tensor_mapping.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv
  27. ),
  28. # Token type embeddings
  29. MODEL_TENSOR.TOKEN_TYPES: (
  30. "embeddings.token_type_embeddings", # bert nomic-bert
  31. ),
  32. # Normalization of token embeddings
  33. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  34. "word_embeddings_layernorm", # bloom
  35. "embeddings.LayerNorm", # bert
  36. "emb_ln", # nomic-bert
  37. "transformer.norm", # openelm
  38. "rwkv.blocks.0.pre_ln", # rwkv
  39. ),
  40. # Position embeddings
  41. MODEL_TENSOR.POS_EMBD: (
  42. "transformer.wpe", # gpt2
  43. "embeddings.position_embeddings", # bert
  44. "wpe", # gpt2
  45. ),
  46. # Output
  47. MODEL_TENSOR.OUTPUT: (
  48. "embed_out", # gptneox
  49. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone
  50. "output", # llama-pth bloom internlm2
  51. "word_embeddings_for_head", # persimmon
  52. "lm_head.linear", # phi2
  53. "output_layer", # chatglm
  54. "head", # rwkv
  55. ),
  56. # Output norm
  57. MODEL_TENSOR.OUTPUT_NORM: (
  58. "gpt_neox.final_layer_norm", # gptneox
  59. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  60. "model.norm", # llama-hf baichuan internlm2
  61. "norm", # llama-pth
  62. "transformer.norm_f", # mpt dbrx
  63. "ln_f", # refact bloom qwen gpt2
  64. "language_model.encoder.final_layernorm", # persimmon
  65. "model.final_layernorm", # persimmon
  66. "lm_head.ln", # phi2
  67. "model.norm_f", # mamba-qbert
  68. "backbone.norm_f", # mamba
  69. "transformer.rms_norm", # Grok
  70. "encoder.final_layernorm", # chatglm
  71. "transformer.norm", # openelm
  72. "model.norm", # nemotron
  73. "rwkv.ln_out", # rwkv
  74. ),
  75. # Rope frequencies
  76. MODEL_TENSOR.ROPE_FREQS: (
  77. "rope.freqs", # llama-pth
  78. "rotary_pos_emb.inv_freq", # chatglm
  79. ),
  80. }
  81. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  82. # Attention norm
  83. MODEL_TENSOR.ATTN_NORM: (
  84. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  85. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  86. "transformer.blocks.{bid}.norm_1", # mpt
  87. "transformer.h.{bid}.input_layernorm", # falcon7b
  88. "h.{bid}.input_layernorm", # bloom
  89. "transformer.h.{bid}.ln_mlp", # falcon40b
  90. "model.layers.{bid}.input_layernorm", # llama-hf nemotron
  91. "layers.{bid}.attention_norm", # llama-pth
  92. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  93. "model.layers.{bid}.ln1", # yi
  94. "h.{bid}.ln_1", # gpt2
  95. "transformer.h.{bid}.ln", # phi2
  96. "model.layers.layers.{bid}.norm", # plamo
  97. "model.layers.{bid}.attention_norm", # internlm2
  98. "model.layers.{bid}.norm", # mamba-qbert
  99. "backbone.layers.{bid}.norm", # mamba
  100. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  101. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  102. "encoder.layers.{bid}.input_layernorm", # chatglm
  103. "transformer.layers.{bid}.attn_norm", # openelm
  104. "rwkv.blocks.{bid}.ln1", # rwkv
  105. ),
  106. # Attention norm 2
  107. MODEL_TENSOR.ATTN_NORM_2: (
  108. "transformer.h.{bid}.ln_attn", # falcon40b
  109. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  110. "rwkv.blocks.{bid}.ln2", # rwkv
  111. ),
  112. # Attention query-key-value
  113. MODEL_TENSOR.ATTN_QKV: (
  114. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  115. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  116. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  117. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  118. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  119. "h.{bid}.self_attention.query_key_value", # bloom
  120. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  121. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  122. "h.{bid}.attn.c_attn", # gpt2
  123. "transformer.h.{bid}.mixer.Wqkv", # phi2
  124. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  125. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  126. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  127. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  128. ),
  129. # Attention query
  130. MODEL_TENSOR.ATTN_Q: (
  131. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron
  132. "layers.{bid}.attention.wq", # llama-pth
  133. "encoder.layer.{bid}.attention.self.query", # bert
  134. "transformer.h.{bid}.attn.q_proj", # gpt-j
  135. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  136. "model.layers.{bid}.attention.wq", # internlm2
  137. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  138. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  139. ),
  140. # Attention key
  141. MODEL_TENSOR.ATTN_K: (
  142. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron
  143. "layers.{bid}.attention.wk", # llama-pth
  144. "encoder.layer.{bid}.attention.self.key", # bert
  145. "transformer.h.{bid}.attn.k_proj", # gpt-j
  146. "transformer.h.{bid}.attn.k", # refact
  147. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  148. "model.layers.{bid}.attention.wk", # internlm2
  149. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  150. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  151. ),
  152. # Attention value
  153. MODEL_TENSOR.ATTN_V: (
  154. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron
  155. "layers.{bid}.attention.wv", # llama-pth
  156. "encoder.layer.{bid}.attention.self.value", # bert
  157. "transformer.h.{bid}.attn.v_proj", # gpt-j
  158. "transformer.h.{bid}.attn.v", # refact
  159. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  160. "model.layers.{bid}.attention.wv", # internlm2
  161. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  162. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  163. ),
  164. # Attention output
  165. MODEL_TENSOR.ATTN_OUT: (
  166. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  167. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  168. "transformer.blocks.{bid}.attn.out_proj", # mpt
  169. "transformer.h.{bid}.self_attention.dense", # falcon
  170. "h.{bid}.self_attention.dense", # bloom
  171. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron
  172. "layers.{bid}.attention.wo", # llama-pth
  173. "encoder.layer.{bid}.attention.output.dense", # bert
  174. "transformer.h.{bid}.attn.out_proj", # gpt-j
  175. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  176. "model.layers.{bid}.self_attn.dense", # persimmon
  177. "h.{bid}.attn.c_proj", # gpt2
  178. "transformer.h.{bid}.mixer.out_proj", # phi2
  179. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  180. "model.layers.{bid}.attention.wo", # internlm2
  181. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  182. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  183. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  184. "encoder.layers.{bid}.self_attention.dense", # chatglm
  185. "transformer.layers.{bid}.attn.out_proj", # openelm
  186. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  187. ),
  188. # Attention output norm
  189. MODEL_TENSOR.ATTN_OUT_NORM: (
  190. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  191. "encoder.layers.{bid}.norm1", # nomic-bert
  192. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  193. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  194. ),
  195. MODEL_TENSOR.ATTN_POST_NORM: (
  196. "model.layers.{bid}.post_attention_layernorm", # gemma2
  197. ),
  198. # Rotary embeddings
  199. MODEL_TENSOR.ATTN_ROT_EMBD: (
  200. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  201. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  202. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  203. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  204. ),
  205. # Feed-forward norm
  206. MODEL_TENSOR.FFN_NORM: (
  207. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  208. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  209. "h.{bid}.post_attention_layernorm", # bloom
  210. "transformer.blocks.{bid}.norm_2", # mpt
  211. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron
  212. "layers.{bid}.ffn_norm", # llama-pth
  213. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  214. "model.layers.{bid}.ln2", # yi
  215. "h.{bid}.ln_2", # gpt2
  216. "model.layers.{bid}.ffn_norm", # internlm2
  217. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  218. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  219. "transformer.layers.{bid}.ffn_norm", # openelm
  220. ),
  221. # Post feed-forward norm
  222. MODEL_TENSOR.FFN_PRE_NORM: (
  223. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  224. ),
  225. # Post feed-forward norm
  226. MODEL_TENSOR.FFN_POST_NORM: (
  227. "model.layers.{bid}.post_feedforward_layernorm", # gemma2
  228. ),
  229. MODEL_TENSOR.FFN_GATE_INP: (
  230. "layers.{bid}.feed_forward.gate", # mixtral
  231. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  232. "model.layers.{bid}.mlp.gate", # qwen2moe
  233. "transformer.decoder_layer.{bid}.router", # Grok
  234. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  235. ),
  236. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  237. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  238. ),
  239. # Feed-forward up
  240. MODEL_TENSOR.FFN_UP: (
  241. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  242. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  243. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  244. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  245. "h.{bid}.mlp.dense_h_to_4h", # bloom
  246. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron
  247. "layers.{bid}.feed_forward.w3", # llama-pth
  248. "encoder.layer.{bid}.intermediate.dense", # bert
  249. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  250. "transformer.h.{bid}.mlp.linear_3", # refact
  251. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  252. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  253. "transformer.h.{bid}.mlp.w1", # qwen
  254. "h.{bid}.mlp.c_fc", # gpt2
  255. "transformer.h.{bid}.mlp.fc1", # phi2
  256. "model.layers.{bid}.mlp.fc1", # phi2
  257. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  258. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  259. "model.layers.{bid}.feed_forward.w3", # internlm2
  260. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  261. "model.layers.{bid}.mlp.c_fc", # starcoder2
  262. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  263. "model.layers.{bid}.residual_mlp.w3", # arctic
  264. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  265. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  266. ),
  267. MODEL_TENSOR.FFN_UP_EXP: (
  268. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  269. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  270. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  271. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
  272. ),
  273. MODEL_TENSOR.FFN_UP_SHEXP: (
  274. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  275. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
  276. ),
  277. # AWQ-activation gate
  278. MODEL_TENSOR.FFN_ACT: (
  279. "transformer.blocks.{bid}.ffn.act", # mpt
  280. ),
  281. # Feed-forward gate
  282. MODEL_TENSOR.FFN_GATE: (
  283. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  284. "layers.{bid}.feed_forward.w1", # llama-pth
  285. "transformer.h.{bid}.mlp.w2", # qwen
  286. "transformer.h.{bid}.mlp.c_fc2", # jais
  287. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  288. "model.layers.{bid}.feed_forward.w1", # internlm2
  289. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  290. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  291. "transformer.h.{bid}.mlp.linear_1", # refact
  292. "model.layers.{bid}.residual_mlp.w1", # arctic
  293. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  294. ),
  295. MODEL_TENSOR.FFN_GATE_EXP: (
  296. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  297. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  298. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  299. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
  300. ),
  301. MODEL_TENSOR.FFN_GATE_SHEXP: (
  302. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  303. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
  304. ),
  305. # Feed-forward down
  306. MODEL_TENSOR.FFN_DOWN: (
  307. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  308. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  309. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  310. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  311. "h.{bid}.mlp.dense_4h_to_h", # bloom
  312. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron
  313. "layers.{bid}.feed_forward.w2", # llama-pth
  314. "encoder.layer.{bid}.output.dense", # bert
  315. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  316. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  317. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  318. "h.{bid}.mlp.c_proj", # gpt2
  319. "transformer.h.{bid}.mlp.fc2", # phi2
  320. "model.layers.{bid}.mlp.fc2", # phi2
  321. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  322. "model.layers.{bid}.feed_forward.w2", # internlm2
  323. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  324. "model.layers.{bid}.mlp.c_proj", # starcoder2
  325. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  326. "transformer.layers.{bid}.ffn.proj_2", # openelm
  327. "model.layers.{bid}.residual_mlp.w2", # arctic
  328. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  329. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  330. "model.layers.h.{bid}.mlp.c_proj", # exaone
  331. ),
  332. MODEL_TENSOR.FFN_DOWN_EXP: (
  333. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  334. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  335. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  336. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
  337. ),
  338. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  339. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  340. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
  341. ),
  342. MODEL_TENSOR.ATTN_Q_NORM: (
  343. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  344. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  345. "model.layers.{bid}.self_attn.q_norm", # cohere
  346. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  347. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  348. "transformer.layers.{bid}.attn.q_norm", # openelm
  349. ),
  350. MODEL_TENSOR.ATTN_K_NORM: (
  351. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  352. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  353. "model.layers.{bid}.self_attn.k_norm", # cohere
  354. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  355. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  356. "transformer.layers.{bid}.attn.k_norm", # openelm
  357. ),
  358. MODEL_TENSOR.ROPE_FREQS: (
  359. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  360. ),
  361. MODEL_TENSOR.LAYER_OUT_NORM: (
  362. "encoder.layer.{bid}.output.LayerNorm", # bert
  363. "encoder.layers.{bid}.norm2", # nomic-bert
  364. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  365. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  366. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  367. ),
  368. MODEL_TENSOR.SSM_IN: (
  369. "model.layers.{bid}.in_proj",
  370. "backbone.layers.{bid}.mixer.in_proj",
  371. ),
  372. MODEL_TENSOR.SSM_CONV1D: (
  373. "model.layers.{bid}.conv1d",
  374. "backbone.layers.{bid}.mixer.conv1d",
  375. ),
  376. MODEL_TENSOR.SSM_X: (
  377. "model.layers.{bid}.x_proj",
  378. "backbone.layers.{bid}.mixer.x_proj",
  379. ),
  380. MODEL_TENSOR.SSM_DT: (
  381. "model.layers.{bid}.dt_proj",
  382. "backbone.layers.{bid}.mixer.dt_proj",
  383. ),
  384. MODEL_TENSOR.SSM_A: (
  385. "model.layers.{bid}.A_log",
  386. "backbone.layers.{bid}.mixer.A_log",
  387. ),
  388. MODEL_TENSOR.SSM_D: (
  389. "model.layers.{bid}.D",
  390. "backbone.layers.{bid}.mixer.D",
  391. ),
  392. MODEL_TENSOR.SSM_OUT: (
  393. "model.layers.{bid}.out_proj",
  394. "backbone.layers.{bid}.mixer.out_proj",
  395. ),
  396. MODEL_TENSOR.TIME_MIX_W1: (
  397. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
  398. ),
  399. MODEL_TENSOR.TIME_MIX_W2: (
  400. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
  401. ),
  402. MODEL_TENSOR.TIME_MIX_LERP_X: (
  403. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
  404. ),
  405. MODEL_TENSOR.TIME_MIX_LERP_K: (
  406. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
  407. ),
  408. MODEL_TENSOR.TIME_MIX_LERP_V: (
  409. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
  410. ),
  411. MODEL_TENSOR.TIME_MIX_LERP_R: (
  412. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
  413. ),
  414. MODEL_TENSOR.TIME_MIX_LERP_G: (
  415. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
  416. ),
  417. MODEL_TENSOR.TIME_MIX_LERP_W: (
  418. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
  419. ),
  420. MODEL_TENSOR.TIME_MIX_FIRST: (
  421. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
  422. ),
  423. MODEL_TENSOR.TIME_MIX_DECAY: (
  424. "rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
  425. ),
  426. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  427. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
  428. ),
  429. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  430. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
  431. ),
  432. MODEL_TENSOR.TIME_MIX_KEY: (
  433. "rwkv.blocks.{bid}.attention.key", # rwkv
  434. ),
  435. MODEL_TENSOR.TIME_MIX_VALUE: (
  436. "rwkv.blocks.{bid}.attention.value", # rwkv
  437. ),
  438. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  439. "rwkv.blocks.{bid}.attention.receptance", # rwkv
  440. ),
  441. MODEL_TENSOR.TIME_MIX_GATE: (
  442. "rwkv.blocks.{bid}.attention.gate", # rwkv
  443. ),
  444. MODEL_TENSOR.TIME_MIX_LN: (
  445. "rwkv.blocks.{bid}.attention.ln_x", # rwkv
  446. ),
  447. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  448. "rwkv.blocks.{bid}.attention.output", # rwkv
  449. ),
  450. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  451. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
  452. ),
  453. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  454. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
  455. ),
  456. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  457. "rwkv.blocks.{bid}.feed_forward.key", # rwkv
  458. ),
  459. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  460. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
  461. ),
  462. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  463. "rwkv.blocks.{bid}.feed_forward.value", # rwkv
  464. ),
  465. MODEL_TENSOR.ATTN_Q_A: (
  466. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  467. ),
  468. MODEL_TENSOR.ATTN_Q_B: (
  469. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  470. ),
  471. MODEL_TENSOR.ATTN_KV_A_MQA: (
  472. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  473. ),
  474. MODEL_TENSOR.ATTN_KV_B: (
  475. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  476. ),
  477. MODEL_TENSOR.ATTN_Q_A_NORM: (
  478. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  479. ),
  480. MODEL_TENSOR.ATTN_KV_A_NORM: (
  481. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  482. ),
  483. MODEL_TENSOR.ATTN_SUB_NORM: (
  484. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  485. ),
  486. MODEL_TENSOR.FFN_SUB_NORM: (
  487. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  488. ),
  489. MODEL_TENSOR.DEC_ATTN_NORM: (
  490. "decoder.block.{bid}.layer.0.layer_norm", # t5
  491. ),
  492. MODEL_TENSOR.DEC_ATTN_Q: (
  493. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  494. ),
  495. MODEL_TENSOR.DEC_ATTN_K: (
  496. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  497. ),
  498. MODEL_TENSOR.DEC_ATTN_V: (
  499. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  500. ),
  501. MODEL_TENSOR.DEC_ATTN_OUT: (
  502. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  503. ),
  504. MODEL_TENSOR.DEC_ATTN_REL_B: (
  505. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  506. ),
  507. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  508. "decoder.block.{bid}.layer.1.layer_norm", # t5
  509. ),
  510. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  511. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  512. ),
  513. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  514. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  515. ),
  516. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  517. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  518. ),
  519. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  520. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  521. ),
  522. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  523. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  524. ),
  525. MODEL_TENSOR.DEC_FFN_NORM: (
  526. "decoder.block.{bid}.layer.2.layer_norm", # t5
  527. ),
  528. MODEL_TENSOR.DEC_FFN_GATE: (
  529. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  530. ),
  531. MODEL_TENSOR.DEC_FFN_UP: (
  532. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  533. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  534. ),
  535. MODEL_TENSOR.DEC_FFN_DOWN: (
  536. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  537. ),
  538. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  539. "decoder.final_layer_norm", # t5
  540. ),
  541. MODEL_TENSOR.ENC_ATTN_NORM: (
  542. "encoder.block.{bid}.layer.0.layer_norm", # t5
  543. ),
  544. MODEL_TENSOR.ENC_ATTN_Q: (
  545. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  546. ),
  547. MODEL_TENSOR.ENC_ATTN_K: (
  548. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  549. ),
  550. MODEL_TENSOR.ENC_ATTN_V: (
  551. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  552. ),
  553. MODEL_TENSOR.ENC_ATTN_OUT: (
  554. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  555. ),
  556. MODEL_TENSOR.ENC_ATTN_REL_B: (
  557. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  558. ),
  559. MODEL_TENSOR.ENC_FFN_NORM: (
  560. "encoder.block.{bid}.layer.1.layer_norm", # t5
  561. ),
  562. MODEL_TENSOR.ENC_FFN_GATE: (
  563. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  564. ),
  565. MODEL_TENSOR.ENC_FFN_UP: (
  566. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  567. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  568. ),
  569. MODEL_TENSOR.ENC_FFN_DOWN: (
  570. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  571. ),
  572. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  573. "encoder.final_layer_norm", # t5
  574. ),
  575. }
  576. # architecture-specific block mappings
  577. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  578. MODEL_ARCH.ARCTIC: {
  579. MODEL_TENSOR.FFN_NORM: (
  580. "model.layers.{bid}.residual_layernorm",
  581. ),
  582. MODEL_TENSOR.FFN_NORM_EXP: (
  583. "model.layers.{bid}.post_attention_layernorm",
  584. ),
  585. },
  586. }
  587. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  588. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  589. self.mapping = {}
  590. for tensor, keys in self.mappings_cfg.items():
  591. if tensor not in MODEL_TENSORS[arch]:
  592. continue
  593. tensor_name = TENSOR_NAMES[tensor]
  594. self.mapping[tensor_name] = (tensor, tensor_name)
  595. for key in keys:
  596. self.mapping[key] = (tensor, tensor_name)
  597. if arch in self.arch_block_mappings_cfg:
  598. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  599. for bid in range(n_blocks):
  600. for tensor, keys in self.block_mappings_cfg.items():
  601. if tensor not in MODEL_TENSORS[arch]:
  602. continue
  603. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  604. self.mapping[tensor_name] = (tensor, tensor_name)
  605. for key in keys:
  606. key = key.format(bid = bid)
  607. self.mapping[key] = (tensor, tensor_name)
  608. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  609. result = self.mapping.get(key)
  610. if result is not None:
  611. return result
  612. for suffix in try_suffixes:
  613. if key.endswith(suffix):
  614. result = self.mapping.get(key[:-len(suffix)])
  615. if result is not None:
  616. return result[0], result[1] + suffix
  617. return None
  618. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  619. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  620. if result is None:
  621. return None
  622. return result[1]
  623. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  624. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  625. if result is None:
  626. return None
  627. return result[0]
  628. def __getitem__(self, key: str) -> str:
  629. try:
  630. return self.mapping[key][1]
  631. except KeyError:
  632. raise KeyError(key)
  633. def __contains__(self, key: str) -> bool:
  634. return key in self.mapping
  635. def __repr__(self) -> str:
  636. return repr(self.mapping)
  637. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  638. return TensorNameMap(arch, n_blocks)