ggml.c 413 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #elif defined(GGML_USE_OPENBLAS)
  118. #include <cblas.h>
  119. #elif defined(GGML_USE_CUBLAS)
  120. #include "ggml-cuda.h"
  121. #elif defined(GGML_USE_CLBLAST)
  122. #include "ggml-opencl.h"
  123. #endif
  124. #undef MIN
  125. #undef MAX
  126. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  127. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  128. // floating point type used to accumulate sums
  129. typedef double ggml_float;
  130. // 16-bit float
  131. // on Arm, we use __fp16
  132. // on x86, we use uint16_t
  133. #ifdef __ARM_NEON
  134. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  135. //
  136. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  137. //
  138. #include <arm_neon.h>
  139. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  140. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  141. #define GGML_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_FP32_TO_FP16(x) (x)
  143. #else
  144. #ifdef __wasm_simd128__
  145. #include <wasm_simd128.h>
  146. #else
  147. #ifdef __POWER9_VECTOR__
  148. #include <altivec.h>
  149. #undef bool
  150. #define bool _Bool
  151. #else
  152. #include <immintrin.h>
  153. #endif
  154. #endif
  155. #ifdef __F16C__
  156. #ifdef _MSC_VER
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  159. #else
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  162. #endif
  163. #elif defined(__POWER9_VECTOR__)
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  166. /* the inline asm below is about 12% faster than the lookup method */
  167. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  168. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  169. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  170. register float f;
  171. register double d;
  172. __asm__(
  173. "mtfprd %0,%2\n"
  174. "xscvhpdp %0,%0\n"
  175. "frsp %1,%0\n" :
  176. /* temp */ "=d"(d),
  177. /* out */ "=f"(f):
  178. /* in */ "r"(h));
  179. return f;
  180. }
  181. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  182. register double d;
  183. register ggml_fp16_t r;
  184. __asm__( /* xscvdphp can work on double or single precision */
  185. "xscvdphp %0,%2\n"
  186. "mffprd %1,%0\n" :
  187. /* temp */ "=d"(d),
  188. /* out */ "=r"(r):
  189. /* in */ "f"(f));
  190. return r;
  191. }
  192. #else
  193. // FP16 <-> FP32
  194. // ref: https://github.com/Maratyszcza/FP16
  195. static inline float fp32_from_bits(uint32_t w) {
  196. union {
  197. uint32_t as_bits;
  198. float as_value;
  199. } fp32;
  200. fp32.as_bits = w;
  201. return fp32.as_value;
  202. }
  203. static inline uint32_t fp32_to_bits(float f) {
  204. union {
  205. float as_value;
  206. uint32_t as_bits;
  207. } fp32;
  208. fp32.as_value = f;
  209. return fp32.as_bits;
  210. }
  211. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  212. const uint32_t w = (uint32_t) h << 16;
  213. const uint32_t sign = w & UINT32_C(0x80000000);
  214. const uint32_t two_w = w + w;
  215. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  216. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  217. const float exp_scale = 0x1.0p-112f;
  218. #else
  219. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  220. #endif
  221. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  222. const uint32_t magic_mask = UINT32_C(126) << 23;
  223. const float magic_bias = 0.5f;
  224. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  225. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  226. const uint32_t result = sign |
  227. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  228. return fp32_from_bits(result);
  229. }
  230. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  231. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  232. const float scale_to_inf = 0x1.0p+112f;
  233. const float scale_to_zero = 0x1.0p-110f;
  234. #else
  235. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  236. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  237. #endif
  238. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  239. const uint32_t w = fp32_to_bits(f);
  240. const uint32_t shl1_w = w + w;
  241. const uint32_t sign = w & UINT32_C(0x80000000);
  242. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  243. if (bias < UINT32_C(0x71000000)) {
  244. bias = UINT32_C(0x71000000);
  245. }
  246. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  247. const uint32_t bits = fp32_to_bits(base);
  248. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  249. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  250. const uint32_t nonsign = exp_bits + mantissa_bits;
  251. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  252. }
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  255. #endif // __F16C__
  256. #endif // __ARM_NEON
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t table_gelu_f16[1 << 16];
  262. // precomputed silu table for f16 (128 KB)
  263. static ggml_fp16_t table_silu_f16[1 << 16];
  264. // precomputed exp table for f16 (128 KB)
  265. static ggml_fp16_t table_exp_f16[1 << 16];
  266. // precomputed f32 table for f16 (256 KB)
  267. static float table_f32_f16[1 << 16];
  268. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  269. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  270. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  271. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  272. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  273. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  274. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  275. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  276. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  277. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  278. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  279. #endif
  280. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  281. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  282. // This is also true for POWER9.
  283. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  284. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  285. uint16_t s;
  286. memcpy(&s, &f, sizeof(uint16_t));
  287. return table_f32_f16[s];
  288. }
  289. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  290. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  291. #endif
  292. // note: do not use these inside ggml.c
  293. // these are meant to be used via the ggml.h API
  294. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  295. return (float) GGML_FP16_TO_FP32(x);
  296. }
  297. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  298. return GGML_FP32_TO_FP16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  301. for (size_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  306. size_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. //
  324. // timing
  325. //
  326. #if defined(_MSC_VER) || defined(__MINGW32__)
  327. static int64_t timer_freq;
  328. void ggml_time_init(void) {
  329. LARGE_INTEGER frequency;
  330. QueryPerformanceFrequency(&frequency);
  331. timer_freq = frequency.QuadPart;
  332. }
  333. int64_t ggml_time_ms(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return (t.QuadPart * 1000) / timer_freq;
  337. }
  338. int64_t ggml_time_us(void) {
  339. LARGE_INTEGER t;
  340. QueryPerformanceCounter(&t);
  341. return (t.QuadPart * 1000000) / timer_freq;
  342. }
  343. #else
  344. void ggml_time_init(void) {}
  345. int64_t ggml_time_ms(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  349. }
  350. int64_t ggml_time_us(void) {
  351. struct timespec ts;
  352. clock_gettime(CLOCK_MONOTONIC, &ts);
  353. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  354. }
  355. #endif
  356. int64_t ggml_cycles(void) {
  357. return clock();
  358. }
  359. int64_t ggml_cycles_per_ms(void) {
  360. return CLOCKS_PER_SEC/1000;
  361. }
  362. #ifdef GGML_PERF
  363. #define ggml_perf_time_ms() ggml_time_ms()
  364. #define ggml_perf_time_us() ggml_time_us()
  365. #define ggml_perf_cycles() ggml_cycles()
  366. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  367. #else
  368. #define ggml_perf_time_ms() 0
  369. #define ggml_perf_time_us() 0
  370. #define ggml_perf_cycles() 0
  371. #define ggml_perf_cycles_per_ms() 0
  372. #endif
  373. //
  374. // cache line
  375. //
  376. #if defined(__cpp_lib_hardware_interference_size)
  377. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  378. #else
  379. #if defined(__POWER9_VECTOR__)
  380. #define CACHE_LINE_SIZE 128
  381. #else
  382. #define CACHE_LINE_SIZE 64
  383. #endif
  384. #endif
  385. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  386. //
  387. // quantization
  388. //
  389. #if __AVX__ || __AVX2__ || __AVX512F__
  390. // Unpack 16 4-bit fields into 16 bytes
  391. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  392. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  393. {
  394. // Load 8 bytes from memory
  395. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  396. // Expand bytes into uint16_t values
  397. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  398. // Unpack values into individual bytes
  399. const __m128i lowMask = _mm_set1_epi8( 0xF );
  400. __m128i high = _mm_andnot_si128( lowMask, bytes );
  401. __m128i low = _mm_and_si128( lowMask, bytes );
  402. high = _mm_slli_epi16( high, 4 );
  403. bytes = _mm_or_si128( low, high );
  404. return bytes;
  405. }
  406. // horizontally add 8 floats
  407. static inline float hsum_float_8(const __m256 x) {
  408. __m128 res = _mm256_extractf128_ps(x, 1);
  409. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  410. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  411. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  412. return _mm_cvtss_f32(res);
  413. }
  414. // horizontally add 8 int32_t
  415. static inline int hsum_i32_8(const __m256i a) {
  416. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  417. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  418. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  419. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  420. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  421. }
  422. // horizontally add 4 int32_t
  423. static inline int hsum_i32_4(const __m128i a) {
  424. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  425. const __m128i sum64 = _mm_add_epi32(hi64, a);
  426. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  427. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  428. }
  429. #if __AVX2__ || __AVX512F__
  430. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  431. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  432. uint32_t x32;
  433. memcpy(&x32, x, sizeof(uint32_t));
  434. const __m256i shuf_mask = _mm256_set_epi64x(
  435. 0x0303030303030303, 0x0202020202020202,
  436. 0x0101010101010101, 0x0000000000000000);
  437. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  438. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  439. bytes = _mm256_or_si256(bytes, bit_mask);
  440. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  441. }
  442. // Unpack 32 4-bit fields into 32 bytes
  443. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  444. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  445. {
  446. // Load 16 bytes from memory
  447. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  448. // Expand bytes into uint16_t values
  449. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  450. // Unpack values into individual bytes
  451. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  452. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  453. __m256i low = _mm256_and_si256( lowMask, bytes );
  454. high = _mm256_slli_epi16( high, 4 );
  455. bytes = _mm256_or_si256( low, high );
  456. return bytes;
  457. }
  458. // add int16_t pairwise and return as float vector
  459. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  460. const __m256i ones = _mm256_set1_epi16(1);
  461. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  462. return _mm256_cvtepi32_ps(summed_pairs);
  463. }
  464. // multiply int8_t, add results pairwise twice and return as float vector
  465. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  466. // Get absolute values of x vectors
  467. const __m256i ax = _mm256_sign_epi8(x, x);
  468. // Sign the values of the y vectors
  469. const __m256i sy = _mm256_sign_epi8(y, x);
  470. #if __AVXVNNI__
  471. const __m256i zero = _mm256_setzero_si256();
  472. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  473. return _mm256_cvtepi32_ps(summed_pairs);
  474. #else
  475. // Perform multiplication and create 16-bit values
  476. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  477. return sum_i16_pairs_float(dot);
  478. #endif
  479. }
  480. static inline __m128i packNibbles( __m256i bytes )
  481. {
  482. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  483. #if __AVX512F__
  484. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  485. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  486. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  487. #else
  488. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  489. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  490. __m256i low = _mm256_and_si256( lowByte, bytes );
  491. high = _mm256_srli_epi16( high, 4 );
  492. bytes = _mm256_or_si256( low, high );
  493. // Compress uint16_t lanes into bytes
  494. __m128i r0 = _mm256_castsi256_si128( bytes );
  495. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  496. return _mm_packus_epi16( r0, r1 );
  497. #endif
  498. }
  499. #else
  500. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  501. {
  502. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  503. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  504. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  505. __m128i low = _mm_and_si128( lowByte, bytes1 );
  506. high = _mm_srli_epi16( high, 4 );
  507. bytes1 = _mm_or_si128( low, high );
  508. high = _mm_andnot_si128( lowByte, bytes2 );
  509. low = _mm_and_si128( lowByte, bytes2 );
  510. high = _mm_srli_epi16( high, 4 );
  511. bytes2 = _mm_or_si128( low, high );
  512. return _mm_packus_epi16( bytes1, bytes2);
  513. }
  514. #endif
  515. #endif // __AVX__ || __AVX2__ || __AVX512F__
  516. #if __ARM_NEON
  517. #if !defined(__aarch64__)
  518. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  519. return
  520. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  521. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  522. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  523. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  524. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  525. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  526. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  527. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  528. }
  529. inline static int16_t vaddvq_s8(int8x16_t v) {
  530. return
  531. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  532. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  533. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  534. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  535. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  536. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  537. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  538. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  539. }
  540. inline static int32_t vaddvq_s16(int16x8_t v) {
  541. return
  542. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  543. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  544. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  545. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  546. }
  547. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  548. return
  549. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  550. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  551. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  552. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  553. }
  554. inline static int32_t vaddvq_s32(int32x4_t v) {
  555. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  556. }
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. float vminvq_f32(float32x4_t v) {
  561. return
  562. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  563. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  564. }
  565. float vmaxvq_f32(float32x4_t v) {
  566. return
  567. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  568. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  569. }
  570. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  571. int8x8_t res;
  572. res[0] = a[0]; res[1] = b[0];
  573. res[2] = a[1]; res[3] = b[1];
  574. res[4] = a[2]; res[5] = b[2];
  575. res[6] = a[3]; res[7] = b[3];
  576. return res;
  577. }
  578. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  579. int8x8_t res;
  580. res[0] = a[4]; res[1] = b[4];
  581. res[2] = a[5]; res[3] = b[5];
  582. res[4] = a[6]; res[5] = b[6];
  583. res[6] = a[7]; res[7] = b[7];
  584. return res;
  585. }
  586. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  587. uint8x8_t res;
  588. res[0] = a[0]; res[1] = b[0];
  589. res[2] = a[1]; res[3] = b[1];
  590. res[4] = a[2]; res[5] = b[2];
  591. res[6] = a[3]; res[7] = b[3];
  592. return res;
  593. }
  594. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  595. uint8x8_t res;
  596. res[0] = a[4]; res[1] = b[4];
  597. res[2] = a[5]; res[3] = b[5];
  598. res[4] = a[6]; res[5] = b[6];
  599. res[6] = a[7]; res[7] = b[7];
  600. return res;
  601. }
  602. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  603. int8x16_t res;
  604. res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1];
  605. res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3];
  606. res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5];
  607. res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7];
  608. return res;
  609. }
  610. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  611. int8x16_t res;
  612. res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9];
  613. res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11];
  614. res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13];
  615. res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15];
  616. return res;
  617. }
  618. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  619. uint8x16_t res;
  620. res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1];
  621. res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3];
  622. res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5];
  623. res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7];
  624. return res;
  625. }
  626. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  627. uint8x16_t res;
  628. res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9];
  629. res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11];
  630. res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13];
  631. res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15];
  632. return res;
  633. }
  634. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  635. int32x4_t res;
  636. res[0] = roundf(vgetq_lane_f32(v, 0));
  637. res[1] = roundf(vgetq_lane_f32(v, 1));
  638. res[2] = roundf(vgetq_lane_f32(v, 2));
  639. res[3] = roundf(vgetq_lane_f32(v, 3));
  640. return res;
  641. }
  642. #endif
  643. #endif
  644. #define QK4_0 32
  645. typedef struct {
  646. float d; // delta
  647. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  648. } block_q4_0;
  649. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  650. #define QK4_1 32
  651. typedef struct {
  652. float d; // delta
  653. float m; // min
  654. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  655. } block_q4_1;
  656. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  657. #define QK4_2 16
  658. typedef struct {
  659. ggml_fp16_t d; // delta
  660. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  661. } block_q4_2;
  662. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  663. #define QK5_0 32
  664. typedef struct {
  665. ggml_fp16_t d; // delta
  666. uint8_t qh[4]; // 5-th bit of quants
  667. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  668. } block_q5_0;
  669. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  670. #define QK5_1 32
  671. typedef struct {
  672. ggml_fp16_t d; // delta
  673. ggml_fp16_t m; // min
  674. uint8_t qh[4]; // 5-th bit of quants
  675. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  676. } block_q5_1;
  677. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  678. #define QK8_0 32
  679. typedef struct {
  680. float d; // delta
  681. int8_t qs[QK8_0]; // quants
  682. } block_q8_0;
  683. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  684. #define QK8_1 32
  685. typedef struct {
  686. float d; // delta
  687. float s0; // d * sum(qs[i]) low
  688. float s1; // d * sum(qs[i]) high
  689. int8_t qs[QK8_1]; // quants
  690. } block_q8_1;
  691. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  692. // reference implementation for deterministic creation of model files
  693. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  694. assert(k % QK4_0 == 0);
  695. const int nb = k / QK4_0;
  696. uint8_t pp[QK4_0/2];
  697. for (int i = 0; i < nb; i++) {
  698. float amax = 0.0f; // absolute max
  699. float max = 0.0f;
  700. for (int l = 0; l < QK4_0; l++) {
  701. const float v = x[i*QK4_0 + l];
  702. if (amax < fabsf(v)) {
  703. amax = fabsf(v);
  704. max = v;
  705. }
  706. }
  707. const float d = max / -8;
  708. const float id = d ? 1.0f/d : 0.0f;
  709. y[i].d = d;
  710. for (int l = 0; l < QK4_0; l += 2) {
  711. const float v0 = x[i*QK4_0 + l + 0]*id;
  712. const float v1 = x[i*QK4_0 + l + 1]*id;
  713. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  714. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  715. assert(vi0 < 16);
  716. assert(vi1 < 16);
  717. pp[l/2] = vi0 | (vi1 << 4);
  718. }
  719. memcpy(y[i].qs, pp, sizeof(pp));
  720. }
  721. }
  722. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  723. assert(k % QK4_0 == 0);
  724. const int nb = k / QK4_0;
  725. block_q4_0 * restrict y = vy;
  726. #if defined(__POWER9_VECTOR__)
  727. const vector float v85 = vec_splats(8.5f);
  728. const vector signed int v15 = vec_splats(15);
  729. for (int i = 0; i < nb; i++) {
  730. float max = 0.0f;
  731. float min = 0.0f;
  732. vector float asrcv [8];
  733. vector float srcv [8];
  734. vector float maxv[8];
  735. vector float minv[8];
  736. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  737. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  738. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  739. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  740. maxv[0] = vec_max(maxv[0], maxv[2]);
  741. maxv[4] = vec_max(maxv[4], maxv[6]);
  742. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  743. maxv[0] = vec_max(maxv[0], maxv[4]);
  744. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  745. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  746. minv[0] = vec_min(minv[0], minv[2]);
  747. minv[4] = vec_min(minv[4], minv[6]);
  748. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  749. minv[0] = vec_min(minv[0], minv[4]);
  750. max = MAX(
  751. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  752. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  753. min = MIN(
  754. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  755. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  756. const float magnitude = max >= fabsf(min) ? max : min;
  757. const float d = magnitude / -8;
  758. const float id = d ? 1.0/d : 0.0;
  759. y[i].d = d;
  760. const vector float vid = vec_splats(id);
  761. uint8_t * restrict pb = y[i].qs;
  762. for (int l = 0; l < 8; l++) {
  763. const vector float vf = vec_madd(srcv[l], vid, v85);
  764. const vector signed int vi = vec_signed(vf);
  765. const vector signed int vc = vec_min(vi, v15);
  766. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  767. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  768. }
  769. }
  770. #elif __ARM_NEON
  771. for (int i = 0; i < nb; i++) {
  772. float32x4_t srcv [8];
  773. float32x4_t maxv[8];
  774. float32x4_t minv[8];
  775. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  776. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  777. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  778. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  779. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  780. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  781. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  782. const float max = vmaxvq_f32(maxv[0]);
  783. const float min = vminvq_f32(minv[0]);
  784. const float magnitude = max >= fabsf(min) ? max : min;
  785. const float d = magnitude / -8;
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].d = d;
  788. for (int l = 0; l < 8; l++) {
  789. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  790. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  791. const int32x4_t vi = vcvtq_s32_f32(vf);
  792. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  793. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  794. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  795. }
  796. }
  797. #elif defined(__AVX2__)
  798. for (int i = 0; i < nb; i++) {
  799. // Load elements into 4 AVX vectors
  800. __m256 v0 = _mm256_loadu_ps( x );
  801. __m256 v1 = _mm256_loadu_ps( x + 8 );
  802. __m256 v2 = _mm256_loadu_ps( x + 16 );
  803. __m256 v3 = _mm256_loadu_ps( x + 24 );
  804. x += 32;
  805. // Compute max for the block
  806. __m256 max = _mm256_max_ps( v0, v1 );
  807. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  808. max = _mm256_max_ps( max, maxTmp );
  809. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  810. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  811. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  812. const float maxScalar = _mm_cvtss_f32( max4 );
  813. // Compute min for the block
  814. __m256 min = _mm256_min_ps( v0, v1 );
  815. __m256 minTmp = _mm256_min_ps( v2, v3 );
  816. min = _mm256_min_ps( min, minTmp );
  817. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  818. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  819. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  820. const float minScalar = _mm_cvtss_f32( min4 );
  821. // Quantize these floats
  822. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  823. const float d = magnitude / -8.0f;
  824. y[i].d = d;
  825. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  826. const __m256 mul = _mm256_set1_ps( id );
  827. // Apply the multiplier
  828. v0 = _mm256_mul_ps( v0, mul );
  829. v1 = _mm256_mul_ps( v1, mul );
  830. v2 = _mm256_mul_ps( v2, mul );
  831. v3 = _mm256_mul_ps( v3, mul );
  832. // Round to nearest integer
  833. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  834. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  835. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  836. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  837. // Convert floats to integers
  838. __m256i i0 = _mm256_cvtps_epi32( v0 );
  839. __m256i i1 = _mm256_cvtps_epi32( v1 );
  840. __m256i i2 = _mm256_cvtps_epi32( v2 );
  841. __m256i i3 = _mm256_cvtps_epi32( v3 );
  842. // Convert int32 to int16
  843. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  844. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  845. // Convert int16 to int8
  846. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  847. // We got our precious signed bytes, but the order is now wrong
  848. // These AVX2 pack instructions process 16-byte pieces independently
  849. // The following instruction is fixing the order
  850. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  851. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  852. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  853. const __m256i off = _mm256_set1_epi8( 8 );
  854. i0 = _mm256_add_epi8( i0, off );
  855. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  856. i0 = _mm256_min_epi8( i0, maxNibble );
  857. // Compress the vector into 4 bit/value, and store
  858. __m128i res = packNibbles( i0 );
  859. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  860. }
  861. #elif defined(__AVX__)
  862. for (int i = 0; i < nb; i++) {
  863. // Load elements into 4 AVX vectors
  864. __m256 v0 = _mm256_loadu_ps( x );
  865. __m256 v1 = _mm256_loadu_ps( x + 8 );
  866. __m256 v2 = _mm256_loadu_ps( x + 16 );
  867. __m256 v3 = _mm256_loadu_ps( x + 24 );
  868. x += 32;
  869. // Compute max for the block
  870. __m256 max = _mm256_max_ps( v0, v1 );
  871. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  872. max = _mm256_max_ps( max, maxTmp );
  873. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  874. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  875. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  876. const float maxScalar = _mm_cvtss_f32( max4 );
  877. // Compute min for the block
  878. __m256 min = _mm256_min_ps( v0, v1 );
  879. __m256 minTmp = _mm256_min_ps( v2, v3 );
  880. min = _mm256_min_ps( min, minTmp );
  881. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  882. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  883. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  884. const float minScalar = _mm_cvtss_f32( min4 );
  885. // Quantize these floats
  886. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  887. const float d = magnitude / -8.0f;
  888. y[i].d = d;
  889. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  890. const __m256 mul = _mm256_set1_ps( id );
  891. // Apply the multiplier
  892. v0 = _mm256_mul_ps( v0, mul );
  893. v1 = _mm256_mul_ps( v1, mul );
  894. v2 = _mm256_mul_ps( v2, mul );
  895. v3 = _mm256_mul_ps( v3, mul );
  896. // Round to nearest integer
  897. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  898. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  899. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  900. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  901. // Convert floats to integers
  902. __m256i i0 = _mm256_cvtps_epi32( v0 );
  903. __m256i i1 = _mm256_cvtps_epi32( v1 );
  904. __m256i i2 = _mm256_cvtps_epi32( v2 );
  905. __m256i i3 = _mm256_cvtps_epi32( v3 );
  906. // Since we don't have in AVX some necessary functions,
  907. // we split the registers in half and call AVX2 analogs from SSE
  908. __m128i ni0 = _mm256_castsi256_si128( i0 );
  909. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  910. __m128i ni2 = _mm256_castsi256_si128( i1 );
  911. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  912. __m128i ni4 = _mm256_castsi256_si128( i2 );
  913. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  914. __m128i ni6 = _mm256_castsi256_si128( i3 );
  915. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  916. // Convert int32 to int16
  917. ni0 = _mm_packs_epi32( ni0, ni1 );
  918. ni2 = _mm_packs_epi32( ni2, ni3 );
  919. ni4 = _mm_packs_epi32( ni4, ni5 );
  920. ni6 = _mm_packs_epi32( ni6, ni7 );
  921. // Convert int16 to int8
  922. ni0 = _mm_packs_epi16( ni0, ni2 );
  923. ni4 = _mm_packs_epi16( ni4, ni6 );
  924. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  925. const __m128i off = _mm_set1_epi8( 8 );
  926. ni0 = _mm_add_epi8( ni0, off );
  927. ni4 = _mm_add_epi8( ni4, off );
  928. const __m128i maxNibble = _mm_set1_epi8( 15 );
  929. ni0 = _mm_min_epi8( ni0, maxNibble );
  930. ni4 = _mm_min_epi8( ni4, maxNibble );
  931. // Compress the vector into 4 bit/value, and store
  932. __m128i res = packNibbles( ni0, ni4 );
  933. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  934. }
  935. #elif defined(__wasm_simd128__)
  936. for (int i = 0; i < nb; i++) {
  937. float max = 0.0f;
  938. float min = 0.0f;
  939. v128_t srcv [8];
  940. v128_t maxv[8];
  941. v128_t minv[8];
  942. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  943. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  944. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  945. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  946. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  947. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  948. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  949. max = MAX(
  950. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  951. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  952. min = MIN(
  953. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  954. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  955. const float magnitude = max >= fabsf(min) ? max : min;
  956. const float d = magnitude / -8;
  957. const float id = d ? 1.0/d : 0.0;
  958. y[i].d = d;
  959. for (int l = 0; l < 8; l++) {
  960. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  961. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  962. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  963. const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
  964. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  965. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  966. }
  967. }
  968. #else
  969. // scalar
  970. quantize_row_q4_0_reference(x, y, k);
  971. #endif
  972. }
  973. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  974. assert(k % QK4_1 == 0);
  975. const int nb = k / QK4_1;
  976. block_q4_1 * restrict y = vy;
  977. uint8_t pp[QK4_1/2];
  978. for (int i = 0; i < nb; i++) {
  979. float min = FLT_MAX;
  980. float max = -FLT_MAX;
  981. for (int l = 0; l < QK4_1; l++) {
  982. const float v = x[i*QK4_1 + l];
  983. if (v < min) min = v;
  984. if (v > max) max = v;
  985. }
  986. const float d = (max - min) / ((1 << 4) - 1);
  987. const float id = d ? 1.0f/d : 0.0f;
  988. y[i].d = d;
  989. y[i].m = min;
  990. for (int l = 0; l < QK4_1; l += 2) {
  991. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  992. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  993. const uint8_t vi0 = roundf(v0);
  994. const uint8_t vi1 = roundf(v1);
  995. assert(vi0 < 16);
  996. assert(vi1 < 16);
  997. pp[l/2] = vi0 | (vi1 << 4);
  998. }
  999. memcpy(y[i].qs, pp, sizeof(pp));
  1000. }
  1001. }
  1002. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  1003. assert(k % QK4_1 == 0);
  1004. const int nb = k / QK4_1;
  1005. block_q4_1 * restrict y = vy;
  1006. #if defined(__AVX2__)
  1007. for (int i = 0; i < nb; i++) {
  1008. // Load elements into 4 AVX vectors
  1009. __m256 v0 = _mm256_loadu_ps( x );
  1010. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1011. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1012. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1013. x += 32;
  1014. // Compute max for the block
  1015. __m256 vmax;
  1016. vmax = _mm256_max_ps( v0, v1 );
  1017. vmax = _mm256_max_ps( vmax, v2 );
  1018. vmax = _mm256_max_ps( vmax, v3 );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Compute min for the block
  1024. __m256 vmin;
  1025. vmin = _mm256_min_ps( v0, v1 );
  1026. vmin = _mm256_min_ps( vmin, v2 );
  1027. vmin = _mm256_min_ps( vmin, v3 );
  1028. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  1029. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  1030. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  1031. const float minScalar = _mm_cvtss_f32( min4 );
  1032. // Quantize these floats
  1033. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  1034. const float id = d ? 1.0f/d : 0.0f;
  1035. y[i].m = minScalar;
  1036. y[i].d = d;
  1037. // x = (x-min)*id
  1038. const __m256 mul = _mm256_set1_ps( id );
  1039. const __m256 off = _mm256_set1_ps( minScalar );
  1040. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  1041. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  1042. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  1043. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  1044. // Round to nearest integer
  1045. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1046. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1047. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1048. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1049. // Convert floats to integers
  1050. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1051. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1052. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1053. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1054. // Convert int32 to int16
  1055. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1056. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1057. // Convert int16 to int8
  1058. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1059. // We got our precious signed bytes, but the order is now wrong
  1060. // These AVX2 pack instructions process 16-byte pieces independently
  1061. // The following instruction is fixing the order
  1062. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1063. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1064. // Compress the vector into 4 bit/value, and store
  1065. __m128i res = packNibbles( i0 );
  1066. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1067. }
  1068. #elif __ARM_NEON
  1069. for (int i = 0; i < nb; i++) {
  1070. float32x4_t srcv[8];
  1071. float32x4_t minv[8];
  1072. float32x4_t maxv[8];
  1073. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1074. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1075. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1076. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1077. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1078. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1079. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1080. const float min = vminvq_f32(minv[0]);
  1081. const float max = vmaxvq_f32(maxv[0]);
  1082. const float d = (max - min) / ((1 << 4) - 1);
  1083. const float id = d ? 1.0f/d : 0.0f;
  1084. y[i].d = d;
  1085. y[i].m = min;
  1086. const float32x4_t minv0 = vdupq_n_f32(min);
  1087. for (int l = 0; l < 8; l++) {
  1088. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1089. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1090. const int32x4_t vi = vcvtq_s32_f32(vf);
  1091. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1092. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1093. }
  1094. }
  1095. #else
  1096. // scalar
  1097. quantize_row_q4_1_reference(x, vy, k);
  1098. #endif
  1099. }
  1100. // reference implementation for deterministic creation of model files
  1101. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1102. assert(k % QK4_2 == 0);
  1103. const int nb = k / QK4_2;
  1104. for (int i = 0; i < nb; i++) {
  1105. float amax = 0.0f; // absolute max
  1106. float max = 0.0f;
  1107. for (int l = 0; l < QK4_2; l++) {
  1108. const float v = x[i*QK4_2 + l];
  1109. if (amax < fabsf(v)) {
  1110. amax = fabsf(v);
  1111. max = v;
  1112. }
  1113. }
  1114. const float d = max / -8;
  1115. const float id = d ? 1.0f/d : 0.0f;
  1116. y[i].d = GGML_FP32_TO_FP16(d);
  1117. for (int l = 0; l < QK4_2; l += 2) {
  1118. const float v0 = x[i*QK4_2 + l + 0]*id;
  1119. const float v1 = x[i*QK4_2 + l + 1]*id;
  1120. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1121. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1122. assert(vi0 < 16);
  1123. assert(vi1 < 16);
  1124. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1125. }
  1126. }
  1127. }
  1128. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1129. assert(k % QK4_2 == 0);
  1130. block_q4_2 * restrict y = vy;
  1131. quantize_row_q4_2_reference(x, y, k);
  1132. }
  1133. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1134. assert(k % QK5_0 == 0);
  1135. const int nb = k / QK5_0;
  1136. for (int i = 0; i < nb; i++) {
  1137. float amax = 0.0f; // absolute max
  1138. float max = 0.0f;
  1139. for (int l = 0; l < QK5_0; l++) {
  1140. const float v = x[i*QK5_0 + l];
  1141. if (amax < fabsf(v)) {
  1142. amax = fabsf(v);
  1143. max = v;
  1144. }
  1145. }
  1146. const float d = max / -16;
  1147. const float id = d ? 1.0f/d : 0.0f;
  1148. y[i].d = GGML_FP32_TO_FP16(d);
  1149. uint32_t qh = 0;
  1150. for (int l = 0; l < QK5_0; l += 2) {
  1151. const float v0 = x[i*QK5_0 + l + 0]*id;
  1152. const float v1 = x[i*QK5_0 + l + 1]*id;
  1153. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1154. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1155. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1156. // get the 5-th bit and store it in qh at the right position
  1157. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1158. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1159. }
  1160. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1161. }
  1162. }
  1163. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1164. assert(k % QK5_0 == 0);
  1165. block_q5_0 * restrict y = vy;
  1166. quantize_row_q5_0_reference(x, y, k);
  1167. }
  1168. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1169. assert(k % QK5_1 == 0);
  1170. const int nb = k / QK5_1;
  1171. for (int i = 0; i < nb; i++) {
  1172. float min = FLT_MAX;
  1173. float max = -FLT_MAX;
  1174. for (int l = 0; l < QK5_1; l++) {
  1175. const float v = x[i*QK5_1 + l];
  1176. if (v < min) min = v;
  1177. if (v > max) max = v;
  1178. }
  1179. const float d = (max - min) / ((1 << 5) - 1);
  1180. const float id = d ? 1.0f/d : 0.0f;
  1181. y[i].d = GGML_FP32_TO_FP16(d);
  1182. y[i].m = GGML_FP32_TO_FP16(min);
  1183. uint32_t qh = 0;
  1184. for (int l = 0; l < QK5_1; l += 2) {
  1185. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1186. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1187. const uint32_t vi0 = (int) (v0 + 0.5f);
  1188. const uint32_t vi1 = (int) (v1 + 0.5f);
  1189. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1190. // get the 5-th bit and store it in qh at the right position
  1191. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1192. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1193. }
  1194. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1195. }
  1196. }
  1197. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1198. assert(k % QK5_1 == 0);
  1199. block_q5_1 * restrict y = vy;
  1200. quantize_row_q5_1_reference(x, y, k);
  1201. }
  1202. // reference implementation for deterministic creation of model files
  1203. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1204. assert(k % QK8_0 == 0);
  1205. const int nb = k / QK8_0;
  1206. for (int i = 0; i < nb; i++) {
  1207. float amax = 0.0f; // absolute max
  1208. for (int l = 0; l < QK8_0; l++) {
  1209. const float v = x[i*QK8_0 + l];
  1210. amax = MAX(amax, fabsf(v));
  1211. }
  1212. const float d = amax / ((1 << 7) - 1);
  1213. const float id = d ? 1.0f/d : 0.0f;
  1214. y[i].d = d;
  1215. for (int l = 0; l < QK8_0; ++l) {
  1216. const float v0 = x[i*QK8_0 + l]*id;
  1217. y[i].qs[l] = roundf(v0);
  1218. }
  1219. }
  1220. }
  1221. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1222. assert(k % QK8_0 == 0);
  1223. block_q8_0 * restrict y = vy;
  1224. quantize_row_q8_0_reference(x, y, k);
  1225. }
  1226. // reference implementation for deterministic creation of model files
  1227. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1228. assert(k % QK8_1 == 0);
  1229. const int nb = k / QK8_1;
  1230. for (int i = 0; i < nb; i++) {
  1231. float amax = 0.0f; // absolute max
  1232. for (int l = 0; l < QK8_1; l++) {
  1233. const float v = x[i*QK8_1 + l];
  1234. amax = MAX(amax, fabsf(v));
  1235. }
  1236. const float d = amax / ((1 << 7) - 1);
  1237. const float id = d ? 1.0f/d : 0.0f;
  1238. y[i].d = d;
  1239. int sum0 = 0;
  1240. int sum1 = 0;
  1241. for (int l = 0; l < QK8_1/2; ++l) {
  1242. const float v0 = x[i*QK8_1 + l]*id;
  1243. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1244. y[i].qs[ l] = roundf(v0);
  1245. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1246. sum0 += y[i].qs[ l];
  1247. sum1 += y[i].qs[QK8_1/2 + l];
  1248. }
  1249. y[i].s0 = d * sum0;
  1250. y[i].s1 = d * sum1;
  1251. }
  1252. }
  1253. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1254. assert(k % QK8_1 == 0);
  1255. const int nb = k / QK8_1;
  1256. block_q8_1 * restrict y = vy;
  1257. #if defined(__ARM_NEON)
  1258. for (int i = 0; i < nb; i++) {
  1259. float32x4_t srcv [8];
  1260. float32x4_t asrcv[8];
  1261. float32x4_t amaxv[8];
  1262. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1263. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1264. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1265. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1266. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1267. const float amax = vmaxvq_f32(amaxv[0]);
  1268. const float d = amax / ((1 << 7) - 1);
  1269. const float id = d ? 1.0f/d : 0.0f;
  1270. y[i].d = d;
  1271. int32x4_t accv0 = vdupq_n_s32(0);
  1272. int32x4_t accv1 = vdupq_n_s32(0);
  1273. // low half
  1274. for (int l = 0; l < 4; l++) {
  1275. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1276. const int32x4_t vi = vcvtnq_s32_f32(v);
  1277. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1278. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1279. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1280. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1281. accv0 = vaddq_s32(accv0, vi);
  1282. }
  1283. // high half
  1284. for (int l = 4; l < 8; l++) {
  1285. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1286. const int32x4_t vi = vcvtnq_s32_f32(v);
  1287. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1288. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1289. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1290. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1291. accv1 = vaddq_s32(accv1, vi);
  1292. }
  1293. const int32_t sum0 = vaddvq_s32(accv0);
  1294. const int32_t sum1 = vaddvq_s32(accv1);
  1295. y[i].s0 = d * sum0;
  1296. y[i].s1 = d * sum1;
  1297. }
  1298. #elif defined(__AVX2__) || defined(__AVX__)
  1299. for (int i = 0; i < nb; i++) {
  1300. // Load elements into 4 AVX vectors
  1301. __m256 v0 = _mm256_loadu_ps( x );
  1302. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1303. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1304. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1305. x += 32;
  1306. // Compute max(abs(e)) for the block
  1307. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1308. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1309. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1310. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1311. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1312. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1313. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1314. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1315. const float maxScalar = _mm_cvtss_f32( max4 );
  1316. // Quantize these floats
  1317. const float d = maxScalar / 127.f;
  1318. y[i].d = d;
  1319. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1320. const __m256 mul = _mm256_set1_ps( id );
  1321. // Apply the multiplier
  1322. v0 = _mm256_mul_ps( v0, mul );
  1323. v1 = _mm256_mul_ps( v1, mul );
  1324. v2 = _mm256_mul_ps( v2, mul );
  1325. v3 = _mm256_mul_ps( v3, mul );
  1326. // Round to nearest integer
  1327. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1328. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1329. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1330. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1331. // Convert floats to integers
  1332. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1333. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1334. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1335. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1336. #if defined(__AVX2__)
  1337. // Compute the sum of the quants and set y[i].s
  1338. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1339. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1340. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1341. // Convert int32 to int16
  1342. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1343. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1344. // Convert int16 to int8
  1345. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1346. // We got our precious signed bytes, but the order is now wrong
  1347. // These AVX2 pack instructions process 16-byte pieces independently
  1348. // The following instruction is fixing the order
  1349. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1350. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1351. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1352. #else
  1353. // Since we don't have in AVX some necessary functions,
  1354. // we split the registers in half and call AVX2 analogs from SSE
  1355. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1356. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1357. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1358. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1359. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1360. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1361. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1362. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1363. // Compute the sum of the quants and set y[i].s
  1364. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1365. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1366. y[i].s0 = d * hsum_i32_4(s0);
  1367. y[i].s1 = d * hsum_i32_4(s1);
  1368. // Convert int32 to int16
  1369. ni0 = _mm_packs_epi32( ni0, ni1 );
  1370. ni2 = _mm_packs_epi32( ni2, ni3 );
  1371. ni4 = _mm_packs_epi32( ni4, ni5 );
  1372. ni6 = _mm_packs_epi32( ni6, ni7 );
  1373. // Convert int16 to int8
  1374. ni0 = _mm_packs_epi16( ni0, ni2 );
  1375. ni4 = _mm_packs_epi16( ni4, ni6 );
  1376. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1377. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1378. #endif
  1379. }
  1380. #else
  1381. // scalar
  1382. quantize_row_q8_1_reference(x, y, k);
  1383. #endif
  1384. }
  1385. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1386. assert(k % QK4_0 == 0);
  1387. const int nb = k / QK4_0;
  1388. const block_q4_0 * restrict x = vx;
  1389. #if defined(__AVX2__)
  1390. for (int i = 0; i < nb; i++) {
  1391. // scale factor
  1392. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1393. const uint8_t * restrict pp = x[i].qs;
  1394. for (int l = 0; l < QK4_0; l += 32) {
  1395. // Load 32x4-bit integers into 32x8-bit integers
  1396. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1397. // Subtract 8 from the integers
  1398. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1399. // Convert to 16-bit int
  1400. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1401. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1402. // Convert to 32-bit int -> float 32
  1403. const __m256 vf[4] = {
  1404. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1405. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1406. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1407. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1408. };
  1409. // Scale and store
  1410. for (int j = 0; j < 4; j++) {
  1411. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1412. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1413. }
  1414. }
  1415. }
  1416. #elif defined(__ARM_NEON)
  1417. for (int i = 0; i < nb; i++) {
  1418. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1419. const uint8_t * restrict pp = x[i].qs;
  1420. for (int l = 0; l < QK4_0; l += 16) {
  1421. // Load 16x4-bit integers into 8x8-bit integers
  1422. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1423. // Expand 4-bit qs to 8-bit bytes
  1424. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1425. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1426. // Convert to signed 8-bit integers
  1427. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1428. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1429. // Subtract 8 from each byte
  1430. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1431. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1432. // Interleave and combine
  1433. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1434. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1435. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1436. // convert to 2x int16x8_t
  1437. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1438. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1439. // convert to 4x float32x4_t
  1440. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1441. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1442. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1443. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1444. // Multiply by d
  1445. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1446. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1447. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1448. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1449. // Store
  1450. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1451. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1452. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1453. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1454. }
  1455. }
  1456. #else
  1457. // scalar
  1458. for (int i = 0; i < nb; i++) {
  1459. const float d = x[i].d;
  1460. const uint8_t * restrict pp = x[i].qs;
  1461. for (int l = 0; l < QK4_0; l += 2) {
  1462. const uint8_t vi = pp[l/2];
  1463. const int8_t vi0 = vi & 0x0F;
  1464. const int8_t vi1 = vi >> 4;
  1465. const float v0 = (vi0 - 8)*d;
  1466. const float v1 = (vi1 - 8)*d;
  1467. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1468. y[i*QK4_0 + l + 0] = v0;
  1469. y[i*QK4_0 + l + 1] = v1;
  1470. assert(!isnan(y[i*QK4_0 + l + 0]));
  1471. assert(!isnan(y[i*QK4_0 + l + 1]));
  1472. }
  1473. }
  1474. #endif
  1475. }
  1476. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1477. assert(k % QK4_1 == 0);
  1478. const int nb = k / QK4_1;
  1479. const block_q4_1 * restrict x = vx;
  1480. #if defined(__AVX2__)
  1481. for (int i = 0; i < nb; i++) {
  1482. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1483. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1484. const uint8_t * restrict pp = x[i].qs;
  1485. for (int l = 0; l < QK4_1; l += 32) {
  1486. // Load 32x4-bit integers into 32x8-bit integers
  1487. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1488. // Convert to 16-bit int
  1489. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1490. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1491. // Convert to 32-bit int -> float 32
  1492. const __m256 vf[4] = {
  1493. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1494. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1495. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1496. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1497. };
  1498. // Scale, add m and store
  1499. for (int j = 0; j < 4; j++) {
  1500. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1501. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1502. }
  1503. }
  1504. }
  1505. #elif defined(__ARM_NEON)
  1506. for (int i = 0; i < nb; i++) {
  1507. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1508. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1509. const uint8_t * restrict pp = x[i].qs;
  1510. for (int l = 0; l < QK4_1; l += 16) {
  1511. // Load 16x4-bit integers into 8x8-bit integers
  1512. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1513. // Expand 4-bit qs to 8-bit bytes
  1514. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1515. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1516. // Interleave and combine
  1517. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1518. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1519. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1520. // convert to 2x uint16x8_t
  1521. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1522. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1523. // convert to 4x float32x4_t
  1524. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1525. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1526. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1527. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1528. // multiply by d and add m
  1529. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1530. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1531. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1532. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1533. // Store
  1534. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1535. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1536. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1537. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1538. }
  1539. }
  1540. #else
  1541. for (int i = 0; i < nb; i++) {
  1542. const float d = x[i].d;
  1543. const float m = x[i].m;
  1544. const uint8_t * restrict pp = x[i].qs;
  1545. for (int l = 0; l < QK4_1; l += 2) {
  1546. const uint8_t vi = pp[l/2];
  1547. const int8_t vi0 = vi & 0x0F;
  1548. const int8_t vi1 = vi >> 4;
  1549. const float v0 = vi0*d + m;
  1550. const float v1 = vi1*d + m;
  1551. y[i*QK4_1 + l + 0] = v0;
  1552. y[i*QK4_1 + l + 1] = v1;
  1553. assert(!isnan(y[i*QK4_1 + l + 0]));
  1554. assert(!isnan(y[i*QK4_1 + l + 1]));
  1555. }
  1556. }
  1557. #endif
  1558. }
  1559. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1560. assert(k % QK4_2 == 0);
  1561. const int nb = k / QK4_2;
  1562. const block_q4_2 * restrict x = vx;
  1563. for (int i = 0; i < nb; i++) {
  1564. const float d = GGML_FP16_TO_FP32(x[i].d);
  1565. const uint8_t * restrict pp = x[i].qs;
  1566. for (int l = 0; l < QK4_2; l += 2) {
  1567. const uint8_t vi = pp[l/2];
  1568. const int8_t vi0 = vi & 0x0F;
  1569. const int8_t vi1 = vi >> 4;
  1570. const float v0 = (vi0 - 8)*d;
  1571. const float v1 = (vi1 - 8)*d;
  1572. y[i*QK4_2 + l + 0] = v0;
  1573. y[i*QK4_2 + l + 1] = v1;
  1574. assert(!isnan(y[i*QK4_2 + l + 0]));
  1575. assert(!isnan(y[i*QK4_2 + l + 1]));
  1576. }
  1577. }
  1578. }
  1579. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1580. assert(k % QK5_0 == 0);
  1581. const int nb = k / QK5_0;
  1582. const block_q5_0 * restrict x = vx;
  1583. for (int i = 0; i < nb; i++) {
  1584. const float d = GGML_FP16_TO_FP32(x[i].d);
  1585. const uint8_t * restrict pp = x[i].qs;
  1586. uint32_t qh;
  1587. memcpy(&qh, x[i].qh, sizeof(qh));
  1588. for (int l = 0; l < QK5_0; l += 2) {
  1589. const uint8_t vi = pp[l/2];
  1590. // extract the 5-th bit from qh
  1591. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1592. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1593. const int8_t vi0 = (vi & 0x0F) | vh0;
  1594. const int8_t vi1 = (vi >> 4) | vh1;
  1595. const float v0 = (vi0 - 16)*d;
  1596. const float v1 = (vi1 - 16)*d;
  1597. y[i*QK5_0 + l + 0] = v0;
  1598. y[i*QK5_0 + l + 1] = v1;
  1599. assert(!isnan(y[i*QK5_0 + l + 0]));
  1600. assert(!isnan(y[i*QK5_0 + l + 1]));
  1601. }
  1602. }
  1603. }
  1604. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1605. assert(k % QK5_1 == 0);
  1606. const int nb = k / QK5_1;
  1607. const block_q5_1 * restrict x = vx;
  1608. for (int i = 0; i < nb; i++) {
  1609. const float d = GGML_FP16_TO_FP32(x[i].d);
  1610. const float m = GGML_FP16_TO_FP32(x[i].m);
  1611. const uint8_t * restrict pp = x[i].qs;
  1612. uint32_t qh;
  1613. memcpy(&qh, x[i].qh, sizeof(qh));
  1614. for (int l = 0; l < QK5_1; l += 2) {
  1615. const uint8_t vi = pp[l/2];
  1616. // extract the 5-th bit from qh
  1617. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1618. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1619. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1620. const uint8_t vi1 = (vi >> 4) | vh1;
  1621. const float v0 = vi0*d + m;
  1622. const float v1 = vi1*d + m;
  1623. y[i*QK5_1 + l + 0] = v0;
  1624. y[i*QK5_1 + l + 1] = v1;
  1625. assert(!isnan(y[i*QK5_1 + l + 0]));
  1626. assert(!isnan(y[i*QK5_1 + l + 1]));
  1627. }
  1628. }
  1629. }
  1630. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1631. assert(k % QK8_0 == 0);
  1632. const int nb = k / QK8_0;
  1633. const block_q8_0 * restrict x = vx;
  1634. for (int i = 0; i < nb; i++) {
  1635. const float d = x[i].d;
  1636. const int8_t * restrict pp = x[i].qs;
  1637. for (int l = 0; l < QK8_0; ++l) {
  1638. y[i*QK8_0 + l] = pp[l]*d;
  1639. }
  1640. }
  1641. }
  1642. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1643. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1644. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1645. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1646. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1647. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1648. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1649. [GGML_TYPE_Q4_0] = {
  1650. .dequantize_row_q = dequantize_row_q4_0,
  1651. .quantize_row_q = quantize_row_q4_0,
  1652. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1653. .quantize_row_q_dot = quantize_row_q8_0,
  1654. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1655. .vec_dot_type = GGML_TYPE_Q8_0,
  1656. },
  1657. [GGML_TYPE_Q4_1] = {
  1658. .dequantize_row_q = dequantize_row_q4_1,
  1659. .quantize_row_q = quantize_row_q4_1,
  1660. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1661. .quantize_row_q_dot = quantize_row_q8_1,
  1662. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1663. .vec_dot_type = GGML_TYPE_Q8_1,
  1664. },
  1665. [GGML_TYPE_Q4_2] = {
  1666. .dequantize_row_q = dequantize_row_q4_2,
  1667. .quantize_row_q = quantize_row_q4_2,
  1668. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1669. .quantize_row_q_dot = quantize_row_q8_0,
  1670. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1671. .vec_dot_type = GGML_TYPE_Q8_0,
  1672. },
  1673. [GGML_TYPE_Q5_0] = {
  1674. .dequantize_row_q = dequantize_row_q5_0,
  1675. .quantize_row_q = quantize_row_q5_0,
  1676. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1677. .quantize_row_q_dot = quantize_row_q8_0,
  1678. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1679. .vec_dot_type = GGML_TYPE_Q8_0,
  1680. },
  1681. [GGML_TYPE_Q5_1] = {
  1682. .dequantize_row_q = dequantize_row_q5_1,
  1683. .quantize_row_q = quantize_row_q5_1,
  1684. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1685. .quantize_row_q_dot = quantize_row_q8_1,
  1686. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1687. .vec_dot_type = GGML_TYPE_Q8_1,
  1688. },
  1689. [GGML_TYPE_Q8_0] = {
  1690. .dequantize_row_q = dequantize_row_q8_0,
  1691. .quantize_row_q = quantize_row_q8_0,
  1692. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1693. .quantize_row_q_dot = quantize_row_q8_0,
  1694. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1695. .vec_dot_type = GGML_TYPE_Q8_0,
  1696. },
  1697. [GGML_TYPE_Q8_1] = {
  1698. .dequantize_row_q = NULL, // TODO
  1699. .quantize_row_q = quantize_row_q8_1,
  1700. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1701. .quantize_row_q_dot = quantize_row_q8_1,
  1702. .vec_dot_q = NULL, // TODO
  1703. .vec_dot_type = GGML_TYPE_Q8_1,
  1704. },
  1705. };
  1706. // For internal test use
  1707. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1708. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1709. return quantize_fns[i];
  1710. }
  1711. //
  1712. // simd mappings
  1713. //
  1714. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1715. // we then implement the fundamental computation operations below using only these macros
  1716. // adding support for new architectures requires to define the corresponding SIMD macros
  1717. //
  1718. // GGML_F32_STEP / GGML_F16_STEP
  1719. // number of elements to process in a single step
  1720. //
  1721. // GGML_F32_EPR / GGML_F16_EPR
  1722. // number of elements to fit in a single register
  1723. //
  1724. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1725. #define GGML_SIMD
  1726. // F32 NEON
  1727. #define GGML_F32_STEP 16
  1728. #define GGML_F32_EPR 4
  1729. #define GGML_F32x4 float32x4_t
  1730. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1731. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1732. #define GGML_F32x4_LOAD vld1q_f32
  1733. #define GGML_F32x4_STORE vst1q_f32
  1734. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1735. #define GGML_F32x4_ADD vaddq_f32
  1736. #define GGML_F32x4_MUL vmulq_f32
  1737. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1738. #define GGML_F32x4_REDUCE(res, x) \
  1739. { \
  1740. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1741. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1742. } \
  1743. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1744. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1745. } \
  1746. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1747. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1748. } \
  1749. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1750. }
  1751. #define GGML_F32_VEC GGML_F32x4
  1752. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1753. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1754. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1755. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1756. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1757. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1758. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1759. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1760. // F16 NEON
  1761. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1762. #define GGML_F16_STEP 32
  1763. #define GGML_F16_EPR 8
  1764. #define GGML_F16x8 float16x8_t
  1765. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1766. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1767. #define GGML_F16x8_LOAD vld1q_f16
  1768. #define GGML_F16x8_STORE vst1q_f16
  1769. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1770. #define GGML_F16x8_ADD vaddq_f16
  1771. #define GGML_F16x8_MUL vmulq_f16
  1772. #define GGML_F16x8_REDUCE(res, x) \
  1773. { \
  1774. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1775. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1776. } \
  1777. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1778. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1779. } \
  1780. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1781. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1782. } \
  1783. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1784. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1785. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1786. }
  1787. #define GGML_F16_VEC GGML_F16x8
  1788. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1789. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1790. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1791. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1792. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1793. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1794. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1795. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1796. #else
  1797. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1798. // and take advantage of the vcvt_ functions to convert to/from FP16
  1799. #define GGML_F16_STEP 16
  1800. #define GGML_F16_EPR 4
  1801. #define GGML_F32Cx4 float32x4_t
  1802. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1803. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1804. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1805. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1806. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1807. #define GGML_F32Cx4_ADD vaddq_f32
  1808. #define GGML_F32Cx4_MUL vmulq_f32
  1809. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1810. #define GGML_F16_VEC GGML_F32Cx4
  1811. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1812. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1813. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1814. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1815. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1816. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1817. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1818. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1819. #endif
  1820. #elif defined(__AVX__)
  1821. #define GGML_SIMD
  1822. // F32 AVX
  1823. #define GGML_F32_STEP 32
  1824. #define GGML_F32_EPR 8
  1825. #define GGML_F32x8 __m256
  1826. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1827. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1828. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1829. #define GGML_F32x8_STORE _mm256_storeu_ps
  1830. #if defined(__FMA__)
  1831. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1832. #else
  1833. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1834. #endif
  1835. #define GGML_F32x8_ADD _mm256_add_ps
  1836. #define GGML_F32x8_MUL _mm256_mul_ps
  1837. #define GGML_F32x8_REDUCE(res, x) \
  1838. { \
  1839. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1840. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1841. } \
  1842. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1843. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1844. } \
  1845. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1846. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1847. } \
  1848. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1849. _mm256_extractf128_ps(x[0], 1)); \
  1850. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1851. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1852. }
  1853. // TODO: is this optimal ?
  1854. #define GGML_F32_VEC GGML_F32x8
  1855. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1856. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1857. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1858. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1859. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1860. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1861. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1862. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1863. // F16 AVX
  1864. #define GGML_F16_STEP 32
  1865. #define GGML_F16_EPR 8
  1866. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1867. #define GGML_F32Cx8 __m256
  1868. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1869. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1870. #if defined(__F16C__)
  1871. // the _mm256_cvt intrinsics require F16C
  1872. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1873. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1874. #else
  1875. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1876. float tmp[8];
  1877. for (int i = 0; i < 8; i++)
  1878. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1879. return _mm256_loadu_ps(tmp);
  1880. }
  1881. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1882. float arr[8];
  1883. _mm256_storeu_ps(arr, y);
  1884. for (int i = 0; i < 8; i++)
  1885. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1886. }
  1887. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1888. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1889. #endif
  1890. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1891. #define GGML_F32Cx8_ADD _mm256_add_ps
  1892. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1893. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1894. #define GGML_F16_VEC GGML_F32Cx8
  1895. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1896. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1897. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1898. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1899. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1900. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1901. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1902. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1903. #elif defined(__POWER9_VECTOR__)
  1904. #define GGML_SIMD
  1905. // F32 POWER9
  1906. #define GGML_F32_STEP 32
  1907. #define GGML_F32_EPR 4
  1908. #define GGML_F32x4 vector float
  1909. #define GGML_F32x4_ZERO 0.0f
  1910. #define GGML_F32x4_SET1 vec_splats
  1911. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1912. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1913. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1914. #define GGML_F32x4_ADD vec_add
  1915. #define GGML_F32x4_MUL vec_mul
  1916. #define GGML_F32x4_REDUCE(res, x) \
  1917. { \
  1918. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1919. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1920. } \
  1921. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1922. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1923. } \
  1924. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1925. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1926. } \
  1927. res = vec_extract(x[0], 0) + \
  1928. vec_extract(x[0], 1) + \
  1929. vec_extract(x[0], 2) + \
  1930. vec_extract(x[0], 3); \
  1931. }
  1932. #define GGML_F32_VEC GGML_F32x4
  1933. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1934. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1935. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1936. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1937. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1938. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1939. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1940. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1941. // F16 POWER9
  1942. #define GGML_F16_STEP GGML_F32_STEP
  1943. #define GGML_F16_EPR GGML_F32_EPR
  1944. #define GGML_F16_VEC GGML_F32x4
  1945. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1946. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1947. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1948. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1949. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1950. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1951. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1952. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1953. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1954. #define GGML_F16_VEC_STORE(p, r, i) \
  1955. if (i & 0x1) \
  1956. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1957. r[i - GGML_ENDIAN_BYTE(0)]), \
  1958. 0, p - GGML_F16_EPR)
  1959. #elif defined(__wasm_simd128__)
  1960. #define GGML_SIMD
  1961. // F32 WASM
  1962. #define GGML_F32_STEP 16
  1963. #define GGML_F32_EPR 4
  1964. #define GGML_F32x4 v128_t
  1965. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1966. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1967. #define GGML_F32x4_LOAD wasm_v128_load
  1968. #define GGML_F32x4_STORE wasm_v128_store
  1969. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1970. #define GGML_F32x4_ADD wasm_f32x4_add
  1971. #define GGML_F32x4_MUL wasm_f32x4_mul
  1972. #define GGML_F32x4_REDUCE(res, x) \
  1973. { \
  1974. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1975. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1976. } \
  1977. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1978. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1979. } \
  1980. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1981. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1982. } \
  1983. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1984. wasm_f32x4_extract_lane(x[0], 1) + \
  1985. wasm_f32x4_extract_lane(x[0], 2) + \
  1986. wasm_f32x4_extract_lane(x[0], 3); \
  1987. }
  1988. #define GGML_F32_VEC GGML_F32x4
  1989. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1990. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1991. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1992. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1993. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1994. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1995. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1996. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1997. // F16 WASM
  1998. #define GGML_F16_STEP 16
  1999. #define GGML_F16_EPR 4
  2000. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  2001. float tmp[4];
  2002. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  2003. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  2004. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  2005. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  2006. return wasm_v128_load(tmp);
  2007. }
  2008. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  2009. float tmp[4];
  2010. wasm_v128_store(tmp, x);
  2011. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  2012. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  2013. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  2014. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  2015. }
  2016. #define GGML_F16x4 v128_t
  2017. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  2018. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  2019. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  2020. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  2021. #define GGML_F16x4_FMA GGML_F32x4_FMA
  2022. #define GGML_F16x4_ADD wasm_f32x4_add
  2023. #define GGML_F16x4_MUL wasm_f32x4_mul
  2024. #define GGML_F16x4_REDUCE(res, x) \
  2025. { \
  2026. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2027. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2028. } \
  2029. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2030. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2031. } \
  2032. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2033. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2034. } \
  2035. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2036. wasm_f32x4_extract_lane(x[0], 1) + \
  2037. wasm_f32x4_extract_lane(x[0], 2) + \
  2038. wasm_f32x4_extract_lane(x[0], 3); \
  2039. }
  2040. #define GGML_F16_VEC GGML_F16x4
  2041. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2042. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2043. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2044. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2045. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2046. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2047. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2048. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2049. #elif defined(__SSE3__)
  2050. #define GGML_SIMD
  2051. // F32 SSE
  2052. #define GGML_F32_STEP 32
  2053. #define GGML_F32_EPR 4
  2054. #define GGML_F32x4 __m128
  2055. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2056. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2057. #define GGML_F32x4_LOAD _mm_loadu_ps
  2058. #define GGML_F32x4_STORE _mm_storeu_ps
  2059. #if defined(__FMA__)
  2060. // TODO: Does this work?
  2061. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2062. #else
  2063. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2064. #endif
  2065. #define GGML_F32x4_ADD _mm_add_ps
  2066. #define GGML_F32x4_MUL _mm_mul_ps
  2067. #define GGML_F32x4_REDUCE(res, x) \
  2068. { \
  2069. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2070. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2071. } \
  2072. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2073. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2074. } \
  2075. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2076. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2077. } \
  2078. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2079. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2080. }
  2081. // TODO: is this optimal ?
  2082. #define GGML_F32_VEC GGML_F32x4
  2083. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2084. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2085. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2086. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2087. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2088. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2089. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2090. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2091. // F16 SSE
  2092. #define GGML_F16_STEP 32
  2093. #define GGML_F16_EPR 4
  2094. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2095. float tmp[4];
  2096. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2097. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2098. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2099. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2100. return _mm_loadu_ps(tmp);
  2101. }
  2102. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2103. float arr[4];
  2104. _mm_storeu_ps(arr, y);
  2105. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2106. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2107. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2108. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2109. }
  2110. #define GGML_F32Cx4 __m128
  2111. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2112. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2113. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2114. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2115. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2116. #define GGML_F32Cx4_ADD _mm_add_ps
  2117. #define GGML_F32Cx4_MUL _mm_mul_ps
  2118. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2119. #define GGML_F16_VEC GGML_F32Cx4
  2120. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2121. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2122. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2123. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2124. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2125. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2126. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2127. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2128. #endif
  2129. // GGML_F32_ARR / GGML_F16_ARR
  2130. // number of registers to use per step
  2131. #ifdef GGML_SIMD
  2132. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2133. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2134. #endif
  2135. //
  2136. // fundamental operations
  2137. //
  2138. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2139. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2140. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2141. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2142. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2143. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2144. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2145. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2146. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2147. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2148. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2149. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2150. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2151. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2152. #ifdef GGML_SIMD
  2153. float sumf = 0.0f;
  2154. const int np = (n & ~(GGML_F32_STEP - 1));
  2155. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2156. GGML_F32_VEC ax[GGML_F32_ARR];
  2157. GGML_F32_VEC ay[GGML_F32_ARR];
  2158. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2159. for (int j = 0; j < GGML_F32_ARR; j++) {
  2160. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2161. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2162. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2163. }
  2164. }
  2165. // reduce sum0..sum3 to sum0
  2166. GGML_F32_VEC_REDUCE(sumf, sum);
  2167. // leftovers
  2168. for (int i = np; i < n; ++i) {
  2169. sumf += x[i]*y[i];
  2170. }
  2171. #else
  2172. // scalar
  2173. ggml_float sumf = 0.0;
  2174. for (int i = 0; i < n; ++i) {
  2175. sumf += (ggml_float)(x[i]*y[i]);
  2176. }
  2177. #endif
  2178. *s = sumf;
  2179. }
  2180. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2181. ggml_float sumf = 0.0;
  2182. #if defined(GGML_SIMD)
  2183. const int np = (n & ~(GGML_F16_STEP - 1));
  2184. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2185. GGML_F16_VEC ax[GGML_F16_ARR];
  2186. GGML_F16_VEC ay[GGML_F16_ARR];
  2187. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2188. for (int j = 0; j < GGML_F16_ARR; j++) {
  2189. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2190. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2191. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2192. }
  2193. }
  2194. // reduce sum0..sum3 to sum0
  2195. GGML_F16_VEC_REDUCE(sumf, sum);
  2196. // leftovers
  2197. for (int i = np; i < n; ++i) {
  2198. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2199. }
  2200. #else
  2201. for (int i = 0; i < n; ++i) {
  2202. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2203. }
  2204. #endif
  2205. *s = sumf;
  2206. }
  2207. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2208. const int nb = n / QK8_0;
  2209. assert(n % QK8_0 == 0);
  2210. assert(nb % 2 == 0);
  2211. const block_q4_0 * restrict x = vx;
  2212. const block_q8_0 * restrict y = vy;
  2213. #if defined(__ARM_NEON)
  2214. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2215. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2216. for (int i = 0; i < nb; i += 2) {
  2217. const block_q4_0 * restrict x0 = &x[i + 0];
  2218. const block_q4_0 * restrict x1 = &x[i + 1];
  2219. const block_q8_0 * restrict y0 = &y[i + 0];
  2220. const block_q8_0 * restrict y1 = &y[i + 1];
  2221. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2222. const int8x16_t s8b = vdupq_n_s8(0x8);
  2223. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2224. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2225. // 4-bit -> 8-bit
  2226. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2227. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2228. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2229. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2230. // sub 8
  2231. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2232. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2233. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2234. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2235. // interleave
  2236. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2237. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2238. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2239. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2240. // load y
  2241. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2242. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2243. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2244. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2245. #if defined(__ARM_FEATURE_DOTPROD)
  2246. // dot product into int32x4_t
  2247. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2248. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2249. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2250. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2251. #else
  2252. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2253. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2254. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2255. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2256. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2257. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2258. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2259. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2260. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2261. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2262. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2263. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2264. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2265. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2266. #endif
  2267. }
  2268. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2269. #elif defined(__AVX2__)
  2270. // Initialize accumulator with zeros
  2271. __m256 acc = _mm256_setzero_ps();
  2272. // Main loop
  2273. for (int i = 0; i < nb; ++i) {
  2274. /* Compute combined scale for the block */
  2275. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2276. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2277. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2278. const __m256i off = _mm256_set1_epi8( 8 );
  2279. bx = _mm256_sub_epi8( bx, off );
  2280. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2281. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2282. /* Multiply q with scale and accumulate */
  2283. acc = _mm256_fmadd_ps( d, q, acc );
  2284. }
  2285. *s = hsum_float_8(acc);
  2286. #elif defined(__AVX__)
  2287. // Initialize accumulator with zeros
  2288. __m256 acc = _mm256_setzero_ps();
  2289. // Main loop
  2290. for (int i = 0; i < nb; ++i) {
  2291. // Compute combined scale for the block
  2292. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2293. __m128i i32[2];
  2294. for (int j = 0; j < 2; ++j) {
  2295. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2296. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2297. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2298. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2299. const __m128i off = _mm_set1_epi8( 8 );
  2300. bx = _mm_sub_epi8( bx, off );
  2301. // Get absolute values of x vectors
  2302. const __m128i ax = _mm_sign_epi8(bx, bx);
  2303. // Sign the values of the y vectors
  2304. const __m128i sy = _mm_sign_epi8(by, bx);
  2305. // Perform multiplication and create 16-bit values
  2306. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2307. const __m128i ones = _mm_set1_epi16(1);
  2308. i32[j] = _mm_madd_epi16(ones, dot);
  2309. }
  2310. // Convert int32_t to float
  2311. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2312. // Apply the scale, and accumulate
  2313. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2314. }
  2315. *s = hsum_float_8(acc);
  2316. #else
  2317. // scalar
  2318. float sumf = 0.0;
  2319. for (int i = 0; i < nb; i++) {
  2320. const float d0 = x[i].d;
  2321. const float d1 = y[i].d;
  2322. const uint8_t * restrict p0 = x[i].qs;
  2323. const int8_t * restrict p1 = y[i].qs;
  2324. int sumi = 0;
  2325. for (int j = 0; j < QK8_0/2; j++) {
  2326. const uint8_t v0 = p0[j];
  2327. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2328. const int i1 = (int8_t) (v0 >> 4) - 8;
  2329. const int i2 = p1[2*j + 0];
  2330. const int i3 = p1[2*j + 1];
  2331. sumi += i0*i2 + i1*i3;
  2332. }
  2333. sumf += d0*d1*sumi;
  2334. }
  2335. *s = sumf;
  2336. #endif
  2337. }
  2338. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2339. const int nb = n / QK8_1;
  2340. assert(n % QK8_1 == 0);
  2341. assert(nb % 2 == 0);
  2342. const block_q4_1 * restrict x = vx;
  2343. const block_q8_1 * restrict y = vy;
  2344. // TODO: add AVX / WASM SIMD / etc
  2345. #if defined(__ARM_NEON)
  2346. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2347. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2348. float summs = 0;
  2349. for (int i = 0; i < nb; i += 2) {
  2350. const block_q4_1 * restrict x0 = &x[i + 0];
  2351. const block_q4_1 * restrict x1 = &x[i + 1];
  2352. const block_q8_1 * restrict y0 = &y[i + 0];
  2353. const block_q8_1 * restrict y1 = &y[i + 1];
  2354. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2355. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2356. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2357. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2358. // 4-bit -> 8-bit
  2359. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2360. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2361. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2362. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2363. // interleave
  2364. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2365. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2366. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2367. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2368. // load y
  2369. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2370. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2371. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2372. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2373. #if defined(__ARM_FEATURE_DOTPROD)
  2374. // dot product into int32x4_t
  2375. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2376. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2377. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2378. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2379. #else
  2380. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2381. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2382. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2383. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2384. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2385. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2386. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2387. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2388. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2389. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2390. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2391. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2392. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2393. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2394. #endif
  2395. }
  2396. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2397. #elif defined(__AVX2__)
  2398. // Initialize accumulator with zeros
  2399. __m256 acc = _mm256_setzero_ps();
  2400. float summs = 0;
  2401. // Main loop
  2402. for (int i = 0; i < nb; ++i) {
  2403. const float * d0 = &x[i].d;
  2404. const float * d1 = &y[i].d;
  2405. summs += x[i].m * (y[i].s0 + y[i].s1);
  2406. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2407. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2408. // Compute combined scales
  2409. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2410. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2411. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2412. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2413. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2414. // Accumulate d0*d1*x*y
  2415. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2416. }
  2417. *s = hsum_float_8(acc) + summs;
  2418. #else
  2419. // scalar
  2420. float sumf = 0.0;
  2421. for (int i = 0; i < nb; i++) {
  2422. const float d0 = x[i].d;
  2423. const float m0 = x[i].m;
  2424. const float d1 = y[i].d;
  2425. const uint8_t * restrict p0 = x[i].qs;
  2426. const int8_t * restrict p1 = y[i].qs;
  2427. // TODO: this is very slow ..
  2428. for (int j = 0; j < QK8_1/2; j++) {
  2429. const uint8_t v0 = p0[j];
  2430. const float f0 = d0*(v0 & 0x0F) + m0;
  2431. const float f1 = d0*(v0 >> 4) + m0;
  2432. const float f2 = d1*p1[2*j + 0];
  2433. const float f3 = d1*p1[2*j + 1];
  2434. sumf += f0*f2 + f1*f3;
  2435. }
  2436. }
  2437. *s = sumf;
  2438. #endif
  2439. }
  2440. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2441. const int nb = n / QK8_0;
  2442. assert(n % QK8_0 == 0);
  2443. assert(nb % 2 == 0);
  2444. assert(QK8_0 == 2*QK4_2);
  2445. const block_q4_2 * restrict x = vx;
  2446. const block_q8_0 * restrict y = vy;
  2447. #if defined(__ARM_NEON)
  2448. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2449. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2450. for (int i = 0; i < nb; i += 2) {
  2451. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2452. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2453. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2454. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2455. const block_q8_0 * restrict y0 = &y[i + 0];
  2456. const block_q8_0 * restrict y1 = &y[i + 1];
  2457. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2458. const int8x16_t s8b = vdupq_n_s8(0x8);
  2459. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2460. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2461. // 4-bit -> 8-bit
  2462. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2463. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2464. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2465. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2466. // sub 8
  2467. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2468. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2469. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2470. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2471. // interleave
  2472. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2473. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2474. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2475. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2476. // load y
  2477. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2478. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2479. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2480. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2481. #if defined(__ARM_FEATURE_DOTPROD)
  2482. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2483. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2484. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2485. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2486. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2487. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2488. #else
  2489. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2490. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2491. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2492. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2493. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2494. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2495. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2496. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2497. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2498. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2499. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2500. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2501. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2502. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2503. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2504. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2505. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2506. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2507. #endif
  2508. }
  2509. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2510. #elif defined(__AVX2__)
  2511. // Initialize accumulator with zeros
  2512. __m256 acc = _mm256_setzero_ps();
  2513. // Main loop
  2514. for (int i = 0; i < nb; i++) {
  2515. /* Compute combined scale for the block */
  2516. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2517. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2518. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2519. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2520. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2521. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2522. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2523. const __m256i off = _mm256_set1_epi8(8);
  2524. bx = _mm256_sub_epi8(bx, off);
  2525. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2526. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2527. /* Multiply q with scale and accumulate */
  2528. acc = _mm256_fmadd_ps(d, q, acc);
  2529. }
  2530. *s = hsum_float_8(acc);
  2531. #else
  2532. // scalar
  2533. float sumf = 0.0;
  2534. for (int i = 0; i < nb; i++) {
  2535. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2536. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2537. const int8_t * restrict y0 = y[i].qs;
  2538. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2539. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2540. int sumi_0 = 0;
  2541. int sumi_1 = 0;
  2542. for (int j = 0; j < QK8_0/4; j++) {
  2543. const uint8_t v0 = x0[j];
  2544. const uint8_t v1 = x1[j];
  2545. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2546. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2547. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2548. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2549. const int i2_0 = y0[2*j + 0];
  2550. const int i3_0 = y0[2*j + 1];
  2551. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2552. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2553. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2554. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2555. }
  2556. sumf += (d0 * y[i].d) * sumi_0;
  2557. sumf += (d1 * y[i].d) * sumi_1;
  2558. }
  2559. *s = sumf;
  2560. #endif
  2561. }
  2562. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2563. const int nb = n / QK8_0;
  2564. assert(n % QK8_0 == 0);
  2565. assert(nb % 2 == 0);
  2566. assert(QK8_0 == QK5_0);
  2567. const block_q5_0 * restrict x = vx;
  2568. const block_q8_0 * restrict y = vy;
  2569. #if defined(__ARM_NEON)
  2570. float32x4_t sumv = vdupq_n_f32(0.0f);
  2571. uint64_t tmp[4];
  2572. for (int i = 0; i < nb; ++i) {
  2573. const block_q5_0 * restrict x0 = &x[i];
  2574. const block_q8_0 * restrict y0 = &y[i];
  2575. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2576. const int8x16_t s16b = vdupq_n_s8(0x10);
  2577. // extract the 5th bit
  2578. uint32_t qh;
  2579. memcpy(&qh, x0->qh, sizeof(qh));
  2580. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2581. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2582. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2583. tmp[3] = table_b2b_u[(qh >> 24) ];
  2584. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2585. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2586. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2587. // 4-bit -> 8-bit
  2588. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2589. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2590. // interleave
  2591. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2592. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2593. // add high bit and sub 16
  2594. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2595. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2596. // load y
  2597. const int8x16_t v1l = vld1q_s8(y0->qs);
  2598. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2599. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2600. #if defined(__ARM_FEATURE_DOTPROD)
  2601. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2602. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2603. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2604. #else
  2605. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2606. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2607. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2608. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2609. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2610. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2611. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2612. #endif
  2613. }
  2614. *s = vaddvq_f32(sumv);
  2615. #elif defined(__wasm_simd128__)
  2616. v128_t sumv = wasm_f32x4_splat(0.0f);
  2617. uint64_t tmp[4];
  2618. for (int i = 0; i < nb; ++i) {
  2619. const block_q5_0 * restrict x0 = &x[i];
  2620. const block_q8_0 * restrict y0 = &y[i];
  2621. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2622. const v128_t s16b = wasm_i8x16_splat(0x10);
  2623. // extract the 5th bit
  2624. uint32_t qh;
  2625. memcpy(&qh, x0->qh, sizeof(qh));
  2626. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2627. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2628. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2629. tmp[3] = table_b2b_u[(qh >> 24) ];
  2630. const v128_t qhl = wasm_v128_load(tmp + 0);
  2631. const v128_t qhh = wasm_v128_load(tmp + 2);
  2632. const v128_t v0 = wasm_v128_load(x0->qs);
  2633. // 4-bit -> 8-bit
  2634. const v128_t v0l = wasm_v128_and (v0, m4b);
  2635. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2636. // interleave
  2637. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2638. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2639. // add high bit and sub 16
  2640. const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
  2641. const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
  2642. // load y
  2643. const v128_t v1l = wasm_v128_load(y0->qs);
  2644. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2645. // int8x16 -> int16x8
  2646. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2647. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2648. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2649. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2650. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2651. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2652. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2653. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2654. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2655. // dot product
  2656. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2657. wasm_i32x4_add(
  2658. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2659. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2660. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2661. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2662. }
  2663. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2664. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2665. #elif defined(__AVX2__)
  2666. // Initialize accumulator with zeros
  2667. __m256 acc = _mm256_setzero_ps();
  2668. // Main loop
  2669. for (int i = 0; i < nb; i++) {
  2670. /* Compute combined scale for the block */
  2671. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2672. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2673. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2674. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2675. bx = _mm256_or_si256(bx, bxhi);
  2676. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2677. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2678. /* Multiply q with scale and accumulate */
  2679. acc = _mm256_fmadd_ps(d, q, acc);
  2680. }
  2681. *s = hsum_float_8(acc);
  2682. #else
  2683. // scalar
  2684. float sumf = 0.0;
  2685. for (int i = 0; i < nb; i++) {
  2686. const uint8_t * restrict x0 = x[i].qs;
  2687. const int8_t * restrict y0 = y[i].qs;
  2688. uint32_t qh;
  2689. memcpy(&qh, x[i].qh, sizeof(qh));
  2690. const float d = GGML_FP16_TO_FP32(x[i].d);
  2691. int sxy = 0;
  2692. for (int j = 0; j < QK8_0/2; j++) {
  2693. const uint8_t v0 = x0[j];
  2694. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2695. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2696. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2697. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2698. const int y0_0 = y0[2*j + 0];
  2699. const int y1_0 = y0[2*j + 1];
  2700. sxy += x0_0*y0_0 + x1_0*y1_0;
  2701. }
  2702. sumf += (d*sxy)*y[i].d;
  2703. }
  2704. *s = sumf;
  2705. #endif
  2706. }
  2707. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2708. const int nb = n / QK8_1;
  2709. assert(n % QK8_1 == 0);
  2710. assert(nb % 2 == 0);
  2711. assert(QK8_1 == QK5_1);
  2712. const block_q5_1 * restrict x = vx;
  2713. const block_q8_1 * restrict y = vy;
  2714. #if defined(__ARM_NEON)
  2715. float32x4_t sumv = vdupq_n_f32(0.0f);
  2716. float summs = 0.0f;
  2717. uint64_t tmp[4];
  2718. for (int i = 0; i < nb; ++i) {
  2719. const block_q5_1 * restrict x0 = &x[i];
  2720. const block_q8_1 * restrict y0 = &y[i];
  2721. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2722. // extract the 5th bit
  2723. uint32_t qh;
  2724. memcpy(&qh, x0->qh, sizeof(qh));
  2725. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2726. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2727. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2728. tmp[3] = table_b2b_u[(qh >> 24) ];
  2729. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2730. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2731. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2732. // 4-bit -> 8-bit
  2733. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2734. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2735. // interleave
  2736. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2737. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2738. // add
  2739. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2740. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2741. // load y
  2742. const int8x16_t v1l = vld1q_s8(y0->qs);
  2743. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2744. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2745. #if defined(__ARM_FEATURE_DOTPROD)
  2746. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2747. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2748. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2749. #else
  2750. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2751. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2752. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2753. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2754. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2755. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2756. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2757. #endif
  2758. }
  2759. *s = vaddvq_f32(sumv) + summs;
  2760. #elif defined(__wasm_simd128__)
  2761. v128_t sumv = wasm_f32x4_splat(0.0f);
  2762. float summs = 0.0f;
  2763. uint64_t tmp[4];
  2764. for (int i = 0; i < nb; ++i) {
  2765. const block_q5_1 * restrict x0 = &x[i];
  2766. const block_q8_1 * restrict y0 = &y[i];
  2767. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2768. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2769. // extract the 5th bit
  2770. uint32_t qh;
  2771. memcpy(&qh, x0->qh, sizeof(qh));
  2772. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2773. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2774. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2775. tmp[3] = table_b2b_u[(qh >> 24) ];
  2776. const v128_t qhl = wasm_v128_load(tmp + 0);
  2777. const v128_t qhh = wasm_v128_load(tmp + 2);
  2778. const v128_t v0 = wasm_v128_load(x0->qs);
  2779. // 4-bit -> 8-bit
  2780. const v128_t v0l = wasm_v128_and (v0, m4b);
  2781. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2782. static bool x = true;
  2783. // interleave
  2784. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2785. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2786. // add high bit
  2787. const v128_t v0lf = wasm_v128_or(v0lz, qhl);
  2788. const v128_t v0hf = wasm_v128_or(v0hz, qhh);
  2789. // load y
  2790. const v128_t v1l = wasm_v128_load(y0->qs);
  2791. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2792. // int8x16 -> int16x8
  2793. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2794. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2795. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2796. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2797. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2798. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2799. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2800. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2801. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2802. // dot product
  2803. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2804. wasm_i32x4_add(
  2805. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2806. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2807. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2808. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2809. }
  2810. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2811. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2812. #elif defined(__AVX2__)
  2813. // Initialize accumulator with zeros
  2814. __m256 acc = _mm256_setzero_ps();
  2815. float summs = 0.0f;
  2816. // Main loop
  2817. for (int i = 0; i < nb; i++) {
  2818. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2819. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2820. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2821. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2822. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2823. bx = _mm256_or_si256(bx, bxhi);
  2824. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2825. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2826. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2827. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2828. }
  2829. *s = hsum_float_8(acc) + summs;
  2830. #else
  2831. float sumf = 0.0;
  2832. for (int i = 0; i < nb; i++) {
  2833. const uint8_t * restrict x0 = x[i].qs;
  2834. const int8_t * restrict y0 = y[i].qs;
  2835. uint32_t qh;
  2836. memcpy(&qh, x[i].qh, sizeof(qh));
  2837. const float d = GGML_FP16_TO_FP32(x[i].d);
  2838. const float m = GGML_FP16_TO_FP32(x[i].m);
  2839. int sxy = 0;
  2840. for (int j = 0; j < QK8_1/2; j++) {
  2841. const uint8_t v0 = x0[j];
  2842. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2843. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2844. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2845. const int x1_0 = (v0 >> 4) | x1_0h;
  2846. const int y0_0 = y0[2*j + 0];
  2847. const int y1_0 = y0[2*j + 1];
  2848. sxy += x0_0*y0_0 + x1_0*y1_0;
  2849. }
  2850. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2851. }
  2852. *s = sumf;
  2853. #endif
  2854. }
  2855. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2856. const int nb = n / QK8_0;
  2857. assert(n % QK8_0 == 0);
  2858. assert(nb % 2 == 0);
  2859. assert(QK8_0 == QK8_0);
  2860. const block_q8_0 * restrict x = vx;
  2861. const block_q8_0 * restrict y = vy;
  2862. #if defined(__ARM_NEON)
  2863. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2864. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2865. for (int i = 0; i < nb; i += 2) {
  2866. const block_q8_0 * restrict x0 = &x[i + 0];
  2867. const block_q8_0 * restrict x1 = &x[i + 1];
  2868. const block_q8_0 * restrict y0 = &y[i + 0];
  2869. const block_q8_0 * restrict y1 = &y[i + 1];
  2870. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2871. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2872. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2873. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2874. // load y
  2875. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2876. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2877. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2878. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2879. #if defined(__ARM_FEATURE_DOTPROD)
  2880. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2881. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2882. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2883. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2884. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2885. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2886. #else
  2887. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2888. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2889. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2890. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2891. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2892. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2893. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2894. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2895. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2896. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2897. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2898. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2899. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2900. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2901. #endif
  2902. }
  2903. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2904. #elif defined(__AVX2__)
  2905. // Initialize accumulator with zeros
  2906. __m256 acc = _mm256_setzero_ps();
  2907. // Main loop
  2908. for (int i = 0; i < nb; ++i) {
  2909. // Compute combined scale for the block
  2910. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2911. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2912. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2913. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2914. // Multiply q with scale and accumulate
  2915. acc = _mm256_fmadd_ps( d, q, acc );
  2916. }
  2917. *s = hsum_float_8(acc);
  2918. #else
  2919. // scalar
  2920. float sumf = 0.0;
  2921. for (int i = 0; i < nb; i++) {
  2922. const int8_t * restrict x0 = x[i].qs;
  2923. const int8_t * restrict y0 = y[i].qs;
  2924. int sumi = 0;
  2925. for (int j = 0; j < QK8_0; j++) {
  2926. const int v0 = x0[j];
  2927. const int v1 = y0[j];
  2928. sumi += v0*v1;
  2929. }
  2930. sumf += (x[i].d*y[i].d)*sumi;
  2931. }
  2932. *s = sumf;
  2933. #endif
  2934. }
  2935. // compute GGML_VEC_DOT_UNROLL dot products at once
  2936. // xs - x row stride in bytes
  2937. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2938. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2939. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2940. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2941. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2942. }
  2943. #if defined(GGML_SIMD)
  2944. const int np = (n & ~(GGML_F16_STEP - 1));
  2945. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2946. GGML_F16_VEC ax[GGML_F16_ARR];
  2947. GGML_F16_VEC ay[GGML_F16_ARR];
  2948. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2949. for (int j = 0; j < GGML_F16_ARR; j++) {
  2950. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2951. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2952. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2953. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2954. }
  2955. }
  2956. }
  2957. // reduce sum0..sum3 to sum0
  2958. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2959. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2960. }
  2961. // leftovers
  2962. for (int i = np; i < n; ++i) {
  2963. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2964. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2965. }
  2966. }
  2967. #else
  2968. for (int i = 0; i < n; ++i) {
  2969. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2970. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2971. }
  2972. }
  2973. #endif
  2974. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2975. s[i] = sumf[i];
  2976. }
  2977. }
  2978. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2979. #if defined(GGML_SIMD)
  2980. const int np = (n & ~(GGML_F32_STEP - 1));
  2981. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2982. GGML_F32_VEC ax[GGML_F32_ARR];
  2983. GGML_F32_VEC ay[GGML_F32_ARR];
  2984. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2985. for (int j = 0; j < GGML_F32_ARR; j++) {
  2986. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2987. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2988. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2989. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2990. }
  2991. }
  2992. // leftovers
  2993. for (int i = np; i < n; ++i) {
  2994. y[i] += x[i]*v;
  2995. }
  2996. #else
  2997. // scalar
  2998. for (int i = 0; i < n; ++i) {
  2999. y[i] += x[i]*v;
  3000. }
  3001. #endif
  3002. }
  3003. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3004. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3005. #if defined(GGML_SIMD)
  3006. const int np = (n & ~(GGML_F32_STEP - 1));
  3007. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3008. GGML_F32_VEC ay[GGML_F32_ARR];
  3009. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3010. for (int j = 0; j < GGML_F32_ARR; j++) {
  3011. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3012. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3013. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3014. }
  3015. }
  3016. // leftovers
  3017. for (int i = np; i < n; ++i) {
  3018. y[i] *= v;
  3019. }
  3020. #else
  3021. // scalar
  3022. for (int i = 0; i < n; ++i) {
  3023. y[i] *= v;
  3024. }
  3025. #endif
  3026. }
  3027. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3028. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3029. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3030. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3031. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3032. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3033. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3034. static const float GELU_COEF_A = 0.044715f;
  3035. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3036. inline static float ggml_gelu_f32(float x) {
  3037. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3038. }
  3039. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3040. const uint16_t * i16 = (const uint16_t *) x;
  3041. for (int i = 0; i < n; ++i) {
  3042. y[i] = table_gelu_f16[i16[i]];
  3043. }
  3044. }
  3045. #ifdef GGML_GELU_FP16
  3046. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3047. uint16_t t;
  3048. for (int i = 0; i < n; ++i) {
  3049. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3050. memcpy(&t, &fp16, sizeof(uint16_t));
  3051. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3052. }
  3053. }
  3054. #else
  3055. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3056. for (int i = 0; i < n; ++i) {
  3057. y[i] = ggml_gelu_f32(x[i]);
  3058. }
  3059. }
  3060. #endif
  3061. // Sigmoid Linear Unit (SiLU) function
  3062. inline static float ggml_silu_f32(float x) {
  3063. return x/(1.0f + expf(-x));
  3064. }
  3065. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3066. const uint16_t * i16 = (const uint16_t *) x;
  3067. for (int i = 0; i < n; ++i) {
  3068. y[i] = table_silu_f16[i16[i]];
  3069. }
  3070. }
  3071. #ifdef GGML_SILU_FP16
  3072. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3073. uint16_t t;
  3074. for (int i = 0; i < n; ++i) {
  3075. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3076. memcpy(&t, &fp16, sizeof(uint16_t));
  3077. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3078. }
  3079. }
  3080. #else
  3081. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3082. for (int i = 0; i < n; ++i) {
  3083. y[i] = ggml_silu_f32(x[i]);
  3084. }
  3085. }
  3086. #endif
  3087. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3088. #ifndef GGML_USE_ACCELERATE
  3089. ggml_float sum = 0.0;
  3090. for (int i = 0; i < n; ++i) {
  3091. sum += (ggml_float)x[i];
  3092. }
  3093. *s = sum;
  3094. #else
  3095. vDSP_sve(x, 1, s, n);
  3096. #endif
  3097. }
  3098. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3099. ggml_float sum = 0.0;
  3100. for (int i = 0; i < n; ++i) {
  3101. sum += (ggml_float)x[i];
  3102. }
  3103. *s = sum;
  3104. }
  3105. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3106. #ifndef GGML_USE_ACCELERATE
  3107. float max = -INFINITY;
  3108. for (int i = 0; i < n; ++i) {
  3109. max = MAX(max, x[i]);
  3110. }
  3111. *s = max;
  3112. #else
  3113. vDSP_maxv(x, 1, s, n);
  3114. #endif
  3115. }
  3116. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3117. ggml_vec_norm_f32(n, s, x);
  3118. *s = 1.f/(*s);
  3119. }
  3120. //
  3121. // logging
  3122. //
  3123. #if (GGML_DEBUG >= 1)
  3124. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3125. #else
  3126. #define GGML_PRINT_DEBUG(...)
  3127. #endif
  3128. #if (GGML_DEBUG >= 5)
  3129. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3130. #else
  3131. #define GGML_PRINT_DEBUG_5(...)
  3132. #endif
  3133. #if (GGML_DEBUG >= 10)
  3134. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3135. #else
  3136. #define GGML_PRINT_DEBUG_10(...)
  3137. #endif
  3138. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3139. //
  3140. // data types
  3141. //
  3142. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3143. [GGML_TYPE_F32] = 1,
  3144. [GGML_TYPE_F16] = 1,
  3145. [GGML_TYPE_Q4_0] = QK4_0,
  3146. [GGML_TYPE_Q4_1] = QK4_1,
  3147. [GGML_TYPE_Q4_2] = QK4_2,
  3148. [GGML_TYPE_Q5_0] = QK5_0,
  3149. [GGML_TYPE_Q5_1] = QK5_1,
  3150. [GGML_TYPE_Q8_0] = QK8_0,
  3151. [GGML_TYPE_Q8_1] = QK8_1,
  3152. [GGML_TYPE_I8] = 1,
  3153. [GGML_TYPE_I16] = 1,
  3154. [GGML_TYPE_I32] = 1,
  3155. };
  3156. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3157. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3158. [GGML_TYPE_F32] = sizeof(float),
  3159. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3160. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3161. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3162. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3163. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3164. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3165. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3166. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3167. [GGML_TYPE_I8] = sizeof(int8_t),
  3168. [GGML_TYPE_I16] = sizeof(int16_t),
  3169. [GGML_TYPE_I32] = sizeof(int32_t),
  3170. };
  3171. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3172. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3173. [GGML_TYPE_F32] = "f32",
  3174. [GGML_TYPE_F16] = "f16",
  3175. [GGML_TYPE_Q4_0] = "q4_0",
  3176. [GGML_TYPE_Q4_1] = "q4_1",
  3177. [GGML_TYPE_Q4_2] = "q4_2",
  3178. [GGML_TYPE_Q5_0] = "q5_0",
  3179. [GGML_TYPE_Q5_1] = "q5_1",
  3180. [GGML_TYPE_Q8_0] = "q8_0",
  3181. [GGML_TYPE_Q8_1] = "q8_1",
  3182. [GGML_TYPE_I8] = "i8",
  3183. [GGML_TYPE_I16] = "i16",
  3184. [GGML_TYPE_I32] = "i32",
  3185. };
  3186. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3187. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3188. [GGML_TYPE_F32] = false,
  3189. [GGML_TYPE_F16] = false,
  3190. [GGML_TYPE_Q4_0] = true,
  3191. [GGML_TYPE_Q4_1] = true,
  3192. [GGML_TYPE_Q4_2] = true,
  3193. [GGML_TYPE_Q5_0] = true,
  3194. [GGML_TYPE_Q5_1] = true,
  3195. [GGML_TYPE_Q8_0] = true,
  3196. [GGML_TYPE_Q8_1] = true,
  3197. [GGML_TYPE_I8] = false,
  3198. [GGML_TYPE_I16] = false,
  3199. [GGML_TYPE_I32] = false,
  3200. };
  3201. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3202. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3203. "NONE",
  3204. "DUP",
  3205. "ADD",
  3206. "SUB",
  3207. "MUL",
  3208. "DIV",
  3209. "SQR",
  3210. "SQRT",
  3211. "SUM",
  3212. "MEAN",
  3213. "REPEAT",
  3214. "ABS",
  3215. "SGN",
  3216. "NEG",
  3217. "STEP",
  3218. "RELU",
  3219. "GELU",
  3220. "SILU",
  3221. "NORM",
  3222. "RMS_NORM",
  3223. "MUL_MAT",
  3224. "SCALE",
  3225. "CPY",
  3226. "CONT",
  3227. "RESHAPE",
  3228. "VIEW",
  3229. "PERMUTE",
  3230. "TRANSPOSE",
  3231. "GET_ROWS",
  3232. "DIAG_MASK_INF",
  3233. "SOFT_MAX",
  3234. "ROPE",
  3235. "ALIBI",
  3236. "CONV_1D_1S",
  3237. "CONV_1D_2S",
  3238. "FLASH_ATTN",
  3239. "FLASH_FF",
  3240. "MAP_UNARY",
  3241. "MAP_BINARY",
  3242. };
  3243. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3244. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3245. "none",
  3246. "x",
  3247. "x+y",
  3248. "x-y",
  3249. "x*y",
  3250. "x/y",
  3251. "x^2",
  3252. "√x",
  3253. "Σx",
  3254. "Σx/n",
  3255. "repeat(x)",
  3256. "abs(x)",
  3257. "sgn(x)",
  3258. "-x",
  3259. "step(x)",
  3260. "relu(x)",
  3261. "gelu(x)",
  3262. "silu(x)",
  3263. "norm(x)",
  3264. "rms_norm(x)",
  3265. "X*Y",
  3266. "x*v",
  3267. "x-\\>y",
  3268. "cont(x)",
  3269. "reshape(x)",
  3270. "view(x)",
  3271. "permute(x)",
  3272. "transpose(x)",
  3273. "get_rows(x)",
  3274. "diag_mask_inf(x)",
  3275. "soft_max(x)",
  3276. "rope(x)",
  3277. "alibi(x)",
  3278. "conv_1d_1s(x)",
  3279. "conv_1d_2s(x)",
  3280. "flash_attn(x)",
  3281. "flash_ff(x)",
  3282. "f(x)",
  3283. "f(x,y)",
  3284. };
  3285. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3286. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3287. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3288. //
  3289. // ggml context
  3290. //
  3291. struct ggml_context {
  3292. size_t mem_size;
  3293. void * mem_buffer;
  3294. bool mem_buffer_owned;
  3295. bool no_alloc;
  3296. int n_objects;
  3297. struct ggml_object * objects_begin;
  3298. struct ggml_object * objects_end;
  3299. struct ggml_scratch scratch;
  3300. struct ggml_scratch scratch_save;
  3301. };
  3302. struct ggml_context_container {
  3303. bool used;
  3304. struct ggml_context context;
  3305. };
  3306. //
  3307. // compute types
  3308. //
  3309. enum ggml_task_type {
  3310. GGML_TASK_INIT = 0,
  3311. GGML_TASK_COMPUTE,
  3312. GGML_TASK_FINALIZE,
  3313. };
  3314. struct ggml_compute_params {
  3315. enum ggml_task_type type;
  3316. int ith, nth;
  3317. // work buffer for all threads
  3318. size_t wsize;
  3319. void * wdata;
  3320. };
  3321. //
  3322. // ggml state
  3323. //
  3324. struct ggml_state {
  3325. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3326. };
  3327. // global state
  3328. static struct ggml_state g_state;
  3329. static atomic_int g_state_barrier = 0;
  3330. // barrier via spin lock
  3331. inline static void ggml_critical_section_start(void) {
  3332. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3333. while (processing > 0) {
  3334. // wait for other threads to finish
  3335. atomic_fetch_sub(&g_state_barrier, 1);
  3336. sched_yield(); // TODO: reconsider this
  3337. processing = atomic_fetch_add(&g_state_barrier, 1);
  3338. }
  3339. }
  3340. // TODO: make this somehow automatically executed
  3341. // some sort of "sentry" mechanism
  3342. inline static void ggml_critical_section_end(void) {
  3343. atomic_fetch_sub(&g_state_barrier, 1);
  3344. }
  3345. ////////////////////////////////////////////////////////////////////////////////
  3346. void ggml_print_object(const struct ggml_object * obj) {
  3347. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3348. obj->offs, obj->size, (const void *) obj->next);
  3349. }
  3350. void ggml_print_objects(const struct ggml_context * ctx) {
  3351. struct ggml_object * obj = ctx->objects_begin;
  3352. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3353. while (obj != NULL) {
  3354. ggml_print_object(obj);
  3355. obj = obj->next;
  3356. }
  3357. GGML_PRINT("%s: --- end ---\n", __func__);
  3358. }
  3359. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3360. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3361. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3362. }
  3363. int ggml_nrows(const struct ggml_tensor * tensor) {
  3364. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3365. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3366. }
  3367. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3368. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3369. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3370. }
  3371. int ggml_blck_size(enum ggml_type type) {
  3372. return GGML_BLCK_SIZE[type];
  3373. }
  3374. size_t ggml_type_size(enum ggml_type type) {
  3375. return GGML_TYPE_SIZE[type];
  3376. }
  3377. float ggml_type_sizef(enum ggml_type type) {
  3378. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3379. }
  3380. const char * ggml_type_name(enum ggml_type type) {
  3381. return GGML_TYPE_NAME[type];
  3382. }
  3383. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3384. return GGML_TYPE_SIZE[tensor->type];
  3385. }
  3386. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3389. }
  3390. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3391. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3392. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3393. }
  3394. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3395. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3396. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3397. }
  3398. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3399. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3400. return
  3401. (t0->ne[0] == t1->ne[0]) &&
  3402. (t0->ne[2] == t1->ne[2]) &&
  3403. (t0->ne[3] == t1->ne[3]);
  3404. }
  3405. bool ggml_is_quantized(enum ggml_type type) {
  3406. return GGML_IS_QUANTIZED[type];
  3407. }
  3408. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3409. enum ggml_type wtype = GGML_TYPE_COUNT;
  3410. switch (ftype) {
  3411. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3412. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3413. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3414. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3415. case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
  3416. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3417. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3418. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3419. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3420. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3421. }
  3422. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3423. return wtype;
  3424. }
  3425. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3426. return tensor->nb[0] > tensor->nb[1];
  3427. }
  3428. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3429. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3430. return
  3431. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3432. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3433. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3434. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3435. }
  3436. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3437. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3438. return
  3439. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3440. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3441. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3442. }
  3443. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3444. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3445. return
  3446. (t0->ne[0] == t1->ne[0] ) &&
  3447. (t0->ne[1] == t1->ne[1] ) &&
  3448. (t0->ne[2] == t1->ne[2] ) &&
  3449. (t0->ne[3] == t1->ne[3] );
  3450. }
  3451. // check if t1 can be represented as a repeatition of t0
  3452. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3453. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3454. return
  3455. (t1->ne[0]%t0->ne[0] == 0) &&
  3456. (t1->ne[1]%t0->ne[1] == 0) &&
  3457. (t1->ne[2]%t0->ne[2] == 0) &&
  3458. (t1->ne[3]%t0->ne[3] == 0);
  3459. }
  3460. static inline int ggml_up32(int n) {
  3461. return (n + 31) & ~31;
  3462. }
  3463. static inline int ggml_up64(int n) {
  3464. return (n + 63) & ~63;
  3465. }
  3466. static inline int ggml_up(int n, int m) {
  3467. // assert m is a power of 2
  3468. GGML_ASSERT((m & (m - 1)) == 0);
  3469. return (n + m - 1) & ~(m - 1);
  3470. }
  3471. // assert that pointer is aligned to GGML_MEM_ALIGN
  3472. #define ggml_assert_aligned(ptr) \
  3473. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3474. ////////////////////////////////////////////////////////////////////////////////
  3475. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3476. // make this function thread safe
  3477. ggml_critical_section_start();
  3478. static bool is_first_call = true;
  3479. if (is_first_call) {
  3480. // initialize time system (required on Windows)
  3481. ggml_time_init();
  3482. // initialize GELU, SILU and EXP F32 tables
  3483. {
  3484. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3485. ggml_fp16_t ii;
  3486. for (int i = 0; i < (1 << 16); ++i) {
  3487. uint16_t ui = i;
  3488. memcpy(&ii, &ui, sizeof(ii));
  3489. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3490. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3491. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3492. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3493. }
  3494. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3495. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3496. }
  3497. // initialize g_state
  3498. {
  3499. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3500. g_state = (struct ggml_state) {
  3501. /*.contexts =*/ { { 0 } },
  3502. };
  3503. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3504. g_state.contexts[i].used = false;
  3505. }
  3506. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3507. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3508. }
  3509. #if defined(GGML_USE_CUBLAS)
  3510. ggml_init_cublas();
  3511. #elif defined(GGML_USE_CLBLAST)
  3512. ggml_cl_init();
  3513. #endif
  3514. is_first_call = false;
  3515. }
  3516. // find non-used context in g_state
  3517. struct ggml_context * ctx = NULL;
  3518. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3519. if (!g_state.contexts[i].used) {
  3520. g_state.contexts[i].used = true;
  3521. ctx = &g_state.contexts[i].context;
  3522. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3523. break;
  3524. }
  3525. }
  3526. if (ctx == NULL) {
  3527. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3528. ggml_critical_section_end();
  3529. return NULL;
  3530. }
  3531. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3532. *ctx = (struct ggml_context) {
  3533. /*.mem_size =*/ mem_size,
  3534. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3535. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3536. /*.no_alloc =*/ params.no_alloc,
  3537. /*.n_objects =*/ 0,
  3538. /*.objects_begin =*/ NULL,
  3539. /*.objects_end =*/ NULL,
  3540. /*.scratch =*/ { 0, 0, NULL, },
  3541. /*.scratch_save =*/ { 0, 0, NULL, },
  3542. };
  3543. GGML_ASSERT(ctx->mem_buffer != NULL);
  3544. ggml_assert_aligned(ctx->mem_buffer);
  3545. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3546. ggml_critical_section_end();
  3547. return ctx;
  3548. }
  3549. void ggml_free(struct ggml_context * ctx) {
  3550. // make this function thread safe
  3551. ggml_critical_section_start();
  3552. bool found = false;
  3553. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3554. if (&g_state.contexts[i].context == ctx) {
  3555. g_state.contexts[i].used = false;
  3556. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3557. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3558. if (ctx->mem_buffer_owned) {
  3559. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3560. }
  3561. found = true;
  3562. break;
  3563. }
  3564. }
  3565. if (!found) {
  3566. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3567. }
  3568. ggml_critical_section_end();
  3569. }
  3570. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3571. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3572. }
  3573. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3574. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3575. ctx->scratch = scratch;
  3576. return result;
  3577. }
  3578. ////////////////////////////////////////////////////////////////////////////////
  3579. struct ggml_tensor * ggml_new_tensor_impl(
  3580. struct ggml_context * ctx,
  3581. enum ggml_type type,
  3582. int n_dims,
  3583. const int64_t* ne,
  3584. void* data) {
  3585. // always insert objects at the end of the context's memory pool
  3586. struct ggml_object * obj_cur = ctx->objects_end;
  3587. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3588. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3589. const size_t cur_end = cur_offs + cur_size;
  3590. size_t size_needed = 0;
  3591. if (data == NULL && !ctx->no_alloc) {
  3592. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3593. for (int i = 1; i < n_dims; i++) {
  3594. size_needed *= ne[i];
  3595. }
  3596. // align to GGML_MEM_ALIGN
  3597. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3598. }
  3599. char * const mem_buffer = ctx->mem_buffer;
  3600. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3601. if (ctx->scratch.data == NULL || data != NULL) {
  3602. size_needed += sizeof(struct ggml_tensor);
  3603. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3604. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3605. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3606. assert(false);
  3607. return NULL;
  3608. }
  3609. *obj_new = (struct ggml_object) {
  3610. .offs = cur_end + GGML_OBJECT_SIZE,
  3611. .size = size_needed,
  3612. .next = NULL,
  3613. };
  3614. } else {
  3615. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3616. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3617. assert(false);
  3618. return NULL;
  3619. }
  3620. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3621. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3622. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3623. assert(false);
  3624. return NULL;
  3625. }
  3626. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3627. *obj_new = (struct ggml_object) {
  3628. .offs = cur_end + GGML_OBJECT_SIZE,
  3629. .size = sizeof(struct ggml_tensor),
  3630. .next = NULL,
  3631. };
  3632. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3633. ctx->scratch.offs += size_needed;
  3634. }
  3635. if (obj_cur != NULL) {
  3636. obj_cur->next = obj_new;
  3637. } else {
  3638. // this is the first object in this context
  3639. ctx->objects_begin = obj_new;
  3640. }
  3641. ctx->objects_end = obj_new;
  3642. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3643. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3644. ggml_assert_aligned(result);
  3645. *result = (struct ggml_tensor) {
  3646. /*.type =*/ type,
  3647. /*.n_dims =*/ n_dims,
  3648. /*.ne =*/ { 1, 1, 1, 1 },
  3649. /*.nb =*/ { 0, 0, 0, 0 },
  3650. /*.op =*/ GGML_OP_NONE,
  3651. /*.is_param =*/ false,
  3652. /*.grad =*/ NULL,
  3653. /*.src0 =*/ NULL,
  3654. /*.src1 =*/ NULL,
  3655. /*.opt =*/ { NULL },
  3656. /*.n_tasks =*/ 0,
  3657. /*.perf_runs =*/ 0,
  3658. /*.perf_cycles =*/ 0,
  3659. /*.perf_time_us =*/ 0,
  3660. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3661. /*.name =*/ { 0 },
  3662. /*.pad =*/ { 0 },
  3663. };
  3664. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3665. //ggml_assert_aligned(result->data);
  3666. for (int i = 0; i < n_dims; i++) {
  3667. result->ne[i] = ne[i];
  3668. }
  3669. result->nb[0] = GGML_TYPE_SIZE[type];
  3670. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3671. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3672. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3673. }
  3674. ctx->n_objects++;
  3675. return result;
  3676. }
  3677. struct ggml_tensor * ggml_new_tensor(
  3678. struct ggml_context * ctx,
  3679. enum ggml_type type,
  3680. int n_dims,
  3681. const int64_t * ne) {
  3682. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3683. }
  3684. struct ggml_tensor * ggml_new_tensor_1d(
  3685. struct ggml_context * ctx,
  3686. enum ggml_type type,
  3687. int64_t ne0) {
  3688. return ggml_new_tensor(ctx, type, 1, &ne0);
  3689. }
  3690. struct ggml_tensor * ggml_new_tensor_2d(
  3691. struct ggml_context * ctx,
  3692. enum ggml_type type,
  3693. int64_t ne0,
  3694. int64_t ne1) {
  3695. const int64_t ne[2] = { ne0, ne1 };
  3696. return ggml_new_tensor(ctx, type, 2, ne);
  3697. }
  3698. struct ggml_tensor * ggml_new_tensor_3d(
  3699. struct ggml_context * ctx,
  3700. enum ggml_type type,
  3701. int64_t ne0,
  3702. int64_t ne1,
  3703. int64_t ne2) {
  3704. const int64_t ne[3] = { ne0, ne1, ne2 };
  3705. return ggml_new_tensor(ctx, type, 3, ne);
  3706. }
  3707. struct ggml_tensor * ggml_new_tensor_4d(
  3708. struct ggml_context * ctx,
  3709. enum ggml_type type,
  3710. int64_t ne0,
  3711. int64_t ne1,
  3712. int64_t ne2,
  3713. int64_t ne3) {
  3714. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3715. return ggml_new_tensor(ctx, type, 4, ne);
  3716. }
  3717. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3718. ctx->scratch_save = ctx->scratch;
  3719. ctx->scratch.data = NULL;
  3720. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3721. ctx->scratch = ctx->scratch_save;
  3722. ggml_set_i32(result, value);
  3723. return result;
  3724. }
  3725. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3726. ctx->scratch_save = ctx->scratch;
  3727. ctx->scratch.data = NULL;
  3728. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3729. ctx->scratch = ctx->scratch_save;
  3730. ggml_set_f32(result, value);
  3731. return result;
  3732. }
  3733. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3734. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3735. }
  3736. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3737. memset(tensor->data, 0, ggml_nbytes(tensor));
  3738. return tensor;
  3739. }
  3740. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3741. const int n = ggml_nrows(tensor);
  3742. const int nc = tensor->ne[0];
  3743. const size_t n1 = tensor->nb[1];
  3744. char * const data = tensor->data;
  3745. switch (tensor->type) {
  3746. case GGML_TYPE_I8:
  3747. {
  3748. assert(tensor->nb[0] == sizeof(int8_t));
  3749. for (int i = 0; i < n; i++) {
  3750. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3751. }
  3752. } break;
  3753. case GGML_TYPE_I16:
  3754. {
  3755. assert(tensor->nb[0] == sizeof(int16_t));
  3756. for (int i = 0; i < n; i++) {
  3757. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3758. }
  3759. } break;
  3760. case GGML_TYPE_I32:
  3761. {
  3762. assert(tensor->nb[0] == sizeof(int32_t));
  3763. for (int i = 0; i < n; i++) {
  3764. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3765. }
  3766. } break;
  3767. case GGML_TYPE_F16:
  3768. {
  3769. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3770. for (int i = 0; i < n; i++) {
  3771. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3772. }
  3773. } break;
  3774. case GGML_TYPE_F32:
  3775. {
  3776. assert(tensor->nb[0] == sizeof(float));
  3777. for (int i = 0; i < n; i++) {
  3778. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3779. }
  3780. } break;
  3781. default:
  3782. {
  3783. GGML_ASSERT(false);
  3784. } break;
  3785. }
  3786. return tensor;
  3787. }
  3788. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3789. const int n = ggml_nrows(tensor);
  3790. const int nc = tensor->ne[0];
  3791. const size_t n1 = tensor->nb[1];
  3792. char * const data = tensor->data;
  3793. switch (tensor->type) {
  3794. case GGML_TYPE_I8:
  3795. {
  3796. assert(tensor->nb[0] == sizeof(int8_t));
  3797. for (int i = 0; i < n; i++) {
  3798. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3799. }
  3800. } break;
  3801. case GGML_TYPE_I16:
  3802. {
  3803. assert(tensor->nb[0] == sizeof(int16_t));
  3804. for (int i = 0; i < n; i++) {
  3805. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3806. }
  3807. } break;
  3808. case GGML_TYPE_I32:
  3809. {
  3810. assert(tensor->nb[0] == sizeof(int32_t));
  3811. for (int i = 0; i < n; i++) {
  3812. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3813. }
  3814. } break;
  3815. case GGML_TYPE_F16:
  3816. {
  3817. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3818. for (int i = 0; i < n; i++) {
  3819. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3820. }
  3821. } break;
  3822. case GGML_TYPE_F32:
  3823. {
  3824. assert(tensor->nb[0] == sizeof(float));
  3825. for (int i = 0; i < n; i++) {
  3826. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3827. }
  3828. } break;
  3829. default:
  3830. {
  3831. GGML_ASSERT(false);
  3832. } break;
  3833. }
  3834. return tensor;
  3835. }
  3836. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3837. switch (tensor->type) {
  3838. case GGML_TYPE_I8:
  3839. {
  3840. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3841. return ((int8_t *)(tensor->data))[i];
  3842. } break;
  3843. case GGML_TYPE_I16:
  3844. {
  3845. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3846. return ((int16_t *)(tensor->data))[i];
  3847. } break;
  3848. case GGML_TYPE_I32:
  3849. {
  3850. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3851. return ((int32_t *)(tensor->data))[i];
  3852. } break;
  3853. case GGML_TYPE_F16:
  3854. {
  3855. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3856. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3857. } break;
  3858. case GGML_TYPE_F32:
  3859. {
  3860. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3861. return ((float *)(tensor->data))[i];
  3862. } break;
  3863. default:
  3864. {
  3865. GGML_ASSERT(false);
  3866. } break;
  3867. }
  3868. return 0.0f;
  3869. }
  3870. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3871. switch (tensor->type) {
  3872. case GGML_TYPE_I8:
  3873. {
  3874. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3875. ((int8_t *)(tensor->data))[i] = value;
  3876. } break;
  3877. case GGML_TYPE_I16:
  3878. {
  3879. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3880. ((int16_t *)(tensor->data))[i] = value;
  3881. } break;
  3882. case GGML_TYPE_I32:
  3883. {
  3884. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3885. ((int32_t *)(tensor->data))[i] = value;
  3886. } break;
  3887. case GGML_TYPE_F16:
  3888. {
  3889. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3890. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3891. } break;
  3892. case GGML_TYPE_F32:
  3893. {
  3894. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3895. ((float *)(tensor->data))[i] = value;
  3896. } break;
  3897. default:
  3898. {
  3899. GGML_ASSERT(false);
  3900. } break;
  3901. }
  3902. }
  3903. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3904. switch (tensor->type) {
  3905. case GGML_TYPE_I8:
  3906. {
  3907. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3908. return ((int8_t *)(tensor->data))[i];
  3909. } break;
  3910. case GGML_TYPE_I16:
  3911. {
  3912. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3913. return ((int16_t *)(tensor->data))[i];
  3914. } break;
  3915. case GGML_TYPE_I32:
  3916. {
  3917. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3918. return ((int32_t *)(tensor->data))[i];
  3919. } break;
  3920. case GGML_TYPE_F16:
  3921. {
  3922. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3923. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3924. } break;
  3925. case GGML_TYPE_F32:
  3926. {
  3927. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3928. return ((float *)(tensor->data))[i];
  3929. } break;
  3930. default:
  3931. {
  3932. GGML_ASSERT(false);
  3933. } break;
  3934. }
  3935. return 0.0f;
  3936. }
  3937. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3938. switch (tensor->type) {
  3939. case GGML_TYPE_I8:
  3940. {
  3941. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3942. ((int8_t *)(tensor->data))[i] = value;
  3943. } break;
  3944. case GGML_TYPE_I16:
  3945. {
  3946. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3947. ((int16_t *)(tensor->data))[i] = value;
  3948. } break;
  3949. case GGML_TYPE_I32:
  3950. {
  3951. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3952. ((int32_t *)(tensor->data))[i] = value;
  3953. } break;
  3954. case GGML_TYPE_F16:
  3955. {
  3956. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3957. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3958. } break;
  3959. case GGML_TYPE_F32:
  3960. {
  3961. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3962. ((float *)(tensor->data))[i] = value;
  3963. } break;
  3964. default:
  3965. {
  3966. GGML_ASSERT(false);
  3967. } break;
  3968. }
  3969. }
  3970. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3971. return tensor->data;
  3972. }
  3973. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3974. assert(tensor->type == GGML_TYPE_F32);
  3975. return (float *)(tensor->data);
  3976. }
  3977. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3978. return tensor->name;
  3979. }
  3980. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3981. strncpy(tensor->name, name, sizeof(tensor->name));
  3982. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3983. }
  3984. struct ggml_tensor * ggml_view_tensor(
  3985. struct ggml_context * ctx,
  3986. const struct ggml_tensor * src) {
  3987. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3988. result->nb[0] = src->nb[0];
  3989. result->nb[1] = src->nb[1];
  3990. result->nb[2] = src->nb[2];
  3991. result->nb[3] = src->nb[3];
  3992. return result;
  3993. }
  3994. ////////////////////////////////////////////////////////////////////////////////
  3995. // ggml_dup
  3996. struct ggml_tensor * ggml_dup_impl(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. bool inplace) {
  4000. bool is_node = false;
  4001. if (!inplace && (a->grad)) {
  4002. is_node = true;
  4003. }
  4004. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4005. result->op = GGML_OP_DUP;
  4006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4007. result->src0 = a;
  4008. result->src1 = NULL;
  4009. return result;
  4010. }
  4011. struct ggml_tensor * ggml_dup(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a) {
  4014. return ggml_dup_impl(ctx, a, false);
  4015. }
  4016. struct ggml_tensor * ggml_dup_inplace(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a) {
  4019. return ggml_dup_impl(ctx, a, true);
  4020. }
  4021. // ggml_add
  4022. struct ggml_tensor * ggml_add_impl(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a,
  4025. struct ggml_tensor * b,
  4026. bool inplace) {
  4027. GGML_ASSERT(ggml_are_same_shape(a, b));
  4028. bool is_node = false;
  4029. if (!inplace && (a->grad || b->grad)) {
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. result->op = GGML_OP_ADD;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src0 = a;
  4036. result->src1 = b;
  4037. return result;
  4038. }
  4039. struct ggml_tensor * ggml_add(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b) {
  4043. return ggml_add_impl(ctx, a, b, false);
  4044. }
  4045. struct ggml_tensor * ggml_add_inplace(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. struct ggml_tensor * b) {
  4049. return ggml_add_impl(ctx, a, b, true);
  4050. }
  4051. // ggml_sub
  4052. struct ggml_tensor * ggml_sub_impl(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a,
  4055. struct ggml_tensor * b,
  4056. bool inplace) {
  4057. GGML_ASSERT(ggml_are_same_shape(a, b));
  4058. bool is_node = false;
  4059. if (!inplace && (a->grad || b->grad)) {
  4060. is_node = true;
  4061. }
  4062. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4063. result->op = GGML_OP_SUB;
  4064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4065. result->src0 = a;
  4066. result->src1 = b;
  4067. return result;
  4068. }
  4069. struct ggml_tensor * ggml_sub(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. struct ggml_tensor * b) {
  4073. return ggml_sub_impl(ctx, a, b, false);
  4074. }
  4075. struct ggml_tensor * ggml_sub_inplace(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b) {
  4079. return ggml_sub_impl(ctx, a, b, true);
  4080. }
  4081. // ggml_mul
  4082. struct ggml_tensor * ggml_mul_impl(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a,
  4085. struct ggml_tensor * b,
  4086. bool inplace) {
  4087. GGML_ASSERT(ggml_are_same_shape(a, b));
  4088. bool is_node = false;
  4089. if (!inplace && (a->grad || b->grad)) {
  4090. is_node = true;
  4091. }
  4092. if (inplace) {
  4093. GGML_ASSERT(is_node == false);
  4094. }
  4095. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4096. result->op = GGML_OP_MUL;
  4097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4098. result->src0 = a;
  4099. result->src1 = b;
  4100. return result;
  4101. }
  4102. struct ggml_tensor * ggml_mul(
  4103. struct ggml_context * ctx,
  4104. struct ggml_tensor * a,
  4105. struct ggml_tensor * b) {
  4106. return ggml_mul_impl(ctx, a, b, false);
  4107. }
  4108. struct ggml_tensor * ggml_mul_inplace(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b) {
  4112. return ggml_mul_impl(ctx, a, b, true);
  4113. }
  4114. // ggml_div
  4115. struct ggml_tensor * ggml_div_impl(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a,
  4118. struct ggml_tensor * b,
  4119. bool inplace) {
  4120. GGML_ASSERT(ggml_are_same_shape(a, b));
  4121. bool is_node = false;
  4122. if (!inplace && (a->grad || b->grad)) {
  4123. is_node = true;
  4124. }
  4125. if (inplace) {
  4126. GGML_ASSERT(is_node == false);
  4127. }
  4128. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4129. result->op = GGML_OP_DIV;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src0 = a;
  4132. result->src1 = b;
  4133. return result;
  4134. }
  4135. struct ggml_tensor * ggml_div(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. struct ggml_tensor * b) {
  4139. return ggml_div_impl(ctx, a, b, false);
  4140. }
  4141. struct ggml_tensor * ggml_div_inplace(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b) {
  4145. return ggml_div_impl(ctx, a, b, true);
  4146. }
  4147. // ggml_sqr
  4148. struct ggml_tensor * ggml_sqr_impl(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. bool inplace) {
  4152. bool is_node = false;
  4153. if (!inplace && (a->grad)) {
  4154. is_node = true;
  4155. }
  4156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4157. result->op = GGML_OP_SQR;
  4158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4159. result->src0 = a;
  4160. result->src1 = NULL;
  4161. return result;
  4162. }
  4163. struct ggml_tensor * ggml_sqr(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_sqr_impl(ctx, a, false);
  4167. }
  4168. struct ggml_tensor * ggml_sqr_inplace(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a) {
  4171. return ggml_sqr_impl(ctx, a, true);
  4172. }
  4173. // ggml_sqrt
  4174. struct ggml_tensor * ggml_sqrt_impl(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. bool inplace) {
  4178. bool is_node = false;
  4179. if (!inplace && (a->grad)) {
  4180. is_node = true;
  4181. }
  4182. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4183. result->op = GGML_OP_SQRT;
  4184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4185. result->src0 = a;
  4186. result->src1 = NULL;
  4187. return result;
  4188. }
  4189. struct ggml_tensor * ggml_sqrt(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a) {
  4192. return ggml_sqrt_impl(ctx, a, false);
  4193. }
  4194. struct ggml_tensor * ggml_sqrt_inplace(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a) {
  4197. return ggml_sqrt_impl(ctx, a, true);
  4198. }
  4199. // ggml_sum
  4200. struct ggml_tensor * ggml_sum(
  4201. struct ggml_context * ctx,
  4202. struct ggml_tensor * a) {
  4203. bool is_node = false;
  4204. if (a->grad) {
  4205. is_node = true;
  4206. }
  4207. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4208. result->op = GGML_OP_SUM;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src0 = a;
  4211. result->src1 = NULL;
  4212. return result;
  4213. }
  4214. // ggml_mean
  4215. struct ggml_tensor * ggml_mean(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a) {
  4218. bool is_node = false;
  4219. if (a->grad) {
  4220. GGML_ASSERT(false); // TODO: implement
  4221. is_node = true;
  4222. }
  4223. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4224. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4225. result->op = GGML_OP_MEAN;
  4226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4227. result->src0 = a;
  4228. result->src1 = NULL;
  4229. return result;
  4230. }
  4231. // ggml_repeat
  4232. struct ggml_tensor * ggml_repeat(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a,
  4235. struct ggml_tensor * b) {
  4236. GGML_ASSERT(ggml_can_repeat(a, b));
  4237. bool is_node = false;
  4238. if (a->grad) {
  4239. is_node = true;
  4240. }
  4241. if (ggml_are_same_shape(a, b) && !is_node) {
  4242. return a;
  4243. }
  4244. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4245. result->op = GGML_OP_REPEAT;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src0 = a;
  4248. result->src1 = b;
  4249. return result;
  4250. }
  4251. // ggml_abs
  4252. struct ggml_tensor * ggml_abs_impl(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. bool inplace) {
  4256. bool is_node = false;
  4257. if (!inplace && (a->grad)) {
  4258. is_node = true;
  4259. }
  4260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4261. result->op = GGML_OP_ABS;
  4262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4263. result->src0 = a;
  4264. result->src1 = NULL;
  4265. return result;
  4266. }
  4267. struct ggml_tensor * ggml_abs(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_abs_impl(ctx, a, false);
  4271. }
  4272. struct ggml_tensor * ggml_abs_inplace(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_abs_impl(ctx, a, true);
  4276. }
  4277. // ggml_sgn
  4278. struct ggml_tensor * ggml_sgn_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. bool inplace) {
  4282. bool is_node = false;
  4283. if (!inplace && (a->grad)) {
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. result->op = GGML_OP_SGN;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src0 = a;
  4290. result->src1 = NULL;
  4291. return result;
  4292. }
  4293. struct ggml_tensor * ggml_sgn(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a) {
  4296. return ggml_sgn_impl(ctx, a, false);
  4297. }
  4298. struct ggml_tensor * ggml_sgn_inplace(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_sgn_impl(ctx, a, true);
  4302. }
  4303. // ggml_neg
  4304. struct ggml_tensor * ggml_neg_impl(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. bool inplace) {
  4308. bool is_node = false;
  4309. if (!inplace && (a->grad)) {
  4310. is_node = true;
  4311. }
  4312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4313. result->op = GGML_OP_NEG;
  4314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4315. result->src0 = a;
  4316. result->src1 = NULL;
  4317. return result;
  4318. }
  4319. struct ggml_tensor * ggml_neg(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a) {
  4322. return ggml_neg_impl(ctx, a, false);
  4323. }
  4324. struct ggml_tensor * ggml_neg_inplace(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. return ggml_neg_impl(ctx, a, true);
  4328. }
  4329. // ggml_step
  4330. struct ggml_tensor * ggml_step_impl(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. bool inplace) {
  4334. bool is_node = false;
  4335. if (!inplace && (a->grad)) {
  4336. is_node = true;
  4337. }
  4338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4339. result->op = GGML_OP_STEP;
  4340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4341. result->src0 = a;
  4342. result->src1 = NULL;
  4343. return result;
  4344. }
  4345. struct ggml_tensor * ggml_step(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a) {
  4348. return ggml_step_impl(ctx, a, false);
  4349. }
  4350. struct ggml_tensor * ggml_step_inplace(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a) {
  4353. return ggml_step_impl(ctx, a, true);
  4354. }
  4355. // ggml_relu
  4356. struct ggml_tensor * ggml_relu_impl(
  4357. struct ggml_context * ctx,
  4358. struct ggml_tensor * a,
  4359. bool inplace) {
  4360. bool is_node = false;
  4361. if (!inplace && (a->grad)) {
  4362. is_node = true;
  4363. }
  4364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4365. result->op = GGML_OP_RELU;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src0 = a;
  4368. result->src1 = NULL;
  4369. return result;
  4370. }
  4371. struct ggml_tensor * ggml_relu(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a) {
  4374. return ggml_relu_impl(ctx, a, false);
  4375. }
  4376. struct ggml_tensor * ggml_relu_inplace(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a) {
  4379. return ggml_relu_impl(ctx, a, true);
  4380. }
  4381. // ggml_gelu
  4382. struct ggml_tensor * ggml_gelu_impl(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. bool inplace) {
  4386. bool is_node = false;
  4387. if (!inplace && (a->grad)) {
  4388. is_node = true;
  4389. }
  4390. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4391. result->op = GGML_OP_GELU;
  4392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4393. result->src0 = a;
  4394. result->src1 = NULL;
  4395. return result;
  4396. }
  4397. struct ggml_tensor * ggml_gelu(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a) {
  4400. return ggml_gelu_impl(ctx, a, false);
  4401. }
  4402. struct ggml_tensor * ggml_gelu_inplace(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a) {
  4405. return ggml_gelu_impl(ctx, a, true);
  4406. }
  4407. // ggml_silu
  4408. struct ggml_tensor * ggml_silu_impl(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. bool inplace) {
  4412. bool is_node = false;
  4413. if (!inplace && (a->grad)) {
  4414. is_node = true;
  4415. }
  4416. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4417. result->op = GGML_OP_SILU;
  4418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4419. result->src0 = a;
  4420. result->src1 = NULL;
  4421. return result;
  4422. }
  4423. struct ggml_tensor * ggml_silu(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a) {
  4426. return ggml_silu_impl(ctx, a, false);
  4427. }
  4428. struct ggml_tensor * ggml_silu_inplace(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a) {
  4431. return ggml_silu_impl(ctx, a, true);
  4432. }
  4433. // ggml_norm
  4434. struct ggml_tensor * ggml_norm_impl(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. bool inplace) {
  4438. bool is_node = false;
  4439. if (!inplace && (a->grad)) {
  4440. GGML_ASSERT(false); // TODO: implement backward
  4441. is_node = true;
  4442. }
  4443. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4444. result->op = GGML_OP_NORM;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src0 = a;
  4447. result->src1 = NULL; // TODO: maybe store epsilon here?
  4448. return result;
  4449. }
  4450. struct ggml_tensor * ggml_norm(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a) {
  4453. return ggml_norm_impl(ctx, a, false);
  4454. }
  4455. struct ggml_tensor * ggml_norm_inplace(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a) {
  4458. return ggml_norm_impl(ctx, a, true);
  4459. }
  4460. struct ggml_tensor * ggml_rms_norm_impl(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a,
  4463. bool inplace) {
  4464. bool is_node = false;
  4465. if (!inplace && (a->grad)) {
  4466. GGML_ASSERT(false); // TODO: implement backward
  4467. is_node = true;
  4468. }
  4469. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4470. result->op = GGML_OP_RMS_NORM;
  4471. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4472. result->src0 = a;
  4473. result->src1 = NULL; // TODO: maybe store epsilon here?
  4474. return result;
  4475. }
  4476. struct ggml_tensor * ggml_rms_norm(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a) {
  4479. return ggml_rms_norm_impl(ctx, a, false);
  4480. }
  4481. struct ggml_tensor * ggml_rms_norm_inplace(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a) {
  4484. return ggml_rms_norm_impl(ctx, a, true);
  4485. }
  4486. // ggml_mul_mat
  4487. struct ggml_tensor * ggml_mul_mat(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b) {
  4491. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4492. GGML_ASSERT(!ggml_is_transposed(a));
  4493. bool is_node = false;
  4494. if (a->grad || b->grad) {
  4495. is_node = true;
  4496. }
  4497. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4498. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4499. result->op = GGML_OP_MUL_MAT;
  4500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4501. result->src0 = a;
  4502. result->src1 = b;
  4503. return result;
  4504. }
  4505. // ggml_scale
  4506. struct ggml_tensor * ggml_scale_impl(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a,
  4509. struct ggml_tensor * b,
  4510. bool inplace) {
  4511. GGML_ASSERT(ggml_is_scalar(b));
  4512. GGML_ASSERT(ggml_is_padded_1d(a));
  4513. bool is_node = false;
  4514. if (!inplace && (a->grad || b->grad)) {
  4515. GGML_ASSERT(false); // TODO: implement backward
  4516. is_node = true;
  4517. }
  4518. // TODO: when implement backward, fix this:
  4519. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4520. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4521. result->op = GGML_OP_SCALE;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src0 = a;
  4524. result->src1 = b;
  4525. return result;
  4526. }
  4527. struct ggml_tensor * ggml_scale(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. struct ggml_tensor * b) {
  4531. return ggml_scale_impl(ctx, a, b, false);
  4532. }
  4533. struct ggml_tensor * ggml_scale_inplace(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a,
  4536. struct ggml_tensor * b) {
  4537. return ggml_scale_impl(ctx, a, b, true);
  4538. }
  4539. // ggml_cpy
  4540. struct ggml_tensor * ggml_cpy_impl(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. struct ggml_tensor * b,
  4544. bool inplace) {
  4545. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4546. bool is_node = false;
  4547. if (!inplace && (a->grad || b->grad)) {
  4548. GGML_ASSERT(false); // TODO: implement backward
  4549. is_node = true;
  4550. }
  4551. // make a view of the destination
  4552. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4553. result->op = GGML_OP_CPY;
  4554. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4555. result->src0 = a;
  4556. result->src1 = b;
  4557. return result;
  4558. }
  4559. struct ggml_tensor * ggml_cpy(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a,
  4562. struct ggml_tensor * b) {
  4563. return ggml_cpy_impl(ctx, a, b, false);
  4564. }
  4565. struct ggml_tensor * ggml_cpy_inplace(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. struct ggml_tensor * b) {
  4569. return ggml_cpy_impl(ctx, a, b, true);
  4570. }
  4571. // ggml_cont
  4572. struct ggml_tensor * ggml_cont_impl(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a,
  4575. bool inplace) {
  4576. bool is_node = false;
  4577. if (!inplace && a->grad) {
  4578. GGML_ASSERT(false); // TODO: implement backward
  4579. is_node = true;
  4580. }
  4581. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4582. result->op = GGML_OP_CONT;
  4583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4584. result->src0 = a;
  4585. result->src1 = NULL;
  4586. return result;
  4587. }
  4588. struct ggml_tensor * ggml_cont(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a) {
  4591. return ggml_cont_impl(ctx, a, false);
  4592. }
  4593. struct ggml_tensor * ggml_cont_inplace(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a) {
  4596. return ggml_cont_impl(ctx, a, true);
  4597. }
  4598. // ggml_reshape
  4599. struct ggml_tensor * ggml_reshape(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * a,
  4602. struct ggml_tensor * b) {
  4603. GGML_ASSERT(ggml_is_contiguous(a));
  4604. GGML_ASSERT(ggml_is_contiguous(b));
  4605. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4606. bool is_node = false;
  4607. if (a->grad || b->grad) {
  4608. GGML_ASSERT(false); // TODO: implement backward
  4609. is_node = true;
  4610. }
  4611. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4612. result->op = GGML_OP_RESHAPE;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src0 = a;
  4615. result->src1 = NULL;
  4616. return result;
  4617. }
  4618. struct ggml_tensor * ggml_reshape_2d(
  4619. struct ggml_context * ctx,
  4620. struct ggml_tensor * a,
  4621. int64_t ne0,
  4622. int64_t ne1) {
  4623. GGML_ASSERT(ggml_is_contiguous(a));
  4624. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4625. bool is_node = false;
  4626. if (a->grad) {
  4627. GGML_ASSERT(false); // TODO: implement backward
  4628. is_node = true;
  4629. }
  4630. const int64_t ne[2] = { ne0, ne1 };
  4631. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4632. result->op = GGML_OP_RESHAPE;
  4633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4634. result->src0 = a;
  4635. result->src1 = NULL;
  4636. return result;
  4637. }
  4638. struct ggml_tensor * ggml_reshape_3d(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. int64_t ne0,
  4642. int64_t ne1,
  4643. int64_t ne2) {
  4644. GGML_ASSERT(ggml_is_contiguous(a));
  4645. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4646. bool is_node = false;
  4647. if (a->grad) {
  4648. GGML_ASSERT(false); // TODO: implement backward
  4649. is_node = true;
  4650. }
  4651. const int64_t ne[3] = { ne0, ne1, ne2 };
  4652. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4653. result->op = GGML_OP_RESHAPE;
  4654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4655. result->src0 = a;
  4656. result->src1 = NULL;
  4657. return result;
  4658. }
  4659. // ggml_view_1d
  4660. struct ggml_tensor * ggml_view_1d(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a,
  4663. int64_t ne0,
  4664. size_t offset) {
  4665. if (a->grad) {
  4666. GGML_ASSERT(false); // gradient propagation is not supported
  4667. }
  4668. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4669. result->op = GGML_OP_VIEW;
  4670. result->grad = NULL;
  4671. result->src0 = a;
  4672. result->src1 = NULL; // TODO: maybe store the offset here?
  4673. return result;
  4674. }
  4675. // ggml_view_2d
  4676. struct ggml_tensor * ggml_view_2d(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. int64_t ne0,
  4680. int64_t ne1,
  4681. size_t nb1,
  4682. size_t offset) {
  4683. if (a->grad) {
  4684. GGML_ASSERT(false); // gradient propagation is not supported
  4685. }
  4686. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4687. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4688. result->nb[1] = nb1;
  4689. result->nb[2] = result->nb[1]*ne1;
  4690. result->nb[3] = result->nb[2];
  4691. result->op = GGML_OP_VIEW;
  4692. result->grad = NULL;
  4693. result->src0 = a;
  4694. result->src1 = NULL; // TODO: maybe store the offset here?
  4695. return result;
  4696. }
  4697. // ggml_view_3d
  4698. struct ggml_tensor * ggml_view_3d(
  4699. struct ggml_context * ctx,
  4700. struct ggml_tensor * a,
  4701. int64_t ne0,
  4702. int64_t ne1,
  4703. int64_t ne2,
  4704. size_t nb1,
  4705. size_t nb2,
  4706. size_t offset) {
  4707. if (a->grad) {
  4708. GGML_ASSERT(false); // gradient propagation is not supported
  4709. }
  4710. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4711. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4712. result->nb[1] = nb1;
  4713. result->nb[2] = nb2;
  4714. result->nb[3] = result->nb[2]*ne2;
  4715. result->op = GGML_OP_VIEW;
  4716. result->grad = NULL;
  4717. result->src0 = a;
  4718. result->src1 = NULL; // TODO: maybe store the offset here?
  4719. return result;
  4720. }
  4721. // ggml_permute
  4722. struct ggml_tensor * ggml_permute(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. int axis0,
  4726. int axis1,
  4727. int axis2,
  4728. int axis3) {
  4729. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4730. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4731. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4732. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4733. GGML_ASSERT(axis0 != axis1);
  4734. GGML_ASSERT(axis0 != axis2);
  4735. GGML_ASSERT(axis0 != axis3);
  4736. GGML_ASSERT(axis1 != axis2);
  4737. GGML_ASSERT(axis1 != axis3);
  4738. GGML_ASSERT(axis2 != axis3);
  4739. bool is_node = false;
  4740. if (a->grad) {
  4741. GGML_ASSERT(false); // TODO: implement backward
  4742. is_node = true;
  4743. }
  4744. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4745. int ne[GGML_MAX_DIMS];
  4746. int nb[GGML_MAX_DIMS];
  4747. ne[axis0] = a->ne[0];
  4748. ne[axis1] = a->ne[1];
  4749. ne[axis2] = a->ne[2];
  4750. ne[axis3] = a->ne[3];
  4751. nb[axis0] = a->nb[0];
  4752. nb[axis1] = a->nb[1];
  4753. nb[axis2] = a->nb[2];
  4754. nb[axis3] = a->nb[3];
  4755. result->ne[0] = ne[0];
  4756. result->ne[1] = ne[1];
  4757. result->ne[2] = ne[2];
  4758. result->ne[3] = ne[3];
  4759. result->nb[0] = nb[0];
  4760. result->nb[1] = nb[1];
  4761. result->nb[2] = nb[2];
  4762. result->nb[3] = nb[3];
  4763. result->op = GGML_OP_PERMUTE;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src0 = a;
  4766. result->src1 = NULL; // TODO: maybe store the permutation here?
  4767. return result;
  4768. }
  4769. // ggml_transpose
  4770. struct ggml_tensor * ggml_transpose(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a) {
  4773. bool is_node = false;
  4774. if (a->grad) {
  4775. GGML_ASSERT(false); // TODO: implement backward
  4776. is_node = true;
  4777. }
  4778. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4779. result->ne[0] = a->ne[1];
  4780. result->ne[1] = a->ne[0];
  4781. result->nb[0] = a->nb[1];
  4782. result->nb[1] = a->nb[0];
  4783. result->op = GGML_OP_TRANSPOSE;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src0 = a;
  4786. result->src1 = NULL;
  4787. return result;
  4788. }
  4789. // ggml_get_rows
  4790. struct ggml_tensor * ggml_get_rows(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. struct ggml_tensor * b) {
  4794. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4795. bool is_node = false;
  4796. if (a->grad || b->grad) {
  4797. GGML_ASSERT(false); // TODO: implement backward
  4798. is_node = true;
  4799. }
  4800. // TODO: implement non F32 return
  4801. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4802. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4803. result->op = GGML_OP_GET_ROWS;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src0 = a;
  4806. result->src1 = b;
  4807. return result;
  4808. }
  4809. // ggml_diag_mask_inf
  4810. struct ggml_tensor * ggml_diag_mask_inf(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. int n_past) {
  4814. bool is_node = false;
  4815. if (a->grad) {
  4816. GGML_ASSERT(false); // TODO: implement backward
  4817. is_node = true;
  4818. }
  4819. // TODO: when implement backward, fix this:
  4820. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4821. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4822. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4823. ggml_set_name(b, "n_past");
  4824. result->op = GGML_OP_DIAG_MASK_INF;
  4825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4826. result->src0 = a;
  4827. result->src1 = b;
  4828. return result;
  4829. }
  4830. // ggml_soft_max
  4831. struct ggml_tensor * ggml_soft_max(
  4832. struct ggml_context * ctx,
  4833. struct ggml_tensor * a) {
  4834. bool is_node = false;
  4835. if (a->grad) {
  4836. GGML_ASSERT(false); // TODO: implement backward
  4837. is_node = true;
  4838. }
  4839. // TODO: when implement backward, fix this:
  4840. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4841. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4842. result->op = GGML_OP_SOFT_MAX;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src0 = a;
  4845. result->src1 = NULL;
  4846. return result;
  4847. }
  4848. // ggml_rope
  4849. struct ggml_tensor * ggml_rope(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. int n_past,
  4853. int n_dims,
  4854. int mode) {
  4855. GGML_ASSERT(n_past >= 0);
  4856. bool is_node = false;
  4857. if (a->grad) {
  4858. GGML_ASSERT(false); // TODO: implement backward
  4859. is_node = true;
  4860. }
  4861. // TODO: when implement backward, fix this:
  4862. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4863. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4864. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4865. ((int32_t *) b->data)[0] = n_past;
  4866. ((int32_t *) b->data)[1] = n_dims;
  4867. ((int32_t *) b->data)[2] = mode;
  4868. ggml_set_name(b, "n_past, n_dims, mode");
  4869. result->op = GGML_OP_ROPE;
  4870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4871. result->src0 = a;
  4872. result->src1 = b;
  4873. return result;
  4874. }
  4875. // ggml_alibi
  4876. struct ggml_tensor * ggml_alibi(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. int n_past,
  4880. int n_head) {
  4881. GGML_ASSERT(n_past >= 0);
  4882. bool is_node = false;
  4883. if (a->grad) {
  4884. GGML_ASSERT(false); // TODO: implement backward
  4885. is_node = true;
  4886. }
  4887. // TODO: when implement backward, fix this:
  4888. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4889. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4890. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4891. ((int32_t *) b->data)[0] = n_past;
  4892. ((int32_t *) b->data)[1] = n_head;
  4893. result->op = GGML_OP_ALIBI;
  4894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4895. result->src0 = a;
  4896. result->src1 = b;
  4897. return result;
  4898. }
  4899. // ggml_conv_1d_1s
  4900. struct ggml_tensor * ggml_conv_1d_1s(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. struct ggml_tensor * b) {
  4904. GGML_ASSERT(ggml_is_matrix(b));
  4905. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4906. GGML_ASSERT(a->ne[3] == 1);
  4907. bool is_node = false;
  4908. if (a->grad || b->grad) {
  4909. GGML_ASSERT(false); // TODO: implement backward
  4910. is_node = true;
  4911. }
  4912. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4913. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4914. result->op = GGML_OP_CONV_1D_1S;
  4915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4916. result->src0 = a;
  4917. result->src1 = b;
  4918. return result;
  4919. }
  4920. // ggml_conv_1d_2s
  4921. struct ggml_tensor * ggml_conv_1d_2s(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a,
  4924. struct ggml_tensor * b) {
  4925. GGML_ASSERT(ggml_is_matrix(b));
  4926. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4927. GGML_ASSERT(a->ne[3] == 1);
  4928. bool is_node = false;
  4929. if (a->grad || b->grad) {
  4930. GGML_ASSERT(false); // TODO: implement backward
  4931. is_node = true;
  4932. }
  4933. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4934. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4935. result->op = GGML_OP_CONV_1D_2S;
  4936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4937. result->src0 = a;
  4938. result->src1 = b;
  4939. return result;
  4940. }
  4941. // ggml_flash_attn
  4942. struct ggml_tensor * ggml_flash_attn(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * q,
  4945. struct ggml_tensor * k,
  4946. struct ggml_tensor * v,
  4947. bool masked) {
  4948. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4949. // TODO: check if vT can be multiplied by (k*qT)
  4950. bool is_node = false;
  4951. if (q->grad || k->grad || v->grad) {
  4952. GGML_ASSERT(false); // TODO: implement backward
  4953. is_node = true;
  4954. }
  4955. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4956. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4957. result->op = GGML_OP_FLASH_ATTN;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src0 = q;
  4960. result->src1 = k;
  4961. result->opt[0] = v;
  4962. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4963. return result;
  4964. }
  4965. // ggml_flash_ff
  4966. struct ggml_tensor * ggml_flash_ff(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. struct ggml_tensor * b0,
  4970. struct ggml_tensor * b1,
  4971. struct ggml_tensor * c0,
  4972. struct ggml_tensor * c1) {
  4973. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4974. // TODO: more checks
  4975. bool is_node = false;
  4976. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4977. GGML_ASSERT(false); // TODO: implement backward
  4978. is_node = true;
  4979. }
  4980. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4981. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4982. result->op = GGML_OP_FLASH_FF;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src0 = a;
  4985. result->src1 = b0;
  4986. result->opt[0] = b1;
  4987. result->opt[1] = c0;
  4988. result->opt[2] = c1;
  4989. return result;
  4990. }
  4991. // ggml_map_unary
  4992. struct ggml_tensor * ggml_map_unary_impl_f32(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. const ggml_unary_op_f32_t fun,
  4996. bool inplace) {
  4997. bool is_node = false;
  4998. if (!inplace && a->grad) {
  4999. is_node = true;
  5000. }
  5001. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5002. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5003. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5004. result->op = GGML_OP_MAP_UNARY;
  5005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5006. result->src0 = a;
  5007. result->opt[0] = addr_tensor;
  5008. return result;
  5009. }
  5010. struct ggml_tensor * ggml_map_unary_f32(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. const ggml_unary_op_f32_t fun) {
  5014. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5015. }
  5016. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. const ggml_unary_op_f32_t fun) {
  5020. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5021. }
  5022. // ggml_map_binary
  5023. struct ggml_tensor * ggml_map_binary_impl_f32(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. struct ggml_tensor * b,
  5027. const ggml_binary_op_f32_t fun,
  5028. bool inplace) {
  5029. GGML_ASSERT(ggml_are_same_shape(a, b));
  5030. bool is_node = false;
  5031. if (!inplace && (a->grad || b->grad)) {
  5032. is_node = true;
  5033. }
  5034. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5035. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5036. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5037. result->op = GGML_OP_MAP_BINARY;
  5038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5039. result->src0 = a;
  5040. result->src1 = b;
  5041. result->opt[0] = addr_tensor;
  5042. return result;
  5043. }
  5044. struct ggml_tensor * ggml_map_binary_f32(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. struct ggml_tensor * b,
  5048. const ggml_binary_op_f32_t fun) {
  5049. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5050. }
  5051. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. struct ggml_tensor * b,
  5055. const ggml_binary_op_f32_t fun) {
  5056. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5057. }
  5058. ////////////////////////////////////////////////////////////////////////////////
  5059. void ggml_set_param(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * tensor) {
  5062. tensor->is_param = true;
  5063. GGML_ASSERT(tensor->grad == NULL);
  5064. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5065. }
  5066. // ggml_compute_forward_dup
  5067. static void ggml_compute_forward_dup_f16(
  5068. const struct ggml_compute_params * params,
  5069. const struct ggml_tensor * src0,
  5070. struct ggml_tensor * dst) {
  5071. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5073. return;
  5074. }
  5075. const int64_t ne00 = src0->ne[0];
  5076. const int64_t ne01 = src0->ne[1];
  5077. const int64_t ne02 = src0->ne[2];
  5078. const int64_t ne03 = src0->ne[3];
  5079. const int64_t ne0 = dst->ne[0];
  5080. const int64_t ne1 = dst->ne[1];
  5081. const int64_t ne2 = dst->ne[2];
  5082. const int64_t ne3 = dst->ne[3];
  5083. const size_t nb00 = src0->nb[0];
  5084. const size_t nb01 = src0->nb[1];
  5085. const size_t nb02 = src0->nb[2];
  5086. const size_t nb03 = src0->nb[3];
  5087. const size_t nb0 = dst->nb[0];
  5088. const size_t nb1 = dst->nb[1];
  5089. const size_t nb2 = dst->nb[2];
  5090. const size_t nb3 = dst->nb[3];
  5091. const int ith = params->ith; // thread index
  5092. const int nth = params->nth; // number of threads
  5093. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5094. // parallelize by elements
  5095. const int ne = ggml_nelements(dst);
  5096. const int dr = (ne + nth - 1) / nth;
  5097. const int ie0 = dr * ith;
  5098. const int ie1 = MIN(ie0 + dr, ne);
  5099. memcpy(
  5100. ((char *) dst->data + ie0*nb0),
  5101. ((char *) src0->data + ie0*nb00),
  5102. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5103. return;
  5104. }
  5105. // parallelize by rows
  5106. const int nr = ne01;
  5107. // number of rows per thread
  5108. const int dr = (nr + nth - 1) / nth;
  5109. // row range for this thread
  5110. const int ir0 = dr * ith;
  5111. const int ir1 = MIN(ir0 + dr, nr);
  5112. if (src0->type == dst->type &&
  5113. ne00 == ne0 &&
  5114. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5115. // copy by rows
  5116. const size_t rs = ne00*nb00;
  5117. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5118. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5119. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5120. memcpy(
  5121. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5122. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5123. rs);
  5124. }
  5125. }
  5126. }
  5127. return;
  5128. }
  5129. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5130. if (ggml_is_contiguous(dst)) {
  5131. if (nb00 == sizeof(ggml_fp16_t)) {
  5132. if (dst->type == GGML_TYPE_F16) {
  5133. size_t id = 0;
  5134. const size_t rs = ne00 * nb00;
  5135. char * dst_ptr = (char *) dst->data;
  5136. for (int i03 = 0; i03 < ne03; i03++) {
  5137. for (int i02 = 0; i02 < ne02; i02++) {
  5138. id += rs * ir0;
  5139. for (int i01 = ir0; i01 < ir1; i01++) {
  5140. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5141. memcpy(dst_ptr + id, src0_ptr, rs);
  5142. id += rs;
  5143. }
  5144. id += rs * (ne01 - ir1);
  5145. }
  5146. }
  5147. } else if (dst->type == GGML_TYPE_F32) {
  5148. size_t id = 0;
  5149. float * dst_ptr = (float *) dst->data;
  5150. for (int i03 = 0; i03 < ne03; i03++) {
  5151. for (int i02 = 0; i02 < ne02; i02++) {
  5152. id += ne00 * ir0;
  5153. for (int i01 = ir0; i01 < ir1; i01++) {
  5154. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5155. for (int i00 = 0; i00 < ne00; i00++) {
  5156. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5157. id++;
  5158. }
  5159. }
  5160. id += ne00 * (ne01 - ir1);
  5161. }
  5162. }
  5163. } else if (ggml_is_quantized(dst->type)) {
  5164. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5165. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5166. size_t id = 0;
  5167. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5168. char * dst_ptr = (char *) dst->data;
  5169. for (int i03 = 0; i03 < ne03; i03++) {
  5170. for (int i02 = 0; i02 < ne02; i02++) {
  5171. id += rs * ir0;
  5172. for (int i01 = ir0; i01 < ir1; i01++) {
  5173. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5174. for (int i00 = 0; i00 < ne00; i00++) {
  5175. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5176. }
  5177. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5178. id += rs;
  5179. }
  5180. id += rs * (ne01 - ir1);
  5181. }
  5182. }
  5183. } else {
  5184. GGML_ASSERT(false); // TODO: implement
  5185. }
  5186. } else {
  5187. //printf("%s: this is not optimal - fix me\n", __func__);
  5188. if (dst->type == GGML_TYPE_F32) {
  5189. size_t id = 0;
  5190. float * dst_ptr = (float *) dst->data;
  5191. for (int i03 = 0; i03 < ne03; i03++) {
  5192. for (int i02 = 0; i02 < ne02; i02++) {
  5193. id += ne00 * ir0;
  5194. for (int i01 = ir0; i01 < ir1; i01++) {
  5195. for (int i00 = 0; i00 < ne00; i00++) {
  5196. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5197. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5198. id++;
  5199. }
  5200. }
  5201. id += ne00 * (ne01 - ir1);
  5202. }
  5203. }
  5204. } else if (dst->type == GGML_TYPE_F16) {
  5205. size_t id = 0;
  5206. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5207. for (int i03 = 0; i03 < ne03; i03++) {
  5208. for (int i02 = 0; i02 < ne02; i02++) {
  5209. id += ne00 * ir0;
  5210. for (int i01 = ir0; i01 < ir1; i01++) {
  5211. for (int i00 = 0; i00 < ne00; i00++) {
  5212. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5213. dst_ptr[id] = *src0_ptr;
  5214. id++;
  5215. }
  5216. }
  5217. id += ne00 * (ne01 - ir1);
  5218. }
  5219. }
  5220. } else {
  5221. GGML_ASSERT(false); // TODO: implement
  5222. }
  5223. }
  5224. return;
  5225. }
  5226. // dst counters
  5227. int64_t i10 = 0;
  5228. int64_t i11 = 0;
  5229. int64_t i12 = 0;
  5230. int64_t i13 = 0;
  5231. if (dst->type == GGML_TYPE_F16) {
  5232. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5233. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5234. i10 += ne00 * ir0;
  5235. while (i10 >= ne0) {
  5236. i10 -= ne0;
  5237. if (++i11 == ne1) {
  5238. i11 = 0;
  5239. if (++i12 == ne2) {
  5240. i12 = 0;
  5241. if (++i13 == ne3) {
  5242. i13 = 0;
  5243. }
  5244. }
  5245. }
  5246. }
  5247. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5248. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5249. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5250. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5251. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5252. if (++i10 == ne00) {
  5253. i10 = 0;
  5254. if (++i11 == ne01) {
  5255. i11 = 0;
  5256. if (++i12 == ne02) {
  5257. i12 = 0;
  5258. if (++i13 == ne03) {
  5259. i13 = 0;
  5260. }
  5261. }
  5262. }
  5263. }
  5264. }
  5265. }
  5266. i10 += ne00 * (ne01 - ir1);
  5267. while (i10 >= ne0) {
  5268. i10 -= ne0;
  5269. if (++i11 == ne1) {
  5270. i11 = 0;
  5271. if (++i12 == ne2) {
  5272. i12 = 0;
  5273. if (++i13 == ne3) {
  5274. i13 = 0;
  5275. }
  5276. }
  5277. }
  5278. }
  5279. }
  5280. }
  5281. } else if (dst->type == GGML_TYPE_F32) {
  5282. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5283. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5284. i10 += ne00 * ir0;
  5285. while (i10 >= ne0) {
  5286. i10 -= ne0;
  5287. if (++i11 == ne1) {
  5288. i11 = 0;
  5289. if (++i12 == ne2) {
  5290. i12 = 0;
  5291. if (++i13 == ne3) {
  5292. i13 = 0;
  5293. }
  5294. }
  5295. }
  5296. }
  5297. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5298. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5299. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5300. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5301. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5302. if (++i10 == ne0) {
  5303. i10 = 0;
  5304. if (++i11 == ne1) {
  5305. i11 = 0;
  5306. if (++i12 == ne2) {
  5307. i12 = 0;
  5308. if (++i13 == ne3) {
  5309. i13 = 0;
  5310. }
  5311. }
  5312. }
  5313. }
  5314. }
  5315. }
  5316. i10 += ne00 * (ne01 - ir1);
  5317. while (i10 >= ne0) {
  5318. i10 -= ne0;
  5319. if (++i11 == ne1) {
  5320. i11 = 0;
  5321. if (++i12 == ne2) {
  5322. i12 = 0;
  5323. if (++i13 == ne3) {
  5324. i13 = 0;
  5325. }
  5326. }
  5327. }
  5328. }
  5329. }
  5330. }
  5331. } else {
  5332. GGML_ASSERT(false); // TODO: implement
  5333. }
  5334. }
  5335. static void ggml_compute_forward_dup_f32(
  5336. const struct ggml_compute_params * params,
  5337. const struct ggml_tensor * src0,
  5338. struct ggml_tensor * dst) {
  5339. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5341. return;
  5342. }
  5343. const int64_t ne00 = src0->ne[0];
  5344. const int64_t ne01 = src0->ne[1];
  5345. const int64_t ne02 = src0->ne[2];
  5346. const int64_t ne03 = src0->ne[3];
  5347. const int64_t ne0 = dst->ne[0];
  5348. const int64_t ne1 = dst->ne[1];
  5349. const int64_t ne2 = dst->ne[2];
  5350. const int64_t ne3 = dst->ne[3];
  5351. const size_t nb00 = src0->nb[0];
  5352. const size_t nb01 = src0->nb[1];
  5353. const size_t nb02 = src0->nb[2];
  5354. const size_t nb03 = src0->nb[3];
  5355. const size_t nb0 = dst->nb[0];
  5356. const size_t nb1 = dst->nb[1];
  5357. const size_t nb2 = dst->nb[2];
  5358. const size_t nb3 = dst->nb[3];
  5359. const int ith = params->ith; // thread index
  5360. const int nth = params->nth; // number of threads
  5361. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5362. // parallelize by elements
  5363. const int ne = ggml_nelements(dst);
  5364. const int dr = (ne + nth - 1) / nth;
  5365. const int ie0 = dr * ith;
  5366. const int ie1 = MIN(ie0 + dr, ne);
  5367. memcpy(
  5368. ((char *) dst->data + ie0*nb0),
  5369. ((char *) src0->data + ie0*nb00),
  5370. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5371. return;
  5372. }
  5373. // parallelize by rows
  5374. const int nr = ne01;
  5375. // number of rows per thread
  5376. const int dr = (nr + nth - 1) / nth;
  5377. // row range for this thread
  5378. const int ir0 = dr * ith;
  5379. const int ir1 = MIN(ir0 + dr, nr);
  5380. if (src0->type == dst->type &&
  5381. ne00 == ne0 &&
  5382. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5383. // copy by rows
  5384. const size_t rs = ne00*nb00;
  5385. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5386. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5387. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5388. memcpy(
  5389. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5390. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5391. rs);
  5392. }
  5393. }
  5394. }
  5395. return;
  5396. }
  5397. if (ggml_is_contiguous(dst)) {
  5398. // TODO: simplify
  5399. if (nb00 == sizeof(float)) {
  5400. if (dst->type == GGML_TYPE_F32) {
  5401. size_t id = 0;
  5402. const size_t rs = ne00 * nb00;
  5403. char * dst_ptr = (char *) dst->data;
  5404. for (int i03 = 0; i03 < ne03; i03++) {
  5405. for (int i02 = 0; i02 < ne02; i02++) {
  5406. id += rs * ir0;
  5407. for (int i01 = ir0; i01 < ir1; i01++) {
  5408. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5409. memcpy(dst_ptr + id, src0_ptr, rs);
  5410. id += rs;
  5411. }
  5412. id += rs * (ne01 - ir1);
  5413. }
  5414. }
  5415. } else if (dst->type == GGML_TYPE_F16) {
  5416. size_t id = 0;
  5417. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5418. for (int i03 = 0; i03 < ne03; i03++) {
  5419. for (int i02 = 0; i02 < ne02; i02++) {
  5420. id += ne00 * ir0;
  5421. for (int i01 = ir0; i01 < ir1; i01++) {
  5422. for (int i00 = 0; i00 < ne00; i00++) {
  5423. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5424. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5425. id++;
  5426. }
  5427. }
  5428. id += ne00 * (ne01 - ir1);
  5429. }
  5430. }
  5431. } else if (ggml_is_quantized(dst->type)) {
  5432. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5433. size_t id = 0;
  5434. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5435. char * dst_ptr = (char *) dst->data;
  5436. for (int i03 = 0; i03 < ne03; i03++) {
  5437. for (int i02 = 0; i02 < ne02; i02++) {
  5438. id += rs * ir0;
  5439. for (int i01 = ir0; i01 < ir1; i01++) {
  5440. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5441. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5442. id += rs;
  5443. }
  5444. id += rs * (ne01 - ir1);
  5445. }
  5446. }
  5447. } else {
  5448. GGML_ASSERT(false); // TODO: implement
  5449. }
  5450. } else {
  5451. //printf("%s: this is not optimal - fix me\n", __func__);
  5452. if (dst->type == GGML_TYPE_F32) {
  5453. size_t id = 0;
  5454. float * dst_ptr = (float *) dst->data;
  5455. for (int i03 = 0; i03 < ne03; i03++) {
  5456. for (int i02 = 0; i02 < ne02; i02++) {
  5457. id += ne00 * ir0;
  5458. for (int i01 = ir0; i01 < ir1; i01++) {
  5459. for (int i00 = 0; i00 < ne00; i00++) {
  5460. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5461. dst_ptr[id] = *src0_ptr;
  5462. id++;
  5463. }
  5464. }
  5465. id += ne00 * (ne01 - ir1);
  5466. }
  5467. }
  5468. } else if (dst->type == GGML_TYPE_F16) {
  5469. size_t id = 0;
  5470. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5471. for (int i03 = 0; i03 < ne03; i03++) {
  5472. for (int i02 = 0; i02 < ne02; i02++) {
  5473. id += ne00 * ir0;
  5474. for (int i01 = ir0; i01 < ir1; i01++) {
  5475. for (int i00 = 0; i00 < ne00; i00++) {
  5476. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5477. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5478. id++;
  5479. }
  5480. }
  5481. id += ne00 * (ne01 - ir1);
  5482. }
  5483. }
  5484. } else {
  5485. GGML_ASSERT(false); // TODO: implement
  5486. }
  5487. }
  5488. return;
  5489. }
  5490. // dst counters
  5491. int64_t i10 = 0;
  5492. int64_t i11 = 0;
  5493. int64_t i12 = 0;
  5494. int64_t i13 = 0;
  5495. if (dst->type == GGML_TYPE_F32) {
  5496. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5497. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5498. i10 += ne00 * ir0;
  5499. while (i10 >= ne0) {
  5500. i10 -= ne0;
  5501. if (++i11 == ne1) {
  5502. i11 = 0;
  5503. if (++i12 == ne2) {
  5504. i12 = 0;
  5505. if (++i13 == ne3) {
  5506. i13 = 0;
  5507. }
  5508. }
  5509. }
  5510. }
  5511. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5512. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5513. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5514. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5515. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5516. if (++i10 == ne0) {
  5517. i10 = 0;
  5518. if (++i11 == ne1) {
  5519. i11 = 0;
  5520. if (++i12 == ne2) {
  5521. i12 = 0;
  5522. if (++i13 == ne3) {
  5523. i13 = 0;
  5524. }
  5525. }
  5526. }
  5527. }
  5528. }
  5529. }
  5530. i10 += ne00 * (ne01 - ir1);
  5531. while (i10 >= ne0) {
  5532. i10 -= ne0;
  5533. if (++i11 == ne1) {
  5534. i11 = 0;
  5535. if (++i12 == ne2) {
  5536. i12 = 0;
  5537. if (++i13 == ne3) {
  5538. i13 = 0;
  5539. }
  5540. }
  5541. }
  5542. }
  5543. }
  5544. }
  5545. } else if (dst->type == GGML_TYPE_F16) {
  5546. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5547. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5548. i10 += ne00 * ir0;
  5549. while (i10 >= ne0) {
  5550. i10 -= ne0;
  5551. if (++i11 == ne1) {
  5552. i11 = 0;
  5553. if (++i12 == ne2) {
  5554. i12 = 0;
  5555. if (++i13 == ne3) {
  5556. i13 = 0;
  5557. }
  5558. }
  5559. }
  5560. }
  5561. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5562. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5563. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5564. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5565. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5566. if (++i10 == ne0) {
  5567. i10 = 0;
  5568. if (++i11 == ne1) {
  5569. i11 = 0;
  5570. if (++i12 == ne2) {
  5571. i12 = 0;
  5572. if (++i13 == ne3) {
  5573. i13 = 0;
  5574. }
  5575. }
  5576. }
  5577. }
  5578. }
  5579. }
  5580. i10 += ne00 * (ne01 - ir1);
  5581. while (i10 >= ne0) {
  5582. i10 -= ne0;
  5583. if (++i11 == ne1) {
  5584. i11 = 0;
  5585. if (++i12 == ne2) {
  5586. i12 = 0;
  5587. if (++i13 == ne3) {
  5588. i13 = 0;
  5589. }
  5590. }
  5591. }
  5592. }
  5593. }
  5594. }
  5595. } else {
  5596. GGML_ASSERT(false); // TODO: implement
  5597. }
  5598. }
  5599. static void ggml_compute_forward_dup(
  5600. const struct ggml_compute_params * params,
  5601. const struct ggml_tensor * src0,
  5602. struct ggml_tensor * dst) {
  5603. switch (src0->type) {
  5604. case GGML_TYPE_F16:
  5605. {
  5606. ggml_compute_forward_dup_f16(params, src0, dst);
  5607. } break;
  5608. case GGML_TYPE_F32:
  5609. {
  5610. ggml_compute_forward_dup_f32(params, src0, dst);
  5611. } break;
  5612. default:
  5613. {
  5614. GGML_ASSERT(false);
  5615. } break;
  5616. }
  5617. }
  5618. // ggml_compute_forward_add
  5619. static void ggml_compute_forward_add_f32(
  5620. const struct ggml_compute_params * params,
  5621. const struct ggml_tensor * src0,
  5622. const struct ggml_tensor * src1,
  5623. struct ggml_tensor * dst) {
  5624. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5626. return;
  5627. }
  5628. const int ith = params->ith;
  5629. const int nth = params->nth;
  5630. const int n = ggml_nrows(src0);
  5631. const int nc = src0->ne[0];
  5632. const size_t nb00 = src0->nb[0];
  5633. const size_t nb01 = src0->nb[1];
  5634. const size_t nb10 = src1->nb[0];
  5635. const size_t nb11 = src1->nb[1];
  5636. const size_t nb0 = dst->nb[0];
  5637. const size_t nb1 = dst->nb[1];
  5638. GGML_ASSERT( nb0 == sizeof(float));
  5639. GGML_ASSERT(nb00 == sizeof(float));
  5640. if (nb10 == sizeof(float)) {
  5641. for (int j = ith; j < n; j += nth) {
  5642. #ifdef GGML_USE_ACCELERATE
  5643. vDSP_vadd(
  5644. (float *) ((char *) src0->data + j*nb01), 1,
  5645. (float *) ((char *) src1->data + j*nb11), 1,
  5646. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5647. #else
  5648. ggml_vec_add_f32(nc,
  5649. (float *) ((char *) dst->data + j*nb1),
  5650. (float *) ((char *) src0->data + j*nb01),
  5651. (float *) ((char *) src1->data + j*nb11));
  5652. #endif
  5653. }
  5654. } else {
  5655. // src1 is not contiguous
  5656. for (int j = ith; j < n; j += nth) {
  5657. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5658. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5659. for (int i = 0; i < nc; i++) {
  5660. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5661. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5662. }
  5663. }
  5664. }
  5665. }
  5666. static void ggml_compute_forward_add_f16_f32(
  5667. const struct ggml_compute_params * params,
  5668. const struct ggml_tensor * src0,
  5669. const struct ggml_tensor * src1,
  5670. struct ggml_tensor * dst) {
  5671. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5673. return;
  5674. }
  5675. const int ith = params->ith;
  5676. const int nth = params->nth;
  5677. const int n = ggml_nrows(src0);
  5678. const int nc = src0->ne[0];
  5679. const size_t nb00 = src0->nb[0];
  5680. const size_t nb01 = src0->nb[1];
  5681. const size_t nb10 = src1->nb[0];
  5682. const size_t nb11 = src1->nb[1];
  5683. const size_t nb0 = dst->nb[0];
  5684. const size_t nb1 = dst->nb[1];
  5685. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5686. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5687. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5688. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5689. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5690. if (nb10 == sizeof(float)) {
  5691. for (int j = ith; j < n; j += nth) {
  5692. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5693. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5694. for (int i = 0; i < nc; i++) {
  5695. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5696. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5697. }
  5698. }
  5699. }
  5700. else {
  5701. // src1 is not contiguous
  5702. GGML_ASSERT(false);
  5703. }
  5704. }
  5705. static void ggml_compute_forward_add_f16_f16(
  5706. const struct ggml_compute_params * params,
  5707. const struct ggml_tensor * src0,
  5708. const struct ggml_tensor * src1,
  5709. struct ggml_tensor * dst) {
  5710. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5712. return;
  5713. }
  5714. const int ith = params->ith;
  5715. const int nth = params->nth;
  5716. const int n = ggml_nrows(src0);
  5717. const int nc = src0->ne[0];
  5718. const size_t nb00 = src0->nb[0];
  5719. const size_t nb01 = src0->nb[1];
  5720. const size_t nb10 = src1->nb[0];
  5721. const size_t nb11 = src1->nb[1];
  5722. const size_t nb0 = dst->nb[0];
  5723. const size_t nb1 = dst->nb[1];
  5724. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5725. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5726. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5727. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5728. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5729. if (nb10 == sizeof(ggml_fp16_t)) {
  5730. for (int j = ith; j < n; j += nth) {
  5731. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5732. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5733. for (int i = 0; i < nc; i++) {
  5734. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5735. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5736. }
  5737. }
  5738. }
  5739. else {
  5740. // src1 is not contiguous
  5741. GGML_ASSERT(false);
  5742. }
  5743. }
  5744. static void ggml_compute_forward_add_q_f32(
  5745. const struct ggml_compute_params * params,
  5746. const struct ggml_tensor * src0,
  5747. const struct ggml_tensor * src1,
  5748. struct ggml_tensor * dst) {
  5749. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5750. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5751. return;
  5752. }
  5753. const int64_t ne00 = src0->ne[0];
  5754. const int64_t ne01 = src0->ne[1];
  5755. const int64_t ne02 = src0->ne[2];
  5756. const int64_t ne03 = src0->ne[3];
  5757. //const int64_t ne10 = src1->ne[0];
  5758. //const int64_t ne11 = src1->ne[1];
  5759. const int64_t ne12 = src1->ne[2];
  5760. const int64_t ne13 = src1->ne[3];
  5761. //const int64_t ne0 = dst->ne[0];
  5762. //const int64_t ne1 = dst->ne[1];
  5763. const int64_t ne2 = dst->ne[2];
  5764. const int64_t ne3 = dst->ne[3];
  5765. const int nb00 = src0->nb[0];
  5766. const int nb01 = src0->nb[1];
  5767. const int nb02 = src0->nb[2];
  5768. const int nb03 = src0->nb[3];
  5769. const int nb10 = src1->nb[0];
  5770. const int nb11 = src1->nb[1];
  5771. const int nb12 = src1->nb[2];
  5772. const int nb13 = src1->nb[3];
  5773. const int nb0 = dst->nb[0];
  5774. const int nb1 = dst->nb[1];
  5775. const int nb2 = dst->nb[2];
  5776. const int nb3 = dst->nb[3];
  5777. const int ith = params->ith;
  5778. const int nth = params->nth;
  5779. GGML_ASSERT(ne02 == ne12);
  5780. GGML_ASSERT(ne03 == ne13);
  5781. GGML_ASSERT(ne2 == ne12);
  5782. GGML_ASSERT(ne3 == ne13);
  5783. const enum ggml_type type = src0->type;
  5784. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5785. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5786. // we don't support permuted src0 or src1
  5787. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5788. GGML_ASSERT(nb10 == sizeof(float));
  5789. // dst cannot be transposed or permuted
  5790. GGML_ASSERT(nb0 <= nb1);
  5791. GGML_ASSERT(nb1 <= nb2);
  5792. GGML_ASSERT(nb2 <= nb3);
  5793. GGML_ASSERT(ggml_is_quantized(src0->type));
  5794. GGML_ASSERT(dst->type == src0->type);
  5795. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5796. // total rows in src0
  5797. const int nr = ne01*ne02*ne03;
  5798. // rows per thread
  5799. const int dr = (nr + nth - 1)/nth;
  5800. // row range for this thread
  5801. const int ir0 = dr*ith;
  5802. const int ir1 = MIN(ir0 + dr, nr);
  5803. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5804. for (int ir = ir0; ir < ir1; ++ir) {
  5805. // src0 indices
  5806. const int i03 = ir/(ne02*ne01);
  5807. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5808. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5809. // src1 and dst are same shape as src0 => same indices
  5810. const int i13 = i03;
  5811. const int i12 = i02;
  5812. const int i11 = i01;
  5813. const int i3 = i03;
  5814. const int i2 = i02;
  5815. const int i1 = i01;
  5816. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5817. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5818. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5819. assert(ne00 % 32 == 0);
  5820. // unquantize row from src0 to temp buffer
  5821. dequantize_row_q(src0_row, wdata, ne00);
  5822. // add src1
  5823. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5824. // quantize row to dst
  5825. quantize_row_q(wdata, dst_row, ne00);
  5826. }
  5827. }
  5828. static void ggml_compute_forward_add(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. const struct ggml_tensor * src1,
  5832. struct ggml_tensor * dst) {
  5833. switch (src0->type) {
  5834. case GGML_TYPE_F32:
  5835. {
  5836. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5837. } break;
  5838. case GGML_TYPE_F16:
  5839. {
  5840. if (src1->type == GGML_TYPE_F16) {
  5841. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5842. }
  5843. else if (src1->type == GGML_TYPE_F32) {
  5844. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5845. }
  5846. else {
  5847. GGML_ASSERT(false);
  5848. }
  5849. } break;
  5850. case GGML_TYPE_Q4_0:
  5851. case GGML_TYPE_Q4_1:
  5852. case GGML_TYPE_Q4_2:
  5853. case GGML_TYPE_Q5_0:
  5854. case GGML_TYPE_Q5_1:
  5855. case GGML_TYPE_Q8_0:
  5856. {
  5857. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5858. } break;
  5859. default:
  5860. {
  5861. GGML_ASSERT(false);
  5862. } break;
  5863. }
  5864. }
  5865. // ggml_compute_forward_sub
  5866. static void ggml_compute_forward_sub_f32(
  5867. const struct ggml_compute_params * params,
  5868. const struct ggml_tensor * src0,
  5869. const struct ggml_tensor * src1,
  5870. struct ggml_tensor * dst) {
  5871. assert(params->ith == 0);
  5872. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5874. return;
  5875. }
  5876. const int n = ggml_nrows(src0);
  5877. const int nc = src0->ne[0];
  5878. assert( dst->nb[0] == sizeof(float));
  5879. assert(src0->nb[0] == sizeof(float));
  5880. assert(src1->nb[0] == sizeof(float));
  5881. for (int i = 0; i < n; i++) {
  5882. ggml_vec_sub_f32(nc,
  5883. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5884. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5885. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5886. }
  5887. }
  5888. static void ggml_compute_forward_sub(
  5889. const struct ggml_compute_params * params,
  5890. const struct ggml_tensor * src0,
  5891. const struct ggml_tensor * src1,
  5892. struct ggml_tensor * dst) {
  5893. switch (src0->type) {
  5894. case GGML_TYPE_F32:
  5895. {
  5896. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5897. } break;
  5898. default:
  5899. {
  5900. GGML_ASSERT(false);
  5901. } break;
  5902. }
  5903. }
  5904. // ggml_compute_forward_mul
  5905. static void ggml_compute_forward_mul_f32(
  5906. const struct ggml_compute_params * params,
  5907. const struct ggml_tensor * src0,
  5908. const struct ggml_tensor * src1,
  5909. struct ggml_tensor * dst) {
  5910. assert(params->ith == 0);
  5911. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5912. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5913. return;
  5914. }
  5915. const int n = ggml_nrows(src0);
  5916. const int nc = src0->ne[0];
  5917. assert( dst->nb[0] == sizeof(float));
  5918. assert(src0->nb[0] == sizeof(float));
  5919. assert(src1->nb[0] == sizeof(float));
  5920. for (int i = 0; i < n; i++) {
  5921. ggml_vec_mul_f32(nc,
  5922. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5923. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5924. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5925. }
  5926. }
  5927. static void ggml_compute_forward_mul(
  5928. const struct ggml_compute_params * params,
  5929. const struct ggml_tensor * src0,
  5930. const struct ggml_tensor * src1,
  5931. struct ggml_tensor * dst) {
  5932. switch (src0->type) {
  5933. case GGML_TYPE_F32:
  5934. {
  5935. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5936. } break;
  5937. default:
  5938. {
  5939. GGML_ASSERT(false);
  5940. } break;
  5941. }
  5942. }
  5943. // ggml_compute_forward_div
  5944. static void ggml_compute_forward_div_f32(
  5945. const struct ggml_compute_params * params,
  5946. const struct ggml_tensor * src0,
  5947. const struct ggml_tensor * src1,
  5948. struct ggml_tensor * dst) {
  5949. assert(params->ith == 0);
  5950. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5951. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5952. return;
  5953. }
  5954. const int n = ggml_nrows(src0);
  5955. const int nc = src0->ne[0];
  5956. assert( dst->nb[0] == sizeof(float));
  5957. assert(src0->nb[0] == sizeof(float));
  5958. assert(src1->nb[0] == sizeof(float));
  5959. for (int i = 0; i < n; i++) {
  5960. ggml_vec_div_f32(nc,
  5961. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5962. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5963. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5964. }
  5965. }
  5966. static void ggml_compute_forward_div(
  5967. const struct ggml_compute_params * params,
  5968. const struct ggml_tensor * src0,
  5969. const struct ggml_tensor * src1,
  5970. struct ggml_tensor * dst) {
  5971. switch (src0->type) {
  5972. case GGML_TYPE_F32:
  5973. {
  5974. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5975. } break;
  5976. default:
  5977. {
  5978. GGML_ASSERT(false);
  5979. } break;
  5980. }
  5981. }
  5982. // ggml_compute_forward_sqr
  5983. static void ggml_compute_forward_sqr_f32(
  5984. const struct ggml_compute_params * params,
  5985. const struct ggml_tensor * src0,
  5986. struct ggml_tensor * dst) {
  5987. assert(params->ith == 0);
  5988. assert(ggml_are_same_shape(src0, dst));
  5989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5990. return;
  5991. }
  5992. const int n = ggml_nrows(src0);
  5993. const int nc = src0->ne[0];
  5994. assert( dst->nb[0] == sizeof(float));
  5995. assert(src0->nb[0] == sizeof(float));
  5996. for (int i = 0; i < n; i++) {
  5997. ggml_vec_sqr_f32(nc,
  5998. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5999. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6000. }
  6001. }
  6002. static void ggml_compute_forward_sqr(
  6003. const struct ggml_compute_params * params,
  6004. const struct ggml_tensor * src0,
  6005. struct ggml_tensor * dst) {
  6006. switch (src0->type) {
  6007. case GGML_TYPE_F32:
  6008. {
  6009. ggml_compute_forward_sqr_f32(params, src0, dst);
  6010. } break;
  6011. default:
  6012. {
  6013. GGML_ASSERT(false);
  6014. } break;
  6015. }
  6016. }
  6017. // ggml_compute_forward_sqrt
  6018. static void ggml_compute_forward_sqrt_f32(
  6019. const struct ggml_compute_params * params,
  6020. const struct ggml_tensor * src0,
  6021. struct ggml_tensor * dst) {
  6022. assert(params->ith == 0);
  6023. assert(ggml_are_same_shape(src0, dst));
  6024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6025. return;
  6026. }
  6027. const int n = ggml_nrows(src0);
  6028. const int nc = src0->ne[0];
  6029. assert( dst->nb[0] == sizeof(float));
  6030. assert(src0->nb[0] == sizeof(float));
  6031. for (int i = 0; i < n; i++) {
  6032. ggml_vec_sqrt_f32(nc,
  6033. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6034. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6035. }
  6036. }
  6037. static void ggml_compute_forward_sqrt(
  6038. const struct ggml_compute_params * params,
  6039. const struct ggml_tensor * src0,
  6040. struct ggml_tensor * dst) {
  6041. switch (src0->type) {
  6042. case GGML_TYPE_F32:
  6043. {
  6044. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6045. } break;
  6046. default:
  6047. {
  6048. GGML_ASSERT(false);
  6049. } break;
  6050. }
  6051. }
  6052. // ggml_compute_forward_sum
  6053. static void ggml_compute_forward_sum_f32(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. struct ggml_tensor * dst) {
  6057. assert(params->ith == 0);
  6058. assert(ggml_is_scalar(dst));
  6059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6060. return;
  6061. }
  6062. assert(ggml_is_scalar(dst));
  6063. assert(src0->nb[0] == sizeof(float));
  6064. const int64_t ne00 = src0->ne[0];
  6065. const int64_t ne01 = src0->ne[1];
  6066. const int64_t ne02 = src0->ne[2];
  6067. const int64_t ne03 = src0->ne[3];
  6068. const size_t nb01 = src0->nb[1];
  6069. const size_t nb02 = src0->nb[2];
  6070. const size_t nb03 = src0->nb[3];
  6071. ggml_float sum = 0;
  6072. ggml_float row_sum = 0;
  6073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6075. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6076. ggml_vec_sum_ggf(ne00,
  6077. &row_sum,
  6078. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6079. sum += row_sum;
  6080. }
  6081. }
  6082. }
  6083. ((float *) dst->data)[0] = sum;
  6084. }
  6085. static void ggml_compute_forward_sum(
  6086. const struct ggml_compute_params * params,
  6087. const struct ggml_tensor * src0,
  6088. struct ggml_tensor * dst) {
  6089. switch (src0->type) {
  6090. case GGML_TYPE_F32:
  6091. {
  6092. ggml_compute_forward_sum_f32(params, src0, dst);
  6093. } break;
  6094. default:
  6095. {
  6096. GGML_ASSERT(false);
  6097. } break;
  6098. }
  6099. }
  6100. // ggml_compute_forward_mean
  6101. static void ggml_compute_forward_mean_f32(
  6102. const struct ggml_compute_params * params,
  6103. const struct ggml_tensor * src0,
  6104. struct ggml_tensor * dst) {
  6105. assert(params->ith == 0);
  6106. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6107. return;
  6108. }
  6109. assert(src0->nb[0] == sizeof(float));
  6110. const int64_t ne00 = src0->ne[0];
  6111. const int64_t ne01 = src0->ne[1];
  6112. const int64_t ne02 = src0->ne[2];
  6113. const int64_t ne03 = src0->ne[3];
  6114. const size_t nb01 = src0->nb[1];
  6115. const size_t nb02 = src0->nb[2];
  6116. const size_t nb03 = src0->nb[3];
  6117. const int64_t ne0 = dst->ne[0];
  6118. const int64_t ne1 = dst->ne[1];
  6119. const int64_t ne2 = dst->ne[2];
  6120. const int64_t ne3 = dst->ne[3];
  6121. assert(ne0 == 1);
  6122. assert(ne1 == ne01);
  6123. assert(ne2 == ne02);
  6124. assert(ne3 == ne03);
  6125. UNUSED(ne0);
  6126. UNUSED(ne1);
  6127. UNUSED(ne2);
  6128. UNUSED(ne3);
  6129. const size_t nb1 = dst->nb[1];
  6130. const size_t nb2 = dst->nb[2];
  6131. const size_t nb3 = dst->nb[3];
  6132. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6133. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6134. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6135. ggml_vec_sum_f32(ne00,
  6136. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6137. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6138. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6139. }
  6140. }
  6141. }
  6142. }
  6143. static void ggml_compute_forward_mean(
  6144. const struct ggml_compute_params * params,
  6145. const struct ggml_tensor * src0,
  6146. struct ggml_tensor * dst) {
  6147. switch (src0->type) {
  6148. case GGML_TYPE_F32:
  6149. {
  6150. ggml_compute_forward_mean_f32(params, src0, dst);
  6151. } break;
  6152. default:
  6153. {
  6154. GGML_ASSERT(false);
  6155. } break;
  6156. }
  6157. }
  6158. // ggml_compute_forward_repeat
  6159. static void ggml_compute_forward_repeat_f32(
  6160. const struct ggml_compute_params * params,
  6161. const struct ggml_tensor * src0,
  6162. struct ggml_tensor * dst) {
  6163. assert(params->ith == 0);
  6164. assert(ggml_can_repeat(src0, dst));
  6165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6166. return;
  6167. }
  6168. // TODO: implement support for rank > 2 tensors
  6169. assert(src0->ne[2] == 1);
  6170. assert(src0->ne[3] == 1);
  6171. assert( dst->ne[2] == 1);
  6172. assert( dst->ne[3] == 1);
  6173. const int nc = dst->ne[0];
  6174. const int nr = dst->ne[1];
  6175. const int nc0 = src0->ne[0];
  6176. const int nr0 = src0->ne[1];
  6177. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6178. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6179. // TODO: support for transposed / permuted tensors
  6180. assert( dst->nb[0] == sizeof(float));
  6181. assert(src0->nb[0] == sizeof(float));
  6182. // TODO: maybe this is not optimal?
  6183. for (int i = 0; i < nrr; i++) {
  6184. for (int j = 0; j < ncr; j++) {
  6185. for (int k = 0; k < nr0; k++) {
  6186. ggml_vec_cpy_f32(nc0,
  6187. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6188. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6189. }
  6190. }
  6191. }
  6192. }
  6193. static void ggml_compute_forward_repeat(
  6194. const struct ggml_compute_params * params,
  6195. const struct ggml_tensor * src0,
  6196. struct ggml_tensor * dst) {
  6197. switch (src0->type) {
  6198. case GGML_TYPE_F32:
  6199. {
  6200. ggml_compute_forward_repeat_f32(params, src0, dst);
  6201. } break;
  6202. default:
  6203. {
  6204. GGML_ASSERT(false);
  6205. } break;
  6206. }
  6207. }
  6208. // ggml_compute_forward_abs
  6209. static void ggml_compute_forward_abs_f32(
  6210. const struct ggml_compute_params * params,
  6211. const struct ggml_tensor * src0,
  6212. struct ggml_tensor * dst) {
  6213. assert(params->ith == 0);
  6214. assert(ggml_are_same_shape(src0, dst));
  6215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6216. return;
  6217. }
  6218. const int n = ggml_nrows(src0);
  6219. const int nc = src0->ne[0];
  6220. assert(dst->nb[0] == sizeof(float));
  6221. assert(src0->nb[0] == sizeof(float));
  6222. for (int i = 0; i < n; i++) {
  6223. ggml_vec_abs_f32(nc,
  6224. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6225. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6226. }
  6227. }
  6228. static void ggml_compute_forward_abs(
  6229. const struct ggml_compute_params * params,
  6230. const struct ggml_tensor * src0,
  6231. struct ggml_tensor * dst) {
  6232. switch (src0->type) {
  6233. case GGML_TYPE_F32:
  6234. {
  6235. ggml_compute_forward_abs_f32(params, src0, dst);
  6236. } break;
  6237. default:
  6238. {
  6239. GGML_ASSERT(false);
  6240. } break;
  6241. }
  6242. }
  6243. // ggml_compute_forward_sgn
  6244. static void ggml_compute_forward_sgn_f32(
  6245. const struct ggml_compute_params * params,
  6246. const struct ggml_tensor * src0,
  6247. struct ggml_tensor * dst) {
  6248. assert(params->ith == 0);
  6249. assert(ggml_are_same_shape(src0, dst));
  6250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6251. return;
  6252. }
  6253. const int n = ggml_nrows(src0);
  6254. const int nc = src0->ne[0];
  6255. assert(dst->nb[0] == sizeof(float));
  6256. assert(src0->nb[0] == sizeof(float));
  6257. for (int i = 0; i < n; i++) {
  6258. ggml_vec_sgn_f32(nc,
  6259. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6260. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6261. }
  6262. }
  6263. static void ggml_compute_forward_sgn(
  6264. const struct ggml_compute_params * params,
  6265. const struct ggml_tensor * src0,
  6266. struct ggml_tensor * dst) {
  6267. switch (src0->type) {
  6268. case GGML_TYPE_F32:
  6269. {
  6270. ggml_compute_forward_sgn_f32(params, src0, dst);
  6271. } break;
  6272. default:
  6273. {
  6274. GGML_ASSERT(false);
  6275. } break;
  6276. }
  6277. }
  6278. // ggml_compute_forward_neg
  6279. static void ggml_compute_forward_neg_f32(
  6280. const struct ggml_compute_params * params,
  6281. const struct ggml_tensor * src0,
  6282. struct ggml_tensor * dst) {
  6283. assert(params->ith == 0);
  6284. assert(ggml_are_same_shape(src0, dst));
  6285. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6286. return;
  6287. }
  6288. const int n = ggml_nrows(src0);
  6289. const int nc = src0->ne[0];
  6290. assert(dst->nb[0] == sizeof(float));
  6291. assert(src0->nb[0] == sizeof(float));
  6292. for (int i = 0; i < n; i++) {
  6293. ggml_vec_neg_f32(nc,
  6294. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6295. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6296. }
  6297. }
  6298. static void ggml_compute_forward_neg(
  6299. const struct ggml_compute_params * params,
  6300. const struct ggml_tensor * src0,
  6301. struct ggml_tensor * dst) {
  6302. switch (src0->type) {
  6303. case GGML_TYPE_F32:
  6304. {
  6305. ggml_compute_forward_neg_f32(params, src0, dst);
  6306. } break;
  6307. default:
  6308. {
  6309. GGML_ASSERT(false);
  6310. } break;
  6311. }
  6312. }
  6313. // ggml_compute_forward_step
  6314. static void ggml_compute_forward_step_f32(
  6315. const struct ggml_compute_params * params,
  6316. const struct ggml_tensor * src0,
  6317. struct ggml_tensor * dst) {
  6318. assert(params->ith == 0);
  6319. assert(ggml_are_same_shape(src0, dst));
  6320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6321. return;
  6322. }
  6323. const int n = ggml_nrows(src0);
  6324. const int nc = src0->ne[0];
  6325. assert(dst->nb[0] == sizeof(float));
  6326. assert(src0->nb[0] == sizeof(float));
  6327. for (int i = 0; i < n; i++) {
  6328. ggml_vec_step_f32(nc,
  6329. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6330. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6331. }
  6332. }
  6333. static void ggml_compute_forward_step(
  6334. const struct ggml_compute_params * params,
  6335. const struct ggml_tensor * src0,
  6336. struct ggml_tensor * dst) {
  6337. switch (src0->type) {
  6338. case GGML_TYPE_F32:
  6339. {
  6340. ggml_compute_forward_step_f32(params, src0, dst);
  6341. } break;
  6342. default:
  6343. {
  6344. GGML_ASSERT(false);
  6345. } break;
  6346. }
  6347. }
  6348. // ggml_compute_forward_relu
  6349. static void ggml_compute_forward_relu_f32(
  6350. const struct ggml_compute_params * params,
  6351. const struct ggml_tensor * src0,
  6352. struct ggml_tensor * dst) {
  6353. assert(params->ith == 0);
  6354. assert(ggml_are_same_shape(src0, dst));
  6355. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6356. return;
  6357. }
  6358. const int n = ggml_nrows(src0);
  6359. const int nc = src0->ne[0];
  6360. assert(dst->nb[0] == sizeof(float));
  6361. assert(src0->nb[0] == sizeof(float));
  6362. for (int i = 0; i < n; i++) {
  6363. ggml_vec_relu_f32(nc,
  6364. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6365. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6366. }
  6367. }
  6368. static void ggml_compute_forward_relu(
  6369. const struct ggml_compute_params * params,
  6370. const struct ggml_tensor * src0,
  6371. struct ggml_tensor * dst) {
  6372. switch (src0->type) {
  6373. case GGML_TYPE_F32:
  6374. {
  6375. ggml_compute_forward_relu_f32(params, src0, dst);
  6376. } break;
  6377. default:
  6378. {
  6379. GGML_ASSERT(false);
  6380. } break;
  6381. }
  6382. }
  6383. // ggml_compute_forward_gelu
  6384. static void ggml_compute_forward_gelu_f32(
  6385. const struct ggml_compute_params * params,
  6386. const struct ggml_tensor * src0,
  6387. struct ggml_tensor * dst) {
  6388. GGML_ASSERT(ggml_is_contiguous(src0));
  6389. GGML_ASSERT(ggml_is_contiguous(dst));
  6390. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6392. return;
  6393. }
  6394. const int ith = params->ith;
  6395. const int nth = params->nth;
  6396. const int nc = src0->ne[0];
  6397. const int nr = ggml_nrows(src0);
  6398. // rows per thread
  6399. const int dr = (nr + nth - 1)/nth;
  6400. // row range for this thread
  6401. const int ir0 = dr*ith;
  6402. const int ir1 = MIN(ir0 + dr, nr);
  6403. for (int i1 = ir0; i1 < ir1; i1++) {
  6404. ggml_vec_gelu_f32(nc,
  6405. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6406. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6407. #ifndef NDEBUG
  6408. for (int k = 0; k < nc; k++) {
  6409. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6410. UNUSED(x);
  6411. assert(!isnan(x));
  6412. assert(!isinf(x));
  6413. }
  6414. #endif
  6415. }
  6416. }
  6417. static void ggml_compute_forward_gelu(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. struct ggml_tensor * dst) {
  6421. switch (src0->type) {
  6422. case GGML_TYPE_F32:
  6423. {
  6424. ggml_compute_forward_gelu_f32(params, src0, dst);
  6425. } break;
  6426. default:
  6427. {
  6428. GGML_ASSERT(false);
  6429. } break;
  6430. }
  6431. //printf("XXXXXXXX gelu\n");
  6432. }
  6433. // ggml_compute_forward_silu
  6434. static void ggml_compute_forward_silu_f32(
  6435. const struct ggml_compute_params * params,
  6436. const struct ggml_tensor * src0,
  6437. struct ggml_tensor * dst) {
  6438. GGML_ASSERT(ggml_is_contiguous(src0));
  6439. GGML_ASSERT(ggml_is_contiguous(dst));
  6440. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6442. return;
  6443. }
  6444. const int ith = params->ith;
  6445. const int nth = params->nth;
  6446. const int nc = src0->ne[0];
  6447. const int nr = ggml_nrows(src0);
  6448. // rows per thread
  6449. const int dr = (nr + nth - 1)/nth;
  6450. // row range for this thread
  6451. const int ir0 = dr*ith;
  6452. const int ir1 = MIN(ir0 + dr, nr);
  6453. for (int i1 = ir0; i1 < ir1; i1++) {
  6454. ggml_vec_silu_f32(nc,
  6455. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6456. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6457. #ifndef NDEBUG
  6458. for (int k = 0; k < nc; k++) {
  6459. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6460. UNUSED(x);
  6461. assert(!isnan(x));
  6462. assert(!isinf(x));
  6463. }
  6464. #endif
  6465. }
  6466. }
  6467. static void ggml_compute_forward_silu(
  6468. const struct ggml_compute_params * params,
  6469. const struct ggml_tensor * src0,
  6470. struct ggml_tensor * dst) {
  6471. switch (src0->type) {
  6472. case GGML_TYPE_F32:
  6473. {
  6474. ggml_compute_forward_silu_f32(params, src0, dst);
  6475. } break;
  6476. default:
  6477. {
  6478. GGML_ASSERT(false);
  6479. } break;
  6480. }
  6481. }
  6482. // ggml_compute_forward_norm
  6483. static void ggml_compute_forward_norm_f32(
  6484. const struct ggml_compute_params * params,
  6485. const struct ggml_tensor * src0,
  6486. struct ggml_tensor * dst) {
  6487. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6489. return;
  6490. }
  6491. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6492. const int ith = params->ith;
  6493. const int nth = params->nth;
  6494. const int64_t ne00 = src0->ne[0];
  6495. const int64_t ne01 = src0->ne[1];
  6496. const int64_t ne02 = src0->ne[2];
  6497. const int64_t ne03 = src0->ne[3];
  6498. const size_t nb01 = src0->nb[1];
  6499. const size_t nb02 = src0->nb[2];
  6500. const size_t nb03 = src0->nb[3];
  6501. const size_t nb1 = dst->nb[1];
  6502. const size_t nb2 = dst->nb[2];
  6503. const size_t nb3 = dst->nb[3];
  6504. const float eps = 1e-5f; // TODO: make this a parameter
  6505. // TODO: optimize
  6506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6508. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6509. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6510. ggml_float sum = 0.0;
  6511. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6512. sum += (ggml_float)x[i00];
  6513. }
  6514. float mean = sum/ne00;
  6515. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6516. ggml_float sum2 = 0.0;
  6517. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6518. float v = x[i00] - mean;
  6519. y[i00] = v;
  6520. sum2 += (ggml_float)(v*v);
  6521. }
  6522. float variance = sum2/ne00;
  6523. const float scale = 1.0f/sqrtf(variance + eps);
  6524. ggml_vec_scale_f32(ne00, y, scale);
  6525. }
  6526. }
  6527. }
  6528. }
  6529. static void ggml_compute_forward_norm(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * src0,
  6532. struct ggml_tensor * dst) {
  6533. switch (src0->type) {
  6534. case GGML_TYPE_F32:
  6535. {
  6536. ggml_compute_forward_norm_f32(params, src0, dst);
  6537. } break;
  6538. default:
  6539. {
  6540. GGML_ASSERT(false);
  6541. } break;
  6542. }
  6543. }
  6544. static void ggml_compute_forward_rms_norm_f32(
  6545. const struct ggml_compute_params * params,
  6546. const struct ggml_tensor * src0,
  6547. struct ggml_tensor * dst) {
  6548. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6550. return;
  6551. }
  6552. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6553. const int ith = params->ith;
  6554. const int nth = params->nth;
  6555. const int64_t ne00 = src0->ne[0];
  6556. const int64_t ne01 = src0->ne[1];
  6557. const int64_t ne02 = src0->ne[2];
  6558. const int64_t ne03 = src0->ne[3];
  6559. const size_t nb01 = src0->nb[1];
  6560. const size_t nb02 = src0->nb[2];
  6561. const size_t nb03 = src0->nb[3];
  6562. const size_t nb1 = dst->nb[1];
  6563. const size_t nb2 = dst->nb[2];
  6564. const size_t nb3 = dst->nb[3];
  6565. const float eps = 1e-6f; // TODO: make this a parameter
  6566. // TODO: optimize
  6567. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6568. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6569. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6570. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6571. ggml_float sum = 0.0;
  6572. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6573. sum += (ggml_float)(x[i00] * x[i00]);
  6574. }
  6575. float mean = sum/ne00;
  6576. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6577. memcpy(y, x, ne00 * sizeof(float));
  6578. // for (int i00 = 0; i00 < ne00; i00++) {
  6579. // y[i00] = x[i00];
  6580. // }
  6581. const float scale = 1.0f/sqrtf(mean + eps);
  6582. ggml_vec_scale_f32(ne00, y, scale);
  6583. }
  6584. }
  6585. }
  6586. }
  6587. static void ggml_compute_forward_rms_norm(
  6588. const struct ggml_compute_params * params,
  6589. const struct ggml_tensor * src0,
  6590. struct ggml_tensor * dst) {
  6591. switch (src0->type) {
  6592. case GGML_TYPE_F32:
  6593. {
  6594. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6595. } break;
  6596. default:
  6597. {
  6598. GGML_ASSERT(false);
  6599. } break;
  6600. }
  6601. }
  6602. // ggml_compute_forward_mul_mat
  6603. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6604. // helper function to determine if it is better to use BLAS or not
  6605. // for large matrices, BLAS is faster
  6606. static bool ggml_compute_forward_mul_mat_use_blas(
  6607. const struct ggml_tensor * src0,
  6608. const struct ggml_tensor * src1,
  6609. struct ggml_tensor * dst) {
  6610. //const int64_t ne00 = src0->ne[0];
  6611. //const int64_t ne01 = src0->ne[1];
  6612. const int64_t ne10 = src1->ne[0];
  6613. const int64_t ne0 = dst->ne[0];
  6614. const int64_t ne1 = dst->ne[1];
  6615. // TODO: find the optimal values for these
  6616. if (ggml_is_contiguous(src0) &&
  6617. ggml_is_contiguous(src1) &&
  6618. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  6619. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6620. return true;
  6621. }
  6622. return false;
  6623. }
  6624. #endif
  6625. static void ggml_compute_forward_mul_mat_f32(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. const struct ggml_tensor * src1,
  6629. struct ggml_tensor * dst) {
  6630. int64_t t0 = ggml_perf_time_us();
  6631. UNUSED(t0);
  6632. const int64_t ne00 = src0->ne[0];
  6633. const int64_t ne01 = src0->ne[1];
  6634. const int64_t ne02 = src0->ne[2];
  6635. const int64_t ne03 = src0->ne[3];
  6636. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6637. const int64_t ne10 = src1->ne[0];
  6638. #endif
  6639. const int64_t ne11 = src1->ne[1];
  6640. #ifndef NDEBUG
  6641. const int64_t ne12 = src1->ne[2];
  6642. const int64_t ne13 = src1->ne[3];
  6643. const int64_t ne0 = dst->ne[0];
  6644. const int64_t ne1 = dst->ne[1];
  6645. const int64_t ne2 = dst->ne[2];
  6646. const int64_t ne3 = dst->ne[3];
  6647. const int nb00 = src0->nb[0];
  6648. #endif
  6649. const int nb01 = src0->nb[1];
  6650. const int nb02 = src0->nb[2];
  6651. const int nb03 = src0->nb[3];
  6652. #ifndef NDEBUG
  6653. const int nb10 = src1->nb[0];
  6654. #endif
  6655. const int nb11 = src1->nb[1];
  6656. const int nb12 = src1->nb[2];
  6657. const int nb13 = src1->nb[3];
  6658. const int nb0 = dst->nb[0];
  6659. const int nb1 = dst->nb[1];
  6660. const int nb2 = dst->nb[2];
  6661. const int nb3 = dst->nb[3];
  6662. const int ith = params->ith;
  6663. const int nth = params->nth;
  6664. assert(ne02 == ne12);
  6665. assert(ne03 == ne13);
  6666. assert(ne2 == ne12);
  6667. assert(ne3 == ne13);
  6668. // we don't support permuted src0 or src1
  6669. assert(nb00 == sizeof(float));
  6670. assert(nb10 == sizeof(float));
  6671. // dst cannot be transposed or permuted
  6672. assert(nb0 == sizeof(float));
  6673. assert(nb0 <= nb1);
  6674. assert(nb1 <= nb2);
  6675. assert(nb2 <= nb3);
  6676. assert(ne0 == ne01);
  6677. assert(ne1 == ne11);
  6678. assert(ne2 == ne02);
  6679. assert(ne3 == ne03);
  6680. // nb01 >= nb00 - src0 is not transposed
  6681. // compute by src0 rows
  6682. #if defined(GGML_USE_CUBLAS)
  6683. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6684. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6685. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6686. }
  6687. return;
  6688. }
  6689. #endif
  6690. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6691. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6692. if (params->ith != 0) {
  6693. return;
  6694. }
  6695. if (params->type == GGML_TASK_INIT) {
  6696. return;
  6697. }
  6698. if (params->type == GGML_TASK_FINALIZE) {
  6699. return;
  6700. }
  6701. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6702. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6703. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6704. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6705. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6706. #if defined(GGML_USE_CLBLAST)
  6707. // zT = y * xT
  6708. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6709. ne11, ne01, ne10,
  6710. 1.0f, y, ne10,
  6711. x, ne10,
  6712. 0.0f, d, ne01,
  6713. GGML_TYPE_F32);
  6714. #else
  6715. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6716. ne11, ne01, ne10,
  6717. 1.0f, y, ne10,
  6718. x, ne00,
  6719. 0.0f, d, ne01);
  6720. #endif
  6721. }
  6722. }
  6723. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6724. return;
  6725. }
  6726. #endif
  6727. if (params->type == GGML_TASK_INIT) {
  6728. return;
  6729. }
  6730. if (params->type == GGML_TASK_FINALIZE) {
  6731. return;
  6732. }
  6733. // parallelize by src0 rows using ggml_vec_dot_f32
  6734. // total rows in src0
  6735. const int nr = ne01*ne02*ne03;
  6736. // rows per thread
  6737. const int dr = (nr + nth - 1)/nth;
  6738. // row range for this thread
  6739. const int ir0 = dr*ith;
  6740. const int ir1 = MIN(ir0 + dr, nr);
  6741. for (int ir = ir0; ir < ir1; ++ir) {
  6742. // src0 indices
  6743. const int i03 = ir/(ne02*ne01);
  6744. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6745. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6746. for (int64_t ic = 0; ic < ne11; ++ic) {
  6747. // src1 indices
  6748. const int i13 = i03;
  6749. const int i12 = i02;
  6750. const int i11 = ic;
  6751. // dst indices
  6752. const int i0 = i01;
  6753. const int i1 = i11;
  6754. const int i2 = i02;
  6755. const int i3 = i03;
  6756. ggml_vec_dot_f32(ne00,
  6757. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6758. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6759. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6760. }
  6761. }
  6762. //int64_t t1 = ggml_perf_time_us();
  6763. //static int64_t acc = 0;
  6764. //acc += t1 - t0;
  6765. //if (t1 - t0 > 10) {
  6766. // printf("\n");
  6767. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6768. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6769. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6770. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6771. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6772. //}
  6773. }
  6774. static void ggml_compute_forward_mul_mat_f16_f32(
  6775. const struct ggml_compute_params * params,
  6776. const struct ggml_tensor * src0,
  6777. const struct ggml_tensor * src1,
  6778. struct ggml_tensor * dst) {
  6779. int64_t t0 = ggml_perf_time_us();
  6780. UNUSED(t0);
  6781. const int64_t ne00 = src0->ne[0];
  6782. const int64_t ne01 = src0->ne[1];
  6783. const int64_t ne02 = src0->ne[2];
  6784. const int64_t ne03 = src0->ne[3];
  6785. const int64_t ne10 = src1->ne[0];
  6786. const int64_t ne11 = src1->ne[1];
  6787. const int64_t ne12 = src1->ne[2];
  6788. const int64_t ne13 = src1->ne[3];
  6789. const int64_t ne0 = dst->ne[0];
  6790. const int64_t ne1 = dst->ne[1];
  6791. const int64_t ne2 = dst->ne[2];
  6792. const int64_t ne3 = dst->ne[3];
  6793. //const int64_t ne = ne0*ne1*ne2*ne3;
  6794. const int nb00 = src0->nb[0];
  6795. const int nb01 = src0->nb[1];
  6796. const int nb02 = src0->nb[2];
  6797. const int nb03 = src0->nb[3];
  6798. const int nb10 = src1->nb[0];
  6799. const int nb11 = src1->nb[1];
  6800. const int nb12 = src1->nb[2];
  6801. const int nb13 = src1->nb[3];
  6802. const int nb0 = dst->nb[0];
  6803. const int nb1 = dst->nb[1];
  6804. const int nb2 = dst->nb[2];
  6805. const int nb3 = dst->nb[3];
  6806. const int ith = params->ith;
  6807. const int nth = params->nth;
  6808. GGML_ASSERT(ne02 == ne12);
  6809. GGML_ASSERT(ne03 == ne13);
  6810. GGML_ASSERT(ne2 == ne12);
  6811. GGML_ASSERT(ne3 == ne13);
  6812. // TODO: we don't support permuted src0
  6813. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6814. // dst cannot be transposed or permuted
  6815. GGML_ASSERT(nb0 == sizeof(float));
  6816. GGML_ASSERT(nb0 <= nb1);
  6817. GGML_ASSERT(nb1 <= nb2);
  6818. GGML_ASSERT(nb2 <= nb3);
  6819. GGML_ASSERT(ne0 == ne01);
  6820. GGML_ASSERT(ne1 == ne11);
  6821. GGML_ASSERT(ne2 == ne02);
  6822. GGML_ASSERT(ne3 == ne03);
  6823. // nb01 >= nb00 - src0 is not transposed
  6824. // compute by src0 rows
  6825. #if defined(GGML_USE_CUBLAS)
  6826. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6827. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6828. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6829. }
  6830. return;
  6831. }
  6832. #endif
  6833. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6834. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6835. GGML_ASSERT(nb10 == sizeof(float));
  6836. if (params->ith != 0) {
  6837. return;
  6838. }
  6839. if (params->type == GGML_TASK_INIT) {
  6840. return;
  6841. }
  6842. if (params->type == GGML_TASK_FINALIZE) {
  6843. return;
  6844. }
  6845. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6846. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6847. float * const wdata = params->wdata;
  6848. {
  6849. size_t id = 0;
  6850. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6851. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6852. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6853. }
  6854. }
  6855. assert(id*sizeof(float) <= params->wsize);
  6856. }
  6857. #if defined(GGML_USE_CLBLAST)
  6858. const float * x = wdata;
  6859. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6860. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6861. // zT = y * xT
  6862. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6863. ne11, ne01, ne10,
  6864. 1.0f, y, ne10,
  6865. x, ne10,
  6866. 0.0f, d, ne01,
  6867. GGML_TYPE_F32);
  6868. #else
  6869. const float * x = wdata;
  6870. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6871. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6872. // zT = y * xT
  6873. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6874. ne11, ne01, ne10,
  6875. 1.0f, y, ne10,
  6876. x, ne00,
  6877. 0.0f, d, ne01);
  6878. #endif
  6879. }
  6880. }
  6881. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6882. return;
  6883. }
  6884. #endif
  6885. if (params->type == GGML_TASK_INIT) {
  6886. ggml_fp16_t * const wdata = params->wdata;
  6887. size_t id = 0;
  6888. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6889. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6890. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6891. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6892. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6893. }
  6894. }
  6895. }
  6896. }
  6897. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6898. return;
  6899. }
  6900. if (params->type == GGML_TASK_FINALIZE) {
  6901. return;
  6902. }
  6903. // fp16 -> half the size, so divide by 2
  6904. // TODO: do not support transposed src1
  6905. assert(nb10/2 == sizeof(ggml_fp16_t));
  6906. // parallelize by src0 rows using ggml_vec_dot_f16
  6907. // total rows in src0
  6908. const int nr = ne01*ne02*ne03;
  6909. // rows per thread
  6910. const int dr = (nr + nth - 1)/nth;
  6911. // row range for this thread
  6912. const int ir0 = dr*ith;
  6913. const int ir1 = MIN(ir0 + dr, nr);
  6914. ggml_fp16_t * wdata = params->wdata;
  6915. for (int ir = ir0; ir < ir1; ++ir) {
  6916. // src0 indices
  6917. const int i03 = ir/(ne02*ne01);
  6918. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6919. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6920. const int i13 = i03;
  6921. const int i12 = i02;
  6922. const int i0 = i01;
  6923. const int i2 = i02;
  6924. const int i3 = i03;
  6925. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6926. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6927. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6928. for (int64_t ic = 0; ic < ne11; ++ic) {
  6929. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6930. }
  6931. }
  6932. //int64_t t1 = ggml_time_us();
  6933. //static int64_t acc = 0;
  6934. //acc += t1 - t0;
  6935. //if (t1 - t0 > 10) {
  6936. // printf("\n");
  6937. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6938. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6939. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6940. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6941. //}
  6942. }
  6943. static void ggml_compute_forward_mul_mat_q_f32(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. const struct ggml_tensor * src1,
  6947. struct ggml_tensor * dst) {
  6948. int64_t t0 = ggml_perf_time_us();
  6949. UNUSED(t0);
  6950. const int64_t ne00 = src0->ne[0];
  6951. const int64_t ne01 = src0->ne[1];
  6952. const int64_t ne02 = src0->ne[2];
  6953. const int64_t ne03 = src0->ne[3];
  6954. const int64_t ne10 = src1->ne[0];
  6955. const int64_t ne11 = src1->ne[1];
  6956. const int64_t ne12 = src1->ne[2];
  6957. const int64_t ne13 = src1->ne[3];
  6958. const int64_t ne0 = dst->ne[0];
  6959. const int64_t ne1 = dst->ne[1];
  6960. const int64_t ne2 = dst->ne[2];
  6961. const int64_t ne3 = dst->ne[3];
  6962. const int nb00 = src0->nb[0];
  6963. const int nb01 = src0->nb[1];
  6964. const int nb02 = src0->nb[2];
  6965. const int nb03 = src0->nb[3];
  6966. const int nb10 = src1->nb[0];
  6967. const int nb11 = src1->nb[1];
  6968. const int nb12 = src1->nb[2];
  6969. const int nb13 = src1->nb[3];
  6970. const int nb0 = dst->nb[0];
  6971. const int nb1 = dst->nb[1];
  6972. const int nb2 = dst->nb[2];
  6973. const int nb3 = dst->nb[3];
  6974. const int ith = params->ith;
  6975. const int nth = params->nth;
  6976. GGML_ASSERT(ne02 == ne12);
  6977. GGML_ASSERT(ne03 == ne13);
  6978. GGML_ASSERT(ne2 == ne12);
  6979. GGML_ASSERT(ne3 == ne13);
  6980. const enum ggml_type type = src0->type;
  6981. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6982. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6983. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6984. // we don't support permuted src0 or src1
  6985. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6986. GGML_ASSERT(nb10 == sizeof(float));
  6987. // dst cannot be transposed or permuted
  6988. GGML_ASSERT(nb0 == sizeof(float));
  6989. GGML_ASSERT(nb0 <= nb1);
  6990. GGML_ASSERT(nb1 <= nb2);
  6991. GGML_ASSERT(nb2 <= nb3);
  6992. GGML_ASSERT(ne0 == ne01);
  6993. GGML_ASSERT(ne1 == ne11);
  6994. GGML_ASSERT(ne2 == ne02);
  6995. GGML_ASSERT(ne3 == ne03);
  6996. // nb01 >= nb00 - src0 is not transposed
  6997. // compute by src0 rows
  6998. #if defined(GGML_USE_CUBLAS)
  6999. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7000. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7001. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7002. }
  7003. return;
  7004. }
  7005. #endif
  7006. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7007. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7008. if (params->ith != 0) {
  7009. return;
  7010. }
  7011. if (params->type == GGML_TASK_INIT) {
  7012. return;
  7013. }
  7014. if (params->type == GGML_TASK_FINALIZE) {
  7015. return;
  7016. }
  7017. float * const wdata = params->wdata;
  7018. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7019. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7020. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7021. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7022. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7023. #if defined(GGML_USE_CLBLAST)
  7024. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7025. #else
  7026. {
  7027. size_t id = 0;
  7028. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7029. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7030. id += ne00;
  7031. }
  7032. assert(id*sizeof(float) <= params->wsize);
  7033. }
  7034. const float * x = wdata;
  7035. #endif
  7036. #if defined(GGML_USE_CLBLAST)
  7037. // zT = y * xT
  7038. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7039. ne11, ne01, ne10,
  7040. 1.0f, y, ne10,
  7041. x, ne10,
  7042. 0.0f, d, ne01,
  7043. type);
  7044. #else
  7045. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7046. ne11, ne01, ne10,
  7047. 1.0f, y, ne10,
  7048. x, ne00,
  7049. 0.0f, d, ne01);
  7050. #endif
  7051. }
  7052. }
  7053. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7054. return;
  7055. }
  7056. #endif
  7057. if (params->type == GGML_TASK_INIT) {
  7058. char * wdata = params->wdata;
  7059. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7060. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7061. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7062. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7063. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7064. wdata += row_size;
  7065. }
  7066. }
  7067. }
  7068. return;
  7069. }
  7070. if (params->type == GGML_TASK_FINALIZE) {
  7071. return;
  7072. }
  7073. // parallelize by src0 rows using ggml_vec_dot_q
  7074. // total rows in src0
  7075. const int nr = ne01*ne02*ne03;
  7076. // rows per thread
  7077. const int dr = (nr + nth - 1)/nth;
  7078. // row range for this thread
  7079. const int ir0 = dr*ith;
  7080. const int ir1 = MIN(ir0 + dr, nr);
  7081. void * wdata = params->wdata;
  7082. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7083. for (int ir = ir0; ir < ir1; ++ir) {
  7084. // src0 indices
  7085. const int i03 = ir/(ne02*ne01);
  7086. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7087. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7088. const int i13 = i03;
  7089. const int i12 = i02;
  7090. const int i0 = i01;
  7091. const int i2 = i02;
  7092. const int i3 = i03;
  7093. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7094. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7095. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7096. assert(ne00 % 32 == 0);
  7097. for (int64_t ic = 0; ic < ne11; ++ic) {
  7098. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7099. }
  7100. }
  7101. //int64_t t1 = ggml_time_us();
  7102. //static int64_t acc = 0;
  7103. //acc += t1 - t0;
  7104. //if (t1 - t0 > 10) {
  7105. // printf("\n");
  7106. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7107. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7108. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7109. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7110. //}
  7111. }
  7112. static void ggml_compute_forward_mul_mat(
  7113. const struct ggml_compute_params * params,
  7114. const struct ggml_tensor * src0,
  7115. const struct ggml_tensor * src1,
  7116. struct ggml_tensor * dst) {
  7117. switch (src0->type) {
  7118. case GGML_TYPE_Q4_0:
  7119. case GGML_TYPE_Q4_1:
  7120. case GGML_TYPE_Q4_2:
  7121. case GGML_TYPE_Q5_0:
  7122. case GGML_TYPE_Q5_1:
  7123. case GGML_TYPE_Q8_0:
  7124. case GGML_TYPE_Q8_1:
  7125. {
  7126. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7127. } break;
  7128. case GGML_TYPE_F16:
  7129. {
  7130. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7131. } break;
  7132. case GGML_TYPE_F32:
  7133. {
  7134. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7135. } break;
  7136. default:
  7137. {
  7138. GGML_ASSERT(false);
  7139. } break;
  7140. }
  7141. }
  7142. // ggml_compute_forward_scale
  7143. static void ggml_compute_forward_scale_f32(
  7144. const struct ggml_compute_params * params,
  7145. const struct ggml_tensor * src0,
  7146. const struct ggml_tensor * src1,
  7147. struct ggml_tensor * dst) {
  7148. GGML_ASSERT(ggml_is_contiguous(src0));
  7149. GGML_ASSERT(ggml_is_contiguous(dst));
  7150. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7151. GGML_ASSERT(ggml_is_scalar(src1));
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. // scale factor
  7156. const float v = *(float *) src1->data;
  7157. const int ith = params->ith;
  7158. const int nth = params->nth;
  7159. const int nc = src0->ne[0];
  7160. const int nr = ggml_nrows(src0);
  7161. // rows per thread
  7162. const int dr = (nr + nth - 1)/nth;
  7163. // row range for this thread
  7164. const int ir0 = dr*ith;
  7165. const int ir1 = MIN(ir0 + dr, nr);
  7166. for (int i1 = ir0; i1 < ir1; i1++) {
  7167. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7168. }
  7169. }
  7170. static void ggml_compute_forward_scale(
  7171. const struct ggml_compute_params * params,
  7172. const struct ggml_tensor * src0,
  7173. const struct ggml_tensor * src1,
  7174. struct ggml_tensor * dst) {
  7175. switch (src0->type) {
  7176. case GGML_TYPE_F32:
  7177. {
  7178. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7179. } break;
  7180. default:
  7181. {
  7182. GGML_ASSERT(false);
  7183. } break;
  7184. }
  7185. }
  7186. // ggml_compute_forward_cpy
  7187. static void ggml_compute_forward_cpy(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0,
  7190. struct ggml_tensor * dst) {
  7191. ggml_compute_forward_dup(params, src0, dst);
  7192. }
  7193. // ggml_compute_forward_cont
  7194. static void ggml_compute_forward_cont(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. struct ggml_tensor * dst) {
  7198. ggml_compute_forward_dup(params, src0, dst);
  7199. }
  7200. // ggml_compute_forward_reshape
  7201. static void ggml_compute_forward_reshape(
  7202. const struct ggml_compute_params * params,
  7203. const struct ggml_tensor * src0,
  7204. struct ggml_tensor * dst) {
  7205. // NOP
  7206. UNUSED(params);
  7207. UNUSED(src0);
  7208. UNUSED(dst);
  7209. }
  7210. // ggml_compute_forward_view
  7211. static void ggml_compute_forward_view(
  7212. const struct ggml_compute_params * params,
  7213. const struct ggml_tensor * src0) {
  7214. // NOP
  7215. UNUSED(params);
  7216. UNUSED(src0);
  7217. }
  7218. // ggml_compute_forward_permute
  7219. static void ggml_compute_forward_permute(
  7220. const struct ggml_compute_params * params,
  7221. const struct ggml_tensor * src0) {
  7222. // NOP
  7223. UNUSED(params);
  7224. UNUSED(src0);
  7225. }
  7226. // ggml_compute_forward_transpose
  7227. static void ggml_compute_forward_transpose(
  7228. const struct ggml_compute_params * params,
  7229. const struct ggml_tensor * src0) {
  7230. // NOP
  7231. UNUSED(params);
  7232. UNUSED(src0);
  7233. }
  7234. // ggml_compute_forward_get_rows
  7235. static void ggml_compute_forward_get_rows_q(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. const struct ggml_tensor * src1,
  7239. struct ggml_tensor * dst) {
  7240. assert(params->ith == 0);
  7241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7242. return;
  7243. }
  7244. const int nc = src0->ne[0];
  7245. const int nr = ggml_nelements(src1);
  7246. const enum ggml_type type = src0->type;
  7247. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7248. assert( dst->ne[0] == nc);
  7249. assert( dst->ne[1] == nr);
  7250. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7251. for (int i = 0; i < nr; ++i) {
  7252. const int r = ((int32_t *) src1->data)[i];
  7253. dequantize_row_q(
  7254. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7255. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7256. }
  7257. }
  7258. static void ggml_compute_forward_get_rows_f16(
  7259. const struct ggml_compute_params * params,
  7260. const struct ggml_tensor * src0,
  7261. const struct ggml_tensor * src1,
  7262. struct ggml_tensor * dst) {
  7263. assert(params->ith == 0);
  7264. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7265. return;
  7266. }
  7267. const int nc = src0->ne[0];
  7268. const int nr = ggml_nelements(src1);
  7269. assert( dst->ne[0] == nc);
  7270. assert( dst->ne[1] == nr);
  7271. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7272. for (int i = 0; i < nr; ++i) {
  7273. const int r = ((int32_t *) src1->data)[i];
  7274. for (int j = 0; j < nc; ++j) {
  7275. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7276. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7277. }
  7278. }
  7279. }
  7280. static void ggml_compute_forward_get_rows_f32(
  7281. const struct ggml_compute_params * params,
  7282. const struct ggml_tensor * src0,
  7283. const struct ggml_tensor * src1,
  7284. struct ggml_tensor * dst) {
  7285. assert(params->ith == 0);
  7286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7287. return;
  7288. }
  7289. const int nc = src0->ne[0];
  7290. const int nr = ggml_nelements(src1);
  7291. assert( dst->ne[0] == nc);
  7292. assert( dst->ne[1] == nr);
  7293. assert(src0->nb[0] == sizeof(float));
  7294. for (int i = 0; i < nr; ++i) {
  7295. const int r = ((int32_t *) src1->data)[i];
  7296. ggml_vec_cpy_f32(nc,
  7297. (float *) ((char *) dst->data + i*dst->nb[1]),
  7298. (float *) ((char *) src0->data + r*src0->nb[1]));
  7299. }
  7300. }
  7301. static void ggml_compute_forward_get_rows(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. const struct ggml_tensor * src1,
  7305. struct ggml_tensor * dst) {
  7306. switch (src0->type) {
  7307. case GGML_TYPE_Q4_0:
  7308. case GGML_TYPE_Q4_1:
  7309. case GGML_TYPE_Q4_2:
  7310. case GGML_TYPE_Q5_0:
  7311. case GGML_TYPE_Q5_1:
  7312. case GGML_TYPE_Q8_0:
  7313. case GGML_TYPE_Q8_1:
  7314. {
  7315. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7316. } break;
  7317. case GGML_TYPE_F16:
  7318. {
  7319. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7320. } break;
  7321. case GGML_TYPE_F32:
  7322. {
  7323. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7324. } break;
  7325. default:
  7326. {
  7327. GGML_ASSERT(false);
  7328. } break;
  7329. }
  7330. //static bool first = true;
  7331. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7332. //if (first) {
  7333. // first = false;
  7334. //} else {
  7335. // for (int k = 0; k < dst->ne[1]; ++k) {
  7336. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7337. // for (int i = 0; i < 16; ++i) {
  7338. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7339. // }
  7340. // printf("\n");
  7341. // }
  7342. // printf("\n");
  7343. // }
  7344. // printf("\n");
  7345. // exit(0);
  7346. //}
  7347. }
  7348. // ggml_compute_forward_diag_mask_inf
  7349. static void ggml_compute_forward_diag_mask_inf_f32(
  7350. const struct ggml_compute_params * params,
  7351. const struct ggml_tensor * src0,
  7352. const struct ggml_tensor * src1,
  7353. struct ggml_tensor * dst) {
  7354. assert(params->ith == 0);
  7355. assert(src1->type == GGML_TYPE_I32);
  7356. assert(ggml_nelements(src1) == 1);
  7357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7358. return;
  7359. }
  7360. const int n_past = ((int32_t *) src1->data)[0];
  7361. // TODO: handle transposed/permuted matrices
  7362. const int n = ggml_nrows(src0);
  7363. const int nc = src0->ne[0];
  7364. const int nr = src0->ne[1];
  7365. const int nz = n/nr;
  7366. assert( dst->nb[0] == sizeof(float));
  7367. assert(src0->nb[0] == sizeof(float));
  7368. for (int k = 0; k < nz; k++) {
  7369. for (int j = 0; j < nr; j++) {
  7370. for (int i = n_past; i < nc; i++) {
  7371. if (i > n_past + j) {
  7372. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7373. }
  7374. }
  7375. }
  7376. }
  7377. }
  7378. static void ggml_compute_forward_diag_mask_inf(
  7379. const struct ggml_compute_params * params,
  7380. const struct ggml_tensor * src0,
  7381. const struct ggml_tensor * src1,
  7382. struct ggml_tensor * dst) {
  7383. switch (src0->type) {
  7384. case GGML_TYPE_F32:
  7385. {
  7386. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7387. } break;
  7388. default:
  7389. {
  7390. GGML_ASSERT(false);
  7391. } break;
  7392. }
  7393. }
  7394. // ggml_compute_forward_soft_max
  7395. static void ggml_compute_forward_soft_max_f32(
  7396. const struct ggml_compute_params * params,
  7397. const struct ggml_tensor * src0,
  7398. struct ggml_tensor * dst) {
  7399. GGML_ASSERT(ggml_is_contiguous(src0));
  7400. GGML_ASSERT(ggml_is_contiguous(dst));
  7401. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7403. return;
  7404. }
  7405. // TODO: handle transposed/permuted matrices
  7406. const int ith = params->ith;
  7407. const int nth = params->nth;
  7408. const int nc = src0->ne[0];
  7409. const int nr = ggml_nrows(src0);
  7410. // rows per thread
  7411. const int dr = (nr + nth - 1)/nth;
  7412. // row range for this thread
  7413. const int ir0 = dr*ith;
  7414. const int ir1 = MIN(ir0 + dr, nr);
  7415. for (int i1 = ir0; i1 < ir1; i1++) {
  7416. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7417. #ifndef NDEBUG
  7418. for (int i = 0; i < nc; ++i) {
  7419. //printf("p[%d] = %f\n", i, p[i]);
  7420. assert(!isnan(p[i]));
  7421. }
  7422. #endif
  7423. float max = -INFINITY;
  7424. ggml_vec_max_f32(nc, &max, p);
  7425. ggml_float sum = 0.0;
  7426. uint16_t scvt;
  7427. for (int i = 0; i < nc; i++) {
  7428. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7429. if (p[i] == -INFINITY) {
  7430. p[i] = 0.0f;
  7431. } else {
  7432. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7433. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7434. memcpy(&scvt, &s, sizeof(scvt));
  7435. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7436. sum += (ggml_float)val;
  7437. p[i] = val;
  7438. }
  7439. }
  7440. assert(sum > 0.0);
  7441. sum = 1.0/sum;
  7442. ggml_vec_scale_f32(nc, p, sum);
  7443. #ifndef NDEBUG
  7444. for (int i = 0; i < nc; ++i) {
  7445. assert(!isnan(p[i]));
  7446. assert(!isinf(p[i]));
  7447. }
  7448. #endif
  7449. }
  7450. }
  7451. static void ggml_compute_forward_soft_max(
  7452. const struct ggml_compute_params * params,
  7453. const struct ggml_tensor * src0,
  7454. struct ggml_tensor * dst) {
  7455. switch (src0->type) {
  7456. case GGML_TYPE_F32:
  7457. {
  7458. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7459. } break;
  7460. default:
  7461. {
  7462. GGML_ASSERT(false);
  7463. } break;
  7464. }
  7465. }
  7466. // ggml_compute_forward_alibi
  7467. static void ggml_compute_forward_alibi_f32(
  7468. const struct ggml_compute_params * params,
  7469. const struct ggml_tensor * src0,
  7470. const struct ggml_tensor * src1,
  7471. struct ggml_tensor * dst) {
  7472. assert(params->ith == 0);
  7473. assert(src1->type == GGML_TYPE_I32);
  7474. assert(ggml_nelements(src1) == 2);
  7475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7476. return;
  7477. }
  7478. const int n_past = ((int32_t *) src1->data)[0];
  7479. const int n_head = ((int32_t *) src1->data)[1];
  7480. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7481. const int ne1 = src0->ne[1]; // seq_len_without_past
  7482. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7483. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7484. const int n = ggml_nrows(src0);
  7485. const int ne2_ne3 = n/ne1; // ne2*ne3
  7486. const int nb0 = src0->nb[0];
  7487. const int nb1 = src0->nb[1];
  7488. const int nb2 = src0->nb[2];
  7489. //const int nb3 = src0->nb[3];
  7490. assert(nb0 == sizeof(float));
  7491. assert(ne1 + n_past == ne0); (void) n_past;
  7492. // add alibi to src0 (KQ_scaled)
  7493. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7494. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7495. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7496. for (int i = 0; i < ne0; i++) {
  7497. for (int j = 0; j < ne1; j++) {
  7498. for (int k = 0; k < ne2_ne3; k++) {
  7499. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7500. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7501. // TODO: k*nb2 or k*nb3
  7502. float m_k;
  7503. if (k < n_heads_log2_floor) {
  7504. m_k = powf(m0, k + 1);
  7505. } else {
  7506. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7507. }
  7508. pdst[0] = (j+1) * m_k + src[0];
  7509. }
  7510. }
  7511. }
  7512. }
  7513. static void ggml_compute_forward_alibi_f16(
  7514. const struct ggml_compute_params * params,
  7515. const struct ggml_tensor * src0,
  7516. const struct ggml_tensor * src1,
  7517. struct ggml_tensor * dst) {
  7518. assert(params->ith == 0);
  7519. assert(src1->type == GGML_TYPE_I32);
  7520. assert(ggml_nelements(src1) == 2);
  7521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7522. return;
  7523. }
  7524. const int n_past = ((int32_t *) src1->data)[0];
  7525. const int n_head = ((int32_t *) src1->data)[1];
  7526. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7527. const int ne1 = src0->ne[1]; // seq_len_without_past
  7528. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7529. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7530. const int n = ggml_nrows(src0);
  7531. const int ne2_ne3 = n/ne1; // ne2*ne3
  7532. const int nb0 = src0->nb[0];
  7533. const int nb1 = src0->nb[1];
  7534. const int nb2 = src0->nb[2];
  7535. //const int nb3 = src0->nb[3];
  7536. assert(nb0 == sizeof(ggml_fp16_t));
  7537. assert(ne1 + n_past == ne0); (void) n_past;
  7538. // add alibi to src0 (KQ_scaled)
  7539. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7540. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7541. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7542. for (int i = 0; i < ne0; i++) {
  7543. for (int j = 0; j < ne1; j++) {
  7544. for (int k = 0; k < ne2_ne3; k++) {
  7545. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7546. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7547. // TODO: k*nb2 or k*nb3
  7548. float m_k;
  7549. if (k < n_heads_log2_floor) {
  7550. m_k = powf(m0, k + 1);
  7551. } else {
  7552. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7553. }
  7554. // we return F32
  7555. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7556. }
  7557. }
  7558. }
  7559. }
  7560. static void ggml_compute_forward_alibi(
  7561. const struct ggml_compute_params * params,
  7562. const struct ggml_tensor * src0,
  7563. const struct ggml_tensor * src1,
  7564. struct ggml_tensor * dst) {
  7565. switch (src0->type) {
  7566. case GGML_TYPE_F16:
  7567. {
  7568. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7569. } break;
  7570. case GGML_TYPE_F32:
  7571. {
  7572. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7573. } break;
  7574. case GGML_TYPE_Q4_0:
  7575. case GGML_TYPE_Q4_1:
  7576. case GGML_TYPE_Q4_2:
  7577. case GGML_TYPE_Q5_0:
  7578. case GGML_TYPE_Q5_1:
  7579. case GGML_TYPE_Q8_0:
  7580. case GGML_TYPE_Q8_1:
  7581. case GGML_TYPE_I8:
  7582. case GGML_TYPE_I16:
  7583. case GGML_TYPE_I32:
  7584. case GGML_TYPE_COUNT:
  7585. {
  7586. GGML_ASSERT(false);
  7587. } break;
  7588. }
  7589. }
  7590. // ggml_compute_forward_rope
  7591. static void ggml_compute_forward_rope_f32(
  7592. const struct ggml_compute_params * params,
  7593. const struct ggml_tensor * src0,
  7594. const struct ggml_tensor * src1,
  7595. struct ggml_tensor * dst) {
  7596. assert(src1->type == GGML_TYPE_I32);
  7597. assert(ggml_nelements(src1) == 3);
  7598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7599. return;
  7600. }
  7601. const int n_past = ((int32_t *) src1->data)[0];
  7602. const int n_dims = ((int32_t *) src1->data)[1];
  7603. const int mode = ((int32_t *) src1->data)[2];
  7604. //const int64_t ne0 = src0->ne[0];
  7605. const int64_t ne1 = src0->ne[1];
  7606. const int64_t ne2 = src0->ne[2];
  7607. const int64_t ne3 = src0->ne[3];
  7608. const int nb0 = src0->nb[0];
  7609. const int nb1 = src0->nb[1];
  7610. const int nb2 = src0->nb[2];
  7611. const int nb3 = src0->nb[3];
  7612. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7613. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7614. assert(nb0 == sizeof(float));
  7615. const int ith = params->ith;
  7616. const int nth = params->nth;
  7617. const int nr = ggml_nrows(src0);
  7618. // rows per thread
  7619. const int dr = (nr + nth - 1)/nth;
  7620. // row range for this thread
  7621. const int ir0 = dr*ith;
  7622. const int ir1 = MIN(ir0 + dr, nr);
  7623. // row index used to determine which thread to use
  7624. int ir = 0;
  7625. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7626. const bool is_neox = mode & 2;
  7627. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7628. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7629. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7630. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7631. if (ir++ < ir0) continue;
  7632. if (ir > ir1) break;
  7633. float theta = (float)p;
  7634. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7635. const float cos_theta = cosf(theta);
  7636. const float sin_theta = sinf(theta);
  7637. theta *= theta_scale;
  7638. if (!is_neox) {
  7639. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7640. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7641. const float x0 = src[0];
  7642. const float x1 = src[1];
  7643. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7644. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7645. } else {
  7646. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7647. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7648. const float x0 = src[0];
  7649. const float x1 = src[n_dims/2];
  7650. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7651. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7652. }
  7653. }
  7654. }
  7655. }
  7656. }
  7657. }
  7658. static void ggml_compute_forward_rope_f16(
  7659. const struct ggml_compute_params * params,
  7660. const struct ggml_tensor * src0,
  7661. const struct ggml_tensor * src1,
  7662. struct ggml_tensor * dst) {
  7663. assert(src1->type == GGML_TYPE_I32);
  7664. assert(ggml_nelements(src1) == 3);
  7665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7666. return;
  7667. }
  7668. const int n_past = ((int32_t *) src1->data)[0];
  7669. const int n_dims = ((int32_t *) src1->data)[1];
  7670. const int mode = ((int32_t *) src1->data)[2];
  7671. //const int64_t ne0 = src0->ne[0];
  7672. const int64_t ne1 = src0->ne[1];
  7673. const int64_t ne2 = src0->ne[2];
  7674. const int64_t ne3 = src0->ne[3];
  7675. const int nb0 = src0->nb[0];
  7676. const int nb1 = src0->nb[1];
  7677. const int nb2 = src0->nb[2];
  7678. const int nb3 = src0->nb[3];
  7679. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7680. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7681. assert(nb0 == sizeof(ggml_fp16_t));
  7682. const int ith = params->ith;
  7683. const int nth = params->nth;
  7684. const int nr = ggml_nrows(src0);
  7685. // rows per thread
  7686. const int dr = (nr + nth - 1)/nth;
  7687. // row range for this thread
  7688. const int ir0 = dr*ith;
  7689. const int ir1 = MIN(ir0 + dr, nr);
  7690. // row index used to determine which thread to use
  7691. int ir = 0;
  7692. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7693. const bool is_neox = mode & 2;
  7694. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7695. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7696. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7697. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7698. if (ir++ < ir0) continue;
  7699. if (ir > ir1) break;
  7700. float theta = (float)p;
  7701. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7702. const float cos_theta = cosf(theta);
  7703. const float sin_theta = sinf(theta);
  7704. theta *= theta_scale;
  7705. if (!is_neox) {
  7706. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7707. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7708. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7709. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7710. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7711. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7712. } else {
  7713. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7714. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7715. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7716. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7717. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7718. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7719. }
  7720. }
  7721. }
  7722. }
  7723. }
  7724. }
  7725. static void ggml_compute_forward_rope(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. const struct ggml_tensor * src1,
  7729. struct ggml_tensor * dst) {
  7730. switch (src0->type) {
  7731. case GGML_TYPE_F16:
  7732. {
  7733. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7734. } break;
  7735. case GGML_TYPE_F32:
  7736. {
  7737. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7738. } break;
  7739. default:
  7740. {
  7741. GGML_ASSERT(false);
  7742. } break;
  7743. }
  7744. }
  7745. // ggml_compute_forward_conv_1d_1s
  7746. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7747. const struct ggml_compute_params * params,
  7748. const struct ggml_tensor * src0,
  7749. const struct ggml_tensor * src1,
  7750. struct ggml_tensor * dst) {
  7751. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7752. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7753. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7754. int64_t t0 = ggml_perf_time_us();
  7755. UNUSED(t0);
  7756. const int64_t ne00 = src0->ne[0];
  7757. const int64_t ne01 = src0->ne[1];
  7758. const int64_t ne02 = src0->ne[2];
  7759. //const int64_t ne03 = src0->ne[3];
  7760. const int64_t ne10 = src1->ne[0];
  7761. const int64_t ne11 = src1->ne[1];
  7762. //const int64_t ne12 = src1->ne[2];
  7763. //const int64_t ne13 = src1->ne[3];
  7764. //const int64_t ne0 = dst->ne[0];
  7765. //const int64_t ne1 = dst->ne[1];
  7766. //const int64_t ne2 = dst->ne[2];
  7767. //const int64_t ne3 = dst->ne[3];
  7768. //const int64_t ne = ne0*ne1*ne2*ne3;
  7769. const int nb00 = src0->nb[0];
  7770. const int nb01 = src0->nb[1];
  7771. const int nb02 = src0->nb[2];
  7772. //const int nb03 = src0->nb[3];
  7773. const int nb10 = src1->nb[0];
  7774. const int nb11 = src1->nb[1];
  7775. //const int nb12 = src1->nb[2];
  7776. //const int nb13 = src1->nb[3];
  7777. //const int nb0 = dst->nb[0];
  7778. const int nb1 = dst->nb[1];
  7779. //const int nb2 = dst->nb[2];
  7780. //const int nb3 = dst->nb[3];
  7781. const int ith = params->ith;
  7782. const int nth = params->nth;
  7783. const int nk = ne00;
  7784. const int nh = nk/2;
  7785. const int ew0 = ggml_up32(ne01);
  7786. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7787. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7788. GGML_ASSERT(nb10 == sizeof(float));
  7789. if (params->type == GGML_TASK_INIT) {
  7790. // TODO: fix this memset (wsize is overestimated)
  7791. memset(params->wdata, 0, params->wsize);
  7792. // prepare kernel data (src0)
  7793. {
  7794. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7795. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7796. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7797. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7798. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7799. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7800. dst_data[i00*ew0 + i01] = src[i00];
  7801. }
  7802. }
  7803. }
  7804. }
  7805. // prepare source data (src1)
  7806. {
  7807. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7808. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7809. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7810. ggml_fp16_t * dst_data = wdata;
  7811. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7812. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7813. }
  7814. }
  7815. }
  7816. return;
  7817. }
  7818. if (params->type == GGML_TASK_FINALIZE) {
  7819. return;
  7820. }
  7821. // total rows in dst
  7822. const int nr = ne02;
  7823. // rows per thread
  7824. const int dr = (nr + nth - 1)/nth;
  7825. // row range for this thread
  7826. const int ir0 = dr*ith;
  7827. const int ir1 = MIN(ir0 + dr, nr);
  7828. for (int i1 = ir0; i1 < ir1; i1++) {
  7829. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7830. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7831. dst_data[i0] = 0;
  7832. for (int k = -nh; k <= nh; k++) {
  7833. float v = 0.0f;
  7834. ggml_vec_dot_f16(ew0, &v,
  7835. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7836. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7837. dst_data[i0] += v;
  7838. }
  7839. }
  7840. }
  7841. }
  7842. static void ggml_compute_forward_conv_1d_1s_f32(
  7843. const struct ggml_compute_params * params,
  7844. const struct ggml_tensor * src0,
  7845. const struct ggml_tensor * src1,
  7846. struct ggml_tensor * dst) {
  7847. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7848. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7849. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7850. int64_t t0 = ggml_perf_time_us();
  7851. UNUSED(t0);
  7852. const int64_t ne00 = src0->ne[0];
  7853. const int64_t ne01 = src0->ne[1];
  7854. const int64_t ne02 = src0->ne[2];
  7855. //const int64_t ne03 = src0->ne[3];
  7856. const int64_t ne10 = src1->ne[0];
  7857. const int64_t ne11 = src1->ne[1];
  7858. //const int64_t ne12 = src1->ne[2];
  7859. //const int64_t ne13 = src1->ne[3];
  7860. //const int64_t ne0 = dst->ne[0];
  7861. //const int64_t ne1 = dst->ne[1];
  7862. //const int64_t ne2 = dst->ne[2];
  7863. //const int64_t ne3 = dst->ne[3];
  7864. //const int64_t ne = ne0*ne1*ne2*ne3;
  7865. const int nb00 = src0->nb[0];
  7866. const int nb01 = src0->nb[1];
  7867. const int nb02 = src0->nb[2];
  7868. //const int nb03 = src0->nb[3];
  7869. const int nb10 = src1->nb[0];
  7870. const int nb11 = src1->nb[1];
  7871. //const int nb12 = src1->nb[2];
  7872. //const int nb13 = src1->nb[3];
  7873. //const int nb0 = dst->nb[0];
  7874. const int nb1 = dst->nb[1];
  7875. //const int nb2 = dst->nb[2];
  7876. //const int nb3 = dst->nb[3];
  7877. const int ith = params->ith;
  7878. const int nth = params->nth;
  7879. const int nk = ne00;
  7880. const int nh = nk/2;
  7881. const int ew0 = ggml_up32(ne01);
  7882. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7883. GGML_ASSERT(nb00 == sizeof(float));
  7884. GGML_ASSERT(nb10 == sizeof(float));
  7885. if (params->type == GGML_TASK_INIT) {
  7886. // TODO: fix this memset (wsize is overestimated)
  7887. memset(params->wdata, 0, params->wsize);
  7888. // prepare kernel data (src0)
  7889. {
  7890. float * const wdata = (float *) params->wdata + 0;
  7891. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7892. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7893. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7894. float * dst_data = wdata + i02*ew0*ne00;
  7895. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7896. dst_data[i00*ew0 + i01] = src[i00];
  7897. }
  7898. }
  7899. }
  7900. }
  7901. // prepare source data (src1)
  7902. {
  7903. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7904. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7905. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7906. float * dst_data = wdata;
  7907. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7908. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7909. }
  7910. }
  7911. }
  7912. return;
  7913. }
  7914. if (params->type == GGML_TASK_FINALIZE) {
  7915. return;
  7916. }
  7917. // total rows in dst
  7918. const int nr = ne02;
  7919. // rows per thread
  7920. const int dr = (nr + nth - 1)/nth;
  7921. // row range for this thread
  7922. const int ir0 = dr*ith;
  7923. const int ir1 = MIN(ir0 + dr, nr);
  7924. for (int i1 = ir0; i1 < ir1; i1++) {
  7925. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7926. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7927. dst_data[i0] = 0;
  7928. for (int k = -nh; k <= nh; k++) {
  7929. float v = 0.0f;
  7930. ggml_vec_dot_f32(ew0, &v,
  7931. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7932. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7933. dst_data[i0] += v;
  7934. }
  7935. }
  7936. }
  7937. }
  7938. static void ggml_compute_forward_conv_1d_1s(
  7939. const struct ggml_compute_params * params,
  7940. const struct ggml_tensor * src0,
  7941. const struct ggml_tensor * src1,
  7942. struct ggml_tensor * dst) {
  7943. switch (src0->type) {
  7944. case GGML_TYPE_F16:
  7945. {
  7946. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7947. } break;
  7948. case GGML_TYPE_F32:
  7949. {
  7950. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7951. } break;
  7952. default:
  7953. {
  7954. GGML_ASSERT(false);
  7955. } break;
  7956. }
  7957. }
  7958. // ggml_compute_forward_conv_1d_2s
  7959. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7960. const struct ggml_compute_params * params,
  7961. const struct ggml_tensor * src0,
  7962. const struct ggml_tensor * src1,
  7963. struct ggml_tensor * dst) {
  7964. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7965. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7966. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7967. int64_t t0 = ggml_perf_time_us();
  7968. UNUSED(t0);
  7969. const int64_t ne00 = src0->ne[0];
  7970. const int64_t ne01 = src0->ne[1];
  7971. const int64_t ne02 = src0->ne[2];
  7972. //const int64_t ne03 = src0->ne[3];
  7973. const int64_t ne10 = src1->ne[0];
  7974. const int64_t ne11 = src1->ne[1];
  7975. //const int64_t ne12 = src1->ne[2];
  7976. //const int64_t ne13 = src1->ne[3];
  7977. //const int64_t ne0 = dst->ne[0];
  7978. //const int64_t ne1 = dst->ne[1];
  7979. //const int64_t ne2 = dst->ne[2];
  7980. //const int64_t ne3 = dst->ne[3];
  7981. //const int64_t ne = ne0*ne1*ne2*ne3;
  7982. const int nb00 = src0->nb[0];
  7983. const int nb01 = src0->nb[1];
  7984. const int nb02 = src0->nb[2];
  7985. //const int nb03 = src0->nb[3];
  7986. const int nb10 = src1->nb[0];
  7987. const int nb11 = src1->nb[1];
  7988. //const int nb12 = src1->nb[2];
  7989. //const int nb13 = src1->nb[3];
  7990. //const int nb0 = dst->nb[0];
  7991. const int nb1 = dst->nb[1];
  7992. //const int nb2 = dst->nb[2];
  7993. //const int nb3 = dst->nb[3];
  7994. const int ith = params->ith;
  7995. const int nth = params->nth;
  7996. const int nk = ne00;
  7997. const int nh = nk/2;
  7998. const int ew0 = ggml_up32(ne01);
  7999. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8000. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8001. GGML_ASSERT(nb10 == sizeof(float));
  8002. if (params->type == GGML_TASK_INIT) {
  8003. // TODO: fix this memset (wsize is overestimated)
  8004. memset(params->wdata, 0, params->wsize);
  8005. // prepare kernel data (src0)
  8006. {
  8007. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8008. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8009. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8010. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  8011. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  8012. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8013. dst_data[i00*ew0 + i01] = src[i00];
  8014. }
  8015. }
  8016. }
  8017. }
  8018. // prepare source data (src1)
  8019. {
  8020. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  8021. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8022. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8023. ggml_fp16_t * dst_data = wdata;
  8024. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8025. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  8026. }
  8027. }
  8028. }
  8029. return;
  8030. }
  8031. if (params->type == GGML_TASK_FINALIZE) {
  8032. return;
  8033. }
  8034. // total rows in dst
  8035. const int nr = ne02;
  8036. // rows per thread
  8037. const int dr = (nr + nth - 1)/nth;
  8038. // row range for this thread
  8039. const int ir0 = dr*ith;
  8040. const int ir1 = MIN(ir0 + dr, nr);
  8041. for (int i1 = ir0; i1 < ir1; i1++) {
  8042. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8043. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8044. dst_data[i0/2] = 0;
  8045. for (int k = -nh; k <= nh; k++) {
  8046. float v = 0.0f;
  8047. ggml_vec_dot_f16(ew0, &v,
  8048. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8049. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8050. dst_data[i0/2] += v;
  8051. }
  8052. }
  8053. }
  8054. }
  8055. static void ggml_compute_forward_conv_1d_2s_f32(
  8056. const struct ggml_compute_params * params,
  8057. const struct ggml_tensor * src0,
  8058. const struct ggml_tensor * src1,
  8059. struct ggml_tensor * dst) {
  8060. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8061. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8062. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8063. int64_t t0 = ggml_perf_time_us();
  8064. UNUSED(t0);
  8065. const int64_t ne00 = src0->ne[0];
  8066. const int64_t ne01 = src0->ne[1];
  8067. const int64_t ne02 = src0->ne[2];
  8068. //const int64_t ne03 = src0->ne[3];
  8069. const int64_t ne10 = src1->ne[0];
  8070. const int64_t ne11 = src1->ne[1];
  8071. //const int64_t ne12 = src1->ne[2];
  8072. //const int64_t ne13 = src1->ne[3];
  8073. //const int64_t ne0 = dst->ne[0];
  8074. //const int64_t ne1 = dst->ne[1];
  8075. //const int64_t ne2 = dst->ne[2];
  8076. //const int64_t ne3 = dst->ne[3];
  8077. //const int64_t ne = ne0*ne1*ne2*ne3;
  8078. const int nb00 = src0->nb[0];
  8079. const int nb01 = src0->nb[1];
  8080. const int nb02 = src0->nb[2];
  8081. //const int nb03 = src0->nb[3];
  8082. const int nb10 = src1->nb[0];
  8083. const int nb11 = src1->nb[1];
  8084. //const int nb12 = src1->nb[2];
  8085. //const int nb13 = src1->nb[3];
  8086. //const int nb0 = dst->nb[0];
  8087. const int nb1 = dst->nb[1];
  8088. //const int nb2 = dst->nb[2];
  8089. //const int nb3 = dst->nb[3];
  8090. const int ith = params->ith;
  8091. const int nth = params->nth;
  8092. const int nk = ne00;
  8093. const int nh = nk/2;
  8094. const int ew0 = ggml_up32(ne01);
  8095. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8096. GGML_ASSERT(nb00 == sizeof(float));
  8097. GGML_ASSERT(nb10 == sizeof(float));
  8098. if (params->type == GGML_TASK_INIT) {
  8099. // TODO: fix this memset (wsize is overestimated)
  8100. memset(params->wdata, 0, params->wsize);
  8101. // prepare kernel data (src0)
  8102. {
  8103. float * const wdata = (float *) params->wdata + 0;
  8104. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8105. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8106. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8107. float * dst_data = wdata + i02*ew0*ne00;
  8108. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8109. dst_data[i00*ew0 + i01] = src[i00];
  8110. }
  8111. }
  8112. }
  8113. }
  8114. // prepare source data (src1)
  8115. {
  8116. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8117. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8118. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8119. float * dst_data = wdata;
  8120. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8121. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8122. }
  8123. }
  8124. }
  8125. return;
  8126. }
  8127. if (params->type == GGML_TASK_FINALIZE) {
  8128. return;
  8129. }
  8130. // total rows in dst
  8131. const int nr = ne02;
  8132. // rows per thread
  8133. const int dr = (nr + nth - 1)/nth;
  8134. // row range for this thread
  8135. const int ir0 = dr*ith;
  8136. const int ir1 = MIN(ir0 + dr, nr);
  8137. for (int i1 = ir0; i1 < ir1; i1++) {
  8138. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8139. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8140. dst_data[i0/2] = 0;
  8141. for (int k = -nh; k <= nh; k++) {
  8142. float v = 0.0f;
  8143. ggml_vec_dot_f32(ew0, &v,
  8144. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8145. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8146. dst_data[i0/2] += v;
  8147. }
  8148. }
  8149. }
  8150. }
  8151. static void ggml_compute_forward_conv_1d_2s(
  8152. const struct ggml_compute_params * params,
  8153. const struct ggml_tensor * src0,
  8154. const struct ggml_tensor * src1,
  8155. struct ggml_tensor * dst) {
  8156. switch (src0->type) {
  8157. case GGML_TYPE_F16:
  8158. {
  8159. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8160. } break;
  8161. case GGML_TYPE_F32:
  8162. {
  8163. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8164. } break;
  8165. default:
  8166. {
  8167. GGML_ASSERT(false);
  8168. } break;
  8169. }
  8170. }
  8171. // ggml_compute_forward_flash_attn
  8172. static void ggml_compute_forward_flash_attn_f32(
  8173. const struct ggml_compute_params * params,
  8174. const struct ggml_tensor * q,
  8175. const struct ggml_tensor * k,
  8176. const struct ggml_tensor * v,
  8177. const bool masked,
  8178. struct ggml_tensor * dst) {
  8179. int64_t t0 = ggml_perf_time_us();
  8180. UNUSED(t0);
  8181. const int64_t neq0 = q->ne[0];
  8182. const int64_t neq1 = q->ne[1];
  8183. const int64_t neq2 = q->ne[2];
  8184. const int64_t neq3 = q->ne[3];
  8185. const int64_t nek0 = k->ne[0];
  8186. const int64_t nek1 = k->ne[1];
  8187. //const int64_t nek2 = k->ne[2];
  8188. //const int64_t nek3 = k->ne[3];
  8189. //const int64_t nev0 = v->ne[0];
  8190. const int64_t nev1 = v->ne[1];
  8191. //const int64_t nev2 = v->ne[2];
  8192. //const int64_t nev3 = v->ne[3];
  8193. const int64_t ne0 = dst->ne[0];
  8194. const int64_t ne1 = dst->ne[1];
  8195. //const int64_t ne2 = dst->ne[2];
  8196. //const int64_t ne3 = dst->ne[3];
  8197. const int nbk0 = k->nb[0];
  8198. const int nbk1 = k->nb[1];
  8199. const int nbk2 = k->nb[2];
  8200. const int nbk3 = k->nb[3];
  8201. const int nbq0 = q->nb[0];
  8202. const int nbq1 = q->nb[1];
  8203. const int nbq2 = q->nb[2];
  8204. const int nbq3 = q->nb[3];
  8205. const int nbv0 = v->nb[0];
  8206. const int nbv1 = v->nb[1];
  8207. const int nbv2 = v->nb[2];
  8208. const int nbv3 = v->nb[3];
  8209. const int nb0 = dst->nb[0];
  8210. const int nb1 = dst->nb[1];
  8211. const int nb2 = dst->nb[2];
  8212. const int nb3 = dst->nb[3];
  8213. const int ith = params->ith;
  8214. const int nth = params->nth;
  8215. const int64_t D = neq0;
  8216. const int64_t N = neq1;
  8217. const int64_t P = nek1 - N;
  8218. const int64_t M = P + N;
  8219. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8220. GGML_ASSERT(ne0 == D);
  8221. GGML_ASSERT(ne1 == N);
  8222. GGML_ASSERT(P >= 0);
  8223. GGML_ASSERT(nbq0 == sizeof(float));
  8224. GGML_ASSERT(nbk0 == sizeof(float));
  8225. GGML_ASSERT(nbv0 == sizeof(float));
  8226. GGML_ASSERT(neq0 == D);
  8227. GGML_ASSERT(nek0 == D);
  8228. GGML_ASSERT(nev1 == D);
  8229. GGML_ASSERT(neq1 == N);
  8230. GGML_ASSERT(nek1 == N + P);
  8231. GGML_ASSERT(nev1 == D);
  8232. // dst cannot be transposed or permuted
  8233. GGML_ASSERT(nb0 == sizeof(float));
  8234. GGML_ASSERT(nb0 <= nb1);
  8235. GGML_ASSERT(nb1 <= nb2);
  8236. GGML_ASSERT(nb2 <= nb3);
  8237. if (params->type == GGML_TASK_INIT) {
  8238. return;
  8239. }
  8240. if (params->type == GGML_TASK_FINALIZE) {
  8241. return;
  8242. }
  8243. // parallelize by q rows using ggml_vec_dot_f32
  8244. // total rows in q
  8245. const int nr = neq1*neq2*neq3;
  8246. // rows per thread
  8247. const int dr = (nr + nth - 1)/nth;
  8248. // row range for this thread
  8249. const int ir0 = dr*ith;
  8250. const int ir1 = MIN(ir0 + dr, nr);
  8251. const float scale = 1.0f/sqrtf(D);
  8252. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8253. for (int ir = ir0; ir < ir1; ++ir) {
  8254. // q indices
  8255. const int iq3 = ir/(neq2*neq1);
  8256. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8257. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8258. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8259. for (int i = M; i < Mup; ++i) {
  8260. S[i] = -INFINITY;
  8261. }
  8262. for (int64_t ic = 0; ic < nek1; ++ic) {
  8263. // k indices
  8264. const int ik3 = iq3;
  8265. const int ik2 = iq2;
  8266. const int ik1 = ic;
  8267. // S indices
  8268. const int i1 = ik1;
  8269. ggml_vec_dot_f32(neq0,
  8270. S + i1,
  8271. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8272. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8273. }
  8274. // scale
  8275. ggml_vec_scale_f32(nek1, S, scale);
  8276. if (masked) {
  8277. for (int64_t i = P; i < M; i++) {
  8278. if (i > P + iq1) {
  8279. S[i] = -INFINITY;
  8280. }
  8281. }
  8282. }
  8283. // softmax
  8284. {
  8285. float max = -INFINITY;
  8286. ggml_vec_max_f32(M, &max, S);
  8287. ggml_float sum = 0.0;
  8288. {
  8289. #ifdef GGML_SOFT_MAX_ACCELERATE
  8290. max = -max;
  8291. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8292. vvexpf(S, S, &Mup);
  8293. ggml_vec_sum_f32(Mup, &sum, S);
  8294. #else
  8295. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8296. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8297. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8298. float * SS = S + i;
  8299. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8300. if (SS[j] == -INFINITY) {
  8301. SS[j] = 0.0f;
  8302. } else {
  8303. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8304. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8305. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8306. sump[j] += (ggml_float)val;
  8307. SS[j] = val;
  8308. }
  8309. }
  8310. }
  8311. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8312. sum += sump[i];
  8313. }
  8314. #endif
  8315. }
  8316. assert(sum > 0.0);
  8317. sum = 1.0/sum;
  8318. ggml_vec_scale_f32(M, S, sum);
  8319. #ifndef NDEBUG
  8320. for (int i = 0; i < M; ++i) {
  8321. assert(!isnan(S[i]));
  8322. assert(!isinf(S[i]));
  8323. }
  8324. #endif
  8325. }
  8326. for (int64_t ic = 0; ic < nev1; ++ic) {
  8327. // dst indices
  8328. const int i1 = iq1;
  8329. const int i2 = iq2;
  8330. const int i3 = iq3;
  8331. ggml_vec_dot_f32(nek1,
  8332. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8333. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8334. S);
  8335. }
  8336. }
  8337. }
  8338. static void ggml_compute_forward_flash_attn_f16(
  8339. const struct ggml_compute_params * params,
  8340. const struct ggml_tensor * q,
  8341. const struct ggml_tensor * k,
  8342. const struct ggml_tensor * v,
  8343. const bool masked,
  8344. struct ggml_tensor * dst) {
  8345. int64_t t0 = ggml_perf_time_us();
  8346. UNUSED(t0);
  8347. const int64_t neq0 = q->ne[0];
  8348. const int64_t neq1 = q->ne[1];
  8349. const int64_t neq2 = q->ne[2];
  8350. const int64_t neq3 = q->ne[3];
  8351. const int64_t nek0 = k->ne[0];
  8352. const int64_t nek1 = k->ne[1];
  8353. //const int64_t nek2 = k->ne[2];
  8354. //const int64_t nek3 = k->ne[3];
  8355. //const int64_t nev0 = v->ne[0];
  8356. const int64_t nev1 = v->ne[1];
  8357. //const int64_t nev2 = v->ne[2];
  8358. //const int64_t nev3 = v->ne[3];
  8359. const int64_t ne0 = dst->ne[0];
  8360. const int64_t ne1 = dst->ne[1];
  8361. //const int64_t ne2 = dst->ne[2];
  8362. //const int64_t ne3 = dst->ne[3];
  8363. const int nbk0 = k->nb[0];
  8364. const int nbk1 = k->nb[1];
  8365. const int nbk2 = k->nb[2];
  8366. const int nbk3 = k->nb[3];
  8367. const int nbq0 = q->nb[0];
  8368. const int nbq1 = q->nb[1];
  8369. const int nbq2 = q->nb[2];
  8370. const int nbq3 = q->nb[3];
  8371. const int nbv0 = v->nb[0];
  8372. const int nbv1 = v->nb[1];
  8373. const int nbv2 = v->nb[2];
  8374. const int nbv3 = v->nb[3];
  8375. const int nb0 = dst->nb[0];
  8376. const int nb1 = dst->nb[1];
  8377. const int nb2 = dst->nb[2];
  8378. const int nb3 = dst->nb[3];
  8379. const int ith = params->ith;
  8380. const int nth = params->nth;
  8381. const int64_t D = neq0;
  8382. const int64_t N = neq1;
  8383. const int64_t P = nek1 - N;
  8384. const int64_t M = P + N;
  8385. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8386. GGML_ASSERT(ne0 == D);
  8387. GGML_ASSERT(ne1 == N);
  8388. GGML_ASSERT(P >= 0);
  8389. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8390. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8391. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8392. GGML_ASSERT(neq0 == D);
  8393. GGML_ASSERT(nek0 == D);
  8394. GGML_ASSERT(nev1 == D);
  8395. GGML_ASSERT(neq1 == N);
  8396. GGML_ASSERT(nek1 == N + P);
  8397. GGML_ASSERT(nev1 == D);
  8398. // dst cannot be transposed or permuted
  8399. GGML_ASSERT(nb0 == sizeof(float));
  8400. GGML_ASSERT(nb0 <= nb1);
  8401. GGML_ASSERT(nb1 <= nb2);
  8402. GGML_ASSERT(nb2 <= nb3);
  8403. if (params->type == GGML_TASK_INIT) {
  8404. return;
  8405. }
  8406. if (params->type == GGML_TASK_FINALIZE) {
  8407. return;
  8408. }
  8409. // parallelize by q rows using ggml_vec_dot_f32
  8410. // total rows in q
  8411. const int nr = neq1*neq2*neq3;
  8412. // rows per thread
  8413. const int dr = (nr + nth - 1)/nth;
  8414. // row range for this thread
  8415. const int ir0 = dr*ith;
  8416. const int ir1 = MIN(ir0 + dr, nr);
  8417. const float scale = 1.0f/sqrtf(D);
  8418. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8419. for (int ir = ir0; ir < ir1; ++ir) {
  8420. // q indices
  8421. const int iq3 = ir/(neq2*neq1);
  8422. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8423. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8424. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8425. for (int i = M; i < Mup; ++i) {
  8426. S[i] = -INFINITY;
  8427. }
  8428. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8429. for (int64_t ic = 0; ic < nek1; ++ic) {
  8430. // k indices
  8431. const int ik3 = iq3;
  8432. const int ik2 = iq2;
  8433. const int ik1 = ic;
  8434. // S indices
  8435. const int i1 = ik1;
  8436. ggml_vec_dot_f16(neq0,
  8437. S + i1,
  8438. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8439. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8440. }
  8441. } else {
  8442. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8443. // k indices
  8444. const int ik3 = iq3;
  8445. const int ik2 = iq2;
  8446. const int ik1 = ic;
  8447. // S indices
  8448. const int i1 = ik1;
  8449. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8450. S + i1,
  8451. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8452. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8453. }
  8454. }
  8455. // scale
  8456. ggml_vec_scale_f32(nek1, S, scale);
  8457. if (masked) {
  8458. for (int64_t i = P; i < M; i++) {
  8459. if (i > P + iq1) {
  8460. S[i] = -INFINITY;
  8461. }
  8462. }
  8463. }
  8464. // softmax
  8465. {
  8466. float max = -INFINITY;
  8467. ggml_vec_max_f32(M, &max, S);
  8468. ggml_float sum = 0.0;
  8469. {
  8470. #ifdef GGML_SOFT_MAX_ACCELERATE
  8471. max = -max;
  8472. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8473. vvexpf(S, S, &Mup);
  8474. ggml_vec_sum_f32(Mup, &sum, S);
  8475. #else
  8476. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8477. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8478. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8479. float * SS = S + i;
  8480. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8481. if (SS[j] == -INFINITY) {
  8482. SS[j] = 0.0f;
  8483. } else {
  8484. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8485. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8486. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8487. sump[j] += (ggml_float)val;
  8488. SS[j] = val;
  8489. }
  8490. }
  8491. }
  8492. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8493. sum += sump[i];
  8494. }
  8495. #endif
  8496. }
  8497. assert(sum > 0.0);
  8498. sum = 1.0/sum;
  8499. ggml_vec_scale_f32(M, S, sum);
  8500. #ifndef NDEBUG
  8501. for (int i = 0; i < M; ++i) {
  8502. assert(!isnan(S[i]));
  8503. assert(!isinf(S[i]));
  8504. }
  8505. #endif
  8506. }
  8507. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8508. for (int64_t i = 0; i < M; i++) {
  8509. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8510. }
  8511. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8512. for (int64_t ic = 0; ic < nev1; ++ic) {
  8513. // dst indices
  8514. const int i1 = iq1;
  8515. const int i2 = iq2;
  8516. const int i3 = iq3;
  8517. ggml_vec_dot_f16(nek1,
  8518. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8519. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8520. S16);
  8521. }
  8522. } else {
  8523. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8524. // dst indices
  8525. const int i1 = iq1;
  8526. const int i2 = iq2;
  8527. const int i3 = iq3;
  8528. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8529. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8530. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8531. S16);
  8532. }
  8533. }
  8534. }
  8535. }
  8536. static void ggml_compute_forward_flash_attn(
  8537. const struct ggml_compute_params * params,
  8538. const struct ggml_tensor * q,
  8539. const struct ggml_tensor * k,
  8540. const struct ggml_tensor * v,
  8541. const bool masked,
  8542. struct ggml_tensor * dst) {
  8543. switch (q->type) {
  8544. case GGML_TYPE_F16:
  8545. {
  8546. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8547. } break;
  8548. case GGML_TYPE_F32:
  8549. {
  8550. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8551. } break;
  8552. default:
  8553. {
  8554. GGML_ASSERT(false);
  8555. } break;
  8556. }
  8557. }
  8558. // ggml_compute_forward_flash_ff
  8559. static void ggml_compute_forward_flash_ff_f16(
  8560. const struct ggml_compute_params * params,
  8561. const struct ggml_tensor * a, // F16
  8562. const struct ggml_tensor * b0, // F16 fc_w
  8563. const struct ggml_tensor * b1, // F32 fc_b
  8564. const struct ggml_tensor * c0, // F16 proj_w
  8565. const struct ggml_tensor * c1, // F32 proj_b
  8566. struct ggml_tensor * dst) {
  8567. int64_t t0 = ggml_perf_time_us();
  8568. UNUSED(t0);
  8569. const int64_t nea0 = a->ne[0];
  8570. const int64_t nea1 = a->ne[1];
  8571. const int64_t nea2 = a->ne[2];
  8572. const int64_t nea3 = a->ne[3];
  8573. const int64_t neb00 = b0->ne[0];
  8574. const int64_t neb01 = b0->ne[1];
  8575. //const int64_t neb02 = b0->ne[2];
  8576. //const int64_t neb03 = b0->ne[3];
  8577. const int64_t neb10 = b1->ne[0];
  8578. const int64_t neb11 = b1->ne[1];
  8579. //const int64_t neb12 = b1->ne[2];
  8580. //const int64_t neb13 = b1->ne[3];
  8581. const int64_t nec00 = c0->ne[0];
  8582. const int64_t nec01 = c0->ne[1];
  8583. //const int64_t nec02 = c0->ne[2];
  8584. //const int64_t nec03 = c0->ne[3];
  8585. const int64_t nec10 = c1->ne[0];
  8586. const int64_t nec11 = c1->ne[1];
  8587. //const int64_t nec12 = c1->ne[2];
  8588. //const int64_t nec13 = c1->ne[3];
  8589. const int64_t ne0 = dst->ne[0];
  8590. const int64_t ne1 = dst->ne[1];
  8591. const int64_t ne2 = dst->ne[2];
  8592. //const int64_t ne3 = dst->ne[3];
  8593. const int nba0 = a->nb[0];
  8594. const int nba1 = a->nb[1];
  8595. const int nba2 = a->nb[2];
  8596. const int nba3 = a->nb[3];
  8597. const int nbb00 = b0->nb[0];
  8598. const int nbb01 = b0->nb[1];
  8599. const int nbb02 = b0->nb[2];
  8600. const int nbb03 = b0->nb[3];
  8601. const int nbb10 = b1->nb[0];
  8602. //const int nbb11 = b1->nb[1];
  8603. //const int nbb12 = b1->nb[2];
  8604. //const int nbb13 = b1->nb[3];
  8605. const int nbc00 = c0->nb[0];
  8606. const int nbc01 = c0->nb[1];
  8607. const int nbc02 = c0->nb[2];
  8608. const int nbc03 = c0->nb[3];
  8609. const int nbc10 = c1->nb[0];
  8610. //const int nbc11 = c1->nb[1];
  8611. //const int nbc12 = c1->nb[2];
  8612. //const int nbc13 = c1->nb[3];
  8613. const int nb0 = dst->nb[0];
  8614. const int nb1 = dst->nb[1];
  8615. const int nb2 = dst->nb[2];
  8616. const int nb3 = dst->nb[3];
  8617. const int ith = params->ith;
  8618. const int nth = params->nth;
  8619. const int64_t D = nea0;
  8620. //const int64_t N = nea1;
  8621. const int64_t M = neb01;
  8622. GGML_ASSERT(ne0 == nea0);
  8623. GGML_ASSERT(ne1 == nea1);
  8624. GGML_ASSERT(ne2 == nea2);
  8625. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8626. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8627. GGML_ASSERT(nbb10 == sizeof(float));
  8628. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8629. GGML_ASSERT(nbc10 == sizeof(float));
  8630. GGML_ASSERT(neb00 == D);
  8631. GGML_ASSERT(neb01 == M);
  8632. GGML_ASSERT(neb10 == M);
  8633. GGML_ASSERT(neb11 == 1);
  8634. GGML_ASSERT(nec00 == M);
  8635. GGML_ASSERT(nec01 == D);
  8636. GGML_ASSERT(nec10 == D);
  8637. GGML_ASSERT(nec11 == 1);
  8638. // dst cannot be transposed or permuted
  8639. GGML_ASSERT(nb0 == sizeof(float));
  8640. GGML_ASSERT(nb0 <= nb1);
  8641. GGML_ASSERT(nb1 <= nb2);
  8642. GGML_ASSERT(nb2 <= nb3);
  8643. if (params->type == GGML_TASK_INIT) {
  8644. return;
  8645. }
  8646. if (params->type == GGML_TASK_FINALIZE) {
  8647. return;
  8648. }
  8649. // parallelize by a rows using ggml_vec_dot_f32
  8650. // total rows in a
  8651. const int nr = nea1*nea2*nea3;
  8652. // rows per thread
  8653. const int dr = (nr + nth - 1)/nth;
  8654. // row range for this thread
  8655. const int ir0 = dr*ith;
  8656. const int ir1 = MIN(ir0 + dr, nr);
  8657. for (int ir = ir0; ir < ir1; ++ir) {
  8658. // a indices
  8659. const int ia3 = ir/(nea2*nea1);
  8660. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8661. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8662. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8663. for (int64_t ic = 0; ic < neb01; ++ic) {
  8664. // b0 indices
  8665. const int ib03 = ia3;
  8666. const int ib02 = ia2;
  8667. const int ib01 = ic;
  8668. // S indices
  8669. const int i1 = ib01;
  8670. ggml_vec_dot_f16(nea0,
  8671. S + i1,
  8672. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8673. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8674. }
  8675. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8676. //ggml_vec_gelu_f32(neb01, S, S);
  8677. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8678. for (int64_t i = 0; i < M; i++) {
  8679. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8680. }
  8681. ggml_vec_gelu_f16(neb01, S16, S16);
  8682. {
  8683. // dst indices
  8684. const int i1 = ia1;
  8685. const int i2 = ia2;
  8686. const int i3 = ia3;
  8687. for (int64_t ic = 0; ic < nec01; ++ic) {
  8688. ggml_vec_dot_f16(neb01,
  8689. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8690. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8691. S16);
  8692. }
  8693. ggml_vec_add_f32(nec01,
  8694. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8695. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8696. (float *) c1->data);
  8697. }
  8698. }
  8699. }
  8700. static void ggml_compute_forward_flash_ff(
  8701. const struct ggml_compute_params * params,
  8702. const struct ggml_tensor * a,
  8703. const struct ggml_tensor * b0,
  8704. const struct ggml_tensor * b1,
  8705. const struct ggml_tensor * c0,
  8706. const struct ggml_tensor * c1,
  8707. struct ggml_tensor * dst) {
  8708. switch (b0->type) {
  8709. case GGML_TYPE_F16:
  8710. {
  8711. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8712. } break;
  8713. case GGML_TYPE_F32:
  8714. {
  8715. GGML_ASSERT(false); // TODO
  8716. } break;
  8717. default:
  8718. {
  8719. GGML_ASSERT(false);
  8720. } break;
  8721. }
  8722. }
  8723. // ggml_compute_forward_map_unary
  8724. static void ggml_compute_forward_map_unary_f32(
  8725. const struct ggml_compute_params * params,
  8726. const struct ggml_tensor * src0,
  8727. struct ggml_tensor * dst,
  8728. const ggml_unary_op_f32_t fun) {
  8729. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8731. return;
  8732. }
  8733. const int n = ggml_nrows(src0);
  8734. const int nc = src0->ne[0];
  8735. assert( dst->nb[0] == sizeof(float));
  8736. assert(src0->nb[0] == sizeof(float));
  8737. for (int i = 0; i < n; i++) {
  8738. fun(nc,
  8739. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8740. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8741. }
  8742. }
  8743. static void ggml_compute_forward_map_unary(
  8744. const struct ggml_compute_params * params,
  8745. const struct ggml_tensor * src0,
  8746. struct ggml_tensor * dst,
  8747. const ggml_unary_op_f32_t fun) {
  8748. switch (src0->type) {
  8749. case GGML_TYPE_F32:
  8750. {
  8751. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8752. } break;
  8753. default:
  8754. {
  8755. GGML_ASSERT(false);
  8756. } break;
  8757. }
  8758. }
  8759. // ggml_compute_forward_map_binary
  8760. static void ggml_compute_forward_map_binary_f32(
  8761. const struct ggml_compute_params * params,
  8762. const struct ggml_tensor * src0,
  8763. const struct ggml_tensor * src1,
  8764. struct ggml_tensor * dst,
  8765. const ggml_binary_op_f32_t fun) {
  8766. assert(params->ith == 0);
  8767. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8768. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8769. return;
  8770. }
  8771. const int n = ggml_nrows(src0);
  8772. const int nc = src0->ne[0];
  8773. assert( dst->nb[0] == sizeof(float));
  8774. assert(src0->nb[0] == sizeof(float));
  8775. assert(src1->nb[0] == sizeof(float));
  8776. for (int i = 0; i < n; i++) {
  8777. fun(nc,
  8778. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8779. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8780. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8781. }
  8782. }
  8783. static void ggml_compute_forward_map_binary(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0,
  8786. const struct ggml_tensor * src1,
  8787. struct ggml_tensor * dst,
  8788. const ggml_binary_op_f32_t fun) {
  8789. switch (src0->type) {
  8790. case GGML_TYPE_F32:
  8791. {
  8792. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8793. } break;
  8794. default:
  8795. {
  8796. GGML_ASSERT(false);
  8797. } break;
  8798. }
  8799. }
  8800. /////////////////////////////////
  8801. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8802. GGML_ASSERT(params);
  8803. switch (tensor->op) {
  8804. case GGML_OP_DUP:
  8805. {
  8806. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8807. } break;
  8808. case GGML_OP_ADD:
  8809. {
  8810. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8811. } break;
  8812. case GGML_OP_SUB:
  8813. {
  8814. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8815. } break;
  8816. case GGML_OP_MUL:
  8817. {
  8818. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8819. } break;
  8820. case GGML_OP_DIV:
  8821. {
  8822. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8823. } break;
  8824. case GGML_OP_SQR:
  8825. {
  8826. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8827. } break;
  8828. case GGML_OP_SQRT:
  8829. {
  8830. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8831. } break;
  8832. case GGML_OP_SUM:
  8833. {
  8834. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8835. } break;
  8836. case GGML_OP_MEAN:
  8837. {
  8838. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8839. } break;
  8840. case GGML_OP_REPEAT:
  8841. {
  8842. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8843. } break;
  8844. case GGML_OP_ABS:
  8845. {
  8846. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8847. } break;
  8848. case GGML_OP_SGN:
  8849. {
  8850. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8851. } break;
  8852. case GGML_OP_NEG:
  8853. {
  8854. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8855. } break;
  8856. case GGML_OP_STEP:
  8857. {
  8858. ggml_compute_forward_step(params, tensor->src0, tensor);
  8859. } break;
  8860. case GGML_OP_RELU:
  8861. {
  8862. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8863. } break;
  8864. case GGML_OP_GELU:
  8865. {
  8866. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8867. } break;
  8868. case GGML_OP_SILU:
  8869. {
  8870. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8871. } break;
  8872. case GGML_OP_NORM:
  8873. {
  8874. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8875. } break;
  8876. case GGML_OP_RMS_NORM:
  8877. {
  8878. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8879. } break;
  8880. case GGML_OP_MUL_MAT:
  8881. {
  8882. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8883. } break;
  8884. case GGML_OP_SCALE:
  8885. {
  8886. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8887. } break;
  8888. case GGML_OP_CPY:
  8889. {
  8890. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8891. } break;
  8892. case GGML_OP_CONT:
  8893. {
  8894. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8895. } break;
  8896. case GGML_OP_RESHAPE:
  8897. {
  8898. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8899. } break;
  8900. case GGML_OP_VIEW:
  8901. {
  8902. ggml_compute_forward_view(params, tensor->src0);
  8903. } break;
  8904. case GGML_OP_PERMUTE:
  8905. {
  8906. ggml_compute_forward_permute(params, tensor->src0);
  8907. } break;
  8908. case GGML_OP_TRANSPOSE:
  8909. {
  8910. ggml_compute_forward_transpose(params, tensor->src0);
  8911. } break;
  8912. case GGML_OP_GET_ROWS:
  8913. {
  8914. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8915. } break;
  8916. case GGML_OP_DIAG_MASK_INF:
  8917. {
  8918. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8919. } break;
  8920. case GGML_OP_SOFT_MAX:
  8921. {
  8922. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8923. } break;
  8924. case GGML_OP_ROPE:
  8925. {
  8926. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8927. } break;
  8928. case GGML_OP_ALIBI:
  8929. {
  8930. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8931. } break;
  8932. case GGML_OP_CONV_1D_1S:
  8933. {
  8934. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8935. } break;
  8936. case GGML_OP_CONV_1D_2S:
  8937. {
  8938. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8939. } break;
  8940. case GGML_OP_FLASH_ATTN:
  8941. {
  8942. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8943. GGML_ASSERT(t == 0 || t == 1);
  8944. bool masked = t != 0;
  8945. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8946. } break;
  8947. case GGML_OP_FLASH_FF:
  8948. {
  8949. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8950. } break;
  8951. case GGML_OP_MAP_UNARY:
  8952. {
  8953. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8954. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8955. }
  8956. break;
  8957. case GGML_OP_MAP_BINARY:
  8958. {
  8959. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8960. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8961. }
  8962. break;
  8963. case GGML_OP_NONE:
  8964. {
  8965. // nop
  8966. } break;
  8967. case GGML_OP_COUNT:
  8968. {
  8969. GGML_ASSERT(false);
  8970. } break;
  8971. }
  8972. }
  8973. ////////////////////////////////////////////////////////////////////////////////
  8974. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8975. struct ggml_tensor * src0 = tensor->src0;
  8976. struct ggml_tensor * src1 = tensor->src1;
  8977. switch (tensor->op) {
  8978. case GGML_OP_DUP:
  8979. {
  8980. if (src0->grad) {
  8981. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8982. }
  8983. } break;
  8984. case GGML_OP_ADD:
  8985. {
  8986. if (src0->grad) {
  8987. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8988. }
  8989. if (src1->grad) {
  8990. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8991. }
  8992. } break;
  8993. case GGML_OP_SUB:
  8994. {
  8995. if (src0->grad) {
  8996. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8997. }
  8998. if (src1->grad) {
  8999. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  9000. }
  9001. } break;
  9002. case GGML_OP_MUL:
  9003. {
  9004. if (src0->grad) {
  9005. src0->grad =
  9006. ggml_add_impl(ctx,
  9007. src0->grad,
  9008. ggml_mul(ctx, src1, tensor->grad),
  9009. inplace);
  9010. }
  9011. if (src1->grad) {
  9012. src1->grad =
  9013. ggml_add_impl(ctx,
  9014. src1->grad,
  9015. ggml_mul(ctx, src0, tensor->grad),
  9016. inplace);
  9017. }
  9018. } break;
  9019. case GGML_OP_DIV:
  9020. {
  9021. if (src0->grad) {
  9022. src0->grad =
  9023. ggml_add_impl(ctx,
  9024. src0->grad,
  9025. ggml_div(ctx, tensor->grad, src1),
  9026. inplace);
  9027. }
  9028. if (src1->grad) {
  9029. src1->grad =
  9030. ggml_sub_impl(ctx,
  9031. src1->grad,
  9032. ggml_mul(ctx,
  9033. tensor->grad,
  9034. ggml_div(ctx, tensor, src1)),
  9035. inplace);
  9036. }
  9037. } break;
  9038. case GGML_OP_SQR:
  9039. {
  9040. if (src0->grad) {
  9041. src0->grad =
  9042. ggml_add_impl(ctx,
  9043. src0->grad,
  9044. ggml_mul(ctx,
  9045. ggml_mul(ctx, src0, tensor->grad),
  9046. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  9047. inplace);
  9048. }
  9049. } break;
  9050. case GGML_OP_SQRT:
  9051. {
  9052. if (src0->grad) {
  9053. src0->grad =
  9054. ggml_add_impl(ctx,
  9055. src0->grad,
  9056. ggml_div(ctx,
  9057. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9058. tensor),
  9059. inplace);
  9060. }
  9061. } break;
  9062. case GGML_OP_SUM:
  9063. {
  9064. if (src0->grad) {
  9065. src0->grad =
  9066. ggml_add_impl(ctx,
  9067. src0->grad,
  9068. ggml_repeat(ctx, tensor->grad, src0->grad),
  9069. inplace);
  9070. }
  9071. } break;
  9072. case GGML_OP_MEAN:
  9073. {
  9074. GGML_ASSERT(false); // TODO: implement
  9075. } break;
  9076. case GGML_OP_REPEAT:
  9077. {
  9078. if (src0->grad) {
  9079. src0->grad =
  9080. ggml_add_impl(ctx,
  9081. src0->grad,
  9082. ggml_sum(ctx, tensor->grad),
  9083. inplace);
  9084. }
  9085. } break;
  9086. case GGML_OP_ABS:
  9087. {
  9088. if (src0->grad) {
  9089. src0->grad =
  9090. ggml_add_impl(ctx,
  9091. src0->grad,
  9092. ggml_mul(ctx,
  9093. ggml_sgn(ctx, src0),
  9094. tensor->grad),
  9095. inplace);
  9096. }
  9097. } break;
  9098. case GGML_OP_SGN:
  9099. {
  9100. if (src0->grad) {
  9101. // noop
  9102. }
  9103. } break;
  9104. case GGML_OP_NEG:
  9105. {
  9106. if (src0->grad) {
  9107. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9108. }
  9109. } break;
  9110. case GGML_OP_STEP:
  9111. {
  9112. if (src0->grad) {
  9113. // noop
  9114. }
  9115. } break;
  9116. case GGML_OP_RELU:
  9117. {
  9118. if (src0->grad) {
  9119. src0->grad = ggml_sub_impl(ctx,
  9120. src0->grad,
  9121. ggml_mul(ctx,
  9122. ggml_step(ctx, src0),
  9123. tensor->grad),
  9124. inplace);
  9125. }
  9126. } break;
  9127. case GGML_OP_GELU:
  9128. {
  9129. GGML_ASSERT(false); // TODO: not implemented
  9130. } break;
  9131. case GGML_OP_ALIBI:
  9132. {
  9133. GGML_ASSERT(false); // TODO: not implemented
  9134. } break;
  9135. case GGML_OP_SILU:
  9136. {
  9137. GGML_ASSERT(false); // TODO: not implemented
  9138. } break;
  9139. case GGML_OP_NORM:
  9140. {
  9141. GGML_ASSERT(false); // TODO: not implemented
  9142. } break;
  9143. case GGML_OP_RMS_NORM:
  9144. {
  9145. GGML_ASSERT(false); // TODO: not implemented
  9146. } break;
  9147. case GGML_OP_MUL_MAT:
  9148. {
  9149. if (src0->grad) {
  9150. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9151. GGML_ASSERT(false);
  9152. }
  9153. if (src1->grad) {
  9154. src1->grad =
  9155. ggml_add_impl(ctx,
  9156. src1->grad,
  9157. ggml_mul_mat(ctx,
  9158. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9159. tensor->grad),
  9160. inplace);
  9161. }
  9162. } break;
  9163. case GGML_OP_SCALE:
  9164. {
  9165. GGML_ASSERT(false); // TODO: not implemented
  9166. } break;
  9167. case GGML_OP_CPY:
  9168. {
  9169. GGML_ASSERT(false); // TODO: not implemented
  9170. } break;
  9171. case GGML_OP_CONT:
  9172. {
  9173. GGML_ASSERT(false); // TODO: not implemented
  9174. } break;
  9175. case GGML_OP_RESHAPE:
  9176. {
  9177. GGML_ASSERT(false); // TODO: not implemented
  9178. } break;
  9179. case GGML_OP_VIEW:
  9180. {
  9181. GGML_ASSERT(false); // not supported
  9182. } break;
  9183. case GGML_OP_PERMUTE:
  9184. {
  9185. GGML_ASSERT(false); // TODO: not implemented
  9186. } break;
  9187. case GGML_OP_TRANSPOSE:
  9188. {
  9189. GGML_ASSERT(false); // TODO: not implemented
  9190. } break;
  9191. case GGML_OP_GET_ROWS:
  9192. {
  9193. GGML_ASSERT(false); // TODO: not implemented
  9194. } break;
  9195. case GGML_OP_DIAG_MASK_INF:
  9196. {
  9197. GGML_ASSERT(false); // TODO: not implemented
  9198. } break;
  9199. case GGML_OP_SOFT_MAX:
  9200. {
  9201. GGML_ASSERT(false); // TODO: not implemented
  9202. } break;
  9203. case GGML_OP_ROPE:
  9204. {
  9205. GGML_ASSERT(false); // TODO: not implemented
  9206. } break;
  9207. case GGML_OP_CONV_1D_1S:
  9208. {
  9209. GGML_ASSERT(false); // TODO: not implemented
  9210. } break;
  9211. case GGML_OP_CONV_1D_2S:
  9212. {
  9213. GGML_ASSERT(false); // TODO: not implemented
  9214. } break;
  9215. case GGML_OP_FLASH_ATTN:
  9216. {
  9217. GGML_ASSERT(false); // not supported
  9218. } break;
  9219. case GGML_OP_FLASH_FF:
  9220. {
  9221. GGML_ASSERT(false); // not supported
  9222. } break;
  9223. case GGML_OP_MAP_UNARY:
  9224. case GGML_OP_MAP_BINARY:
  9225. {
  9226. GGML_ASSERT(false); // not supported
  9227. } break;
  9228. case GGML_OP_NONE:
  9229. {
  9230. // nop
  9231. } break;
  9232. case GGML_OP_COUNT:
  9233. {
  9234. GGML_ASSERT(false);
  9235. } break;
  9236. }
  9237. }
  9238. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9239. if (node->grad == NULL) {
  9240. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9241. // it can also happen during forward pass, if the user performs computations with constants
  9242. if (node->op != GGML_OP_NONE) {
  9243. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9244. }
  9245. }
  9246. // check if already visited
  9247. for (int i = 0; i < cgraph->n_nodes; i++) {
  9248. if (cgraph->nodes[i] == node) {
  9249. return;
  9250. }
  9251. }
  9252. for (int i = 0; i < cgraph->n_leafs; i++) {
  9253. if (cgraph->leafs[i] == node) {
  9254. return;
  9255. }
  9256. }
  9257. if (node->src0) {
  9258. ggml_visit_parents(cgraph, node->src0);
  9259. }
  9260. if (node->src1) {
  9261. ggml_visit_parents(cgraph, node->src1);
  9262. }
  9263. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9264. if (node->opt[i]) {
  9265. ggml_visit_parents(cgraph, node->opt[i]);
  9266. }
  9267. }
  9268. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9269. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9270. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9271. cgraph->leafs[cgraph->n_leafs] = node;
  9272. cgraph->n_leafs++;
  9273. } else {
  9274. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9275. cgraph->nodes[cgraph->n_nodes] = node;
  9276. cgraph->grads[cgraph->n_nodes] = node->grad;
  9277. cgraph->n_nodes++;
  9278. }
  9279. }
  9280. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9281. if (!expand) {
  9282. cgraph->n_nodes = 0;
  9283. cgraph->n_leafs = 0;
  9284. }
  9285. const int n0 = cgraph->n_nodes;
  9286. UNUSED(n0);
  9287. ggml_visit_parents(cgraph, tensor);
  9288. const int n_new = cgraph->n_nodes - n0;
  9289. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9290. if (n_new > 0) {
  9291. // the last added node should always be starting point
  9292. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9293. }
  9294. }
  9295. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9296. ggml_build_forward_impl(cgraph, tensor, true);
  9297. }
  9298. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9299. struct ggml_cgraph result = {
  9300. /*.n_nodes =*/ 0,
  9301. /*.n_leafs =*/ 0,
  9302. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9303. /*.work_size =*/ 0,
  9304. /*.work =*/ NULL,
  9305. /*.nodes =*/ { NULL },
  9306. /*.grads =*/ { NULL },
  9307. /*.leafs =*/ { NULL },
  9308. /*.perf_runs =*/ 0,
  9309. /*.perf_cycles =*/ 0,
  9310. /*.perf_time_us =*/ 0,
  9311. };
  9312. ggml_build_forward_impl(&result, tensor, false);
  9313. return result;
  9314. }
  9315. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9316. struct ggml_cgraph result = *gf;
  9317. GGML_ASSERT(gf->n_nodes > 0);
  9318. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9319. if (keep) {
  9320. for (int i = 0; i < gf->n_nodes; i++) {
  9321. struct ggml_tensor * node = gf->nodes[i];
  9322. if (node->grad) {
  9323. node->grad = ggml_dup_tensor(ctx, node);
  9324. gf->grads[i] = node->grad;
  9325. }
  9326. }
  9327. }
  9328. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9329. struct ggml_tensor * node = gf->nodes[i];
  9330. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9331. if (node->grad) {
  9332. ggml_compute_backward(ctx, node, keep);
  9333. }
  9334. }
  9335. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9336. struct ggml_tensor * node = gf->nodes[i];
  9337. if (node->is_param) {
  9338. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9339. ggml_build_forward_impl(&result, node->grad, true);
  9340. }
  9341. }
  9342. return result;
  9343. }
  9344. //
  9345. // thread data
  9346. //
  9347. // synchronization is done via busy loops
  9348. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9349. //
  9350. #ifdef __APPLE__
  9351. //#include <os/lock.h>
  9352. //
  9353. //typedef os_unfair_lock ggml_lock_t;
  9354. //
  9355. //#define ggml_lock_init(x) UNUSED(x)
  9356. //#define ggml_lock_destroy(x) UNUSED(x)
  9357. //#define ggml_lock_lock os_unfair_lock_lock
  9358. //#define ggml_lock_unlock os_unfair_lock_unlock
  9359. //
  9360. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9361. typedef int ggml_lock_t;
  9362. #define ggml_lock_init(x) UNUSED(x)
  9363. #define ggml_lock_destroy(x) UNUSED(x)
  9364. #define ggml_lock_lock(x) UNUSED(x)
  9365. #define ggml_lock_unlock(x) UNUSED(x)
  9366. #define GGML_LOCK_INITIALIZER 0
  9367. typedef pthread_t ggml_thread_t;
  9368. #define ggml_thread_create pthread_create
  9369. #define ggml_thread_join pthread_join
  9370. #else
  9371. //typedef pthread_spinlock_t ggml_lock_t;
  9372. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9373. //#define ggml_lock_destroy pthread_spin_destroy
  9374. //#define ggml_lock_lock pthread_spin_lock
  9375. //#define ggml_lock_unlock pthread_spin_unlock
  9376. typedef int ggml_lock_t;
  9377. #define ggml_lock_init(x) UNUSED(x)
  9378. #define ggml_lock_destroy(x) UNUSED(x)
  9379. #define ggml_lock_lock(x) UNUSED(x)
  9380. #define ggml_lock_unlock(x) UNUSED(x)
  9381. #define GGML_LOCK_INITIALIZER 0
  9382. typedef pthread_t ggml_thread_t;
  9383. #define ggml_thread_create pthread_create
  9384. #define ggml_thread_join pthread_join
  9385. #endif
  9386. struct ggml_compute_state_shared {
  9387. ggml_lock_t spin;
  9388. int n_threads;
  9389. // synchronization primitives
  9390. atomic_int n_ready;
  9391. atomic_bool has_work;
  9392. atomic_bool stop; // stop all threads
  9393. };
  9394. struct ggml_compute_state {
  9395. ggml_thread_t thrd;
  9396. struct ggml_compute_params params;
  9397. struct ggml_tensor * node;
  9398. struct ggml_compute_state_shared * shared;
  9399. };
  9400. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9401. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9402. const int n_threads = state->shared->n_threads;
  9403. while (true) {
  9404. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9405. atomic_store(&state->shared->has_work, false);
  9406. } else {
  9407. while (atomic_load(&state->shared->has_work)) {
  9408. if (atomic_load(&state->shared->stop)) {
  9409. return 0;
  9410. }
  9411. ggml_lock_lock (&state->shared->spin);
  9412. ggml_lock_unlock(&state->shared->spin);
  9413. }
  9414. }
  9415. atomic_fetch_sub(&state->shared->n_ready, 1);
  9416. // wait for work
  9417. while (!atomic_load(&state->shared->has_work)) {
  9418. if (atomic_load(&state->shared->stop)) {
  9419. return 0;
  9420. }
  9421. ggml_lock_lock (&state->shared->spin);
  9422. ggml_lock_unlock(&state->shared->spin);
  9423. }
  9424. // check if we should stop
  9425. if (atomic_load(&state->shared->stop)) {
  9426. break;
  9427. }
  9428. if (state->node) {
  9429. if (state->params.ith < state->params.nth) {
  9430. ggml_compute_forward(&state->params, state->node);
  9431. }
  9432. state->node = NULL;
  9433. } else {
  9434. break;
  9435. }
  9436. }
  9437. return 0;
  9438. }
  9439. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9440. const int n_threads = cgraph->n_threads;
  9441. struct ggml_compute_state_shared state_shared = {
  9442. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9443. /*.n_threads =*/ n_threads,
  9444. /*.n_ready =*/ 0,
  9445. /*.has_work =*/ false,
  9446. /*.stop =*/ false,
  9447. };
  9448. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9449. // create thread pool
  9450. if (n_threads > 1) {
  9451. ggml_lock_init(&state_shared.spin);
  9452. atomic_store(&state_shared.has_work, true);
  9453. for (int j = 0; j < n_threads - 1; j++) {
  9454. workers[j] = (struct ggml_compute_state) {
  9455. .thrd = 0,
  9456. .params = {
  9457. .type = GGML_TASK_COMPUTE,
  9458. .ith = j + 1,
  9459. .nth = n_threads,
  9460. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9461. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9462. },
  9463. .node = NULL,
  9464. .shared = &state_shared,
  9465. };
  9466. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9467. GGML_ASSERT(rc == 0);
  9468. UNUSED(rc);
  9469. }
  9470. }
  9471. // initialize tasks + work buffer
  9472. {
  9473. size_t work_size = 0;
  9474. // thread scheduling for the different operations
  9475. for (int i = 0; i < cgraph->n_nodes; i++) {
  9476. struct ggml_tensor * node = cgraph->nodes[i];
  9477. switch (node->op) {
  9478. case GGML_OP_CPY:
  9479. case GGML_OP_DUP:
  9480. {
  9481. node->n_tasks = n_threads;
  9482. size_t cur = 0;
  9483. if (ggml_is_quantized(node->type)) {
  9484. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9485. }
  9486. work_size = MAX(work_size, cur);
  9487. } break;
  9488. case GGML_OP_ADD:
  9489. {
  9490. node->n_tasks = n_threads;
  9491. size_t cur = 0;
  9492. if (ggml_is_quantized(node->src0->type)) {
  9493. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9494. }
  9495. work_size = MAX(work_size, cur);
  9496. } break;
  9497. case GGML_OP_SUB:
  9498. case GGML_OP_MUL:
  9499. case GGML_OP_DIV:
  9500. case GGML_OP_SQR:
  9501. case GGML_OP_SQRT:
  9502. case GGML_OP_SUM:
  9503. case GGML_OP_MEAN:
  9504. case GGML_OP_REPEAT:
  9505. case GGML_OP_ABS:
  9506. case GGML_OP_SGN:
  9507. case GGML_OP_NEG:
  9508. case GGML_OP_STEP:
  9509. case GGML_OP_RELU:
  9510. {
  9511. node->n_tasks = 1;
  9512. } break;
  9513. case GGML_OP_GELU:
  9514. {
  9515. node->n_tasks = n_threads;
  9516. } break;
  9517. case GGML_OP_SILU:
  9518. {
  9519. node->n_tasks = n_threads;
  9520. } break;
  9521. case GGML_OP_NORM:
  9522. case GGML_OP_RMS_NORM:
  9523. {
  9524. node->n_tasks = n_threads;
  9525. } break;
  9526. case GGML_OP_MUL_MAT:
  9527. {
  9528. node->n_tasks = n_threads;
  9529. // TODO: use different scheduling for different matrix sizes
  9530. //const int nr0 = ggml_nrows(node->src0);
  9531. //const int nr1 = ggml_nrows(node->src1);
  9532. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9533. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9534. size_t cur = 0;
  9535. #if defined(GGML_USE_CUBLAS)
  9536. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  9537. node->n_tasks = 1; // TODO: this actually is doing nothing
  9538. // the threads are still spinning
  9539. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  9540. }
  9541. else
  9542. #endif
  9543. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9544. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9545. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9546. node->n_tasks = 1; // TODO: this actually is doing nothing
  9547. // the threads are still spinning
  9548. // here we need memory just for single 2D matrix from src0
  9549. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9550. } else {
  9551. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9552. }
  9553. #else
  9554. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9555. #endif
  9556. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9557. cur = 0;
  9558. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9559. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9560. node->n_tasks = 1;
  9561. }
  9562. #endif
  9563. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9564. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9565. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9566. node->n_tasks = 1;
  9567. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9568. } else
  9569. #endif
  9570. {
  9571. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9572. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9573. }
  9574. } else {
  9575. GGML_ASSERT(false);
  9576. }
  9577. work_size = MAX(work_size, cur);
  9578. } break;
  9579. case GGML_OP_SCALE:
  9580. {
  9581. node->n_tasks = n_threads;
  9582. } break;
  9583. case GGML_OP_CONT:
  9584. case GGML_OP_RESHAPE:
  9585. case GGML_OP_VIEW:
  9586. case GGML_OP_PERMUTE:
  9587. case GGML_OP_TRANSPOSE:
  9588. case GGML_OP_GET_ROWS:
  9589. case GGML_OP_DIAG_MASK_INF:
  9590. {
  9591. node->n_tasks = 1;
  9592. } break;
  9593. case GGML_OP_SOFT_MAX:
  9594. {
  9595. node->n_tasks = n_threads;
  9596. } break;
  9597. case GGML_OP_ROPE:
  9598. {
  9599. node->n_tasks = n_threads;
  9600. } break;
  9601. case GGML_OP_ALIBI:
  9602. {
  9603. node->n_tasks = 1; //TODO
  9604. } break;
  9605. case GGML_OP_CONV_1D_1S:
  9606. case GGML_OP_CONV_1D_2S:
  9607. {
  9608. node->n_tasks = n_threads;
  9609. GGML_ASSERT(node->src0->ne[3] == 1);
  9610. GGML_ASSERT(node->src1->ne[2] == 1);
  9611. GGML_ASSERT(node->src1->ne[3] == 1);
  9612. size_t cur = 0;
  9613. const int nk = node->src0->ne[0];
  9614. if (node->src0->type == GGML_TYPE_F16 &&
  9615. node->src1->type == GGML_TYPE_F32) {
  9616. cur = sizeof(ggml_fp16_t)*(
  9617. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9618. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9619. );
  9620. } else if (node->src0->type == GGML_TYPE_F32 &&
  9621. node->src1->type == GGML_TYPE_F32) {
  9622. cur = sizeof(float)*(
  9623. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9624. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9625. );
  9626. } else {
  9627. GGML_ASSERT(false);
  9628. }
  9629. work_size = MAX(work_size, cur);
  9630. } break;
  9631. case GGML_OP_FLASH_ATTN:
  9632. {
  9633. node->n_tasks = n_threads;
  9634. size_t cur = 0;
  9635. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9636. if (node->src1->type == GGML_TYPE_F32) {
  9637. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9638. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9639. }
  9640. if (node->src1->type == GGML_TYPE_F16) {
  9641. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9642. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9643. }
  9644. work_size = MAX(work_size, cur);
  9645. } break;
  9646. case GGML_OP_FLASH_FF:
  9647. {
  9648. node->n_tasks = n_threads;
  9649. size_t cur = 0;
  9650. if (node->src1->type == GGML_TYPE_F32) {
  9651. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9652. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9653. }
  9654. if (node->src1->type == GGML_TYPE_F16) {
  9655. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9656. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9657. }
  9658. work_size = MAX(work_size, cur);
  9659. } break;
  9660. case GGML_OP_MAP_UNARY:
  9661. case GGML_OP_MAP_BINARY:
  9662. {
  9663. node->n_tasks = 1;
  9664. } break;
  9665. case GGML_OP_NONE:
  9666. {
  9667. node->n_tasks = 1;
  9668. } break;
  9669. case GGML_OP_COUNT:
  9670. {
  9671. GGML_ASSERT(false);
  9672. } break;
  9673. }
  9674. }
  9675. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9676. GGML_ASSERT(false); // TODO: better handling
  9677. }
  9678. if (work_size > 0 && cgraph->work == NULL) {
  9679. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9680. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9681. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9682. }
  9683. }
  9684. const int64_t perf_start_cycles = ggml_perf_cycles();
  9685. const int64_t perf_start_time_us = ggml_perf_time_us();
  9686. for (int i = 0; i < cgraph->n_nodes; i++) {
  9687. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9688. struct ggml_tensor * node = cgraph->nodes[i];
  9689. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9690. //if (node->grad == NULL && node->perf_runs > 0) {
  9691. // continue;
  9692. //}
  9693. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9694. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9695. // INIT
  9696. struct ggml_compute_params params = {
  9697. /*.type =*/ GGML_TASK_INIT,
  9698. /*.ith =*/ 0,
  9699. /*.nth =*/ node->n_tasks,
  9700. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9701. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9702. };
  9703. ggml_compute_forward(&params, node);
  9704. // COMPUTE
  9705. if (node->n_tasks > 1) {
  9706. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9707. atomic_store(&state_shared.has_work, false);
  9708. }
  9709. while (atomic_load(&state_shared.has_work)) {
  9710. ggml_lock_lock (&state_shared.spin);
  9711. ggml_lock_unlock(&state_shared.spin);
  9712. }
  9713. // launch thread pool
  9714. for (int j = 0; j < n_threads - 1; j++) {
  9715. workers[j].params = (struct ggml_compute_params) {
  9716. .type = GGML_TASK_COMPUTE,
  9717. .ith = j + 1,
  9718. .nth = node->n_tasks,
  9719. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9720. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9721. };
  9722. workers[j].node = node;
  9723. }
  9724. atomic_fetch_sub(&state_shared.n_ready, 1);
  9725. while (atomic_load(&state_shared.n_ready) > 0) {
  9726. ggml_lock_lock (&state_shared.spin);
  9727. ggml_lock_unlock(&state_shared.spin);
  9728. }
  9729. atomic_store(&state_shared.has_work, true);
  9730. }
  9731. params.type = GGML_TASK_COMPUTE;
  9732. ggml_compute_forward(&params, node);
  9733. // wait for thread pool
  9734. if (node->n_tasks > 1) {
  9735. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9736. atomic_store(&state_shared.has_work, false);
  9737. }
  9738. while (atomic_load(&state_shared.has_work)) {
  9739. ggml_lock_lock (&state_shared.spin);
  9740. ggml_lock_unlock(&state_shared.spin);
  9741. }
  9742. atomic_fetch_sub(&state_shared.n_ready, 1);
  9743. while (atomic_load(&state_shared.n_ready) != 0) {
  9744. ggml_lock_lock (&state_shared.spin);
  9745. ggml_lock_unlock(&state_shared.spin);
  9746. }
  9747. }
  9748. // FINALIZE
  9749. if (node->n_tasks > 1) {
  9750. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9751. atomic_store(&state_shared.has_work, false);
  9752. }
  9753. while (atomic_load(&state_shared.has_work)) {
  9754. ggml_lock_lock (&state_shared.spin);
  9755. ggml_lock_unlock(&state_shared.spin);
  9756. }
  9757. // launch thread pool
  9758. for (int j = 0; j < n_threads - 1; j++) {
  9759. workers[j].params = (struct ggml_compute_params) {
  9760. .type = GGML_TASK_FINALIZE,
  9761. .ith = j + 1,
  9762. .nth = node->n_tasks,
  9763. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9764. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9765. };
  9766. workers[j].node = node;
  9767. }
  9768. atomic_fetch_sub(&state_shared.n_ready, 1);
  9769. while (atomic_load(&state_shared.n_ready) > 0) {
  9770. ggml_lock_lock (&state_shared.spin);
  9771. ggml_lock_unlock(&state_shared.spin);
  9772. }
  9773. atomic_store(&state_shared.has_work, true);
  9774. }
  9775. params.type = GGML_TASK_FINALIZE;
  9776. ggml_compute_forward(&params, node);
  9777. // wait for thread pool
  9778. if (node->n_tasks > 1) {
  9779. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9780. atomic_store(&state_shared.has_work, false);
  9781. }
  9782. while (atomic_load(&state_shared.has_work)) {
  9783. ggml_lock_lock (&state_shared.spin);
  9784. ggml_lock_unlock(&state_shared.spin);
  9785. }
  9786. atomic_fetch_sub(&state_shared.n_ready, 1);
  9787. while (atomic_load(&state_shared.n_ready) != 0) {
  9788. ggml_lock_lock (&state_shared.spin);
  9789. ggml_lock_unlock(&state_shared.spin);
  9790. }
  9791. }
  9792. // performance stats (node)
  9793. {
  9794. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9795. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9796. node->perf_runs++;
  9797. node->perf_cycles += perf_cycles_cur;
  9798. node->perf_time_us += perf_time_us_cur;
  9799. }
  9800. }
  9801. // join thread pool
  9802. if (n_threads > 1) {
  9803. atomic_store(&state_shared.stop, true);
  9804. atomic_store(&state_shared.has_work, true);
  9805. for (int j = 0; j < n_threads - 1; j++) {
  9806. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9807. GGML_ASSERT(rc == 0);
  9808. UNUSED(rc);
  9809. }
  9810. ggml_lock_destroy(&state_shared.spin);
  9811. }
  9812. // performance stats (graph)
  9813. {
  9814. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9815. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9816. cgraph->perf_runs++;
  9817. cgraph->perf_cycles += perf_cycles_cur;
  9818. cgraph->perf_time_us += perf_time_us_cur;
  9819. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9820. __func__, cgraph->perf_runs,
  9821. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9822. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9823. (double) perf_time_us_cur / 1000.0,
  9824. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9825. }
  9826. }
  9827. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9828. for (int i = 0; i < cgraph->n_nodes; i++) {
  9829. struct ggml_tensor * grad = cgraph->grads[i];
  9830. if (grad) {
  9831. ggml_set_zero(grad);
  9832. }
  9833. }
  9834. }
  9835. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9836. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9837. GGML_PRINT("=== GRAPH ===\n");
  9838. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9839. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9840. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9841. for (int i = 0; i < cgraph->n_nodes; i++) {
  9842. struct ggml_tensor * node = cgraph->nodes[i];
  9843. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9844. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9845. i,
  9846. node->ne[0], node->ne[1], node->ne[2],
  9847. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9848. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9849. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9850. (double) node->perf_time_us / 1000.0,
  9851. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9852. }
  9853. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9854. for (int i = 0; i < cgraph->n_leafs; i++) {
  9855. struct ggml_tensor * node = cgraph->leafs[i];
  9856. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9857. i,
  9858. node->ne[0], node->ne[1],
  9859. GGML_OP_LABEL[node->op]);
  9860. }
  9861. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9862. if (perf_total_per_op_us[i] == 0) {
  9863. continue;
  9864. }
  9865. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9866. }
  9867. GGML_PRINT("========================================\n");
  9868. }
  9869. // check if node is part of the graph
  9870. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9871. if (cgraph == NULL) {
  9872. return true;
  9873. }
  9874. for (int i = 0; i < cgraph->n_nodes; i++) {
  9875. if (cgraph->nodes[i] == node) {
  9876. return true;
  9877. }
  9878. }
  9879. return false;
  9880. }
  9881. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9882. for (int i = 0; i < cgraph->n_nodes; i++) {
  9883. struct ggml_tensor * parent = cgraph->nodes[i];
  9884. if (parent->grad == node) {
  9885. return parent;
  9886. }
  9887. }
  9888. return NULL;
  9889. }
  9890. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9891. char color[16];
  9892. FILE * fp = fopen(filename, "w");
  9893. GGML_ASSERT(fp);
  9894. fprintf(fp, "digraph G {\n");
  9895. fprintf(fp, " newrank = true;\n");
  9896. fprintf(fp, " rankdir = LR;\n");
  9897. for (int i = 0; i < gb->n_nodes; i++) {
  9898. struct ggml_tensor * node = gb->nodes[i];
  9899. if (ggml_graph_get_parent(gb, node) != NULL) {
  9900. continue;
  9901. }
  9902. if (node->is_param) {
  9903. snprintf(color, sizeof(color), "yellow");
  9904. } else if (node->grad) {
  9905. if (ggml_graph_find(gf, node)) {
  9906. snprintf(color, sizeof(color), "green");
  9907. } else {
  9908. snprintf(color, sizeof(color), "lightblue");
  9909. }
  9910. } else {
  9911. snprintf(color, sizeof(color), "white");
  9912. }
  9913. fprintf(fp, " \"%p\" [ "
  9914. "style = filled; fillcolor = %s; shape = record; "
  9915. "label=\"",
  9916. (void *) node, color);
  9917. if (strlen(node->name) > 0) {
  9918. fprintf(fp, "%s |", node->name);
  9919. }
  9920. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9921. i, node->ne[0], node->ne[1],
  9922. GGML_OP_SYMBOL[node->op]);
  9923. if (node->grad) {
  9924. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9925. } else {
  9926. fprintf(fp, "\"; ]\n");
  9927. }
  9928. }
  9929. for (int i = 0; i < gb->n_leafs; i++) {
  9930. struct ggml_tensor * node = gb->leafs[i];
  9931. snprintf(color, sizeof(color), "pink");
  9932. fprintf(fp, " \"%p\" [ "
  9933. "style = filled; fillcolor = %s; shape = record; "
  9934. "label=\"<x>",
  9935. (void *) node, color);
  9936. if (strlen(node->name) > 0) {
  9937. fprintf(fp, "%s | ", node->name);
  9938. }
  9939. if (ggml_nelements(node) == 1) {
  9940. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  9941. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  9942. }
  9943. else {
  9944. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  9945. }
  9946. }
  9947. else {
  9948. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  9949. }
  9950. fprintf(fp, "\"; ]\n");
  9951. }
  9952. for (int i = 0; i < gb->n_nodes; i++) {
  9953. struct ggml_tensor * node = gb->nodes[i];
  9954. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9955. if (node->src0) {
  9956. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9957. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9958. parent0 ? (void *) parent0 : (void *) node->src0,
  9959. parent0 ? "g" : "x",
  9960. parent ? (void *) parent : (void *) node,
  9961. parent ? "g" : "x",
  9962. parent ? "empty" : "vee",
  9963. parent ? "dashed" : "solid");
  9964. }
  9965. if (node->src1) {
  9966. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9967. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9968. parent1 ? (void *) parent1 : (void *) node->src1,
  9969. parent1 ? "g" : "x",
  9970. parent ? (void *) parent : (void *) node,
  9971. parent ? "g" : "x",
  9972. parent ? "empty" : "vee",
  9973. parent ? "dashed" : "solid");
  9974. }
  9975. }
  9976. for (int i = 0; i < gb->n_leafs; i++) {
  9977. struct ggml_tensor * node = gb->leafs[i];
  9978. if (node->src0) {
  9979. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9980. (void *) node->src0, "x",
  9981. (void *) node, "x");
  9982. }
  9983. if (node->src1) {
  9984. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9985. (void *) node->src1, "x",
  9986. (void *) node, "x");
  9987. }
  9988. }
  9989. fprintf(fp, "}\n");
  9990. fclose(fp);
  9991. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9992. }
  9993. ////////////////////////////////////////////////////////////////////////////////
  9994. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9995. int i = 0;
  9996. for (int p = 0; p < np; ++p) {
  9997. const int64_t ne = ggml_nelements(ps[p]) ;
  9998. // TODO: add function to set tensor from array
  9999. for (int64_t j = 0; j < ne; ++j) {
  10000. ggml_set_f32_1d(ps[p], j, x[i++]);
  10001. }
  10002. }
  10003. }
  10004. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  10005. int i = 0;
  10006. for (int p = 0; p < np; ++p) {
  10007. const int64_t ne = ggml_nelements(ps[p]) ;
  10008. // TODO: add function to get all elements at once
  10009. for (int64_t j = 0; j < ne; ++j) {
  10010. x[i++] = ggml_get_f32_1d(ps[p], j);
  10011. }
  10012. }
  10013. }
  10014. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  10015. int i = 0;
  10016. for (int p = 0; p < np; ++p) {
  10017. const int64_t ne = ggml_nelements(ps[p]) ;
  10018. // TODO: add function to get all elements at once
  10019. for (int64_t j = 0; j < ne; ++j) {
  10020. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  10021. }
  10022. }
  10023. }
  10024. //
  10025. // ADAM
  10026. //
  10027. // ref: https://arxiv.org/pdf/1412.6980.pdf
  10028. //
  10029. static enum ggml_opt_result ggml_opt_adam(
  10030. struct ggml_context * ctx,
  10031. struct ggml_opt_params params,
  10032. struct ggml_tensor * f,
  10033. struct ggml_cgraph * gf,
  10034. struct ggml_cgraph * gb) {
  10035. GGML_ASSERT(ggml_is_scalar(f));
  10036. gf->n_threads = params.n_threads;
  10037. gb->n_threads = params.n_threads;
  10038. // these will store the parameters we want to optimize
  10039. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10040. int np = 0;
  10041. int nx = 0;
  10042. for (int i = 0; i < gf->n_nodes; ++i) {
  10043. if (gf->nodes[i]->is_param) {
  10044. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10045. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10046. ps[np++] = gf->nodes[i];
  10047. nx += ggml_nelements(gf->nodes[i]);
  10048. }
  10049. }
  10050. // constants
  10051. const float alpha = params.adam.alpha;
  10052. const float beta1 = params.adam.beta1;
  10053. const float beta2 = params.adam.beta2;
  10054. const float eps = params.adam.eps;
  10055. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  10056. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  10057. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  10058. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  10059. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  10060. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  10061. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10062. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10063. // initialize
  10064. ggml_vec_set_f32(nx, m, 0.0f);
  10065. ggml_vec_set_f32(nx, v, 0.0f);
  10066. // update view
  10067. ggml_opt_get_params(np, ps, x);
  10068. // compute the function value
  10069. ggml_graph_reset (gf);
  10070. ggml_set_f32 (f->grad, 1.0f);
  10071. ggml_graph_compute(ctx, gb);
  10072. float fx_prev = ggml_get_f32_1d(f, 0);
  10073. if (pf) {
  10074. pf[0] = fx_prev;
  10075. }
  10076. int n_no_improvement = 0;
  10077. float fx_best = fx_prev;
  10078. // run the optimizer
  10079. for (int t = 0; t < params.adam.n_iter; ++t) {
  10080. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10081. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10082. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10083. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10084. for (int i = 0; i < np; ++i) {
  10085. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10086. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10087. }
  10088. const int64_t t_start_wall = ggml_time_us();
  10089. const int64_t t_start_cpu = ggml_cycles();
  10090. UNUSED(t_start_wall);
  10091. UNUSED(t_start_cpu);
  10092. {
  10093. // update the gradient
  10094. ggml_opt_get_grad(np, ps, g1);
  10095. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10096. ggml_vec_scale_f32(nx, m, beta1);
  10097. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10098. // g2 = g1^2
  10099. ggml_vec_sqr_f32 (nx, g2, g1);
  10100. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10101. ggml_vec_scale_f32(nx, v, beta2);
  10102. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10103. // m^hat = m_t / (1 - beta1^t)
  10104. // v^hat = v_t / (1 - beta2^t)
  10105. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10106. ggml_vec_cpy_f32 (nx, mh, m);
  10107. ggml_vec_cpy_f32 (nx, vh, v);
  10108. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10109. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10110. ggml_vec_sqrt_f32 (nx, vh, vh);
  10111. ggml_vec_acc1_f32 (nx, vh, eps);
  10112. ggml_vec_div_f32 (nx, mh, mh, vh);
  10113. ggml_vec_sub_f32 (nx, x, x, mh);
  10114. // update the parameters
  10115. ggml_opt_set_params(np, ps, x);
  10116. }
  10117. ggml_graph_reset (gf);
  10118. ggml_set_f32 (f->grad, 1.0f);
  10119. ggml_graph_compute(ctx, gb);
  10120. const float fx = ggml_get_f32_1d(f, 0);
  10121. // check convergence
  10122. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10123. GGML_PRINT_DEBUG("converged\n");
  10124. return GGML_OPT_OK;
  10125. }
  10126. // delta-based convergence test
  10127. if (pf != NULL) {
  10128. // need at least params.past iterations to start checking for convergence
  10129. if (params.past <= t) {
  10130. const float rate = (pf[t%params.past] - fx)/fx;
  10131. if (fabsf(rate) < params.delta) {
  10132. return GGML_OPT_OK;
  10133. }
  10134. }
  10135. pf[t%params.past] = fx;
  10136. }
  10137. // check for improvement
  10138. if (params.max_no_improvement > 0) {
  10139. if (fx_best > fx) {
  10140. fx_best = fx;
  10141. n_no_improvement = 0;
  10142. } else {
  10143. ++n_no_improvement;
  10144. if (n_no_improvement >= params.max_no_improvement) {
  10145. return GGML_OPT_OK;
  10146. }
  10147. }
  10148. }
  10149. fx_prev = fx;
  10150. {
  10151. const int64_t t_end_cpu = ggml_cycles();
  10152. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10153. UNUSED(t_end_cpu);
  10154. const int64_t t_end_wall = ggml_time_us();
  10155. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10156. UNUSED(t_end_wall);
  10157. }
  10158. }
  10159. return GGML_OPT_DID_NOT_CONVERGE;
  10160. }
  10161. //
  10162. // L-BFGS
  10163. //
  10164. // the L-BFGS implementation below is based on the following implementation:
  10165. //
  10166. // https://github.com/chokkan/liblbfgs
  10167. //
  10168. struct ggml_lbfgs_iteration_data {
  10169. float alpha;
  10170. float ys;
  10171. float * s;
  10172. float * y;
  10173. };
  10174. static enum ggml_opt_result linesearch_backtracking(
  10175. struct ggml_context * ctx,
  10176. const struct ggml_opt_params * params,
  10177. int nx,
  10178. float * x,
  10179. float * fx,
  10180. float * g,
  10181. float * d,
  10182. float * step,
  10183. const float * xp,
  10184. struct ggml_tensor * f,
  10185. struct ggml_cgraph * gf,
  10186. struct ggml_cgraph * gb,
  10187. const int np,
  10188. struct ggml_tensor * ps[]) {
  10189. int count = 0;
  10190. float width = 0.0f;
  10191. float dg = 0.0f;
  10192. float finit = 0.0f;
  10193. float dginit = 0.0f;
  10194. float dgtest = 0.0f;
  10195. const float dec = 0.5f;
  10196. const float inc = 2.1f;
  10197. if (*step <= 0.f) {
  10198. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10199. }
  10200. // compute the initial gradient in the search direction
  10201. ggml_vec_dot_f32(nx, &dginit, g, d);
  10202. // make sure that d points to a descent direction
  10203. if (0 < dginit) {
  10204. return GGML_LINESEARCH_FAIL;
  10205. }
  10206. // initialize local variables
  10207. finit = *fx;
  10208. dgtest = params->lbfgs.ftol*dginit;
  10209. while (true) {
  10210. ggml_vec_cpy_f32(nx, x, xp);
  10211. ggml_vec_mad_f32(nx, x, d, *step);
  10212. // evaluate the function and gradient values
  10213. {
  10214. ggml_opt_set_params(np, ps, x);
  10215. ggml_graph_reset (gf);
  10216. ggml_set_f32 (f->grad, 1.0f);
  10217. ggml_graph_compute(ctx, gb);
  10218. ggml_opt_get_grad(np, ps, g);
  10219. *fx = ggml_get_f32_1d(f, 0);
  10220. }
  10221. ++count;
  10222. if (*fx > finit + (*step)*dgtest) {
  10223. width = dec;
  10224. } else {
  10225. // Armijo condition is satisfied
  10226. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10227. return count;
  10228. }
  10229. ggml_vec_dot_f32(nx, &dg, g, d);
  10230. // check the Wolfe condition
  10231. if (dg < params->lbfgs.wolfe * dginit) {
  10232. width = inc;
  10233. } else {
  10234. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10235. // regular Wolfe conditions
  10236. return count;
  10237. }
  10238. if(dg > -params->lbfgs.wolfe*dginit) {
  10239. width = dec;
  10240. } else {
  10241. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10242. return count;
  10243. }
  10244. return count;
  10245. }
  10246. }
  10247. if (*step < params->lbfgs.min_step) {
  10248. return GGML_LINESEARCH_MINIMUM_STEP;
  10249. }
  10250. if (*step > params->lbfgs.max_step) {
  10251. return GGML_LINESEARCH_MAXIMUM_STEP;
  10252. }
  10253. if (params->lbfgs.max_linesearch <= count) {
  10254. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10255. }
  10256. (*step) *= width;
  10257. }
  10258. return GGML_LINESEARCH_FAIL;
  10259. }
  10260. static enum ggml_opt_result ggml_opt_lbfgs(
  10261. struct ggml_context * ctx,
  10262. struct ggml_opt_params params,
  10263. struct ggml_tensor * f,
  10264. struct ggml_cgraph * gf,
  10265. struct ggml_cgraph * gb) {
  10266. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10267. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10268. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10269. return GGML_OPT_INVALID_WOLFE;
  10270. }
  10271. }
  10272. gf->n_threads = params.n_threads;
  10273. gb->n_threads = params.n_threads;
  10274. const int m = params.lbfgs.m;
  10275. // these will store the parameters we want to optimize
  10276. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10277. int np = 0;
  10278. int nx = 0;
  10279. for (int i = 0; i < gf->n_nodes; ++i) {
  10280. if (gf->nodes[i]->is_param) {
  10281. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10282. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10283. ps[np++] = gf->nodes[i];
  10284. nx += ggml_nelements(gf->nodes[i]);
  10285. }
  10286. }
  10287. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10288. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10289. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10290. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10291. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10292. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10293. float fx = 0.0f; // cost function value
  10294. float xnorm = 0.0f; // ||x||
  10295. float gnorm = 0.0f; // ||g||
  10296. float step = 0.0f;
  10297. // initialize x from the graph nodes
  10298. ggml_opt_get_params(np, ps, x);
  10299. // the L-BFGS memory
  10300. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10301. for (int i = 0; i < m; ++i) {
  10302. lm[i].alpha = 0.0f;
  10303. lm[i].ys = 0.0f;
  10304. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10305. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10306. }
  10307. // evaluate the function value and its gradient
  10308. {
  10309. ggml_opt_set_params(np, ps, x);
  10310. ggml_graph_reset (gf);
  10311. ggml_set_f32 (f->grad, 1.0f);
  10312. ggml_graph_compute(ctx, gb);
  10313. ggml_opt_get_grad(np, ps, g);
  10314. fx = ggml_get_f32_1d(f, 0);
  10315. }
  10316. if (pf) {
  10317. pf[0] = fx;
  10318. }
  10319. float fx_best = fx;
  10320. // search direction = -gradient
  10321. ggml_vec_neg_f32(nx, d, g);
  10322. // ||x||, ||g||
  10323. ggml_vec_norm_f32(nx, &xnorm, x);
  10324. ggml_vec_norm_f32(nx, &gnorm, g);
  10325. if (xnorm < 1.0f) {
  10326. xnorm = 1.0f;
  10327. }
  10328. // already optimized
  10329. if (gnorm/xnorm <= params.lbfgs.eps) {
  10330. return GGML_OPT_OK;
  10331. }
  10332. // initial step
  10333. ggml_vec_norm_inv_f32(nx, &step, d);
  10334. int j = 0;
  10335. int k = 1;
  10336. int ls = 0;
  10337. int end = 0;
  10338. int bound = 0;
  10339. int n_no_improvement = 0;
  10340. float ys = 0.0f;
  10341. float yy = 0.0f;
  10342. float beta = 0.0f;
  10343. while (true) {
  10344. // store the current position and gradient vectors
  10345. ggml_vec_cpy_f32(nx, xp, x);
  10346. ggml_vec_cpy_f32(nx, gp, g);
  10347. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10348. if (ls < 0) {
  10349. // linesearch failed - go back to the previous point and return
  10350. ggml_vec_cpy_f32(nx, x, xp);
  10351. ggml_vec_cpy_f32(nx, g, gp);
  10352. return ls;
  10353. }
  10354. ggml_vec_norm_f32(nx, &xnorm, x);
  10355. ggml_vec_norm_f32(nx, &gnorm, g);
  10356. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10357. if (xnorm < 1.0f) {
  10358. xnorm = 1.0f;
  10359. }
  10360. if (gnorm/xnorm <= params.lbfgs.eps) {
  10361. // converged
  10362. return GGML_OPT_OK;
  10363. }
  10364. // delta-based convergence test
  10365. if (pf != NULL) {
  10366. // need at least params.past iterations to start checking for convergence
  10367. if (params.past <= k) {
  10368. const float rate = (pf[k%params.past] - fx)/fx;
  10369. if (fabsf(rate) < params.delta) {
  10370. return GGML_OPT_OK;
  10371. }
  10372. }
  10373. pf[k%params.past] = fx;
  10374. }
  10375. // check for improvement
  10376. if (params.max_no_improvement > 0) {
  10377. if (fx < fx_best) {
  10378. fx_best = fx;
  10379. n_no_improvement = 0;
  10380. } else {
  10381. n_no_improvement++;
  10382. if (n_no_improvement >= params.max_no_improvement) {
  10383. return GGML_OPT_OK;
  10384. }
  10385. }
  10386. }
  10387. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10388. // reached the maximum number of iterations
  10389. return GGML_OPT_DID_NOT_CONVERGE;
  10390. }
  10391. // update vectors s and y:
  10392. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10393. // y_{k+1} = g_{k+1} - g_{k}.
  10394. //
  10395. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10396. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10397. // compute scalars ys and yy:
  10398. // ys = y^t \cdot s -> 1 / \rho.
  10399. // yy = y^t \cdot y.
  10400. //
  10401. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10402. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10403. lm[end].ys = ys;
  10404. // find new search direction
  10405. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10406. bound = (m <= k) ? m : k;
  10407. k++;
  10408. end = (end + 1)%m;
  10409. // initialize search direction with -g
  10410. ggml_vec_neg_f32(nx, d, g);
  10411. j = end;
  10412. for (int i = 0; i < bound; ++i) {
  10413. j = (j + m - 1) % m;
  10414. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10415. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10416. lm[j].alpha /= lm[j].ys;
  10417. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10418. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10419. }
  10420. ggml_vec_scale_f32(nx, d, ys/yy);
  10421. for (int i = 0; i < bound; ++i) {
  10422. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10423. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10424. beta /= lm[j].ys;
  10425. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10426. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10427. j = (j + 1)%m;
  10428. }
  10429. step = 1.0;
  10430. }
  10431. return GGML_OPT_DID_NOT_CONVERGE;
  10432. }
  10433. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10434. struct ggml_opt_params result;
  10435. switch (type) {
  10436. case GGML_OPT_ADAM:
  10437. {
  10438. result = (struct ggml_opt_params) {
  10439. .type = GGML_OPT_ADAM,
  10440. .n_threads = 1,
  10441. .past = 0,
  10442. .delta = 1e-5f,
  10443. .max_no_improvement = 100,
  10444. .print_forward_graph = true,
  10445. .print_backward_graph = true,
  10446. .adam = {
  10447. .n_iter = 10000,
  10448. .alpha = 0.001f,
  10449. .beta1 = 0.9f,
  10450. .beta2 = 0.999f,
  10451. .eps = 1e-8f,
  10452. .eps_f = 1e-5f,
  10453. .eps_g = 1e-3f,
  10454. },
  10455. };
  10456. } break;
  10457. case GGML_OPT_LBFGS:
  10458. {
  10459. result = (struct ggml_opt_params) {
  10460. .type = GGML_OPT_LBFGS,
  10461. .n_threads = 1,
  10462. .past = 0,
  10463. .delta = 1e-5f,
  10464. .max_no_improvement = 0,
  10465. .print_forward_graph = true,
  10466. .print_backward_graph = true,
  10467. .lbfgs = {
  10468. .m = 6,
  10469. .n_iter = 100,
  10470. .max_linesearch = 20,
  10471. .eps = 1e-5f,
  10472. .ftol = 1e-4f,
  10473. .wolfe = 0.9f,
  10474. .min_step = 1e-20f,
  10475. .max_step = 1e+20f,
  10476. .linesearch = GGML_LINESEARCH_DEFAULT,
  10477. },
  10478. };
  10479. } break;
  10480. }
  10481. return result;
  10482. }
  10483. enum ggml_opt_result ggml_opt(
  10484. struct ggml_context * ctx,
  10485. struct ggml_opt_params params,
  10486. struct ggml_tensor * f) {
  10487. bool free_ctx = false;
  10488. if (ctx == NULL) {
  10489. struct ggml_init_params params_ctx = {
  10490. .mem_size = 16*1024*1024,
  10491. .mem_buffer = NULL,
  10492. .no_alloc = false,
  10493. };
  10494. ctx = ggml_init(params_ctx);
  10495. if (ctx == NULL) {
  10496. return GGML_OPT_NO_CONTEXT;
  10497. }
  10498. free_ctx = true;
  10499. }
  10500. enum ggml_opt_result result = GGML_OPT_OK;
  10501. // build forward + backward compute graphs
  10502. struct ggml_cgraph gf = ggml_build_forward (f);
  10503. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10504. switch (params.type) {
  10505. case GGML_OPT_ADAM:
  10506. {
  10507. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10508. } break;
  10509. case GGML_OPT_LBFGS:
  10510. {
  10511. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10512. } break;
  10513. }
  10514. if (params.print_forward_graph) {
  10515. ggml_graph_print (&gf);
  10516. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10517. }
  10518. if (params.print_backward_graph) {
  10519. ggml_graph_print (&gb);
  10520. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10521. }
  10522. if (free_ctx) {
  10523. ggml_free(ctx);
  10524. }
  10525. return result;
  10526. }
  10527. ////////////////////////////////////////////////////////////////////////////////
  10528. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10529. assert(k % QK4_0 == 0);
  10530. const int nb = k / QK4_0;
  10531. for (int j = 0; j < n; j += k) {
  10532. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10533. quantize_row_q4_0_reference(src + j, y, k);
  10534. for (int i = 0; i < nb; i++) {
  10535. for (int l = 0; l < QK4_0; l += 2) {
  10536. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10537. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10538. hist[vi0]++;
  10539. hist[vi1]++;
  10540. }
  10541. }
  10542. }
  10543. return (n/QK4_0*sizeof(block_q4_0));
  10544. }
  10545. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10546. assert(k % QK4_1 == 0);
  10547. const int nb = k / QK4_1;
  10548. for (int j = 0; j < n; j += k) {
  10549. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10550. quantize_row_q4_1_reference(src + j, y, k);
  10551. for (int i = 0; i < nb; i++) {
  10552. for (int l = 0; l < QK4_1; l += 2) {
  10553. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10554. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10555. hist[vi0]++;
  10556. hist[vi1]++;
  10557. }
  10558. }
  10559. }
  10560. return (n/QK4_1*sizeof(block_q4_1));
  10561. }
  10562. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10563. assert(k % QK4_2 == 0);
  10564. const int nb = k / QK4_2;
  10565. for (int j = 0; j < n; j += k) {
  10566. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10567. quantize_row_q4_2_reference(src + j, y, k);
  10568. for (int i = 0; i < nb; i++) {
  10569. for (int l = 0; l < QK4_2; l += 2) {
  10570. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10571. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10572. hist[vi0]++;
  10573. hist[vi1]++;
  10574. }
  10575. }
  10576. }
  10577. return (n/QK4_2*sizeof(block_q4_2));
  10578. }
  10579. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10580. assert(k % QK5_0 == 0);
  10581. const int nb = k / QK5_0;
  10582. for (int j = 0; j < n; j += k) {
  10583. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10584. quantize_row_q5_0_reference(src + j, y, k);
  10585. for (int i = 0; i < nb; i++) {
  10586. uint32_t qh;
  10587. memcpy(&qh, &y[i].qh, sizeof(qh));
  10588. for (int l = 0; l < QK5_0; l += 2) {
  10589. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10590. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10591. // cast to 16 bins
  10592. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10593. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10594. hist[vi0]++;
  10595. hist[vi1]++;
  10596. }
  10597. }
  10598. }
  10599. return (n/QK5_0*sizeof(block_q5_0));
  10600. }
  10601. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10602. assert(k % QK5_1 == 0);
  10603. const int nb = k / QK5_1;
  10604. for (int j = 0; j < n; j += k) {
  10605. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10606. quantize_row_q5_1_reference(src + j, y, k);
  10607. for (int i = 0; i < nb; i++) {
  10608. uint32_t qh;
  10609. memcpy(&qh, &y[i].qh, sizeof(qh));
  10610. for (int l = 0; l < QK5_1; l += 2) {
  10611. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10612. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10613. // cast to 16 bins
  10614. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10615. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10616. hist[vi0]++;
  10617. hist[vi1]++;
  10618. }
  10619. }
  10620. }
  10621. return (n/QK5_1*sizeof(block_q5_1));
  10622. }
  10623. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10624. assert(k % QK8_0 == 0);
  10625. const int nb = k / QK8_0;
  10626. for (int j = 0; j < n; j += k) {
  10627. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10628. quantize_row_q8_0_reference(src + j, y, k);
  10629. for (int i = 0; i < nb; i++) {
  10630. for (int l = 0; l < QK8_0; ++l) {
  10631. const int8_t vi = y[i].qs[l];
  10632. hist[vi/16 + 8]++;
  10633. }
  10634. }
  10635. }
  10636. return (n/QK8_0*sizeof(block_q8_0));
  10637. }
  10638. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10639. size_t result = 0;
  10640. switch (type) {
  10641. case GGML_TYPE_Q4_0:
  10642. {
  10643. GGML_ASSERT(start % QK4_0 == 0);
  10644. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10645. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10646. } break;
  10647. case GGML_TYPE_Q4_1:
  10648. {
  10649. GGML_ASSERT(start % QK4_1 == 0);
  10650. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10651. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10652. } break;
  10653. case GGML_TYPE_Q4_2:
  10654. {
  10655. GGML_ASSERT(start % QK4_2 == 0);
  10656. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10657. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10658. } break;
  10659. case GGML_TYPE_Q5_0:
  10660. {
  10661. GGML_ASSERT(start % QK5_0 == 0);
  10662. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10663. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10664. } break;
  10665. case GGML_TYPE_Q5_1:
  10666. {
  10667. GGML_ASSERT(start % QK5_1 == 0);
  10668. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10669. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10670. } break;
  10671. case GGML_TYPE_Q8_0:
  10672. {
  10673. GGML_ASSERT(start % QK8_0 == 0);
  10674. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10675. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10676. } break;
  10677. default:
  10678. assert(false);
  10679. }
  10680. return result;
  10681. }
  10682. ////////////////////////////////////////////////////////////////////////////////
  10683. int ggml_cpu_has_avx(void) {
  10684. #if defined(__AVX__)
  10685. return 1;
  10686. #else
  10687. return 0;
  10688. #endif
  10689. }
  10690. int ggml_cpu_has_avx2(void) {
  10691. #if defined(__AVX2__)
  10692. return 1;
  10693. #else
  10694. return 0;
  10695. #endif
  10696. }
  10697. int ggml_cpu_has_avx512(void) {
  10698. #if defined(__AVX512F__)
  10699. return 1;
  10700. #else
  10701. return 0;
  10702. #endif
  10703. }
  10704. int ggml_cpu_has_avx512_vbmi(void) {
  10705. #if defined(__AVX512VBMI__)
  10706. return 1;
  10707. #else
  10708. return 0;
  10709. #endif
  10710. }
  10711. int ggml_cpu_has_avx512_vnni(void) {
  10712. #if defined(__AVX512VNNI__)
  10713. return 1;
  10714. #else
  10715. return 0;
  10716. #endif
  10717. }
  10718. int ggml_cpu_has_fma(void) {
  10719. #if defined(__FMA__)
  10720. return 1;
  10721. #else
  10722. return 0;
  10723. #endif
  10724. }
  10725. int ggml_cpu_has_neon(void) {
  10726. #if defined(__ARM_NEON)
  10727. return 1;
  10728. #else
  10729. return 0;
  10730. #endif
  10731. }
  10732. int ggml_cpu_has_arm_fma(void) {
  10733. #if defined(__ARM_FEATURE_FMA)
  10734. return 1;
  10735. #else
  10736. return 0;
  10737. #endif
  10738. }
  10739. int ggml_cpu_has_f16c(void) {
  10740. #if defined(__F16C__)
  10741. return 1;
  10742. #else
  10743. return 0;
  10744. #endif
  10745. }
  10746. int ggml_cpu_has_fp16_va(void) {
  10747. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10748. return 1;
  10749. #else
  10750. return 0;
  10751. #endif
  10752. }
  10753. int ggml_cpu_has_wasm_simd(void) {
  10754. #if defined(__wasm_simd128__)
  10755. return 1;
  10756. #else
  10757. return 0;
  10758. #endif
  10759. }
  10760. int ggml_cpu_has_blas(void) {
  10761. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10762. return 1;
  10763. #else
  10764. return 0;
  10765. #endif
  10766. }
  10767. int ggml_cpu_has_cublas(void) {
  10768. #if defined(GGML_USE_CUBLAS)
  10769. return 1;
  10770. #else
  10771. return 0;
  10772. #endif
  10773. }
  10774. int ggml_cpu_has_clblast(void) {
  10775. #if defined(GGML_USE_CLBLAST)
  10776. return 1;
  10777. #else
  10778. return 0;
  10779. #endif
  10780. }
  10781. int ggml_cpu_has_gpublas(void) {
  10782. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10783. }
  10784. int ggml_cpu_has_sse3(void) {
  10785. #if defined(__SSE3__)
  10786. return 1;
  10787. #else
  10788. return 0;
  10789. #endif
  10790. }
  10791. int ggml_cpu_has_vsx(void) {
  10792. #if defined(__POWER9_VECTOR__)
  10793. return 1;
  10794. #else
  10795. return 0;
  10796. #endif
  10797. }
  10798. ////////////////////////////////////////////////////////////////////////////////