();
  15000. }
  15001. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15002. struct ggml_opt_params result;
  15003. switch (type) {
  15004. case GGML_OPT_ADAM:
  15005. {
  15006. result = (struct ggml_opt_params) {
  15007. .type = GGML_OPT_ADAM,
  15008. .n_threads = 1,
  15009. .past = 0,
  15010. .delta = 1e-5f,
  15011. .max_no_improvement = 100,
  15012. .print_forward_graph = true,
  15013. .print_backward_graph = true,
  15014. .n_gradient_accumulation = 1,
  15015. .adam = {
  15016. .n_iter = 10000,
  15017. .sched = 1.000f,
  15018. .decay = 0.0f,
  15019. .decay_min_ndim = 2,
  15020. .alpha = 0.001f,
  15021. .beta1 = 0.9f,
  15022. .beta2 = 0.999f,
  15023. .eps = 1e-8f,
  15024. .eps_f = 1e-5f,
  15025. .eps_g = 1e-3f,
  15026. .gclip = 0.0f,
  15027. },
  15028. };
  15029. } break;
  15030. case GGML_OPT_LBFGS:
  15031. {
  15032. result = (struct ggml_opt_params) {
  15033. .type = GGML_OPT_LBFGS,
  15034. .n_threads = 1,
  15035. .past = 0,
  15036. .delta = 1e-5f,
  15037. .max_no_improvement = 0,
  15038. .print_forward_graph = true,
  15039. .print_backward_graph = true,
  15040. .n_gradient_accumulation = 1,
  15041. .lbfgs = {
  15042. .m = 6,
  15043. .n_iter = 100,
  15044. .max_linesearch = 20,
  15045. .eps = 1e-5f,
  15046. .ftol = 1e-4f,
  15047. .wolfe = 0.9f,
  15048. .min_step = 1e-20f,
  15049. .max_step = 1e+20f,
  15050. .linesearch = GGML_LINESEARCH_DEFAULT,
  15051. },
  15052. };
  15053. } break;
  15054. }
  15055. return result;
  15056. }
  15057. GGML_API void ggml_opt_init(
  15058. struct ggml_context * ctx,
  15059. struct ggml_opt_context * opt,
  15060. struct ggml_opt_params params,
  15061. int64_t nx) {
  15062. opt->ctx = ctx;
  15063. opt->params = params;
  15064. opt->iter = 0;
  15065. opt->nx = nx;
  15066. opt->just_initialized = true;
  15067. if (opt->ctx == NULL) {
  15068. struct ggml_init_params ctx_opt_params;
  15069. if (opt->params.type == GGML_OPT_ADAM) {
  15070. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15071. if (opt->params.past > 0) {
  15072. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15073. }
  15074. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15075. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15076. if (opt->params.past > 0) {
  15077. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15078. }
  15079. }
  15080. ctx_opt_params.mem_buffer = NULL;
  15081. ctx_opt_params.no_alloc = false;
  15082. opt->ctx = ggml_init(ctx_opt_params);
  15083. }
  15084. switch (opt->params.type) {
  15085. case GGML_OPT_ADAM:
  15086. {
  15087. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15088. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15089. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15090. opt->adam.pf = params.past > 0
  15091. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15092. : NULL;
  15093. ggml_set_zero(opt->adam.m);
  15094. ggml_set_zero(opt->adam.v);
  15095. if (opt->adam.pf) {
  15096. ggml_set_zero(opt->adam.pf);
  15097. }
  15098. } break;
  15099. case GGML_OPT_LBFGS:
  15100. {
  15101. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15102. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15103. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15104. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15105. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15106. opt->lbfgs.pf = params.past > 0
  15107. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15108. : NULL;
  15109. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15110. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15111. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15112. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15113. ggml_set_zero(opt->lbfgs.x);
  15114. ggml_set_zero(opt->lbfgs.xp);
  15115. ggml_set_zero(opt->lbfgs.g);
  15116. ggml_set_zero(opt->lbfgs.gp);
  15117. ggml_set_zero(opt->lbfgs.d);
  15118. if (opt->lbfgs.pf) {
  15119. ggml_set_zero(opt->lbfgs.pf);
  15120. }
  15121. ggml_set_zero(opt->lbfgs.lmal);
  15122. ggml_set_zero(opt->lbfgs.lmys);
  15123. ggml_set_zero(opt->lbfgs.lms);
  15124. ggml_set_zero(opt->lbfgs.lmy);
  15125. } break;
  15126. }
  15127. }
  15128. enum ggml_opt_result ggml_opt(
  15129. struct ggml_context * ctx,
  15130. struct ggml_opt_params params,
  15131. struct ggml_tensor * f) {
  15132. bool free_ctx = false;
  15133. if (ctx == NULL) {
  15134. struct ggml_init_params params_ctx = {
  15135. .mem_size = 16*1024*1024,
  15136. .mem_buffer = NULL,
  15137. .no_alloc = false,
  15138. };
  15139. ctx = ggml_init(params_ctx);
  15140. if (ctx == NULL) {
  15141. return GGML_OPT_NO_CONTEXT;
  15142. }
  15143. free_ctx = true;
  15144. }
  15145. enum ggml_opt_result result = GGML_OPT_OK;
  15146. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15147. ggml_opt_init(ctx, opt, params, 0);
  15148. result = ggml_opt_resume(ctx, opt, f);
  15149. if (free_ctx) {
  15150. ggml_free(ctx);
  15151. }
  15152. return result;
  15153. }
  15154. enum ggml_opt_result ggml_opt_resume(
  15155. struct ggml_context * ctx,
  15156. struct ggml_opt_context * opt,
  15157. struct ggml_tensor * f) {
  15158. // build forward + backward compute graphs
  15159. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15160. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15161. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15162. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15163. *gf = ggml_build_forward (f);
  15164. *gb = ggml_build_backward(ctx, gf, true);
  15165. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15166. }
  15167. enum ggml_opt_result ggml_opt_resume_g(
  15168. struct ggml_context * ctx,
  15169. struct ggml_opt_context * opt,
  15170. struct ggml_tensor * f,
  15171. struct ggml_cgraph * gf,
  15172. struct ggml_cgraph * gb,
  15173. ggml_opt_callback callback,
  15174. void * callback_data) {
  15175. // build forward + backward compute graphs
  15176. enum ggml_opt_result result = GGML_OPT_OK;
  15177. switch (opt->params.type) {
  15178. case GGML_OPT_ADAM:
  15179. {
  15180. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15181. } break;
  15182. case GGML_OPT_LBFGS:
  15183. {
  15184. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15185. } break;
  15186. }
  15187. if (opt->params.print_forward_graph) {
  15188. ggml_graph_print (gf);
  15189. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15190. }
  15191. if (opt->params.print_backward_graph) {
  15192. ggml_graph_print (gb);
  15193. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15194. }
  15195. return result;
  15196. }
  15197. ////////////////////////////////////////////////////////////////////////////////
  15198. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15199. assert(k % QK4_0 == 0);
  15200. const int nb = k / QK4_0;
  15201. for (int b = 0; b < n; b += k) {
  15202. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15203. quantize_row_q4_0_reference(src + b, y, k);
  15204. for (int i = 0; i < nb; i++) {
  15205. for (int j = 0; j < QK4_0; j += 2) {
  15206. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15207. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15208. hist[vi0]++;
  15209. hist[vi1]++;
  15210. }
  15211. }
  15212. }
  15213. return (n/QK4_0*sizeof(block_q4_0));
  15214. }
  15215. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15216. assert(k % QK4_1 == 0);
  15217. const int nb = k / QK4_1;
  15218. for (int b = 0; b < n; b += k) {
  15219. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15220. quantize_row_q4_1_reference(src + b, y, k);
  15221. for (int i = 0; i < nb; i++) {
  15222. for (int j = 0; j < QK4_1; j += 2) {
  15223. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15224. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15225. hist[vi0]++;
  15226. hist[vi1]++;
  15227. }
  15228. }
  15229. }
  15230. return (n/QK4_1*sizeof(block_q4_1));
  15231. }
  15232. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15233. assert(k % QK5_0 == 0);
  15234. const int nb = k / QK5_0;
  15235. for (int b = 0; b < n; b += k) {
  15236. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15237. quantize_row_q5_0_reference(src + b, y, k);
  15238. for (int i = 0; i < nb; i++) {
  15239. uint32_t qh;
  15240. memcpy(&qh, &y[i].qh, sizeof(qh));
  15241. for (int j = 0; j < QK5_0; j += 2) {
  15242. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15243. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15244. // cast to 16 bins
  15245. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15246. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15247. hist[vi0]++;
  15248. hist[vi1]++;
  15249. }
  15250. }
  15251. }
  15252. return (n/QK5_0*sizeof(block_q5_0));
  15253. }
  15254. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15255. assert(k % QK5_1 == 0);
  15256. const int nb = k / QK5_1;
  15257. for (int b = 0; b < n; b += k) {
  15258. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15259. quantize_row_q5_1_reference(src + b, y, k);
  15260. for (int i = 0; i < nb; i++) {
  15261. uint32_t qh;
  15262. memcpy(&qh, &y[i].qh, sizeof(qh));
  15263. for (int j = 0; j < QK5_1; j += 2) {
  15264. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15265. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15266. // cast to 16 bins
  15267. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15268. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15269. hist[vi0]++;
  15270. hist[vi1]++;
  15271. }
  15272. }
  15273. }
  15274. return (n/QK5_1*sizeof(block_q5_1));
  15275. }
  15276. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15277. assert(k % QK8_0 == 0);
  15278. const int nb = k / QK8_0;
  15279. for (int b = 0; b < n; b += k) {
  15280. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15281. quantize_row_q8_0_reference(src + b, y, k);
  15282. for (int i = 0; i < nb; i++) {
  15283. for (int j = 0; j < QK8_0; ++j) {
  15284. const int8_t vi = y[i].qs[j];
  15285. hist[vi/16 + 8]++;
  15286. }
  15287. }
  15288. }
  15289. return (n/QK8_0*sizeof(block_q8_0));
  15290. }
  15291. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15292. size_t result = 0;
  15293. switch (type) {
  15294. case GGML_TYPE_Q4_0:
  15295. {
  15296. GGML_ASSERT(start % QK4_0 == 0);
  15297. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15298. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15299. } break;
  15300. case GGML_TYPE_Q4_1:
  15301. {
  15302. GGML_ASSERT(start % QK4_1 == 0);
  15303. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15304. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15305. } break;
  15306. case GGML_TYPE_Q5_0:
  15307. {
  15308. GGML_ASSERT(start % QK5_0 == 0);
  15309. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15310. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15311. } break;
  15312. case GGML_TYPE_Q5_1:
  15313. {
  15314. GGML_ASSERT(start % QK5_1 == 0);
  15315. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15316. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15317. } break;
  15318. case GGML_TYPE_Q8_0:
  15319. {
  15320. GGML_ASSERT(start % QK8_0 == 0);
  15321. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15322. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15323. } break;
  15324. case GGML_TYPE_Q2_K:
  15325. {
  15326. GGML_ASSERT(start % QK_K == 0);
  15327. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15328. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15329. } break;
  15330. case GGML_TYPE_Q3_K:
  15331. {
  15332. GGML_ASSERT(start % QK_K == 0);
  15333. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15334. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15335. } break;
  15336. case GGML_TYPE_Q4_K:
  15337. {
  15338. GGML_ASSERT(start % QK_K == 0);
  15339. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15340. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15341. } break;
  15342. case GGML_TYPE_Q5_K:
  15343. {
  15344. GGML_ASSERT(start % QK_K == 0);
  15345. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15346. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15347. } break;
  15348. case GGML_TYPE_Q6_K:
  15349. {
  15350. GGML_ASSERT(start % QK_K == 0);
  15351. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15352. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15353. } break;
  15354. case GGML_TYPE_F16:
  15355. {
  15356. int elemsize = sizeof(ggml_fp16_t);
  15357. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15358. result = n * elemsize;
  15359. } break;
  15360. case GGML_TYPE_F32:
  15361. {
  15362. int elemsize = sizeof(float);
  15363. result = n * elemsize;
  15364. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15365. } break;
  15366. default:
  15367. assert(false);
  15368. }
  15369. return result;
  15370. }
  15371. ////////////////////////////////////////////////////////////////////////////////
  15372. struct gguf_str {
  15373. uint64_t n; // GGUFv2
  15374. char * data;
  15375. };
  15376. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15377. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15378. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15379. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15380. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15381. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15382. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15383. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15384. [GGUF_TYPE_BOOL] = sizeof(bool),
  15385. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15386. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15387. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15388. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15389. [GGUF_TYPE_ARRAY] = 0, // undefined
  15390. };
  15391. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15392. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15393. [GGUF_TYPE_UINT8] = "u8",
  15394. [GGUF_TYPE_INT8] = "i8",
  15395. [GGUF_TYPE_UINT16] = "u16",
  15396. [GGUF_TYPE_INT16] = "i16",
  15397. [GGUF_TYPE_UINT32] = "u32",
  15398. [GGUF_TYPE_INT32] = "i32",
  15399. [GGUF_TYPE_FLOAT32] = "f32",
  15400. [GGUF_TYPE_BOOL] = "bool",
  15401. [GGUF_TYPE_STRING] = "str",
  15402. [GGUF_TYPE_ARRAY] = "arr",
  15403. [GGUF_TYPE_UINT64] = "u64",
  15404. [GGUF_TYPE_INT64] = "i64",
  15405. [GGUF_TYPE_FLOAT64] = "f64",
  15406. };
  15407. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15408. union gguf_value {
  15409. uint8_t uint8;
  15410. int8_t int8;
  15411. uint16_t uint16;
  15412. int16_t int16;
  15413. uint32_t uint32;
  15414. int32_t int32;
  15415. float float32;
  15416. uint64_t uint64;
  15417. int64_t int64;
  15418. double float64;
  15419. bool bool_;
  15420. struct gguf_str str;
  15421. struct {
  15422. enum gguf_type type;
  15423. uint64_t n; // GGUFv2
  15424. void * data;
  15425. } arr;
  15426. };
  15427. struct gguf_kv {
  15428. struct gguf_str key;
  15429. enum gguf_type type;
  15430. union gguf_value value;
  15431. };
  15432. struct gguf_header {
  15433. char magic[4];
  15434. uint32_t version;
  15435. uint64_t n_tensors; // GGUFv2
  15436. uint64_t n_kv; // GGUFv2
  15437. };
  15438. struct gguf_tensor_info {
  15439. struct gguf_str name;
  15440. uint32_t n_dims;
  15441. uint64_t ne[GGML_MAX_DIMS];
  15442. enum ggml_type type;
  15443. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15444. // for writing API
  15445. const void * data;
  15446. size_t size;
  15447. };
  15448. struct gguf_context {
  15449. struct gguf_header header;
  15450. struct gguf_kv * kv;
  15451. struct gguf_tensor_info * infos;
  15452. size_t alignment;
  15453. size_t offset; // offset of `data` from beginning of file
  15454. size_t size; // size of `data` in bytes
  15455. //uint8_t * padding;
  15456. void * data;
  15457. };
  15458. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15459. const size_t n = fread(dst, 1, size, file);
  15460. *offset += n;
  15461. return n == size;
  15462. }
  15463. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15464. p->n = 0;
  15465. p->data = NULL;
  15466. bool ok = true;
  15467. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15468. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15469. return ok;
  15470. }
  15471. struct gguf_context * gguf_init_empty(void) {
  15472. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15473. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15474. ctx->header.version = GGUF_VERSION;
  15475. ctx->header.n_tensors = 0;
  15476. ctx->header.n_kv = 0;
  15477. ctx->kv = NULL;
  15478. ctx->infos = NULL;
  15479. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15480. ctx->offset = 0;
  15481. ctx->size = 0;
  15482. ctx->data = NULL;
  15483. return ctx;
  15484. }
  15485. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15486. FILE * file = fopen(fname, "rb");
  15487. if (!file) {
  15488. return NULL;
  15489. }
  15490. // offset from start of file
  15491. size_t offset = 0;
  15492. char magic[4];
  15493. // check the magic before making allocations
  15494. {
  15495. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15496. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15497. if (magic[i] != GGUF_MAGIC[i]) {
  15498. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15499. fclose(file);
  15500. return NULL;
  15501. }
  15502. }
  15503. }
  15504. bool ok = true;
  15505. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15506. // read the header
  15507. {
  15508. strncpy(ctx->header.magic, magic, 4);
  15509. ctx->kv = NULL;
  15510. ctx->infos = NULL;
  15511. ctx->data = NULL;
  15512. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15513. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15514. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15515. if (ctx->header.version == 1) {
  15516. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15517. fclose(file);
  15518. gguf_free(ctx);
  15519. return NULL;
  15520. }
  15521. if (!ok) {
  15522. fprintf(stderr, "%s: failed to read header\n", __func__);
  15523. fclose(file);
  15524. gguf_free(ctx);
  15525. return NULL;
  15526. }
  15527. }
  15528. // read the kv pairs
  15529. {
  15530. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15531. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15532. struct gguf_kv * kv = &ctx->kv[i];
  15533. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15534. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15535. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15536. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15537. switch (kv->type) {
  15538. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15539. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15540. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15541. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15542. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15543. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15544. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15545. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15546. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15547. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15548. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15549. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15550. case GGUF_TYPE_ARRAY:
  15551. {
  15552. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15553. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15554. switch (kv->value.arr.type) {
  15555. case GGUF_TYPE_UINT8:
  15556. case GGUF_TYPE_INT8:
  15557. case GGUF_TYPE_UINT16:
  15558. case GGUF_TYPE_INT16:
  15559. case GGUF_TYPE_UINT32:
  15560. case GGUF_TYPE_INT32:
  15561. case GGUF_TYPE_FLOAT32:
  15562. case GGUF_TYPE_UINT64:
  15563. case GGUF_TYPE_INT64:
  15564. case GGUF_TYPE_FLOAT64:
  15565. case GGUF_TYPE_BOOL:
  15566. {
  15567. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15568. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15569. } break;
  15570. case GGUF_TYPE_STRING:
  15571. {
  15572. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15573. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15574. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15575. }
  15576. } break;
  15577. case GGUF_TYPE_ARRAY:
  15578. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15579. }
  15580. } break;
  15581. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15582. }
  15583. if (!ok) {
  15584. break;
  15585. }
  15586. }
  15587. if (!ok) {
  15588. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15589. fclose(file);
  15590. gguf_free(ctx);
  15591. return NULL;
  15592. }
  15593. }
  15594. // read the tensor infos
  15595. {
  15596. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15597. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15598. struct gguf_tensor_info * info = &ctx->infos[i];
  15599. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15600. info->ne[j] = 1;
  15601. }
  15602. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15603. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15604. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15605. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15606. }
  15607. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15608. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15609. if (!ok) {
  15610. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15611. fclose(file);
  15612. gguf_free(ctx);
  15613. return NULL;
  15614. }
  15615. }
  15616. }
  15617. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15618. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15619. if (alignment_idx != -1) {
  15620. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15621. }
  15622. // we require the data section to be aligned, so take into account any padding
  15623. {
  15624. const size_t offset_pad = offset % ctx->alignment;
  15625. if (offset_pad != 0) {
  15626. offset += ctx->alignment - offset_pad;
  15627. fseek(file, offset, SEEK_SET);
  15628. }
  15629. }
  15630. // store the current file offset - this is where the data section starts
  15631. ctx->offset = offset;
  15632. // compute the total size of the data section, taking into account the alignment
  15633. {
  15634. ctx->size = 0;
  15635. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15636. struct gguf_tensor_info * info = &ctx->infos[i];
  15637. const int64_t ne =
  15638. (int64_t) info->ne[0] *
  15639. (int64_t) info->ne[1] *
  15640. (int64_t) info->ne[2] *
  15641. (int64_t) info->ne[3];
  15642. if (ne % ggml_blck_size(info->type) != 0) {
  15643. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15644. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15645. fclose(file);
  15646. gguf_free(ctx);
  15647. return NULL;
  15648. }
  15649. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15650. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15651. }
  15652. }
  15653. // load the tensor data only if requested
  15654. if (params.ctx != NULL) {
  15655. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15656. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15657. // the ggml_tensor structs to the appropriate locations in the binary blob
  15658. // compute the exact size needed for the new ggml_context
  15659. const size_t mem_size =
  15660. params.no_alloc ?
  15661. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15662. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15663. struct ggml_init_params pdata = {
  15664. .mem_size = mem_size,
  15665. .mem_buffer = NULL,
  15666. .no_alloc = params.no_alloc,
  15667. };
  15668. *params.ctx = ggml_init(pdata);
  15669. struct ggml_context * ctx_data = *params.ctx;
  15670. struct ggml_tensor * data = NULL;
  15671. if (!params.no_alloc) {
  15672. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15673. ok = ok && data != NULL;
  15674. // read the binary blob with the tensor data
  15675. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15676. if (!ok) {
  15677. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15678. fclose(file);
  15679. ggml_free(ctx_data);
  15680. gguf_free(ctx);
  15681. return NULL;
  15682. }
  15683. ctx->data = data->data;
  15684. }
  15685. ggml_set_no_alloc(ctx_data, true);
  15686. // create the tensors
  15687. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15688. const int64_t ne[GGML_MAX_DIMS] = {
  15689. ctx->infos[i].ne[0],
  15690. ctx->infos[i].ne[1],
  15691. ctx->infos[i].ne[2],
  15692. ctx->infos[i].ne[3],
  15693. };
  15694. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15695. ok = ok && cur != NULL;
  15696. ggml_set_name(cur, ctx->infos[i].name.data);
  15697. if (!ok) {
  15698. break;
  15699. }
  15700. // point the data member to the appropriate location in the binary blob using the tensor infos
  15701. if (!params.no_alloc) {
  15702. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15703. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15704. }
  15705. }
  15706. if (!ok) {
  15707. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15708. fclose(file);
  15709. ggml_free(ctx_data);
  15710. gguf_free(ctx);
  15711. return NULL;
  15712. }
  15713. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15714. }
  15715. fclose(file);
  15716. return ctx;
  15717. }
  15718. void gguf_free(struct gguf_context * ctx) {
  15719. if (ctx == NULL) {
  15720. return;
  15721. }
  15722. if (ctx->kv) {
  15723. // free string memory - not great..
  15724. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15725. struct gguf_kv * kv = &ctx->kv[i];
  15726. if (kv->key.data) {
  15727. free(kv->key.data);
  15728. }
  15729. if (kv->type == GGUF_TYPE_STRING) {
  15730. if (kv->value.str.data) {
  15731. free(kv->value.str.data);
  15732. }
  15733. }
  15734. if (kv->type == GGUF_TYPE_ARRAY) {
  15735. if (kv->value.arr.data) {
  15736. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15737. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15738. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15739. if (str->data) {
  15740. free(str->data);
  15741. }
  15742. }
  15743. }
  15744. free(kv->value.arr.data);
  15745. }
  15746. }
  15747. }
  15748. free(ctx->kv);
  15749. }
  15750. if (ctx->infos) {
  15751. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15752. struct gguf_tensor_info * info = &ctx->infos[i];
  15753. if (info->name.data) {
  15754. free(info->name.data);
  15755. }
  15756. }
  15757. free(ctx->infos);
  15758. }
  15759. GGML_ALIGNED_FREE(ctx);
  15760. }
  15761. const char * gguf_type_name(enum gguf_type type) {
  15762. return GGUF_TYPE_NAME[type];
  15763. }
  15764. int gguf_get_version(const struct gguf_context * ctx) {
  15765. return ctx->header.version;
  15766. }
  15767. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15768. return ctx->alignment;
  15769. }
  15770. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15771. return ctx->offset;
  15772. }
  15773. void * gguf_get_data(const struct gguf_context * ctx) {
  15774. return ctx->data;
  15775. }
  15776. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15777. return ctx->header.n_kv;
  15778. }
  15779. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15780. // return -1 if key not found
  15781. int keyfound = -1;
  15782. const int n_kv = gguf_get_n_kv(ctx);
  15783. for (int i = 0; i < n_kv; ++i) {
  15784. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15785. keyfound = i;
  15786. break;
  15787. }
  15788. }
  15789. return keyfound;
  15790. }
  15791. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15792. return ctx->kv[key_id].key.data;
  15793. }
  15794. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15795. return ctx->kv[key_id].type;
  15796. }
  15797. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15798. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15799. return ctx->kv[key_id].value.arr.type;
  15800. }
  15801. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15802. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15803. return ctx->kv[key_id].value.arr.data;
  15804. }
  15805. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15806. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15807. struct gguf_kv * kv = &ctx->kv[key_id];
  15808. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15809. return str->data;
  15810. }
  15811. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15812. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15813. return ctx->kv[key_id].value.arr.n;
  15814. }
  15815. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15816. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15817. return ctx->kv[key_id].value.uint8;
  15818. }
  15819. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15820. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15821. return ctx->kv[key_id].value.int8;
  15822. }
  15823. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15824. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15825. return ctx->kv[key_id].value.uint16;
  15826. }
  15827. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15828. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15829. return ctx->kv[key_id].value.int16;
  15830. }
  15831. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15832. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15833. return ctx->kv[key_id].value.uint32;
  15834. }
  15835. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15836. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15837. return ctx->kv[key_id].value.int32;
  15838. }
  15839. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15840. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15841. return ctx->kv[key_id].value.float32;
  15842. }
  15843. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15844. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15845. return ctx->kv[key_id].value.uint64;
  15846. }
  15847. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15848. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15849. return ctx->kv[key_id].value.int64;
  15850. }
  15851. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15852. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15853. return ctx->kv[key_id].value.float64;
  15854. }
  15855. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15856. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15857. return ctx->kv[key_id].value.bool_;
  15858. }
  15859. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15860. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15861. return ctx->kv[key_id].value.str.data;
  15862. }
  15863. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15864. return ctx->header.n_tensors;
  15865. }
  15866. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15867. // return -1 if tensor not found
  15868. int tensorfound = -1;
  15869. const int n_tensors = gguf_get_n_tensors(ctx);
  15870. for (int i = 0; i < n_tensors; ++i) {
  15871. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15872. tensorfound = i;
  15873. break;
  15874. }
  15875. }
  15876. return tensorfound;
  15877. }
  15878. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15879. return ctx->infos[i].offset;
  15880. }
  15881. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15882. return ctx->infos[i].name.data;
  15883. }
  15884. // returns the index
  15885. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15886. const int idx = gguf_find_key(ctx, key);
  15887. if (idx >= 0) {
  15888. return idx;
  15889. }
  15890. const int n_kv = gguf_get_n_kv(ctx);
  15891. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15892. ctx->kv[n_kv].key.n = strlen(key);
  15893. ctx->kv[n_kv].key.data = strdup(key);
  15894. ctx->header.n_kv++;
  15895. return n_kv;
  15896. }
  15897. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15898. const int idx = gguf_get_or_add_key(ctx, key);
  15899. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15900. ctx->kv[idx].value.uint8 = val;
  15901. }
  15902. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15903. const int idx = gguf_get_or_add_key(ctx, key);
  15904. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15905. ctx->kv[idx].value.int8 = val;
  15906. }
  15907. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15908. const int idx = gguf_get_or_add_key(ctx, key);
  15909. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15910. ctx->kv[idx].value.uint16 = val;
  15911. }
  15912. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15913. const int idx = gguf_get_or_add_key(ctx, key);
  15914. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15915. ctx->kv[idx].value.int16 = val;
  15916. }
  15917. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15918. const int idx = gguf_get_or_add_key(ctx, key);
  15919. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15920. ctx->kv[idx].value.uint32 = val;
  15921. }
  15922. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15923. const int idx = gguf_get_or_add_key(ctx, key);
  15924. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15925. ctx->kv[idx].value.int32 = val;
  15926. }
  15927. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15928. const int idx = gguf_get_or_add_key(ctx, key);
  15929. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15930. ctx->kv[idx].value.float32 = val;
  15931. }
  15932. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15933. const int idx = gguf_get_or_add_key(ctx, key);
  15934. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15935. ctx->kv[idx].value.uint64 = val;
  15936. }
  15937. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15938. const int idx = gguf_get_or_add_key(ctx, key);
  15939. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15940. ctx->kv[idx].value.int64 = val;
  15941. }
  15942. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15943. const int idx = gguf_get_or_add_key(ctx, key);
  15944. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15945. ctx->kv[idx].value.float64 = val;
  15946. }
  15947. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15948. const int idx = gguf_get_or_add_key(ctx, key);
  15949. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15950. ctx->kv[idx].value.bool_ = val;
  15951. }
  15952. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15953. const int idx = gguf_get_or_add_key(ctx, key);
  15954. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15955. ctx->kv[idx].value.str.n = strlen(val);
  15956. ctx->kv[idx].value.str.data = strdup(val);
  15957. }
  15958. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15959. const int idx = gguf_get_or_add_key(ctx, key);
  15960. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15961. ctx->kv[idx].value.arr.type = type;
  15962. ctx->kv[idx].value.arr.n = n;
  15963. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15964. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15965. }
  15966. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15967. const int idx = gguf_get_or_add_key(ctx, key);
  15968. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15969. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15970. ctx->kv[idx].value.arr.n = n;
  15971. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15972. for (int i = 0; i < n; i++) {
  15973. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15974. str->n = strlen(data[i]);
  15975. str->data = strdup(data[i]);
  15976. }
  15977. }
  15978. // set or add KV pairs from another context
  15979. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15980. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15981. switch (src->kv[i].type) {
  15982. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15983. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15984. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15985. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15986. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15987. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15988. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15989. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  15990. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  15991. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  15992. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15993. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15994. case GGUF_TYPE_ARRAY:
  15995. {
  15996. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15997. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15998. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15999. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16000. }
  16001. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16002. free(data);
  16003. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16004. GGML_ASSERT(false && "nested arrays not supported");
  16005. } else {
  16006. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16007. }
  16008. } break;
  16009. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16010. }
  16011. }
  16012. }
  16013. void gguf_add_tensor(
  16014. struct gguf_context * ctx,
  16015. const struct ggml_tensor * tensor) {
  16016. const int idx = ctx->header.n_tensors;
  16017. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16018. ctx->infos[idx].name.n = strlen(tensor->name);
  16019. ctx->infos[idx].name.data = strdup(tensor->name);
  16020. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16021. ctx->infos[idx].ne[i] = 1;
  16022. }
  16023. ctx->infos[idx].n_dims = tensor->n_dims;
  16024. for (int i = 0; i < tensor->n_dims; i++) {
  16025. ctx->infos[idx].ne[i] = tensor->ne[i];
  16026. }
  16027. ctx->infos[idx].type = tensor->type;
  16028. ctx->infos[idx].offset = 0;
  16029. ctx->infos[idx].data = tensor->data;
  16030. ctx->infos[idx].size = ggml_nbytes(tensor);
  16031. if (ctx->header.n_tensors > 0) {
  16032. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16033. }
  16034. ctx->header.n_tensors++;
  16035. }
  16036. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16037. const int idx = gguf_find_tensor(ctx, name);
  16038. if (idx < 0) {
  16039. GGML_ASSERT(false && "tensor not found");
  16040. }
  16041. ctx->infos[idx].type = type;
  16042. }
  16043. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16044. const int idx = gguf_find_tensor(ctx, name);
  16045. if (idx < 0) {
  16046. GGML_ASSERT(false && "tensor not found");
  16047. }
  16048. ctx->infos[idx].data = data;
  16049. ctx->infos[idx].size = size;
  16050. // update offsets
  16051. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16052. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16053. }
  16054. }
  16055. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16056. // fwrite(&val->n, sizeof(val->n), 1, file);
  16057. // fwrite(val->data, sizeof(char), val->n, file);
  16058. //}
  16059. //
  16060. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16061. // fwrite(val, sizeof(char), size, file);
  16062. //}
  16063. struct gguf_buf {
  16064. void * data;
  16065. size_t size;
  16066. size_t offset;
  16067. };
  16068. static struct gguf_buf gguf_buf_init(size_t size) {
  16069. struct gguf_buf buf = {
  16070. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16071. /*buf.size =*/ size,
  16072. /*buf.offset =*/ 0,
  16073. };
  16074. return buf;
  16075. }
  16076. static void gguf_buf_free(struct gguf_buf buf) {
  16077. if (buf.data) {
  16078. free(buf.data);
  16079. }
  16080. }
  16081. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16082. if (buf->offset + size > buf->size) {
  16083. buf->size = 1.5*(buf->offset + size);
  16084. if (buf->data) {
  16085. buf->data = realloc(buf->data, buf->size);
  16086. }
  16087. }
  16088. }
  16089. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16090. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16091. if (buf->data) {
  16092. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16093. }
  16094. buf->offset += sizeof(val->n);
  16095. if (buf->data) {
  16096. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16097. }
  16098. buf->offset += val->n;
  16099. }
  16100. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16101. gguf_buf_grow(buf, el_size);
  16102. if (buf->data) {
  16103. memcpy((char *) buf->data + buf->offset, val, el_size);
  16104. }
  16105. buf->offset += el_size;
  16106. }
  16107. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16108. // write header
  16109. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16110. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16111. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16112. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16113. // write key-value pairs
  16114. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16115. struct gguf_kv * kv = &ctx->kv[i];
  16116. gguf_bwrite_str(buf, &kv->key);
  16117. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16118. switch (kv->type) {
  16119. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16120. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16121. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16122. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16123. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16124. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16125. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16126. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16127. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16128. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16129. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16130. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16131. case GGUF_TYPE_ARRAY:
  16132. {
  16133. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16134. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16135. switch (kv->value.arr.type) {
  16136. case GGUF_TYPE_UINT8:
  16137. case GGUF_TYPE_INT8:
  16138. case GGUF_TYPE_UINT16:
  16139. case GGUF_TYPE_INT16:
  16140. case GGUF_TYPE_UINT32:
  16141. case GGUF_TYPE_INT32:
  16142. case GGUF_TYPE_FLOAT32:
  16143. case GGUF_TYPE_UINT64:
  16144. case GGUF_TYPE_INT64:
  16145. case GGUF_TYPE_FLOAT64:
  16146. case GGUF_TYPE_BOOL:
  16147. {
  16148. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16149. } break;
  16150. case GGUF_TYPE_STRING:
  16151. {
  16152. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16153. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16154. }
  16155. } break;
  16156. case GGUF_TYPE_ARRAY:
  16157. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16158. }
  16159. } break;
  16160. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16161. }
  16162. }
  16163. // write tensor infos
  16164. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16165. struct gguf_tensor_info * info = &ctx->infos[i];
  16166. gguf_bwrite_str(buf, &info->name);
  16167. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16168. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16169. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16170. }
  16171. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16172. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16173. }
  16174. // we require the data section to be aligned, so take into account any padding
  16175. {
  16176. const size_t offset = buf->offset;
  16177. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16178. if (offset_pad != offset) {
  16179. uint8_t pad = 0;
  16180. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16181. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16182. }
  16183. }
  16184. }
  16185. if (only_meta) {
  16186. return;
  16187. }
  16188. size_t offset = 0;
  16189. // write tensor data
  16190. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16191. struct gguf_tensor_info * info = &ctx->infos[i];
  16192. const size_t size = info->size;
  16193. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16194. gguf_bwrite_el(buf, info->data, size);
  16195. if (size_pad != size) {
  16196. uint8_t pad = 0;
  16197. for (size_t j = 0; j < size_pad - size; ++j) {
  16198. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16199. }
  16200. }
  16201. GGML_ASSERT(offset == info->offset);
  16202. offset += size_pad;
  16203. }
  16204. }
  16205. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16206. FILE * file = fopen(fname, "wb");
  16207. if (!file) {
  16208. GGML_ASSERT(false && "failed to open file for writing");
  16209. }
  16210. struct gguf_buf buf = gguf_buf_init(16*1024);
  16211. gguf_write_to_buf(ctx, &buf, only_meta);
  16212. fwrite(buf.data, 1, buf.offset, file);
  16213. gguf_buf_free(buf);
  16214. fclose(file);
  16215. }
  16216. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16217. // no allocs - only compute size
  16218. struct gguf_buf buf = gguf_buf_init(0);
  16219. gguf_write_to_buf(ctx, &buf, true);
  16220. return buf.offset;
  16221. }
  16222. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16223. struct gguf_buf buf = gguf_buf_init(16*1024);
  16224. gguf_write_to_buf(ctx, &buf, true);
  16225. memcpy(data, buf.data, buf.offset);
  16226. gguf_buf_free(buf);
  16227. }
  16228. ////////////////////////////////////////////////////////////////////////////////
  16229. int ggml_cpu_has_avx(void) {
  16230. #if defined(__AVX__)
  16231. return 1;
  16232. #else
  16233. return 0;
  16234. #endif
  16235. }
  16236. int ggml_cpu_has_avx2(void) {
  16237. #if defined(__AVX2__)
  16238. return 1;
  16239. #else
  16240. return 0;
  16241. #endif
  16242. }
  16243. int ggml_cpu_has_avx512(void) {
  16244. #if defined(__AVX512F__)
  16245. return 1;
  16246. #else
  16247. return 0;
  16248. #endif
  16249. }
  16250. int ggml_cpu_has_avx512_vbmi(void) {
  16251. #if defined(__AVX512VBMI__)
  16252. return 1;
  16253. #else
  16254. return 0;
  16255. #endif
  16256. }
  16257. int ggml_cpu_has_avx512_vnni(void) {
  16258. #if defined(__AVX512VNNI__)
  16259. return 1;
  16260. #else
  16261. return 0;
  16262. #endif
  16263. }
  16264. int ggml_cpu_has_fma(void) {
  16265. #if defined(__FMA__)
  16266. return 1;
  16267. #else
  16268. return 0;
  16269. #endif
  16270. }
  16271. int ggml_cpu_has_neon(void) {
  16272. #if defined(__ARM_NEON)
  16273. return 1;
  16274. #else
  16275. return 0;
  16276. #endif
  16277. }
  16278. int ggml_cpu_has_arm_fma(void) {
  16279. #if defined(__ARM_FEATURE_FMA)
  16280. return 1;
  16281. #else
  16282. return 0;
  16283. #endif
  16284. }
  16285. int ggml_cpu_has_metal(void) {
  16286. #if defined(GGML_USE_METAL)
  16287. return 1;
  16288. #else
  16289. return 0;
  16290. #endif
  16291. }
  16292. int ggml_cpu_has_f16c(void) {
  16293. #if defined(__F16C__)
  16294. return 1;
  16295. #else
  16296. return 0;
  16297. #endif
  16298. }
  16299. int ggml_cpu_has_fp16_va(void) {
  16300. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16301. return 1;
  16302. #else
  16303. return 0;
  16304. #endif
  16305. }
  16306. int ggml_cpu_has_wasm_simd(void) {
  16307. #if defined(__wasm_simd128__)
  16308. return 1;
  16309. #else
  16310. return 0;
  16311. #endif
  16312. }
  16313. int ggml_cpu_has_blas(void) {
  16314. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16315. return 1;
  16316. #else
  16317. return 0;
  16318. #endif
  16319. }
  16320. int ggml_cpu_has_cublas(void) {
  16321. #if defined(GGML_USE_CUBLAS)
  16322. return 1;
  16323. #else
  16324. return 0;
  16325. #endif
  16326. }
  16327. int ggml_cpu_has_clblast(void) {
  16328. #if defined(GGML_USE_CLBLAST)
  16329. return 1;
  16330. #else
  16331. return 0;
  16332. #endif
  16333. }
  16334. int ggml_cpu_has_gpublas(void) {
  16335. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16336. }
  16337. int ggml_cpu_has_sse3(void) {
  16338. #if defined(__SSE3__)
  16339. return 1;
  16340. #else
  16341. return 0;
  16342. #endif
  16343. }
  16344. int ggml_cpu_has_ssse3(void) {
  16345. #if defined(__SSSE3__)
  16346. return 1;
  16347. #else
  16348. return 0;
  16349. #endif
  16350. }
  16351. int ggml_cpu_has_vsx(void) {
  16352. #if defined(__POWER9_VECTOR__)
  16353. return 1;
  16354. #else
  16355. return 0;
  16356. #endif
  16357. }
  16358. ////////////////////////////////////////////////////////////////////////////////