constants.py 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. TYPE = "general.type"
  17. ARCHITECTURE = "general.architecture"
  18. QUANTIZATION_VERSION = "general.quantization_version"
  19. ALIGNMENT = "general.alignment"
  20. FILE_TYPE = "general.file_type"
  21. # Authorship Metadata
  22. NAME = "general.name"
  23. AUTHOR = "general.author"
  24. VERSION = "general.version"
  25. ORGANIZATION = "general.organization"
  26. FINETUNE = "general.finetune"
  27. BASENAME = "general.basename"
  28. DESCRIPTION = "general.description"
  29. QUANTIZED_BY = "general.quantized_by"
  30. SIZE_LABEL = "general.size_label"
  31. # Licensing details
  32. LICENSE = "general.license"
  33. LICENSE_NAME = "general.license.name"
  34. LICENSE_LINK = "general.license.link"
  35. # Typically represents the converted GGUF repo (Unless native)
  36. URL = "general.url" # Model Website/Paper
  37. DOI = "general.doi"
  38. UUID = "general.uuid"
  39. REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
  40. # Model Source during conversion
  41. SOURCE_URL = "general.source.url" # Model Website/Paper
  42. SOURCE_DOI = "general.source.doi"
  43. SOURCE_UUID = "general.source.uuid"
  44. SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
  45. # Base Model Source. There can be more than one source if it's a merged
  46. # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
  47. # tracing linage of models as it is finetuned or merged over time.
  48. BASE_MODEL_COUNT = "general.base_model.count"
  49. BASE_MODEL_NAME = "general.base_model.{id}.name"
  50. BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
  51. BASE_MODEL_VERSION = "general.base_model.{id}.version"
  52. BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
  53. BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
  54. BASE_MODEL_DOI = "general.base_model.{id}.doi"
  55. BASE_MODEL_UUID = "general.base_model.{id}.uuid"
  56. BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
  57. # Array based KV stores
  58. TAGS = "general.tags"
  59. LANGUAGES = "general.languages"
  60. DATASETS = "general.datasets"
  61. class LLM:
  62. VOCAB_SIZE = "{arch}.vocab_size"
  63. CONTEXT_LENGTH = "{arch}.context_length"
  64. EMBEDDING_LENGTH = "{arch}.embedding_length"
  65. BLOCK_COUNT = "{arch}.block_count"
  66. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  67. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  68. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  69. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  70. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  71. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  72. EXPERT_COUNT = "{arch}.expert_count"
  73. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  74. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  75. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  76. POOLING_TYPE = "{arch}.pooling_type"
  77. LOGIT_SCALE = "{arch}.logit_scale"
  78. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  79. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  80. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  81. RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
  82. TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
  83. TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
  84. class Attention:
  85. HEAD_COUNT = "{arch}.attention.head_count"
  86. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  87. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  88. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  89. KEY_LENGTH = "{arch}.attention.key_length"
  90. VALUE_LENGTH = "{arch}.attention.value_length"
  91. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  92. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  93. CAUSAL = "{arch}.attention.causal"
  94. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  95. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  96. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  97. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  98. class Rope:
  99. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  100. FREQ_BASE = "{arch}.rope.freq_base"
  101. SCALING_TYPE = "{arch}.rope.scaling.type"
  102. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  103. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  104. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  105. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  106. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  107. class Split:
  108. LLM_KV_SPLIT_NO = "split.no"
  109. LLM_KV_SPLIT_COUNT = "split.count"
  110. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  111. class SSM:
  112. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  113. INNER_SIZE = "{arch}.ssm.inner_size"
  114. STATE_SIZE = "{arch}.ssm.state_size"
  115. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  116. DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
  117. class WKV:
  118. HEAD_SIZE = "{arch}.wkv.head_size"
  119. class Tokenizer:
  120. MODEL = "tokenizer.ggml.model"
  121. PRE = "tokenizer.ggml.pre"
  122. LIST = "tokenizer.ggml.tokens"
  123. TOKEN_TYPE = "tokenizer.ggml.token_type"
  124. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  125. SCORES = "tokenizer.ggml.scores"
  126. MERGES = "tokenizer.ggml.merges"
  127. BOS_ID = "tokenizer.ggml.bos_token_id"
  128. EOS_ID = "tokenizer.ggml.eos_token_id"
  129. UNK_ID = "tokenizer.ggml.unknown_token_id"
  130. SEP_ID = "tokenizer.ggml.seperator_token_id"
  131. PAD_ID = "tokenizer.ggml.padding_token_id"
  132. CLS_ID = "tokenizer.ggml.cls_token_id"
  133. MASK_ID = "tokenizer.ggml.mask_token_id"
  134. ADD_BOS = "tokenizer.ggml.add_bos_token"
  135. ADD_EOS = "tokenizer.ggml.add_eos_token"
  136. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  137. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  138. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  139. HF_JSON = "tokenizer.huggingface.json"
  140. RWKV = "tokenizer.rwkv.world"
  141. CHAT_TEMPLATE = "tokenizer.chat_template"
  142. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  143. CHAT_TEMPLATES = "tokenizer.chat_templates"
  144. # FIM/Infill special tokens constants
  145. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  146. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  147. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  148. EOT_ID = "tokenizer.ggml.eot_token_id"
  149. EOM_ID = "tokenizer.ggml.eom_token_id"
  150. class Adapter:
  151. TYPE = "adapter.type"
  152. LORA_ALPHA = "adapter.lora.alpha"
  153. #
  154. # recommended mapping of model tensor names for storage in gguf
  155. #
  156. class GGUFType:
  157. MODEL = "model"
  158. ADAPTER = "adapter"
  159. class MODEL_ARCH(IntEnum):
  160. LLAMA = auto()
  161. FALCON = auto()
  162. BAICHUAN = auto()
  163. GROK = auto()
  164. GPT2 = auto()
  165. GPTJ = auto()
  166. GPTNEOX = auto()
  167. MPT = auto()
  168. STARCODER = auto()
  169. REFACT = auto()
  170. BERT = auto()
  171. NOMIC_BERT = auto()
  172. JINA_BERT_V2 = auto()
  173. BLOOM = auto()
  174. STABLELM = auto()
  175. QWEN = auto()
  176. QWEN2 = auto()
  177. QWEN2MOE = auto()
  178. PHI2 = auto()
  179. PHI3 = auto()
  180. PLAMO = auto()
  181. CODESHELL = auto()
  182. ORION = auto()
  183. INTERNLM2 = auto()
  184. MINICPM = auto()
  185. GEMMA = auto()
  186. GEMMA2 = auto()
  187. STARCODER2 = auto()
  188. RWKV6 = auto()
  189. MAMBA = auto()
  190. XVERSE = auto()
  191. COMMAND_R = auto()
  192. DBRX = auto()
  193. OLMO = auto()
  194. OPENELM = auto()
  195. ARCTIC = auto()
  196. DEEPSEEK2 = auto()
  197. CHATGLM = auto()
  198. BITNET = auto()
  199. T5 = auto()
  200. T5ENCODER = auto()
  201. JAIS = auto()
  202. NEMOTRON = auto()
  203. EXAONE = auto()
  204. class MODEL_TENSOR(IntEnum):
  205. TOKEN_EMBD = auto()
  206. TOKEN_EMBD_NORM = auto()
  207. TOKEN_TYPES = auto()
  208. POS_EMBD = auto()
  209. OUTPUT = auto()
  210. OUTPUT_NORM = auto()
  211. ROPE_FREQS = auto()
  212. ROPE_FACTORS_LONG = auto()
  213. ROPE_FACTORS_SHORT = auto()
  214. ATTN_Q = auto()
  215. ATTN_K = auto()
  216. ATTN_V = auto()
  217. ATTN_QKV = auto()
  218. ATTN_OUT = auto()
  219. ATTN_NORM = auto()
  220. ATTN_NORM_2 = auto()
  221. ATTN_OUT_NORM = auto()
  222. ATTN_POST_NORM = auto()
  223. ATTN_ROT_EMBD = auto()
  224. FFN_GATE_INP = auto()
  225. FFN_GATE_INP_SHEXP = auto()
  226. FFN_NORM = auto()
  227. FFN_PRE_NORM = auto()
  228. FFN_POST_NORM = auto()
  229. FFN_GATE = auto()
  230. FFN_DOWN = auto()
  231. FFN_UP = auto()
  232. FFN_ACT = auto()
  233. FFN_NORM_EXP = auto()
  234. FFN_GATE_EXP = auto()
  235. FFN_DOWN_EXP = auto()
  236. FFN_UP_EXP = auto()
  237. FFN_GATE_SHEXP = auto()
  238. FFN_DOWN_SHEXP = auto()
  239. FFN_UP_SHEXP = auto()
  240. ATTN_Q_NORM = auto()
  241. ATTN_K_NORM = auto()
  242. LAYER_OUT_NORM = auto()
  243. SSM_IN = auto()
  244. SSM_CONV1D = auto()
  245. SSM_X = auto()
  246. SSM_DT = auto()
  247. SSM_A = auto()
  248. SSM_D = auto()
  249. SSM_OUT = auto()
  250. TIME_MIX_W1 = auto()
  251. TIME_MIX_W2 = auto()
  252. TIME_MIX_LERP_X = auto()
  253. TIME_MIX_LERP_K = auto()
  254. TIME_MIX_LERP_V = auto()
  255. TIME_MIX_LERP_R = auto()
  256. TIME_MIX_LERP_G = auto()
  257. TIME_MIX_LERP_W = auto()
  258. TIME_MIX_FIRST = auto()
  259. TIME_MIX_DECAY = auto()
  260. TIME_MIX_DECAY_W1 = auto()
  261. TIME_MIX_DECAY_W2 = auto()
  262. TIME_MIX_KEY = auto()
  263. TIME_MIX_VALUE = auto()
  264. TIME_MIX_RECEPTANCE = auto()
  265. TIME_MIX_GATE = auto()
  266. TIME_MIX_LN = auto()
  267. TIME_MIX_OUTPUT = auto()
  268. CHANNEL_MIX_LERP_K = auto()
  269. CHANNEL_MIX_LERP_R = auto()
  270. CHANNEL_MIX_KEY = auto()
  271. CHANNEL_MIX_RECEPTANCE = auto()
  272. CHANNEL_MIX_VALUE = auto()
  273. ATTN_Q_A = auto()
  274. ATTN_Q_B = auto()
  275. ATTN_KV_A_MQA = auto()
  276. ATTN_KV_B = auto()
  277. ATTN_Q_A_NORM = auto()
  278. ATTN_KV_A_NORM = auto()
  279. FFN_SUB_NORM = auto()
  280. ATTN_SUB_NORM = auto()
  281. DEC_ATTN_NORM = auto()
  282. DEC_ATTN_Q = auto()
  283. DEC_ATTN_K = auto()
  284. DEC_ATTN_V = auto()
  285. DEC_ATTN_OUT = auto()
  286. DEC_ATTN_REL_B = auto()
  287. DEC_CROSS_ATTN_NORM = auto()
  288. DEC_CROSS_ATTN_Q = auto()
  289. DEC_CROSS_ATTN_K = auto()
  290. DEC_CROSS_ATTN_V = auto()
  291. DEC_CROSS_ATTN_OUT = auto()
  292. DEC_CROSS_ATTN_REL_B = auto()
  293. DEC_FFN_NORM = auto()
  294. DEC_FFN_GATE = auto()
  295. DEC_FFN_DOWN = auto()
  296. DEC_FFN_UP = auto()
  297. DEC_OUTPUT_NORM = auto()
  298. ENC_ATTN_NORM = auto()
  299. ENC_ATTN_Q = auto()
  300. ENC_ATTN_K = auto()
  301. ENC_ATTN_V = auto()
  302. ENC_ATTN_OUT = auto()
  303. ENC_ATTN_REL_B = auto()
  304. ENC_FFN_NORM = auto()
  305. ENC_FFN_GATE = auto()
  306. ENC_FFN_DOWN = auto()
  307. ENC_FFN_UP = auto()
  308. ENC_OUTPUT_NORM = auto()
  309. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  310. MODEL_ARCH.LLAMA: "llama",
  311. MODEL_ARCH.FALCON: "falcon",
  312. MODEL_ARCH.BAICHUAN: "baichuan",
  313. MODEL_ARCH.GROK: "grok",
  314. MODEL_ARCH.GPT2: "gpt2",
  315. MODEL_ARCH.GPTJ: "gptj",
  316. MODEL_ARCH.GPTNEOX: "gptneox",
  317. MODEL_ARCH.MPT: "mpt",
  318. MODEL_ARCH.STARCODER: "starcoder",
  319. MODEL_ARCH.REFACT: "refact",
  320. MODEL_ARCH.BERT: "bert",
  321. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  322. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  323. MODEL_ARCH.BLOOM: "bloom",
  324. MODEL_ARCH.STABLELM: "stablelm",
  325. MODEL_ARCH.QWEN: "qwen",
  326. MODEL_ARCH.QWEN2: "qwen2",
  327. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  328. MODEL_ARCH.PHI2: "phi2",
  329. MODEL_ARCH.PHI3: "phi3",
  330. MODEL_ARCH.PLAMO: "plamo",
  331. MODEL_ARCH.CODESHELL: "codeshell",
  332. MODEL_ARCH.ORION: "orion",
  333. MODEL_ARCH.INTERNLM2: "internlm2",
  334. MODEL_ARCH.MINICPM: "minicpm",
  335. MODEL_ARCH.GEMMA: "gemma",
  336. MODEL_ARCH.GEMMA2: "gemma2",
  337. MODEL_ARCH.STARCODER2: "starcoder2",
  338. MODEL_ARCH.RWKV6: "rwkv6",
  339. MODEL_ARCH.MAMBA: "mamba",
  340. MODEL_ARCH.XVERSE: "xverse",
  341. MODEL_ARCH.COMMAND_R: "command-r",
  342. MODEL_ARCH.DBRX: "dbrx",
  343. MODEL_ARCH.OLMO: "olmo",
  344. MODEL_ARCH.OPENELM: "openelm",
  345. MODEL_ARCH.ARCTIC: "arctic",
  346. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  347. MODEL_ARCH.CHATGLM: "chatglm",
  348. MODEL_ARCH.BITNET: "bitnet",
  349. MODEL_ARCH.T5: "t5",
  350. MODEL_ARCH.T5ENCODER: "t5encoder",
  351. MODEL_ARCH.JAIS: "jais",
  352. MODEL_ARCH.NEMOTRON: "nemotron",
  353. MODEL_ARCH.EXAONE: "exaone",
  354. }
  355. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  356. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  357. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  358. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  359. MODEL_TENSOR.POS_EMBD: "position_embd",
  360. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  361. MODEL_TENSOR.OUTPUT: "output",
  362. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  363. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  364. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  365. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  366. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  367. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  368. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  369. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  370. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  371. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  372. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  373. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  374. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  375. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  376. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  377. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  378. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  379. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  380. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  381. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  382. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  383. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  384. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  385. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  386. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  387. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  388. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  389. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  390. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  391. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  392. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  393. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  394. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  395. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  396. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  397. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  398. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  399. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  400. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  401. MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
  402. MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
  403. MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
  404. MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
  405. MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
  406. MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
  407. MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
  408. MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
  409. MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
  410. MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
  411. MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1",
  412. MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2",
  413. MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key",
  414. MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value",
  415. MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance",
  416. MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate",
  417. MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln",
  418. MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output",
  419. MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k",
  420. MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r",
  421. MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key",
  422. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance",
  423. MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value",
  424. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  425. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  426. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  427. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  428. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  429. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  430. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  431. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  432. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  433. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  434. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  435. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  436. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  437. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  438. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  439. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  440. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  441. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  442. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  443. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  444. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  445. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  446. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  447. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  448. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  449. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  450. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  451. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  452. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  453. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  454. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  455. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  456. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  457. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  458. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  459. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  460. }
  461. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  462. MODEL_ARCH.LLAMA: [
  463. MODEL_TENSOR.TOKEN_EMBD,
  464. MODEL_TENSOR.OUTPUT_NORM,
  465. MODEL_TENSOR.OUTPUT,
  466. MODEL_TENSOR.ROPE_FREQS,
  467. MODEL_TENSOR.ATTN_NORM,
  468. MODEL_TENSOR.ATTN_Q,
  469. MODEL_TENSOR.ATTN_K,
  470. MODEL_TENSOR.ATTN_V,
  471. MODEL_TENSOR.ATTN_OUT,
  472. MODEL_TENSOR.ATTN_ROT_EMBD,
  473. MODEL_TENSOR.FFN_GATE_INP,
  474. MODEL_TENSOR.FFN_NORM,
  475. MODEL_TENSOR.FFN_GATE,
  476. MODEL_TENSOR.FFN_DOWN,
  477. MODEL_TENSOR.FFN_UP,
  478. MODEL_TENSOR.FFN_GATE_EXP,
  479. MODEL_TENSOR.FFN_DOWN_EXP,
  480. MODEL_TENSOR.FFN_UP_EXP,
  481. ],
  482. MODEL_ARCH.GROK: [
  483. MODEL_TENSOR.TOKEN_EMBD,
  484. MODEL_TENSOR.OUTPUT_NORM,
  485. MODEL_TENSOR.OUTPUT,
  486. MODEL_TENSOR.ROPE_FREQS,
  487. MODEL_TENSOR.ATTN_NORM,
  488. MODEL_TENSOR.ATTN_Q,
  489. MODEL_TENSOR.ATTN_K,
  490. MODEL_TENSOR.ATTN_V,
  491. MODEL_TENSOR.ATTN_OUT,
  492. MODEL_TENSOR.ATTN_ROT_EMBD,
  493. MODEL_TENSOR.ATTN_OUT_NORM,
  494. MODEL_TENSOR.FFN_GATE_INP,
  495. MODEL_TENSOR.FFN_NORM,
  496. MODEL_TENSOR.FFN_GATE,
  497. MODEL_TENSOR.FFN_DOWN,
  498. MODEL_TENSOR.FFN_UP,
  499. MODEL_TENSOR.FFN_GATE_EXP,
  500. MODEL_TENSOR.FFN_DOWN_EXP,
  501. MODEL_TENSOR.FFN_UP_EXP,
  502. MODEL_TENSOR.LAYER_OUT_NORM,
  503. ],
  504. MODEL_ARCH.GPTNEOX: [
  505. MODEL_TENSOR.TOKEN_EMBD,
  506. MODEL_TENSOR.OUTPUT_NORM,
  507. MODEL_TENSOR.OUTPUT,
  508. MODEL_TENSOR.ATTN_NORM,
  509. MODEL_TENSOR.ATTN_QKV,
  510. MODEL_TENSOR.ATTN_OUT,
  511. MODEL_TENSOR.FFN_NORM,
  512. MODEL_TENSOR.FFN_DOWN,
  513. MODEL_TENSOR.FFN_UP,
  514. ],
  515. MODEL_ARCH.FALCON: [
  516. MODEL_TENSOR.TOKEN_EMBD,
  517. MODEL_TENSOR.OUTPUT_NORM,
  518. MODEL_TENSOR.OUTPUT,
  519. MODEL_TENSOR.ATTN_NORM,
  520. MODEL_TENSOR.ATTN_NORM_2,
  521. MODEL_TENSOR.ATTN_QKV,
  522. MODEL_TENSOR.ATTN_OUT,
  523. MODEL_TENSOR.FFN_DOWN,
  524. MODEL_TENSOR.FFN_UP,
  525. ],
  526. MODEL_ARCH.BAICHUAN: [
  527. MODEL_TENSOR.TOKEN_EMBD,
  528. MODEL_TENSOR.OUTPUT_NORM,
  529. MODEL_TENSOR.OUTPUT,
  530. MODEL_TENSOR.ROPE_FREQS,
  531. MODEL_TENSOR.ATTN_NORM,
  532. MODEL_TENSOR.ATTN_Q,
  533. MODEL_TENSOR.ATTN_K,
  534. MODEL_TENSOR.ATTN_V,
  535. MODEL_TENSOR.ATTN_OUT,
  536. MODEL_TENSOR.ATTN_ROT_EMBD,
  537. MODEL_TENSOR.FFN_NORM,
  538. MODEL_TENSOR.FFN_GATE,
  539. MODEL_TENSOR.FFN_DOWN,
  540. MODEL_TENSOR.FFN_UP,
  541. ],
  542. MODEL_ARCH.STARCODER: [
  543. MODEL_TENSOR.TOKEN_EMBD,
  544. MODEL_TENSOR.POS_EMBD,
  545. MODEL_TENSOR.OUTPUT_NORM,
  546. MODEL_TENSOR.OUTPUT,
  547. MODEL_TENSOR.ATTN_NORM,
  548. MODEL_TENSOR.ATTN_QKV,
  549. MODEL_TENSOR.ATTN_OUT,
  550. MODEL_TENSOR.FFN_NORM,
  551. MODEL_TENSOR.FFN_DOWN,
  552. MODEL_TENSOR.FFN_UP,
  553. ],
  554. MODEL_ARCH.BERT: [
  555. MODEL_TENSOR.TOKEN_EMBD,
  556. MODEL_TENSOR.TOKEN_EMBD_NORM,
  557. MODEL_TENSOR.TOKEN_TYPES,
  558. MODEL_TENSOR.POS_EMBD,
  559. MODEL_TENSOR.OUTPUT_NORM,
  560. MODEL_TENSOR.ATTN_OUT_NORM,
  561. MODEL_TENSOR.ATTN_Q,
  562. MODEL_TENSOR.ATTN_K,
  563. MODEL_TENSOR.ATTN_V,
  564. MODEL_TENSOR.ATTN_OUT,
  565. MODEL_TENSOR.FFN_DOWN,
  566. MODEL_TENSOR.FFN_UP,
  567. MODEL_TENSOR.LAYER_OUT_NORM,
  568. ],
  569. MODEL_ARCH.NOMIC_BERT: [
  570. MODEL_TENSOR.TOKEN_EMBD,
  571. MODEL_TENSOR.TOKEN_EMBD_NORM,
  572. MODEL_TENSOR.TOKEN_TYPES,
  573. MODEL_TENSOR.POS_EMBD,
  574. MODEL_TENSOR.OUTPUT_NORM,
  575. MODEL_TENSOR.ATTN_OUT_NORM,
  576. MODEL_TENSOR.ATTN_QKV,
  577. MODEL_TENSOR.ATTN_OUT,
  578. MODEL_TENSOR.FFN_GATE,
  579. MODEL_TENSOR.FFN_DOWN,
  580. MODEL_TENSOR.FFN_UP,
  581. MODEL_TENSOR.LAYER_OUT_NORM,
  582. ],
  583. MODEL_ARCH.JINA_BERT_V2: [
  584. MODEL_TENSOR.TOKEN_EMBD,
  585. MODEL_TENSOR.TOKEN_EMBD_NORM,
  586. MODEL_TENSOR.TOKEN_TYPES,
  587. MODEL_TENSOR.ATTN_NORM_2,
  588. MODEL_TENSOR.ATTN_OUT_NORM,
  589. MODEL_TENSOR.ATTN_Q,
  590. MODEL_TENSOR.ATTN_Q_NORM,
  591. MODEL_TENSOR.ATTN_K,
  592. MODEL_TENSOR.ATTN_K_NORM,
  593. MODEL_TENSOR.ATTN_V,
  594. MODEL_TENSOR.ATTN_OUT,
  595. MODEL_TENSOR.FFN_UP,
  596. MODEL_TENSOR.FFN_GATE,
  597. MODEL_TENSOR.FFN_DOWN,
  598. MODEL_TENSOR.LAYER_OUT_NORM,
  599. ],
  600. MODEL_ARCH.MPT: [
  601. MODEL_TENSOR.TOKEN_EMBD,
  602. MODEL_TENSOR.OUTPUT_NORM,
  603. MODEL_TENSOR.OUTPUT,
  604. MODEL_TENSOR.ATTN_NORM,
  605. MODEL_TENSOR.ATTN_QKV,
  606. MODEL_TENSOR.ATTN_OUT,
  607. MODEL_TENSOR.FFN_NORM,
  608. MODEL_TENSOR.FFN_DOWN,
  609. MODEL_TENSOR.FFN_UP,
  610. MODEL_TENSOR.FFN_ACT,
  611. MODEL_TENSOR.ATTN_Q_NORM,
  612. MODEL_TENSOR.ATTN_K_NORM,
  613. MODEL_TENSOR.POS_EMBD,
  614. ],
  615. MODEL_ARCH.GPTJ: [
  616. MODEL_TENSOR.TOKEN_EMBD,
  617. MODEL_TENSOR.OUTPUT_NORM,
  618. MODEL_TENSOR.OUTPUT,
  619. MODEL_TENSOR.ATTN_NORM,
  620. MODEL_TENSOR.ATTN_Q,
  621. MODEL_TENSOR.ATTN_K,
  622. MODEL_TENSOR.ATTN_V,
  623. MODEL_TENSOR.ATTN_OUT,
  624. MODEL_TENSOR.FFN_DOWN,
  625. MODEL_TENSOR.FFN_UP,
  626. ],
  627. MODEL_ARCH.REFACT: [
  628. MODEL_TENSOR.TOKEN_EMBD,
  629. MODEL_TENSOR.OUTPUT_NORM,
  630. MODEL_TENSOR.OUTPUT,
  631. MODEL_TENSOR.ATTN_NORM,
  632. MODEL_TENSOR.ATTN_Q,
  633. MODEL_TENSOR.ATTN_K,
  634. MODEL_TENSOR.ATTN_V,
  635. MODEL_TENSOR.ATTN_OUT,
  636. MODEL_TENSOR.FFN_NORM,
  637. MODEL_TENSOR.FFN_GATE,
  638. MODEL_TENSOR.FFN_DOWN,
  639. MODEL_TENSOR.FFN_UP,
  640. ],
  641. MODEL_ARCH.BLOOM: [
  642. MODEL_TENSOR.TOKEN_EMBD,
  643. MODEL_TENSOR.TOKEN_EMBD_NORM,
  644. MODEL_TENSOR.OUTPUT_NORM,
  645. MODEL_TENSOR.OUTPUT,
  646. MODEL_TENSOR.ATTN_NORM,
  647. MODEL_TENSOR.ATTN_QKV,
  648. MODEL_TENSOR.ATTN_OUT,
  649. MODEL_TENSOR.FFN_NORM,
  650. MODEL_TENSOR.FFN_DOWN,
  651. MODEL_TENSOR.FFN_UP,
  652. ],
  653. MODEL_ARCH.STABLELM: [
  654. MODEL_TENSOR.TOKEN_EMBD,
  655. MODEL_TENSOR.OUTPUT_NORM,
  656. MODEL_TENSOR.OUTPUT,
  657. MODEL_TENSOR.ROPE_FREQS,
  658. MODEL_TENSOR.ATTN_NORM,
  659. MODEL_TENSOR.ATTN_Q,
  660. MODEL_TENSOR.ATTN_K,
  661. MODEL_TENSOR.ATTN_V,
  662. MODEL_TENSOR.ATTN_OUT,
  663. MODEL_TENSOR.FFN_NORM,
  664. MODEL_TENSOR.FFN_GATE,
  665. MODEL_TENSOR.FFN_DOWN,
  666. MODEL_TENSOR.FFN_UP,
  667. MODEL_TENSOR.ATTN_Q_NORM,
  668. MODEL_TENSOR.ATTN_K_NORM,
  669. ],
  670. MODEL_ARCH.QWEN: [
  671. MODEL_TENSOR.TOKEN_EMBD,
  672. MODEL_TENSOR.OUTPUT_NORM,
  673. MODEL_TENSOR.OUTPUT,
  674. MODEL_TENSOR.ROPE_FREQS,
  675. MODEL_TENSOR.ATTN_NORM,
  676. MODEL_TENSOR.ATTN_QKV,
  677. MODEL_TENSOR.ATTN_OUT,
  678. MODEL_TENSOR.ATTN_ROT_EMBD,
  679. MODEL_TENSOR.FFN_NORM,
  680. MODEL_TENSOR.FFN_GATE,
  681. MODEL_TENSOR.FFN_DOWN,
  682. MODEL_TENSOR.FFN_UP,
  683. ],
  684. MODEL_ARCH.QWEN2: [
  685. MODEL_TENSOR.TOKEN_EMBD,
  686. MODEL_TENSOR.OUTPUT_NORM,
  687. MODEL_TENSOR.OUTPUT,
  688. MODEL_TENSOR.ATTN_NORM,
  689. MODEL_TENSOR.ATTN_Q,
  690. MODEL_TENSOR.ATTN_K,
  691. MODEL_TENSOR.ATTN_V,
  692. MODEL_TENSOR.ATTN_OUT,
  693. MODEL_TENSOR.FFN_NORM,
  694. MODEL_TENSOR.FFN_GATE,
  695. MODEL_TENSOR.FFN_DOWN,
  696. MODEL_TENSOR.FFN_UP,
  697. ],
  698. MODEL_ARCH.QWEN2MOE: [
  699. MODEL_TENSOR.TOKEN_EMBD,
  700. MODEL_TENSOR.OUTPUT_NORM,
  701. MODEL_TENSOR.OUTPUT,
  702. MODEL_TENSOR.ATTN_NORM,
  703. MODEL_TENSOR.ATTN_Q,
  704. MODEL_TENSOR.ATTN_K,
  705. MODEL_TENSOR.ATTN_V,
  706. MODEL_TENSOR.ATTN_OUT,
  707. MODEL_TENSOR.FFN_NORM,
  708. MODEL_TENSOR.FFN_GATE_INP,
  709. MODEL_TENSOR.FFN_GATE_EXP,
  710. MODEL_TENSOR.FFN_DOWN_EXP,
  711. MODEL_TENSOR.FFN_UP_EXP,
  712. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  713. MODEL_TENSOR.FFN_GATE_SHEXP,
  714. MODEL_TENSOR.FFN_DOWN_SHEXP,
  715. MODEL_TENSOR.FFN_UP_SHEXP,
  716. ],
  717. MODEL_ARCH.PLAMO: [
  718. MODEL_TENSOR.TOKEN_EMBD,
  719. MODEL_TENSOR.OUTPUT_NORM,
  720. MODEL_TENSOR.OUTPUT,
  721. MODEL_TENSOR.ROPE_FREQS,
  722. MODEL_TENSOR.ATTN_NORM,
  723. MODEL_TENSOR.ATTN_Q,
  724. MODEL_TENSOR.ATTN_K,
  725. MODEL_TENSOR.ATTN_V,
  726. MODEL_TENSOR.ATTN_OUT,
  727. MODEL_TENSOR.ATTN_ROT_EMBD,
  728. MODEL_TENSOR.FFN_GATE,
  729. MODEL_TENSOR.FFN_DOWN,
  730. MODEL_TENSOR.FFN_UP,
  731. ],
  732. MODEL_ARCH.GPT2: [
  733. MODEL_TENSOR.TOKEN_EMBD,
  734. MODEL_TENSOR.POS_EMBD,
  735. MODEL_TENSOR.OUTPUT_NORM,
  736. MODEL_TENSOR.OUTPUT,
  737. MODEL_TENSOR.ATTN_NORM,
  738. MODEL_TENSOR.ATTN_QKV,
  739. MODEL_TENSOR.ATTN_OUT,
  740. MODEL_TENSOR.FFN_NORM,
  741. MODEL_TENSOR.FFN_DOWN,
  742. MODEL_TENSOR.FFN_UP,
  743. ],
  744. MODEL_ARCH.PHI2: [
  745. MODEL_TENSOR.TOKEN_EMBD,
  746. MODEL_TENSOR.OUTPUT_NORM,
  747. MODEL_TENSOR.OUTPUT,
  748. MODEL_TENSOR.ATTN_NORM,
  749. MODEL_TENSOR.ATTN_QKV,
  750. MODEL_TENSOR.ATTN_Q,
  751. MODEL_TENSOR.ATTN_K,
  752. MODEL_TENSOR.ATTN_V,
  753. MODEL_TENSOR.ATTN_OUT,
  754. MODEL_TENSOR.FFN_NORM,
  755. MODEL_TENSOR.FFN_DOWN,
  756. MODEL_TENSOR.FFN_UP,
  757. ],
  758. MODEL_ARCH.PHI3: [
  759. MODEL_TENSOR.TOKEN_EMBD,
  760. MODEL_TENSOR.OUTPUT_NORM,
  761. MODEL_TENSOR.OUTPUT,
  762. MODEL_TENSOR.ATTN_NORM,
  763. MODEL_TENSOR.ATTN_QKV,
  764. MODEL_TENSOR.ATTN_Q,
  765. MODEL_TENSOR.ATTN_K,
  766. MODEL_TENSOR.ATTN_V,
  767. MODEL_TENSOR.ATTN_OUT,
  768. MODEL_TENSOR.FFN_NORM,
  769. MODEL_TENSOR.FFN_DOWN,
  770. MODEL_TENSOR.FFN_UP,
  771. ],
  772. MODEL_ARCH.CODESHELL: [
  773. MODEL_TENSOR.TOKEN_EMBD,
  774. MODEL_TENSOR.POS_EMBD,
  775. MODEL_TENSOR.OUTPUT_NORM,
  776. MODEL_TENSOR.OUTPUT,
  777. MODEL_TENSOR.ATTN_NORM,
  778. MODEL_TENSOR.ATTN_QKV,
  779. MODEL_TENSOR.ATTN_OUT,
  780. MODEL_TENSOR.ATTN_ROT_EMBD,
  781. MODEL_TENSOR.FFN_NORM,
  782. MODEL_TENSOR.FFN_DOWN,
  783. MODEL_TENSOR.FFN_UP,
  784. ],
  785. MODEL_ARCH.ORION: [
  786. MODEL_TENSOR.TOKEN_EMBD,
  787. MODEL_TENSOR.OUTPUT_NORM,
  788. MODEL_TENSOR.OUTPUT,
  789. MODEL_TENSOR.ROPE_FREQS,
  790. MODEL_TENSOR.ATTN_NORM,
  791. MODEL_TENSOR.ATTN_Q,
  792. MODEL_TENSOR.ATTN_K,
  793. MODEL_TENSOR.ATTN_V,
  794. MODEL_TENSOR.ATTN_OUT,
  795. MODEL_TENSOR.ATTN_ROT_EMBD,
  796. MODEL_TENSOR.FFN_NORM,
  797. MODEL_TENSOR.FFN_GATE,
  798. MODEL_TENSOR.FFN_DOWN,
  799. MODEL_TENSOR.FFN_UP,
  800. ],
  801. MODEL_ARCH.INTERNLM2: [
  802. MODEL_TENSOR.TOKEN_EMBD,
  803. MODEL_TENSOR.OUTPUT_NORM,
  804. MODEL_TENSOR.OUTPUT,
  805. MODEL_TENSOR.ATTN_NORM,
  806. MODEL_TENSOR.ATTN_Q,
  807. MODEL_TENSOR.ATTN_K,
  808. MODEL_TENSOR.ATTN_V,
  809. MODEL_TENSOR.ATTN_OUT,
  810. MODEL_TENSOR.ATTN_ROT_EMBD,
  811. MODEL_TENSOR.FFN_NORM,
  812. MODEL_TENSOR.FFN_GATE,
  813. MODEL_TENSOR.FFN_DOWN,
  814. MODEL_TENSOR.FFN_UP,
  815. ],
  816. MODEL_ARCH.MINICPM: [
  817. MODEL_TENSOR.TOKEN_EMBD,
  818. MODEL_TENSOR.OUTPUT,
  819. MODEL_TENSOR.OUTPUT_NORM,
  820. MODEL_TENSOR.ROPE_FREQS,
  821. MODEL_TENSOR.ATTN_NORM,
  822. MODEL_TENSOR.ATTN_Q,
  823. MODEL_TENSOR.ATTN_K,
  824. MODEL_TENSOR.ATTN_V,
  825. MODEL_TENSOR.ATTN_OUT,
  826. MODEL_TENSOR.ATTN_ROT_EMBD,
  827. MODEL_TENSOR.FFN_GATE_INP,
  828. MODEL_TENSOR.FFN_NORM,
  829. MODEL_TENSOR.FFN_GATE,
  830. MODEL_TENSOR.FFN_DOWN,
  831. MODEL_TENSOR.FFN_UP,
  832. MODEL_TENSOR.FFN_GATE_EXP,
  833. MODEL_TENSOR.FFN_DOWN_EXP,
  834. MODEL_TENSOR.FFN_UP_EXP,
  835. ],
  836. MODEL_ARCH.GEMMA: [
  837. MODEL_TENSOR.TOKEN_EMBD,
  838. MODEL_TENSOR.OUTPUT_NORM,
  839. MODEL_TENSOR.ATTN_NORM,
  840. MODEL_TENSOR.ATTN_Q,
  841. MODEL_TENSOR.ATTN_K,
  842. MODEL_TENSOR.ATTN_V,
  843. MODEL_TENSOR.ATTN_OUT,
  844. MODEL_TENSOR.FFN_GATE,
  845. MODEL_TENSOR.FFN_DOWN,
  846. MODEL_TENSOR.FFN_UP,
  847. MODEL_TENSOR.FFN_NORM,
  848. ],
  849. MODEL_ARCH.GEMMA2: [
  850. MODEL_TENSOR.TOKEN_EMBD,
  851. MODEL_TENSOR.OUTPUT_NORM,
  852. MODEL_TENSOR.ATTN_Q,
  853. MODEL_TENSOR.ATTN_K,
  854. MODEL_TENSOR.ATTN_V,
  855. MODEL_TENSOR.ATTN_OUT,
  856. MODEL_TENSOR.FFN_GATE,
  857. MODEL_TENSOR.FFN_DOWN,
  858. MODEL_TENSOR.FFN_UP,
  859. MODEL_TENSOR.ATTN_NORM,
  860. MODEL_TENSOR.ATTN_POST_NORM,
  861. MODEL_TENSOR.FFN_PRE_NORM,
  862. MODEL_TENSOR.FFN_POST_NORM,
  863. ],
  864. MODEL_ARCH.STARCODER2: [
  865. MODEL_TENSOR.TOKEN_EMBD,
  866. MODEL_TENSOR.OUTPUT_NORM,
  867. MODEL_TENSOR.OUTPUT,
  868. MODEL_TENSOR.ROPE_FREQS,
  869. MODEL_TENSOR.ATTN_NORM,
  870. MODEL_TENSOR.ATTN_Q,
  871. MODEL_TENSOR.ATTN_K,
  872. MODEL_TENSOR.ATTN_V,
  873. MODEL_TENSOR.ATTN_OUT,
  874. MODEL_TENSOR.ATTN_ROT_EMBD,
  875. MODEL_TENSOR.FFN_NORM,
  876. MODEL_TENSOR.FFN_DOWN,
  877. MODEL_TENSOR.FFN_UP,
  878. ],
  879. MODEL_ARCH.RWKV6: [
  880. MODEL_TENSOR.TOKEN_EMBD,
  881. MODEL_TENSOR.TOKEN_EMBD_NORM,
  882. MODEL_TENSOR.OUTPUT_NORM,
  883. MODEL_TENSOR.OUTPUT,
  884. MODEL_TENSOR.ATTN_NORM,
  885. MODEL_TENSOR.ATTN_NORM_2,
  886. MODEL_TENSOR.TIME_MIX_W1,
  887. MODEL_TENSOR.TIME_MIX_W2,
  888. MODEL_TENSOR.TIME_MIX_LERP_X,
  889. MODEL_TENSOR.TIME_MIX_LERP_K,
  890. MODEL_TENSOR.TIME_MIX_LERP_V,
  891. MODEL_TENSOR.TIME_MIX_LERP_R,
  892. MODEL_TENSOR.TIME_MIX_LERP_G,
  893. MODEL_TENSOR.TIME_MIX_LERP_W,
  894. MODEL_TENSOR.TIME_MIX_FIRST,
  895. MODEL_TENSOR.TIME_MIX_DECAY,
  896. MODEL_TENSOR.TIME_MIX_DECAY_W1,
  897. MODEL_TENSOR.TIME_MIX_DECAY_W2,
  898. MODEL_TENSOR.TIME_MIX_KEY,
  899. MODEL_TENSOR.TIME_MIX_VALUE,
  900. MODEL_TENSOR.TIME_MIX_RECEPTANCE,
  901. MODEL_TENSOR.TIME_MIX_GATE,
  902. MODEL_TENSOR.TIME_MIX_LN,
  903. MODEL_TENSOR.TIME_MIX_OUTPUT,
  904. MODEL_TENSOR.CHANNEL_MIX_LERP_K,
  905. MODEL_TENSOR.CHANNEL_MIX_LERP_R,
  906. MODEL_TENSOR.CHANNEL_MIX_KEY,
  907. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
  908. MODEL_TENSOR.CHANNEL_MIX_VALUE,
  909. ],
  910. MODEL_ARCH.MAMBA: [
  911. MODEL_TENSOR.TOKEN_EMBD,
  912. MODEL_TENSOR.OUTPUT_NORM,
  913. MODEL_TENSOR.OUTPUT,
  914. MODEL_TENSOR.ATTN_NORM,
  915. MODEL_TENSOR.SSM_IN,
  916. MODEL_TENSOR.SSM_CONV1D,
  917. MODEL_TENSOR.SSM_X,
  918. MODEL_TENSOR.SSM_DT,
  919. MODEL_TENSOR.SSM_A,
  920. MODEL_TENSOR.SSM_D,
  921. MODEL_TENSOR.SSM_OUT,
  922. ],
  923. MODEL_ARCH.XVERSE: [
  924. MODEL_TENSOR.TOKEN_EMBD,
  925. MODEL_TENSOR.OUTPUT_NORM,
  926. MODEL_TENSOR.OUTPUT,
  927. MODEL_TENSOR.ROPE_FREQS,
  928. MODEL_TENSOR.ATTN_NORM,
  929. MODEL_TENSOR.ATTN_Q,
  930. MODEL_TENSOR.ATTN_K,
  931. MODEL_TENSOR.ATTN_V,
  932. MODEL_TENSOR.ATTN_OUT,
  933. MODEL_TENSOR.ATTN_ROT_EMBD,
  934. MODEL_TENSOR.FFN_NORM,
  935. MODEL_TENSOR.FFN_GATE,
  936. MODEL_TENSOR.FFN_DOWN,
  937. MODEL_TENSOR.FFN_UP,
  938. ],
  939. MODEL_ARCH.COMMAND_R: [
  940. MODEL_TENSOR.TOKEN_EMBD,
  941. MODEL_TENSOR.OUTPUT_NORM,
  942. MODEL_TENSOR.ATTN_NORM,
  943. MODEL_TENSOR.ATTN_Q,
  944. MODEL_TENSOR.ATTN_K,
  945. MODEL_TENSOR.ATTN_V,
  946. MODEL_TENSOR.ATTN_OUT,
  947. MODEL_TENSOR.FFN_GATE,
  948. MODEL_TENSOR.FFN_DOWN,
  949. MODEL_TENSOR.FFN_UP,
  950. MODEL_TENSOR.ATTN_K_NORM,
  951. MODEL_TENSOR.ATTN_Q_NORM,
  952. ],
  953. MODEL_ARCH.DBRX: [
  954. MODEL_TENSOR.TOKEN_EMBD,
  955. MODEL_TENSOR.OUTPUT_NORM,
  956. MODEL_TENSOR.OUTPUT,
  957. MODEL_TENSOR.ATTN_NORM,
  958. MODEL_TENSOR.ATTN_QKV,
  959. MODEL_TENSOR.ATTN_OUT,
  960. MODEL_TENSOR.ATTN_OUT_NORM,
  961. MODEL_TENSOR.FFN_GATE_INP,
  962. MODEL_TENSOR.FFN_GATE_EXP,
  963. MODEL_TENSOR.FFN_DOWN_EXP,
  964. MODEL_TENSOR.FFN_UP_EXP,
  965. ],
  966. MODEL_ARCH.OLMO: [
  967. MODEL_TENSOR.TOKEN_EMBD,
  968. MODEL_TENSOR.OUTPUT,
  969. MODEL_TENSOR.ATTN_Q,
  970. MODEL_TENSOR.ATTN_K,
  971. MODEL_TENSOR.ATTN_V,
  972. MODEL_TENSOR.ATTN_OUT,
  973. MODEL_TENSOR.FFN_GATE,
  974. MODEL_TENSOR.FFN_DOWN,
  975. MODEL_TENSOR.FFN_UP,
  976. ],
  977. MODEL_ARCH.OPENELM: [
  978. MODEL_TENSOR.TOKEN_EMBD,
  979. MODEL_TENSOR.OUTPUT_NORM,
  980. MODEL_TENSOR.ATTN_NORM,
  981. MODEL_TENSOR.ATTN_QKV,
  982. MODEL_TENSOR.ATTN_Q_NORM,
  983. MODEL_TENSOR.ATTN_K_NORM,
  984. MODEL_TENSOR.ATTN_OUT,
  985. MODEL_TENSOR.FFN_NORM,
  986. MODEL_TENSOR.FFN_GATE,
  987. MODEL_TENSOR.FFN_DOWN,
  988. MODEL_TENSOR.FFN_UP,
  989. ],
  990. MODEL_ARCH.ARCTIC: [
  991. MODEL_TENSOR.TOKEN_EMBD,
  992. MODEL_TENSOR.OUTPUT_NORM,
  993. MODEL_TENSOR.OUTPUT,
  994. MODEL_TENSOR.ROPE_FREQS,
  995. MODEL_TENSOR.ATTN_NORM,
  996. MODEL_TENSOR.ATTN_Q,
  997. MODEL_TENSOR.ATTN_K,
  998. MODEL_TENSOR.ATTN_V,
  999. MODEL_TENSOR.ATTN_OUT,
  1000. MODEL_TENSOR.ATTN_ROT_EMBD,
  1001. MODEL_TENSOR.FFN_GATE_INP,
  1002. MODEL_TENSOR.FFN_NORM,
  1003. MODEL_TENSOR.FFN_GATE,
  1004. MODEL_TENSOR.FFN_DOWN,
  1005. MODEL_TENSOR.FFN_UP,
  1006. MODEL_TENSOR.FFN_NORM_EXP,
  1007. MODEL_TENSOR.FFN_GATE_EXP,
  1008. MODEL_TENSOR.FFN_DOWN_EXP,
  1009. MODEL_TENSOR.FFN_UP_EXP,
  1010. ],
  1011. MODEL_ARCH.DEEPSEEK2: [
  1012. MODEL_TENSOR.TOKEN_EMBD,
  1013. MODEL_TENSOR.OUTPUT_NORM,
  1014. MODEL_TENSOR.OUTPUT,
  1015. MODEL_TENSOR.ROPE_FREQS,
  1016. MODEL_TENSOR.ATTN_NORM,
  1017. MODEL_TENSOR.ATTN_Q,
  1018. MODEL_TENSOR.ATTN_Q_A,
  1019. MODEL_TENSOR.ATTN_Q_B,
  1020. MODEL_TENSOR.ATTN_KV_A_MQA,
  1021. MODEL_TENSOR.ATTN_KV_B,
  1022. MODEL_TENSOR.ATTN_Q_A_NORM,
  1023. MODEL_TENSOR.ATTN_KV_A_NORM,
  1024. MODEL_TENSOR.ATTN_OUT,
  1025. MODEL_TENSOR.ATTN_ROT_EMBD,
  1026. MODEL_TENSOR.FFN_GATE_INP,
  1027. MODEL_TENSOR.FFN_NORM,
  1028. MODEL_TENSOR.FFN_GATE,
  1029. MODEL_TENSOR.FFN_DOWN,
  1030. MODEL_TENSOR.FFN_UP,
  1031. MODEL_TENSOR.FFN_GATE_EXP,
  1032. MODEL_TENSOR.FFN_DOWN_EXP,
  1033. MODEL_TENSOR.FFN_UP_EXP,
  1034. MODEL_TENSOR.FFN_GATE_SHEXP,
  1035. MODEL_TENSOR.FFN_DOWN_SHEXP,
  1036. MODEL_TENSOR.FFN_UP_SHEXP,
  1037. ],
  1038. MODEL_ARCH.CHATGLM : [
  1039. MODEL_TENSOR.TOKEN_EMBD,
  1040. MODEL_TENSOR.ROPE_FREQS,
  1041. MODEL_TENSOR.OUTPUT_NORM,
  1042. MODEL_TENSOR.OUTPUT,
  1043. MODEL_TENSOR.ATTN_NORM,
  1044. MODEL_TENSOR.ATTN_QKV,
  1045. MODEL_TENSOR.ATTN_OUT,
  1046. MODEL_TENSOR.FFN_NORM,
  1047. MODEL_TENSOR.FFN_DOWN,
  1048. MODEL_TENSOR.FFN_UP,
  1049. ],
  1050. MODEL_ARCH.BITNET: [
  1051. MODEL_TENSOR.ATTN_Q,
  1052. MODEL_TENSOR.ATTN_K,
  1053. MODEL_TENSOR.ATTN_V,
  1054. MODEL_TENSOR.TOKEN_EMBD,
  1055. MODEL_TENSOR.OUTPUT_NORM,
  1056. MODEL_TENSOR.ATTN_NORM,
  1057. MODEL_TENSOR.ATTN_OUT,
  1058. MODEL_TENSOR.FFN_NORM,
  1059. MODEL_TENSOR.FFN_GATE,
  1060. MODEL_TENSOR.FFN_DOWN,
  1061. MODEL_TENSOR.FFN_UP,
  1062. MODEL_TENSOR.ATTN_SUB_NORM,
  1063. MODEL_TENSOR.FFN_SUB_NORM,
  1064. ],
  1065. MODEL_ARCH.T5: [
  1066. MODEL_TENSOR.TOKEN_EMBD,
  1067. MODEL_TENSOR.OUTPUT,
  1068. MODEL_TENSOR.DEC_ATTN_NORM,
  1069. MODEL_TENSOR.DEC_ATTN_Q,
  1070. MODEL_TENSOR.DEC_ATTN_K,
  1071. MODEL_TENSOR.DEC_ATTN_V,
  1072. MODEL_TENSOR.DEC_ATTN_OUT,
  1073. MODEL_TENSOR.DEC_ATTN_REL_B,
  1074. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  1075. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  1076. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  1077. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  1078. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  1079. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  1080. MODEL_TENSOR.DEC_FFN_NORM,
  1081. MODEL_TENSOR.DEC_FFN_GATE,
  1082. MODEL_TENSOR.DEC_FFN_DOWN,
  1083. MODEL_TENSOR.DEC_FFN_UP,
  1084. MODEL_TENSOR.DEC_OUTPUT_NORM,
  1085. MODEL_TENSOR.ENC_ATTN_NORM,
  1086. MODEL_TENSOR.ENC_ATTN_Q,
  1087. MODEL_TENSOR.ENC_ATTN_K,
  1088. MODEL_TENSOR.ENC_ATTN_V,
  1089. MODEL_TENSOR.ENC_ATTN_OUT,
  1090. MODEL_TENSOR.ENC_ATTN_REL_B,
  1091. MODEL_TENSOR.ENC_FFN_NORM,
  1092. MODEL_TENSOR.ENC_FFN_GATE,
  1093. MODEL_TENSOR.ENC_FFN_DOWN,
  1094. MODEL_TENSOR.ENC_FFN_UP,
  1095. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1096. ],
  1097. MODEL_ARCH.T5ENCODER: [
  1098. MODEL_TENSOR.TOKEN_EMBD,
  1099. MODEL_TENSOR.OUTPUT,
  1100. MODEL_TENSOR.ENC_ATTN_NORM,
  1101. MODEL_TENSOR.ENC_ATTN_Q,
  1102. MODEL_TENSOR.ENC_ATTN_K,
  1103. MODEL_TENSOR.ENC_ATTN_V,
  1104. MODEL_TENSOR.ENC_ATTN_OUT,
  1105. MODEL_TENSOR.ENC_ATTN_REL_B,
  1106. MODEL_TENSOR.ENC_FFN_NORM,
  1107. MODEL_TENSOR.ENC_FFN_GATE,
  1108. MODEL_TENSOR.ENC_FFN_DOWN,
  1109. MODEL_TENSOR.ENC_FFN_UP,
  1110. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1111. ],
  1112. MODEL_ARCH.JAIS: [
  1113. MODEL_TENSOR.TOKEN_EMBD,
  1114. MODEL_TENSOR.OUTPUT_NORM,
  1115. MODEL_TENSOR.OUTPUT,
  1116. MODEL_TENSOR.ATTN_NORM,
  1117. MODEL_TENSOR.ATTN_QKV,
  1118. MODEL_TENSOR.ATTN_OUT,
  1119. MODEL_TENSOR.FFN_NORM,
  1120. MODEL_TENSOR.FFN_DOWN,
  1121. MODEL_TENSOR.FFN_GATE,
  1122. MODEL_TENSOR.FFN_UP,
  1123. ],
  1124. MODEL_ARCH.NEMOTRON: [
  1125. MODEL_TENSOR.TOKEN_EMBD,
  1126. MODEL_TENSOR.OUTPUT_NORM,
  1127. MODEL_TENSOR.OUTPUT,
  1128. MODEL_TENSOR.ROPE_FREQS,
  1129. MODEL_TENSOR.ATTN_NORM,
  1130. MODEL_TENSOR.ATTN_Q,
  1131. MODEL_TENSOR.ATTN_K,
  1132. MODEL_TENSOR.ATTN_V,
  1133. MODEL_TENSOR.ATTN_OUT,
  1134. MODEL_TENSOR.ATTN_ROT_EMBD,
  1135. MODEL_TENSOR.FFN_NORM,
  1136. MODEL_TENSOR.FFN_DOWN,
  1137. MODEL_TENSOR.FFN_UP,
  1138. ],
  1139. MODEL_ARCH.EXAONE: [
  1140. MODEL_TENSOR.TOKEN_EMBD,
  1141. MODEL_TENSOR.OUTPUT_NORM,
  1142. MODEL_TENSOR.OUTPUT,
  1143. MODEL_TENSOR.ROPE_FREQS,
  1144. MODEL_TENSOR.ATTN_NORM,
  1145. MODEL_TENSOR.ATTN_Q,
  1146. MODEL_TENSOR.ATTN_K,
  1147. MODEL_TENSOR.ATTN_V,
  1148. MODEL_TENSOR.ATTN_OUT,
  1149. MODEL_TENSOR.ATTN_ROT_EMBD,
  1150. MODEL_TENSOR.FFN_NORM,
  1151. MODEL_TENSOR.FFN_GATE,
  1152. MODEL_TENSOR.FFN_DOWN,
  1153. MODEL_TENSOR.FFN_UP,
  1154. ],
  1155. # TODO
  1156. }
  1157. # tensors that will not be serialized
  1158. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  1159. MODEL_ARCH.LLAMA: [
  1160. MODEL_TENSOR.ROPE_FREQS,
  1161. MODEL_TENSOR.ATTN_ROT_EMBD,
  1162. ],
  1163. MODEL_ARCH.BAICHUAN: [
  1164. MODEL_TENSOR.ROPE_FREQS,
  1165. MODEL_TENSOR.ATTN_ROT_EMBD,
  1166. ],
  1167. MODEL_ARCH.QWEN: [
  1168. MODEL_TENSOR.ROPE_FREQS,
  1169. MODEL_TENSOR.ATTN_ROT_EMBD,
  1170. ],
  1171. MODEL_ARCH.CODESHELL: [
  1172. MODEL_TENSOR.ROPE_FREQS,
  1173. MODEL_TENSOR.ATTN_ROT_EMBD,
  1174. ],
  1175. MODEL_ARCH.ORION: [
  1176. MODEL_TENSOR.ROPE_FREQS,
  1177. MODEL_TENSOR.ATTN_ROT_EMBD,
  1178. ],
  1179. MODEL_ARCH.STARCODER2: [
  1180. MODEL_TENSOR.ROPE_FREQS,
  1181. MODEL_TENSOR.ATTN_ROT_EMBD,
  1182. ],
  1183. MODEL_ARCH.XVERSE: [
  1184. MODEL_TENSOR.ROPE_FREQS,
  1185. MODEL_TENSOR.ATTN_ROT_EMBD,
  1186. ],
  1187. MODEL_ARCH.DEEPSEEK2: [
  1188. MODEL_TENSOR.ROPE_FREQS,
  1189. MODEL_TENSOR.ATTN_ROT_EMBD,
  1190. ],
  1191. MODEL_ARCH.CHATGLM: [
  1192. MODEL_TENSOR.ROPE_FREQS,
  1193. ],
  1194. MODEL_ARCH.NEMOTRON: [
  1195. MODEL_TENSOR.ROPE_FREQS,
  1196. MODEL_TENSOR.ATTN_ROT_EMBD,
  1197. ],
  1198. }
  1199. #
  1200. # types
  1201. #
  1202. class TokenType(IntEnum):
  1203. NORMAL = 1
  1204. UNKNOWN = 2
  1205. CONTROL = 3
  1206. USER_DEFINED = 4
  1207. UNUSED = 5
  1208. BYTE = 6
  1209. class RopeScalingType(Enum):
  1210. NONE = 'none'
  1211. LINEAR = 'linear'
  1212. YARN = 'yarn'
  1213. class PoolingType(IntEnum):
  1214. NONE = 0
  1215. MEAN = 1
  1216. CLS = 2
  1217. class GGMLQuantizationType(IntEnum):
  1218. F32 = 0
  1219. F16 = 1
  1220. Q4_0 = 2
  1221. Q4_1 = 3
  1222. Q5_0 = 6
  1223. Q5_1 = 7
  1224. Q8_0 = 8
  1225. Q8_1 = 9
  1226. Q2_K = 10
  1227. Q3_K = 11
  1228. Q4_K = 12
  1229. Q5_K = 13
  1230. Q6_K = 14
  1231. Q8_K = 15
  1232. IQ2_XXS = 16
  1233. IQ2_XS = 17
  1234. IQ3_XXS = 18
  1235. IQ1_S = 19
  1236. IQ4_NL = 20
  1237. IQ3_S = 21
  1238. IQ2_S = 22
  1239. IQ4_XS = 23
  1240. I8 = 24
  1241. I16 = 25
  1242. I32 = 26
  1243. I64 = 27
  1244. F64 = 28
  1245. IQ1_M = 29
  1246. BF16 = 30
  1247. Q4_0_4_4 = 31
  1248. Q4_0_4_8 = 32
  1249. Q4_0_8_8 = 33
  1250. TQ1_0 = 34
  1251. TQ2_0 = 35
  1252. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1253. # from llama_ftype in llama.h
  1254. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1255. class LlamaFileType(IntEnum):
  1256. ALL_F32 = 0
  1257. MOSTLY_F16 = 1 # except 1d tensors
  1258. MOSTLY_Q4_0 = 2 # except 1d tensors
  1259. MOSTLY_Q4_1 = 3 # except 1d tensors
  1260. # MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1261. # MOSTLY_Q4_2 = 5 # support has been removed
  1262. # MOSTLY_Q4_3 = 6 # support has been removed
  1263. MOSTLY_Q8_0 = 7 # except 1d tensors
  1264. MOSTLY_Q5_0 = 8 # except 1d tensors
  1265. MOSTLY_Q5_1 = 9 # except 1d tensors
  1266. MOSTLY_Q2_K = 10 # except 1d tensors
  1267. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1268. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1269. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1270. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1271. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1272. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1273. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1274. MOSTLY_Q6_K = 18 # except 1d tensors
  1275. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1276. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1277. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1278. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1279. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1280. MOSTLY_IQ1_S = 24 # except 1d tensors
  1281. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1282. MOSTLY_IQ3_S = 26 # except 1d tensors
  1283. MOSTLY_IQ3_M = 27 # except 1d tensors
  1284. MOSTLY_IQ2_S = 28 # except 1d tensors
  1285. MOSTLY_IQ2_M = 29 # except 1d tensors
  1286. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1287. MOSTLY_IQ1_M = 31 # except 1d tensors
  1288. MOSTLY_BF16 = 32 # except 1d tensors
  1289. MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
  1290. MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
  1291. MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
  1292. MOSTLY_TQ1_0 = 36 # except 1d tensors
  1293. MOSTLY_TQ2_0 = 37 # except 1d tensors
  1294. GUESSED = 1024 # not specified in the model file
  1295. class GGUFEndian(IntEnum):
  1296. LITTLE = 0
  1297. BIG = 1
  1298. class GGUFValueType(IntEnum):
  1299. UINT8 = 0
  1300. INT8 = 1
  1301. UINT16 = 2
  1302. INT16 = 3
  1303. UINT32 = 4
  1304. INT32 = 5
  1305. FLOAT32 = 6
  1306. BOOL = 7
  1307. STRING = 8
  1308. ARRAY = 9
  1309. UINT64 = 10
  1310. INT64 = 11
  1311. FLOAT64 = 12
  1312. @staticmethod
  1313. def get_type(val: Any) -> GGUFValueType:
  1314. if isinstance(val, (str, bytes, bytearray)):
  1315. return GGUFValueType.STRING
  1316. elif isinstance(val, list):
  1317. return GGUFValueType.ARRAY
  1318. elif isinstance(val, float):
  1319. return GGUFValueType.FLOAT32
  1320. elif isinstance(val, bool):
  1321. return GGUFValueType.BOOL
  1322. elif isinstance(val, int):
  1323. return GGUFValueType.INT32
  1324. # TODO: need help with 64-bit types in Python
  1325. else:
  1326. raise ValueError(f"Unknown type: {type(val)}")
  1327. # Items here are (block size, type size)
  1328. QK_K = 256
  1329. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1330. GGMLQuantizationType.F32: (1, 4),
  1331. GGMLQuantizationType.F16: (1, 2),
  1332. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1333. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1334. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1335. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1336. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1337. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1338. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1339. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1340. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1341. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1342. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1343. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1344. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1345. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1346. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1347. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1348. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1349. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1350. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1351. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1352. GGMLQuantizationType.I8: (1, 1),
  1353. GGMLQuantizationType.I16: (1, 2),
  1354. GGMLQuantizationType.I32: (1, 4),
  1355. GGMLQuantizationType.I64: (1, 8),
  1356. GGMLQuantizationType.F64: (1, 8),
  1357. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1358. GGMLQuantizationType.BF16: (1, 2),
  1359. GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
  1360. GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
  1361. GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
  1362. GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
  1363. GGMLQuantizationType.TQ2_0: (256, 2 + 64),
  1364. }
  1365. # Aliases for backward compatibility.
  1366. # general
  1367. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1368. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1369. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1370. KEY_GENERAL_NAME = Keys.General.NAME
  1371. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1372. KEY_GENERAL_URL = Keys.General.URL
  1373. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1374. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1375. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1376. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1377. # LLM
  1378. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1379. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1380. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1381. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1382. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1383. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1384. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1385. # attention
  1386. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1387. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1388. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1389. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1390. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1391. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1392. # RoPE
  1393. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1394. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1395. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1396. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1397. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1398. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1399. # SSM
  1400. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1401. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1402. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1403. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1404. KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
  1405. # tokenization
  1406. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1407. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1408. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1409. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1410. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1411. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1412. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1413. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1414. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1415. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1416. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1417. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1418. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1419. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1420. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1421. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1422. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1423. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1424. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
  1425. KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID