convert_hf_to_gguf.py 186 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. import math
  17. import numpy as np
  18. import torch
  19. if TYPE_CHECKING:
  20. from torch import Tensor
  21. if 'NO_LOCAL_GGUF' not in os.environ:
  22. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  23. import gguf
  24. logger = logging.getLogger("hf-to-gguf")
  25. ###### MODEL DEFINITIONS ######
  26. class SentencePieceTokenTypes(IntEnum):
  27. NORMAL = 1
  28. UNKNOWN = 2
  29. CONTROL = 3
  30. USER_DEFINED = 4
  31. UNUSED = 5
  32. BYTE = 6
  33. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  34. class Model:
  35. _model_classes: dict[str, type[Model]] = {}
  36. dir_model: Path
  37. ftype: gguf.LlamaFileType
  38. fname_out: Path
  39. is_big_endian: bool
  40. endianess: gguf.GGUFEndian
  41. use_temp_file: bool
  42. lazy: bool
  43. part_names: list[str]
  44. is_safetensors: bool
  45. hparams: dict[str, Any]
  46. block_count: int
  47. tensor_map: gguf.TensorNameMap
  48. tensor_names: set[str] | None
  49. gguf_writer: gguf.GGUFWriter
  50. model_name: str | None
  51. metadata_override: Path | None
  52. dir_model_card: Path
  53. is_lora: bool
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. if len(self.part_names) > 1:
  112. self.tensor_names = set()
  113. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  114. index_name += ".index.json"
  115. logger.info(f"gguf: loading model weight map from '{index_name}'")
  116. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  117. index: dict[str, Any] = json.load(f)
  118. weight_map = index.get("weight_map")
  119. if weight_map is None or not isinstance(weight_map, dict):
  120. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  121. self.tensor_names.update(weight_map.keys())
  122. else:
  123. self.tensor_names = tensor_names_from_parts
  124. for part_name in self.part_names:
  125. logger.info(f"gguf: loading model part '{part_name}'")
  126. ctx: ContextManager[Any]
  127. if self.is_safetensors:
  128. from safetensors import safe_open
  129. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  130. else:
  131. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  132. with ctx as model_part:
  133. tensor_names_from_parts.update(model_part.keys())
  134. for name in model_part.keys():
  135. if self.is_safetensors:
  136. if self.lazy:
  137. data = model_part.get_slice(name)
  138. data = LazyTorchTensor.from_safetensors_slice(data)
  139. else:
  140. data = model_part.get_tensor(name)
  141. else:
  142. data = model_part[name]
  143. if self.lazy:
  144. data = LazyTorchTensor.from_eager(data)
  145. yield name, data
  146. # only verify tensor name presence; it doesn't matter if they are not in the right files
  147. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  148. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  149. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  150. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  151. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  152. name: str = gguf.TENSOR_NAMES[key]
  153. if "{bid}" in name:
  154. assert bid is not None
  155. name = name.format(bid=bid)
  156. return name + suffix
  157. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  158. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  159. return False
  160. key_name: str = gguf.TENSOR_NAMES[key]
  161. if "{bid}" in key_name:
  162. if bid is None:
  163. return False
  164. key_name = key_name.format(bid=bid)
  165. else:
  166. if bid is not None:
  167. return False
  168. return name == (key_name + suffix)
  169. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  170. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  171. if new_name is None:
  172. raise ValueError(f"Can not map tensor {name!r}")
  173. return new_name
  174. def set_gguf_parameters(self):
  175. self.gguf_writer.add_block_count(self.block_count)
  176. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  177. self.gguf_writer.add_context_length(n_ctx)
  178. logger.info(f"gguf: context length = {n_ctx}")
  179. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  180. self.gguf_writer.add_embedding_length(n_embd)
  181. logger.info(f"gguf: embedding length = {n_embd}")
  182. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  183. self.gguf_writer.add_feed_forward_length(n_ff)
  184. logger.info(f"gguf: feed forward length = {n_ff}")
  185. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  186. self.gguf_writer.add_head_count(n_head)
  187. logger.info(f"gguf: head count = {n_head}")
  188. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  189. self.gguf_writer.add_head_count_kv(n_head_kv)
  190. logger.info(f"gguf: key-value head count = {n_head_kv}")
  191. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  192. self.gguf_writer.add_rope_freq_base(rope_theta)
  193. logger.info(f"gguf: rope theta = {rope_theta}")
  194. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  195. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  196. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  197. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  198. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  199. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  200. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  201. self.gguf_writer.add_expert_count(n_experts)
  202. logger.info(f"gguf: expert count = {n_experts}")
  203. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  204. self.gguf_writer.add_expert_used_count(n_experts_used)
  205. logger.info(f"gguf: experts used count = {n_experts_used}")
  206. if (head_dim := self.hparams.get("head_dim")) is not None:
  207. self.gguf_writer.add_key_length(head_dim)
  208. self.gguf_writer.add_value_length(head_dim)
  209. self.gguf_writer.add_file_type(self.ftype)
  210. logger.info(f"gguf: file type = {self.ftype}")
  211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  212. del bid # unused
  213. return [(self.map_tensor_name(name), data_torch)]
  214. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  215. del name, new_name, bid, n_dims # unused
  216. return False
  217. def prepare_tensors(self):
  218. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  219. for name, data_torch in self.get_tensors():
  220. # we don't need these
  221. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  222. continue
  223. old_dtype = data_torch.dtype
  224. # convert any unsupported data types to float32
  225. if data_torch.dtype not in (torch.float16, torch.float32):
  226. data_torch = data_torch.to(torch.float32)
  227. # use the first number-like part of the tensor name as the block id
  228. bid = None
  229. for part in name.split("."):
  230. if part.isdecimal():
  231. bid = int(part)
  232. break
  233. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  234. data: np.ndarray # type hint
  235. n_dims = len(data.shape)
  236. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  237. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  238. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  239. data_qtype = gguf.GGMLQuantizationType.F32
  240. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  241. # Some tensor types are always in float32
  242. if data_qtype is False and (
  243. any(
  244. self.match_model_tensor_name(new_name, key, bid)
  245. for key in (
  246. gguf.MODEL_TENSOR.FFN_GATE_INP,
  247. gguf.MODEL_TENSOR.POS_EMBD,
  248. gguf.MODEL_TENSOR.TOKEN_TYPES,
  249. gguf.MODEL_TENSOR.SSM_CONV1D,
  250. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  251. gguf.MODEL_TENSOR.TIME_MIX_W1,
  252. gguf.MODEL_TENSOR.TIME_MIX_W2,
  253. )
  254. )
  255. or not new_name.endswith(".weight")
  256. ):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. if data_qtype is False and any(
  259. self.match_model_tensor_name(new_name, key, bid)
  260. for key in (
  261. gguf.MODEL_TENSOR.TOKEN_EMBD,
  262. gguf.MODEL_TENSOR.OUTPUT,
  263. )
  264. ):
  265. if self.ftype in (
  266. gguf.LlamaFileType.MOSTLY_TQ1_0,
  267. gguf.LlamaFileType.MOSTLY_TQ2_0,
  268. ):
  269. # TODO: use Q4_K and Q6_K
  270. data_qtype = gguf.GGMLQuantizationType.F16
  271. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  272. if isinstance(data_qtype, bool):
  273. if self.ftype == gguf.LlamaFileType.ALL_F32:
  274. data_qtype = gguf.GGMLQuantizationType.F32
  275. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  278. data_qtype = gguf.GGMLQuantizationType.BF16
  279. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  280. data_qtype = gguf.GGMLQuantizationType.Q8_0
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  282. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  284. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  285. else:
  286. raise ValueError(f"Unknown file type: {self.ftype.name}")
  287. try:
  288. data = gguf.quants.quantize(data, data_qtype)
  289. except gguf.QuantError as e:
  290. logger.warning("%s, %s", e, "falling back to F16")
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. data = gguf.quants.quantize(data, data_qtype)
  293. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  294. # reverse shape to make it similar to the internal ggml dimension order
  295. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  296. # n_dims is implicit in the shape
  297. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  298. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  299. def set_type(self):
  300. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  301. def prepare_metadata(self, vocab_only: bool):
  302. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  303. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  304. # Fallback to model directory name if metadata name is still missing
  305. if self.metadata.name is None:
  306. self.metadata.name = self.dir_model.name
  307. # Generate parameter weight class (useful for leader boards) if not yet determined
  308. if self.metadata.size_label is None and total_params > 0:
  309. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  310. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  311. output_type: str = self.ftype.name.partition("_")[2]
  312. # Filename Output
  313. if self.fname_out.is_dir():
  314. # Generate default filename based on model specification and available metadata
  315. if not vocab_only:
  316. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  317. else:
  318. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  319. # Use the default filename
  320. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  321. else:
  322. # Output path is a custom defined templated filename
  323. # Note: `not is_dir()` is used because `.is_file()` will not detect
  324. # file template strings as it doesn't actually exist as a file
  325. # Process templated file name with the output ftype, useful with the "auto" ftype
  326. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  327. self.set_type()
  328. logger.info("Set meta model")
  329. self.metadata.set_gguf_meta_model(self.gguf_writer)
  330. logger.info("Set model parameters")
  331. self.set_gguf_parameters()
  332. logger.info("Set model tokenizer")
  333. self.set_vocab()
  334. logger.info("Set model quantization version")
  335. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  336. def write(self):
  337. self.prepare_tensors()
  338. self.prepare_metadata(vocab_only=False)
  339. self.gguf_writer.write_header_to_file(path=self.fname_out)
  340. self.gguf_writer.write_kv_data_to_file()
  341. self.gguf_writer.write_tensors_to_file(progress=True)
  342. self.gguf_writer.close()
  343. def write_vocab(self):
  344. if len(self.gguf_writer.tensors) != 1:
  345. raise ValueError('Splitting the vocabulary is not supported')
  346. self.prepare_metadata(vocab_only=True)
  347. self.gguf_writer.write_header_to_file(path=self.fname_out)
  348. self.gguf_writer.write_kv_data_to_file()
  349. self.gguf_writer.close()
  350. @staticmethod
  351. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  352. part_names: list[str] = []
  353. for filename in os.listdir(dir_model):
  354. if filename.startswith(prefix) and filename.endswith(suffix):
  355. part_names.append(filename)
  356. part_names.sort()
  357. return part_names
  358. @staticmethod
  359. def load_hparams(dir_model: Path):
  360. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  361. return json.load(f)
  362. @classmethod
  363. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  364. assert names
  365. def func(modelcls: AnyModel) -> AnyModel:
  366. for name in names:
  367. cls._model_classes[name] = modelcls
  368. return modelcls
  369. return func
  370. @classmethod
  371. def from_model_architecture(cls, arch: str) -> type[Model]:
  372. try:
  373. return cls._model_classes[arch]
  374. except KeyError:
  375. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  376. def does_token_look_special(self, token: str | bytes) -> bool:
  377. if isinstance(token, (bytes, bytearray)):
  378. token_text = token.decode(encoding="utf-8")
  379. elif isinstance(token, memoryview):
  380. token_text = token.tobytes().decode(encoding="utf-8")
  381. else:
  382. token_text = token
  383. # Some models mark some added tokens which ought to be control tokens as not special.
  384. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  385. seems_special = token_text in (
  386. "<pad>", # deepseek-coder
  387. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  388. )
  389. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  390. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  391. # TODO: should these be marked as UNUSED instead? (maybe not)
  392. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  393. return seems_special
  394. # used for GPT-2 BPE and WordPiece vocabs
  395. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  396. tokens: list[str] = []
  397. toktypes: list[int] = []
  398. from transformers import AutoTokenizer
  399. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  400. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  401. assert max(tokenizer.vocab.values()) < vocab_size
  402. tokpre = self.get_vocab_base_pre(tokenizer)
  403. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  404. added_vocab = tokenizer.get_added_vocab()
  405. for i in range(vocab_size):
  406. if i not in reverse_vocab:
  407. tokens.append(f"[PAD{i}]")
  408. toktypes.append(gguf.TokenType.UNUSED)
  409. else:
  410. token: str = reverse_vocab[i]
  411. if token in added_vocab:
  412. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  413. toktypes.append(gguf.TokenType.CONTROL)
  414. else:
  415. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  416. toktypes.append(gguf.TokenType.USER_DEFINED)
  417. else:
  418. toktypes.append(gguf.TokenType.NORMAL)
  419. tokens.append(token)
  420. return tokens, toktypes, tokpre
  421. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  422. # do not modify it manually!
  423. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  424. # Marker: Start get_vocab_base_pre
  425. def get_vocab_base_pre(self, tokenizer) -> str:
  426. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  427. # is specific for the BPE pre-tokenizer used by the model
  428. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  429. # use in llama.cpp to implement the same pre-tokenizer
  430. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  431. chktok = tokenizer.encode(chktxt)
  432. chkhsh = sha256(str(chktok).encode()).hexdigest()
  433. logger.debug(f"chktok: {chktok}")
  434. logger.debug(f"chkhsh: {chkhsh}")
  435. res = None
  436. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  437. # or pull the latest version of the model from Huggingface
  438. # don't edit the hashes manually!
  439. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  440. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  441. res = "llama-bpe"
  442. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  443. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  444. res = "deepseek-llm"
  445. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  446. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  447. res = "deepseek-coder"
  448. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  449. # ref: https://huggingface.co/tiiuae/falcon-7b
  450. res = "falcon"
  451. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  452. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  453. res = "bert-bge"
  454. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  455. # ref: https://huggingface.co/mosaicml/mpt-7b
  456. res = "mpt"
  457. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  458. # ref: https://huggingface.co/bigcode/starcoder2-3b
  459. res = "starcoder"
  460. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  461. # ref: https://huggingface.co/openai-community/gpt2
  462. res = "gpt-2"
  463. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  464. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  465. res = "stablelm2"
  466. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  467. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  468. res = "refact"
  469. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  470. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  471. res = "command-r"
  472. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  473. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  474. res = "qwen2"
  475. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  476. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  477. res = "olmo"
  478. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  479. # ref: https://huggingface.co/databricks/dbrx-base
  480. res = "dbrx"
  481. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  482. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  483. res = "jina-v2-en"
  484. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  485. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  486. res = "jina-v2-es"
  487. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  488. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  489. res = "jina-v2-de"
  490. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  491. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  492. res = "smaug-bpe"
  493. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  494. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  495. res = "poro-chat"
  496. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  497. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  498. res = "jina-v2-code"
  499. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  500. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  501. res = "chatglm-bpe"
  502. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  503. # ref: https://huggingface.co/LumiOpen/Viking-7B
  504. res = "viking"
  505. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  506. # ref: https://huggingface.co/core42/jais-13b
  507. res = "jais"
  508. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  509. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  510. res = "codeshell"
  511. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  512. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  513. res = "tekken"
  514. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  515. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  516. res = "smollm"
  517. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  518. # ref: https://huggingface.co/bigscience/bloom
  519. res = "bloom"
  520. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  521. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  522. res = "gpt3-finnish"
  523. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  524. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  525. res = "exaone"
  526. if res is None:
  527. logger.warning("\n")
  528. logger.warning("**************************************************************************************")
  529. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  530. logger.warning("** There are 2 possible reasons for this:")
  531. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  532. logger.warning("** - the pre-tokenization config has changed upstream")
  533. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  534. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  535. logger.warning("**")
  536. logger.warning(f"** chkhsh: {chkhsh}")
  537. logger.warning("**************************************************************************************")
  538. logger.warning("\n")
  539. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  540. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  541. logger.debug(f"chkhsh: {chkhsh}")
  542. return res
  543. # Marker: End get_vocab_base_pre
  544. def _set_vocab_gpt2(self) -> None:
  545. tokens, toktypes, tokpre = self.get_vocab_base()
  546. self.gguf_writer.add_tokenizer_model("gpt2")
  547. self.gguf_writer.add_tokenizer_pre(tokpre)
  548. self.gguf_writer.add_token_list(tokens)
  549. self.gguf_writer.add_token_types(toktypes)
  550. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  551. special_vocab.add_to_gguf(self.gguf_writer)
  552. def _set_vocab_qwen(self):
  553. dir_model = self.dir_model
  554. hparams = self.hparams
  555. tokens: list[str] = []
  556. toktypes: list[int] = []
  557. from transformers import AutoTokenizer
  558. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  559. vocab_size = hparams["vocab_size"]
  560. assert max(tokenizer.get_vocab().values()) < vocab_size
  561. tokpre = self.get_vocab_base_pre(tokenizer)
  562. merges = []
  563. vocab = {}
  564. mergeable_ranks = tokenizer.mergeable_ranks
  565. for token, rank in mergeable_ranks.items():
  566. vocab[QwenModel.token_bytes_to_string(token)] = rank
  567. if len(token) == 1:
  568. continue
  569. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  570. assert len(merged) == 2
  571. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  572. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  573. added_vocab = tokenizer.special_tokens
  574. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  575. for i in range(vocab_size):
  576. if i not in reverse_vocab:
  577. tokens.append(f"[PAD{i}]")
  578. toktypes.append(gguf.TokenType.UNUSED)
  579. elif reverse_vocab[i] in added_vocab:
  580. tokens.append(reverse_vocab[i])
  581. toktypes.append(gguf.TokenType.CONTROL)
  582. else:
  583. tokens.append(reverse_vocab[i])
  584. toktypes.append(gguf.TokenType.NORMAL)
  585. self.gguf_writer.add_tokenizer_model("gpt2")
  586. self.gguf_writer.add_tokenizer_pre(tokpre)
  587. self.gguf_writer.add_token_list(tokens)
  588. self.gguf_writer.add_token_types(toktypes)
  589. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  590. special_vocab.merges = merges
  591. # only add special tokens when they were not already loaded from config.json
  592. if len(special_vocab.special_token_ids) == 0:
  593. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  594. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  595. # this one is usually not in config.json anyway
  596. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  597. special_vocab.add_to_gguf(self.gguf_writer)
  598. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  599. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  600. self.gguf_writer.add_tokenizer_model("llama")
  601. self.gguf_writer.add_tokenizer_pre("default")
  602. self.gguf_writer.add_token_list(tokens)
  603. self.gguf_writer.add_token_scores(scores)
  604. self.gguf_writer.add_token_types(toktypes)
  605. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  606. special_vocab.add_to_gguf(self.gguf_writer)
  607. def _create_vocab_sentencepiece(self):
  608. from sentencepiece import SentencePieceProcessor
  609. tokenizer_path = self.dir_model / 'tokenizer.model'
  610. if not tokenizer_path.is_file():
  611. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  612. tokenizer = SentencePieceProcessor()
  613. tokenizer.LoadFromFile(str(tokenizer_path))
  614. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  615. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  616. scores: list[float] = [-10000.0] * vocab_size
  617. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  618. for token_id in range(tokenizer.vocab_size()):
  619. piece = tokenizer.IdToPiece(token_id)
  620. text = piece.encode("utf-8")
  621. score = tokenizer.GetScore(token_id)
  622. toktype = SentencePieceTokenTypes.NORMAL
  623. if tokenizer.IsUnknown(token_id):
  624. toktype = SentencePieceTokenTypes.UNKNOWN
  625. elif tokenizer.IsControl(token_id):
  626. toktype = SentencePieceTokenTypes.CONTROL
  627. elif tokenizer.IsUnused(token_id):
  628. toktype = SentencePieceTokenTypes.UNUSED
  629. elif tokenizer.IsByte(token_id):
  630. toktype = SentencePieceTokenTypes.BYTE
  631. tokens[token_id] = text
  632. scores[token_id] = score
  633. toktypes[token_id] = toktype
  634. added_tokens_file = self.dir_model / 'added_tokens.json'
  635. if added_tokens_file.is_file():
  636. with open(added_tokens_file, "r", encoding="utf-8") as f:
  637. added_tokens_json = json.load(f)
  638. for key in added_tokens_json:
  639. token_id = added_tokens_json[key]
  640. if token_id >= vocab_size:
  641. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  642. continue
  643. tokens[token_id] = key.encode("utf-8")
  644. scores[token_id] = -1000.0
  645. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  646. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  647. if tokenizer_config_file.is_file():
  648. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  649. tokenizer_config_json = json.load(f)
  650. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  651. for token_id, token_data in added_tokens_decoder.items():
  652. token_id = int(token_id)
  653. token: str = token_data["content"]
  654. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  655. if tokens[token_id] != token.encode("utf-8"):
  656. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  657. if token_data.get("special") or self.does_token_look_special(token):
  658. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  659. else:
  660. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  661. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  662. scores[token_id] = -1000.0
  663. tokens[token_id] = token.encode("utf-8")
  664. if vocab_size > len(tokens):
  665. pad_count = vocab_size - len(tokens)
  666. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  667. for i in range(1, pad_count + 1):
  668. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  669. scores.append(-1000.0)
  670. toktypes.append(SentencePieceTokenTypes.UNUSED)
  671. return tokens, scores, toktypes
  672. def _set_vocab_llama_hf(self):
  673. vocab = gguf.LlamaHfVocab(self.dir_model)
  674. tokens = []
  675. scores = []
  676. toktypes = []
  677. for text, score, toktype in vocab.all_tokens():
  678. tokens.append(text)
  679. scores.append(score)
  680. toktypes.append(toktype)
  681. assert len(tokens) == vocab.vocab_size
  682. self.gguf_writer.add_tokenizer_model("llama")
  683. self.gguf_writer.add_tokenizer_pre("default")
  684. self.gguf_writer.add_token_list(tokens)
  685. self.gguf_writer.add_token_scores(scores)
  686. self.gguf_writer.add_token_types(toktypes)
  687. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  688. special_vocab.add_to_gguf(self.gguf_writer)
  689. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  690. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  691. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  692. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  693. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  694. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  695. assert field # tokenizer model
  696. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  697. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  698. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  699. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  700. assert field # token list
  701. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  702. if model_name == "llama-spm":
  703. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  704. assert field # token scores
  705. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  706. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  707. assert field # token types
  708. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  709. if model_name != "llama-spm":
  710. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  711. assert field # token merges
  712. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  713. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  714. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  715. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  716. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  717. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  718. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  719. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  720. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  721. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  722. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  723. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  724. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  725. @Model.register("GPTNeoXForCausalLM")
  726. class GPTNeoXModel(Model):
  727. model_arch = gguf.MODEL_ARCH.GPTNEOX
  728. def set_gguf_parameters(self):
  729. block_count = self.hparams["num_hidden_layers"]
  730. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  731. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  732. self.gguf_writer.add_block_count(block_count)
  733. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  734. self.gguf_writer.add_rope_dimension_count(
  735. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  736. )
  737. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  738. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  739. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  740. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  741. del bid # unused
  742. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  743. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  744. tensors: list[tuple[str, Tensor]] = []
  745. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  746. # Map bloom-style qkv_linear to gpt-style qkv_linear
  747. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  748. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  749. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  750. data_torch = torch.cat(
  751. (
  752. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  753. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  754. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  755. ),
  756. dim=0,
  757. )
  758. logger.info("re-format attention.linear_qkv.weight")
  759. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  760. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  761. data_torch = torch.cat(
  762. (
  763. qkv_bias[:, 0, :].reshape((n_embed,)),
  764. qkv_bias[:, 1, :].reshape((n_embed,)),
  765. qkv_bias[:, 2, :].reshape((n_embed,)),
  766. ),
  767. dim=0,
  768. )
  769. logger.info("re-format attention.linear_qkv.bias")
  770. tensors.append((self.map_tensor_name(name), data_torch))
  771. return tensors
  772. @Model.register("BloomForCausalLM", "BloomModel")
  773. class BloomModel(Model):
  774. model_arch = gguf.MODEL_ARCH.BLOOM
  775. def set_gguf_parameters(self):
  776. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  777. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  778. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  779. self.gguf_writer.add_embedding_length(n_embed)
  780. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  781. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  782. self.gguf_writer.add_head_count(n_head)
  783. self.gguf_writer.add_head_count_kv(n_head)
  784. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  785. self.gguf_writer.add_file_type(self.ftype)
  786. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  787. del bid # unused
  788. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  789. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  790. name = re.sub(r'transformer\.', '', name)
  791. tensors: list[tuple[str, Tensor]] = []
  792. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  793. # Map bloom-style qkv_linear to gpt-style qkv_linear
  794. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  795. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  796. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  797. data_torch = torch.cat(
  798. (
  799. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  800. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  801. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  802. ),
  803. dim=0,
  804. )
  805. logger.info("re-format attention.linear_qkv.weight")
  806. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  807. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  808. data_torch = torch.cat(
  809. (
  810. qkv_bias[:, 0, :].reshape((n_embed,)),
  811. qkv_bias[:, 1, :].reshape((n_embed,)),
  812. qkv_bias[:, 2, :].reshape((n_embed,)),
  813. ),
  814. dim=0,
  815. )
  816. logger.info("re-format attention.linear_qkv.bias")
  817. tensors.append((self.map_tensor_name(name), data_torch))
  818. if name == "word_embeddings.weight":
  819. assert self.tensor_names is not None
  820. # TODO: tie them at runtime, don't duplicate in the model file
  821. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  822. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  823. return tensors
  824. @Model.register("MPTForCausalLM")
  825. class MPTModel(Model):
  826. model_arch = gguf.MODEL_ARCH.MPT
  827. def set_vocab(self):
  828. try:
  829. self._set_vocab_gpt2()
  830. except Exception:
  831. # Fallback for SEA-LION model
  832. self._set_vocab_sentencepiece()
  833. self.gguf_writer.add_add_bos_token(False)
  834. self.gguf_writer.add_pad_token_id(3)
  835. self.gguf_writer.add_eos_token_id(1)
  836. self.gguf_writer.add_unk_token_id(0)
  837. def set_gguf_parameters(self):
  838. block_count = self.hparams["n_layers"]
  839. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  840. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  841. self.gguf_writer.add_block_count(block_count)
  842. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  843. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  844. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  845. self.gguf_writer.add_head_count_kv(kv_n_heads)
  846. self.gguf_writer.add_layer_norm_eps(1e-5)
  847. if self.hparams["attn_config"]["clip_qkv"] is not None:
  848. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  849. if self.hparams["attn_config"]["alibi"]:
  850. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  851. else:
  852. self.gguf_writer.add_max_alibi_bias(0.0)
  853. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  854. del bid # unused
  855. if "scales" in name:
  856. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  857. new_name = new_name.replace("scales", "act.scales")
  858. else:
  859. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  860. return [(new_name, data_torch)]
  861. @Model.register("OrionForCausalLM")
  862. class OrionModel(Model):
  863. model_arch = gguf.MODEL_ARCH.ORION
  864. def set_vocab(self):
  865. self._set_vocab_sentencepiece()
  866. def set_gguf_parameters(self):
  867. block_count = self.hparams["num_hidden_layers"]
  868. head_count = self.hparams["num_attention_heads"]
  869. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  870. ctx_length = 0
  871. if "max_sequence_length" in self.hparams:
  872. ctx_length = self.hparams["max_sequence_length"]
  873. elif "max_position_embeddings" in self.hparams:
  874. ctx_length = self.hparams["max_position_embeddings"]
  875. elif "model_max_length" in self.hparams:
  876. ctx_length = self.hparams["model_max_length"]
  877. else:
  878. raise ValueError("gguf: can not find ctx length parameter.")
  879. self.gguf_writer.add_file_type(self.ftype)
  880. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  881. self.gguf_writer.add_context_length(ctx_length)
  882. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  883. self.gguf_writer.add_block_count(block_count)
  884. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  885. self.gguf_writer.add_head_count(head_count)
  886. self.gguf_writer.add_head_count_kv(head_count_kv)
  887. # note: config provides rms norm but it is actually layer norm
  888. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  889. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  890. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  891. class BaichuanModel(Model):
  892. model_arch = gguf.MODEL_ARCH.BAICHUAN
  893. def set_vocab(self):
  894. self._set_vocab_sentencepiece()
  895. def set_gguf_parameters(self):
  896. block_count = self.hparams["num_hidden_layers"]
  897. head_count = self.hparams["num_attention_heads"]
  898. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  899. ctx_length = 0
  900. if "max_sequence_length" in self.hparams:
  901. ctx_length = self.hparams["max_sequence_length"]
  902. elif "max_position_embeddings" in self.hparams:
  903. ctx_length = self.hparams["max_position_embeddings"]
  904. elif "model_max_length" in self.hparams:
  905. ctx_length = self.hparams["model_max_length"]
  906. else:
  907. raise ValueError("gguf: can not find ctx length parameter.")
  908. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  909. self.gguf_writer.add_context_length(ctx_length)
  910. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  911. self.gguf_writer.add_block_count(block_count)
  912. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  913. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  914. self.gguf_writer.add_head_count(head_count)
  915. self.gguf_writer.add_head_count_kv(head_count_kv)
  916. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  917. self.gguf_writer.add_file_type(self.ftype)
  918. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  919. if self.hparams["rope_scaling"].get("type") == "linear":
  920. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  921. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  923. head_count = self.hparams["num_attention_heads"]
  924. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  925. tensors: list[tuple[str, Tensor]] = []
  926. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  927. logger.info(f"Unpacking and permuting layer {bid}")
  928. tensors = [
  929. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  930. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  931. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  932. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  933. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  934. self._reverse_hf_part(data_torch, 2)),
  935. ]
  936. else:
  937. tensors = [(self.map_tensor_name(name), data_torch)]
  938. return tensors
  939. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  940. if n_kv_head is not None and n_head != n_kv_head:
  941. n_head //= n_kv_head
  942. return (
  943. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  944. .swapaxes(1, 2)
  945. .reshape(weights.shape)
  946. )
  947. def _reverse_hf_permute_part(
  948. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  949. ) -> Tensor:
  950. r = weights.shape[0] // 3
  951. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  952. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  953. r = weights.shape[0] // 3
  954. return weights[r * n_part:r * n_part + r, ...]
  955. @Model.register("XverseForCausalLM")
  956. class XverseModel(Model):
  957. model_arch = gguf.MODEL_ARCH.XVERSE
  958. def set_vocab(self):
  959. assert (self.dir_model / "tokenizer.json").is_file()
  960. dir_model = self.dir_model
  961. hparams = self.hparams
  962. tokens: list[bytes] = []
  963. toktypes: list[int] = []
  964. from transformers import AutoTokenizer
  965. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  966. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  967. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  968. # because vocab_size is the count of items, and indexes start at 0.
  969. max_vocab_index = max(tokenizer.get_vocab().values())
  970. if max_vocab_index >= vocab_size:
  971. raise ValueError("Vocabulary size exceeds expected maximum size.")
  972. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  973. added_vocab = tokenizer.get_added_vocab()
  974. for token_id in range(vocab_size):
  975. token_text = reverse_vocab[token_id].encode('utf-8')
  976. # replace "\x00" to string with length > 0
  977. if token_text == b"\x00":
  978. toktype = gguf.TokenType.BYTE # special
  979. token_text = f"<{token_text}>".encode('utf-8')
  980. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  981. toktype = gguf.TokenType.BYTE # special
  982. elif reverse_vocab[token_id] in added_vocab:
  983. if tokenizer.added_tokens_decoder[token_id].special:
  984. toktype = gguf.TokenType.CONTROL
  985. else:
  986. toktype = gguf.TokenType.USER_DEFINED
  987. else:
  988. toktype = gguf.TokenType.NORMAL
  989. tokens.append(token_text)
  990. toktypes.append(toktype)
  991. self.gguf_writer.add_tokenizer_model("llama")
  992. self.gguf_writer.add_tokenizer_pre("default")
  993. self.gguf_writer.add_token_list(tokens)
  994. self.gguf_writer.add_token_types(toktypes)
  995. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  996. special_vocab.add_to_gguf(self.gguf_writer)
  997. def set_gguf_parameters(self):
  998. block_count = self.hparams["num_hidden_layers"]
  999. head_count = self.hparams["num_attention_heads"]
  1000. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1001. ctx_length = 0
  1002. if "max_sequence_length" in self.hparams:
  1003. ctx_length = self.hparams["max_sequence_length"]
  1004. elif "max_position_embeddings" in self.hparams:
  1005. ctx_length = self.hparams["max_position_embeddings"]
  1006. elif "model_max_length" in self.hparams:
  1007. ctx_length = self.hparams["model_max_length"]
  1008. else:
  1009. raise ValueError("gguf: can not find ctx length parameter.")
  1010. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1011. self.gguf_writer.add_context_length(ctx_length)
  1012. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1013. self.gguf_writer.add_block_count(block_count)
  1014. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1015. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1016. self.gguf_writer.add_head_count(head_count)
  1017. self.gguf_writer.add_head_count_kv(head_count_kv)
  1018. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1019. self.gguf_writer.add_file_type(self.ftype)
  1020. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1021. if self.hparams["rope_scaling"].get("type") == "linear":
  1022. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1023. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1024. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1025. del bid # unused
  1026. head_count = self.hparams["num_attention_heads"]
  1027. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1028. # HF models permute some of the tensors, so we need to undo that
  1029. if name.endswith("q_proj.weight"):
  1030. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1031. if name.endswith("k_proj.weight"):
  1032. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1033. return [(self.map_tensor_name(name), data_torch)]
  1034. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1035. if n_kv_head is not None and n_head != n_kv_head:
  1036. n_head //= n_kv_head
  1037. return (
  1038. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1039. .swapaxes(1, 2)
  1040. .reshape(weights.shape)
  1041. )
  1042. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1043. class FalconModel(Model):
  1044. model_arch = gguf.MODEL_ARCH.FALCON
  1045. def set_gguf_parameters(self):
  1046. block_count = self.hparams.get("num_hidden_layers")
  1047. if block_count is None:
  1048. block_count = self.hparams["n_layer"] # old name
  1049. n_head = self.hparams.get("num_attention_heads")
  1050. if n_head is None:
  1051. n_head = self.hparams["n_head"] # old name
  1052. n_head_kv = self.hparams.get("num_kv_heads")
  1053. if n_head_kv is None:
  1054. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1055. self.gguf_writer.add_context_length(2048) # not in config.json
  1056. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1057. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1058. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1059. self.gguf_writer.add_block_count(block_count)
  1060. self.gguf_writer.add_head_count(n_head)
  1061. self.gguf_writer.add_head_count_kv(n_head_kv)
  1062. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1063. self.gguf_writer.add_file_type(self.ftype)
  1064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1065. del bid # unused
  1066. # QKV tensor transform
  1067. # The original query_key_value tensor contains n_head_kv "kv groups",
  1068. # each consisting of n_head/n_head_kv query weights followed by one key
  1069. # and one value weight (shared by all query heads in the kv group).
  1070. # This layout makes it a big pain to work with in GGML.
  1071. # So we rearrange them here,, so that we have n_head query weights
  1072. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1073. # in contiguous fashion.
  1074. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1075. if "query_key_value" in name:
  1076. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1077. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1078. head_dim = self.hparams["hidden_size"] // n_head
  1079. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1080. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1081. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1082. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1083. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1084. return [(self.map_tensor_name(name), data_torch)]
  1085. @Model.register("GPTBigCodeForCausalLM")
  1086. class StarCoderModel(Model):
  1087. model_arch = gguf.MODEL_ARCH.STARCODER
  1088. def set_gguf_parameters(self):
  1089. block_count = self.hparams["n_layer"]
  1090. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1091. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1092. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1093. self.gguf_writer.add_block_count(block_count)
  1094. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1095. self.gguf_writer.add_head_count_kv(1)
  1096. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1097. self.gguf_writer.add_file_type(self.ftype)
  1098. @Model.register("GPTRefactForCausalLM")
  1099. class RefactModel(Model):
  1100. model_arch = gguf.MODEL_ARCH.REFACT
  1101. def set_vocab(self):
  1102. super().set_vocab()
  1103. # TODO: how to determine special FIM tokens automatically?
  1104. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1105. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1106. special_vocab._set_special_token("prefix", 1)
  1107. special_vocab._set_special_token("suffix", 3)
  1108. special_vocab._set_special_token("middle", 2)
  1109. special_vocab.chat_template = None # do not add it twice
  1110. special_vocab.add_to_gguf(self.gguf_writer)
  1111. def set_gguf_parameters(self):
  1112. hidden_dim = self.hparams["n_embd"]
  1113. inner_dim = 4 * hidden_dim
  1114. hidden_dim = int(2 * inner_dim / 3)
  1115. multiple_of = 256
  1116. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1117. block_count = self.hparams["n_layer"]
  1118. # refact uses Alibi. So this is from config.json which might be used by training.
  1119. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1120. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1121. self.gguf_writer.add_feed_forward_length(ff_dim)
  1122. self.gguf_writer.add_block_count(block_count)
  1123. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1124. self.gguf_writer.add_head_count_kv(1)
  1125. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1126. self.gguf_writer.add_file_type(self.ftype)
  1127. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1128. hidden_dim = self.hparams["n_embd"]
  1129. inner_dim = 4 * hidden_dim
  1130. hidden_dim = int(2 * inner_dim / 3)
  1131. multiple_of = 256
  1132. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1133. n_head = self.hparams["n_head"]
  1134. n_head_kv = 1
  1135. head_dim = self.hparams["n_embd"] // n_head
  1136. tensors: list[tuple[str, Tensor]] = []
  1137. if bid is not None:
  1138. if name == f"transformer.h.{bid}.attn.kv.weight":
  1139. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1140. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1141. elif name == f"transformer.h.{bid}.attn.q.weight":
  1142. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1143. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1144. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1145. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1146. if len(tensors) == 0:
  1147. tensors.append((self.map_tensor_name(name), data_torch))
  1148. return tensors
  1149. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1150. class StableLMModel(Model):
  1151. model_arch = gguf.MODEL_ARCH.STABLELM
  1152. def set_vocab(self):
  1153. if (self.dir_model / "tokenizer.json").is_file():
  1154. self._set_vocab_gpt2()
  1155. else:
  1156. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1157. self._set_vocab_qwen()
  1158. def set_gguf_parameters(self):
  1159. hparams = self.hparams
  1160. block_count = hparams["num_hidden_layers"]
  1161. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1162. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1163. self.gguf_writer.add_block_count(block_count)
  1164. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1165. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1166. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1167. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1168. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1169. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1170. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1171. self.gguf_writer.add_file_type(self.ftype)
  1172. _q_norms: list[dict[str, Tensor]] | None = None
  1173. _k_norms: list[dict[str, Tensor]] | None = None
  1174. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1175. n_head = self.hparams["num_attention_heads"]
  1176. n_kv_head = self.hparams["num_key_value_heads"]
  1177. if name.find("q_layernorm.norms") != -1:
  1178. assert bid is not None
  1179. if self._q_norms is None:
  1180. self._q_norms = [{} for _ in range(self.block_count)]
  1181. self._q_norms[bid][name] = data_torch
  1182. if len(self._q_norms[bid]) >= n_head:
  1183. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1184. else:
  1185. return []
  1186. if name.find("k_layernorm.norms") != -1:
  1187. assert bid is not None
  1188. if self._k_norms is None:
  1189. self._k_norms = [{} for _ in range(self.block_count)]
  1190. self._k_norms[bid][name] = data_torch
  1191. if len(self._k_norms[bid]) >= n_kv_head:
  1192. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1193. else:
  1194. return []
  1195. return [(self.map_tensor_name(name), data_torch)]
  1196. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1197. datas: list[Tensor] = []
  1198. # extract the norms in order
  1199. for xid in range(n_head):
  1200. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1201. datas.append(norms[ename])
  1202. del norms[ename]
  1203. data_torch = torch.stack(datas, dim=0)
  1204. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1205. new_name = self.map_tensor_name(merged_name)
  1206. return [(new_name, data_torch)]
  1207. def prepare_tensors(self):
  1208. super().prepare_tensors()
  1209. if self._q_norms is not None or self._k_norms is not None:
  1210. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1211. norms = (
  1212. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1213. ) + (
  1214. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1215. )
  1216. if len(norms) > 0:
  1217. raise ValueError(f"Unprocessed norms: {norms}")
  1218. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1219. class LlamaModel(Model):
  1220. model_arch = gguf.MODEL_ARCH.LLAMA
  1221. def set_vocab(self):
  1222. try:
  1223. self._set_vocab_sentencepiece()
  1224. except FileNotFoundError:
  1225. try:
  1226. self._set_vocab_llama_hf()
  1227. except (FileNotFoundError, TypeError):
  1228. # Llama 3
  1229. self._set_vocab_gpt2()
  1230. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1231. if self.hparams.get("vocab_size", 32000) == 32016:
  1232. special_vocab = gguf.SpecialVocab(
  1233. self.dir_model, load_merges=False,
  1234. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1235. )
  1236. special_vocab._set_special_token("prefix", 32007)
  1237. special_vocab._set_special_token("suffix", 32008)
  1238. special_vocab._set_special_token("middle", 32009)
  1239. special_vocab._set_special_token("eot", 32010)
  1240. special_vocab.add_to_gguf(self.gguf_writer)
  1241. def set_gguf_parameters(self):
  1242. super().set_gguf_parameters()
  1243. hparams = self.hparams
  1244. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1245. if "head_dim" in hparams:
  1246. rope_dim = hparams["head_dim"]
  1247. else:
  1248. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1249. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1250. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1251. if self.hparams["rope_scaling"].get("type") == "linear":
  1252. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1253. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1254. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1255. if tokenizer_config_file.is_file():
  1256. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1257. tokenizer_config_json = json.load(f)
  1258. if "add_prefix_space" in tokenizer_config_json:
  1259. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1260. # Apply to granite small models only
  1261. if self.hparams.get("vocab_size", 32000) == 49152:
  1262. self.gguf_writer.add_add_bos_token(False)
  1263. @staticmethod
  1264. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1265. if n_head_kv is not None and n_head != n_head_kv:
  1266. n_head = n_head_kv
  1267. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1268. .swapaxes(1, 2)
  1269. .reshape(weights.shape))
  1270. _experts: list[dict[str, Tensor]] | None = None
  1271. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1272. n_head = self.hparams["num_attention_heads"]
  1273. n_kv_head = self.hparams.get("num_key_value_heads")
  1274. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1275. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1276. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1277. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1278. # process the experts separately
  1279. if name.find("block_sparse_moe.experts") != -1:
  1280. n_experts = self.hparams["num_local_experts"]
  1281. assert bid is not None
  1282. if self._experts is None:
  1283. self._experts = [{} for _ in range(self.block_count)]
  1284. self._experts[bid][name] = data_torch
  1285. if len(self._experts[bid]) >= n_experts * 3:
  1286. tensors: list[tuple[str, Tensor]] = []
  1287. # merge the experts into a single 3d tensor
  1288. for wid in ["w1", "w2", "w3"]:
  1289. datas: list[Tensor] = []
  1290. for xid in range(n_experts):
  1291. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1292. datas.append(self._experts[bid][ename])
  1293. del self._experts[bid][ename]
  1294. data_torch = torch.stack(datas, dim=0)
  1295. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1296. new_name = self.map_tensor_name(merged_name)
  1297. tensors.append((new_name, data_torch))
  1298. return tensors
  1299. else:
  1300. return []
  1301. return [(self.map_tensor_name(name), data_torch)]
  1302. def prepare_tensors(self):
  1303. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1304. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1305. base = self.hparams.get("rope_theta", 10000.0)
  1306. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1307. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1308. factor = rope_scaling.get("factor", 8.0)
  1309. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1310. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1311. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1312. low_freq_wavelen = old_context_len / low_freq_factor
  1313. high_freq_wavelen = old_context_len / high_freq_factor
  1314. assert low_freq_wavelen != high_freq_wavelen
  1315. rope_factors = []
  1316. for freq in freqs:
  1317. wavelen = 2 * math.pi / freq
  1318. if wavelen < high_freq_wavelen:
  1319. rope_factors.append(1)
  1320. elif wavelen > low_freq_wavelen:
  1321. rope_factors.append(factor)
  1322. else:
  1323. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1324. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1325. if not self.is_lora:
  1326. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1327. super().prepare_tensors()
  1328. if self._experts is not None:
  1329. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1330. experts = [k for d in self._experts for k in d.keys()]
  1331. if len(experts) > 0:
  1332. raise ValueError(f"Unprocessed experts: {experts}")
  1333. @Model.register("BitnetForCausalLM")
  1334. class BitnetModel(Model):
  1335. model_arch = gguf.MODEL_ARCH.BITNET
  1336. def set_vocab(self):
  1337. self._set_vocab_sentencepiece()
  1338. def set_gguf_parameters(self):
  1339. super().set_gguf_parameters()
  1340. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1341. self.gguf_writer.add_rope_scaling_factor(1.0)
  1342. def weight_quant(self, weight: Tensor) -> Tensor:
  1343. dtype = weight.dtype
  1344. weight = weight.float()
  1345. scale = weight.abs().mean().clamp(min=1e-5)
  1346. iscale = 1 / scale
  1347. # TODO: multiply by the scale directly instead of inverting it twice
  1348. # (this is also unnecessarily doubly inverted upstream)
  1349. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1350. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1351. return result.type(dtype)
  1352. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1353. new_name = self.map_tensor_name(name)
  1354. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1355. gguf.MODEL_TENSOR.ATTN_Q,
  1356. gguf.MODEL_TENSOR.ATTN_K,
  1357. gguf.MODEL_TENSOR.ATTN_V,
  1358. gguf.MODEL_TENSOR.ATTN_OUT,
  1359. gguf.MODEL_TENSOR.FFN_UP,
  1360. gguf.MODEL_TENSOR.FFN_DOWN,
  1361. gguf.MODEL_TENSOR.FFN_GATE,
  1362. ]):
  1363. # transform weight into 1/0/-1 (in fp32)
  1364. data_torch = self.weight_quant(data_torch)
  1365. yield (new_name, data_torch)
  1366. @Model.register("GrokForCausalLM")
  1367. class GrokModel(Model):
  1368. model_arch = gguf.MODEL_ARCH.GROK
  1369. def set_vocab(self):
  1370. self._set_vocab_sentencepiece()
  1371. def __init__(self, *args, **kwargs):
  1372. super().__init__(*args, **kwargs)
  1373. def set_gguf_parameters(self):
  1374. super().set_gguf_parameters()
  1375. _experts: list[dict[str, Tensor]] | None = None
  1376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1377. # process the experts separately
  1378. if name.find(".moe.") != -1:
  1379. n_experts = self.hparams["num_local_experts"]
  1380. assert bid is not None
  1381. if self._experts is None:
  1382. self._experts = [{} for _ in range(self.block_count)]
  1383. self._experts[bid][name] = data_torch
  1384. if len(self._experts[bid]) >= n_experts * 3:
  1385. tensors: list[tuple[str, Tensor]] = []
  1386. # merge the experts into a single 3d tensor
  1387. for wid in ["linear", "linear_1", "linear_v"]:
  1388. datas: list[Tensor] = []
  1389. for xid in range(n_experts):
  1390. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1391. datas.append(self._experts[bid][ename])
  1392. del self._experts[bid][ename]
  1393. data_torch = torch.stack(datas, dim=0)
  1394. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1395. new_name = self.map_tensor_name(merged_name)
  1396. tensors.append((new_name, data_torch))
  1397. return tensors
  1398. else:
  1399. return []
  1400. return [(self.map_tensor_name(name), data_torch)]
  1401. @Model.register("DbrxForCausalLM")
  1402. class DbrxModel(Model):
  1403. model_arch = gguf.MODEL_ARCH.DBRX
  1404. def set_gguf_parameters(self):
  1405. ffn_config = self.hparams["ffn_config"]
  1406. attn_config = self.hparams["attn_config"]
  1407. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1408. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1409. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1410. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1411. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1412. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1413. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1414. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1415. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1416. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1417. self.gguf_writer.add_layer_norm_eps(1e-5)
  1418. self.gguf_writer.add_file_type(self.ftype)
  1419. logger.info(f"gguf: file type = {self.ftype}")
  1420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1421. del bid # unused
  1422. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1423. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1424. n_embd = self.hparams["d_model"]
  1425. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1426. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1427. # But llama.cpp moe graph works differently
  1428. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1429. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1430. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1431. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1432. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1433. experts = False
  1434. for exp_tensor_name in exp_tensor_names.keys():
  1435. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1436. experts = True
  1437. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1438. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1439. data_torch = data_torch.permute(*permute_tensor)
  1440. break
  1441. # map tensor names
  1442. # In MoE models the ffn tensors are typically most of the model weights,
  1443. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1444. # Every other model has the weight names ending in .weight,
  1445. # let's assume that is the convention which is not the case for dbrx:
  1446. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1447. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1448. return [(new_name, data_torch)]
  1449. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1450. del name, new_name, bid # unused
  1451. return n_dims > 1
  1452. @Model.register("MiniCPMForCausalLM")
  1453. class MiniCPMModel(Model):
  1454. model_arch = gguf.MODEL_ARCH.MINICPM
  1455. def set_gguf_parameters(self):
  1456. block_count = self.hparams["num_hidden_layers"]
  1457. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1458. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1459. self.gguf_writer.add_block_count(block_count)
  1460. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1461. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1462. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1463. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1464. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1465. self.gguf_writer.add_file_type(self.ftype)
  1466. def set_vocab(self):
  1467. self._set_vocab_llama_hf()
  1468. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1469. if n_kv_head is not None and n_head != n_kv_head:
  1470. n_head //= n_kv_head
  1471. return (
  1472. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1473. .swapaxes(1, 2)
  1474. .reshape(weights.shape)
  1475. )
  1476. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1477. del bid # unused
  1478. n_head = self.hparams["num_attention_heads"]
  1479. n_kv_head = self.hparams.get("num_key_value_heads")
  1480. # HF models permute some of the tensors, so we need to undo that
  1481. if name.endswith(("q_proj.weight")):
  1482. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1483. if name.endswith(("k_proj.weight")):
  1484. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1485. return [(self.map_tensor_name(name), data_torch)]
  1486. @Model.register("QWenLMHeadModel")
  1487. class QwenModel(Model):
  1488. model_arch = gguf.MODEL_ARCH.QWEN
  1489. @staticmethod
  1490. def token_bytes_to_string(b):
  1491. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1492. byte_encoder = bytes_to_unicode()
  1493. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1494. @staticmethod
  1495. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1496. parts = [bytes([b]) for b in token]
  1497. while True:
  1498. min_idx = None
  1499. min_rank = None
  1500. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1501. rank = mergeable_ranks.get(pair[0] + pair[1])
  1502. if rank is not None and (min_rank is None or rank < min_rank):
  1503. min_idx = i
  1504. min_rank = rank
  1505. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1506. break
  1507. assert min_idx is not None
  1508. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1509. return parts
  1510. def set_vocab(self):
  1511. self._set_vocab_qwen()
  1512. def set_gguf_parameters(self):
  1513. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1514. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1515. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1516. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1517. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1518. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1519. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1520. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1521. self.gguf_writer.add_file_type(self.ftype)
  1522. @Model.register("Qwen2ForCausalLM")
  1523. class Qwen2Model(Model):
  1524. model_arch = gguf.MODEL_ARCH.QWEN2
  1525. def set_vocab(self):
  1526. try:
  1527. self._set_vocab_sentencepiece()
  1528. except FileNotFoundError:
  1529. self._set_vocab_gpt2()
  1530. @Model.register("Qwen2MoeForCausalLM")
  1531. class Qwen2MoeModel(Model):
  1532. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1533. def set_gguf_parameters(self):
  1534. super().set_gguf_parameters()
  1535. if (n_experts := self.hparams.get("num_experts")) is not None:
  1536. self.gguf_writer.add_expert_count(n_experts)
  1537. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1538. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1539. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1540. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1541. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1542. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1543. _experts: list[dict[str, Tensor]] | None = None
  1544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1545. # process the experts separately
  1546. if name.find("experts") != -1:
  1547. n_experts = self.hparams["num_experts"]
  1548. assert bid is not None
  1549. if self._experts is None:
  1550. self._experts = [{} for _ in range(self.block_count)]
  1551. self._experts[bid][name] = data_torch
  1552. if len(self._experts[bid]) >= n_experts * 3:
  1553. tensors: list[tuple[str, Tensor]] = []
  1554. # merge the experts into a single 3d tensor
  1555. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1556. datas: list[Tensor] = []
  1557. for xid in range(n_experts):
  1558. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1559. datas.append(self._experts[bid][ename])
  1560. del self._experts[bid][ename]
  1561. data_torch = torch.stack(datas, dim=0)
  1562. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1563. new_name = self.map_tensor_name(merged_name)
  1564. tensors.append((new_name, data_torch))
  1565. return tensors
  1566. else:
  1567. return []
  1568. return [(self.map_tensor_name(name), data_torch)]
  1569. def prepare_tensors(self):
  1570. super().prepare_tensors()
  1571. if self._experts is not None:
  1572. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1573. experts = [k for d in self._experts for k in d.keys()]
  1574. if len(experts) > 0:
  1575. raise ValueError(f"Unprocessed experts: {experts}")
  1576. @Model.register("GPT2LMHeadModel")
  1577. class GPT2Model(Model):
  1578. model_arch = gguf.MODEL_ARCH.GPT2
  1579. def set_gguf_parameters(self):
  1580. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1581. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1582. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1583. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1584. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1585. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1586. self.gguf_writer.add_file_type(self.ftype)
  1587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1588. del bid # unused
  1589. tensors: list[tuple[str, Tensor]] = []
  1590. # we don't need these
  1591. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1592. return tensors
  1593. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1594. data_torch = data_torch.transpose(1, 0)
  1595. new_name = self.map_tensor_name(name)
  1596. tensors.append((new_name, data_torch))
  1597. # note: GPT2 output is tied to (same as) wte in original model
  1598. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1599. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1600. return tensors
  1601. @Model.register("PhiForCausalLM")
  1602. class Phi2Model(Model):
  1603. model_arch = gguf.MODEL_ARCH.PHI2
  1604. def set_gguf_parameters(self):
  1605. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1606. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1607. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1608. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1609. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1610. self.gguf_writer.add_embedding_length(n_embd)
  1611. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1612. self.gguf_writer.add_block_count(block_count)
  1613. self.gguf_writer.add_head_count(n_head)
  1614. self.gguf_writer.add_head_count_kv(n_head)
  1615. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1616. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1617. self.gguf_writer.add_file_type(self.ftype)
  1618. self.gguf_writer.add_add_bos_token(False)
  1619. @Model.register("Phi3ForCausalLM")
  1620. class Phi3MiniModel(Model):
  1621. model_arch = gguf.MODEL_ARCH.PHI3
  1622. def set_vocab(self):
  1623. from sentencepiece import SentencePieceProcessor
  1624. tokenizer_path = self.dir_model / 'tokenizer.model'
  1625. if not tokenizer_path.is_file():
  1626. raise ValueError(f'Error: Missing {tokenizer_path}')
  1627. tokenizer = SentencePieceProcessor()
  1628. tokenizer.LoadFromFile(str(tokenizer_path))
  1629. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1630. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1631. scores: list[float] = [-10000.0] * vocab_size
  1632. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1633. for token_id in range(tokenizer.vocab_size()):
  1634. piece = tokenizer.IdToPiece(token_id)
  1635. text = piece.encode("utf-8")
  1636. score = tokenizer.GetScore(token_id)
  1637. toktype = SentencePieceTokenTypes.NORMAL
  1638. if tokenizer.IsUnknown(token_id):
  1639. toktype = SentencePieceTokenTypes.UNKNOWN
  1640. elif tokenizer.IsControl(token_id):
  1641. toktype = SentencePieceTokenTypes.CONTROL
  1642. elif tokenizer.IsUnused(token_id):
  1643. toktype = SentencePieceTokenTypes.UNUSED
  1644. elif tokenizer.IsByte(token_id):
  1645. toktype = SentencePieceTokenTypes.BYTE
  1646. tokens[token_id] = text
  1647. scores[token_id] = score
  1648. toktypes[token_id] = toktype
  1649. added_tokens_file = self.dir_model / 'added_tokens.json'
  1650. if added_tokens_file.is_file():
  1651. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1652. added_tokens_json = json.load(f)
  1653. for key in added_tokens_json:
  1654. token_id = added_tokens_json[key]
  1655. if token_id >= vocab_size:
  1656. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1657. continue
  1658. tokens[token_id] = key.encode("utf-8")
  1659. scores[token_id] = -1000.0
  1660. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1661. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1662. if tokenizer_config_file.is_file():
  1663. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1664. tokenizer_config_json = json.load(f)
  1665. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1666. for token_id, foken_data in added_tokens_decoder.items():
  1667. token_id = int(token_id)
  1668. token = foken_data["content"].encode("utf-8")
  1669. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1670. if tokens[token_id] != token:
  1671. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1672. tokens[token_id] = token
  1673. scores[token_id] = -1000.0
  1674. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1675. if foken_data.get("special"):
  1676. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1677. tokenizer_file = self.dir_model / 'tokenizer.json'
  1678. if tokenizer_file.is_file():
  1679. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1680. tokenizer_json = json.load(f)
  1681. added_tokens = tokenizer_json.get("added_tokens", [])
  1682. for foken_data in added_tokens:
  1683. token_id = int(foken_data["id"])
  1684. token = foken_data["content"].encode("utf-8")
  1685. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1686. if tokens[token_id] != token:
  1687. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1688. tokens[token_id] = token
  1689. scores[token_id] = -1000.0
  1690. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1691. if foken_data.get("special"):
  1692. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1693. self.gguf_writer.add_tokenizer_model("llama")
  1694. self.gguf_writer.add_tokenizer_pre("default")
  1695. self.gguf_writer.add_token_list(tokens)
  1696. self.gguf_writer.add_token_scores(scores)
  1697. self.gguf_writer.add_token_types(toktypes)
  1698. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1699. special_vocab.add_to_gguf(self.gguf_writer)
  1700. def set_gguf_parameters(self):
  1701. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1702. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1703. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1704. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1705. rms_eps = self.find_hparam(["rms_norm_eps"])
  1706. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1707. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1708. rope_dims = n_embd // n_head
  1709. self.gguf_writer.add_context_length(max_pos_embds)
  1710. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1711. self.gguf_writer.add_embedding_length(n_embd)
  1712. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1713. self.gguf_writer.add_block_count(block_count)
  1714. self.gguf_writer.add_head_count(n_head)
  1715. self.gguf_writer.add_head_count_kv(n_head_kv)
  1716. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1717. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1718. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1719. self.gguf_writer.add_file_type(self.ftype)
  1720. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1721. # write rope scaling for long context (128k) model
  1722. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1723. if rope_scaling is None:
  1724. return
  1725. scale = max_pos_embds / orig_max_pos_embds
  1726. rope_scaling_type = rope_scaling.get('type', '').lower()
  1727. if len(rope_scaling_type) == 0:
  1728. raise KeyError('Missing the required key rope_scaling.type')
  1729. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1730. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1731. elif rope_scaling_type == 'yarn':
  1732. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1733. else:
  1734. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1735. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1736. long_factors = rope_scaling.get('long_factor', None)
  1737. short_factors = rope_scaling.get('short_factor', None)
  1738. if long_factors is None or short_factors is None:
  1739. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1740. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1741. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1742. if not self.is_lora:
  1743. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1744. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1745. @Model.register("PlamoForCausalLM")
  1746. class PlamoModel(Model):
  1747. model_arch = gguf.MODEL_ARCH.PLAMO
  1748. def set_vocab(self):
  1749. self._set_vocab_sentencepiece()
  1750. def set_gguf_parameters(self):
  1751. hparams = self.hparams
  1752. block_count = hparams["num_hidden_layers"]
  1753. self.gguf_writer.add_context_length(4096) # not in config.json
  1754. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1755. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1756. self.gguf_writer.add_block_count(block_count)
  1757. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1758. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1759. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1760. self.gguf_writer.add_file_type(self.ftype)
  1761. def shuffle_attn_q_weight(self, data_torch):
  1762. assert data_torch.size() == (5120, 5120)
  1763. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1764. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1765. data_torch = torch.reshape(data_torch, (5120, 5120))
  1766. return data_torch
  1767. def shuffle_attn_output_weight(self, data_torch):
  1768. assert data_torch.size() == (5120, 5120)
  1769. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1770. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1771. data_torch = torch.reshape(data_torch, (5120, 5120))
  1772. return data_torch
  1773. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1774. del bid # unused
  1775. new_name = self.map_tensor_name(name)
  1776. # shuffle for broadcasting of gqa in ggml_mul_mat
  1777. if new_name.endswith("attn_q.weight"):
  1778. data_torch = self.shuffle_attn_q_weight(data_torch)
  1779. elif new_name.endswith("attn_output.weight"):
  1780. data_torch = self.shuffle_attn_output_weight(data_torch)
  1781. return [(new_name, data_torch)]
  1782. @Model.register("CodeShellForCausalLM")
  1783. class CodeShellModel(Model):
  1784. model_arch = gguf.MODEL_ARCH.CODESHELL
  1785. def set_gguf_parameters(self):
  1786. block_count = self.hparams["n_layer"]
  1787. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1788. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1789. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1790. self.gguf_writer.add_block_count(block_count)
  1791. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1792. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1793. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1794. self.gguf_writer.add_file_type(self.ftype)
  1795. self.gguf_writer.add_rope_freq_base(10000.0)
  1796. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1797. self.gguf_writer.add_rope_scaling_factor(1.0)
  1798. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1799. del bid # unused
  1800. new_name = self.map_tensor_name(name)
  1801. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1802. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1803. assert self.tensor_names is not None
  1804. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1805. # copy tok_embd.weight to output.weight
  1806. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1807. return tensors
  1808. @Model.register("InternLM2ForCausalLM")
  1809. class InternLM2Model(Model):
  1810. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1811. def set_vocab(self):
  1812. # (TODO): Is there a better way?
  1813. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1814. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1815. # recognized as an empty string in C++.
  1816. from sentencepiece import SentencePieceProcessor
  1817. from sentencepiece import sentencepiece_model_pb2 as model
  1818. tokenizer_path = self.dir_model / 'tokenizer.model'
  1819. tokens: list[bytes] = []
  1820. scores: list[float] = []
  1821. toktypes: list[int] = []
  1822. if not tokenizer_path.is_file():
  1823. logger.error(f'Error: Missing {tokenizer_path}')
  1824. sys.exit(1)
  1825. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1826. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1827. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1828. tokenizer = SentencePieceProcessor()
  1829. tokenizer.LoadFromFile(str(tokenizer_path))
  1830. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1831. for token_id in range(vocab_size):
  1832. piece = tokenizer.IdToPiece(token_id)
  1833. text = piece.encode("utf-8")
  1834. score = tokenizer.GetScore(token_id)
  1835. if text == b"\x00":
  1836. # (TODO): fixme
  1837. # Hack here and replace the \x00 characters.
  1838. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1839. text = "🐉".encode("utf-8")
  1840. toktype = SentencePieceTokenTypes.NORMAL
  1841. if tokenizer.IsUnknown(token_id):
  1842. toktype = SentencePieceTokenTypes.UNKNOWN
  1843. elif tokenizer.IsControl(token_id):
  1844. toktype = SentencePieceTokenTypes.CONTROL
  1845. elif tokenizer.IsUnused(token_id):
  1846. toktype = SentencePieceTokenTypes.UNUSED
  1847. elif tokenizer.IsByte(token_id):
  1848. toktype = SentencePieceTokenTypes.BYTE
  1849. # take care of ununsed raw token
  1850. if piece.startswith('[UNUSED'):
  1851. toktype = SentencePieceTokenTypes.UNUSED
  1852. tokens.append(text)
  1853. scores.append(score)
  1854. toktypes.append(toktype)
  1855. added_tokens_file = self.dir_model / 'added_tokens.json'
  1856. if added_tokens_file.is_file():
  1857. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1858. added_tokens_json = json.load(f)
  1859. for key in added_tokens_json:
  1860. tokens.append(key.encode("utf-8"))
  1861. scores.append(-1000.0)
  1862. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1863. chat_eos_token = '<|im_end|>'
  1864. chat_eos_token_id = None
  1865. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1866. if tokenizer_config_file.is_file():
  1867. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1868. tokenizer_config_json = json.load(f)
  1869. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1870. for token_id, foken_data in added_tokens_decoder.items():
  1871. token_id = int(token_id)
  1872. token = foken_data["content"]
  1873. if token == chat_eos_token:
  1874. chat_eos_token_id = token_id
  1875. token = token.encode("utf-8")
  1876. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1877. if tokens[token_id] != token:
  1878. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1879. tokens[token_id] = token
  1880. scores[token_id] = -1000.0
  1881. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1882. if foken_data.get("special"):
  1883. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1884. tokenizer_file = self.dir_model / 'tokenizer.json'
  1885. if tokenizer_file.is_file():
  1886. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1887. tokenizer_json = json.load(f)
  1888. added_tokens = tokenizer_json.get("added_tokens", [])
  1889. for foken_data in added_tokens:
  1890. token_id = int(foken_data["id"])
  1891. token = foken_data["content"]
  1892. if token == chat_eos_token:
  1893. chat_eos_token_id = token_id
  1894. token = token.encode("utf-8")
  1895. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1896. if tokens[token_id] != token:
  1897. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1898. tokens[token_id] = token
  1899. scores[token_id] = -1000.0
  1900. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1901. if foken_data.get("special"):
  1902. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1903. self.gguf_writer.add_tokenizer_model("llama")
  1904. self.gguf_writer.add_tokenizer_pre("default")
  1905. self.gguf_writer.add_token_list(tokens)
  1906. self.gguf_writer.add_token_scores(scores)
  1907. self.gguf_writer.add_token_types(toktypes)
  1908. self.gguf_writer.add_add_space_prefix(add_prefix)
  1909. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1910. old_eos = special_vocab.special_token_ids["eos"]
  1911. if chat_eos_token_id is not None:
  1912. # For the chat model, we replace the eos with '<|im_end|>'.
  1913. # TODO: this is a hack, should be fixed
  1914. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1915. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1916. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1917. " in chat mode so that the conversation can end normally.")
  1918. special_vocab.add_to_gguf(self.gguf_writer)
  1919. def set_gguf_parameters(self):
  1920. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1921. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1922. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1923. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1924. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1925. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1926. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1927. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1928. self.gguf_writer.add_file_type(self.ftype)
  1929. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1930. if self.hparams["rope_scaling"].get("type") == "linear":
  1931. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1932. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1933. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1934. num_heads = self.hparams["num_attention_heads"]
  1935. num_kv_heads = self.hparams["num_key_value_heads"]
  1936. n_embd = self.hparams["hidden_size"]
  1937. q_per_kv = num_heads // num_kv_heads
  1938. head_dim = n_embd // num_heads
  1939. num_groups = num_heads // q_per_kv
  1940. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1941. qkv = data_torch
  1942. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1943. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1944. # The model weights of q and k equire additional reshape.
  1945. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1946. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1947. v = v.reshape((-1, v.shape[-1]))
  1948. return [
  1949. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1950. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1951. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1952. ]
  1953. else:
  1954. return [(self.map_tensor_name(name), data_torch)]
  1955. @Model.register("BertModel", "CamembertModel")
  1956. class BertModel(Model):
  1957. model_arch = gguf.MODEL_ARCH.BERT
  1958. def __init__(self, *args, **kwargs):
  1959. super().__init__(*args, **kwargs)
  1960. self.vocab_size = None
  1961. def set_gguf_parameters(self):
  1962. super().set_gguf_parameters()
  1963. self.gguf_writer.add_causal_attention(False)
  1964. # get pooling path
  1965. pooling_path = None
  1966. module_path = self.dir_model / "modules.json"
  1967. if module_path.is_file():
  1968. with open(module_path, encoding="utf-8") as f:
  1969. modules = json.load(f)
  1970. for mod in modules:
  1971. if mod["type"] == "sentence_transformers.models.Pooling":
  1972. pooling_path = mod["path"]
  1973. break
  1974. # get pooling type
  1975. if pooling_path is not None:
  1976. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1977. pooling = json.load(f)
  1978. if pooling["pooling_mode_mean_tokens"]:
  1979. pooling_type = gguf.PoolingType.MEAN
  1980. elif pooling["pooling_mode_cls_token"]:
  1981. pooling_type = gguf.PoolingType.CLS
  1982. else:
  1983. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1984. self.gguf_writer.add_pooling_type(pooling_type)
  1985. def set_vocab(self):
  1986. tokens, toktypes, tokpre = self.get_vocab_base()
  1987. self.vocab_size = len(tokens)
  1988. # we need this to validate the size of the token_type embeddings
  1989. # though currently we are passing all zeros to the token_type embeddings
  1990. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1991. # convert to phantom space vocab
  1992. def phantom(tok):
  1993. if tok.startswith("[") and tok.endswith("]"):
  1994. return tok
  1995. if tok.startswith("##"):
  1996. return tok[2:]
  1997. return "\u2581" + tok
  1998. tokens = list(map(phantom, tokens))
  1999. # add vocab to gguf
  2000. self.gguf_writer.add_tokenizer_model("bert")
  2001. self.gguf_writer.add_tokenizer_pre(tokpre)
  2002. self.gguf_writer.add_token_list(tokens)
  2003. self.gguf_writer.add_token_types(toktypes)
  2004. # handle special tokens
  2005. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2006. special_vocab.add_to_gguf(self.gguf_writer)
  2007. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2008. del bid # unused
  2009. # we are only using BERT for embeddings so we don't need the pooling layer
  2010. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2011. return [] # we don't need these
  2012. return [(self.map_tensor_name(name), data_torch)]
  2013. @Model.register("NomicBertModel")
  2014. class NomicBertModel(BertModel):
  2015. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2016. def __init__(self, *args, **kwargs):
  2017. super().__init__(*args, **kwargs)
  2018. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2019. self.hparams["n_ctx"] = 2048
  2020. # SwigLU activation
  2021. assert self.hparams["activation_function"] == "swiglu"
  2022. # this doesn't do anything in the HF version
  2023. assert self.hparams["causal"] is False
  2024. # no bias tensors
  2025. assert self.hparams["qkv_proj_bias"] is False
  2026. assert self.hparams["mlp_fc1_bias"] is False
  2027. assert self.hparams["mlp_fc2_bias"] is False
  2028. # norm at end of layer
  2029. assert self.hparams["prenorm"] is False
  2030. # standard RoPE
  2031. assert self.hparams["rotary_emb_fraction"] == 1.0
  2032. assert self.hparams["rotary_emb_interleaved"] is False
  2033. assert self.hparams["rotary_emb_scale_base"] is None
  2034. def set_gguf_parameters(self):
  2035. super().set_gguf_parameters()
  2036. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2037. @Model.register("XLMRobertaModel")
  2038. class XLMRobertaModel(BertModel):
  2039. model_arch = gguf.MODEL_ARCH.BERT
  2040. def __init__(self, *args, **kwargs):
  2041. super().__init__(*args, **kwargs)
  2042. # we need the pad_token_id to know how to chop down position_embd matrix
  2043. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2044. self._position_offset = 1 + pad_token_id
  2045. if "max_position_embeddings" in self.hparams:
  2046. self.hparams["max_position_embeddings"] -= self._position_offset
  2047. else:
  2048. self._position_offset = None
  2049. def set_vocab(self):
  2050. # to avoid TypeError: Descriptors cannot be created directly
  2051. # exception when importing sentencepiece_model_pb2
  2052. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2053. from sentencepiece import SentencePieceProcessor
  2054. from sentencepiece import sentencepiece_model_pb2 as model
  2055. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2056. if not tokenizer_path.is_file():
  2057. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2058. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2059. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2060. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2061. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2062. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2063. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2064. tokenizer = SentencePieceProcessor()
  2065. tokenizer.LoadFromFile(str(tokenizer_path))
  2066. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2067. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2068. scores: list[float] = [-10000.0] * vocab_size
  2069. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2070. for token_id in range(tokenizer.vocab_size()):
  2071. piece = tokenizer.IdToPiece(token_id)
  2072. text = piece.encode("utf-8")
  2073. score = tokenizer.GetScore(token_id)
  2074. toktype = SentencePieceTokenTypes.NORMAL
  2075. if tokenizer.IsUnknown(token_id):
  2076. toktype = SentencePieceTokenTypes.UNKNOWN
  2077. elif tokenizer.IsControl(token_id):
  2078. toktype = SentencePieceTokenTypes.CONTROL
  2079. elif tokenizer.IsUnused(token_id):
  2080. toktype = SentencePieceTokenTypes.UNUSED
  2081. elif tokenizer.IsByte(token_id):
  2082. toktype = SentencePieceTokenTypes.BYTE
  2083. tokens[token_id] = text
  2084. scores[token_id] = score
  2085. toktypes[token_id] = toktype
  2086. if vocab_size > len(tokens):
  2087. pad_count = vocab_size - len(tokens)
  2088. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2089. for i in range(1, pad_count + 1):
  2090. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2091. scores.append(-1000.0)
  2092. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2093. # realign tokens (see HF tokenizer code)
  2094. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2095. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2096. toktypes = [
  2097. SentencePieceTokenTypes.CONTROL,
  2098. SentencePieceTokenTypes.CONTROL,
  2099. SentencePieceTokenTypes.CONTROL,
  2100. SentencePieceTokenTypes.UNKNOWN,
  2101. ] + toktypes[3:-1]
  2102. self.gguf_writer.add_tokenizer_model("t5")
  2103. self.gguf_writer.add_tokenizer_pre("default")
  2104. self.gguf_writer.add_token_list(tokens)
  2105. self.gguf_writer.add_token_scores(scores)
  2106. self.gguf_writer.add_token_types(toktypes)
  2107. self.gguf_writer.add_add_space_prefix(add_prefix)
  2108. self.gguf_writer.add_token_type_count(1)
  2109. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2110. if precompiled_charsmap:
  2111. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2112. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2113. special_vocab.add_to_gguf(self.gguf_writer)
  2114. self.gguf_writer.add_add_bos_token(True)
  2115. self.gguf_writer.add_add_eos_token(True)
  2116. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2117. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2118. if name == "embeddings.position_embeddings.weight":
  2119. if self._position_offset is not None:
  2120. data_torch = data_torch[self._position_offset:,:]
  2121. return super().modify_tensors(data_torch, name, bid)
  2122. @Model.register("GemmaForCausalLM")
  2123. class GemmaModel(Model):
  2124. model_arch = gguf.MODEL_ARCH.GEMMA
  2125. def set_vocab(self):
  2126. self._set_vocab_sentencepiece()
  2127. # TODO: these special tokens should be exported only for the CodeGemma family
  2128. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2129. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2130. special_vocab._set_special_token("prefix", 67)
  2131. special_vocab._set_special_token("suffix", 69)
  2132. special_vocab._set_special_token("middle", 68)
  2133. special_vocab._set_special_token("fsep", 70)
  2134. special_vocab._set_special_token("eot", 107)
  2135. special_vocab.chat_template = None # do not add it twice
  2136. special_vocab.add_to_gguf(self.gguf_writer)
  2137. self.gguf_writer.add_add_space_prefix(False)
  2138. def set_gguf_parameters(self):
  2139. hparams = self.hparams
  2140. block_count = hparams["num_hidden_layers"]
  2141. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2142. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2143. self.gguf_writer.add_block_count(block_count)
  2144. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2145. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2146. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2147. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2148. self.gguf_writer.add_key_length(hparams["head_dim"])
  2149. self.gguf_writer.add_value_length(hparams["head_dim"])
  2150. self.gguf_writer.add_file_type(self.ftype)
  2151. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2152. del bid # unused
  2153. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2154. # To prevent errors, skip loading lm_head.weight.
  2155. if name == "lm_head.weight":
  2156. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2157. return []
  2158. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2159. if name.endswith("norm.weight"):
  2160. data_torch = data_torch + 1
  2161. return [(self.map_tensor_name(name), data_torch)]
  2162. @Model.register("Gemma2ForCausalLM")
  2163. class Gemma2Model(Model):
  2164. model_arch = gguf.MODEL_ARCH.GEMMA2
  2165. def set_vocab(self):
  2166. self._set_vocab_sentencepiece()
  2167. self.gguf_writer.add_add_space_prefix(False)
  2168. def set_gguf_parameters(self):
  2169. hparams = self.hparams
  2170. block_count = hparams["num_hidden_layers"]
  2171. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2172. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2173. self.gguf_writer.add_block_count(block_count)
  2174. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2175. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2176. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2177. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2178. self.gguf_writer.add_key_length(hparams["head_dim"])
  2179. self.gguf_writer.add_value_length(hparams["head_dim"])
  2180. self.gguf_writer.add_file_type(self.ftype)
  2181. self.gguf_writer.add_attn_logit_softcapping(
  2182. self.hparams["attn_logit_softcapping"]
  2183. )
  2184. self.gguf_writer.add_final_logit_softcapping(
  2185. self.hparams["final_logit_softcapping"]
  2186. )
  2187. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2188. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2189. del bid # unused
  2190. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2191. # To prevent errors, skip loading lm_head.weight.
  2192. if name == "lm_head.weight":
  2193. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2194. return []
  2195. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2196. if name.endswith("norm.weight"):
  2197. data_torch = data_torch + 1
  2198. return [(self.map_tensor_name(name), data_torch)]
  2199. @Model.register("Starcoder2ForCausalLM")
  2200. class StarCoder2Model(Model):
  2201. model_arch = gguf.MODEL_ARCH.STARCODER2
  2202. @Model.register("Rwkv6ForCausalLM")
  2203. class Rwkv6Model(Model):
  2204. model_arch = gguf.MODEL_ARCH.RWKV6
  2205. def set_vocab(self):
  2206. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2207. vocab_size = self.hparams.get("vocab_size", 65536)
  2208. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2209. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2210. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2211. lines = f.readlines()
  2212. for line in lines:
  2213. parts = line.split(' ')
  2214. assert len(parts) >= 3
  2215. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2216. token = token.encode("utf-8") if isinstance(token, str) else token
  2217. assert isinstance(token, bytes)
  2218. assert len(token) == token_len
  2219. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2220. tokens.append(token_text.encode("utf-8"))
  2221. toktypes.append(gguf.TokenType.NORMAL)
  2222. remainder = vocab_size - len(tokens)
  2223. assert remainder >= 0
  2224. for i in range(len(tokens), vocab_size):
  2225. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2226. toktypes.append(gguf.TokenType.UNUSED)
  2227. self.gguf_writer.add_tokenizer_model("rwkv")
  2228. self.gguf_writer.add_token_list(tokens)
  2229. self.gguf_writer.add_token_types(toktypes)
  2230. def set_gguf_parameters(self):
  2231. block_count = self.hparams["num_hidden_layers"]
  2232. head_size = self.hparams["head_size"]
  2233. hidden_size = self.hparams["hidden_size"]
  2234. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2235. rescale_every_n_layers = self.hparams["rescale_every"]
  2236. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2237. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2238. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2239. # RWKV isn't context limited
  2240. self.gguf_writer.add_context_length(1048576)
  2241. self.gguf_writer.add_embedding_length(hidden_size)
  2242. self.gguf_writer.add_block_count(block_count)
  2243. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2244. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2245. self.gguf_writer.add_wkv_head_size(head_size)
  2246. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2247. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2248. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2249. self.gguf_writer.add_file_type(self.ftype)
  2250. # required by llama.cpp, unused
  2251. self.gguf_writer.add_head_count(0)
  2252. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2253. new_name = self.map_tensor_name(name)
  2254. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2255. new_name += ".weight"
  2256. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2257. data_torch = data_torch.transpose(0, 1)
  2258. if new_name.endswith("time_mix_w2.weight"):
  2259. data_torch = data_torch.permute(0, 2, 1)
  2260. rescale_every_n_layers = self.hparams["rescale_every"]
  2261. if rescale_every_n_layers > 0:
  2262. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2263. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2264. yield (new_name, data_torch)
  2265. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2266. class MambaModel(Model):
  2267. model_arch = gguf.MODEL_ARCH.MAMBA
  2268. def set_vocab(self):
  2269. vocab_size = self.hparams["vocab_size"]
  2270. # Round vocab size to next multiple of 8
  2271. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2272. # pad using ceiling division
  2273. # ref: https://stackoverflow.com/a/17511341/22827863
  2274. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2275. self.hparams["vocab_size"] = vocab_size
  2276. if (self.dir_model / "tokenizer.json").is_file():
  2277. self._set_vocab_gpt2()
  2278. elif (self.dir_model / "tokenizer.model").is_file():
  2279. self._set_vocab_sentencepiece()
  2280. else:
  2281. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2282. self._set_vocab_builtin("gpt-neox", vocab_size)
  2283. def set_gguf_parameters(self):
  2284. d_model = self.find_hparam(["hidden_size", "d_model"])
  2285. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2286. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2287. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2288. # ceiling division
  2289. # ref: https://stackoverflow.com/a/17511341/22827863
  2290. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2291. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2292. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2293. use_dt_b_c_norm = False
  2294. # For falconmamba we do apply RMS norm on B / DT and C layers
  2295. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2296. use_dt_b_c_norm = True
  2297. # Fail early for models which don't have a block expansion factor of 2
  2298. assert d_inner == 2 * d_model
  2299. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2300. self.gguf_writer.add_embedding_length(d_model)
  2301. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2302. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2303. self.gguf_writer.add_block_count(self.block_count)
  2304. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2305. self.gguf_writer.add_ssm_inner_size(d_inner)
  2306. self.gguf_writer.add_ssm_state_size(d_state)
  2307. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2308. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2309. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2310. self.gguf_writer.add_file_type(self.ftype)
  2311. _tok_embd = None
  2312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2313. del bid # unused
  2314. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2315. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2316. new_name = self.map_tensor_name(name)
  2317. if name.endswith(".A_log"):
  2318. logger.debug("A_log --> A ==> " + new_name)
  2319. data_torch = -torch.exp(data_torch)
  2320. # assuming token_embd.weight is seen before output.weight
  2321. if self._tok_embd is not None and new_name == output_name:
  2322. if torch.equal(self._tok_embd, data_torch):
  2323. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2324. return []
  2325. elif new_name == tok_embd_name:
  2326. self._tok_embd = data_torch
  2327. return [(new_name, data_torch)]
  2328. @Model.register("CohereForCausalLM")
  2329. class CommandR2Model(Model):
  2330. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2331. def __init__(self, *args, **kwargs):
  2332. super().__init__(*args, **kwargs)
  2333. # max_position_embeddings = 8192 in config.json but model was actually
  2334. # trained on 128k context length
  2335. # aya-23 models don't have model_max_length specified
  2336. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2337. def set_gguf_parameters(self):
  2338. super().set_gguf_parameters()
  2339. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2340. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2341. @Model.register("OlmoForCausalLM")
  2342. @Model.register("OLMoForCausalLM")
  2343. class OlmoModel(Model):
  2344. model_arch = gguf.MODEL_ARCH.OLMO
  2345. def set_gguf_parameters(self):
  2346. super().set_gguf_parameters()
  2347. self.gguf_writer.add_layer_norm_eps(1e-5)
  2348. clip_qkv = self.hparams.get("clip_qkv")
  2349. if clip_qkv is not None:
  2350. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2351. # Same as super class, but permuting q_proj, k_proj
  2352. # Copied from: LlamaModel
  2353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2354. del bid # unused
  2355. n_head = self.hparams["num_attention_heads"]
  2356. n_kv_head = self.hparams.get("num_key_value_heads")
  2357. if name.endswith("q_proj.weight"):
  2358. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2359. if name.endswith("k_proj.weight"):
  2360. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2361. return [(self.map_tensor_name(name), data_torch)]
  2362. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2363. class JinaBertV2Model(BertModel):
  2364. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2365. def __init__(self, *args, **kwargs):
  2366. super().__init__(*args, **kwargs)
  2367. self.intermediate_size = self.hparams["intermediate_size"]
  2368. def get_tensors(self):
  2369. for name, data in super().get_tensors():
  2370. if 'gated_layer' in name:
  2371. d1 = data[:self.intermediate_size, :]
  2372. name1 = name.replace('gated_layers', 'gated_layers_w')
  2373. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2374. d2 = data[self.intermediate_size:, :]
  2375. name2 = name.replace('gated_layers', 'gated_layers_v')
  2376. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2377. yield name1, d1
  2378. yield name2, d2
  2379. continue
  2380. yield name, data
  2381. def set_vocab(self):
  2382. tokenizer_class = 'BertTokenizer'
  2383. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2384. tokenizer_class = json.load(f)['tokenizer_class']
  2385. if tokenizer_class == 'BertTokenizer':
  2386. super().set_vocab()
  2387. elif tokenizer_class == 'RobertaTokenizer':
  2388. self._set_vocab_gpt2()
  2389. self.gguf_writer.add_token_type_count(2)
  2390. else:
  2391. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2392. self.gguf_writer.add_add_bos_token(True)
  2393. self.gguf_writer.add_add_eos_token(True)
  2394. @Model.register("OpenELMForCausalLM")
  2395. class OpenELMModel(Model):
  2396. model_arch = gguf.MODEL_ARCH.OPENELM
  2397. @staticmethod
  2398. def _make_divisible(v: float | int, divisor: int) -> int:
  2399. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2400. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2401. # Make sure that round down does not go down by more than 10%.
  2402. if new_v < 0.9 * v:
  2403. new_v += divisor
  2404. return new_v
  2405. def __init__(self, *args, **kwargs):
  2406. super().__init__(*args, **kwargs)
  2407. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2408. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2409. self._n_embd: int = self.hparams["model_dim"]
  2410. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2411. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2412. self._ffn_dims: list[int] = [
  2413. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2414. for multiplier in ffn_multipliers
  2415. ]
  2416. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2417. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2418. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2419. def set_vocab(self):
  2420. try:
  2421. self._set_vocab_sentencepiece()
  2422. except FileNotFoundError:
  2423. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2424. def set_gguf_parameters(self):
  2425. n_embd = self._n_embd
  2426. head_dim = self.hparams["head_dim"]
  2427. rot_pct = 1.0
  2428. assert self.block_count == len(self._num_kv_heads)
  2429. assert self.block_count == len(self._num_query_heads)
  2430. assert self.block_count == len(self._ffn_dims)
  2431. self.gguf_writer.add_block_count(self.block_count)
  2432. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2433. self.gguf_writer.add_embedding_length(n_embd)
  2434. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2435. self.gguf_writer.add_head_count(self._num_query_heads)
  2436. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2437. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2438. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2439. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2440. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2441. self.gguf_writer.add_key_length(head_dim)
  2442. self.gguf_writer.add_value_length(head_dim)
  2443. self.gguf_writer.add_file_type(self.ftype)
  2444. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2445. if "n_layers" in keys:
  2446. return self.hparams["num_transformer_layers"]
  2447. return super().find_hparam(keys, optional)
  2448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2449. # split ff
  2450. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2451. ff_dim = self._ffn_dims[bid]
  2452. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2453. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2454. return
  2455. yield (self.map_tensor_name(name), data_torch)
  2456. @Model.register("ArcticForCausalLM")
  2457. class ArcticModel(Model):
  2458. model_arch = gguf.MODEL_ARCH.ARCTIC
  2459. def set_vocab(self):
  2460. # The reason for using a custom implementation here is that the
  2461. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2462. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2463. from sentencepiece import SentencePieceProcessor
  2464. tokenizer_path = self.dir_model / 'tokenizer.model'
  2465. if not tokenizer_path.is_file():
  2466. logger.error(f'Error: Missing {tokenizer_path}')
  2467. sys.exit(1)
  2468. # Read the whole vocabulary from the tokenizer.model file
  2469. tokenizer = SentencePieceProcessor()
  2470. tokenizer.LoadFromFile(str(tokenizer_path))
  2471. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2472. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2473. scores: list[float] = [-10000.0] * vocab_size
  2474. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2475. for token_id in range(tokenizer.vocab_size()):
  2476. piece = tokenizer.IdToPiece(token_id)
  2477. text = piece.encode("utf-8")
  2478. score = tokenizer.GetScore(token_id)
  2479. toktype = SentencePieceTokenTypes.NORMAL
  2480. if tokenizer.IsUnknown(token_id):
  2481. toktype = SentencePieceTokenTypes.UNKNOWN
  2482. elif tokenizer.IsControl(token_id):
  2483. toktype = SentencePieceTokenTypes.CONTROL
  2484. elif tokenizer.IsUnused(token_id):
  2485. toktype = SentencePieceTokenTypes.UNUSED
  2486. elif tokenizer.IsByte(token_id):
  2487. toktype = SentencePieceTokenTypes.BYTE
  2488. tokens[token_id] = text
  2489. scores[token_id] = score
  2490. toktypes[token_id] = toktype
  2491. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2492. # of information about added/redefined tokens and modify them accordingly.
  2493. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2494. if tokenizer_config_file.is_file():
  2495. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2496. tokenizer_config_json = json.load(f)
  2497. if "added_tokens_decoder" in tokenizer_config_json:
  2498. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2499. for token_id, token_json in added_tokens_decoder.items():
  2500. token_id = int(token_id)
  2501. if token_id >= vocab_size:
  2502. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2503. continue
  2504. token_content = token_json["content"]
  2505. token_type = SentencePieceTokenTypes.USER_DEFINED
  2506. token_score = -10000.0
  2507. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2508. # Set the score to 0.0 as in the original tokenizer.model
  2509. if ("special" in token_json) and token_json["special"]:
  2510. if token_content == tokenizer_config_json["unk_token"]:
  2511. token_type = SentencePieceTokenTypes.UNKNOWN
  2512. else:
  2513. token_type = SentencePieceTokenTypes.CONTROL
  2514. token_score = 0.0
  2515. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2516. tokens[token_id] = token_content.encode("utf-8")
  2517. toktypes[token_id] = token_type
  2518. scores[token_id] = token_score
  2519. self.gguf_writer.add_tokenizer_model("llama")
  2520. self.gguf_writer.add_tokenizer_pre("default")
  2521. self.gguf_writer.add_token_list(tokens)
  2522. self.gguf_writer.add_token_scores(scores)
  2523. self.gguf_writer.add_token_types(toktypes)
  2524. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2525. special_vocab.add_to_gguf(self.gguf_writer)
  2526. def set_gguf_parameters(self):
  2527. super().set_gguf_parameters()
  2528. hparams = self.hparams
  2529. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2530. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2531. _experts: list[dict[str, Tensor]] | None = None
  2532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2533. n_head = self.hparams["num_attention_heads"]
  2534. n_kv_head = self.hparams.get("num_key_value_heads")
  2535. if name.endswith("q_proj.weight"):
  2536. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2537. if name.endswith("k_proj.weight"):
  2538. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2539. # process the experts separately
  2540. if name.find("block_sparse_moe.experts") != -1:
  2541. n_experts = self.hparams["num_local_experts"]
  2542. assert bid is not None
  2543. if self._experts is None:
  2544. self._experts = [{} for _ in range(self.block_count)]
  2545. self._experts[bid][name] = data_torch
  2546. if len(self._experts[bid]) >= n_experts * 3:
  2547. tensors: list[tuple[str, Tensor]] = []
  2548. # merge the experts into a single 3d tensor
  2549. for wid in ["w1", "w2", "w3"]:
  2550. datas: list[Tensor] = []
  2551. for xid in range(n_experts):
  2552. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2553. datas.append(self._experts[bid][ename])
  2554. del self._experts[bid][ename]
  2555. data_torch = torch.stack(datas, dim=0)
  2556. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2557. new_name = self.map_tensor_name(merged_name)
  2558. tensors.append((new_name, data_torch))
  2559. return tensors
  2560. else:
  2561. return []
  2562. return [(self.map_tensor_name(name), data_torch)]
  2563. def prepare_tensors(self):
  2564. super().prepare_tensors()
  2565. if self._experts is not None:
  2566. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2567. experts = [k for d in self._experts for k in d.keys()]
  2568. if len(experts) > 0:
  2569. raise ValueError(f"Unprocessed experts: {experts}")
  2570. @Model.register("DeepseekV2ForCausalLM")
  2571. class DeepseekV2Model(Model):
  2572. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2573. def set_vocab(self):
  2574. self._set_vocab_gpt2()
  2575. def set_gguf_parameters(self):
  2576. super().set_gguf_parameters()
  2577. hparams = self.hparams
  2578. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2579. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2580. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2581. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2582. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2583. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2584. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2585. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2586. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2587. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2588. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2589. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2590. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2591. if self.hparams["rope_scaling"].get("type") == "yarn":
  2592. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2593. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2594. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2595. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2596. _experts: list[dict[str, Tensor]] | None = None
  2597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2598. # process the experts separately
  2599. if name.find("mlp.experts") != -1:
  2600. n_experts = self.hparams["n_routed_experts"]
  2601. assert bid is not None
  2602. if self._experts is None:
  2603. self._experts = [{} for _ in range(self.block_count)]
  2604. self._experts[bid][name] = data_torch
  2605. if len(self._experts[bid]) >= n_experts * 3:
  2606. tensors: list[tuple[str, Tensor]] = []
  2607. # merge the experts into a single 3d tensor
  2608. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2609. datas: list[Tensor] = []
  2610. for xid in range(n_experts):
  2611. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2612. datas.append(self._experts[bid][ename])
  2613. del self._experts[bid][ename]
  2614. data_torch = torch.stack(datas, dim=0)
  2615. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2616. new_name = self.map_tensor_name(merged_name)
  2617. tensors.append((new_name, data_torch))
  2618. return tensors
  2619. else:
  2620. return []
  2621. return [(self.map_tensor_name(name), data_torch)]
  2622. def prepare_tensors(self):
  2623. super().prepare_tensors()
  2624. if self._experts is not None:
  2625. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2626. experts = [k for d in self._experts for k in d.keys()]
  2627. if len(experts) > 0:
  2628. raise ValueError(f"Unprocessed experts: {experts}")
  2629. @Model.register("T5WithLMHeadModel")
  2630. @Model.register("T5ForConditionalGeneration")
  2631. @Model.register("MT5ForConditionalGeneration")
  2632. @Model.register("UMT5ForConditionalGeneration")
  2633. class T5Model(Model):
  2634. model_arch = gguf.MODEL_ARCH.T5
  2635. def __init__(self, *args, **kwargs):
  2636. super().__init__(*args, **kwargs)
  2637. self.shared_token_embeddings_found = False
  2638. def set_vocab(self):
  2639. # to avoid TypeError: Descriptors cannot be created directly
  2640. # exception when importing sentencepiece_model_pb2
  2641. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2642. from sentencepiece import SentencePieceProcessor
  2643. from sentencepiece import sentencepiece_model_pb2 as model
  2644. tokenizer_path = self.dir_model / 'tokenizer.model'
  2645. # many older models use spiece.model tokenizer model filename
  2646. if not tokenizer_path.is_file():
  2647. tokenizer_path = self.dir_model / 'spiece.model'
  2648. if not tokenizer_path.is_file():
  2649. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2650. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2651. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2652. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2653. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2654. # assure the tokenizer model file name is correct
  2655. assert tokenizer_path.name == 'tokenizer.model'
  2656. return self._set_vocab_sentencepiece()
  2657. else:
  2658. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2659. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2660. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2661. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2662. tokenizer = SentencePieceProcessor()
  2663. tokenizer.LoadFromFile(str(tokenizer_path))
  2664. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2665. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2666. scores: list[float] = [-10000.0] * vocab_size
  2667. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2668. for token_id in range(tokenizer.vocab_size()):
  2669. piece = tokenizer.IdToPiece(token_id)
  2670. text = piece.encode("utf-8")
  2671. score = tokenizer.GetScore(token_id)
  2672. toktype = SentencePieceTokenTypes.NORMAL
  2673. if tokenizer.IsUnknown(token_id):
  2674. toktype = SentencePieceTokenTypes.UNKNOWN
  2675. elif tokenizer.IsControl(token_id):
  2676. toktype = SentencePieceTokenTypes.CONTROL
  2677. elif tokenizer.IsUnused(token_id):
  2678. toktype = SentencePieceTokenTypes.UNUSED
  2679. elif tokenizer.IsByte(token_id):
  2680. toktype = SentencePieceTokenTypes.BYTE
  2681. tokens[token_id] = text
  2682. scores[token_id] = score
  2683. toktypes[token_id] = toktype
  2684. added_tokens_file = self.dir_model / 'added_tokens.json'
  2685. if added_tokens_file.is_file():
  2686. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2687. added_tokens_json = json.load(f)
  2688. for key in added_tokens_json:
  2689. token_id = added_tokens_json[key]
  2690. if token_id >= vocab_size:
  2691. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2692. continue
  2693. tokens[token_id] = key.encode("utf-8")
  2694. scores[token_id] = -1000.0
  2695. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2696. if vocab_size > len(tokens):
  2697. pad_count = vocab_size - len(tokens)
  2698. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2699. for i in range(1, pad_count + 1):
  2700. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2701. scores.append(-1000.0)
  2702. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2703. self.gguf_writer.add_tokenizer_model("t5")
  2704. self.gguf_writer.add_tokenizer_pre("default")
  2705. self.gguf_writer.add_token_list(tokens)
  2706. self.gguf_writer.add_token_scores(scores)
  2707. self.gguf_writer.add_token_types(toktypes)
  2708. self.gguf_writer.add_add_space_prefix(add_prefix)
  2709. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2710. if precompiled_charsmap:
  2711. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2712. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2713. special_vocab.add_to_gguf(self.gguf_writer)
  2714. self.gguf_writer.add_add_bos_token(False)
  2715. self.gguf_writer.add_add_eos_token(True)
  2716. def set_gguf_parameters(self):
  2717. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2718. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2719. n_ctx = 512
  2720. self.gguf_writer.add_context_length(n_ctx)
  2721. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2722. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2723. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2724. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2725. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2726. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2727. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2728. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2729. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2730. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2731. self.gguf_writer.add_file_type(self.ftype)
  2732. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2733. del bid # unused
  2734. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2735. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2736. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2737. # and decoder and ignore the remaining ones.
  2738. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2739. if not self.shared_token_embeddings_found:
  2740. name = "shared.weight"
  2741. self.shared_token_embeddings_found = True
  2742. else:
  2743. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2744. return []
  2745. return [(self.map_tensor_name(name), data_torch)]
  2746. @Model.register("T5EncoderModel")
  2747. class T5EncoderModel(Model):
  2748. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2749. def __init__(self, *args, **kwargs):
  2750. super().__init__(*args, **kwargs)
  2751. self.shared_token_embeddings_found = False
  2752. def set_vocab(self):
  2753. # to avoid TypeError: Descriptors cannot be created directly
  2754. # exception when importing sentencepiece_model_pb2
  2755. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2756. from sentencepiece import SentencePieceProcessor
  2757. from sentencepiece import sentencepiece_model_pb2 as model
  2758. tokenizer_path = self.dir_model / 'tokenizer.model'
  2759. # many older models use spiece.model tokenizer model filename
  2760. if not tokenizer_path.is_file():
  2761. tokenizer_path = self.dir_model / 'spiece.model'
  2762. if not tokenizer_path.is_file():
  2763. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2764. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2765. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2766. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2767. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2768. # assure the tokenizer model file name is correct
  2769. assert tokenizer_path.name == 'tokenizer.model'
  2770. return self._set_vocab_sentencepiece()
  2771. else:
  2772. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2773. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2774. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2775. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2776. tokenizer = SentencePieceProcessor()
  2777. tokenizer.LoadFromFile(str(tokenizer_path))
  2778. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2779. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2780. scores: list[float] = [-10000.0] * vocab_size
  2781. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2782. for token_id in range(tokenizer.vocab_size()):
  2783. piece = tokenizer.IdToPiece(token_id)
  2784. text = piece.encode("utf-8")
  2785. score = tokenizer.GetScore(token_id)
  2786. toktype = SentencePieceTokenTypes.NORMAL
  2787. if tokenizer.IsUnknown(token_id):
  2788. toktype = SentencePieceTokenTypes.UNKNOWN
  2789. elif tokenizer.IsControl(token_id):
  2790. toktype = SentencePieceTokenTypes.CONTROL
  2791. elif tokenizer.IsUnused(token_id):
  2792. toktype = SentencePieceTokenTypes.UNUSED
  2793. elif tokenizer.IsByte(token_id):
  2794. toktype = SentencePieceTokenTypes.BYTE
  2795. tokens[token_id] = text
  2796. scores[token_id] = score
  2797. toktypes[token_id] = toktype
  2798. added_tokens_file = self.dir_model / 'added_tokens.json'
  2799. if added_tokens_file.is_file():
  2800. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2801. added_tokens_json = json.load(f)
  2802. for key in added_tokens_json:
  2803. token_id = added_tokens_json[key]
  2804. if token_id >= vocab_size:
  2805. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2806. continue
  2807. tokens[token_id] = key.encode("utf-8")
  2808. scores[token_id] = -1000.0
  2809. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2810. if vocab_size > len(tokens):
  2811. pad_count = vocab_size - len(tokens)
  2812. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2813. for i in range(1, pad_count + 1):
  2814. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2815. scores.append(-1000.0)
  2816. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2817. self.gguf_writer.add_tokenizer_model("t5")
  2818. self.gguf_writer.add_tokenizer_pre("default")
  2819. self.gguf_writer.add_token_list(tokens)
  2820. self.gguf_writer.add_token_scores(scores)
  2821. self.gguf_writer.add_token_types(toktypes)
  2822. self.gguf_writer.add_add_space_prefix(add_prefix)
  2823. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2824. if precompiled_charsmap:
  2825. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2826. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2827. special_vocab.add_to_gguf(self.gguf_writer)
  2828. self.gguf_writer.add_add_bos_token(False)
  2829. self.gguf_writer.add_add_eos_token(True)
  2830. def set_gguf_parameters(self):
  2831. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2832. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2833. n_ctx = 512
  2834. self.gguf_writer.add_context_length(n_ctx)
  2835. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2836. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2837. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2838. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2839. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2840. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2841. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2842. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2843. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2844. self.gguf_writer.add_file_type(self.ftype)
  2845. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2846. del bid # unused
  2847. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2848. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2849. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2850. # and decoder and ignore the remaining ones.
  2851. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2852. if not self.shared_token_embeddings_found:
  2853. name = "shared.weight"
  2854. self.shared_token_embeddings_found = True
  2855. else:
  2856. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2857. return []
  2858. return [(self.map_tensor_name(name), data_torch)]
  2859. @Model.register("JAISLMHeadModel")
  2860. class JaisModel(Model):
  2861. model_arch = gguf.MODEL_ARCH.JAIS
  2862. def __init__(self, *args, **kwargs):
  2863. super().__init__(*args, **kwargs)
  2864. # SwigLU activation
  2865. assert self.hparams["activation_function"] == "swiglu"
  2866. # ALiBi position embedding
  2867. assert self.hparams["position_embedding_type"] == "alibi"
  2868. # Embeddings scale
  2869. self.embeddings_scale = 1.0
  2870. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2871. self.output_is_wte = False
  2872. if 'mup_embeddings_scale' in self.hparams:
  2873. self.output_is_wte = True # Hack (?)
  2874. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2875. elif 'embeddings_scale' in self.hparams:
  2876. self.embeddings_scale = self.hparams['embeddings_scale']
  2877. else:
  2878. assert False
  2879. self.width_scale = 1.0
  2880. if 'mup_output_alpha' in self.hparams:
  2881. assert 'mup_width_scale' in self.hparams
  2882. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2883. elif 'width_scale' in self.hparams:
  2884. self.width_scale = self.hparams['width_scale']
  2885. else:
  2886. assert False
  2887. self.max_alibi_bias = 8.0
  2888. def set_vocab(self):
  2889. self._set_vocab_gpt2()
  2890. def set_gguf_parameters(self):
  2891. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2892. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2893. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2894. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2895. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2896. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2897. self.gguf_writer.add_file_type(self.ftype)
  2898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2899. del bid # unused
  2900. tensors: list[tuple[str, Tensor]] = []
  2901. # we don't need these
  2902. if name.endswith((".attn.bias")):
  2903. return tensors
  2904. if name.endswith(("relative_pe.slopes")):
  2905. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2906. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2907. # but Jais's PyTorch model simply precalculates the slope values and places them
  2908. # in relative_pes.slopes
  2909. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2910. first_val = float(data_torch[0].item())
  2911. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2912. return tensors
  2913. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2914. data_torch = data_torch.transpose(1, 0)
  2915. new_name = self.map_tensor_name(name)
  2916. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2917. tensors.append((new_name, data_torch * self.embeddings_scale))
  2918. if self.output_is_wte:
  2919. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2920. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2921. assert not self.output_is_wte
  2922. tensors.append((new_name, data_torch * self.width_scale))
  2923. else:
  2924. tensors.append((new_name, data_torch))
  2925. return tensors
  2926. def prepare_tensors(self):
  2927. super().prepare_tensors()
  2928. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2929. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2930. class ChatGLMModel(Model):
  2931. model_arch = gguf.MODEL_ARCH.CHATGLM
  2932. def set_vocab_chatglm3(self):
  2933. dir_model = self.dir_model
  2934. hparams = self.hparams
  2935. tokens: list[bytes] = []
  2936. toktypes: list[int] = []
  2937. scores: list[float] = []
  2938. from transformers import AutoTokenizer
  2939. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2940. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2941. assert max(tokenizer.get_vocab().values()) < vocab_size
  2942. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2943. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2944. for token_id in range(vocab_size):
  2945. piece = tokenizer._convert_id_to_token(token_id)
  2946. if token_id == 0:
  2947. piece = "<unk>"
  2948. elif token_id == 1:
  2949. piece = "<bos>"
  2950. elif token_id == 2:
  2951. piece = "<eos>"
  2952. text = piece.encode("utf-8")
  2953. score = 0.0
  2954. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2955. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2956. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2957. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2958. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2959. if piece in special_tokens:
  2960. toktype = SentencePieceTokenTypes.CONTROL
  2961. elif len(piece) == 0:
  2962. text = f"[PAD{token_id}]".encode("utf-8")
  2963. toktype = SentencePieceTokenTypes.UNUSED
  2964. else:
  2965. toktype = SentencePieceTokenTypes.USER_DEFINED
  2966. tokens.append(text)
  2967. scores.append(score)
  2968. toktypes.append(toktype)
  2969. continue
  2970. toktype = SentencePieceTokenTypes.NORMAL
  2971. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2972. toktype = SentencePieceTokenTypes.UNKNOWN
  2973. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2974. toktype = SentencePieceTokenTypes.CONTROL
  2975. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2976. toktype = SentencePieceTokenTypes.UNUSED
  2977. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2978. toktype = SentencePieceTokenTypes.BYTE
  2979. tokens.append(text)
  2980. scores.append(score)
  2981. toktypes.append(toktype)
  2982. self.gguf_writer.add_tokenizer_model("llama")
  2983. # glm3 needs prefix and suffix formatted as:
  2984. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2985. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2986. self.gguf_writer.add_token_list(tokens)
  2987. self.gguf_writer.add_token_scores(scores)
  2988. self.gguf_writer.add_token_types(toktypes)
  2989. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2990. special_vocab.add_to_gguf(self.gguf_writer)
  2991. @staticmethod
  2992. def token_bytes_to_string(b):
  2993. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2994. byte_encoder = bytes_to_unicode()
  2995. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2996. @staticmethod
  2997. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2998. parts = [bytes([b]) for b in token]
  2999. while True:
  3000. min_idx = None
  3001. min_rank = None
  3002. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3003. rank = mergeable_ranks.get(pair[0] + pair[1])
  3004. if rank is not None and (min_rank is None or rank < min_rank):
  3005. min_idx = i
  3006. min_rank = rank
  3007. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3008. break
  3009. assert min_idx is not None
  3010. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3011. return parts
  3012. def set_vocab(self):
  3013. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3014. self.set_vocab_chatglm3()
  3015. return
  3016. dir_model = self.dir_model
  3017. hparams = self.hparams
  3018. tokens: list[str] = []
  3019. toktypes: list[int] = []
  3020. from transformers import AutoTokenizer
  3021. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3022. vocab_size = hparams["padded_vocab_size"]
  3023. assert max(tokenizer.get_vocab().values()) < vocab_size
  3024. tokpre = self.get_vocab_base_pre(tokenizer)
  3025. merges = []
  3026. vocab = {}
  3027. mergeable_ranks = tokenizer.mergeable_ranks
  3028. for token, rank in mergeable_ranks.items():
  3029. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3030. if len(token) == 1:
  3031. continue
  3032. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3033. assert len(merged) >= 2 and len(merged) <= 7
  3034. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3035. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3036. added_vocab = tokenizer.get_added_vocab()
  3037. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3038. for i in range(vocab_size):
  3039. if i not in reverse_vocab:
  3040. tokens.append(f"[PAD{i}]")
  3041. toktypes.append(gguf.TokenType.UNUSED)
  3042. elif reverse_vocab[i] in added_vocab:
  3043. tokens.append(reverse_vocab[i])
  3044. if tokenizer.added_tokens_decoder[i].special:
  3045. toktypes.append(gguf.TokenType.CONTROL)
  3046. else:
  3047. toktypes.append(gguf.TokenType.USER_DEFINED)
  3048. else:
  3049. tokens.append(reverse_vocab[i])
  3050. toktypes.append(gguf.TokenType.NORMAL)
  3051. self.gguf_writer.add_tokenizer_model("gpt2")
  3052. self.gguf_writer.add_tokenizer_pre(tokpre)
  3053. self.gguf_writer.add_token_list(tokens)
  3054. self.gguf_writer.add_token_types(toktypes)
  3055. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3056. special_vocab.merges = merges
  3057. # only add special tokens when they were not already loaded from config.json
  3058. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3059. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3060. # this one is usually not in config.json anyway
  3061. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3062. special_vocab.add_to_gguf(self.gguf_writer)
  3063. def set_gguf_parameters(self):
  3064. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3065. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3066. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3067. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3068. self.gguf_writer.add_embedding_length(n_embed)
  3069. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3070. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3071. self.gguf_writer.add_head_count(n_head)
  3072. self.gguf_writer.add_head_count_kv(n_head_kv)
  3073. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3074. self.gguf_writer.add_file_type(self.ftype)
  3075. self.gguf_writer.add_rope_dimension_count(64)
  3076. self.gguf_writer.add_add_bos_token(False)
  3077. rope_freq = 10000
  3078. if "rope_ratio" in self.hparams:
  3079. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3080. self.gguf_writer.add_rope_freq_base(rope_freq)
  3081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3082. del bid # unused
  3083. if name.endswith(".rotary_pos_emb.inv_freq"):
  3084. return []
  3085. name = name.removeprefix("transformer.")
  3086. return [(self.map_tensor_name(name), data_torch)]
  3087. @Model.register("NemotronForCausalLM")
  3088. class NemotronModel(Model):
  3089. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3090. def set_vocab(self):
  3091. self._set_vocab_sentencepiece()
  3092. self.gguf_writer.add_pad_token_id(0)
  3093. self.gguf_writer.add_unk_token_id(1)
  3094. def set_gguf_parameters(self):
  3095. super().set_gguf_parameters()
  3096. hparams = self.hparams
  3097. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3098. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3099. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3100. # * Partial RoPE
  3101. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3102. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3103. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3104. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3105. # * RopeScaling for Nemotron
  3106. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3107. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3108. else:
  3109. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3110. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3111. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3112. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3113. # model.layers.{l}.input_layernorm.weight
  3114. # model.layers.{l}.post_attention_layernorm.weight
  3115. # model.norm.weight
  3116. if name.endswith("norm.weight"):
  3117. data_torch = data_torch + 1
  3118. return [(self.map_tensor_name(name), data_torch)]
  3119. @Model.register("ExaoneForCausalLM")
  3120. class ExaoneModel(Model):
  3121. model_arch = gguf.MODEL_ARCH.EXAONE
  3122. def set_gguf_parameters(self):
  3123. hparams = self.hparams
  3124. assert (hparams["activation_function"] == "silu")
  3125. max_position_embeddings = hparams["max_position_embeddings"]
  3126. embed_dim = hparams["hidden_size"]
  3127. num_heads = hparams["num_attention_heads"]
  3128. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3129. layer_norm_eps = hparams["layer_norm_epsilon"]
  3130. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3131. num_layers = hparams["num_layers"]
  3132. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3133. # attention_dropout_rate = hparams["attention_dropout"]
  3134. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3135. # embed_dropout_rate = hparams["embed_dropout"]
  3136. self.gguf_writer.add_embedding_length(embed_dim)
  3137. self.gguf_writer.add_head_count(num_heads)
  3138. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3139. self.gguf_writer.add_context_length(max_position_embeddings)
  3140. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3141. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3142. self.gguf_writer.add_block_count(num_layers)
  3143. self.gguf_writer.add_file_type(self.ftype)
  3144. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3145. self.gguf_writer.add_rope_freq_base(rope_theta)
  3146. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3147. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3148. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3149. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3150. if hparams["rope_scaling"].get("type") == "linear":
  3151. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3152. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3153. def prepare_tensors(self):
  3154. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3155. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3156. base = self.hparams.get("rope_theta", 10000.0)
  3157. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3158. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3159. factor = rope_scaling.get("factor", 8.0)
  3160. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3161. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3162. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3163. low_freq_wavelen = old_context_len / low_freq_factor
  3164. high_freq_wavelen = old_context_len / high_freq_factor
  3165. assert low_freq_wavelen != high_freq_wavelen
  3166. rope_factors = []
  3167. for freq in freqs:
  3168. wavelen = 2 * math.pi / freq
  3169. if wavelen < high_freq_wavelen:
  3170. rope_factors.append(1)
  3171. elif wavelen > low_freq_wavelen:
  3172. rope_factors.append(factor)
  3173. else:
  3174. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3175. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3176. if not self.is_lora:
  3177. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3178. super().prepare_tensors()
  3179. ###### CONVERSION LOGIC ######
  3180. # tree of lazy tensors
  3181. class LazyTorchTensor(gguf.LazyBase):
  3182. _tensor_type = torch.Tensor
  3183. # to keep the type-checker happy
  3184. dtype: torch.dtype
  3185. shape: torch.Size
  3186. # only used when converting a torch.Tensor to a np.ndarray
  3187. _dtype_map: dict[torch.dtype, type] = {
  3188. torch.float16: np.float16,
  3189. torch.float32: np.float32,
  3190. }
  3191. # used for safetensors slices
  3192. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3193. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3194. _dtype_str_map: dict[str, torch.dtype] = {
  3195. "F64": torch.float64,
  3196. "F32": torch.float32,
  3197. "BF16": torch.bfloat16,
  3198. "F16": torch.float16,
  3199. # "U64": torch.uint64,
  3200. "I64": torch.int64,
  3201. # "U32": torch.uint32,
  3202. "I32": torch.int32,
  3203. # "U16": torch.uint16,
  3204. "I16": torch.int16,
  3205. "U8": torch.uint8,
  3206. "I8": torch.int8,
  3207. "BOOL": torch.bool,
  3208. "F8_E4M3": torch.float8_e4m3fn,
  3209. "F8_E5M2": torch.float8_e5m2,
  3210. }
  3211. def numpy(self) -> gguf.LazyNumpyTensor:
  3212. dtype = self._dtype_map[self.dtype]
  3213. return gguf.LazyNumpyTensor(
  3214. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3215. args=(self,),
  3216. func=(lambda s: s.numpy())
  3217. )
  3218. @classmethod
  3219. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3220. return torch.empty(size=shape, dtype=dtype, device="meta")
  3221. @classmethod
  3222. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3223. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3224. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3225. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3226. return cast(torch.Tensor, lazy)
  3227. @classmethod
  3228. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3229. del types # unused
  3230. if kwargs is None:
  3231. kwargs = {}
  3232. if func is torch.Tensor.numpy:
  3233. return args[0].numpy()
  3234. return cls._wrap_fn(func)(*args, **kwargs)
  3235. def parse_args() -> argparse.Namespace:
  3236. parser = argparse.ArgumentParser(
  3237. description="Convert a huggingface model to a GGML compatible file")
  3238. parser.add_argument(
  3239. "--vocab-only", action="store_true",
  3240. help="extract only the vocab",
  3241. )
  3242. parser.add_argument(
  3243. "--outfile", type=Path,
  3244. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3245. )
  3246. parser.add_argument(
  3247. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3248. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3249. )
  3250. parser.add_argument(
  3251. "--bigendian", action="store_true",
  3252. help="model is executed on big endian machine",
  3253. )
  3254. parser.add_argument(
  3255. "model", type=Path,
  3256. help="directory containing model file",
  3257. )
  3258. parser.add_argument(
  3259. "--use-temp-file", action="store_true",
  3260. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3261. )
  3262. parser.add_argument(
  3263. "--no-lazy", action="store_true",
  3264. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3265. )
  3266. parser.add_argument(
  3267. "--model-name", type=str, default=None,
  3268. help="name of the model",
  3269. )
  3270. parser.add_argument(
  3271. "--verbose", action="store_true",
  3272. help="increase output verbosity",
  3273. )
  3274. parser.add_argument(
  3275. "--split-max-tensors", type=int, default=0,
  3276. help="max tensors in each split",
  3277. )
  3278. parser.add_argument(
  3279. "--split-max-size", type=str, default="0",
  3280. help="max size per split N(M|G)",
  3281. )
  3282. parser.add_argument(
  3283. "--dry-run", action="store_true",
  3284. help="only print out a split plan and exit, without writing any new files",
  3285. )
  3286. parser.add_argument(
  3287. "--no-tensor-first-split", action="store_true",
  3288. help="do not add tensors to the first split (disabled by default)"
  3289. )
  3290. parser.add_argument(
  3291. "--metadata", type=Path,
  3292. help="Specify the path for an authorship metadata override file"
  3293. )
  3294. return parser.parse_args()
  3295. def split_str_to_n_bytes(split_str: str) -> int:
  3296. if split_str.endswith("K"):
  3297. n = int(split_str[:-1]) * 1000
  3298. elif split_str.endswith("M"):
  3299. n = int(split_str[:-1]) * 1000 * 1000
  3300. elif split_str.endswith("G"):
  3301. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3302. elif split_str.isnumeric():
  3303. n = int(split_str)
  3304. else:
  3305. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3306. if n < 0:
  3307. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3308. return n
  3309. def main() -> None:
  3310. args = parse_args()
  3311. if args.verbose:
  3312. logging.basicConfig(level=logging.DEBUG)
  3313. else:
  3314. logging.basicConfig(level=logging.INFO)
  3315. dir_model = args.model
  3316. if not dir_model.is_dir():
  3317. logger.error(f'Error: {args.model} is not a directory')
  3318. sys.exit(1)
  3319. ftype_map: dict[str, gguf.LlamaFileType] = {
  3320. "f32": gguf.LlamaFileType.ALL_F32,
  3321. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3322. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3323. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3324. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3325. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3326. "auto": gguf.LlamaFileType.GUESSED,
  3327. }
  3328. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3329. if args.use_temp_file and is_split:
  3330. logger.error("Error: Cannot use temp file when splitting")
  3331. sys.exit(1)
  3332. if args.outfile is not None:
  3333. fname_out = args.outfile
  3334. else:
  3335. fname_out = dir_model
  3336. logger.info(f"Loading model: {dir_model.name}")
  3337. hparams = Model.load_hparams(dir_model)
  3338. with torch.inference_mode():
  3339. output_type = ftype_map[args.outtype]
  3340. model_architecture = hparams["architectures"][0]
  3341. try:
  3342. model_class = Model.from_model_architecture(model_architecture)
  3343. except NotImplementedError:
  3344. logger.error(f"Model {model_architecture} is not supported")
  3345. sys.exit(1)
  3346. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3347. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3348. eager=args.no_lazy,
  3349. metadata_override=args.metadata, model_name=args.model_name,
  3350. split_max_tensors=args.split_max_tensors,
  3351. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3352. small_first_shard=args.no_tensor_first_split)
  3353. if args.vocab_only:
  3354. logger.info("Exporting model vocab...")
  3355. model_instance.write_vocab()
  3356. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3357. else:
  3358. logger.info("Exporting model...")
  3359. model_instance.write()
  3360. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3361. logger.info(f"Model successfully exported to {out_path}")
  3362. if __name__ == '__main__':
  3363. main()