server.cpp 142 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "json-schema-to-grammar.h"
  7. #include "llama.h"
  8. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  9. #define JSON_ASSERT GGML_ASSERT
  10. #include "json.hpp"
  11. // mime type for sending response
  12. #define MIMETYPE_JSON "application/json; charset=utf-8"
  13. // auto generated files (update with ./deps.sh)
  14. #include "colorthemes.css.hpp"
  15. #include "style.css.hpp"
  16. #include "theme-beeninorder.css.hpp"
  17. #include "theme-ketivah.css.hpp"
  18. #include "theme-mangotango.css.hpp"
  19. #include "theme-playground.css.hpp"
  20. #include "theme-polarnight.css.hpp"
  21. #include "theme-snowstorm.css.hpp"
  22. #include "index.html.hpp"
  23. #include "index-new.html.hpp"
  24. #include "index.js.hpp"
  25. #include "completion.js.hpp"
  26. #include "system-prompts.js.hpp"
  27. #include "prompt-formats.js.hpp"
  28. #include "json-schema-to-grammar.mjs.hpp"
  29. #include "loading.html.hpp"
  30. #include <atomic>
  31. #include <condition_variable>
  32. #include <cstddef>
  33. #include <cinttypes>
  34. #include <deque>
  35. #include <memory>
  36. #include <mutex>
  37. #include <signal.h>
  38. #include <thread>
  39. #include <unordered_map>
  40. #include <unordered_set>
  41. #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  42. #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  43. #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  44. #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  45. #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  46. #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  47. #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  48. #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  49. #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  50. #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  51. #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  52. #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  53. using json = nlohmann::ordered_json;
  54. enum stop_type {
  55. STOP_TYPE_FULL,
  56. STOP_TYPE_PARTIAL,
  57. };
  58. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  59. enum slot_state {
  60. SLOT_STATE_IDLE,
  61. SLOT_STATE_PROCESSING_PROMPT,
  62. SLOT_STATE_DONE_PROMPT,
  63. SLOT_STATE_GENERATING,
  64. };
  65. enum server_state {
  66. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  67. SERVER_STATE_READY, // Server is ready and model is loaded
  68. };
  69. enum server_task_type {
  70. SERVER_TASK_TYPE_COMPLETION,
  71. SERVER_TASK_TYPE_CANCEL,
  72. SERVER_TASK_TYPE_NEXT_RESPONSE,
  73. SERVER_TASK_TYPE_METRICS,
  74. SERVER_TASK_TYPE_SLOT_SAVE,
  75. SERVER_TASK_TYPE_SLOT_RESTORE,
  76. SERVER_TASK_TYPE_SLOT_ERASE,
  77. SERVER_TASK_TYPE_SET_LORA,
  78. };
  79. enum server_task_cmpl_type {
  80. SERVER_TASK_CMPL_TYPE_NORMAL,
  81. SERVER_TASK_CMPL_TYPE_EMBEDDING,
  82. SERVER_TASK_CMPL_TYPE_RERANK,
  83. SERVER_TASK_CMPL_TYPE_INFILL,
  84. };
  85. struct server_task {
  86. int id = -1; // to be filled by server_queue
  87. int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL
  88. server_task_type type;
  89. json data;
  90. server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
  91. // utility function
  92. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  93. std::unordered_set<int> ids(tasks.size());
  94. for (size_t i = 0; i < tasks.size(); i++) {
  95. ids.insert(tasks[i].id);
  96. }
  97. return ids;
  98. }
  99. };
  100. struct server_task_result {
  101. int id = -1;
  102. json data;
  103. bool stop;
  104. bool error;
  105. };
  106. struct slot_params {
  107. bool stream = true;
  108. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  109. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  110. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  111. int32_t n_predict = -1; // new tokens to predict
  112. int64_t t_max_prompt_ms = -1; // TODO: implement
  113. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  114. std::vector<std::string> antiprompt;
  115. json input_prefix;
  116. json input_suffix;
  117. json extra_context;
  118. };
  119. struct server_slot {
  120. int id;
  121. int id_task = -1;
  122. // the index relative to completion multi-task request
  123. size_t index = 0;
  124. struct slot_params params;
  125. slot_state state = SLOT_STATE_IDLE;
  126. // used to determine the slot that has been used the longest
  127. int64_t t_last_used = -1;
  128. // generation props
  129. int32_t n_ctx = 0; // context size per slot
  130. int32_t n_past = 0;
  131. int32_t n_decoded = 0;
  132. int32_t n_remaining = -1;
  133. int32_t i_batch = -1;
  134. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  135. int32_t n_prompt_tokens = 0;
  136. int32_t n_prompt_tokens_processed = 0;
  137. json prompt; // can be either a string, array of strings or array of token ids
  138. // when a task is submitted, we first tokenize the prompt and store it here
  139. std::vector<llama_token> prompt_tokens;
  140. std::vector<llama_token> extra_tokens;
  141. std::string generated_text;
  142. std::vector<llama_token> cache_tokens;
  143. std::vector<completion_token_output> generated_token_probs;
  144. server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
  145. bool has_next_token = true;
  146. bool has_new_line = false;
  147. bool truncated = false;
  148. bool stopped_eos = false;
  149. bool stopped_word = false;
  150. bool stopped_limit = false;
  151. bool oaicompat = false;
  152. std::string oaicompat_model;
  153. std::string stopping_word;
  154. // sampling
  155. json json_schema;
  156. struct common_sampler_params sparams;
  157. struct common_sampler * smpl = nullptr;
  158. llama_token sampled;
  159. // stats
  160. size_t n_sent_text = 0; // number of sent text character
  161. size_t n_sent_token_probs = 0;
  162. int64_t t_start_process_prompt;
  163. int64_t t_start_generation;
  164. double t_prompt_processing; // ms
  165. double t_token_generation; // ms
  166. std::function<void(int)> callback_on_release;
  167. void reset() {
  168. SLT_DBG(*this, "%s", "\n");
  169. n_prompt_tokens = 0;
  170. generated_text = "";
  171. has_new_line = false;
  172. truncated = false;
  173. stopped_eos = false;
  174. stopped_word = false;
  175. stopped_limit = false;
  176. stopping_word = "";
  177. n_past = 0;
  178. n_sent_text = 0;
  179. n_sent_token_probs = 0;
  180. cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
  181. generated_token_probs.clear();
  182. }
  183. bool has_budget(common_params &global_params) {
  184. if (params.n_predict == -1 && global_params.n_predict == -1) {
  185. return true; // limitless
  186. }
  187. n_remaining = -1;
  188. if (params.n_predict != -1) {
  189. n_remaining = params.n_predict - n_decoded;
  190. } else if (global_params.n_predict != -1) {
  191. n_remaining = global_params.n_predict - n_decoded;
  192. }
  193. return n_remaining > 0; // no budget
  194. }
  195. bool is_processing() const {
  196. return state != SLOT_STATE_IDLE;
  197. }
  198. void add_token(const completion_token_output & token) {
  199. if (!is_processing()) {
  200. SLT_WRN(*this, "%s", "slot is not processing\n");
  201. return;
  202. }
  203. generated_token_probs.push_back(token);
  204. }
  205. void release() {
  206. if (is_processing()) {
  207. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  208. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  209. state = SLOT_STATE_IDLE;
  210. callback_on_release(id);
  211. }
  212. }
  213. json get_formated_timings() const {
  214. return json {
  215. {"prompt_n", n_prompt_tokens_processed},
  216. {"prompt_ms", t_prompt_processing},
  217. {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
  218. {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
  219. {"predicted_n", n_decoded},
  220. {"predicted_ms", t_token_generation},
  221. {"predicted_per_token_ms", t_token_generation / n_decoded},
  222. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  223. };
  224. }
  225. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
  226. size_t stop_pos = std::string::npos;
  227. for (const std::string & word : params.antiprompt) {
  228. size_t pos;
  229. if (type == STOP_TYPE_FULL) {
  230. const size_t tmp = word.size() + last_token_size;
  231. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  232. pos = text.find(word, from_pos);
  233. } else {
  234. pos = find_partial_stop_string(word, text);
  235. }
  236. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  237. if (type == STOP_TYPE_FULL) {
  238. stopped_word = true;
  239. stopping_word = word;
  240. has_next_token = false;
  241. }
  242. stop_pos = pos;
  243. }
  244. }
  245. return stop_pos;
  246. }
  247. void print_timings() const {
  248. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  249. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  250. const double t_gen = t_token_generation / n_decoded;
  251. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  252. SLT_INF(*this,
  253. "\n"
  254. "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  255. "\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  256. "\r total time = %10.2f ms / %5d tokens\n",
  257. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  258. t_token_generation, n_decoded, t_gen, n_gen_second,
  259. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  260. }
  261. };
  262. struct server_metrics {
  263. int64_t t_start = 0;
  264. uint64_t n_prompt_tokens_processed_total = 0;
  265. uint64_t t_prompt_processing_total = 0;
  266. uint64_t n_tokens_predicted_total = 0;
  267. uint64_t t_tokens_generation_total = 0;
  268. uint64_t n_prompt_tokens_processed = 0;
  269. uint64_t t_prompt_processing = 0;
  270. uint64_t n_tokens_predicted = 0;
  271. uint64_t t_tokens_generation = 0;
  272. uint64_t n_decode_total = 0;
  273. uint64_t n_busy_slots_total = 0;
  274. void init() {
  275. t_start = ggml_time_us();
  276. }
  277. void on_prompt_eval(const server_slot & slot) {
  278. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  279. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  280. t_prompt_processing += slot.t_prompt_processing;
  281. t_prompt_processing_total += slot.t_prompt_processing;
  282. }
  283. void on_prediction(const server_slot & slot) {
  284. n_tokens_predicted_total += slot.n_decoded;
  285. n_tokens_predicted += slot.n_decoded;
  286. t_tokens_generation += slot.t_token_generation;
  287. t_tokens_generation_total += slot.t_token_generation;
  288. }
  289. void on_decoded(const std::vector<server_slot> & slots) {
  290. n_decode_total++;
  291. for (const auto & slot : slots) {
  292. if (slot.is_processing()) {
  293. n_busy_slots_total++;
  294. }
  295. }
  296. }
  297. void reset_bucket() {
  298. n_prompt_tokens_processed = 0;
  299. t_prompt_processing = 0;
  300. n_tokens_predicted = 0;
  301. t_tokens_generation = 0;
  302. }
  303. };
  304. struct server_queue {
  305. int id = 0;
  306. bool running;
  307. // queues
  308. std::deque<server_task> queue_tasks;
  309. std::deque<server_task> queue_tasks_deferred;
  310. std::mutex mutex_tasks;
  311. std::condition_variable condition_tasks;
  312. // callback functions
  313. std::function<void(server_task&)> callback_new_task;
  314. std::function<void(void)> callback_update_slots;
  315. // Add a new task to the end of the queue
  316. int post(server_task task, bool front = false) {
  317. std::unique_lock<std::mutex> lock(mutex_tasks);
  318. if (task.id == -1) {
  319. task.id = id++;
  320. }
  321. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  322. if (front) {
  323. queue_tasks.push_front(std::move(task));
  324. } else {
  325. queue_tasks.push_back(std::move(task));
  326. }
  327. condition_tasks.notify_one();
  328. return task.id;
  329. }
  330. // multi-task version of post()
  331. int post(std::vector<server_task> & tasks, bool front = false) {
  332. std::unique_lock<std::mutex> lock(mutex_tasks);
  333. for (auto & task : tasks) {
  334. if (task.id == -1) {
  335. task.id = id++;
  336. }
  337. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  338. if (front) {
  339. queue_tasks.push_front(std::move(task));
  340. } else {
  341. queue_tasks.push_back(std::move(task));
  342. }
  343. }
  344. condition_tasks.notify_one();
  345. return 0;
  346. }
  347. // Add a new task, but defer until one slot is available
  348. void defer(server_task task) {
  349. std::unique_lock<std::mutex> lock(mutex_tasks);
  350. QUE_DBG("defer task, id = %d\n", task.id);
  351. queue_tasks_deferred.push_back(std::move(task));
  352. condition_tasks.notify_one();
  353. }
  354. // Get the next id for creating a new task
  355. int get_new_id() {
  356. std::unique_lock<std::mutex> lock(mutex_tasks);
  357. int new_id = id++;
  358. return new_id;
  359. }
  360. // Register function to process a new task
  361. void on_new_task(std::function<void(server_task &)> callback) {
  362. callback_new_task = std::move(callback);
  363. }
  364. // Register the function to be called when all slots data is ready to be processed
  365. void on_update_slots(std::function<void(void)> callback) {
  366. callback_update_slots = std::move(callback);
  367. }
  368. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  369. void pop_deferred_task() {
  370. std::unique_lock<std::mutex> lock(mutex_tasks);
  371. if (!queue_tasks_deferred.empty()) {
  372. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  373. queue_tasks_deferred.pop_front();
  374. }
  375. condition_tasks.notify_one();
  376. }
  377. // end the start_loop routine
  378. void terminate() {
  379. std::unique_lock<std::mutex> lock(mutex_tasks);
  380. running = false;
  381. condition_tasks.notify_all();
  382. }
  383. /**
  384. * Main loop consists of these steps:
  385. * - Wait until a new task arrives
  386. * - Process the task (i.e. maybe copy data into slot)
  387. * - Check if multitask is finished
  388. * - Update all slots
  389. */
  390. void start_loop() {
  391. running = true;
  392. while (true) {
  393. QUE_DBG("%s", "processing new tasks\n");
  394. while (true) {
  395. std::unique_lock<std::mutex> lock(mutex_tasks);
  396. if (queue_tasks.empty()) {
  397. lock.unlock();
  398. break;
  399. }
  400. server_task task = queue_tasks.front();
  401. queue_tasks.pop_front();
  402. lock.unlock();
  403. QUE_DBG("processing task, id = %d\n", task.id);
  404. callback_new_task(task);
  405. }
  406. // all tasks in the current loop is processed, slots data is now ready
  407. QUE_DBG("%s", "update slots\n");
  408. callback_update_slots();
  409. QUE_DBG("%s", "waiting for new tasks\n");
  410. {
  411. std::unique_lock<std::mutex> lock(mutex_tasks);
  412. if (queue_tasks.empty()) {
  413. if (!running) {
  414. QUE_DBG("%s", "terminate\n");
  415. return;
  416. }
  417. condition_tasks.wait(lock, [&]{
  418. return (!queue_tasks.empty() || !running);
  419. });
  420. }
  421. }
  422. }
  423. }
  424. };
  425. struct server_response {
  426. // for keeping track of all tasks waiting for the result
  427. std::unordered_set<int> waiting_task_ids;
  428. // the main result queue
  429. std::vector<server_task_result> queue_results;
  430. std::mutex mutex_results;
  431. std::condition_variable condition_results;
  432. // add the id_task to the list of tasks waiting for response
  433. void add_waiting_task_id(int id_task) {
  434. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  435. std::unique_lock<std::mutex> lock(mutex_results);
  436. waiting_task_ids.insert(id_task);
  437. }
  438. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  439. std::unique_lock<std::mutex> lock(mutex_results);
  440. for (const auto & task : tasks) {
  441. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  442. waiting_task_ids.insert(task.id);
  443. }
  444. }
  445. // when the request is finished, we can remove task associated with it
  446. void remove_waiting_task_id(int id_task) {
  447. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  448. std::unique_lock<std::mutex> lock(mutex_results);
  449. waiting_task_ids.erase(id_task);
  450. }
  451. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  452. std::unique_lock<std::mutex> lock(mutex_results);
  453. for (const auto & id_task : id_tasks) {
  454. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  455. waiting_task_ids.erase(id_task);
  456. }
  457. }
  458. // This function blocks the thread until there is a response for one of the id_tasks
  459. server_task_result recv(const std::unordered_set<int> & id_tasks) {
  460. while (true) {
  461. std::unique_lock<std::mutex> lock(mutex_results);
  462. condition_results.wait(lock, [&]{
  463. return !queue_results.empty();
  464. });
  465. for (int i = 0; i < (int) queue_results.size(); i++) {
  466. if (id_tasks.find(queue_results[i].id) != id_tasks.end()) {
  467. server_task_result res = queue_results[i];
  468. queue_results.erase(queue_results.begin() + i);
  469. return res;
  470. }
  471. }
  472. }
  473. // should never reach here
  474. }
  475. // single-task version of recv()
  476. server_task_result recv(int id_task) {
  477. std::unordered_set<int> id_tasks = {id_task};
  478. return recv(id_tasks);
  479. }
  480. // Send a new result to a waiting id_task
  481. void send(server_task_result & result) {
  482. SRV_DBG("sending result for task id = %d\n", result.id);
  483. std::unique_lock<std::mutex> lock(mutex_results);
  484. for (const auto & id_task : waiting_task_ids) {
  485. if (result.id == id_task) {
  486. SRV_DBG("task id = %d moved to result queue\n", result.id);
  487. queue_results.push_back(std::move(result));
  488. condition_results.notify_all();
  489. return;
  490. }
  491. }
  492. }
  493. };
  494. struct server_context {
  495. llama_model * model = nullptr;
  496. llama_context * ctx = nullptr;
  497. std::vector<common_lora_adapter_container> loras;
  498. common_params params;
  499. llama_batch batch = {};
  500. bool clean_kv_cache = true;
  501. bool add_bos_token = true;
  502. bool has_eos_token = false;
  503. int32_t n_ctx; // total context for all clients / slots
  504. // slots / clients
  505. std::vector<server_slot> slots;
  506. json default_generation_settings_for_props;
  507. server_queue queue_tasks;
  508. server_response queue_results;
  509. server_metrics metrics;
  510. // Necessary similarity of prompt for slot selection
  511. float slot_prompt_similarity = 0.0f;
  512. ~server_context() {
  513. if (ctx) {
  514. llama_free(ctx);
  515. ctx = nullptr;
  516. }
  517. if (model) {
  518. llama_free_model(model);
  519. model = nullptr;
  520. }
  521. // Clear any sampling context
  522. for (server_slot & slot : slots) {
  523. if (slot.smpl != nullptr) {
  524. common_sampler_free(slot.smpl);
  525. }
  526. }
  527. llama_batch_free(batch);
  528. }
  529. bool load_model(const common_params & params_) {
  530. params = params_;
  531. // reserve one extra sequence (seq_id == 0) for extra features
  532. params.n_parallel += 1;
  533. common_init_result llama_init = common_init_from_params(params);
  534. model = llama_init.model;
  535. ctx = llama_init.context;
  536. loras = llama_init.lora_adapters;
  537. params.n_parallel -= 1; // but be sneaky about it
  538. if (model == nullptr) {
  539. SRV_ERR("failed to load model, '%s'\n", params.model.c_str());
  540. return false;
  541. }
  542. n_ctx = llama_n_ctx(ctx);
  543. add_bos_token = llama_add_bos_token(model);
  544. has_eos_token = !llama_add_eos_token(model);
  545. return true;
  546. }
  547. bool validate_model_chat_template() const {
  548. llama_chat_message chat[] = {{"user", "test"}};
  549. const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
  550. return res > 0;
  551. }
  552. void init() {
  553. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  554. SRV_INF("initializing slots, n_slots = %d\n", params.n_parallel);
  555. for (int i = 0; i < params.n_parallel; i++) {
  556. server_slot slot;
  557. slot.id = i;
  558. slot.n_ctx = n_ctx_slot;
  559. slot.n_predict = params.n_predict;
  560. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  561. slot.sparams = params.sparams;
  562. slot.callback_on_release = [this](int) {
  563. queue_tasks.pop_deferred_task();
  564. };
  565. slot.reset();
  566. slots.push_back(slot);
  567. }
  568. default_generation_settings_for_props = get_formated_generation(slots.front());
  569. default_generation_settings_for_props["seed"] = -1;
  570. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  571. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  572. {
  573. const int32_t n_batch = llama_n_batch(ctx);
  574. // only a single seq_id per token is needed
  575. batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
  576. }
  577. metrics.init();
  578. }
  579. std::vector<llama_token> tokenize(const json & json_prompt, bool add_special, bool parse_special) const {
  580. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  581. // or the first element of the json_prompt array is a string.
  582. std::vector<llama_token> prompt_tokens;
  583. if (json_prompt.is_array()) {
  584. bool first = true;
  585. for (const auto & p : json_prompt) {
  586. if (p.is_string()) {
  587. auto s = p.template get<std::string>();
  588. std::vector<llama_token> p;
  589. if (first) {
  590. p = common_tokenize(ctx, s, add_special, parse_special);
  591. first = false;
  592. } else {
  593. p = common_tokenize(ctx, s, false, parse_special);
  594. }
  595. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  596. } else {
  597. if (first) {
  598. first = false;
  599. }
  600. prompt_tokens.push_back(p.template get<llama_token>());
  601. }
  602. }
  603. } else {
  604. auto s = json_prompt.template get<std::string>();
  605. prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
  606. }
  607. return prompt_tokens;
  608. }
  609. server_slot * get_slot_by_id(int id) {
  610. for (server_slot & slot : slots) {
  611. if (slot.id == id) {
  612. return &slot;
  613. }
  614. }
  615. return nullptr;
  616. }
  617. server_slot * get_available_slot(const std::string & prompt) {
  618. server_slot * ret = nullptr;
  619. // find the slot that has at least n% prompt similarity
  620. if (ret == nullptr && slot_prompt_similarity != 0.0f && !prompt.empty()) {
  621. int max_lcp_len = 0;
  622. float similarity = 0;
  623. for (server_slot & slot : slots) {
  624. // skip the slot if it is not available
  625. if (slot.is_processing()) {
  626. continue;
  627. }
  628. // skip the slot if it does not contains prompt
  629. if (!slot.prompt.is_string()) {
  630. continue;
  631. }
  632. // current slot's prompt
  633. std::string slot_prompt = slot.prompt.get<std::string>();
  634. // length of the current slot's prompt
  635. int slot_prompt_len = slot_prompt.size();
  636. // length of the Longest Common Prefix between the current slot's prompt and the input prompt
  637. int lcp_len = longest_common_prefix(slot_prompt, prompt);
  638. // fraction of the common substring length compared to the current slot's prompt length
  639. similarity = static_cast<float>(lcp_len) / slot_prompt_len;
  640. // select the current slot if the criteria match
  641. if (lcp_len > max_lcp_len && similarity > slot_prompt_similarity) {
  642. max_lcp_len = lcp_len;
  643. ret = &slot;
  644. }
  645. }
  646. if (ret != nullptr) {
  647. SLT_DBG(*ret, "selected slot by lcp similarity, max_lcp_len = %d, similarity = %f\n", max_lcp_len, similarity);
  648. }
  649. }
  650. // find the slot that has been least recently used
  651. if (ret == nullptr) {
  652. int64_t t_last = ggml_time_us();
  653. for (server_slot & slot : slots) {
  654. // skip the slot if it is not available
  655. if (slot.is_processing()) {
  656. continue;
  657. }
  658. // select the current slot if the criteria match
  659. if (slot.t_last_used < t_last) {
  660. t_last = slot.t_last_used;
  661. ret = &slot;
  662. }
  663. }
  664. if (ret != nullptr) {
  665. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  666. }
  667. }
  668. return ret;
  669. }
  670. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  671. slot_params default_params;
  672. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  673. auto default_sparams = params.sparams;
  674. const auto & data = task.data;
  675. if (data.count("__oaicompat") != 0) {
  676. slot.oaicompat = true;
  677. slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  678. } else {
  679. slot.oaicompat = false;
  680. slot.oaicompat_model = "";
  681. }
  682. slot.params.stream = json_value(data, "stream", false);
  683. slot.params.cache_prompt = json_value(data, "cache_prompt", false);
  684. slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
  685. slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  686. slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  687. slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  688. slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  689. slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
  690. slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
  691. slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  692. slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  693. slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  694. slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  695. slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  696. slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  697. slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  698. slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  699. slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  700. slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  701. slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
  702. slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
  703. slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
  704. slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  705. slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
  706. //slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", default_params.t_max_prompt_ms); // TODO: implement
  707. slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", default_params.t_max_predict_ms);
  708. // process "json_schema" and "grammar"
  709. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  710. send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
  711. return false;
  712. }
  713. if (data.contains("json_schema") && !data.contains("grammar")) {
  714. try {
  715. auto schema = json_value(data, "json_schema", json::object());
  716. slot.sparams.grammar = json_schema_to_grammar(schema);
  717. } catch (const std::exception & e) {
  718. send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
  719. return false;
  720. }
  721. } else {
  722. slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  723. }
  724. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  725. // Might be better to reject the request with a 400 ?
  726. slot.params.n_predict = slot.n_predict;
  727. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  728. }
  729. // infill
  730. slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
  731. slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
  732. slot.params.extra_context = json_value(data, "extra_context", default_params.extra_context);
  733. SLT_DBG(slot, "extra_context chunks: %d\n", (int) slot.params.extra_context.size());
  734. for (const auto & chunk : slot.params.extra_context) {
  735. // { "text": string, "filename": string }
  736. if (!chunk.contains("text") || !chunk["text"].is_string()) {
  737. send_error(task, "extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST);
  738. return false;
  739. }
  740. // filename is optional
  741. if (chunk.contains("filename") && !chunk["filename"].is_string()) {
  742. send_error(task, "extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST);
  743. return false;
  744. }
  745. SLT_DBG(slot, "extra_context chunk in file '%s':\n%s\n", chunk.value("filename", "").c_str(), chunk.value("text", "").c_str());
  746. }
  747. // get prompt
  748. if (task.cmpl_type != SERVER_TASK_CMPL_TYPE_INFILL) {
  749. const auto & prompt = data.find("prompt");
  750. if (prompt == data.end()) {
  751. send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
  752. return false;
  753. }
  754. if ((prompt->is_string()) ||
  755. (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_string()) ||
  756. (prompt->is_array() && !prompt->empty() && prompt->at(0).is_number_integer())) {
  757. slot.prompt = *prompt;
  758. } else if (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_array()) {
  759. slot.prompt = prompt->at(0);
  760. } else if (prompt->is_array() && prompt->size() > 1) {
  761. // array of strings
  762. for (const auto & el : *prompt) {
  763. if (!el.is_string()) {
  764. send_error(task, "\"prompt\" must be a string, an array of strings or an array of integers", ERROR_TYPE_INVALID_REQUEST);
  765. return false;
  766. }
  767. }
  768. slot.prompt = *prompt;
  769. } else {
  770. send_error(task, "\"prompt\" must be a string, an array of strings or an array of integers", ERROR_TYPE_INVALID_REQUEST);
  771. return false;
  772. }
  773. }
  774. {
  775. slot.sparams.logit_bias.clear();
  776. if (json_value(data, "ignore_eos", false) && has_eos_token) {
  777. slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  778. }
  779. const auto & logit_bias = data.find("logit_bias");
  780. if (logit_bias != data.end() && logit_bias->is_array()) {
  781. const int n_vocab = llama_n_vocab(model);
  782. for (const auto & el : *logit_bias) {
  783. // TODO: we may want to throw errors here, in case "el" is incorrect
  784. if (el.is_array() && el.size() == 2) {
  785. float bias;
  786. if (el[1].is_number()) {
  787. bias = el[1].get<float>();
  788. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  789. bias = -INFINITY;
  790. } else {
  791. continue;
  792. }
  793. if (el[0].is_number_integer()) {
  794. llama_token tok = el[0].get<llama_token>();
  795. if (tok >= 0 && tok < n_vocab) {
  796. slot.sparams.logit_bias.push_back({tok, bias});
  797. }
  798. } else if (el[0].is_string()) {
  799. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  800. for (auto tok : toks) {
  801. slot.sparams.logit_bias.push_back({tok, bias});
  802. }
  803. }
  804. }
  805. }
  806. }
  807. }
  808. {
  809. slot.params.antiprompt.clear();
  810. const auto & stop = data.find("stop");
  811. if (stop != data.end() && stop->is_array()) {
  812. for (const auto & word : *stop) {
  813. if (!word.empty()) {
  814. slot.params.antiprompt.push_back(word);
  815. }
  816. }
  817. }
  818. }
  819. {
  820. const auto & samplers = data.find("samplers");
  821. if (samplers != data.end() && samplers->is_array()) {
  822. std::vector<std::string> sampler_names;
  823. for (const auto & name : *samplers) {
  824. if (name.is_string()) {
  825. sampler_names.emplace_back(name);
  826. }
  827. }
  828. slot.sparams.samplers = common_sampler_types_from_names(sampler_names, false);
  829. } else {
  830. slot.sparams.samplers = default_sparams.samplers;
  831. }
  832. }
  833. {
  834. if (slot.smpl != nullptr) {
  835. common_sampler_free(slot.smpl);
  836. }
  837. slot.smpl = common_sampler_init(model, slot.sparams);
  838. if (slot.smpl == nullptr) {
  839. // for now, the only error that may happen here is invalid grammar
  840. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  841. return false;
  842. }
  843. }
  844. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  845. slot.prompt_tokens.clear();
  846. SLT_INF(slot, "%s", "processing task\n");
  847. return true;
  848. }
  849. void kv_cache_clear() {
  850. SRV_DBG("%s", "clearing KV cache\n");
  851. // clear the entire KV cache
  852. llama_kv_cache_clear(ctx);
  853. clean_kv_cache = false;
  854. }
  855. bool process_token(completion_token_output & result, server_slot & slot) {
  856. // remember which tokens were sampled - used for repetition penalties during sampling
  857. const std::string token_str = common_token_to_piece(ctx, result.tok, params.special);
  858. slot.sampled = result.tok;
  859. // search stop word and delete it
  860. slot.generated_text += token_str;
  861. slot.has_next_token = true;
  862. // check if there is incomplete UTF-8 character at the end
  863. bool incomplete = false;
  864. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  865. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  866. if ((c & 0xC0) == 0x80) {
  867. // continuation byte: 10xxxxxx
  868. continue;
  869. }
  870. if ((c & 0xE0) == 0xC0) {
  871. // 2-byte character: 110xxxxx ...
  872. incomplete = i < 2;
  873. } else if ((c & 0xF0) == 0xE0) {
  874. // 3-byte character: 1110xxxx ...
  875. incomplete = i < 3;
  876. } else if ((c & 0xF8) == 0xF0) {
  877. // 4-byte character: 11110xxx ...
  878. incomplete = i < 4;
  879. }
  880. // else 1-byte character or invalid byte
  881. break;
  882. }
  883. if (!incomplete) {
  884. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  885. const std::string str_test = slot.generated_text.substr(pos);
  886. bool is_stop_full = false;
  887. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
  888. if (stop_pos != std::string::npos) {
  889. is_stop_full = true;
  890. slot.generated_text.erase(
  891. slot.generated_text.begin() + pos + stop_pos,
  892. slot.generated_text.end());
  893. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  894. } else {
  895. is_stop_full = false;
  896. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
  897. }
  898. // check if there is any token to predict
  899. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
  900. // no send the stop word in the response
  901. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  902. slot.n_sent_text += result.text_to_send.size();
  903. // add the token to slot queue and cache
  904. }
  905. slot.add_token(result);
  906. if (slot.params.stream) {
  907. send_partial_response(slot, result);
  908. }
  909. }
  910. if (incomplete) {
  911. slot.has_next_token = true;
  912. }
  913. // check the limits
  914. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
  915. slot.stopped_limit = true;
  916. slot.has_next_token = false;
  917. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  918. }
  919. // if we have already seen a new line, we stop after a certain time limit
  920. if (slot.has_new_line && slot.params.t_max_predict_ms > 0 &&
  921. (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  922. slot.stopped_limit = true;
  923. slot.has_next_token = false;
  924. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  925. }
  926. // check if there is a new line in the generated text
  927. if (result.text_to_send.find('\n') != std::string::npos) {
  928. slot.has_new_line = true;
  929. }
  930. // if context shift is disabled, we stop when it reaches the context limit
  931. if (slot.n_past >= slot.n_ctx) {
  932. slot.truncated = true;
  933. slot.stopped_limit = true;
  934. slot.has_next_token = false;
  935. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  936. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  937. }
  938. if (llama_token_is_eog(model, result.tok)) {
  939. slot.stopped_eos = true;
  940. slot.has_next_token = false;
  941. SLT_DBG(slot, "%s", "stopped by EOS\n");
  942. }
  943. const auto n_ctx_train = llama_n_ctx_train(model);
  944. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  945. slot.truncated = true;
  946. slot.stopped_limit = true;
  947. slot.has_next_token = false; // stop prediction
  948. SLT_WRN(slot,
  949. "n_predict (%d) is set for infinite generation. "
  950. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  951. slot.params.n_predict, n_ctx_train);
  952. }
  953. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  954. return slot.has_next_token; // continue
  955. }
  956. json get_formated_generation(const server_slot & slot) const {
  957. std::vector<std::string> samplers;
  958. samplers.reserve(slot.sparams.samplers.size());
  959. for (const auto & sampler : slot.sparams.samplers) {
  960. samplers.emplace_back(common_sampler_type_to_str(sampler));
  961. }
  962. return json {
  963. {"n_ctx", slot.n_ctx},
  964. {"n_predict", slot.n_predict}, // Server configured n_predict
  965. {"model", params.model_alias},
  966. {"seed", slot.sparams.seed},
  967. {"seed_cur", slot.smpl ? common_sampler_get_seed(slot.smpl) : 0},
  968. {"temperature", slot.sparams.temp},
  969. {"dynatemp_range", slot.sparams.dynatemp_range},
  970. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  971. {"top_k", slot.sparams.top_k},
  972. {"top_p", slot.sparams.top_p},
  973. {"min_p", slot.sparams.min_p},
  974. {"tfs_z", slot.sparams.tfs_z},
  975. {"typical_p", slot.sparams.typ_p},
  976. {"repeat_last_n", slot.sparams.penalty_last_n},
  977. {"repeat_penalty", slot.sparams.penalty_repeat},
  978. {"presence_penalty", slot.sparams.penalty_present},
  979. {"frequency_penalty", slot.sparams.penalty_freq},
  980. {"mirostat", slot.sparams.mirostat},
  981. {"mirostat_tau", slot.sparams.mirostat_tau},
  982. {"mirostat_eta", slot.sparams.mirostat_eta},
  983. {"penalize_nl", slot.sparams.penalize_nl},
  984. {"stop", slot.params.antiprompt},
  985. {"max_tokens", slot.params.n_predict}, // User configured n_predict
  986. {"n_keep", slot.params.n_keep},
  987. {"n_discard", slot.params.n_discard},
  988. {"ignore_eos", slot.sparams.ignore_eos},
  989. {"stream", slot.params.stream},
  990. //{"logit_bias", slot.sparams.logit_bias},
  991. {"n_probs", slot.sparams.n_probs},
  992. {"min_keep", slot.sparams.min_keep},
  993. {"grammar", slot.sparams.grammar},
  994. {"samplers", samplers},
  995. };
  996. }
  997. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  998. send_error(task.id, error, type);
  999. }
  1000. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1001. send_error(slot.id_task, error, type);
  1002. }
  1003. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1004. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1005. server_task_result res;
  1006. res.id = id_task;
  1007. res.stop = false;
  1008. res.error = true;
  1009. res.data = format_error_response(error, type);
  1010. queue_results.send(res);
  1011. }
  1012. void send_partial_response(server_slot & slot, completion_token_output tkn) {
  1013. server_task_result res;
  1014. res.id = slot.id_task;
  1015. res.error = false;
  1016. res.stop = false;
  1017. res.data = json {
  1018. {"content", tkn.text_to_send},
  1019. {"stop", false},
  1020. {"id_slot", slot.id},
  1021. {"multimodal", false},
  1022. {"index", slot.index},
  1023. };
  1024. if (slot.sparams.n_probs > 0) {
  1025. const std::vector<llama_token> to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
  1026. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  1027. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  1028. std::vector<completion_token_output> probs_output;
  1029. if (probs_pos < probs_stop_pos) {
  1030. probs_output = std::vector<completion_token_output>(
  1031. slot.generated_token_probs.begin() + probs_pos,
  1032. slot.generated_token_probs.begin() + probs_stop_pos);
  1033. }
  1034. slot.n_sent_token_probs = probs_stop_pos;
  1035. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  1036. }
  1037. if (slot.oaicompat) {
  1038. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1039. res.data["model"] = slot.oaicompat_model;
  1040. }
  1041. queue_results.send(res);
  1042. }
  1043. void send_final_response(const server_slot & slot) {
  1044. server_task_result res;
  1045. res.id = slot.id_task;
  1046. res.error = false;
  1047. res.stop = true;
  1048. res.data = json {
  1049. {"content", !slot.params.stream ? slot.generated_text : ""},
  1050. {"id_slot", slot.id},
  1051. {"stop", true},
  1052. {"model", params.model_alias},
  1053. {"tokens_predicted", slot.n_decoded},
  1054. {"tokens_evaluated", slot.n_prompt_tokens},
  1055. {"generation_settings", get_formated_generation(slot)},
  1056. {"prompt", slot.prompt},
  1057. {"has_new_line", slot.has_new_line},
  1058. {"truncated", slot.truncated},
  1059. {"stopped_eos", slot.stopped_eos},
  1060. {"stopped_word", slot.stopped_word},
  1061. {"stopped_limit", slot.stopped_limit},
  1062. {"stopping_word", slot.stopping_word},
  1063. {"tokens_cached", slot.n_past},
  1064. {"timings", slot.get_formated_timings()},
  1065. {"index", slot.index},
  1066. };
  1067. if (slot.sparams.n_probs > 0) {
  1068. std::vector<completion_token_output> probs;
  1069. if (!slot.params.stream && slot.stopped_word) {
  1070. const std::vector<llama_token> stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1071. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1072. probs = std::vector<completion_token_output>(
  1073. slot.generated_token_probs.begin(),
  1074. slot.generated_token_probs.end() - safe_offset);
  1075. } else {
  1076. probs = std::vector<completion_token_output>(
  1077. slot.generated_token_probs.begin(),
  1078. slot.generated_token_probs.end());
  1079. }
  1080. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1081. }
  1082. if (slot.oaicompat) {
  1083. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1084. res.data["model"] = slot.oaicompat_model;
  1085. }
  1086. queue_results.send(res);
  1087. }
  1088. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1089. server_task_result res;
  1090. res.id = slot.id_task;
  1091. res.error = false;
  1092. res.stop = true;
  1093. const int n_embd = llama_n_embd(model);
  1094. std::vector<float> embd_res(n_embd, 0.0f);
  1095. for (int i = 0; i < batch.n_tokens; ++i) {
  1096. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
  1097. continue;
  1098. }
  1099. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1100. if (embd == NULL) {
  1101. embd = llama_get_embeddings_ith(ctx, i);
  1102. }
  1103. if (embd == NULL) {
  1104. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1105. res.data = json {
  1106. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1107. {"index", slot.index},
  1108. };
  1109. continue;
  1110. }
  1111. common_embd_normalize(embd, embd_res.data(), n_embd);
  1112. res.data = json {
  1113. {"embedding", embd_res},
  1114. {"index", slot.index},
  1115. };
  1116. }
  1117. SLT_DBG(slot, "%s", "sending embeddings\n");
  1118. queue_results.send(res);
  1119. }
  1120. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1121. server_task_result res;
  1122. res.id = slot.id_task;
  1123. res.error = false;
  1124. res.stop = true;
  1125. for (int i = 0; i < batch.n_tokens; ++i) {
  1126. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
  1127. continue;
  1128. }
  1129. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1130. if (embd == NULL) {
  1131. embd = llama_get_embeddings_ith(ctx, i);
  1132. }
  1133. if (embd == NULL) {
  1134. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1135. res.data = json {
  1136. {"index", slot.index},
  1137. {"score", -1e6},
  1138. };
  1139. continue;
  1140. }
  1141. res.data = json {
  1142. {"index", slot.index},
  1143. {"score", embd[0]},
  1144. };
  1145. }
  1146. SLT_DBG(slot, "sending rerank result, res = '%s'\n", res.data.dump().c_str());
  1147. queue_results.send(res);
  1148. }
  1149. //
  1150. // Functions to create new task(s) and receive result(s)
  1151. //
  1152. std::vector<server_task> create_tasks_cmpl(json data, server_task_cmpl_type cmpl_type) {
  1153. std::vector<server_task> tasks;
  1154. auto create_task = [&](json & task_data, bool replace_prompt, json prompt) {
  1155. server_task task;
  1156. task.id = queue_tasks.get_new_id();
  1157. task.cmpl_type = cmpl_type;
  1158. task.type = SERVER_TASK_TYPE_COMPLETION;
  1159. if (replace_prompt) {
  1160. task.data = task_data;
  1161. task.data["prompt"] = std::move(prompt);
  1162. } else {
  1163. task.data = std::move(task_data);
  1164. }
  1165. tasks.push_back(std::move(task));
  1166. };
  1167. static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts";
  1168. if (!data.contains("prompt")) {
  1169. throw std::runtime_error(error_msg);
  1170. }
  1171. json prompt = data.at("prompt");
  1172. // if the prompt is a singleton (i.e. a string or a list of tokens), we only need to create single task
  1173. if (prompt.is_string() || json_is_array_of_numbers(prompt)) {
  1174. data["index"] = 0;
  1175. create_task(data, false, nullptr);
  1176. } else if (prompt.is_array()) {
  1177. // otherwise, it's a multiple-prompt task, we break it into smaller tasks
  1178. std::vector<json> prompts = prompt;
  1179. if (cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1180. // prompts[0] is the question
  1181. // the rest are the answers/documents
  1182. SRV_DBG("creating rerank tasks, n_prompts = %d\n", (int) prompts.size() - 1);
  1183. for (size_t i = 1; i < prompts.size(); i++) {
  1184. json qd;
  1185. qd.push_back(prompts[0]);
  1186. qd.push_back(prompts[i]);
  1187. data["index"] = i - 1;
  1188. create_task(data, true, qd);
  1189. }
  1190. } else {
  1191. SRV_DBG("creating multi-prompt tasks, n_prompts = %d\n", (int) prompts.size());
  1192. for (size_t i = 0; i < prompts.size(); i++) {
  1193. const auto & e = prompts[i];
  1194. if (e.is_string() || json_is_array_of_numbers(e)) {
  1195. data["index"] = i;
  1196. create_task(data, true, e);
  1197. } else {
  1198. throw std::runtime_error(error_msg);
  1199. }
  1200. }
  1201. }
  1202. } else {
  1203. // invalid case
  1204. throw std::runtime_error(error_msg);
  1205. }
  1206. return tasks;
  1207. }
  1208. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1209. std::vector<server_task> cancel_tasks;
  1210. cancel_tasks.reserve(id_tasks.size());
  1211. for (const auto & id_task : id_tasks) {
  1212. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1213. server_task task;
  1214. task.type = SERVER_TASK_TYPE_CANCEL;
  1215. task.id_target = id_task;
  1216. cancel_tasks.push_back(task);
  1217. queue_results.remove_waiting_task_id(id_task);
  1218. }
  1219. // push to beginning of the queue, so it has highest priority
  1220. queue_tasks.post(cancel_tasks, true);
  1221. }
  1222. // receive the results from task(s) created by create_tasks_cmpl
  1223. void receive_cmpl_results(
  1224. const std::unordered_set<int> & id_tasks,
  1225. const std::function<void(std::vector<server_task_result>&)> & result_handler,
  1226. const std::function<void(json)> & error_handler) {
  1227. // TODO: currently, there is no way to detect the client has cancelled the request
  1228. std::vector<server_task_result> results(id_tasks.size());
  1229. for (size_t i = 0; i < id_tasks.size(); i++) {
  1230. server_task_result result = queue_results.recv(id_tasks);
  1231. if (result.error) {
  1232. error_handler(result.data);
  1233. cancel_tasks(id_tasks);
  1234. return;
  1235. }
  1236. const size_t idx = result.data["index"];
  1237. GGML_ASSERT(idx < results.size() && "index out of range");
  1238. results[idx] = result;
  1239. }
  1240. result_handler(results);
  1241. }
  1242. // receive the results from task(s) created by create_tasks_cmpl, in stream mode
  1243. void receive_cmpl_results_stream(
  1244. const std::unordered_set<int> & id_tasks, const
  1245. std::function<bool(server_task_result&)> & result_handler, const
  1246. std::function<void(json)> & error_handler) {
  1247. size_t n_finished = 0;
  1248. while (true) {
  1249. server_task_result result = queue_results.recv(id_tasks);
  1250. if (!result_handler(result)) {
  1251. cancel_tasks(id_tasks);
  1252. break;
  1253. }
  1254. if (result.error) {
  1255. error_handler(result.data);
  1256. cancel_tasks(id_tasks);
  1257. break;
  1258. }
  1259. if (result.stop) {
  1260. if (++n_finished == id_tasks.size()) {
  1261. break;
  1262. }
  1263. }
  1264. }
  1265. }
  1266. //
  1267. // Functions to process the task
  1268. //
  1269. void process_single_task(const server_task & task) {
  1270. switch (task.type) {
  1271. case SERVER_TASK_TYPE_COMPLETION:
  1272. {
  1273. const int id_slot = json_value(task.data, "id_slot", -1);
  1274. server_slot * slot;
  1275. if (id_slot != -1) {
  1276. slot = get_slot_by_id(id_slot);
  1277. } else {
  1278. std::string prompt;
  1279. if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
  1280. prompt = json_value(task.data, "prompt", std::string());
  1281. }
  1282. slot = get_available_slot(prompt);
  1283. }
  1284. if (slot == nullptr) {
  1285. // if no slot is available, we defer this task for processing later
  1286. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1287. queue_tasks.defer(task);
  1288. break;
  1289. }
  1290. if (slot->is_processing()) {
  1291. // if requested slot is unavailable, we defer this task for processing later
  1292. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1293. queue_tasks.defer(task);
  1294. break;
  1295. }
  1296. slot->reset();
  1297. slot->id_task = task.id;
  1298. slot->cmpl_type = task.cmpl_type;
  1299. slot->index = json_value(task.data, "index", 0);
  1300. if (!launch_slot_with_task(*slot, task)) {
  1301. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1302. break;
  1303. }
  1304. } break;
  1305. case SERVER_TASK_TYPE_CANCEL:
  1306. {
  1307. // release slot linked with the task id
  1308. for (auto & slot : slots) {
  1309. if (slot.id_task == task.id_target) {
  1310. slot.release();
  1311. break;
  1312. }
  1313. }
  1314. } break;
  1315. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1316. {
  1317. // do nothing
  1318. } break;
  1319. case SERVER_TASK_TYPE_METRICS:
  1320. {
  1321. json slots_data = json::array();
  1322. int n_idle_slots = 0;
  1323. int n_processing_slots = 0;
  1324. for (server_slot & slot : slots) {
  1325. json slot_data = get_formated_generation(slot);
  1326. slot_data["id"] = slot.id;
  1327. slot_data["id_task"] = slot.id_task;
  1328. slot_data["state"] = slot.state;
  1329. slot_data["prompt"] = slot.prompt;
  1330. slot_data["next_token"] = {
  1331. {"has_next_token", slot.has_next_token},
  1332. {"has_new_line", slot.has_new_line},
  1333. {"n_remain", slot.n_remaining},
  1334. {"n_decoded", slot.n_decoded},
  1335. {"stopped_eos", slot.stopped_eos},
  1336. {"stopped_word", slot.stopped_word},
  1337. {"stopped_limit", slot.stopped_limit},
  1338. {"stopping_word", slot.stopping_word},
  1339. };
  1340. if (slot_data["state"] == SLOT_STATE_IDLE) {
  1341. n_idle_slots++;
  1342. } else {
  1343. n_processing_slots++;
  1344. }
  1345. slots_data.push_back(slot_data);
  1346. }
  1347. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1348. server_task_result res;
  1349. res.id = task.id;
  1350. res.stop = true;
  1351. res.error = false;
  1352. res.data = {
  1353. { "idle", n_idle_slots },
  1354. { "processing", n_processing_slots },
  1355. { "deferred", queue_tasks.queue_tasks_deferred.size() },
  1356. { "t_start", metrics.t_start},
  1357. { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
  1358. { "t_tokens_generation_total", metrics.t_tokens_generation_total},
  1359. { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
  1360. { "t_prompt_processing_total", metrics.t_prompt_processing_total},
  1361. { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
  1362. { "t_prompt_processing", metrics.t_prompt_processing},
  1363. { "n_tokens_predicted", metrics.n_tokens_predicted},
  1364. { "t_tokens_generation", metrics.t_tokens_generation},
  1365. { "n_decode_total", metrics.n_decode_total},
  1366. { "n_busy_slots_total", metrics.n_busy_slots_total},
  1367. { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
  1368. { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
  1369. { "slots", slots_data },
  1370. };
  1371. if (json_value(task.data, "reset_bucket", false)) {
  1372. metrics.reset_bucket();
  1373. }
  1374. queue_results.send(res);
  1375. } break;
  1376. case SERVER_TASK_TYPE_SLOT_SAVE:
  1377. {
  1378. int id_slot = task.data.at("id_slot");
  1379. server_slot * slot = get_slot_by_id(id_slot);
  1380. if (slot == nullptr) {
  1381. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1382. break;
  1383. }
  1384. if (slot->is_processing()) {
  1385. // if requested slot is unavailable, we defer this task for processing later
  1386. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1387. queue_tasks.defer(task);
  1388. break;
  1389. }
  1390. const size_t token_count = slot->cache_tokens.size();
  1391. const int64_t t_start = ggml_time_us();
  1392. std::string filename = task.data.at("filename");
  1393. std::string filepath = task.data.at("filepath");
  1394. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
  1395. const int64_t t_end = ggml_time_us();
  1396. const double t_save_ms = (t_end - t_start) / 1000.0;
  1397. server_task_result result;
  1398. result.id = task.id;
  1399. result.stop = true;
  1400. result.error = false;
  1401. result.data = json {
  1402. { "id_slot", id_slot },
  1403. { "filename", filename },
  1404. { "n_saved", token_count }, // tokens saved
  1405. { "n_written", nwrite }, // bytes written
  1406. { "timings", {
  1407. { "save_ms", t_save_ms }
  1408. } }
  1409. };
  1410. queue_results.send(result);
  1411. } break;
  1412. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1413. {
  1414. int id_slot = task.data.at("id_slot");
  1415. server_slot * slot = get_slot_by_id(id_slot);
  1416. if (slot == nullptr) {
  1417. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1418. break;
  1419. }
  1420. if (slot->is_processing()) {
  1421. // if requested slot is unavailable, we defer this task for processing later
  1422. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1423. queue_tasks.defer(task);
  1424. break;
  1425. }
  1426. const int64_t t_start = ggml_time_us();
  1427. std::string filename = task.data.at("filename");
  1428. std::string filepath = task.data.at("filepath");
  1429. slot->cache_tokens.resize(slot->n_ctx);
  1430. size_t token_count = 0;
  1431. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1432. if (nread == 0) {
  1433. slot->cache_tokens.resize(0);
  1434. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1435. break;
  1436. }
  1437. slot->cache_tokens.resize(token_count);
  1438. // TODO: maybe detokenize the slot->cache_tokens instead?
  1439. slot->prompt = string_format("[restored %d tokens from file]", (int) token_count);
  1440. const int64_t t_end = ggml_time_us();
  1441. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1442. server_task_result result;
  1443. result.id = task.id;
  1444. result.stop = true;
  1445. result.error = false;
  1446. result.data = json {
  1447. { "id_slot", id_slot },
  1448. { "filename", filename },
  1449. { "n_restored", token_count }, // tokens restored
  1450. { "n_read", nread }, // bytes read
  1451. { "timings", {
  1452. { "restore_ms", t_restore_ms }
  1453. } }
  1454. };
  1455. queue_results.send(result);
  1456. } break;
  1457. case SERVER_TASK_TYPE_SLOT_ERASE:
  1458. {
  1459. int id_slot = task.data.at("id_slot");
  1460. server_slot * slot = get_slot_by_id(id_slot);
  1461. if (slot == nullptr) {
  1462. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1463. break;
  1464. }
  1465. if (slot->is_processing()) {
  1466. // if requested slot is unavailable, we defer this task for processing later
  1467. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1468. queue_tasks.defer(task);
  1469. break;
  1470. }
  1471. // Erase token cache
  1472. const size_t n_erased = slot->cache_tokens.size();
  1473. llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
  1474. slot->cache_tokens.clear();
  1475. server_task_result result;
  1476. result.id = task.id;
  1477. result.stop = true;
  1478. result.error = false;
  1479. result.data = json {
  1480. { "id_slot", id_slot },
  1481. { "n_erased", n_erased }
  1482. };
  1483. queue_results.send(result);
  1484. } break;
  1485. case SERVER_TASK_TYPE_SET_LORA:
  1486. {
  1487. common_lora_adapters_apply(ctx, loras);
  1488. server_task_result result;
  1489. result.id = task.id;
  1490. result.stop = true;
  1491. result.error = false;
  1492. result.data = json{{ "success", true }};
  1493. queue_results.send(result);
  1494. } break;
  1495. }
  1496. }
  1497. void update_slots() {
  1498. // check if all slots are idle
  1499. {
  1500. bool all_idle = true;
  1501. for (auto & slot : slots) {
  1502. if (slot.is_processing()) {
  1503. all_idle = false;
  1504. break;
  1505. }
  1506. }
  1507. if (all_idle) {
  1508. SRV_INF("%s", "all slots are idle\n");
  1509. if (clean_kv_cache) {
  1510. kv_cache_clear();
  1511. }
  1512. return;
  1513. }
  1514. }
  1515. {
  1516. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1517. server_task task;
  1518. task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
  1519. task.id_target = -1;
  1520. queue_tasks.post(task);
  1521. }
  1522. // apply context-shift if needed
  1523. // TODO: simplify and improve
  1524. for (server_slot & slot : slots) {
  1525. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  1526. if (!params.ctx_shift) {
  1527. // this check is redundant (for good)
  1528. // we should never get here, because generation should already stopped in process_token()
  1529. slot.release();
  1530. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  1531. continue;
  1532. }
  1533. // Shift context
  1534. const int n_keep = slot.params.n_keep + add_bos_token;
  1535. const int n_left = slot.n_past - n_keep;
  1536. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  1537. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  1538. llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
  1539. llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, slot.n_past, -n_discard);
  1540. if (slot.params.cache_prompt) {
  1541. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  1542. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1543. }
  1544. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1545. }
  1546. slot.n_past -= n_discard;
  1547. slot.truncated = true;
  1548. }
  1549. }
  1550. // start populating the batch for this iteration
  1551. common_batch_clear(batch);
  1552. // frist, add sampled tokens from any ongoing sequences
  1553. for (auto & slot : slots) {
  1554. if (slot.state != SLOT_STATE_GENERATING) {
  1555. continue;
  1556. }
  1557. slot.i_batch = batch.n_tokens;
  1558. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id + 1 }, true);
  1559. slot.n_past += 1;
  1560. if (slot.params.cache_prompt) {
  1561. slot.cache_tokens.push_back(slot.sampled);
  1562. }
  1563. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  1564. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  1565. }
  1566. // process in chunks of params.n_batch
  1567. int32_t n_batch = llama_n_batch(ctx);
  1568. int32_t n_ubatch = llama_n_ubatch(ctx);
  1569. // track if this is an embedding or non-embedding batch
  1570. // if we've added sampled tokens above, we are in non-embedding mode
  1571. // -1: none, 0: non-embedding, 1: embedding
  1572. // TODO: make enum
  1573. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  1574. // next, batch any pending prompts without exceeding n_batch
  1575. if (params.cont_batching || batch.n_tokens == 0) {
  1576. for (auto & slot : slots) {
  1577. // this slot still has a prompt to be processed
  1578. if (slot.state == SLOT_STATE_PROCESSING_PROMPT) {
  1579. auto & prompt_tokens = slot.prompt_tokens;
  1580. // we haven't tokenized the prompt yet - do it now:
  1581. if (prompt_tokens.empty()) {
  1582. SLT_INF(slot, "tokenizing prompt, len = %d\n", (int) slot.prompt.size());
  1583. slot.t_start_process_prompt = ggml_time_us();
  1584. slot.t_start_generation = 0;
  1585. switch (slot.cmpl_type) {
  1586. case SERVER_TASK_CMPL_TYPE_NORMAL:
  1587. case SERVER_TASK_CMPL_TYPE_EMBEDDING:
  1588. {
  1589. prompt_tokens = tokenize(slot.prompt, llama_add_bos_token(model), true);
  1590. } break;
  1591. case SERVER_TASK_CMPL_TYPE_RERANK:
  1592. {
  1593. // require slot.prompt to be array of 2 strings
  1594. if (!slot.prompt.is_array() || slot.prompt.size() != 2) {
  1595. SLT_ERR(slot, "%s", "invalid prompt for rerank task\n");
  1596. slot.release();
  1597. send_error(slot, "invalid prompt for rerank task", ERROR_TYPE_INVALID_REQUEST);
  1598. continue;
  1599. }
  1600. // prompt: [BOS]query[EOS][SEP]doc[EOS]
  1601. prompt_tokens.clear();
  1602. prompt_tokens.push_back(llama_token_bos(model));
  1603. {
  1604. const auto part = tokenize(slot.prompt[0], false, false);
  1605. prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
  1606. }
  1607. prompt_tokens.push_back(llama_token_eos(model));
  1608. prompt_tokens.push_back(llama_token_sep(model));
  1609. {
  1610. const auto part = tokenize(slot.prompt[1], false, false);
  1611. prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
  1612. }
  1613. prompt_tokens.push_back(llama_token_eos(model));
  1614. } break;
  1615. case SERVER_TASK_CMPL_TYPE_INFILL:
  1616. {
  1617. // use FIM repo-level pattern:
  1618. // ref: https://arxiv.org/pdf/2409.12186
  1619. //
  1620. // [FIM_REP]myproject
  1621. // [FIM_SEP]filename0
  1622. // extra chunk 0
  1623. // [FIM_SEP]filename1
  1624. // extra chunk 1
  1625. // ...
  1626. // [FIM_SEP]filename
  1627. // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]
  1628. //
  1629. auto prefix_tokens = tokenize(slot.params.input_prefix, false, false);
  1630. auto suffix_tokens = tokenize(slot.params.input_suffix, false, false);
  1631. slot.extra_tokens.clear();
  1632. if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
  1633. static const auto k_fim_repo = tokenize("myproject\n", false, false);
  1634. slot.extra_tokens.push_back(llama_token_fim_rep(model));
  1635. slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
  1636. }
  1637. for (const auto & chunk : slot.params.extra_context) {
  1638. // { "text": string, "filename": string }
  1639. const std::string text = chunk.value("text", "");
  1640. const std::string filename = chunk.value("filename", "tmp");
  1641. if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
  1642. const auto k_fim_file = tokenize(filename + "\n", false, false);
  1643. slot.extra_tokens.insert(slot.extra_tokens.end(), llama_token_fim_sep(model));
  1644. slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  1645. } else {
  1646. // chunk separator in binary form to avoid confusing the AI
  1647. static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
  1648. static const auto k_chunk_prefix_tokens = tokenize(k_chunk_prefix_str, false, false);
  1649. slot.extra_tokens.insert(slot.extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
  1650. }
  1651. const auto chunk_tokens = tokenize(text, false, false);
  1652. slot.extra_tokens.insert(slot.extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
  1653. }
  1654. if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
  1655. // TODO: current filename
  1656. static const auto k_fim_file = tokenize("filename\n", false, false);
  1657. slot.extra_tokens.insert(slot.extra_tokens.end(), llama_token_fim_sep(model));
  1658. slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  1659. }
  1660. // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
  1661. const int n_suffix_take = std::min<int>(suffix_tokens.size(), (n_batch)/4);
  1662. const int n_prefix_take = std::min<int>(prefix_tokens.size(), (n_batch - 3) - n_suffix_take);
  1663. // fill the rest of the context with extra chunks
  1664. const int n_extra_take = std::min<int>(std::max<int>(0, slot.n_ctx - (n_batch) - 2*slot.n_predict), slot.extra_tokens.size());
  1665. prefix_tokens.erase(prefix_tokens.begin(), prefix_tokens.begin() + prefix_tokens.size() - n_prefix_take);
  1666. suffix_tokens.resize(n_suffix_take);
  1667. prefix_tokens.insert(prefix_tokens.begin(), llama_token_fim_pre(model));
  1668. suffix_tokens.insert(suffix_tokens.begin(), llama_token_fim_suf(model));
  1669. auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
  1670. auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
  1671. if (llama_add_bos_token(model)) {
  1672. embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
  1673. }
  1674. SLT_DBG(slot, "extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", slot.n_ctx, n_extra_take, (int) slot.extra_tokens.size());
  1675. // put the extra context before the FIM prefix
  1676. embd_inp.insert(embd_inp.begin(), slot.extra_tokens.end() - n_extra_take, slot.extra_tokens.end());
  1677. embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
  1678. embd_inp.push_back(llama_token_fim_mid(model));
  1679. prompt_tokens = std::move(embd_inp);
  1680. } break;
  1681. }
  1682. slot.n_past = 0;
  1683. slot.n_prompt_tokens = prompt_tokens.size();
  1684. SLT_INF(slot, "prompt tokenized, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  1685. // print prompt tokens (for debugging)
  1686. if (1) {
  1687. // first 16 tokens (avoid flooding logs)
  1688. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  1689. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  1690. }
  1691. } else {
  1692. // all
  1693. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  1694. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  1695. }
  1696. }
  1697. // empty prompt passed -> release the slot and send empty response
  1698. if (prompt_tokens.empty()) {
  1699. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  1700. slot.release();
  1701. slot.print_timings();
  1702. send_final_response(slot);
  1703. continue;
  1704. }
  1705. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING || slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1706. // this prompt is too large to process - discard it
  1707. if (slot.n_prompt_tokens > n_ubatch) {
  1708. slot.release();
  1709. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  1710. continue;
  1711. }
  1712. } else {
  1713. if (!params.ctx_shift) {
  1714. // if context shift is disabled, we make sure prompt size is smaller than KV size
  1715. // TODO: there should be a separate parameter that control prompt truncation
  1716. // context shift should be applied only during the generation phase
  1717. if (slot.n_prompt_tokens >= slot.n_ctx) {
  1718. slot.release();
  1719. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  1720. continue;
  1721. }
  1722. }
  1723. if (slot.params.n_keep < 0) {
  1724. slot.params.n_keep = slot.n_prompt_tokens;
  1725. }
  1726. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1727. // if input prompt is too big, truncate it
  1728. if (slot.n_prompt_tokens >= slot.n_ctx) {
  1729. const int n_left = slot.n_ctx - slot.params.n_keep;
  1730. const int n_block_size = n_left / 2;
  1731. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1732. std::vector<llama_token> new_tokens(
  1733. prompt_tokens.begin(),
  1734. prompt_tokens.begin() + slot.params.n_keep);
  1735. new_tokens.insert(
  1736. new_tokens.end(),
  1737. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  1738. prompt_tokens.end());
  1739. prompt_tokens = std::move(new_tokens);
  1740. slot.truncated = true;
  1741. slot.n_prompt_tokens = prompt_tokens.size();
  1742. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  1743. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  1744. }
  1745. common_sampler_reset(slot.smpl);
  1746. if (slot.params.cache_prompt) {
  1747. // reuse any previously computed tokens that are common with the new prompt
  1748. slot.n_past = longest_common_prefix(slot.cache_tokens, prompt_tokens);
  1749. // push the prompt into the sampling context (do not apply grammar)
  1750. for (int i = 0; i < slot.n_past; ++i) {
  1751. common_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
  1752. }
  1753. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  1754. if (params.n_cache_reuse > 0) {
  1755. size_t head_c = slot.n_past; // cache
  1756. size_t head_p = slot.n_past; // current prompt
  1757. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params.n_cache_reuse, slot.n_past);
  1758. while (head_c < slot.cache_tokens.size() &&
  1759. head_p < prompt_tokens.size()) {
  1760. if (llama_token_is_control(model, slot.cache_tokens[head_c]) &&
  1761. slot.cache_tokens[head_c] != llama_token_fim_rep(model) &&
  1762. slot.cache_tokens[head_c] != llama_token_fim_sep(model)) {
  1763. break;
  1764. }
  1765. if (llama_token_is_control(model, prompt_tokens[head_p]) &&
  1766. prompt_tokens[head_p] != llama_token_fim_rep(model) &&
  1767. prompt_tokens[head_p] != llama_token_fim_sep(model)) {
  1768. break;
  1769. }
  1770. size_t n_match = 0;
  1771. while (head_c + n_match < slot.cache_tokens.size() &&
  1772. head_p + n_match < prompt_tokens.size() &&
  1773. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  1774. if (llama_token_is_control(model, slot.cache_tokens[head_c + n_match]) &&
  1775. slot.cache_tokens[head_c + n_match] != llama_token_fim_rep(model) &&
  1776. slot.cache_tokens[head_c + n_match] != llama_token_fim_sep(model)) {
  1777. break;
  1778. }
  1779. if (llama_token_is_control(model, prompt_tokens[head_p + n_match]) &&
  1780. prompt_tokens[head_p + n_match] != llama_token_fim_rep(model) &&
  1781. prompt_tokens[head_p + n_match] != llama_token_fim_sep(model)) {
  1782. break;
  1783. }
  1784. n_match++;
  1785. }
  1786. if (n_match >= (size_t) params.n_cache_reuse) {
  1787. SLT_DBG(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  1788. //for (size_t i = head_p; i < head_p + n_match; i++) {
  1789. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  1790. //}
  1791. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  1792. llama_kv_cache_seq_rm (ctx, slot.id + 1, head_p, head_c);
  1793. llama_kv_cache_seq_add(ctx, slot.id + 1, head_c, -1, kv_shift);
  1794. for (size_t i = 0; i < n_match; i++) {
  1795. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  1796. common_sampler_accept(slot.smpl, slot.cache_tokens[head_p + i], false);
  1797. slot.n_past++;
  1798. }
  1799. head_c += n_match;
  1800. head_p += n_match;
  1801. } else {
  1802. head_c += 1;
  1803. }
  1804. }
  1805. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  1806. }
  1807. }
  1808. }
  1809. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  1810. // we have to evaluate at least 1 token to generate logits.
  1811. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  1812. slot.n_past--;
  1813. }
  1814. slot.n_prompt_tokens_processed = 0;
  1815. }
  1816. // non-causal tasks require to fit the entire prompt in the physical batch
  1817. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING || slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1818. // cannot fit the prompt in the current batch - will try next iter
  1819. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  1820. continue;
  1821. }
  1822. }
  1823. // check that we are in the right batch_type, if not defer the slot
  1824. const bool slot_type =
  1825. slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING ||
  1826. slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK ? 1 : 0;
  1827. if (batch_type == -1) {
  1828. batch_type = slot_type;
  1829. } else if (batch_type != slot_type) {
  1830. continue;
  1831. }
  1832. // keep only the common part
  1833. if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, slot.n_past, -1)) {
  1834. // could not partially delete (likely using a non-Transformer model)
  1835. llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
  1836. // there is no common part left
  1837. slot.n_past = 0;
  1838. common_sampler_reset(slot.smpl);
  1839. }
  1840. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  1841. // remove the non-common part from the cache
  1842. slot.cache_tokens.resize(slot.n_past);
  1843. // add prompt tokens for processing in the current batch
  1844. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  1845. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id + 1 }, false);
  1846. if (slot.params.cache_prompt) {
  1847. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  1848. }
  1849. slot.n_prompt_tokens_processed++;
  1850. slot.n_past++;
  1851. }
  1852. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  1853. // entire prompt has been processed
  1854. if (slot.n_past == slot.n_prompt_tokens) {
  1855. slot.state = SLOT_STATE_DONE_PROMPT;
  1856. GGML_ASSERT(batch.n_tokens > 0);
  1857. // extract the logits only for the last token
  1858. batch.logits[batch.n_tokens - 1] = true;
  1859. slot.n_decoded = 0;
  1860. slot.i_batch = batch.n_tokens - 1;
  1861. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  1862. }
  1863. }
  1864. if (batch.n_tokens >= n_batch) {
  1865. break;
  1866. }
  1867. }
  1868. }
  1869. if (batch.n_tokens == 0) {
  1870. SRV_WRN("%s", "no tokens to decode\n");
  1871. return;
  1872. }
  1873. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  1874. // make sure we're in the right embedding mode
  1875. llama_set_embeddings(ctx, batch_type == 1);
  1876. // process the created batch of tokens
  1877. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  1878. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  1879. llama_batch batch_view = {
  1880. n_tokens,
  1881. batch.token + i,
  1882. nullptr,
  1883. batch.pos + i,
  1884. batch.n_seq_id + i,
  1885. batch.seq_id + i,
  1886. batch.logits + i,
  1887. 0, 0, 0, // unused
  1888. };
  1889. const int ret = llama_decode(ctx, batch_view);
  1890. metrics.on_decoded(slots);
  1891. if (ret != 0) {
  1892. if (n_batch == 1 || ret < 0) {
  1893. // if you get here, it means the KV cache is full - try increasing it via the context size
  1894. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  1895. for (auto & slot : slots) {
  1896. slot.release();
  1897. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  1898. }
  1899. break; // break loop of n_batch
  1900. }
  1901. // retry with half the batch size to try to find a free slot in the KV cache
  1902. n_batch /= 2;
  1903. i -= n_batch;
  1904. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  1905. continue; // continue loop of n_batch
  1906. }
  1907. for (auto & slot : slots) {
  1908. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  1909. continue; // continue loop of slots
  1910. }
  1911. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  1912. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING) {
  1913. // prompt evaluated for embedding
  1914. send_embedding(slot, batch_view);
  1915. slot.release();
  1916. slot.i_batch = -1;
  1917. continue; // continue loop of slots
  1918. }
  1919. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1920. send_rerank(slot, batch_view);
  1921. slot.release();
  1922. slot.i_batch = -1;
  1923. continue; // continue loop of slots
  1924. }
  1925. // prompt evaluated for next-token prediction
  1926. slot.state = SLOT_STATE_GENERATING;
  1927. } else if (slot.state != SLOT_STATE_GENERATING) {
  1928. continue; // continue loop of slots
  1929. }
  1930. completion_token_output result;
  1931. const llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
  1932. common_sampler_accept(slot.smpl, id, true);
  1933. slot.n_decoded += 1;
  1934. if (slot.n_decoded == 1) {
  1935. slot.t_start_generation = ggml_time_us();
  1936. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  1937. metrics.on_prompt_eval(slot);
  1938. }
  1939. result.tok = id;
  1940. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1941. for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
  1942. result.probs.push_back({
  1943. cur_p->data[i].id,
  1944. i >= cur_p->size ? 0.0f : cur_p->data[i].p,
  1945. });
  1946. }
  1947. if (!process_token(result, slot)) {
  1948. // release slot because of stop condition
  1949. slot.release();
  1950. slot.print_timings();
  1951. send_final_response(slot);
  1952. metrics.on_prediction(slot);
  1953. }
  1954. slot.i_batch = -1;
  1955. }
  1956. }
  1957. SRV_DBG("%s", "run slots completed\n");
  1958. }
  1959. json model_meta() const {
  1960. return json {
  1961. {"vocab_type", llama_vocab_type (model)},
  1962. {"n_vocab", llama_n_vocab (model)},
  1963. {"n_ctx_train", llama_n_ctx_train (model)},
  1964. {"n_embd", llama_n_embd (model)},
  1965. {"n_params", llama_model_n_params(model)},
  1966. {"size", llama_model_size (model)},
  1967. };
  1968. }
  1969. };
  1970. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  1971. // skip GH copilot requests when using default port
  1972. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  1973. return;
  1974. }
  1975. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  1976. LOG_DBG("request: %s\n", req.body.c_str());
  1977. LOG_DBG("response: %s\n", res.body.c_str());
  1978. }
  1979. std::function<void(int)> shutdown_handler;
  1980. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  1981. inline void signal_handler(int signal) {
  1982. if (is_terminating.test_and_set()) {
  1983. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  1984. // this is for better developer experience, we can remove when the server is stable enough
  1985. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  1986. exit(1);
  1987. }
  1988. shutdown_handler(signal);
  1989. }
  1990. int main(int argc, char ** argv) {
  1991. // own arguments required by this example
  1992. common_params params;
  1993. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  1994. return 1;
  1995. }
  1996. common_init();
  1997. // enabling this will output extra debug information in the HTTP responses from the server
  1998. // see format_final_response_oaicompat()
  1999. const bool verbose = params.verbosity > 9;
  2000. // struct that contains llama context and inference
  2001. server_context ctx_server;
  2002. if (params.model_alias == "unknown") {
  2003. params.model_alias = params.model;
  2004. }
  2005. llama_backend_init();
  2006. llama_numa_init(params.numa);
  2007. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2008. LOG_INF("\n");
  2009. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2010. LOG_INF("\n");
  2011. std::unique_ptr<httplib::Server> svr;
  2012. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2013. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2014. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2015. svr.reset(
  2016. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2017. );
  2018. } else {
  2019. LOG_INF("Running without SSL\n");
  2020. svr.reset(new httplib::Server());
  2021. }
  2022. #else
  2023. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2024. LOG_ERR("Server is built without SSL support\n");
  2025. return 1;
  2026. }
  2027. svr.reset(new httplib::Server());
  2028. #endif
  2029. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2030. svr->set_default_headers({{"Server", "llama.cpp"}});
  2031. // CORS preflight
  2032. svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) {
  2033. // Access-Control-Allow-Origin is already set by middleware
  2034. res.set_header("Access-Control-Allow-Credentials", "true");
  2035. res.set_header("Access-Control-Allow-Methods", "POST");
  2036. res.set_header("Access-Control-Allow-Headers", "*");
  2037. return res.set_content("", "text/html"); // blank response, no data
  2038. });
  2039. svr->set_logger(log_server_request);
  2040. auto res_error = [](httplib::Response & res, const json & error_data) {
  2041. json final_response {{"error", error_data}};
  2042. res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
  2043. res.status = json_value(error_data, "code", 500);
  2044. };
  2045. auto res_ok = [](httplib::Response & res, const json & data) {
  2046. res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
  2047. res.status = 200;
  2048. };
  2049. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
  2050. std::string message;
  2051. try {
  2052. std::rethrow_exception(ep);
  2053. } catch (std::exception & e) {
  2054. message = e.what();
  2055. } catch (...) {
  2056. message = "Unknown Exception";
  2057. }
  2058. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2059. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2060. res_error(res, formatted_error);
  2061. });
  2062. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2063. if (res.status == 404) {
  2064. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2065. }
  2066. // for other error codes, we skip processing here because it's already done by res_error()
  2067. });
  2068. // set timeouts and change hostname and port
  2069. svr->set_read_timeout (params.timeout_read);
  2070. svr->set_write_timeout(params.timeout_write);
  2071. std::unordered_map<std::string, std::string> log_data;
  2072. log_data["hostname"] = params.hostname;
  2073. log_data["port"] = std::to_string(params.port);
  2074. if (params.api_keys.size() == 1) {
  2075. auto key = params.api_keys[0];
  2076. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2077. } else if (params.api_keys.size() > 1) {
  2078. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2079. }
  2080. // Necessary similarity of prompt for slot selection
  2081. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2082. //
  2083. // Middlewares
  2084. //
  2085. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2086. static const std::unordered_set<std::string> public_endpoints = {
  2087. "/health",
  2088. "/models",
  2089. "/v1/models",
  2090. };
  2091. // If API key is not set, skip validation
  2092. if (params.api_keys.empty()) {
  2093. return true;
  2094. }
  2095. // If path is public, skip validation
  2096. if (public_endpoints.find(req.path) != public_endpoints.end()) {
  2097. return true;
  2098. }
  2099. // Check for API key in the header
  2100. auto auth_header = req.get_header_value("Authorization");
  2101. std::string prefix = "Bearer ";
  2102. if (auth_header.substr(0, prefix.size()) == prefix) {
  2103. std::string received_api_key = auth_header.substr(prefix.size());
  2104. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2105. return true; // API key is valid
  2106. }
  2107. }
  2108. // API key is invalid or not provided
  2109. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2110. LOG_WRN("Unauthorized: Invalid API Key\n");
  2111. return false;
  2112. };
  2113. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2114. server_state current_state = state.load();
  2115. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2116. auto tmp = string_split(req.path, '.');
  2117. if (req.path == "/" || tmp.back() == "html") {
  2118. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2119. res.status = 503;
  2120. } else {
  2121. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2122. }
  2123. return false;
  2124. }
  2125. return true;
  2126. };
  2127. // register server middlewares
  2128. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2129. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2130. if (!middleware_server_state(req, res)) {
  2131. return httplib::Server::HandlerResponse::Handled;
  2132. }
  2133. if (!middleware_validate_api_key(req, res)) {
  2134. return httplib::Server::HandlerResponse::Handled;
  2135. }
  2136. return httplib::Server::HandlerResponse::Unhandled;
  2137. });
  2138. //
  2139. // Route handlers (or controllers)
  2140. //
  2141. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2142. // error and loading states are handled by middleware
  2143. json health = {{"status", "ok"}};
  2144. res_ok(res, health);
  2145. };
  2146. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2147. if (!params.endpoint_slots) {
  2148. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2149. return;
  2150. }
  2151. // request slots data using task queue
  2152. server_task task;
  2153. task.id = ctx_server.queue_tasks.get_new_id();
  2154. task.type = SERVER_TASK_TYPE_METRICS;
  2155. ctx_server.queue_results.add_waiting_task_id(task.id);
  2156. ctx_server.queue_tasks.post(task, true); // high-priority task
  2157. // get the result
  2158. server_task_result result = ctx_server.queue_results.recv(task.id);
  2159. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2160. // optionally return "fail_on_no_slot" error
  2161. const int n_idle_slots = result.data.at("idle");
  2162. if (req.has_param("fail_on_no_slot")) {
  2163. if (n_idle_slots == 0) {
  2164. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2165. return;
  2166. }
  2167. }
  2168. res_ok(res, result.data.at("slots"));
  2169. };
  2170. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2171. if (!params.endpoint_metrics) {
  2172. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2173. return;
  2174. }
  2175. // request slots data using task queue
  2176. server_task task;
  2177. task.id = ctx_server.queue_tasks.get_new_id();
  2178. task.id_target = -1;
  2179. task.type = SERVER_TASK_TYPE_METRICS;
  2180. task.data.push_back({{"reset_bucket", true}});
  2181. ctx_server.queue_results.add_waiting_task_id(task.id);
  2182. ctx_server.queue_tasks.post(task, true); // high-priority task
  2183. // get the result
  2184. server_task_result result = ctx_server.queue_results.recv(task.id);
  2185. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2186. json data = result.data;
  2187. const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
  2188. const uint64_t t_prompt_processing = data.at("t_prompt_processing");
  2189. const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
  2190. const uint64_t t_tokens_generation = data.at("t_tokens_generation");
  2191. const uint64_t n_decode_total = data.at("n_decode_total");
  2192. const uint64_t n_busy_slots_total = data.at("n_busy_slots_total");
  2193. const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
  2194. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2195. json all_metrics_def = json {
  2196. {"counter", {{
  2197. {"name", "prompt_tokens_total"},
  2198. {"help", "Number of prompt tokens processed."},
  2199. {"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
  2200. }, {
  2201. {"name", "prompt_seconds_total"},
  2202. {"help", "Prompt process time"},
  2203. {"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
  2204. }, {
  2205. {"name", "tokens_predicted_total"},
  2206. {"help", "Number of generation tokens processed."},
  2207. {"value", (uint64_t) data.at("n_tokens_predicted_total")}
  2208. }, {
  2209. {"name", "tokens_predicted_seconds_total"},
  2210. {"help", "Predict process time"},
  2211. {"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
  2212. }, {
  2213. {"name", "n_decode_total"},
  2214. {"help", "Total number of llama_decode() calls"},
  2215. {"value", n_decode_total}
  2216. }, {
  2217. {"name", "n_busy_slots_per_decode"},
  2218. {"help", "Average number of busy slots per llama_decode() call"},
  2219. {"value", (float) n_busy_slots_total / (float) n_decode_total}
  2220. }}},
  2221. {"gauge", {{
  2222. {"name", "prompt_tokens_seconds"},
  2223. {"help", "Average prompt throughput in tokens/s."},
  2224. {"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
  2225. },{
  2226. {"name", "predicted_tokens_seconds"},
  2227. {"help", "Average generation throughput in tokens/s."},
  2228. {"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
  2229. },{
  2230. {"name", "kv_cache_usage_ratio"},
  2231. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2232. {"value", 1. * kv_cache_used_cells / params.n_ctx}
  2233. },{
  2234. {"name", "kv_cache_tokens"},
  2235. {"help", "KV-cache tokens."},
  2236. {"value", (uint64_t) data.at("kv_cache_tokens_count")}
  2237. },{
  2238. {"name", "requests_processing"},
  2239. {"help", "Number of request processing."},
  2240. {"value", (uint64_t) data.at("processing")}
  2241. },{
  2242. {"name", "requests_deferred"},
  2243. {"help", "Number of request deferred."},
  2244. {"value", (uint64_t) data.at("deferred")}
  2245. }}}
  2246. };
  2247. std::stringstream prometheus;
  2248. for (const auto & el : all_metrics_def.items()) {
  2249. const auto & type = el.key();
  2250. const auto & metrics_def = el.value();
  2251. for (const auto & metric_def : metrics_def) {
  2252. const std::string name = metric_def.at("name");
  2253. const std::string help = metric_def.at("help");
  2254. auto value = json_value(metric_def, "value", 0.);
  2255. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2256. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2257. << "llamacpp:" << name << " " << value << "\n";
  2258. }
  2259. }
  2260. const int64_t t_start = data.at("t_start");
  2261. res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
  2262. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2263. res.status = 200; // HTTP OK
  2264. };
  2265. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2266. json request_data = json::parse(req.body);
  2267. std::string filename = request_data.at("filename");
  2268. if (!fs_validate_filename(filename)) {
  2269. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2270. return;
  2271. }
  2272. std::string filepath = params.slot_save_path + filename;
  2273. server_task task;
  2274. task.type = SERVER_TASK_TYPE_SLOT_SAVE;
  2275. task.data = {
  2276. { "id_slot", id_slot },
  2277. { "filename", filename },
  2278. { "filepath", filepath },
  2279. };
  2280. const int id_task = ctx_server.queue_tasks.post(task);
  2281. ctx_server.queue_results.add_waiting_task_id(id_task);
  2282. server_task_result result = ctx_server.queue_results.recv(id_task);
  2283. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2284. if (result.error) {
  2285. res_error(res, result.data);
  2286. } else {
  2287. res_ok(res, result.data);
  2288. }
  2289. };
  2290. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2291. json request_data = json::parse(req.body);
  2292. std::string filename = request_data.at("filename");
  2293. if (!fs_validate_filename(filename)) {
  2294. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2295. return;
  2296. }
  2297. std::string filepath = params.slot_save_path + filename;
  2298. server_task task;
  2299. task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
  2300. task.data = {
  2301. { "id_slot", id_slot },
  2302. { "filename", filename },
  2303. { "filepath", filepath },
  2304. };
  2305. const int id_task = ctx_server.queue_tasks.post(task);
  2306. ctx_server.queue_results.add_waiting_task_id(id_task);
  2307. server_task_result result = ctx_server.queue_results.recv(id_task);
  2308. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2309. if (result.error) {
  2310. res_error(res, result.data);
  2311. } else {
  2312. res_ok(res, result.data);
  2313. }
  2314. };
  2315. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2316. server_task task;
  2317. task.type = SERVER_TASK_TYPE_SLOT_ERASE;
  2318. task.data = {
  2319. { "id_slot", id_slot },
  2320. };
  2321. const int id_task = ctx_server.queue_tasks.post(task);
  2322. ctx_server.queue_results.add_waiting_task_id(id_task);
  2323. server_task_result result = ctx_server.queue_results.recv(id_task);
  2324. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2325. if (result.error) {
  2326. res_error(res, result.data);
  2327. } else {
  2328. res_ok(res, result.data);
  2329. }
  2330. };
  2331. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2332. if (params.slot_save_path.empty()) {
  2333. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2334. return;
  2335. }
  2336. std::string id_slot_str = req.path_params.at("id_slot");
  2337. int id_slot;
  2338. try {
  2339. id_slot = std::stoi(id_slot_str);
  2340. } catch (const std::exception &) {
  2341. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2342. return;
  2343. }
  2344. std::string action = req.get_param_value("action");
  2345. if (action == "save") {
  2346. handle_slots_save(req, res, id_slot);
  2347. } else if (action == "restore") {
  2348. handle_slots_restore(req, res, id_slot);
  2349. } else if (action == "erase") {
  2350. handle_slots_erase(req, res, id_slot);
  2351. } else {
  2352. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2353. }
  2354. };
  2355. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2356. json data = {
  2357. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2358. { "total_slots", ctx_server.params.n_parallel },
  2359. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2360. };
  2361. res_ok(res, data);
  2362. };
  2363. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2364. if (!ctx_server.params.endpoint_props) {
  2365. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2366. return;
  2367. }
  2368. json data = json::parse(req.body);
  2369. // update any props here
  2370. res_ok(res, {{ "success", true }});
  2371. };
  2372. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_cmpl_type cmpl_type, json & data, httplib::Response & res) {
  2373. if (ctx_server.params.embedding || ctx_server.params.reranking) {
  2374. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings` or `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2375. return;
  2376. }
  2377. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl(data, cmpl_type);
  2378. ctx_server.queue_results.add_waiting_tasks(tasks);
  2379. ctx_server.queue_tasks.post(tasks);
  2380. bool stream = json_value(data, "stream", false);
  2381. const auto task_ids = server_task::get_list_id(tasks);
  2382. if (!stream) {
  2383. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2384. if (results.size() == 1) {
  2385. // single result
  2386. res_ok(res, results[0].data);
  2387. } else {
  2388. // multiple results (multitask)
  2389. json arr = json::array();
  2390. for (const auto & res : results) {
  2391. arr.push_back(res.data);
  2392. }
  2393. res_ok(res, arr);
  2394. }
  2395. }, [&](const json & error_data) {
  2396. res_error(res, error_data);
  2397. });
  2398. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2399. } else {
  2400. const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) {
  2401. ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
  2402. return server_sent_event(sink, "data", result.data);
  2403. }, [&](const json & error_data) {
  2404. server_sent_event(sink, "error", error_data);
  2405. });
  2406. sink.done();
  2407. return false;
  2408. };
  2409. auto on_complete = [task_ids, &ctx_server] (bool) {
  2410. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2411. };
  2412. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2413. }
  2414. };
  2415. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2416. json data = json::parse(req.body);
  2417. return handle_completions_generic(SERVER_TASK_CMPL_TYPE_NORMAL, data, res);
  2418. };
  2419. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2420. std::string err;
  2421. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2422. err += "prefix token is missing. ";
  2423. }
  2424. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2425. err += "suffix token is missing. ";
  2426. }
  2427. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2428. err += "middle token is missing. ";
  2429. }
  2430. if (!err.empty()) {
  2431. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2432. return;
  2433. }
  2434. json data = json::parse(req.body);
  2435. return handle_completions_generic(SERVER_TASK_CMPL_TYPE_INFILL, data, res);
  2436. };
  2437. // TODO: maybe merge this function with "handle_completions_generic"
  2438. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) {
  2439. if (ctx_server.params.embedding || ctx_server.params.reranking) {
  2440. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings` or `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2441. return;
  2442. }
  2443. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2444. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl(data, SERVER_TASK_CMPL_TYPE_NORMAL);
  2445. ctx_server.queue_results.add_waiting_tasks(tasks);
  2446. ctx_server.queue_tasks.post(tasks);
  2447. bool stream = json_value(data, "stream", false);
  2448. const auto task_ids = server_task::get_list_id(tasks);
  2449. const auto completion_id = gen_chatcmplid();
  2450. if (!stream) {
  2451. ctx_server.receive_cmpl_results(task_ids, [&](const std::vector<server_task_result> & results) {
  2452. // multitask is never support in chat completion, there is only one result
  2453. json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id, /*.streaming =*/ false, verbose);
  2454. res_ok(res, result_oai);
  2455. }, [&](const json & error_data) {
  2456. res_error(res, error_data);
  2457. });
  2458. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2459. } else {
  2460. const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
  2461. ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
  2462. std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
  2463. for (auto & event_data : result_array) {
  2464. if (event_data.empty()) {
  2465. continue; // skip the stop token
  2466. }
  2467. if (!server_sent_event(sink, "data", event_data)) {
  2468. return false; // connection is closed
  2469. }
  2470. }
  2471. return true; // ok
  2472. }, [&](const json & error_data) {
  2473. server_sent_event(sink, "error", error_data);
  2474. });
  2475. static const std::string ev_done = "data: [DONE]\n\n";
  2476. sink.write(ev_done.data(), ev_done.size());
  2477. sink.done();
  2478. return true;
  2479. };
  2480. auto on_complete = [task_ids, &ctx_server] (bool) {
  2481. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2482. };
  2483. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2484. }
  2485. };
  2486. const auto handle_models = [&params, &ctx_server](const httplib::Request &, httplib::Response & res) {
  2487. json models = {
  2488. {"object", "list"},
  2489. {"data", {
  2490. {
  2491. {"id", params.model_alias},
  2492. {"object", "model"},
  2493. {"created", std::time(0)},
  2494. {"owned_by", "llamacpp"},
  2495. {"meta", ctx_server.model_meta()}
  2496. },
  2497. }}
  2498. };
  2499. res.set_content(models.dump(), MIMETYPE_JSON);
  2500. };
  2501. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2502. const json body = json::parse(req.body);
  2503. json tokens_response = json::array();
  2504. if (body.count("content") != 0) {
  2505. const bool add_special = json_value(body, "add_special", false);
  2506. const bool with_pieces = json_value(body, "with_pieces", false);
  2507. std::vector<llama_token> tokens = ctx_server.tokenize(body.at("content"), add_special, true);
  2508. if (with_pieces) {
  2509. for (const auto& token : tokens) {
  2510. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  2511. json piece_json;
  2512. // Check if the piece is valid UTF-8
  2513. if (is_valid_utf8(piece)) {
  2514. piece_json = piece;
  2515. } else {
  2516. // If not valid UTF-8, store as array of byte values
  2517. piece_json = json::array();
  2518. for (unsigned char c : piece) {
  2519. piece_json.push_back(static_cast<int>(c));
  2520. }
  2521. }
  2522. tokens_response.push_back({
  2523. {"id", token},
  2524. {"piece", piece_json}
  2525. });
  2526. }
  2527. } else {
  2528. tokens_response = tokens;
  2529. }
  2530. }
  2531. const json data = format_tokenizer_response(tokens_response);
  2532. res_ok(res, data);
  2533. };
  2534. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2535. const json body = json::parse(req.body);
  2536. std::string content;
  2537. if (body.count("tokens") != 0) {
  2538. const std::vector<llama_token> tokens = body.at("tokens");
  2539. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  2540. }
  2541. const json data = format_detokenized_response(content);
  2542. res_ok(res, data);
  2543. };
  2544. const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2545. // TODO: somehow clean up this checks in the future
  2546. if (!ctx_server.params.embedding || ctx_server.params.reranking) {
  2547. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings` and without `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2548. return;
  2549. }
  2550. const json body = json::parse(req.body);
  2551. bool is_openai = false;
  2552. // an input prompt can be a string or a list of tokens (integer)
  2553. json prompt;
  2554. if (body.count("input") != 0) {
  2555. is_openai = true;
  2556. prompt = body.at("input");
  2557. } else if (body.count("content") != 0) {
  2558. // with "content", we only support single prompt
  2559. prompt = std::vector<std::string>{body.at("content")};
  2560. } else {
  2561. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2562. return;
  2563. }
  2564. // create and queue the task
  2565. json responses = json::array();
  2566. bool error = false;
  2567. {
  2568. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl({{"prompt", prompt}}, SERVER_TASK_CMPL_TYPE_EMBEDDING);
  2569. ctx_server.queue_results.add_waiting_tasks(tasks);
  2570. ctx_server.queue_tasks.post(tasks);
  2571. // get the result
  2572. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  2573. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2574. for (const auto & res : results) {
  2575. responses.push_back(res.data);
  2576. }
  2577. }, [&](const json & error_data) {
  2578. res_error(res, error_data);
  2579. error = true;
  2580. });
  2581. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2582. }
  2583. if (error) {
  2584. return;
  2585. }
  2586. // write JSON response
  2587. json root = is_openai
  2588. ? format_embeddings_response_oaicompat(body, responses)
  2589. : responses[0];
  2590. res_ok(res, root);
  2591. };
  2592. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2593. if (!ctx_server.params.reranking) {
  2594. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2595. return;
  2596. }
  2597. const json body = json::parse(req.body);
  2598. // TODO: implement
  2599. //int top_n = 1;
  2600. //if (body.count("top_n") != 1) {
  2601. // top_n = body.at("top_n");
  2602. //} else {
  2603. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2604. // return;
  2605. //}
  2606. json query;
  2607. if (body.count("query") == 1) {
  2608. query = body.at("query");
  2609. if (!query.is_string()) {
  2610. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2611. return;
  2612. }
  2613. } else {
  2614. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2615. return;
  2616. }
  2617. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  2618. if (documents.empty()) {
  2619. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  2620. return;
  2621. }
  2622. // construct prompt object: array of ["query", "doc0", "doc1", ...]
  2623. json prompt;
  2624. prompt.push_back(query);
  2625. for (const auto & doc : documents) {
  2626. prompt.push_back(doc);
  2627. }
  2628. LOG_DBG("rerank prompt: %s\n", prompt.dump().c_str());
  2629. // create and queue the task
  2630. json responses = json::array();
  2631. bool error = false;
  2632. {
  2633. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl({{"prompt", prompt}}, SERVER_TASK_CMPL_TYPE_RERANK);
  2634. ctx_server.queue_results.add_waiting_tasks(tasks);
  2635. ctx_server.queue_tasks.post(tasks);
  2636. // get the result
  2637. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  2638. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2639. for (const auto & res : results) {
  2640. responses.push_back(res.data);
  2641. }
  2642. }, [&](const json & error_data) {
  2643. res_error(res, error_data);
  2644. error = true;
  2645. });
  2646. }
  2647. if (error) {
  2648. return;
  2649. }
  2650. // write JSON response
  2651. json root = format_response_rerank(body, responses);
  2652. res_ok(res, root);
  2653. };
  2654. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  2655. json result = json::array();
  2656. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  2657. auto & lora = ctx_server.loras[i];
  2658. result.push_back({
  2659. {"id", i},
  2660. {"path", lora.path},
  2661. {"scale", lora.scale},
  2662. });
  2663. }
  2664. res_ok(res, result);
  2665. res.status = 200; // HTTP OK
  2666. };
  2667. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  2668. const std::vector<json> body = json::parse(req.body);
  2669. int max_idx = ctx_server.loras.size();
  2670. // clear existing value
  2671. for (auto & lora : ctx_server.loras) {
  2672. lora.scale = 0.0f;
  2673. }
  2674. // set value
  2675. for (auto entry : body) {
  2676. int id = entry.at("id");
  2677. float scale = entry.at("scale");
  2678. if (0 <= id && id < max_idx) {
  2679. ctx_server.loras[id].scale = scale;
  2680. } else {
  2681. throw std::runtime_error("invalid adapter id");
  2682. }
  2683. }
  2684. server_task task;
  2685. task.type = SERVER_TASK_TYPE_SET_LORA;
  2686. const int id_task = ctx_server.queue_tasks.post(task);
  2687. ctx_server.queue_results.add_waiting_task_id(id_task);
  2688. server_task_result result = ctx_server.queue_results.recv(id_task);
  2689. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2690. res_ok(res, result.data);
  2691. res.status = 200; // HTTP OK
  2692. };
  2693. auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
  2694. return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
  2695. res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
  2696. return false;
  2697. };
  2698. };
  2699. //
  2700. // Router
  2701. //
  2702. // register static assets routes
  2703. if (!params.public_path.empty()) {
  2704. // Set the base directory for serving static files
  2705. svr->set_base_dir(params.public_path);
  2706. }
  2707. if (!params.api_keys.empty()) {
  2708. // for now, if API key is set, web UI is unusable
  2709. svr->Get("/", [&](const httplib::Request &, httplib::Response & res) {
  2710. return res.set_content("Web UI is disabled because API key is set.", "text/html; charset=utf-8");
  2711. });
  2712. } else {
  2713. // using embedded static files
  2714. svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
  2715. svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
  2716. svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
  2717. svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
  2718. // add new-ui files
  2719. svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
  2720. svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
  2721. svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
  2722. svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
  2723. svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
  2724. svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
  2725. svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
  2726. svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
  2727. svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
  2728. svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
  2729. svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
  2730. }
  2731. // register API routes
  2732. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  2733. svr->Get ("/metrics", handle_metrics);
  2734. svr->Get ("/props", handle_props);
  2735. svr->Post("/props", handle_props_change);
  2736. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  2737. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  2738. svr->Post("/completion", handle_completions); // legacy
  2739. svr->Post("/completions", handle_completions);
  2740. svr->Post("/v1/completions", handle_completions);
  2741. svr->Post("/chat/completions", handle_chat_completions);
  2742. svr->Post("/v1/chat/completions", handle_chat_completions);
  2743. svr->Post("/infill", handle_infill);
  2744. svr->Post("/embedding", handle_embeddings); // legacy
  2745. svr->Post("/embeddings", handle_embeddings);
  2746. svr->Post("/v1/embeddings", handle_embeddings);
  2747. svr->Post("/rerank", handle_rerank);
  2748. svr->Post("/reranking", handle_rerank);
  2749. svr->Post("/v1/rerank", handle_rerank);
  2750. svr->Post("/v1/reranking", handle_rerank);
  2751. svr->Post("/tokenize", handle_tokenize);
  2752. svr->Post("/detokenize", handle_detokenize);
  2753. // LoRA adapters hotswap
  2754. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  2755. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  2756. // Save & load slots
  2757. svr->Get ("/slots", handle_slots);
  2758. svr->Post("/slots/:id_slot", handle_slots_action);
  2759. //
  2760. // Start the server
  2761. //
  2762. if (params.n_threads_http < 1) {
  2763. // +2 threads for monitoring endpoints
  2764. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  2765. }
  2766. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  2767. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  2768. // clean up function, to be called before exit
  2769. auto clean_up = [&svr]() {
  2770. svr->stop();
  2771. llama_backend_free();
  2772. };
  2773. // bind HTTP listen port, run the HTTP server in a thread
  2774. if (!svr->bind_to_port(params.hostname, params.port)) {
  2775. //LOG_ERROR("couldn't bind HTTP server socket", {
  2776. // {"hostname", params.hostname},
  2777. // {"port", params.port},
  2778. //});
  2779. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  2780. clean_up();
  2781. return 1;
  2782. }
  2783. std::thread t([&]() { svr->listen_after_bind(); });
  2784. svr->wait_until_ready();
  2785. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  2786. // load the model
  2787. LOG_INF("%s: loading model\n", __func__);
  2788. if (!ctx_server.load_model(params)) {
  2789. clean_up();
  2790. t.join();
  2791. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  2792. return 1;
  2793. }
  2794. ctx_server.init();
  2795. state.store(SERVER_STATE_READY);
  2796. LOG_INF("%s: model loaded\n", __func__);
  2797. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  2798. if (params.chat_template.empty()) {
  2799. if (!ctx_server.validate_model_chat_template()) {
  2800. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  2801. params.chat_template = "chatml";
  2802. }
  2803. }
  2804. // print sample chat example to make it clear which template is used
  2805. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  2806. ctx_server.queue_tasks.on_new_task(std::bind(
  2807. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  2808. ctx_server.queue_tasks.on_update_slots(std::bind(
  2809. &server_context::update_slots, &ctx_server));
  2810. shutdown_handler = [&](int) {
  2811. ctx_server.queue_tasks.terminate();
  2812. };
  2813. LOG_INF("%s: server is listening on %s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  2814. ctx_server.queue_tasks.start_loop();
  2815. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  2816. struct sigaction sigint_action;
  2817. sigint_action.sa_handler = signal_handler;
  2818. sigemptyset (&sigint_action.sa_mask);
  2819. sigint_action.sa_flags = 0;
  2820. sigaction(SIGINT, &sigint_action, NULL);
  2821. sigaction(SIGTERM, &sigint_action, NULL);
  2822. #elif defined (_WIN32)
  2823. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  2824. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  2825. };
  2826. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  2827. #endif
  2828. clean_up();
  2829. t.join();
  2830. return 0;
  2831. }