llama.cpp 765 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_VULKAN)
  13. # include "ggml-vulkan.h"
  14. #elif defined(GGML_USE_SYCL)
  15. # include "ggml-sycl.h"
  16. #elif defined(GGML_USE_KOMPUTE)
  17. # include "ggml-kompute.h"
  18. #endif
  19. #ifdef GGML_USE_BLAS
  20. # include "ggml-blas.h"
  21. #endif
  22. #ifdef GGML_USE_METAL
  23. # include "ggml-metal.h"
  24. #endif
  25. // TODO: replace with ggml API call
  26. #define QK_K 256
  27. #ifdef __has_include
  28. #if __has_include(<unistd.h>)
  29. #include <unistd.h>
  30. #if defined(_POSIX_MAPPED_FILES)
  31. #include <sys/mman.h>
  32. #include <fcntl.h>
  33. #endif
  34. #if defined(_POSIX_MEMLOCK_RANGE)
  35. #include <sys/resource.h>
  36. #endif
  37. #endif
  38. #endif
  39. #if defined(_WIN32)
  40. #define WIN32_LEAN_AND_MEAN
  41. #ifndef NOMINMAX
  42. #define NOMINMAX
  43. #endif
  44. #include <windows.h>
  45. #ifndef PATH_MAX
  46. #define PATH_MAX MAX_PATH
  47. #endif
  48. #include <io.h>
  49. #endif
  50. #include <algorithm>
  51. #include <array>
  52. #include <cassert>
  53. #include <cctype>
  54. #include <cfloat>
  55. #include <cinttypes>
  56. #include <climits>
  57. #include <cmath>
  58. #include <cstdarg>
  59. #include <cstddef>
  60. #include <cstdint>
  61. #include <cstdio>
  62. #include <cstring>
  63. #include <ctime>
  64. #include <forward_list>
  65. #include <fstream>
  66. #include <functional>
  67. #include <future>
  68. #include <initializer_list>
  69. #include <locale>
  70. #include <map>
  71. #include <memory>
  72. #include <mutex>
  73. #include <numeric>
  74. #include <queue>
  75. #include <random>
  76. #include <regex>
  77. #include <set>
  78. #include <sstream>
  79. #include <thread>
  80. #include <type_traits>
  81. #include <unordered_map>
  82. #if defined(_MSC_VER)
  83. #pragma warning(disable: 4244 4267) // possible loss of data
  84. #endif
  85. #ifdef __GNUC__
  86. #ifdef __MINGW32__
  87. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  88. #else
  89. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  90. #endif
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...)
  93. #endif
  94. #define LLAMA_MAX_NODES 8192
  95. #define LLAMA_MAX_EXPERTS 160
  96. //
  97. // logging
  98. //
  99. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  100. static void llama_log_internal (ggml_log_level level, const char * format, ...);
  101. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  102. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  103. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  104. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  105. //
  106. // helpers
  107. //
  108. static size_t utf8_len(char src) {
  109. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  110. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  111. return lookup[highbits];
  112. }
  113. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  114. std::string result;
  115. for (size_t pos = 0; ; pos += search.length()) {
  116. auto new_pos = s.find(search, pos);
  117. if (new_pos == std::string::npos) {
  118. result += s.substr(pos, s.size() - pos);
  119. break;
  120. }
  121. result += s.substr(pos, new_pos - pos) + replace;
  122. pos = new_pos;
  123. }
  124. s = std::move(result);
  125. }
  126. static bool is_float_close(float a, float b, float abs_tol) {
  127. // Check for non-negative tolerance
  128. if (abs_tol < 0.0) {
  129. throw std::invalid_argument("Tolerance must be non-negative");
  130. }
  131. // Exact equality check
  132. if (a == b) {
  133. return true;
  134. }
  135. // Check for infinities
  136. if (std::isinf(a) || std::isinf(b)) {
  137. return false;
  138. }
  139. // Regular comparison using the provided absolute tolerance
  140. return std::fabs(b - a) <= abs_tol;
  141. }
  142. static void zeros(std::ofstream & file, size_t n) {
  143. char zero = 0;
  144. for (size_t i = 0; i < n; ++i) {
  145. file.write(&zero, 1);
  146. }
  147. }
  148. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  149. static std::string format(const char * fmt, ...) {
  150. va_list ap;
  151. va_list ap2;
  152. va_start(ap, fmt);
  153. va_copy(ap2, ap);
  154. int size = vsnprintf(NULL, 0, fmt, ap);
  155. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  156. std::vector<char> buf(size + 1);
  157. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  158. GGML_ASSERT(size2 == size);
  159. va_end(ap2);
  160. va_end(ap);
  161. return std::string(buf.data(), size);
  162. }
  163. //
  164. // gguf constants (sync with gguf.py)
  165. //
  166. enum llm_arch {
  167. LLM_ARCH_LLAMA,
  168. LLM_ARCH_FALCON,
  169. LLM_ARCH_BAICHUAN,
  170. LLM_ARCH_GROK,
  171. LLM_ARCH_GPT2,
  172. LLM_ARCH_GPTJ,
  173. LLM_ARCH_GPTNEOX,
  174. LLM_ARCH_MPT,
  175. LLM_ARCH_STARCODER,
  176. LLM_ARCH_REFACT,
  177. LLM_ARCH_BERT,
  178. LLM_ARCH_NOMIC_BERT,
  179. LLM_ARCH_JINA_BERT_V2,
  180. LLM_ARCH_BLOOM,
  181. LLM_ARCH_STABLELM,
  182. LLM_ARCH_QWEN,
  183. LLM_ARCH_QWEN2,
  184. LLM_ARCH_QWEN2MOE,
  185. LLM_ARCH_PHI2,
  186. LLM_ARCH_PHI3,
  187. LLM_ARCH_PLAMO,
  188. LLM_ARCH_CODESHELL,
  189. LLM_ARCH_ORION,
  190. LLM_ARCH_INTERNLM2,
  191. LLM_ARCH_MINICPM,
  192. LLM_ARCH_GEMMA,
  193. LLM_ARCH_STARCODER2,
  194. LLM_ARCH_MAMBA,
  195. LLM_ARCH_XVERSE,
  196. LLM_ARCH_COMMAND_R,
  197. LLM_ARCH_DBRX,
  198. LLM_ARCH_OLMO,
  199. LLM_ARCH_ARCTIC,
  200. LLM_ARCH_DEEPSEEK2,
  201. LLM_ARCH_UNKNOWN,
  202. };
  203. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  204. { LLM_ARCH_LLAMA, "llama" },
  205. { LLM_ARCH_FALCON, "falcon" },
  206. { LLM_ARCH_GROK, "grok" },
  207. { LLM_ARCH_GPT2, "gpt2" },
  208. { LLM_ARCH_GPTJ, "gptj" },
  209. { LLM_ARCH_GPTNEOX, "gptneox" },
  210. { LLM_ARCH_MPT, "mpt" },
  211. { LLM_ARCH_BAICHUAN, "baichuan" },
  212. { LLM_ARCH_STARCODER, "starcoder" },
  213. { LLM_ARCH_REFACT, "refact" },
  214. { LLM_ARCH_BERT, "bert" },
  215. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  216. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  217. { LLM_ARCH_BLOOM, "bloom" },
  218. { LLM_ARCH_STABLELM, "stablelm" },
  219. { LLM_ARCH_QWEN, "qwen" },
  220. { LLM_ARCH_QWEN2, "qwen2" },
  221. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  222. { LLM_ARCH_PHI2, "phi2" },
  223. { LLM_ARCH_PHI3, "phi3" },
  224. { LLM_ARCH_PLAMO, "plamo" },
  225. { LLM_ARCH_CODESHELL, "codeshell" },
  226. { LLM_ARCH_ORION, "orion" },
  227. { LLM_ARCH_INTERNLM2, "internlm2" },
  228. { LLM_ARCH_MINICPM, "minicpm" },
  229. { LLM_ARCH_GEMMA, "gemma" },
  230. { LLM_ARCH_STARCODER2, "starcoder2" },
  231. { LLM_ARCH_MAMBA, "mamba" },
  232. { LLM_ARCH_XVERSE, "xverse" },
  233. { LLM_ARCH_COMMAND_R, "command-r" },
  234. { LLM_ARCH_DBRX, "dbrx" },
  235. { LLM_ARCH_OLMO, "olmo" },
  236. { LLM_ARCH_ARCTIC, "arctic" },
  237. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  257. LLM_KV_FEED_FORWARD_LENGTH,
  258. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  259. LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
  260. LLM_KV_USE_PARALLEL_RESIDUAL,
  261. LLM_KV_TENSOR_DATA_LAYOUT,
  262. LLM_KV_EXPERT_COUNT,
  263. LLM_KV_EXPERT_USED_COUNT,
  264. LLM_KV_EXPERT_SHARED_COUNT,
  265. LLM_KV_EXPERT_WEIGHTS_SCALE,
  266. LLM_KV_POOLING_TYPE,
  267. LLM_KV_LOGIT_SCALE,
  268. LLM_KV_ATTENTION_HEAD_COUNT,
  269. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  270. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  271. LLM_KV_ATTENTION_CLAMP_KQV,
  272. LLM_KV_ATTENTION_KEY_LENGTH,
  273. LLM_KV_ATTENTION_VALUE_LENGTH,
  274. LLM_KV_ATTENTION_LAYERNORM_EPS,
  275. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  276. LLM_KV_ATTENTION_CAUSAL,
  277. LLM_KV_ATTENTION_Q_LORA_RANK,
  278. LLM_KV_ATTENTION_KV_LORA_RANK,
  279. LLM_KV_ROPE_DIMENSION_COUNT,
  280. LLM_KV_ROPE_FREQ_BASE,
  281. LLM_KV_ROPE_SCALE_LINEAR,
  282. LLM_KV_ROPE_SCALING_TYPE,
  283. LLM_KV_ROPE_SCALING_FACTOR,
  284. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  285. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  286. LLM_KV_ROPE_SCALING_FINETUNED,
  287. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  288. LLM_KV_SPLIT_NO,
  289. LLM_KV_SPLIT_COUNT,
  290. LLM_KV_SPLIT_TENSORS_COUNT,
  291. LLM_KV_SSM_INNER_SIZE,
  292. LLM_KV_SSM_CONV_KERNEL,
  293. LLM_KV_SSM_STATE_SIZE,
  294. LLM_KV_SSM_TIME_STEP_RANK,
  295. LLM_KV_TOKENIZER_MODEL,
  296. LLM_KV_TOKENIZER_PRE,
  297. LLM_KV_TOKENIZER_LIST,
  298. LLM_KV_TOKENIZER_TOKEN_TYPE,
  299. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  300. LLM_KV_TOKENIZER_SCORES,
  301. LLM_KV_TOKENIZER_MERGES,
  302. LLM_KV_TOKENIZER_BOS_ID,
  303. LLM_KV_TOKENIZER_EOS_ID,
  304. LLM_KV_TOKENIZER_UNK_ID,
  305. LLM_KV_TOKENIZER_SEP_ID,
  306. LLM_KV_TOKENIZER_PAD_ID,
  307. LLM_KV_TOKENIZER_CLS_ID,
  308. LLM_KV_TOKENIZER_MASK_ID,
  309. LLM_KV_TOKENIZER_ADD_BOS,
  310. LLM_KV_TOKENIZER_ADD_EOS,
  311. LLM_KV_TOKENIZER_ADD_PREFIX,
  312. LLM_KV_TOKENIZER_HF_JSON,
  313. LLM_KV_TOKENIZER_RWKV,
  314. LLM_KV_TOKENIZER_PREFIX_ID,
  315. LLM_KV_TOKENIZER_SUFFIX_ID,
  316. LLM_KV_TOKENIZER_MIDDLE_ID,
  317. LLM_KV_TOKENIZER_EOT_ID,
  318. };
  319. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  320. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  321. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  322. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  323. { LLM_KV_GENERAL_NAME, "general.name" },
  324. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  325. { LLM_KV_GENERAL_VERSION, "general.version" },
  326. { LLM_KV_GENERAL_URL, "general.url" },
  327. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  328. { LLM_KV_GENERAL_LICENSE, "general.license" },
  329. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  330. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  331. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  332. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  333. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  334. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  335. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  336. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  337. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  338. { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
  339. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  340. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  341. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  342. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  343. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  344. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  345. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  346. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  347. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  348. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  349. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  350. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  351. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  352. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  353. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  354. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  355. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  356. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  357. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  358. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  359. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  360. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  361. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  362. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  363. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  364. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  365. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  366. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  367. { LLM_KV_SPLIT_NO, "split.no" },
  368. { LLM_KV_SPLIT_COUNT, "split.count" },
  369. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  370. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  371. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  372. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  373. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  374. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  375. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  376. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  377. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  378. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  379. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  380. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  381. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  382. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  383. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  384. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  385. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  386. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  387. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  388. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  389. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  390. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  391. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  392. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  393. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  394. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  395. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  396. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  397. };
  398. struct LLM_KV {
  399. LLM_KV(llm_arch arch) : arch(arch) {}
  400. llm_arch arch;
  401. std::string operator()(llm_kv kv) const {
  402. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  403. }
  404. };
  405. enum llm_tensor {
  406. LLM_TENSOR_TOKEN_EMBD,
  407. LLM_TENSOR_TOKEN_EMBD_NORM,
  408. LLM_TENSOR_TOKEN_TYPES,
  409. LLM_TENSOR_POS_EMBD,
  410. LLM_TENSOR_OUTPUT,
  411. LLM_TENSOR_OUTPUT_NORM,
  412. LLM_TENSOR_ROPE_FREQS,
  413. LLM_TENSOR_ROPE_FACTORS_LONG,
  414. LLM_TENSOR_ROPE_FACTORS_SHORT,
  415. LLM_TENSOR_ATTN_Q,
  416. LLM_TENSOR_ATTN_K,
  417. LLM_TENSOR_ATTN_V,
  418. LLM_TENSOR_ATTN_QKV,
  419. LLM_TENSOR_ATTN_OUT,
  420. LLM_TENSOR_ATTN_NORM,
  421. LLM_TENSOR_ATTN_NORM_2,
  422. LLM_TENSOR_ATTN_OUT_NORM,
  423. LLM_TENSOR_ATTN_ROT_EMBD,
  424. LLM_TENSOR_FFN_GATE_INP,
  425. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  426. LLM_TENSOR_FFN_NORM,
  427. LLM_TENSOR_FFN_GATE,
  428. LLM_TENSOR_FFN_DOWN,
  429. LLM_TENSOR_FFN_UP,
  430. LLM_TENSOR_FFN_ACT,
  431. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  432. LLM_TENSOR_FFN_GATE_EXP,
  433. LLM_TENSOR_FFN_UP_EXP,
  434. LLM_TENSOR_FFN_NORM_EXPS,
  435. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  436. LLM_TENSOR_FFN_GATE_EXPS,
  437. LLM_TENSOR_FFN_UP_EXPS,
  438. LLM_TENSOR_FFN_DOWN_SHEXP,
  439. LLM_TENSOR_FFN_GATE_SHEXP,
  440. LLM_TENSOR_FFN_UP_SHEXP,
  441. LLM_TENSOR_ATTN_Q_NORM,
  442. LLM_TENSOR_ATTN_K_NORM,
  443. LLM_TENSOR_LAYER_OUT_NORM,
  444. LLM_TENSOR_SSM_IN,
  445. LLM_TENSOR_SSM_CONV1D,
  446. LLM_TENSOR_SSM_X,
  447. LLM_TENSOR_SSM_DT,
  448. LLM_TENSOR_SSM_A,
  449. LLM_TENSOR_SSM_D,
  450. LLM_TENSOR_SSM_OUT,
  451. LLM_TENSOR_ATTN_Q_A,
  452. LLM_TENSOR_ATTN_Q_B,
  453. LLM_TENSOR_ATTN_KV_A_MQA,
  454. LLM_TENSOR_ATTN_KV_B,
  455. LLM_TENSOR_ATTN_Q_A_NORM,
  456. LLM_TENSOR_ATTN_KV_A_NORM,
  457. };
  458. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  459. {
  460. LLM_ARCH_LLAMA,
  461. {
  462. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  463. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  464. { LLM_TENSOR_OUTPUT, "output" },
  465. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  466. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  467. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  468. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  469. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  470. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  471. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  472. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  473. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  474. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  475. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  476. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  477. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  478. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  479. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  480. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  481. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  482. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  483. },
  484. },
  485. {
  486. LLM_ARCH_BAICHUAN,
  487. {
  488. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  489. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  490. { LLM_TENSOR_OUTPUT, "output" },
  491. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  492. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  493. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  494. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  495. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  496. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  497. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  498. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  499. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  500. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  501. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  502. },
  503. },
  504. {
  505. LLM_ARCH_FALCON,
  506. {
  507. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  508. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  509. { LLM_TENSOR_OUTPUT, "output" },
  510. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  511. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  512. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  513. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  514. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  515. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  516. },
  517. },
  518. {
  519. LLM_ARCH_GROK,
  520. {
  521. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  522. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  523. { LLM_TENSOR_OUTPUT, "output" },
  524. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  525. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  526. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  527. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  528. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  529. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  530. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  531. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  532. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  533. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  534. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  535. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  536. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  537. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  538. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  539. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  540. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  541. },
  542. },
  543. {
  544. LLM_ARCH_GPT2,
  545. {
  546. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  547. { LLM_TENSOR_POS_EMBD, "position_embd" },
  548. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  549. { LLM_TENSOR_OUTPUT, "output" },
  550. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  551. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  552. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  553. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  554. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  555. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  556. },
  557. },
  558. {
  559. LLM_ARCH_GPTJ,
  560. {
  561. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  562. },
  563. },
  564. {
  565. LLM_ARCH_GPTNEOX,
  566. {
  567. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  568. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  569. { LLM_TENSOR_OUTPUT, "output" },
  570. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  571. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  572. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  573. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  574. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  575. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  576. },
  577. },
  578. {
  579. LLM_ARCH_MPT,
  580. {
  581. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  582. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  583. { LLM_TENSOR_OUTPUT, "output"},
  584. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  585. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  586. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  587. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  588. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  589. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  590. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  591. { LLM_TENSOR_POS_EMBD, "position_embd" },
  592. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  593. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  594. },
  595. },
  596. {
  597. LLM_ARCH_STARCODER,
  598. {
  599. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  600. { LLM_TENSOR_POS_EMBD, "position_embd" },
  601. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  602. { LLM_TENSOR_OUTPUT, "output" },
  603. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  604. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  605. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  606. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  607. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  608. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  609. },
  610. },
  611. {
  612. LLM_ARCH_REFACT,
  613. {
  614. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  615. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  616. { LLM_TENSOR_OUTPUT, "output" },
  617. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  618. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  619. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  620. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  621. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  622. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  623. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  624. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  625. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  626. },
  627. },
  628. {
  629. LLM_ARCH_BERT,
  630. {
  631. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  632. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  633. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  634. { LLM_TENSOR_POS_EMBD, "position_embd" },
  635. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  636. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  637. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  638. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  639. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  640. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  641. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  642. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  643. },
  644. },
  645. {
  646. LLM_ARCH_NOMIC_BERT,
  647. {
  648. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  649. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  650. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  651. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  652. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  653. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  654. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  655. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  656. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  657. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  658. },
  659. },
  660. {
  661. LLM_ARCH_JINA_BERT_V2,
  662. {
  663. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  664. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  665. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  666. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  667. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  668. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  669. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  670. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  671. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  672. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  673. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  674. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  675. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  676. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  677. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  678. },
  679. },
  680. {
  681. LLM_ARCH_BLOOM,
  682. {
  683. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  684. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  685. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  686. { LLM_TENSOR_OUTPUT, "output" },
  687. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  688. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  689. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  690. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  691. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  692. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  693. },
  694. },
  695. {
  696. LLM_ARCH_STABLELM,
  697. {
  698. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  699. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  700. { LLM_TENSOR_OUTPUT, "output" },
  701. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  702. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  703. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  704. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  705. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  706. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  707. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  708. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  709. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  710. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  711. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  712. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  713. },
  714. },
  715. {
  716. LLM_ARCH_QWEN,
  717. {
  718. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  719. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  720. { LLM_TENSOR_OUTPUT, "output" },
  721. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  722. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  723. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  724. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  725. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  726. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  727. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  728. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  729. },
  730. },
  731. {
  732. LLM_ARCH_QWEN2,
  733. {
  734. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  735. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  736. { LLM_TENSOR_OUTPUT, "output" },
  737. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  738. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  739. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  740. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  741. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  742. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  743. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  744. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  745. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  746. },
  747. },
  748. {
  749. LLM_ARCH_QWEN2MOE,
  750. {
  751. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  752. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  753. { LLM_TENSOR_OUTPUT, "output" },
  754. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  755. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  756. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  757. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  758. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  759. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  760. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  761. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  762. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  763. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  764. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  765. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  766. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  767. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  768. },
  769. },
  770. {
  771. LLM_ARCH_PHI2,
  772. {
  773. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  774. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  775. { LLM_TENSOR_OUTPUT, "output" },
  776. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  777. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  778. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  779. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  780. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  781. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  782. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  783. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  784. },
  785. },
  786. {
  787. LLM_ARCH_PHI3,
  788. {
  789. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  790. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  791. { LLM_TENSOR_OUTPUT, "output" },
  792. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  793. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  794. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  795. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  796. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  797. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  798. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  799. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  800. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  801. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  802. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  803. },
  804. },
  805. {
  806. LLM_ARCH_PLAMO,
  807. {
  808. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  809. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  810. { LLM_TENSOR_OUTPUT, "output" },
  811. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  812. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  813. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  814. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  815. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  816. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  817. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  818. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  819. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  820. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  821. },
  822. },
  823. {
  824. LLM_ARCH_CODESHELL,
  825. {
  826. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  827. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  828. { LLM_TENSOR_OUTPUT, "output" },
  829. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  830. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  831. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  832. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  833. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  834. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  835. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  836. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  837. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  838. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  839. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  840. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  841. },
  842. },
  843. {
  844. LLM_ARCH_ORION,
  845. {
  846. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  847. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  848. { LLM_TENSOR_OUTPUT, "output" },
  849. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  850. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  851. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  852. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  853. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  854. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  855. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  856. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  857. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  858. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  859. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  860. },
  861. },
  862. {
  863. LLM_ARCH_INTERNLM2,
  864. {
  865. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  866. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  867. { LLM_TENSOR_OUTPUT, "output" },
  868. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  869. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  870. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  871. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  872. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  873. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  874. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  875. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  876. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  877. },
  878. },
  879. {
  880. LLM_ARCH_MINICPM,
  881. {
  882. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  883. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  884. { LLM_TENSOR_OUTPUT, "output" },
  885. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  886. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  887. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  888. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  889. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  890. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  891. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  892. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  893. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  894. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  895. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  896. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  897. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  898. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  899. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  900. },
  901. },
  902. {
  903. LLM_ARCH_GEMMA,
  904. {
  905. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  906. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  907. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  908. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  909. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  910. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  911. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  912. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  913. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  914. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  915. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  916. },
  917. },
  918. {
  919. LLM_ARCH_STARCODER2,
  920. {
  921. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  922. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  923. { LLM_TENSOR_OUTPUT, "output" },
  924. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  925. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  926. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  927. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  928. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  929. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  930. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  931. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  932. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  933. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  934. },
  935. },
  936. {
  937. LLM_ARCH_MAMBA,
  938. {
  939. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  940. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  941. { LLM_TENSOR_OUTPUT, "output" },
  942. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  943. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  944. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  945. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  946. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  947. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  948. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  949. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  950. },
  951. },
  952. {
  953. LLM_ARCH_XVERSE,
  954. {
  955. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  956. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  957. { LLM_TENSOR_OUTPUT, "output" },
  958. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  959. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  960. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  961. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  962. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  963. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  964. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  965. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  966. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  967. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  968. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  969. },
  970. },
  971. {
  972. LLM_ARCH_COMMAND_R,
  973. {
  974. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  975. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  976. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  977. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  978. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  979. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  980. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  981. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  982. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  983. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  984. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  985. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  986. },
  987. },
  988. {
  989. LLM_ARCH_DBRX,
  990. {
  991. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  992. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  993. { LLM_TENSOR_OUTPUT, "output" },
  994. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  995. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  996. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  997. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  998. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  999. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1000. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1001. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1002. },
  1003. },
  1004. {
  1005. LLM_ARCH_OLMO,
  1006. {
  1007. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1008. { LLM_TENSOR_OUTPUT, "output" },
  1009. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1010. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1011. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1012. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1013. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1014. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1015. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1016. },
  1017. },
  1018. {
  1019. LLM_ARCH_ARCTIC,
  1020. {
  1021. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1022. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1023. { LLM_TENSOR_OUTPUT, "output" },
  1024. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1025. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1026. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1027. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1028. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1029. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1030. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1031. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1032. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1033. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1034. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1035. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1036. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1037. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1038. },
  1039. },
  1040. {
  1041. LLM_ARCH_DEEPSEEK2,
  1042. {
  1043. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1044. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1045. { LLM_TENSOR_OUTPUT, "output" },
  1046. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1047. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1048. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1049. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1050. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1051. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1052. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1053. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1054. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1055. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1056. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1057. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1058. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1059. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1060. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1061. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1062. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1063. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1064. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1065. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1066. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1067. },
  1068. },
  1069. {
  1070. LLM_ARCH_UNKNOWN,
  1071. {
  1072. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1073. },
  1074. },
  1075. };
  1076. static llm_arch llm_arch_from_string(const std::string & name) {
  1077. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1078. if (kv.second == name) {
  1079. return kv.first;
  1080. }
  1081. }
  1082. return LLM_ARCH_UNKNOWN;
  1083. }
  1084. // helper to handle gguf constants
  1085. // usage:
  1086. //
  1087. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1088. //
  1089. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1090. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1091. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1092. //
  1093. struct LLM_TN {
  1094. LLM_TN(llm_arch arch) : arch(arch) {}
  1095. llm_arch arch;
  1096. std::string operator()(llm_tensor tensor) const {
  1097. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1098. return "__missing__";
  1099. }
  1100. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1101. }
  1102. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1103. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1104. return "__missing__";
  1105. }
  1106. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1107. }
  1108. std::string operator()(llm_tensor tensor, int bid) const {
  1109. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1110. return "__missing__";
  1111. }
  1112. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1113. }
  1114. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1115. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1116. return "__missing__";
  1117. }
  1118. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1119. }
  1120. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1121. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1122. return "__missing__";
  1123. }
  1124. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1125. }
  1126. };
  1127. //
  1128. // gguf helpers
  1129. //
  1130. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1131. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1132. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1133. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1134. };
  1135. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1136. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1137. if (kv.second == name) {
  1138. return (llama_rope_scaling_type) kv.first;
  1139. }
  1140. }
  1141. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1142. }
  1143. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1144. switch (type) {
  1145. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1146. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1147. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1148. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1149. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1150. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1151. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1152. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1153. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1154. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1155. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1156. default: return format("unknown type %d", type);
  1157. }
  1158. }
  1159. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1160. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1161. switch (type) {
  1162. case GGUF_TYPE_STRING:
  1163. return gguf_get_val_str(ctx_gguf, i);
  1164. case GGUF_TYPE_ARRAY:
  1165. {
  1166. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1167. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1168. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1169. std::stringstream ss;
  1170. ss << "[";
  1171. for (int j = 0; j < arr_n; j++) {
  1172. if (arr_type == GGUF_TYPE_STRING) {
  1173. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1174. // escape quotes
  1175. replace_all(val, "\\", "\\\\");
  1176. replace_all(val, "\"", "\\\"");
  1177. ss << '"' << val << '"';
  1178. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1179. ss << "???";
  1180. } else {
  1181. ss << gguf_data_to_str(arr_type, data, j);
  1182. }
  1183. if (j < arr_n - 1) {
  1184. ss << ", ";
  1185. }
  1186. }
  1187. ss << "]";
  1188. return ss.str();
  1189. }
  1190. default:
  1191. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1192. }
  1193. }
  1194. //
  1195. // llama helpers
  1196. //
  1197. #if defined(_WIN32)
  1198. static std::string llama_format_win_err(DWORD err) {
  1199. LPSTR buf;
  1200. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1201. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1202. if (!size) {
  1203. return "FormatMessageA failed";
  1204. }
  1205. std::string ret(buf, size);
  1206. LocalFree(buf);
  1207. return ret;
  1208. }
  1209. #endif
  1210. template <typename T>
  1211. struct no_init {
  1212. T value;
  1213. no_init() { /* do nothing */ }
  1214. };
  1215. struct llama_file {
  1216. #if defined(_WIN32)
  1217. // use FILE * so we don't have to re-open the file to mmap
  1218. FILE * fp;
  1219. HANDLE fp_win32;
  1220. size_t size;
  1221. private:
  1222. std::string GetErrorMessageWin32(DWORD error_code) const {
  1223. std::string ret;
  1224. LPSTR lpMsgBuf = NULL;
  1225. DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1226. NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
  1227. if (!bufLen) {
  1228. ret = format("Win32 error code: %s", error_code);
  1229. } else {
  1230. ret = lpMsgBuf;
  1231. LocalFree(lpMsgBuf);
  1232. }
  1233. return ret;
  1234. }
  1235. public:
  1236. llama_file(const char * fname, const char * mode) {
  1237. fp = ggml_fopen(fname, mode);
  1238. if (fp == NULL) {
  1239. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1240. }
  1241. fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
  1242. seek(0, SEEK_END);
  1243. size = tell();
  1244. seek(0, SEEK_SET);
  1245. }
  1246. size_t tell() const {
  1247. // SetFilePointerEx returns the current position when seeking relative 0 bytes
  1248. LARGE_INTEGER li;
  1249. li.QuadPart = 0;
  1250. BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
  1251. if (!ret) {
  1252. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1253. }
  1254. return li.QuadPart;
  1255. }
  1256. void seek(size_t offset, int whence) const {
  1257. // no need to convert SEEK_* to FILE_*. The enums are the same.
  1258. // Still, keep static asserts to avoid failures in the future.
  1259. static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
  1260. static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
  1261. static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
  1262. LARGE_INTEGER li;
  1263. li.QuadPart = offset;
  1264. BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
  1265. if (!ret) {
  1266. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1267. }
  1268. }
  1269. void read_raw(void * ptr, size_t len) const {
  1270. // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
  1271. // use the Win32 API to do file io instead of the C/C++ library functions.
  1272. // There are conditions under which ReadFile cannot read chunks >64MB.
  1273. // Thus split the operation into smaller chunks if len exceeds this limit.
  1274. size_t bytes_read = 0;
  1275. while (bytes_read < len) {
  1276. size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
  1277. DWORD chunk_read = 0;
  1278. BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
  1279. if (!result) {
  1280. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1281. }
  1282. if (chunk_read < chunk_size || chunk_read == 0) {
  1283. throw std::runtime_error("unexpectedly reached end of file");
  1284. }
  1285. bytes_read += chunk_read;
  1286. } ;
  1287. }
  1288. uint32_t read_u32() const {
  1289. uint32_t val;
  1290. read_raw(&val, sizeof(val));
  1291. return val;
  1292. }
  1293. void write_raw(const void * ptr, size_t len) const {
  1294. // There are conditions under which WriteFile cannot write chunks >64MB.
  1295. // Thus split the operation into smaller chunks if len exceeds this limit.
  1296. size_t bytes_written = 0;
  1297. while (bytes_written < len) {
  1298. size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
  1299. DWORD chunk_written = 0;
  1300. BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
  1301. if (!result) {
  1302. throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1303. }
  1304. if (chunk_written < chunk_size || chunk_written == 0) {
  1305. throw std::runtime_error("unexpectedly failed to write bytes");
  1306. }
  1307. bytes_written += chunk_written;
  1308. }
  1309. }
  1310. void write_u32(std::uint32_t val) const {
  1311. write_raw(&val, sizeof(val));
  1312. }
  1313. ~llama_file() {
  1314. if (fp) {
  1315. std::fclose(fp);
  1316. }
  1317. }
  1318. #else
  1319. // use FILE * so we don't have to re-open the file to mmap
  1320. FILE * fp;
  1321. size_t size;
  1322. llama_file(const char * fname, const char * mode) {
  1323. fp = ggml_fopen(fname, mode);
  1324. if (fp == NULL) {
  1325. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1326. }
  1327. seek(0, SEEK_END);
  1328. size = tell();
  1329. seek(0, SEEK_SET);
  1330. }
  1331. size_t tell() const {
  1332. #ifdef _WIN32
  1333. __int64 ret = _ftelli64(fp);
  1334. #else
  1335. long ret = std::ftell(fp);
  1336. #endif
  1337. if (ret == -1) {
  1338. throw std::runtime_error(format("ftell error: %s", strerror(errno)));
  1339. }
  1340. return (size_t) ret;
  1341. }
  1342. void seek(size_t offset, int whence) const {
  1343. #ifdef _WIN32
  1344. int ret = _fseeki64(fp, (__int64) offset, whence);
  1345. #else
  1346. int ret = std::fseek(fp, (long) offset, whence);
  1347. #endif
  1348. if (ret != 0) {
  1349. throw std::runtime_error(format("seek error: %s", strerror(errno)));
  1350. }
  1351. }
  1352. void read_raw(void * ptr, size_t len) const {
  1353. if (len == 0) {
  1354. return;
  1355. }
  1356. errno = 0;
  1357. std::size_t ret = std::fread(ptr, len, 1, fp);
  1358. if (ferror(fp)) {
  1359. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1360. }
  1361. if (ret != 1) {
  1362. throw std::runtime_error("unexpectedly reached end of file");
  1363. }
  1364. }
  1365. uint32_t read_u32() const {
  1366. uint32_t ret;
  1367. read_raw(&ret, sizeof(ret));
  1368. return ret;
  1369. }
  1370. void write_raw(const void * ptr, size_t len) const {
  1371. if (len == 0) {
  1372. return;
  1373. }
  1374. errno = 0;
  1375. size_t ret = std::fwrite(ptr, len, 1, fp);
  1376. if (ret != 1) {
  1377. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1378. }
  1379. }
  1380. void write_u32(std::uint32_t val) const {
  1381. write_raw(&val, sizeof(val));
  1382. }
  1383. ~llama_file() {
  1384. if (fp) {
  1385. std::fclose(fp);
  1386. }
  1387. }
  1388. #endif
  1389. };
  1390. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1391. struct llama_mmap {
  1392. void * addr;
  1393. size_t size;
  1394. llama_mmap(const llama_mmap &) = delete;
  1395. #ifdef _POSIX_MAPPED_FILES
  1396. static constexpr bool SUPPORTED = true;
  1397. // list of mapped fragments (first_offset, last_offset)
  1398. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1399. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1400. size = file->size;
  1401. int fd = fileno(file->fp);
  1402. int flags = MAP_SHARED;
  1403. // prefetch/readahead impairs performance on NUMA systems
  1404. if (numa) { prefetch = 0; }
  1405. #ifdef __linux__
  1406. // advise the kernel to read the file sequentially (increases readahead)
  1407. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1408. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1409. strerror(errno));
  1410. }
  1411. if (prefetch) { flags |= MAP_POPULATE; }
  1412. #endif
  1413. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1414. if (addr == MAP_FAILED) { // NOLINT
  1415. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1416. }
  1417. if (prefetch > 0) {
  1418. // advise the kernel to preload the mapped memory
  1419. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1420. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1421. strerror(errno));
  1422. }
  1423. }
  1424. if (numa) {
  1425. // advise the kernel not to use readahead
  1426. // (because the next page might not belong on the same node)
  1427. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1428. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1429. strerror(errno));
  1430. }
  1431. }
  1432. // initialize list of mapped_fragments
  1433. mapped_fragments.emplace_back(0, file->size);
  1434. }
  1435. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1436. // align first to the next page
  1437. size_t offset_in_page = *first & (page_size - 1);
  1438. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1439. *first += offset_to_page;
  1440. // align last to the previous page
  1441. *last = *last & ~(page_size - 1);
  1442. if (*last <= *first) {
  1443. *last = *first;
  1444. }
  1445. }
  1446. // partially unmap the file in the range [first, last)
  1447. void unmap_fragment(size_t first, size_t last) {
  1448. // note: this function must not be called multiple times with overlapping ranges
  1449. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1450. int page_size = sysconf(_SC_PAGESIZE);
  1451. align_range(&first, &last, page_size);
  1452. size_t len = last - first;
  1453. if (len == 0) {
  1454. return;
  1455. }
  1456. GGML_ASSERT(first % page_size == 0);
  1457. GGML_ASSERT(last % page_size == 0);
  1458. GGML_ASSERT(last > first);
  1459. void * next_page_start = (uint8_t *) addr + first;
  1460. // unmap the range
  1461. if (munmap(next_page_start, len)) {
  1462. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1463. }
  1464. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1465. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1466. for (const auto & frag : mapped_fragments) {
  1467. if (frag.first < first && frag.second > last) {
  1468. // the range is in the middle of the fragment, split it
  1469. new_mapped_fragments.emplace_back(frag.first, first);
  1470. new_mapped_fragments.emplace_back(last, frag.second);
  1471. } else if (frag.first < first && frag.second > first) {
  1472. // the range starts in the middle of the fragment
  1473. new_mapped_fragments.emplace_back(frag.first, first);
  1474. } else if (frag.first < last && frag.second > last) {
  1475. // the range ends in the middle of the fragment
  1476. new_mapped_fragments.emplace_back(last, frag.second);
  1477. } else if (frag.first >= first && frag.second <= last) {
  1478. // the range covers the entire fragment
  1479. } else {
  1480. // the range is outside the fragment
  1481. new_mapped_fragments.push_back(frag);
  1482. }
  1483. }
  1484. mapped_fragments = std::move(new_mapped_fragments);
  1485. }
  1486. ~llama_mmap() {
  1487. for (const auto & frag : mapped_fragments) {
  1488. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1489. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1490. }
  1491. }
  1492. }
  1493. #elif defined(_WIN32)
  1494. static constexpr bool SUPPORTED = true;
  1495. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1496. GGML_UNUSED(numa);
  1497. size = file->size;
  1498. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1499. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1500. if (hMapping == NULL) {
  1501. DWORD error = GetLastError();
  1502. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1503. }
  1504. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1505. DWORD error = GetLastError();
  1506. CloseHandle(hMapping);
  1507. if (addr == NULL) {
  1508. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1509. }
  1510. if (prefetch > 0) {
  1511. #if _WIN32_WINNT >= 0x602
  1512. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1513. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1514. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1515. // may fail on pre-Windows 8 systems
  1516. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1517. if (pPrefetchVirtualMemory) {
  1518. // advise the kernel to preload the mapped memory
  1519. WIN32_MEMORY_RANGE_ENTRY range;
  1520. range.VirtualAddress = addr;
  1521. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1522. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1523. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1524. llama_format_win_err(GetLastError()).c_str());
  1525. }
  1526. }
  1527. #else
  1528. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1529. #endif
  1530. }
  1531. }
  1532. void unmap_fragment(size_t first, size_t last) {
  1533. // not supported
  1534. GGML_UNUSED(first);
  1535. GGML_UNUSED(last);
  1536. }
  1537. ~llama_mmap() {
  1538. if (!UnmapViewOfFile(addr)) {
  1539. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1540. llama_format_win_err(GetLastError()).c_str());
  1541. }
  1542. }
  1543. #else
  1544. static constexpr bool SUPPORTED = false;
  1545. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1546. GGML_UNUSED(file);
  1547. GGML_UNUSED(prefetch);
  1548. GGML_UNUSED(numa);
  1549. throw std::runtime_error("mmap not supported");
  1550. }
  1551. void unmap_fragment(size_t first, size_t last) {
  1552. GGML_UNUSED(first);
  1553. GGML_UNUSED(last);
  1554. throw std::runtime_error("mmap not supported");
  1555. }
  1556. #endif
  1557. };
  1558. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1559. // Represents some region of memory being locked using mlock or VirtualLock;
  1560. // will automatically unlock on destruction.
  1561. struct llama_mlock {
  1562. void * addr = NULL;
  1563. size_t size = 0;
  1564. bool failed_already = false;
  1565. llama_mlock() {}
  1566. llama_mlock(const llama_mlock &) = delete;
  1567. ~llama_mlock() {
  1568. if (size) {
  1569. raw_unlock(addr, size);
  1570. }
  1571. }
  1572. void init(void * ptr) {
  1573. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1574. addr = ptr;
  1575. }
  1576. void grow_to(size_t target_size) {
  1577. GGML_ASSERT(addr);
  1578. if (failed_already) {
  1579. return;
  1580. }
  1581. size_t granularity = lock_granularity();
  1582. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1583. if (target_size > size) {
  1584. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1585. size = target_size;
  1586. } else {
  1587. failed_already = true;
  1588. }
  1589. }
  1590. }
  1591. #ifdef _POSIX_MEMLOCK_RANGE
  1592. static constexpr bool SUPPORTED = true;
  1593. static size_t lock_granularity() {
  1594. return (size_t) sysconf(_SC_PAGESIZE);
  1595. }
  1596. #ifdef __APPLE__
  1597. #define MLOCK_SUGGESTION \
  1598. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1599. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1600. #else
  1601. #define MLOCK_SUGGESTION \
  1602. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1603. #endif
  1604. bool raw_lock(const void * addr, size_t size) const {
  1605. if (!mlock(addr, size)) {
  1606. return true;
  1607. }
  1608. char* errmsg = std::strerror(errno);
  1609. bool suggest = (errno == ENOMEM);
  1610. // Check if the resource limit is fine after all
  1611. struct rlimit lock_limit;
  1612. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1613. suggest = false;
  1614. }
  1615. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1616. suggest = false;
  1617. }
  1618. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1619. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1620. return false;
  1621. }
  1622. #undef MLOCK_SUGGESTION
  1623. static void raw_unlock(void * addr, size_t size) {
  1624. if (munlock(addr, size)) {
  1625. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1626. }
  1627. }
  1628. #elif defined(_WIN32)
  1629. static constexpr bool SUPPORTED = true;
  1630. static size_t lock_granularity() {
  1631. SYSTEM_INFO si;
  1632. GetSystemInfo(&si);
  1633. return (size_t) si.dwPageSize;
  1634. }
  1635. bool raw_lock(void * ptr, size_t len) const {
  1636. for (int tries = 1; ; tries++) {
  1637. if (VirtualLock(ptr, len)) {
  1638. return true;
  1639. }
  1640. if (tries == 2) {
  1641. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1642. len, size, llama_format_win_err(GetLastError()).c_str());
  1643. return false;
  1644. }
  1645. // It failed but this was only the first try; increase the working
  1646. // set size and try again.
  1647. SIZE_T min_ws_size, max_ws_size;
  1648. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1649. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1650. llama_format_win_err(GetLastError()).c_str());
  1651. return false;
  1652. }
  1653. // Per MSDN: "The maximum number of pages that a process can lock
  1654. // is equal to the number of pages in its minimum working set minus
  1655. // a small overhead."
  1656. // Hopefully a megabyte is enough overhead:
  1657. size_t increment = len + 1048576;
  1658. // The minimum must be <= the maximum, so we need to increase both:
  1659. min_ws_size += increment;
  1660. max_ws_size += increment;
  1661. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1662. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1663. llama_format_win_err(GetLastError()).c_str());
  1664. return false;
  1665. }
  1666. }
  1667. }
  1668. static void raw_unlock(void * ptr, size_t len) {
  1669. if (!VirtualUnlock(ptr, len)) {
  1670. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1671. llama_format_win_err(GetLastError()).c_str());
  1672. }
  1673. }
  1674. #else
  1675. static constexpr bool SUPPORTED = false;
  1676. static size_t lock_granularity() {
  1677. return (size_t) 65536;
  1678. }
  1679. bool raw_lock(const void * addr, size_t len) const {
  1680. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1681. return false;
  1682. }
  1683. static void raw_unlock(const void * addr, size_t len) {}
  1684. #endif
  1685. };
  1686. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1687. // NOTE: avoid ever using this except for building the token_to_piece caches
  1688. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1689. std::vector<char> result(8, 0);
  1690. const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1691. if (n_tokens < 0) {
  1692. result.resize(-n_tokens);
  1693. int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1694. GGML_ASSERT(check == -n_tokens);
  1695. }
  1696. else {
  1697. result.resize(n_tokens);
  1698. }
  1699. return std::string(result.data(), result.size());
  1700. }
  1701. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1702. ggml_backend_buffer_type_t buft = nullptr;
  1703. #if defined(GGML_USE_CUDA)
  1704. // host buffers should only be used when data is expected to be copied to/from the GPU
  1705. if (host_buffer) {
  1706. buft = ggml_backend_cuda_host_buffer_type();
  1707. }
  1708. #elif defined(GGML_USE_SYCL)
  1709. if (host_buffer) {
  1710. buft = ggml_backend_sycl_host_buffer_type();
  1711. }
  1712. #elif defined(GGML_USE_CPU_HBM)
  1713. buft = ggml_backend_cpu_hbm_buffer_type();
  1714. #elif defined(GGML_USE_VULKAN)
  1715. if (host_buffer) {
  1716. buft = ggml_backend_vk_host_buffer_type();
  1717. }
  1718. #endif
  1719. if (buft == nullptr) {
  1720. buft = ggml_backend_cpu_buffer_type();
  1721. }
  1722. return buft;
  1723. GGML_UNUSED(host_buffer);
  1724. }
  1725. //
  1726. // globals
  1727. //
  1728. struct llama_state {
  1729. llama_state() {
  1730. #ifdef GGML_USE_METAL
  1731. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1732. #elif defined(GGML_USE_CUDA)
  1733. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1734. #endif
  1735. }
  1736. // We save the log callback globally
  1737. ggml_log_callback log_callback = llama_log_callback_default;
  1738. void * log_callback_user_data = nullptr;
  1739. };
  1740. static llama_state g_state;
  1741. // available llama models
  1742. enum e_model {
  1743. MODEL_UNKNOWN,
  1744. MODEL_14M,
  1745. MODEL_17M,
  1746. MODEL_22M,
  1747. MODEL_33M,
  1748. MODEL_70M,
  1749. MODEL_109M,
  1750. MODEL_137M,
  1751. MODEL_160M,
  1752. MODEL_335M,
  1753. MODEL_410M,
  1754. MODEL_0_5B,
  1755. MODEL_1B,
  1756. MODEL_1_4B,
  1757. MODEL_2B,
  1758. MODEL_2_8B,
  1759. MODEL_3B,
  1760. MODEL_4B,
  1761. MODEL_6_9B,
  1762. MODEL_7B,
  1763. MODEL_8B,
  1764. MODEL_12B,
  1765. MODEL_13B,
  1766. MODEL_14B,
  1767. MODEL_15B,
  1768. MODEL_16B,
  1769. MODEL_20B,
  1770. MODEL_30B,
  1771. MODEL_34B,
  1772. MODEL_35B,
  1773. MODEL_40B,
  1774. MODEL_65B,
  1775. MODEL_70B,
  1776. MODEL_236B,
  1777. MODEL_314B,
  1778. MODEL_SMALL,
  1779. MODEL_MEDIUM,
  1780. MODEL_LARGE,
  1781. MODEL_XL,
  1782. MODEL_A2_7B,
  1783. MODEL_8x7B,
  1784. MODEL_8x22B,
  1785. MODEL_16x12B,
  1786. MODEL_10B_128x3_66B,
  1787. };
  1788. static const size_t kiB = 1024;
  1789. static const size_t MiB = 1024*kiB;
  1790. static const size_t GiB = 1024*MiB;
  1791. struct llama_hparams {
  1792. bool vocab_only;
  1793. bool rope_finetuned;
  1794. bool use_par_res;
  1795. uint32_t n_vocab;
  1796. uint32_t n_ctx_train; // context size the model was trained on
  1797. uint32_t n_embd;
  1798. uint32_t n_head;
  1799. uint32_t n_head_kv;
  1800. uint32_t n_layer;
  1801. uint32_t n_rot;
  1802. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1803. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1804. uint32_t n_ff;
  1805. uint32_t n_expert = 0;
  1806. uint32_t n_expert_used = 0;
  1807. uint32_t n_vocab_type = 0; // for BERT-style token types
  1808. uint32_t n_layer_dense_lead = 0;
  1809. uint32_t n_lora_q = 0;
  1810. uint32_t n_lora_kv = 0;
  1811. uint32_t n_ff_exp = 0;
  1812. uint32_t n_ff_shexp = 0;
  1813. uint32_t n_expert_shared = 0;
  1814. float expert_weights_scale = 0.0;
  1815. float f_norm_eps;
  1816. float f_norm_rms_eps;
  1817. float rope_attn_factor = 1.0f;
  1818. float rope_freq_base_train;
  1819. float rope_freq_scale_train;
  1820. uint32_t n_ctx_orig_yarn;
  1821. float rope_yarn_log_mul;
  1822. // for State Space Models
  1823. uint32_t ssm_d_conv = 0;
  1824. uint32_t ssm_d_inner = 0;
  1825. uint32_t ssm_d_state = 0;
  1826. uint32_t ssm_dt_rank = 0;
  1827. float f_clamp_kqv = 0.0f;
  1828. float f_max_alibi_bias = 0.0f;
  1829. float f_logit_scale = 0.0f;
  1830. bool causal_attn = true;
  1831. bool use_alibi = false;
  1832. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1833. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1834. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1835. bool operator!=(const llama_hparams & other) const {
  1836. if (this->vocab_only != other.vocab_only) return true;
  1837. if (this->n_vocab != other.n_vocab) return true;
  1838. if (this->n_ctx_train != other.n_ctx_train) return true;
  1839. if (this->n_embd != other.n_embd) return true;
  1840. if (this->n_head != other.n_head) return true;
  1841. if (this->n_head_kv != other.n_head_kv) return true;
  1842. if (this->n_layer != other.n_layer) return true;
  1843. if (this->n_rot != other.n_rot) return true;
  1844. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1845. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1846. if (this->n_ff != other.n_ff) return true;
  1847. if (this->n_expert != other.n_expert) return true;
  1848. if (this->n_expert_used != other.n_expert_used) return true;
  1849. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1850. if (this->n_lora_q != other.n_lora_q) return true;
  1851. if (this->n_lora_kv != other.n_lora_kv) return true;
  1852. if (this->n_ff_exp != other.n_ff_exp) return true;
  1853. if (this->n_ff_shexp != other.n_ff_shexp) return true;
  1854. if (this->n_expert_shared != other.n_expert_shared) return true;
  1855. if (this->rope_finetuned != other.rope_finetuned) return true;
  1856. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  1857. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1858. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1859. if (this->ssm_d_state != other.ssm_d_state) return true;
  1860. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1861. const float EPSILON = 1e-9f;
  1862. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1863. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1864. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1865. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1866. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1867. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1868. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1869. return false;
  1870. }
  1871. uint32_t n_gqa() const {
  1872. if (n_head_kv == 0) {
  1873. return 0;
  1874. }
  1875. return n_head/n_head_kv;
  1876. }
  1877. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1878. return n_embd_head_k * n_head_kv;
  1879. }
  1880. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1881. return n_embd_head_v * n_head_kv;
  1882. }
  1883. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1884. // corresponds to Mamba's conv_states size
  1885. // TODO: maybe support other convolution strides than 1
  1886. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1887. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1888. }
  1889. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1890. // corresponds to Mamba's ssm_states size
  1891. return ssm_d_state * ssm_d_inner;
  1892. }
  1893. };
  1894. struct llama_cparams {
  1895. uint32_t n_ctx; // context size used during inference
  1896. uint32_t n_batch;
  1897. uint32_t n_ubatch;
  1898. uint32_t n_seq_max;
  1899. uint32_t n_threads; // number of threads to use for generation
  1900. uint32_t n_threads_batch; // number of threads to use for batch processing
  1901. float rope_freq_base;
  1902. float rope_freq_scale;
  1903. uint32_t n_ctx_orig_yarn;
  1904. // These hyperparameters are not exposed in GGUF, because all
  1905. // existing YaRN models use the same values for them.
  1906. float yarn_ext_factor;
  1907. float yarn_attn_factor;
  1908. float yarn_beta_fast;
  1909. float yarn_beta_slow;
  1910. float defrag_thold;
  1911. bool embeddings;
  1912. bool causal_attn;
  1913. bool offload_kqv;
  1914. bool flash_attn;
  1915. enum llama_pooling_type pooling_type;
  1916. ggml_backend_sched_eval_callback cb_eval;
  1917. void * cb_eval_user_data;
  1918. };
  1919. struct llama_layer {
  1920. // normalization
  1921. struct ggml_tensor * attn_norm;
  1922. struct ggml_tensor * attn_norm_b;
  1923. struct ggml_tensor * attn_norm_2;
  1924. struct ggml_tensor * attn_norm_2_b;
  1925. struct ggml_tensor * attn_q_norm;
  1926. struct ggml_tensor * attn_q_norm_b;
  1927. struct ggml_tensor * attn_k_norm;
  1928. struct ggml_tensor * attn_k_norm_b;
  1929. struct ggml_tensor * attn_out_norm;
  1930. struct ggml_tensor * attn_out_norm_b;
  1931. struct ggml_tensor * attn_q_a_norm;
  1932. struct ggml_tensor * attn_kv_a_norm;
  1933. // attention
  1934. struct ggml_tensor * wq;
  1935. struct ggml_tensor * wk;
  1936. struct ggml_tensor * wv;
  1937. struct ggml_tensor * wo;
  1938. struct ggml_tensor * wqkv;
  1939. struct ggml_tensor * wq_a;
  1940. struct ggml_tensor * wq_b;
  1941. struct ggml_tensor * wkv_a_mqa;
  1942. struct ggml_tensor * wkv_b;
  1943. // attention bias
  1944. struct ggml_tensor * bq;
  1945. struct ggml_tensor * bk;
  1946. struct ggml_tensor * bv;
  1947. struct ggml_tensor * bo;
  1948. struct ggml_tensor * bqkv;
  1949. // normalization
  1950. struct ggml_tensor * ffn_norm;
  1951. struct ggml_tensor * ffn_norm_b;
  1952. struct ggml_tensor * layer_out_norm;
  1953. struct ggml_tensor * layer_out_norm_b;
  1954. struct ggml_tensor * ffn_norm_exps;
  1955. // ff
  1956. struct ggml_tensor * ffn_gate; // w1
  1957. struct ggml_tensor * ffn_down; // w2
  1958. struct ggml_tensor * ffn_up; // w3
  1959. // ff MoE
  1960. struct ggml_tensor * ffn_gate_inp;
  1961. struct ggml_tensor * ffn_gate_exps;
  1962. struct ggml_tensor * ffn_down_exps;
  1963. struct ggml_tensor * ffn_up_exps ;
  1964. // ff shared expert (shexp)
  1965. struct ggml_tensor * ffn_gate_inp_shexp;
  1966. struct ggml_tensor * ffn_gate_shexp;
  1967. struct ggml_tensor * ffn_down_shexp;
  1968. struct ggml_tensor * ffn_up_shexp;
  1969. // ff bias
  1970. struct ggml_tensor * ffn_gate_b = nullptr;
  1971. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1972. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1973. struct ggml_tensor * ffn_act;
  1974. // mamba proj
  1975. struct ggml_tensor * ssm_in;
  1976. struct ggml_tensor * ssm_x;
  1977. struct ggml_tensor * ssm_dt;
  1978. struct ggml_tensor * ssm_out;
  1979. // mamba
  1980. struct ggml_tensor * ssm_conv1d;
  1981. struct ggml_tensor * ssm_a;
  1982. struct ggml_tensor * ssm_d;
  1983. // mamba bias
  1984. struct ggml_tensor * ssm_conv1d_b;
  1985. struct ggml_tensor * ssm_dt_b;
  1986. // long rope factors
  1987. struct ggml_tensor * rope_long = nullptr;
  1988. struct ggml_tensor * rope_short = nullptr;
  1989. };
  1990. struct llama_kv_cell {
  1991. llama_pos pos = -1;
  1992. llama_pos delta = 0;
  1993. int32_t src = 0; // used by recurrent state models to copy states
  1994. std::set<llama_seq_id> seq_id;
  1995. bool has_seq_id(const llama_seq_id & id) const {
  1996. return seq_id.find(id) != seq_id.end();
  1997. }
  1998. bool is_empty() const {
  1999. return seq_id.empty();
  2000. }
  2001. bool is_same_seq(const llama_kv_cell & other) const {
  2002. return seq_id == other.seq_id;
  2003. }
  2004. };
  2005. // ring-buffer of cached KV data
  2006. struct llama_kv_cache {
  2007. bool has_shift = false;
  2008. bool do_defrag = false;
  2009. bool do_copy = false;
  2010. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  2011. bool v_trans = true; // the value tensor is transposed
  2012. // Note: The value of head isn't only used to optimize searching
  2013. // for a free KV slot. llama_decode_internal also uses it, so it
  2014. // cannot be freely changed after a slot has been allocated.
  2015. uint32_t head = 0;
  2016. uint32_t size = 0;
  2017. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  2018. // computed before each graph build
  2019. uint32_t n = 0;
  2020. ggml_type type_k = GGML_TYPE_F16;
  2021. ggml_type type_v = GGML_TYPE_F16;
  2022. std::vector<llama_kv_cell> cells;
  2023. std::vector<struct ggml_tensor *> k_l; // per layer
  2024. std::vector<struct ggml_tensor *> v_l;
  2025. std::vector<struct ggml_context *> ctxs;
  2026. std::vector<ggml_backend_buffer_t> bufs;
  2027. size_t total_size() const {
  2028. size_t size = 0;
  2029. for (ggml_backend_buffer_t buf : bufs) {
  2030. size += ggml_backend_buffer_get_size(buf);
  2031. }
  2032. return size;
  2033. }
  2034. ~llama_kv_cache() {
  2035. for (struct ggml_context * ctx : ctxs) {
  2036. ggml_free(ctx);
  2037. }
  2038. for (ggml_backend_buffer_t buf : bufs) {
  2039. ggml_backend_buffer_free(buf);
  2040. }
  2041. }
  2042. };
  2043. struct llama_control_vector {
  2044. std::vector<struct ggml_tensor *> tensors; // per layer
  2045. std::vector<struct ggml_context *> ctxs;
  2046. std::vector<ggml_backend_buffer_t> bufs;
  2047. int32_t layer_start = -1;
  2048. int32_t layer_end = -1;
  2049. ggml_tensor * tensor_for(int il) const {
  2050. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  2051. return nullptr;
  2052. }
  2053. return tensors[il];
  2054. }
  2055. ~llama_control_vector() {
  2056. for (struct ggml_context * ctx : ctxs) {
  2057. ggml_free(ctx);
  2058. }
  2059. for (ggml_backend_buffer_t buf : bufs) {
  2060. ggml_backend_buffer_free(buf);
  2061. }
  2062. }
  2063. };
  2064. struct llama_vocab {
  2065. using id = int32_t;
  2066. using token = std::string;
  2067. using tattr = llama_token_attr;
  2068. struct token_data {
  2069. token text;
  2070. float score;
  2071. tattr attr;
  2072. };
  2073. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  2074. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  2075. int max_token_len = 0; // used for optimizing longest token search
  2076. std::unordered_map<token, id> token_to_id;
  2077. std::vector<token_data> id_to_token;
  2078. std::vector<id> cache_special_tokens;
  2079. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  2080. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  2081. // default LLaMA special tokens
  2082. id special_bos_id = 1;
  2083. id special_eos_id = 2;
  2084. id special_unk_id = 0;
  2085. id special_sep_id = -1;
  2086. id special_pad_id = -1;
  2087. id special_cls_id = -1;
  2088. id special_mask_id = -1;
  2089. id linefeed_id = 13;
  2090. id special_prefix_id = -1;
  2091. id special_suffix_id = -1;
  2092. id special_middle_id = -1;
  2093. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  2094. // tokenizer flags
  2095. bool tokenizer_add_space_prefix = true;
  2096. bool tokenizer_add_bos = false;
  2097. bool tokenizer_add_eos = false;
  2098. bool tokenizer_ignore_merges = false;
  2099. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2100. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2101. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2102. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2103. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2104. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  2105. if (it == bpe_ranks.end()) {
  2106. return -1;
  2107. }
  2108. return it->second;
  2109. }
  2110. };
  2111. struct llama_model {
  2112. e_model type = MODEL_UNKNOWN;
  2113. llm_arch arch = LLM_ARCH_UNKNOWN;
  2114. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  2115. std::string name = "n/a";
  2116. llama_hparams hparams = {};
  2117. llama_vocab vocab;
  2118. struct ggml_tensor * tok_embd;
  2119. struct ggml_tensor * type_embd;
  2120. struct ggml_tensor * pos_embd;
  2121. struct ggml_tensor * tok_norm;
  2122. struct ggml_tensor * tok_norm_b;
  2123. struct ggml_tensor * output_norm;
  2124. struct ggml_tensor * output_norm_b;
  2125. struct ggml_tensor * output;
  2126. struct ggml_tensor * output_b;
  2127. std::vector<llama_layer> layers;
  2128. llama_split_mode split_mode;
  2129. int main_gpu;
  2130. int n_gpu_layers;
  2131. std::vector<std::string> rpc_servers;
  2132. // gguf metadata
  2133. std::unordered_map<std::string, std::string> gguf_kv;
  2134. // layer -> buffer type mapping
  2135. struct layer_buft {
  2136. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2137. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2138. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2139. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2140. ggml_backend_buffer_type_t buft; // everything else
  2141. };
  2142. layer_buft buft_input;
  2143. layer_buft buft_output;
  2144. std::vector<layer_buft> buft_layer;
  2145. // contexts where the model tensors metadata is stored
  2146. std::vector<struct ggml_context *> ctxs;
  2147. // the model memory buffers for the tensor data
  2148. std::vector<ggml_backend_buffer_t> bufs;
  2149. // model memory mapped files
  2150. llama_mmaps mappings;
  2151. // objects representing data potentially being locked in memory
  2152. llama_mlocks mlock_bufs;
  2153. llama_mlocks mlock_mmaps;
  2154. // for quantize-stats only
  2155. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2156. int64_t t_load_us = 0;
  2157. int64_t t_start_us = 0;
  2158. ~llama_model() {
  2159. for (struct ggml_context * ctx : ctxs) {
  2160. ggml_free(ctx);
  2161. }
  2162. for (ggml_backend_buffer_t buf : bufs) {
  2163. #ifdef GGML_USE_CUDA
  2164. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2165. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2166. }
  2167. #endif
  2168. ggml_backend_buffer_free(buf);
  2169. }
  2170. }
  2171. };
  2172. struct llama_context {
  2173. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2174. ~llama_context() {
  2175. ggml_backend_sched_free(sched);
  2176. for (ggml_backend_t backend : backends) {
  2177. ggml_backend_free(backend);
  2178. }
  2179. ggml_backend_buffer_free(buf_output);
  2180. }
  2181. llama_cparams cparams;
  2182. std::vector<ggml_backend_t> backends;
  2183. #ifdef GGML_USE_METAL
  2184. ggml_backend_t backend_metal = nullptr;
  2185. #endif
  2186. #ifdef GGML_USE_BLAS
  2187. ggml_backend_t backend_blas = nullptr;
  2188. #endif
  2189. ggml_backend_t backend_cpu = nullptr;
  2190. const llama_model & model;
  2191. // key + value cache for the self attention
  2192. struct llama_kv_cache kv_self;
  2193. std::mt19937 rng;
  2194. bool has_evaluated_once = false;
  2195. int64_t t_start_us;
  2196. int64_t t_load_us;
  2197. int64_t t_sample_us = 0;
  2198. int64_t t_p_eval_us = 0;
  2199. int64_t t_eval_us = 0;
  2200. int64_t t_compute_start_us = 0;
  2201. int64_t n_queued_tokens = 0;
  2202. int32_t n_sample = 0; // number of tokens sampled
  2203. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2204. int32_t n_eval = 0; // number of eval calls
  2205. // host buffer for the model output (logits and embeddings)
  2206. ggml_backend_buffer_t buf_output = nullptr;
  2207. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2208. size_t logits_size = 0; // capacity (of floats) for logits
  2209. float * logits = nullptr;
  2210. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2211. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2212. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2213. bool logits_all = false;
  2214. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2215. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2216. size_t embd_size = 0; // capacity (of floats) for embeddings
  2217. float * embd = nullptr;
  2218. // sequence embeddings output (map of [n_embd] vectors)
  2219. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2220. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2221. // memory buffers used to evaluate the model
  2222. std::vector<uint8_t> buf_compute_meta;
  2223. ggml_backend_sched_t sched = nullptr;
  2224. ggml_abort_callback abort_callback = nullptr;
  2225. void * abort_callback_data = nullptr;
  2226. // input tensors
  2227. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2228. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2229. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2230. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2231. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2232. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2233. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2234. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2235. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2236. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2237. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2238. // control vectors
  2239. struct llama_control_vector cvec;
  2240. };
  2241. static size_t llama_get_device_count(const llama_model & model) {
  2242. size_t count = 1;
  2243. #if defined(GGML_USE_CUDA)
  2244. count = ggml_backend_cuda_get_device_count();
  2245. #elif defined(GGML_USE_SYCL)
  2246. count = ggml_backend_sycl_get_device_count();
  2247. #elif defined(GGML_USE_VULKAN)
  2248. count = ggml_backend_vk_get_device_count();
  2249. #endif
  2250. #if defined(GGML_USE_RPC)
  2251. count += model.rpc_servers.size();
  2252. #endif
  2253. return count;
  2254. GGML_UNUSED(model);
  2255. }
  2256. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2257. ggml_backend_buffer_type_t buft = nullptr;
  2258. #if defined(GGML_USE_RPC)
  2259. int dev_count = (int)llama_get_device_count(model);
  2260. int rpc_count = (int)model.rpc_servers.size();
  2261. if (gpu >= dev_count - rpc_count) {
  2262. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2263. return ggml_backend_rpc_buffer_type(endpoint);
  2264. }
  2265. #endif
  2266. #if defined(GGML_USE_METAL)
  2267. buft = ggml_backend_metal_buffer_type();
  2268. #elif defined(GGML_USE_CUDA)
  2269. buft = ggml_backend_cuda_buffer_type(gpu);
  2270. #elif defined(GGML_USE_VULKAN)
  2271. buft = ggml_backend_vk_buffer_type(gpu);
  2272. #elif defined(GGML_USE_SYCL)
  2273. buft = ggml_backend_sycl_buffer_type(gpu);
  2274. #elif defined(GGML_USE_KOMPUTE)
  2275. buft = ggml_backend_kompute_buffer_type(gpu);
  2276. if (buft == nullptr) {
  2277. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2278. }
  2279. #endif
  2280. if (buft == nullptr) {
  2281. buft = llama_default_buffer_type_cpu(true);
  2282. }
  2283. return buft;
  2284. GGML_UNUSED(model);
  2285. GGML_UNUSED(gpu);
  2286. }
  2287. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2288. ggml_backend_buffer_type_t buft = nullptr;
  2289. #ifdef GGML_USE_CUDA
  2290. if (ggml_backend_cuda_get_device_count() > 1) {
  2291. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2292. }
  2293. #endif
  2294. #ifdef GGML_USE_SYCL
  2295. if (ggml_backend_sycl_get_device_count() > 1) {
  2296. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2297. }
  2298. #endif
  2299. if (buft == nullptr) {
  2300. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2301. }
  2302. return buft;
  2303. GGML_UNUSED(tensor_split);
  2304. }
  2305. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2306. #if defined(GGML_USE_RPC)
  2307. int dev_count = (int)llama_get_device_count(model);
  2308. int rpc_count = (int)model.rpc_servers.size();
  2309. if (device >= dev_count - rpc_count) {
  2310. size_t total;
  2311. size_t free;
  2312. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2313. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2314. return free;
  2315. }
  2316. #endif
  2317. #if defined(GGML_USE_CUDA)
  2318. size_t total;
  2319. size_t free;
  2320. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2321. return free;
  2322. #elif defined(GGML_USE_SYCL)
  2323. size_t total;
  2324. size_t free;
  2325. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2326. return free;
  2327. #elif defined(GGML_USE_VULKAN)
  2328. size_t total;
  2329. size_t free;
  2330. ggml_backend_vk_get_device_memory(device, &free, &total);
  2331. return free;
  2332. #else
  2333. return 1;
  2334. #endif
  2335. GGML_UNUSED(model);
  2336. GGML_UNUSED(device);
  2337. }
  2338. //
  2339. // kv cache helpers
  2340. //
  2341. static bool llama_kv_cache_init(
  2342. struct llama_kv_cache & cache,
  2343. const llama_context * ctx,
  2344. ggml_type type_k,
  2345. ggml_type type_v,
  2346. uint32_t kv_size,
  2347. bool offload) {
  2348. const llama_model & model = ctx->model;
  2349. const llama_cparams & cparams = ctx->cparams;
  2350. const struct llama_hparams & hparams = model.hparams;
  2351. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2352. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2353. const int64_t n_layer = hparams.n_layer;
  2354. cache.has_shift = false;
  2355. // TODO: find a nicer way to add other recurrent model architectures
  2356. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2357. cache.v_trans = !cparams.flash_attn;
  2358. // TODO: support mixed recurrent Transformer architectures
  2359. // NOTE: (!a || b) is a logical implication (a -> b)
  2360. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2361. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2362. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2363. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2364. cache.head = 0;
  2365. cache.size = kv_size;
  2366. cache.used = 0;
  2367. cache.type_k = type_k;
  2368. cache.type_v = type_v;
  2369. cache.cells.clear();
  2370. cache.cells.resize(kv_size);
  2371. if (cache.recurrent) {
  2372. // init state copy sources
  2373. for (uint32_t i = 0; i < cache.size; ++i) {
  2374. cache.cells[i].src = i;
  2375. }
  2376. }
  2377. // count used buffer types
  2378. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2379. if (offload) {
  2380. for (int64_t i = 0; i < n_layer; ++i) {
  2381. buft_layer_count[model.buft_layer[i].buft]++;
  2382. }
  2383. } else {
  2384. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2385. }
  2386. // create a context for each buffer type
  2387. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2388. for (auto & it : buft_layer_count) {
  2389. int n_layers = it.second;
  2390. struct ggml_init_params params = {
  2391. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2392. /*.mem_buffer =*/ NULL,
  2393. /*.no_alloc =*/ true,
  2394. };
  2395. ggml_context * ctx = ggml_init(params);
  2396. if (!ctx) {
  2397. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2398. return false;
  2399. }
  2400. ctx_map[it.first] = ctx;
  2401. cache.ctxs.push_back(ctx);
  2402. }
  2403. cache.k_l.reserve(n_layer);
  2404. cache.v_l.reserve(n_layer);
  2405. for (int i = 0; i < (int) n_layer; i++) {
  2406. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2407. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2408. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2409. ggml_format_name(k, "cache_k_l%d", i);
  2410. ggml_format_name(v, "cache_v_l%d", i);
  2411. cache.k_l.push_back(k);
  2412. cache.v_l.push_back(v);
  2413. }
  2414. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2415. for (auto it : ctx_map) {
  2416. ggml_backend_buffer_type_t buft = it.first;
  2417. ggml_context * ctx = it.second;
  2418. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2419. if (!buf) {
  2420. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2421. return false;
  2422. }
  2423. ggml_backend_buffer_clear(buf, 0);
  2424. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2425. cache.bufs.push_back(buf);
  2426. }
  2427. return true;
  2428. }
  2429. // find an empty slot of size "n_tokens" in the cache
  2430. // updates the cache head
  2431. // Note: On success, it's important that cache.head points
  2432. // to the first cell of the slot.
  2433. static bool llama_kv_cache_find_slot(
  2434. struct llama_kv_cache & cache,
  2435. const struct llama_batch & batch) {
  2436. const uint32_t n_tokens = batch.n_tokens;
  2437. if (cache.recurrent) {
  2438. // For recurrent state architectures (like Mamba),
  2439. // each KV cache cell can store the state for a whole sequence.
  2440. llama_seq_id min = cache.size - 1;
  2441. llama_seq_id max = 0;
  2442. for (uint32_t i = 0; i < n_tokens; ++i) {
  2443. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2444. llama_seq_id seq_id = batch.seq_id[i][j];
  2445. // make sure it's a valid seq_id
  2446. if ((uint32_t) seq_id < cache.size) {
  2447. if (seq_id > max) {
  2448. max = seq_id;
  2449. }
  2450. if (seq_id < min) {
  2451. min = seq_id;
  2452. }
  2453. // Assuming the tokens are in-order
  2454. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2455. // What should happen when the pos backtracks or skips a value?
  2456. // Clearing the state mid-batch would require special-casing which isn't done.
  2457. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2458. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2459. }
  2460. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2461. cache.used += 1;
  2462. }
  2463. cache.cells[seq_id].pos = batch.pos[i];
  2464. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2465. } else {
  2466. // too big seq_id
  2467. // TODO: would it be possible to resize the KV cache size instead?
  2468. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2469. return false;
  2470. }
  2471. }
  2472. }
  2473. // allow getting the range of used cells, from head to head + n
  2474. cache.head = min;
  2475. cache.n = max - min + 1;
  2476. // sanity check
  2477. return max >= min;
  2478. }
  2479. // otherwise, one cell per token.
  2480. if (n_tokens > cache.size) {
  2481. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2482. return false;
  2483. }
  2484. uint32_t n_tested = 0;
  2485. while (true) {
  2486. if (cache.head + n_tokens > cache.size) {
  2487. n_tested += cache.size - cache.head;
  2488. cache.head = 0;
  2489. continue;
  2490. }
  2491. bool found = true;
  2492. for (uint32_t i = 0; i < n_tokens; i++) {
  2493. if (cache.cells[cache.head + i].pos >= 0) {
  2494. found = false;
  2495. cache.head += i + 1;
  2496. n_tested += i + 1;
  2497. break;
  2498. }
  2499. }
  2500. if (found) {
  2501. break;
  2502. }
  2503. if (n_tested >= cache.size) {
  2504. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2505. return false;
  2506. }
  2507. }
  2508. for (uint32_t i = 0; i < n_tokens; i++) {
  2509. cache.cells[cache.head + i].pos = batch.pos[i];
  2510. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2511. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2512. }
  2513. }
  2514. cache.used += n_tokens;
  2515. return true;
  2516. }
  2517. // find how many cells are currently in use
  2518. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2519. for (uint32_t i = cache.size; i > 0; --i) {
  2520. const llama_kv_cell & cell = cache.cells[i - 1];
  2521. if (cell.pos >= 0 && !cell.is_empty()) {
  2522. return i;
  2523. }
  2524. }
  2525. return 0;
  2526. }
  2527. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2528. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2529. cache.cells[i].pos = -1;
  2530. cache.cells[i].seq_id.clear();
  2531. }
  2532. cache.head = 0;
  2533. cache.used = 0;
  2534. for (auto & buf : cache.bufs) {
  2535. ggml_backend_buffer_clear(buf, 0);
  2536. }
  2537. }
  2538. static bool llama_kv_cache_seq_rm(
  2539. struct llama_kv_cache & cache,
  2540. llama_seq_id seq_id,
  2541. llama_pos p0,
  2542. llama_pos p1) {
  2543. uint32_t new_head = cache.size;
  2544. if (p0 < 0) p0 = 0;
  2545. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2546. // models like Mamba can't have a state partially erased
  2547. if (cache.recurrent) {
  2548. if (seq_id >= (int64_t) cache.size) {
  2549. // could be fatal
  2550. return false;
  2551. }
  2552. if (0 <= seq_id) {
  2553. // partial intersection is invalid
  2554. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2555. return false;
  2556. }
  2557. } else {
  2558. // seq_id is negative, then the range should include everything or nothing
  2559. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2560. return false;
  2561. }
  2562. }
  2563. }
  2564. for (uint32_t i = 0; i < cache.size; ++i) {
  2565. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2566. if (seq_id < 0) {
  2567. cache.cells[i].seq_id.clear();
  2568. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2569. cache.cells[i].seq_id.erase(seq_id);
  2570. } else {
  2571. continue;
  2572. }
  2573. if (cache.cells[i].is_empty()) {
  2574. // keep count of the number of used cells
  2575. if (cache.cells[i].pos >= 0) cache.used--;
  2576. cache.cells[i].pos = -1;
  2577. if (new_head == cache.size) new_head = i;
  2578. }
  2579. }
  2580. }
  2581. // If we freed up a slot, set head to it so searching can start there.
  2582. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2583. return true;
  2584. }
  2585. static void llama_kv_cache_seq_cp(
  2586. struct llama_kv_cache & cache,
  2587. llama_seq_id seq_id_src,
  2588. llama_seq_id seq_id_dst,
  2589. llama_pos p0,
  2590. llama_pos p1) {
  2591. if (p0 < 0) p0 = 0;
  2592. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2593. if (cache.recurrent) {
  2594. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2595. seq_id_src = cache.cells[seq_id_src].src;
  2596. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2597. // intent to "copy from"
  2598. // supports copy chains thanks to taking the source of the source
  2599. cache.cells[seq_id_dst].src = seq_id_src;
  2600. // preserve the "keep or clear" status of the copied sequence
  2601. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2602. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2603. } else {
  2604. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2605. }
  2606. cache.do_copy = true;
  2607. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2608. }
  2609. return;
  2610. }
  2611. // otherwise, this is the KV cache of a Transformer-like model
  2612. cache.head = 0;
  2613. for (uint32_t i = 0; i < cache.size; ++i) {
  2614. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2615. cache.cells[i].seq_id.insert(seq_id_dst);
  2616. }
  2617. }
  2618. }
  2619. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2620. uint32_t new_head = cache.size;
  2621. for (uint32_t i = 0; i < cache.size; ++i) {
  2622. if (!cache.cells[i].has_seq_id(seq_id)) {
  2623. if (cache.cells[i].pos >= 0) cache.used--;
  2624. cache.cells[i].pos = -1;
  2625. cache.cells[i].seq_id.clear();
  2626. if (new_head == cache.size) new_head = i;
  2627. } else {
  2628. cache.cells[i].seq_id.clear();
  2629. cache.cells[i].seq_id.insert(seq_id);
  2630. }
  2631. }
  2632. // If we freed up a slot, set head to it so searching can start there.
  2633. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2634. }
  2635. static void llama_kv_cache_seq_add(
  2636. struct llama_kv_cache & cache,
  2637. llama_seq_id seq_id,
  2638. llama_pos p0,
  2639. llama_pos p1,
  2640. llama_pos delta) {
  2641. uint32_t new_head = cache.size;
  2642. if (p0 < 0) p0 = 0;
  2643. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2644. if (cache.recurrent) {
  2645. // for Mamba-like models, only the pos needs to be shifted
  2646. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2647. llama_kv_cell & cell = cache.cells[seq_id];
  2648. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2649. cell.pos += delta;
  2650. }
  2651. }
  2652. return;
  2653. }
  2654. for (uint32_t i = 0; i < cache.size; ++i) {
  2655. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2656. cache.has_shift = true;
  2657. cache.cells[i].pos += delta;
  2658. cache.cells[i].delta += delta;
  2659. if (cache.cells[i].pos < 0) {
  2660. if (!cache.cells[i].is_empty()) {
  2661. cache.used--;
  2662. }
  2663. cache.cells[i].pos = -1;
  2664. cache.cells[i].seq_id.clear();
  2665. if (new_head == cache.size) {
  2666. new_head = i;
  2667. }
  2668. }
  2669. }
  2670. }
  2671. // If we freed up a slot, set head to it so searching can start there.
  2672. // Otherwise we just start the next search from the beginning.
  2673. cache.head = new_head != cache.size ? new_head : 0;
  2674. }
  2675. static void llama_kv_cache_seq_div(
  2676. struct llama_kv_cache & cache,
  2677. llama_seq_id seq_id,
  2678. llama_pos p0,
  2679. llama_pos p1,
  2680. int d) {
  2681. if (p0 < 0) p0 = 0;
  2682. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2683. if (cache.recurrent) {
  2684. // for Mamba-like models, only the pos needs to be changed
  2685. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2686. llama_kv_cell & cell = cache.cells[seq_id];
  2687. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2688. cell.pos /= d;
  2689. }
  2690. }
  2691. return;
  2692. }
  2693. for (uint32_t i = 0; i < cache.size; ++i) {
  2694. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2695. cache.has_shift = true;
  2696. {
  2697. llama_pos p_old = cache.cells[i].pos;
  2698. cache.cells[i].pos /= d;
  2699. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2700. }
  2701. }
  2702. }
  2703. }
  2704. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2705. llama_pos result = 0;
  2706. for (uint32_t i = 0; i < cache.size; ++i) {
  2707. if (cache.cells[i].has_seq_id(seq_id)) {
  2708. result = std::max(result, cache.cells[i].pos);
  2709. }
  2710. }
  2711. return result;
  2712. }
  2713. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2714. cache.do_defrag = true;
  2715. }
  2716. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2717. // the FA kernels require padding to avoid extra runtime boundary checks
  2718. return cparams.flash_attn ? 256u : 32u;
  2719. }
  2720. //
  2721. // model loading and saving
  2722. //
  2723. enum llama_fver {
  2724. GGUF_FILE_VERSION_V1 = 1,
  2725. GGUF_FILE_VERSION_V2 = 2,
  2726. GGUF_FILE_VERSION_V3 = 3,
  2727. };
  2728. static const char * llama_file_version_name(llama_fver version) {
  2729. switch (version) {
  2730. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2731. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2732. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2733. }
  2734. return "unknown";
  2735. }
  2736. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2737. char buf[256];
  2738. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2739. for (size_t i = 1; i < ne.size(); i++) {
  2740. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2741. }
  2742. return buf;
  2743. }
  2744. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2745. char buf[256];
  2746. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2747. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2748. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2749. }
  2750. return buf;
  2751. }
  2752. namespace GGUFMeta {
  2753. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2754. struct GKV_Base_Type {
  2755. static constexpr gguf_type gt = gt_;
  2756. static T getter(const gguf_context * ctx, const int kid) {
  2757. return gfun(ctx, kid);
  2758. }
  2759. };
  2760. template<typename T> struct GKV_Base;
  2761. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2762. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2763. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2764. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2765. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2766. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2767. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2768. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2769. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2770. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2771. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2772. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2773. template<> struct GKV_Base<std::string> {
  2774. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2775. static std::string getter(const gguf_context * ctx, const int kid) {
  2776. return gguf_get_val_str(ctx, kid);
  2777. }
  2778. };
  2779. struct ArrayInfo {
  2780. const gguf_type gt;
  2781. const size_t length;
  2782. const void * data;
  2783. };
  2784. template<> struct GKV_Base<ArrayInfo> {
  2785. public:
  2786. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2787. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2788. return ArrayInfo {
  2789. gguf_get_arr_type(ctx, k),
  2790. size_t(gguf_get_arr_n(ctx, k)),
  2791. gguf_get_arr_data(ctx, k),
  2792. };
  2793. }
  2794. };
  2795. template<typename T>
  2796. class GKV : public GKV_Base<T> {
  2797. GKV() = delete;
  2798. public:
  2799. static T get_kv(const gguf_context * ctx, const int k) {
  2800. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2801. if (kt != GKV::gt) {
  2802. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2803. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2804. }
  2805. return GKV::getter(ctx, k);
  2806. }
  2807. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2808. switch (ty) {
  2809. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2810. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2811. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2812. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2813. }
  2814. return "unknown";
  2815. }
  2816. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2817. if (!ovrd) { return false; }
  2818. if (ovrd->tag == expected_type) {
  2819. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2820. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2821. switch (ovrd->tag) {
  2822. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2823. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2824. } break;
  2825. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2826. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2827. } break;
  2828. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2829. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2830. } break;
  2831. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2832. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2833. } break;
  2834. default:
  2835. // Shouldn't be possible to end up here, but just in case...
  2836. throw std::runtime_error(
  2837. format("Unsupported attempt to override %s type for metadata key %s\n",
  2838. override_type_to_str(ovrd->tag), ovrd->key));
  2839. }
  2840. return true;
  2841. }
  2842. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2843. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2844. return false;
  2845. }
  2846. template<typename OT>
  2847. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2848. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2849. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2850. target = ovrd->val_bool;
  2851. return true;
  2852. }
  2853. return false;
  2854. }
  2855. template<typename OT>
  2856. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2857. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2858. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2859. target = ovrd->val_i64;
  2860. return true;
  2861. }
  2862. return false;
  2863. }
  2864. template<typename OT>
  2865. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2866. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2867. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2868. target = ovrd->val_f64;
  2869. return true;
  2870. }
  2871. return false;
  2872. }
  2873. template<typename OT>
  2874. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2875. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2876. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2877. target = ovrd->val_str;
  2878. return true;
  2879. }
  2880. return false;
  2881. }
  2882. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2883. if (try_override<T>(target, ovrd)) {
  2884. return true;
  2885. }
  2886. if (k < 0) { return false; }
  2887. target = get_kv(ctx, k);
  2888. return true;
  2889. }
  2890. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2891. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2892. }
  2893. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2894. return set(ctx, key.c_str(), target, ovrd);
  2895. }
  2896. };
  2897. }
  2898. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2899. struct llama_model_loader {
  2900. int n_kv = 0;
  2901. int n_tensors = 0;
  2902. int n_created = 0;
  2903. int64_t n_elements = 0;
  2904. size_t n_bytes = 0;
  2905. bool use_mmap = false;
  2906. bool check_tensors;
  2907. llama_files files;
  2908. llama_ftype ftype;
  2909. llama_fver fver;
  2910. llama_mmaps mappings;
  2911. // Holds information on a model weight
  2912. struct llama_tensor_weight {
  2913. uint16_t idx; // source file index
  2914. size_t offs; // tensor data offset in the original file
  2915. ggml_tensor * tensor;
  2916. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2917. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2918. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2919. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2920. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2921. }
  2922. }
  2923. };
  2924. std::vector<llama_tensor_weight> weights;
  2925. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2926. struct gguf_context * meta = NULL;
  2927. std::vector<ggml_context *> contexts;
  2928. std::string arch_name;
  2929. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2930. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2931. int trace = 0;
  2932. if (getenv("LLAMA_TRACE")) {
  2933. trace = atoi(getenv("LLAMA_TRACE"));
  2934. }
  2935. if (param_overrides_p != nullptr) {
  2936. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2937. kv_overrides.insert({std::string(p->key), *p});
  2938. }
  2939. }
  2940. struct ggml_context * ctx = NULL;
  2941. struct gguf_init_params params = {
  2942. /*.no_alloc = */ true,
  2943. /*.ctx = */ &ctx,
  2944. };
  2945. meta = gguf_init_from_file(fname.c_str(), params);
  2946. if (!meta) {
  2947. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2948. }
  2949. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2950. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2951. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2952. contexts.emplace_back(ctx);
  2953. // Save tensors data offset of the main file.
  2954. // For subsidiary files, `meta` tensor data offset must not be used,
  2955. // so we build a unified tensors index for weights.
  2956. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2957. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2958. }
  2959. uint16_t n_split = 0;
  2960. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2961. // Load additional GGML contexts
  2962. if (n_split > 1) {
  2963. uint16_t idx = 0;
  2964. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2965. if (idx != 0) {
  2966. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2967. }
  2968. char split_prefix[PATH_MAX] = {0};
  2969. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2970. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2971. }
  2972. if (trace > 0) {
  2973. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2974. }
  2975. char split_path[PATH_MAX] = {0};
  2976. for (idx = 1; idx < n_split; idx++) {
  2977. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2978. struct gguf_init_params split_params = {
  2979. /*.no_alloc = */ true,
  2980. /*.ctx = */ &ctx,
  2981. };
  2982. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2983. if (!ctx_gguf) {
  2984. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2985. }
  2986. files.emplace_back(new llama_file(split_path, "rb"));
  2987. contexts.emplace_back(ctx);
  2988. // Save tensors data offset info of the shard.
  2989. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2990. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2991. }
  2992. gguf_free(ctx_gguf);
  2993. }
  2994. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2995. // sanity check
  2996. {
  2997. const int n_tensors_loaded = (int) weights.size();
  2998. if (n_tensors != n_tensors_loaded) {
  2999. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  3000. }
  3001. }
  3002. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  3003. }
  3004. n_kv = gguf_get_n_kv(meta);
  3005. n_tensors = weights.size();
  3006. fver = (enum llama_fver) gguf_get_version(meta);
  3007. std::set<std::string> tensor_names;
  3008. for (auto & w : weights) {
  3009. n_elements += ggml_nelements(w.tensor);
  3010. n_bytes += ggml_nbytes(w.tensor);
  3011. // make sure there is no duplicated tensor names
  3012. const std::string name(w.tensor->name);
  3013. auto found = tensor_names.find(name);
  3014. if (found != tensor_names.end()) {
  3015. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  3016. }
  3017. tensor_names.insert(name);
  3018. }
  3019. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  3020. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  3021. // determine file type based on the number of tensors for each quantization and print meta data
  3022. // TODO: make optional
  3023. {
  3024. std::map<enum ggml_type, uint32_t> n_type;
  3025. uint32_t n_type_max = 0;
  3026. enum ggml_type type_max = GGML_TYPE_F32;
  3027. for (int i = 0; i < n_tensors; i++) {
  3028. const ggml_tensor * tensor = weights.at(i).tensor;
  3029. enum ggml_type type = tensor->type;
  3030. n_type[type]++;
  3031. if (n_type_max < n_type[type]) {
  3032. n_type_max = n_type[type];
  3033. type_max = type;
  3034. }
  3035. if (trace > 0) {
  3036. const uint16_t sid = weights.at(i).idx;
  3037. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  3038. }
  3039. }
  3040. switch (type_max) {
  3041. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  3042. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  3043. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  3044. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  3045. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  3046. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  3047. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  3048. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  3049. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  3050. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  3051. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  3052. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  3053. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  3054. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  3055. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  3056. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  3057. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  3058. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  3059. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  3060. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  3061. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  3062. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  3063. default:
  3064. {
  3065. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  3066. ftype = LLAMA_FTYPE_ALL_F32;
  3067. } break;
  3068. }
  3069. // this is a way to mark that we have "guessed" the file type
  3070. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  3071. {
  3072. const int kid = gguf_find_key(meta, "general.file_type");
  3073. if (kid >= 0) {
  3074. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  3075. }
  3076. }
  3077. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  3078. for (int i = 0; i < n_kv; i++) {
  3079. const char * name = gguf_get_key(meta, i);
  3080. const enum gguf_type type = gguf_get_kv_type(meta, i);
  3081. const std::string type_name =
  3082. type == GGUF_TYPE_ARRAY
  3083. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  3084. : gguf_type_name(type);
  3085. std::string value = gguf_kv_to_str(meta, i);
  3086. const size_t MAX_VALUE_LEN = 40;
  3087. if (value.size() > MAX_VALUE_LEN) {
  3088. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  3089. }
  3090. replace_all(value, "\n", "\\n");
  3091. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  3092. }
  3093. // print type counts
  3094. for (auto & kv : n_type) {
  3095. if (kv.second == 0) {
  3096. continue;
  3097. }
  3098. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  3099. }
  3100. }
  3101. if (!llama_mmap::SUPPORTED) {
  3102. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  3103. use_mmap = false;
  3104. }
  3105. this->use_mmap = use_mmap;
  3106. this->check_tensors = check_tensors;
  3107. }
  3108. ~llama_model_loader() {
  3109. if (meta) {
  3110. gguf_free(meta);
  3111. }
  3112. for (auto * ctx : contexts) {
  3113. ggml_free(ctx);
  3114. }
  3115. }
  3116. template<typename T>
  3117. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3118. get_arr_n(const std::string & key, T & result, const bool required = true) {
  3119. const int kid = gguf_find_key(meta, key.c_str());
  3120. if (kid < 0) {
  3121. if (required) {
  3122. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3123. }
  3124. return false;
  3125. }
  3126. struct GGUFMeta::ArrayInfo arr_info =
  3127. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3128. result = arr_info.length;
  3129. return true;
  3130. }
  3131. template<typename T>
  3132. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3133. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3134. return get_arr_n(llm_kv(kid), result, required);
  3135. }
  3136. template<typename T>
  3137. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3138. const int kid = gguf_find_key(meta, key.c_str());
  3139. if (kid < 0) {
  3140. if (required) {
  3141. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3142. }
  3143. return false;
  3144. }
  3145. struct GGUFMeta::ArrayInfo arr_info =
  3146. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3147. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3148. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3149. }
  3150. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3151. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3152. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3153. result.resize(arr_info.length);
  3154. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3155. return true;
  3156. }
  3157. template<typename T>
  3158. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3159. return get_arr(llm_kv(kid), result, required);
  3160. }
  3161. template<typename T>
  3162. bool get_key(const std::string & key, T & result, const bool required = true) {
  3163. auto it = kv_overrides.find(key);
  3164. const struct llama_model_kv_override * override =
  3165. it != kv_overrides.end() ? &it->second : nullptr;
  3166. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3167. if (required && !found) {
  3168. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3169. }
  3170. return found;
  3171. }
  3172. template<typename T>
  3173. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3174. return get_key(llm_kv(kid), result, required);
  3175. }
  3176. std::string get_arch_name() const {
  3177. return arch_name;
  3178. }
  3179. enum llm_arch get_arch() const {
  3180. return llm_kv.arch;
  3181. }
  3182. const char * get_tensor_name(int i) const {
  3183. return weights.at(i).tensor->name;
  3184. }
  3185. const llama_tensor_weight * get_weight(const char * name) const {
  3186. for (const auto & weight : weights) {
  3187. if (strcmp(name, weight.tensor->name) == 0) {
  3188. return &weight;
  3189. }
  3190. }
  3191. return nullptr;
  3192. }
  3193. const llama_tensor_weight * get_weight(int i) const {
  3194. return get_weight(get_tensor_name(i));
  3195. }
  3196. const llama_tensor_weight & require_weight(const char * name) const {
  3197. const llama_tensor_weight * weight = get_weight(name);
  3198. if (!weight) {
  3199. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3200. }
  3201. return *weight;
  3202. }
  3203. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3204. const auto * weight = get_weight(name);
  3205. if (!weight) {
  3206. return nullptr;
  3207. }
  3208. return weight->tensor;
  3209. }
  3210. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3211. struct ggml_tensor * tensor = get_tensor_meta(name);
  3212. if (!tensor) {
  3213. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3214. }
  3215. return tensor;
  3216. }
  3217. struct ggml_tensor * get_tensor_meta(int i) const {
  3218. return get_tensor_meta(get_tensor_name(i));
  3219. }
  3220. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3221. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3222. ggml_set_name(tensor, ggml_get_name(cur));
  3223. if (duplicated) {
  3224. size_data += ggml_nbytes(cur);
  3225. } else {
  3226. n_created++;
  3227. }
  3228. return tensor;
  3229. }
  3230. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3231. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3232. if (cur == NULL) {
  3233. if (!required) {
  3234. return NULL;
  3235. }
  3236. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3237. }
  3238. {
  3239. bool is_ok = true;
  3240. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3241. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3242. is_ok = false;
  3243. break;
  3244. }
  3245. }
  3246. if (!is_ok) {
  3247. throw std::runtime_error(
  3248. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3249. __func__, name.c_str(),
  3250. llama_format_tensor_shape(ne).c_str(),
  3251. llama_format_tensor_shape(cur).c_str()));
  3252. }
  3253. }
  3254. return cur;
  3255. }
  3256. static const int TENSOR_NOT_REQUIRED = 1;
  3257. static const int TENSOR_DUPLICATED = 2;
  3258. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3259. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3260. if (cur == NULL) {
  3261. return NULL;
  3262. }
  3263. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3264. }
  3265. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3266. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3267. if (cur == NULL) {
  3268. return NULL;
  3269. }
  3270. if (cur->type != base->type) {
  3271. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3272. }
  3273. std::array<int64_t, GGML_MAX_DIMS> dims;
  3274. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3275. dims[i] = i < ne.size() ? ne[i] : 1;
  3276. }
  3277. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3278. dims[0], dims[1], dims[2], dims[3],
  3279. cur->nb[1], cur->nb[2], cur->nb[3],
  3280. offset);
  3281. ggml_set_name(tensor, name.c_str());
  3282. n_created++;
  3283. return tensor;
  3284. }
  3285. void done_getting_tensors() const {
  3286. if (n_created != n_tensors) {
  3287. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3288. }
  3289. }
  3290. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3291. if (use_mmap) {
  3292. mappings.reserve(files.size());
  3293. mmaps_used.reserve(files.size());
  3294. for (const auto & file : files) {
  3295. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3296. mmaps_used.emplace_back(mapping->size, 0);
  3297. if (mlock_mmaps) {
  3298. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3299. mlock_mmap->init(mapping->addr);
  3300. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3301. }
  3302. mappings.emplace_back(std::move(mapping));
  3303. }
  3304. }
  3305. // compute the total size of all tensors for progress reporting
  3306. for (auto & w : weights) {
  3307. size_data += ggml_nbytes(w.tensor);
  3308. }
  3309. }
  3310. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3311. GGML_ASSERT(!mappings.empty());
  3312. const auto & mapping = mappings.at(idx);
  3313. *first = mapping->size;
  3314. *last = 0;
  3315. *addr = mapping->addr;
  3316. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3317. try {
  3318. const auto * weight = get_weight(ggml_get_name(tensor));
  3319. if (!weight) {
  3320. continue;
  3321. }
  3322. if (weight->idx != idx) {
  3323. continue;
  3324. }
  3325. *first = std::min(*first, weight->offs);
  3326. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3327. } catch(...) {
  3328. // the tensor is not in the model
  3329. }
  3330. }
  3331. }
  3332. // for backwards compatibility, does not support ggml-backend
  3333. void load_data_for(struct ggml_tensor * cur) const {
  3334. const auto & w = require_weight(ggml_get_name(cur));
  3335. if (use_mmap) {
  3336. const auto & mapping = mappings.at(w.idx);
  3337. if (cur->data == nullptr) {
  3338. cur->data = (uint8_t *)mapping->addr + w.offs;
  3339. } else {
  3340. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3341. }
  3342. } else {
  3343. GGML_ASSERT(cur->data != nullptr);
  3344. GGML_ASSERT(w.idx < files.size());
  3345. const auto & file = files.at(w.idx);
  3346. file->seek(w.offs, SEEK_SET);
  3347. file->read_raw(cur->data, ggml_nbytes(cur));
  3348. }
  3349. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3350. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3351. }
  3352. }
  3353. size_t size_done = 0;
  3354. size_t size_data = 0;
  3355. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3356. // Returns false if cancelled by progress_callback
  3357. bool load_all_data(
  3358. struct ggml_context * ctx,
  3359. llama_buf_map & bufs_mmap,
  3360. llama_mlocks * lmlocks,
  3361. llama_progress_callback progress_callback,
  3362. void * progress_callback_user_data) {
  3363. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3364. std::vector<no_init<uint8_t>> read_buf;
  3365. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3366. #if defined(GGML_USE_CUDA)
  3367. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  3368. // NVMe raid configurations might require more / larger buffers.
  3369. constexpr size_t num_buffers = 4;
  3370. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  3371. std::vector<ggml_backend_buffer_t> host_buffers;
  3372. std::vector<void*> host_ptrs;
  3373. std::vector<ggml_backend_event_t> events;
  3374. size_t buffer_idx = 0; // buffer to use for async loads
  3375. ggml_backend_t cuda_backend = nullptr;
  3376. if (!use_mmap && !check_tensors) {
  3377. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  3378. // First determine if the CUDA backend is active, and if so, determine the device ID.
  3379. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
  3380. if (buf) {
  3381. ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
  3382. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  3383. auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
  3384. if (buffer_type == cuda_buffer_type) {
  3385. cuda_backend = ggml_backend_cuda_init(i);
  3386. break;
  3387. }
  3388. }
  3389. }
  3390. // If the cuda backend is active create pinned memory buffers and events for synchronisation.
  3391. if (cuda_backend) {
  3392. for (size_t idx = 0; idx < num_buffers; ++idx) {
  3393. host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
  3394. host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
  3395. events.emplace_back(ggml_backend_event_new(cuda_backend));
  3396. }
  3397. }
  3398. }
  3399. #endif
  3400. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3401. const auto * weight = get_weight(ggml_get_name(cur));
  3402. if (weight == nullptr) {
  3403. // this can happen with split experts models
  3404. continue;
  3405. }
  3406. if (progress_callback) {
  3407. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3408. return false;
  3409. }
  3410. }
  3411. size_t n_size = ggml_nbytes(cur);
  3412. if (use_mmap) {
  3413. const auto & mapping = mappings.at(weight->idx);
  3414. ggml_backend_buffer_t buf_mmap = nullptr;
  3415. if (bufs_mmap.count(weight->idx)) {
  3416. buf_mmap = bufs_mmap.at(weight->idx);
  3417. }
  3418. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3419. if (check_tensors) {
  3420. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3421. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3422. }));
  3423. }
  3424. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3425. if (buf_mmap && cur->data == nullptr) {
  3426. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3427. if (lmlocks) {
  3428. const auto & lmlock = lmlocks->at(weight->idx);
  3429. lmlock->grow_to(weight->offs + n_size);
  3430. }
  3431. auto & mmap_used = mmaps_used[weight->idx];
  3432. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3433. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3434. } else {
  3435. ggml_backend_tensor_set(cur, data, 0, n_size);
  3436. }
  3437. } else {
  3438. GGML_ASSERT(weight->idx < files.size());
  3439. const auto & file = files.at(weight->idx);
  3440. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3441. file->seek(weight->offs, SEEK_SET);
  3442. file->read_raw(cur->data, n_size);
  3443. if (check_tensors) {
  3444. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3445. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3446. }));
  3447. }
  3448. } else {
  3449. #if defined(GGML_USE_CUDA)
  3450. // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  3451. if (cuda_backend) {
  3452. file->seek(weight->offs, SEEK_SET);
  3453. size_t bytes_read = 0;
  3454. while (bytes_read < n_size) {
  3455. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  3456. ggml_backend_event_synchronize(events[buffer_idx]);
  3457. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  3458. ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  3459. ggml_backend_event_record(events[buffer_idx]);
  3460. bytes_read += read_iteration;
  3461. ++buffer_idx;
  3462. buffer_idx %= num_buffers;
  3463. }
  3464. }
  3465. else
  3466. #endif
  3467. {
  3468. read_buf.resize(n_size);
  3469. file->seek(weight->offs, SEEK_SET);
  3470. file->read_raw(read_buf.data(), n_size);
  3471. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3472. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3473. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3474. }
  3475. }
  3476. }
  3477. }
  3478. size_done += n_size;
  3479. }
  3480. #if defined(GGML_USE_CUDA)
  3481. // free temporary resources used for async cuda uploads
  3482. if (cuda_backend) {
  3483. for (size_t idx = 0; idx < num_buffers;++idx) {
  3484. ggml_backend_event_synchronize(events[idx]);
  3485. ggml_backend_event_free(events[idx]);
  3486. ggml_backend_buffer_free(host_buffers[idx]);
  3487. }
  3488. ggml_backend_free(cuda_backend);
  3489. }
  3490. #endif
  3491. // check validation results
  3492. bool validation_failed = false;
  3493. for (auto & future : validation_result) {
  3494. auto result = future.get();
  3495. if (!result.second) {
  3496. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3497. validation_failed = true;
  3498. }
  3499. }
  3500. if (validation_failed) {
  3501. throw std::runtime_error("found tensors with invalid data");
  3502. }
  3503. // check if this is the last call and do final cleanup
  3504. if (size_done >= size_data) {
  3505. // unmap offloaded tensors and metadata
  3506. if (use_mmap) {
  3507. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3508. const auto & mmap_used = mmaps_used.at(idx);
  3509. auto & mapping = mappings.at(idx);
  3510. mapping->unmap_fragment(0, mmap_used.first);
  3511. if (mmap_used.second != 0) {
  3512. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3513. }
  3514. }
  3515. }
  3516. if (progress_callback) {
  3517. // Even though the model is done loading, we still honor
  3518. // cancellation since we need to free allocations.
  3519. return progress_callback(1.0f, progress_callback_user_data);
  3520. }
  3521. }
  3522. return true;
  3523. }
  3524. };
  3525. template<>
  3526. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3527. uint32_t tmp;
  3528. const bool found = get_key(kid, tmp, required);
  3529. if (found) {
  3530. result = (enum llama_pooling_type) tmp;
  3531. } else {
  3532. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3533. }
  3534. return found;
  3535. }
  3536. //
  3537. // load LLaMA models
  3538. //
  3539. static const char * llama_model_arch_name(llm_arch arch) {
  3540. auto it = LLM_ARCH_NAMES.find(arch);
  3541. if (it == LLM_ARCH_NAMES.end()) {
  3542. return "unknown";
  3543. }
  3544. return it->second;
  3545. }
  3546. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3547. if (ftype & LLAMA_FTYPE_GUESSED) {
  3548. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3549. }
  3550. switch (ftype) {
  3551. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3552. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3553. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3554. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3555. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3556. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3557. return "Q4_1, some F16";
  3558. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3559. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3560. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3561. // K-quants
  3562. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3563. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3564. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3565. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3566. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3567. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3568. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3569. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3570. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3571. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3572. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3573. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3574. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3575. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3576. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3577. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3578. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3579. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3580. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3581. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3582. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3583. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3584. default: return "unknown, may not work";
  3585. }
  3586. }
  3587. static const char * llama_model_type_name(e_model type) {
  3588. switch (type) {
  3589. case MODEL_14M: return "14M";
  3590. case MODEL_17M: return "17M";
  3591. case MODEL_22M: return "22M";
  3592. case MODEL_33M: return "33M";
  3593. case MODEL_70M: return "70M";
  3594. case MODEL_109M: return "109M";
  3595. case MODEL_137M: return "137M";
  3596. case MODEL_160M: return "160M";
  3597. case MODEL_335M: return "335M";
  3598. case MODEL_410M: return "410M";
  3599. case MODEL_0_5B: return "0.5B";
  3600. case MODEL_1B: return "1B";
  3601. case MODEL_1_4B: return "1.4B";
  3602. case MODEL_2B: return "2B";
  3603. case MODEL_2_8B: return "2.8B";
  3604. case MODEL_3B: return "3B";
  3605. case MODEL_4B: return "4B";
  3606. case MODEL_6_9B: return "6.9B";
  3607. case MODEL_7B: return "7B";
  3608. case MODEL_8B: return "8B";
  3609. case MODEL_12B: return "12B";
  3610. case MODEL_13B: return "13B";
  3611. case MODEL_14B: return "14B";
  3612. case MODEL_15B: return "15B";
  3613. case MODEL_16B: return "16B";
  3614. case MODEL_20B: return "20B";
  3615. case MODEL_30B: return "30B";
  3616. case MODEL_34B: return "34B";
  3617. case MODEL_35B: return "35B";
  3618. case MODEL_40B: return "40B";
  3619. case MODEL_65B: return "65B";
  3620. case MODEL_70B: return "70B";
  3621. case MODEL_236B: return "236B";
  3622. case MODEL_314B: return "314B";
  3623. case MODEL_SMALL: return "0.1B";
  3624. case MODEL_MEDIUM: return "0.4B";
  3625. case MODEL_LARGE: return "0.8B";
  3626. case MODEL_XL: return "1.5B";
  3627. case MODEL_A2_7B: return "A2.7B";
  3628. case MODEL_8x7B: return "8x7B";
  3629. case MODEL_8x22B: return "8x22B";
  3630. case MODEL_16x12B: return "16x12B";
  3631. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3632. default: return "?B";
  3633. }
  3634. }
  3635. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3636. switch (type) {
  3637. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3638. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3639. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3640. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3641. default: return "unknown";
  3642. }
  3643. }
  3644. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3645. model.arch = ml.get_arch();
  3646. if (model.arch == LLM_ARCH_UNKNOWN) {
  3647. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3648. }
  3649. }
  3650. static void llm_load_hparams(
  3651. llama_model_loader & ml,
  3652. llama_model & model) {
  3653. auto & hparams = model.hparams;
  3654. const gguf_context * ctx = ml.meta;
  3655. // get metadata as string
  3656. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3657. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3658. if (type == GGUF_TYPE_ARRAY) {
  3659. continue;
  3660. }
  3661. const char * name = gguf_get_key(ctx, i);
  3662. const std::string value = gguf_kv_to_str(ctx, i);
  3663. model.gguf_kv.emplace(name, value);
  3664. }
  3665. // get general kv
  3666. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3667. // get hparams kv
  3668. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3669. // everything past this point is not vocab-related
  3670. if (hparams.vocab_only) {
  3671. return;
  3672. }
  3673. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3674. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3675. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3676. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3677. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3678. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3679. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3680. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3681. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3682. if (hparams.n_expert > 0) {
  3683. GGML_ASSERT(hparams.n_expert_used > 0);
  3684. } else {
  3685. GGML_ASSERT(hparams.n_expert_used == 0);
  3686. }
  3687. // n_head_kv is optional, default to n_head
  3688. hparams.n_head_kv = hparams.n_head;
  3689. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3690. bool rope_finetuned = false;
  3691. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3692. hparams.rope_finetuned = rope_finetuned;
  3693. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  3694. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  3695. // rope_freq_base (optional)
  3696. hparams.rope_freq_base_train = 10000.0f;
  3697. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3698. std::string rope_scaling("linear");
  3699. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3700. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3701. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3702. // rope_freq_scale (inverse of the kv) is optional
  3703. float ropescale = 0.0f;
  3704. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3705. // try the old key name
  3706. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3707. }
  3708. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3709. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3710. // sanity check for n_rot (optional)
  3711. {
  3712. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3713. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3714. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3715. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3716. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3717. }
  3718. }
  3719. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3720. // gpt-j n_rot = rotary_dim
  3721. }
  3722. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3723. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3724. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3725. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3726. // arch-specific KVs
  3727. switch (model.arch) {
  3728. case LLM_ARCH_LLAMA:
  3729. {
  3730. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3731. if (hparams.n_expert == 8) {
  3732. switch (hparams.n_layer) {
  3733. case 32: model.type = e_model::MODEL_8x7B; break;
  3734. case 56: model.type = e_model::MODEL_8x22B; break;
  3735. default: model.type = e_model::MODEL_UNKNOWN;
  3736. }
  3737. } else {
  3738. switch (hparams.n_layer) {
  3739. case 22: model.type = e_model::MODEL_1B; break;
  3740. case 26: model.type = e_model::MODEL_3B; break;
  3741. // granite uses a vocab with len 49152
  3742. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3743. case 36: model.type = e_model::MODEL_8B; break; // granite
  3744. case 40: model.type = e_model::MODEL_13B; break;
  3745. case 48: model.type = e_model::MODEL_34B; break;
  3746. case 60: model.type = e_model::MODEL_30B; break;
  3747. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3748. default: model.type = e_model::MODEL_UNKNOWN;
  3749. }
  3750. }
  3751. } break;
  3752. case LLM_ARCH_MINICPM:
  3753. {
  3754. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3755. switch (hparams.n_layer) {
  3756. case 40: model.type = e_model::MODEL_2B; break;
  3757. default: model.type = e_model::MODEL_UNKNOWN;
  3758. }
  3759. } break;
  3760. case LLM_ARCH_GROK:
  3761. {
  3762. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3763. switch (hparams.n_layer) {
  3764. case 64: model.type = e_model::MODEL_314B; break;
  3765. default: model.type = e_model::MODEL_UNKNOWN;
  3766. }
  3767. } break;
  3768. case LLM_ARCH_FALCON:
  3769. {
  3770. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3771. switch (hparams.n_layer) {
  3772. case 32: model.type = e_model::MODEL_7B; break;
  3773. case 60: model.type = e_model::MODEL_40B; break;
  3774. default: model.type = e_model::MODEL_UNKNOWN;
  3775. }
  3776. } break;
  3777. case LLM_ARCH_BAICHUAN:
  3778. {
  3779. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3780. switch (hparams.n_layer) {
  3781. case 32: model.type = e_model::MODEL_7B; break;
  3782. case 40: model.type = e_model::MODEL_13B; break;
  3783. default: model.type = e_model::MODEL_UNKNOWN;
  3784. }
  3785. if (model.type == e_model::MODEL_13B) {
  3786. // TODO: become GGUF KV parameter
  3787. hparams.f_max_alibi_bias = 8.0f;
  3788. }
  3789. } break;
  3790. case LLM_ARCH_STARCODER:
  3791. {
  3792. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3793. switch (hparams.n_layer) {
  3794. case 24: model.type = e_model::MODEL_1B; break;
  3795. case 36: model.type = e_model::MODEL_3B; break;
  3796. case 42: model.type = e_model::MODEL_7B; break;
  3797. case 40: model.type = e_model::MODEL_15B; break;
  3798. default: model.type = e_model::MODEL_UNKNOWN;
  3799. }
  3800. } break;
  3801. case LLM_ARCH_REFACT:
  3802. {
  3803. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3804. switch (hparams.n_layer) {
  3805. case 32: model.type = e_model::MODEL_1B; break;
  3806. default: model.type = e_model::MODEL_UNKNOWN;
  3807. }
  3808. // TODO: become GGUF KV parameter
  3809. hparams.f_max_alibi_bias = 8.0f;
  3810. } break;
  3811. case LLM_ARCH_BERT:
  3812. {
  3813. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3814. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3815. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3816. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3817. switch (hparams.n_layer) {
  3818. case 3:
  3819. model.type = e_model::MODEL_17M; break; // bge-micro
  3820. case 6:
  3821. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3822. case 12:
  3823. switch (hparams.n_embd) {
  3824. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3825. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3826. } break;
  3827. case 24:
  3828. model.type = e_model::MODEL_335M; break; // bge-large
  3829. }
  3830. } break;
  3831. case LLM_ARCH_JINA_BERT_V2:
  3832. {
  3833. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3834. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3835. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3836. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3837. hparams.f_max_alibi_bias = 8.0f;
  3838. switch (hparams.n_layer) {
  3839. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3840. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3841. }
  3842. } break;
  3843. case LLM_ARCH_NOMIC_BERT:
  3844. {
  3845. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3846. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3847. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3848. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3849. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3850. model.type = e_model::MODEL_137M;
  3851. }
  3852. } break;
  3853. case LLM_ARCH_BLOOM:
  3854. {
  3855. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3856. switch (hparams.n_layer) {
  3857. case 24: model.type = e_model::MODEL_1B; break;
  3858. case 30:
  3859. switch (hparams.n_embd) {
  3860. case 2560: model.type = e_model::MODEL_3B; break;
  3861. case 4096: model.type = e_model::MODEL_7B; break;
  3862. } break;
  3863. }
  3864. // TODO: become GGUF KV parameter
  3865. hparams.f_max_alibi_bias = 8.0f;
  3866. } break;
  3867. case LLM_ARCH_MPT:
  3868. {
  3869. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3870. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3871. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3872. switch (hparams.n_layer) {
  3873. case 32: model.type = e_model::MODEL_7B; break;
  3874. case 48: model.type = e_model::MODEL_30B; break;
  3875. default: model.type = e_model::MODEL_UNKNOWN;
  3876. }
  3877. } break;
  3878. case LLM_ARCH_STABLELM:
  3879. {
  3880. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3881. switch (hparams.n_layer) {
  3882. case 24: model.type = e_model::MODEL_1B; break;
  3883. case 32: model.type = e_model::MODEL_3B; break;
  3884. case 40: model.type = e_model::MODEL_12B; break;
  3885. default: model.type = e_model::MODEL_UNKNOWN;
  3886. }
  3887. } break;
  3888. case LLM_ARCH_QWEN:
  3889. {
  3890. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3891. switch (hparams.n_layer) {
  3892. case 32: model.type = e_model::MODEL_7B; break;
  3893. case 40: model.type = e_model::MODEL_13B; break;
  3894. default: model.type = e_model::MODEL_UNKNOWN;
  3895. }
  3896. } break;
  3897. case LLM_ARCH_QWEN2:
  3898. {
  3899. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3900. switch (hparams.n_layer) {
  3901. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3902. case 32: model.type = e_model::MODEL_7B; break;
  3903. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3904. case 80: model.type = e_model::MODEL_70B; break;
  3905. default: model.type = e_model::MODEL_UNKNOWN;
  3906. }
  3907. } break;
  3908. case LLM_ARCH_QWEN2MOE:
  3909. {
  3910. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  3911. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  3912. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3913. switch (hparams.n_layer) {
  3914. case 24: model.type = e_model::MODEL_A2_7B; break;
  3915. default: model.type = e_model::MODEL_UNKNOWN;
  3916. }
  3917. } break;
  3918. case LLM_ARCH_PHI2:
  3919. {
  3920. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3921. switch (hparams.n_layer) {
  3922. case 24: model.type = e_model::MODEL_1B; break;
  3923. case 32: model.type = e_model::MODEL_3B; break;
  3924. default: model.type = e_model::MODEL_UNKNOWN;
  3925. }
  3926. } break;
  3927. case LLM_ARCH_PHI3:
  3928. {
  3929. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3930. switch (hparams.n_layer) {
  3931. case 24: model.type = e_model::MODEL_1B; break;
  3932. case 32: model.type = e_model::MODEL_3B; break;
  3933. case 40: model.type = e_model::MODEL_14B; break;
  3934. default: model.type = e_model::MODEL_UNKNOWN;
  3935. }
  3936. } break;
  3937. case LLM_ARCH_PLAMO:
  3938. {
  3939. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3940. switch (hparams.n_layer) {
  3941. case 40: model.type = e_model::MODEL_13B; break;
  3942. default: model.type = e_model::MODEL_UNKNOWN;
  3943. }
  3944. } break;
  3945. case LLM_ARCH_GPT2:
  3946. {
  3947. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3948. switch (hparams.n_layer) {
  3949. case 12: model.type = e_model::MODEL_SMALL; break;
  3950. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3951. case 36: model.type = e_model::MODEL_LARGE; break;
  3952. case 48: model.type = e_model::MODEL_XL; break;
  3953. default: model.type = e_model::MODEL_UNKNOWN;
  3954. }
  3955. } break;
  3956. case LLM_ARCH_CODESHELL:
  3957. {
  3958. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3959. switch (hparams.n_layer) {
  3960. case 42: model.type = e_model::MODEL_SMALL; break;
  3961. default: model.type = e_model::MODEL_UNKNOWN;
  3962. }
  3963. } break;
  3964. case LLM_ARCH_ORION:
  3965. {
  3966. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3967. switch (hparams.n_layer) {
  3968. case 40: model.type = e_model::MODEL_14B; break;
  3969. default: model.type = e_model::MODEL_UNKNOWN;
  3970. }
  3971. } break;
  3972. case LLM_ARCH_INTERNLM2:
  3973. {
  3974. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3975. switch (hparams.n_layer) {
  3976. case 32: model.type = e_model::MODEL_7B; break;
  3977. case 48: model.type = e_model::MODEL_20B; break;
  3978. default: model.type = e_model::MODEL_UNKNOWN;
  3979. }
  3980. } break;
  3981. case LLM_ARCH_GEMMA:
  3982. {
  3983. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3984. switch (hparams.n_layer) {
  3985. case 18: model.type = e_model::MODEL_2B; break;
  3986. case 28: model.type = e_model::MODEL_7B; break;
  3987. default: model.type = e_model::MODEL_UNKNOWN;
  3988. }
  3989. } break;
  3990. case LLM_ARCH_STARCODER2:
  3991. {
  3992. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3993. switch (hparams.n_layer) {
  3994. case 30: model.type = e_model::MODEL_3B; break;
  3995. case 32: model.type = e_model::MODEL_7B; break;
  3996. case 40: model.type = e_model::MODEL_15B; break;
  3997. case 52: model.type = e_model::MODEL_20B; break; // granite
  3998. case 88: model.type = e_model::MODEL_34B; break; // granite
  3999. default: model.type = e_model::MODEL_UNKNOWN;
  4000. }
  4001. } break;
  4002. case LLM_ARCH_MAMBA:
  4003. {
  4004. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  4005. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  4006. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  4007. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  4008. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4009. switch (hparams.n_layer) {
  4010. case 24:
  4011. switch (hparams.n_embd) {
  4012. case 768: model.type = e_model::MODEL_SMALL; break;
  4013. default: model.type = e_model::MODEL_UNKNOWN;
  4014. } break;
  4015. case 48:
  4016. switch (hparams.n_embd) {
  4017. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  4018. case 1536: model.type = e_model::MODEL_LARGE; break;
  4019. case 2048: model.type = e_model::MODEL_XL; break;
  4020. default: model.type = e_model::MODEL_UNKNOWN;
  4021. } break;
  4022. case 64:
  4023. switch (hparams.n_embd) {
  4024. case 2560: model.type = e_model::MODEL_3B; break;
  4025. default: model.type = e_model::MODEL_UNKNOWN;
  4026. } break;
  4027. default: model.type = e_model::MODEL_UNKNOWN;
  4028. }
  4029. } break;
  4030. case LLM_ARCH_XVERSE:
  4031. {
  4032. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4033. switch (hparams.n_layer) {
  4034. case 32: model.type = e_model::MODEL_7B; break;
  4035. case 40: model.type = e_model::MODEL_13B; break;
  4036. case 80: model.type = e_model::MODEL_65B; break;
  4037. default: model.type = e_model::MODEL_UNKNOWN;
  4038. }
  4039. } break;
  4040. case LLM_ARCH_COMMAND_R:
  4041. {
  4042. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  4043. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4044. switch (hparams.n_layer) {
  4045. case 40: model.type = e_model::MODEL_35B; break;
  4046. default: model.type = e_model::MODEL_UNKNOWN;
  4047. }
  4048. } break;
  4049. case LLM_ARCH_DBRX:
  4050. {
  4051. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4052. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  4053. switch (hparams.n_layer) {
  4054. case 40: model.type = e_model::MODEL_16x12B; break;
  4055. default: model.type = e_model::MODEL_UNKNOWN;
  4056. }
  4057. } break;
  4058. case LLM_ARCH_OLMO:
  4059. {
  4060. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4061. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  4062. switch (hparams.n_layer) {
  4063. case 22: model.type = e_model::MODEL_1B; break;
  4064. case 32: model.type = e_model::MODEL_7B; break;
  4065. case 80: model.type = e_model::MODEL_70B; break;
  4066. default: model.type = e_model::MODEL_UNKNOWN;
  4067. }
  4068. } break;
  4069. case LLM_ARCH_GPTNEOX:
  4070. {
  4071. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4072. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  4073. switch (hparams.n_layer) {
  4074. case 6:
  4075. switch (hparams.n_ff) {
  4076. case 512: model.type = e_model::MODEL_14M; break;
  4077. case 2048: model.type = e_model::MODEL_70M; break;
  4078. default: model.type = e_model::MODEL_UNKNOWN;
  4079. } break;
  4080. case 12:
  4081. switch (hparams.n_ff) {
  4082. case 3072: model.type = e_model::MODEL_160M; break;
  4083. default: model.type = e_model::MODEL_UNKNOWN;
  4084. } break;
  4085. case 16:
  4086. switch (hparams.n_ff) {
  4087. case 8192: model.type = e_model::MODEL_1B; break;
  4088. default: model.type = e_model::MODEL_UNKNOWN;
  4089. } break;
  4090. case 24:
  4091. switch (hparams.n_ff) {
  4092. case 4096: model.type = e_model::MODEL_410M; break;
  4093. case 8192: model.type = e_model::MODEL_1_4B; break;
  4094. default: model.type = e_model::MODEL_UNKNOWN;
  4095. } break;
  4096. case 32:
  4097. switch (hparams.n_ff) {
  4098. case 10240: model.type = e_model::MODEL_2_8B; break;
  4099. case 16384: model.type = e_model::MODEL_6_9B; break;
  4100. default: model.type = e_model::MODEL_UNKNOWN;
  4101. } break;
  4102. case 36:
  4103. switch (hparams.n_ff) {
  4104. case 20480: model.type = e_model::MODEL_12B; break;
  4105. default: model.type = e_model::MODEL_UNKNOWN;
  4106. } break;
  4107. case 44:
  4108. switch (hparams.n_ff) {
  4109. case 24576: model.type = e_model::MODEL_20B; break;
  4110. default: model.type = e_model::MODEL_UNKNOWN;
  4111. } break;
  4112. default: model.type = e_model::MODEL_UNKNOWN;
  4113. }
  4114. } break;
  4115. case LLM_ARCH_ARCTIC:
  4116. {
  4117. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4118. if (hparams.n_expert == 128) {
  4119. switch (hparams.n_layer) {
  4120. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  4121. default: model.type = e_model::MODEL_UNKNOWN;
  4122. }
  4123. } else {
  4124. model.type = e_model::MODEL_UNKNOWN;
  4125. }
  4126. } break;
  4127. case LLM_ARCH_DEEPSEEK2:
  4128. {
  4129. bool is_lite = (hparams.n_layer == 27);
  4130. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4131. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  4132. if (!is_lite) {
  4133. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  4134. }
  4135. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  4136. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  4137. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  4138. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  4139. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  4140. switch (hparams.n_layer) {
  4141. case 27: model.type = e_model::MODEL_16B; break;
  4142. case 60: model.type = e_model::MODEL_236B; break;
  4143. default: model.type = e_model::MODEL_UNKNOWN;
  4144. }
  4145. } break;
  4146. default: (void)0;
  4147. }
  4148. model.ftype = ml.ftype;
  4149. if (hparams.f_max_alibi_bias > 0.0f) {
  4150. hparams.use_alibi = true;
  4151. }
  4152. hparams.rope_type = llama_rope_type(&model);
  4153. }
  4154. // TODO: This should probably be in llama.h
  4155. static std::vector<llama_vocab::id> llama_tokenize_internal(
  4156. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  4157. );
  4158. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  4159. static void llm_load_vocab(
  4160. llama_model_loader & ml,
  4161. llama_model & model) {
  4162. auto & vocab = model.vocab;
  4163. struct gguf_context * ctx = ml.meta;
  4164. const auto kv = LLM_KV(model.arch);
  4165. // determine vocab type
  4166. {
  4167. std::string tokenizer_model;
  4168. std::string tokenizer_pre;
  4169. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  4170. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4171. if (tokenizer_model == "no_vocab") {
  4172. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  4173. // default special tokens
  4174. vocab.special_bos_id = -1;
  4175. vocab.special_eos_id = -1;
  4176. vocab.special_unk_id = -1;
  4177. vocab.special_sep_id = -1;
  4178. vocab.special_pad_id = -1;
  4179. vocab.special_cls_id = -1;
  4180. vocab.special_mask_id = -1;
  4181. vocab.linefeed_id = -1;
  4182. return;
  4183. } else if (tokenizer_model == "llama") {
  4184. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4185. // default special tokens
  4186. vocab.special_bos_id = 1;
  4187. vocab.special_eos_id = 2;
  4188. vocab.special_unk_id = 0;
  4189. vocab.special_sep_id = -1;
  4190. vocab.special_pad_id = -1;
  4191. vocab.special_cls_id = -1;
  4192. vocab.special_mask_id = -1;
  4193. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4194. if (add_space_prefix_keyidx != -1) {
  4195. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4196. } // The default value of add_space_prefix is true.
  4197. } else if (tokenizer_model == "bert") {
  4198. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4199. // default special tokens
  4200. vocab.special_bos_id = -1;
  4201. vocab.special_eos_id = -1;
  4202. vocab.special_unk_id = 100;
  4203. vocab.special_sep_id = 102;
  4204. vocab.special_pad_id = 0;
  4205. vocab.special_cls_id = 101;
  4206. vocab.special_mask_id = 103;
  4207. vocab.tokenizer_add_space_prefix = false;
  4208. } else if (tokenizer_model == "gpt2") {
  4209. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4210. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4211. if (add_space_prefix_keyidx != -1) {
  4212. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4213. }
  4214. // read bpe merges and populate bpe ranks
  4215. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4216. if (merges_keyidx == -1) {
  4217. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4218. }
  4219. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4220. for (int i = 0; i < n_merges; i++) {
  4221. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4222. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4223. std::string first;
  4224. std::string second;
  4225. const size_t pos = word.find(' ', 1);
  4226. if (pos != std::string::npos) {
  4227. first = word.substr(0, pos);
  4228. second = word.substr(pos + 1);
  4229. }
  4230. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4231. }
  4232. // default special tokens
  4233. vocab.special_bos_id = 11;
  4234. vocab.special_eos_id = 11;
  4235. vocab.special_unk_id = -1;
  4236. vocab.special_sep_id = -1;
  4237. vocab.special_pad_id = -1;
  4238. vocab.special_cls_id = -1;
  4239. vocab.special_mask_id = -1;
  4240. } else {
  4241. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4242. }
  4243. // for now, only BPE models have pre-tokenizers
  4244. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4245. if (tokenizer_pre.empty()) {
  4246. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4247. LLAMA_LOG_WARN("%s: \n", __func__);
  4248. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4249. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4250. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4251. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4252. LLAMA_LOG_WARN("%s: \n", __func__);
  4253. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4254. } else if (tokenizer_pre == "default") {
  4255. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4256. } else if (
  4257. tokenizer_pre == "llama3" ||
  4258. tokenizer_pre == "llama-v3" ||
  4259. tokenizer_pre == "llama-bpe") {
  4260. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4261. vocab.tokenizer_ignore_merges = true;
  4262. vocab.tokenizer_add_bos = true;
  4263. } else if (
  4264. tokenizer_pre == "deepseek-llm") {
  4265. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4266. } else if (
  4267. tokenizer_pre == "deepseek-coder") {
  4268. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4269. } else if (
  4270. tokenizer_pre == "falcon") {
  4271. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4272. } else if (
  4273. tokenizer_pre == "mpt") {
  4274. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4275. } else if (
  4276. tokenizer_pre == "starcoder") {
  4277. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4278. } else if (
  4279. tokenizer_pre == "gpt-2" ||
  4280. tokenizer_pre == "jina-es" ||
  4281. tokenizer_pre == "jina-de" ||
  4282. tokenizer_pre == "jina-v2-es" ||
  4283. tokenizer_pre == "jina-v2-de" ||
  4284. tokenizer_pre == "jina-v2-code") {
  4285. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4286. } else if (
  4287. tokenizer_pre == "refact") {
  4288. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4289. } else if (
  4290. tokenizer_pre == "command-r") {
  4291. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4292. } else if (
  4293. tokenizer_pre == "qwen2") {
  4294. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4295. } else if (
  4296. tokenizer_pre == "stablelm2") {
  4297. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4298. } else if (
  4299. tokenizer_pre == "olmo") {
  4300. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4301. } else if (
  4302. tokenizer_pre == "dbrx") {
  4303. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4304. } else if (
  4305. tokenizer_pre == "smaug-bpe") {
  4306. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4307. } else if (
  4308. tokenizer_pre == "poro-chat") {
  4309. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
  4310. } else {
  4311. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4312. }
  4313. } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4314. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4315. vocab.tokenizer_add_bos = true;
  4316. vocab.tokenizer_add_eos = false;
  4317. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4318. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4319. vocab.tokenizer_add_bos = true;
  4320. vocab.tokenizer_add_eos = false;
  4321. } else {
  4322. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4323. }
  4324. }
  4325. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4326. if (token_idx == -1) {
  4327. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4328. }
  4329. const float * scores = nullptr;
  4330. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4331. if (score_idx != -1) {
  4332. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4333. }
  4334. const int * toktypes = nullptr;
  4335. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4336. if (toktype_idx != -1) {
  4337. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4338. }
  4339. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4340. vocab.id_to_token.resize(n_vocab);
  4341. for (uint32_t i = 0; i < n_vocab; i++) {
  4342. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4343. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4344. vocab.token_to_id[word] = i;
  4345. vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
  4346. auto & token_data = vocab.id_to_token[i];
  4347. token_data.text = std::move(word);
  4348. token_data.score = scores ? scores[i] : 0.0f;
  4349. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4350. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4351. switch(toktypes[i]) {
  4352. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4353. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4354. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4355. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4356. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4357. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4358. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4359. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4360. }
  4361. }
  4362. }
  4363. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4364. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4365. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4366. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4367. // prior to support of FIM special tokens in GGUF, the following
  4368. // will allow those models to continue to work. The general names
  4369. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4370. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4371. // new versions of these models have been published.
  4372. std::string gen_name;
  4373. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4374. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4375. [](unsigned char c){ return std::tolower(c); });
  4376. if (gen_name.find("code") != std::string::npos) {
  4377. if (model.arch == LLM_ARCH_LLAMA
  4378. && 32010 < vocab.id_to_token.size()
  4379. && vocab.id_to_token[32007].text == "<PRE>"
  4380. && vocab.id_to_token[32008].text == "<SUF>"
  4381. && vocab.id_to_token[32009].text == "<MID>"
  4382. && vocab.id_to_token[32010].text == "<EOT>") {
  4383. vocab.special_prefix_id = 32007;
  4384. vocab.special_suffix_id = 32008;
  4385. vocab.special_middle_id = 32009;
  4386. vocab.special_eot_id = 32010;
  4387. } else if (model.arch == LLM_ARCH_GEMMA
  4388. && 107 < vocab.id_to_token.size()
  4389. && vocab.id_to_token[67].text == "<|fim_prefix|>"
  4390. && vocab.id_to_token[69].text == "<|fim_suffix|>"
  4391. && vocab.id_to_token[68].text == "<|fim_middle|>"
  4392. && vocab.id_to_token[107].text == "<end_of_turn>") {
  4393. vocab.special_prefix_id = 67;
  4394. vocab.special_suffix_id = 69;
  4395. vocab.special_middle_id = 68;
  4396. // TODO: this is not EOT, it is "file separator" token, needs fix
  4397. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4398. //vocab.special_eot_id = 70;
  4399. vocab.special_eot_id = 107;
  4400. }
  4401. }
  4402. try {
  4403. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4404. } catch (const std::exception & e) {
  4405. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4406. vocab.linefeed_id = vocab.special_pad_id;
  4407. }
  4408. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4409. vocab.linefeed_id = vocab.special_pad_id;
  4410. } else {
  4411. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4412. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4413. vocab.linefeed_id = ids[0];
  4414. }
  4415. // special tokens
  4416. {
  4417. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4418. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4419. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4420. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4421. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4422. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4423. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4424. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4425. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4426. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4427. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4428. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4429. };
  4430. for (const auto & it : special_token_types) {
  4431. const std::string & key = kv(std::get<0>(it));
  4432. int32_t & id = std::get<1>(it);
  4433. uint32_t new_id;
  4434. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4435. continue;
  4436. }
  4437. if (new_id >= vocab.id_to_token.size()) {
  4438. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4439. __func__, key.c_str(), new_id, id);
  4440. } else {
  4441. id = new_id;
  4442. }
  4443. }
  4444. // Handle add_bos_token and add_eos_token
  4445. {
  4446. bool temp = true;
  4447. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4448. vocab.tokenizer_add_bos = temp;
  4449. }
  4450. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4451. vocab.tokenizer_add_eos = temp;
  4452. }
  4453. }
  4454. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4455. //
  4456. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4457. // for now, we apply this workaround to find the EOT token based on its text
  4458. if (vocab.special_eot_id == -1) {
  4459. for (const auto & t : vocab.token_to_id) {
  4460. if (
  4461. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4462. // need to fix convert script
  4463. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4464. (t.first == "<|eot_id|>" ||
  4465. t.first == "<|im_end|>" ||
  4466. t.first == "<|end|>" ||
  4467. t.first == "<end_of_turn>" ||
  4468. t.first == "<|endoftext|>"
  4469. )
  4470. ) {
  4471. vocab.special_eot_id = t.second;
  4472. break;
  4473. }
  4474. }
  4475. }
  4476. }
  4477. // build special tokens cache
  4478. {
  4479. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4480. if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
  4481. vocab.cache_special_tokens.push_back(id);
  4482. }
  4483. }
  4484. std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  4485. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4486. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4487. }
  4488. );
  4489. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  4490. }
  4491. // build token to piece cache
  4492. {
  4493. size_t size_cache = 0;
  4494. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  4495. for (uint32_t id = 0; id < n_vocab; ++id) {
  4496. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  4497. size_cache += cache_token_to_piece[id].size();
  4498. }
  4499. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  4500. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  4501. }
  4502. // Handle per token attributes
  4503. //NOTE: Each model customizes per token attributes.
  4504. //NOTE: Per token attributes are missing from the GGUF file.
  4505. //TODO: Extract attributes from GGUF file.
  4506. {
  4507. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  4508. for (auto substr : substrs) {
  4509. if (str.find(substr) < std::string::npos) {
  4510. return true;
  4511. }
  4512. }
  4513. return false;
  4514. };
  4515. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  4516. uint32_t current = vocab.id_to_token.at(id).attr;
  4517. current = value ? (current | attr) : (current & ~attr);
  4518. vocab.id_to_token[id].attr = (llama_token_attr) current;
  4519. };
  4520. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  4521. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  4522. };
  4523. std::string model_name;
  4524. std::string tokenizer_pre;
  4525. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  4526. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4527. // model name to lowercase
  4528. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  4529. [] (const std::string::value_type x) {
  4530. return std::tolower(x);
  4531. }
  4532. );
  4533. // set attributes by model/tokenizer name
  4534. if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
  4535. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  4536. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  4537. for (auto id : vocab.cache_special_tokens) {
  4538. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4539. }
  4540. for (auto token : {"</s>"}) {
  4541. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4542. }
  4543. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  4544. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  4545. }
  4546. }
  4547. }
  4548. }
  4549. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4550. const auto & hparams = model.hparams;
  4551. const auto & vocab = model.vocab;
  4552. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4553. // hparams
  4554. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4555. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4556. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4557. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4558. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4559. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4560. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4561. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4562. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4563. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4564. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4565. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4566. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4567. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4568. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4569. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4570. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4571. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4572. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4573. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4574. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4575. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4576. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4577. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4578. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4579. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4580. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4581. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4582. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4583. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4584. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  4585. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4586. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4587. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4588. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4589. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4590. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4591. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4592. if (ml.n_elements >= 1e12) {
  4593. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4594. } else if (ml.n_elements >= 1e9) {
  4595. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4596. } else if (ml.n_elements >= 1e6) {
  4597. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4598. } else {
  4599. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4600. }
  4601. if (ml.n_bytes < GiB) {
  4602. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4603. } else {
  4604. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4605. }
  4606. // general kv
  4607. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4608. // special tokens
  4609. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4610. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4611. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4612. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4613. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4614. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4615. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4616. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4617. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4618. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4619. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4620. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4621. LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
  4622. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4623. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4624. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4625. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4626. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4627. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4628. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4629. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4630. }
  4631. if (model.arch == LLM_ARCH_QWEN2MOE) {
  4632. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4633. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  4634. }
  4635. }
  4636. // Returns false if cancelled by progress_callback
  4637. static bool llm_load_tensors(
  4638. llama_model_loader & ml,
  4639. llama_model & model,
  4640. int n_gpu_layers,
  4641. enum llama_split_mode split_mode,
  4642. int main_gpu,
  4643. const float * tensor_split,
  4644. bool use_mlock,
  4645. llama_progress_callback progress_callback,
  4646. void * progress_callback_user_data) {
  4647. model.t_start_us = ggml_time_us();
  4648. auto & hparams = model.hparams;
  4649. #ifdef GGML_USE_SYCL
  4650. // disable MoE with SYCL until mul_mat_id is updated
  4651. if (hparams.n_expert > 0) {
  4652. n_gpu_layers = 0;
  4653. }
  4654. #endif
  4655. model.split_mode = split_mode;
  4656. model.main_gpu = main_gpu;
  4657. model.n_gpu_layers = n_gpu_layers;
  4658. const int64_t n_layer = hparams.n_layer;
  4659. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4660. bool use_mmap_buffer = true;
  4661. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4662. model.buft_input = llama_default_buffer_type_cpu(true);
  4663. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4664. model.buft_layer.resize(n_layer);
  4665. // assign cpu layers
  4666. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4667. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4668. }
  4669. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4670. // calculate the split points
  4671. int device_count = llama_get_device_count(model);
  4672. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4673. std::vector<float> splits(device_count);
  4674. if (all_zero) {
  4675. // default split, by free memory
  4676. for (int i = 0; i < device_count; ++i) {
  4677. splits[i] = llama_get_device_memory(model, i);
  4678. }
  4679. } else {
  4680. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4681. }
  4682. // sum and normalize the splits to get the split points
  4683. float split_sum = 0.0f;
  4684. for (int i = 0; i < device_count; ++i) {
  4685. split_sum += splits[i];
  4686. splits[i] = split_sum;
  4687. }
  4688. for (int i = 0; i < device_count; ++i) {
  4689. splits[i] /= split_sum;
  4690. }
  4691. // assign the repeating layers to the devices according to the splits
  4692. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4693. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4694. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4695. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4696. }
  4697. // assign the output layer
  4698. if (n_gpu_layers > n_layer) {
  4699. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4700. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4701. } else {
  4702. model.buft_output = llama_default_buffer_type_cpu(true);
  4703. }
  4704. } else {
  4705. ggml_backend_buffer_type_t split_buft;
  4706. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4707. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4708. } else {
  4709. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4710. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4711. }
  4712. // assign the repeating layers
  4713. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4714. model.buft_layer[i] = {
  4715. split_buft,
  4716. llama_default_buffer_type_offload(model, main_gpu)
  4717. };
  4718. }
  4719. // assign the output layer
  4720. if (n_gpu_layers > n_layer) {
  4721. model.buft_output = {
  4722. split_buft,
  4723. llama_default_buffer_type_offload(model, main_gpu)
  4724. };
  4725. } else {
  4726. model.buft_output = llama_default_buffer_type_cpu(true);
  4727. }
  4728. }
  4729. // count used buffer types
  4730. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4731. buft_layer_count[model.buft_input.buft]++;
  4732. buft_layer_count[model.buft_input.buft_matrix]++;
  4733. buft_layer_count[model.buft_output.buft]++;
  4734. buft_layer_count[model.buft_output.buft_matrix]++;
  4735. for (int64_t i = 0; i < n_layer; ++i) {
  4736. buft_layer_count[model.buft_layer[i].buft]++;
  4737. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4738. }
  4739. // create one context per buffer type
  4740. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4741. // for moe merged tensors
  4742. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4743. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4744. for (auto & it : buft_layer_count) {
  4745. struct ggml_init_params params = {
  4746. /*.mem_size =*/ ctx_size,
  4747. /*.mem_buffer =*/ NULL,
  4748. /*.no_alloc =*/ true,
  4749. };
  4750. ggml_context * ctx = ggml_init(params);
  4751. if (!ctx) {
  4752. throw std::runtime_error(format("failed to create context"));
  4753. }
  4754. ctx_map[it.first] = ctx;
  4755. model.ctxs.push_back(ctx);
  4756. }
  4757. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4758. // create tensors for the weights
  4759. {
  4760. const int64_t n_embd = hparams.n_embd;
  4761. const int64_t n_embd_head = (hparams.n_head == 0) ? 0 : n_embd / hparams.n_head;
  4762. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4763. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4764. const int64_t n_embd_gqa = n_embd_v_gqa;
  4765. const int64_t n_vocab = hparams.n_vocab;
  4766. const int64_t n_vocab_type = hparams.n_vocab_type;
  4767. const int64_t n_ff = hparams.n_ff;
  4768. const int64_t n_expert = hparams.n_expert;
  4769. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4770. throw std::runtime_error("model has expert layers but no expert layers are used");
  4771. }
  4772. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4773. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4774. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4775. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4776. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4777. model.layers.resize(n_layer);
  4778. const auto tn = LLM_TN(model.arch);
  4779. switch (model.arch) {
  4780. case LLM_ARCH_LLAMA:
  4781. case LLM_ARCH_REFACT:
  4782. case LLM_ARCH_MINICPM:
  4783. {
  4784. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4785. // output
  4786. {
  4787. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4788. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4789. // if output is NULL, init from the input tok embed
  4790. if (model.output == NULL) {
  4791. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4792. }
  4793. }
  4794. for (int i = 0; i < n_layer; ++i) {
  4795. ggml_context * ctx_layer = ctx_for_layer(i);
  4796. ggml_context * ctx_split = ctx_for_layer_split(i);
  4797. auto & layer = model.layers[i];
  4798. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4799. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4800. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4801. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4802. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4803. // optional bias tensors
  4804. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4805. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4806. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4807. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4808. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4809. if (n_expert == 0) {
  4810. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4811. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4812. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4813. // optional MLP bias
  4814. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4815. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4816. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4817. } else {
  4818. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4819. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4820. if (layer.ffn_gate_exps) {
  4821. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4822. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4823. } else {
  4824. // merge split expert into a single tensor for compatibility with older models
  4825. // requires disabling mmap
  4826. use_mmap_buffer = false;
  4827. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4828. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4829. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4830. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4831. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4832. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4833. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4834. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4835. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4836. for (uint32_t x = 0; x < n_expert; ++x) {
  4837. // the individual experts are loaded into a view of the merged tensor
  4838. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4839. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4840. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4841. }
  4842. }
  4843. }
  4844. }
  4845. } break;
  4846. case LLM_ARCH_GROK:
  4847. {
  4848. if (n_expert == 0) {
  4849. throw std::runtime_error("Grok model cannot have zero experts");
  4850. }
  4851. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4852. // output
  4853. {
  4854. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4855. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4856. // if output is NULL, init from the input tok embed
  4857. if (model.output == NULL) {
  4858. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4859. }
  4860. }
  4861. for (int i = 0; i < n_layer; ++i) {
  4862. ggml_context * ctx_layer = ctx_for_layer(i);
  4863. ggml_context * ctx_split = ctx_for_layer_split(i);
  4864. auto & layer = model.layers[i];
  4865. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4866. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4867. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4868. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4869. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4870. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4871. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4872. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4873. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4874. if (layer.ffn_gate_exps) {
  4875. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4876. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4877. } else {
  4878. // merge split expert into a single tensor for compatibility with older models
  4879. // requires disabling mmap
  4880. use_mmap_buffer = false;
  4881. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4882. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4883. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4884. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4885. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4886. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4887. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4888. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4889. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4890. for (uint32_t x = 0; x < n_expert; ++x) {
  4891. // the individual experts are loaded into a view of the merged tensor
  4892. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4893. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4894. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4895. }
  4896. }
  4897. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4898. }
  4899. } break;
  4900. case LLM_ARCH_DBRX:
  4901. {
  4902. if (n_expert == 0) {
  4903. throw std::runtime_error("DBRX model cannot have zero experts");
  4904. }
  4905. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4906. // output
  4907. {
  4908. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4909. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4910. }
  4911. for (int i = 0; i < n_layer; ++i) {
  4912. ggml_context * ctx_layer = ctx_for_layer(i);
  4913. ggml_context * ctx_split = ctx_for_layer_split(i);
  4914. auto & layer = model.layers[i];
  4915. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4916. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4917. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4918. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4919. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4920. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4921. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4922. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4923. }
  4924. } break;
  4925. case LLM_ARCH_BAICHUAN:
  4926. {
  4927. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4928. {
  4929. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4930. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4931. }
  4932. for (int i = 0; i < n_layer; ++i) {
  4933. ggml_context * ctx_layer = ctx_for_layer(i);
  4934. ggml_context * ctx_split = ctx_for_layer_split(i);
  4935. auto & layer = model.layers[i];
  4936. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4937. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4938. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4939. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4940. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4941. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4942. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4943. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4944. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4945. }
  4946. } break;
  4947. case LLM_ARCH_FALCON:
  4948. {
  4949. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4950. // output
  4951. {
  4952. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4953. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4954. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4955. if (!model.output) {
  4956. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4957. }
  4958. }
  4959. for (int i = 0; i < n_layer; ++i) {
  4960. ggml_context * ctx_layer = ctx_for_layer(i);
  4961. ggml_context * ctx_split = ctx_for_layer_split(i);
  4962. auto & layer = model.layers[i];
  4963. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4964. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4965. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4966. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4967. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4968. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4969. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4970. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4971. }
  4972. } break;
  4973. case LLM_ARCH_STARCODER:
  4974. {
  4975. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4976. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4977. // output
  4978. {
  4979. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4980. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4981. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4982. if (!model.output) {
  4983. // needs to be on GPU
  4984. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4985. }
  4986. }
  4987. for (int i = 0; i < n_layer; ++i) {
  4988. ggml_context * ctx_layer = ctx_for_layer(i);
  4989. ggml_context * ctx_split = ctx_for_layer_split(i);
  4990. auto & layer = model.layers[i];
  4991. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4992. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4993. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4994. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4995. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4996. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4997. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4998. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4999. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5000. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5001. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5002. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5003. }
  5004. } break;
  5005. case LLM_ARCH_BERT:
  5006. case LLM_ARCH_NOMIC_BERT:
  5007. {
  5008. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5009. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  5010. if (model.arch == LLM_ARCH_BERT) {
  5011. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5012. }
  5013. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5014. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5015. for (int i = 0; i < n_layer; ++i) {
  5016. ggml_context * ctx_layer = ctx_for_layer(i);
  5017. ggml_context * ctx_split = ctx_for_layer_split(i);
  5018. auto & layer = model.layers[i];
  5019. if (model.arch == LLM_ARCH_BERT) {
  5020. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5021. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5022. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5023. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5024. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5025. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5026. } else {
  5027. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5028. }
  5029. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5030. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  5031. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5032. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5033. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5034. if (model.arch == LLM_ARCH_BERT) {
  5035. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5036. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5037. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5038. } else {
  5039. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5040. }
  5041. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5042. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5043. }
  5044. } break;
  5045. case LLM_ARCH_JINA_BERT_V2:
  5046. {
  5047. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  5048. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  5049. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  5050. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  5051. for (int i = 0; i < n_layer; ++i) {
  5052. ggml_context * ctx_layer = ctx_for_layer(i);
  5053. ggml_context * ctx_split = ctx_for_layer_split(i);
  5054. auto & layer = model.layers[i]; // JinaBertLayer
  5055. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5056. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5057. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5058. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5059. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5060. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5061. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5062. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5063. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5064. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5065. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  5066. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  5067. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  5068. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5069. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5070. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5071. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5072. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5073. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5074. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5075. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5076. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5077. }
  5078. } break;
  5079. case LLM_ARCH_BLOOM:
  5080. {
  5081. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5082. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5083. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5084. // output
  5085. {
  5086. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5087. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5088. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5089. }
  5090. for (int i = 0; i < n_layer; ++i) {
  5091. ggml_context * ctx_layer = ctx_for_layer(i);
  5092. ggml_context * ctx_split = ctx_for_layer_split(i);
  5093. auto & layer = model.layers[i];
  5094. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5095. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5096. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5097. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5098. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5099. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5100. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5101. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5102. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5103. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5104. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5105. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5106. }
  5107. } break;
  5108. case LLM_ARCH_MPT:
  5109. {
  5110. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5111. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5112. // output
  5113. {
  5114. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5115. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5116. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5117. if (!model.output) {
  5118. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  5119. }
  5120. }
  5121. for (int i = 0; i < n_layer; ++i) {
  5122. ggml_context * ctx_layer = ctx_for_layer(i);
  5123. ggml_context * ctx_split = ctx_for_layer_split(i);
  5124. auto & layer = model.layers[i];
  5125. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5126. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5127. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5128. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5129. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5130. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5131. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5132. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5133. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5134. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5135. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5136. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5137. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5138. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5139. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5140. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5141. // AWQ ScaleActivation layer
  5142. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5143. }
  5144. } break;
  5145. case LLM_ARCH_STABLELM:
  5146. {
  5147. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5148. // output
  5149. {
  5150. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5151. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5152. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5153. }
  5154. for (int i = 0; i < n_layer; ++i) {
  5155. ggml_context * ctx_layer = ctx_for_layer(i);
  5156. ggml_context * ctx_split = ctx_for_layer_split(i);
  5157. auto & layer = model.layers[i];
  5158. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5159. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5160. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5161. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5162. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5163. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5164. // optional bias tensors, present in Stable LM 2 1.6B
  5165. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5166. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5167. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5168. // optional q and k layernorms, present in StableLM 2 12B
  5169. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5170. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5171. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  5172. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5173. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5174. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5175. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5176. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5177. }
  5178. } break;
  5179. case LLM_ARCH_QWEN:
  5180. {
  5181. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5182. // output
  5183. {
  5184. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5185. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5186. }
  5187. for (int i = 0; i < n_layer; ++i) {
  5188. ggml_context * ctx_layer = ctx_for_layer(i);
  5189. ggml_context * ctx_split = ctx_for_layer_split(i);
  5190. auto & layer = model.layers[i];
  5191. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5192. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  5193. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  5194. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5195. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5196. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  5197. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  5198. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  5199. }
  5200. } break;
  5201. case LLM_ARCH_QWEN2:
  5202. {
  5203. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5204. // output
  5205. {
  5206. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5207. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5208. // if output is NULL, init from the input tok embed
  5209. if (model.output == NULL) {
  5210. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5211. }
  5212. }
  5213. for (int i = 0; i < n_layer; ++i) {
  5214. ggml_context * ctx_layer = ctx_for_layer(i);
  5215. ggml_context * ctx_split = ctx_for_layer_split(i);
  5216. auto & layer = model.layers[i];
  5217. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5218. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5219. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5220. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5221. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5222. // optional bias tensors
  5223. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5224. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5225. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5226. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5227. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5228. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5229. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5230. }
  5231. } break;
  5232. case LLM_ARCH_QWEN2MOE:
  5233. {
  5234. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5235. // output
  5236. {
  5237. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5238. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5239. }
  5240. for (int i = 0; i < n_layer; ++i) {
  5241. ggml_context * ctx_layer = ctx_for_layer(i);
  5242. ggml_context * ctx_split = ctx_for_layer_split(i);
  5243. auto & layer = model.layers[i];
  5244. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5245. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5246. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5247. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5248. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5249. // optional bias tensors
  5250. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5251. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5252. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5253. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5254. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5255. GGML_ASSERT(hparams.n_expert > 0);
  5256. GGML_ASSERT(hparams.n_expert_used > 0);
  5257. // MoE branch
  5258. auto n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / hparams.n_expert_used;
  5259. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5260. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5261. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5262. // Shared expert branch
  5263. auto n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  5264. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5265. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5266. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
  5267. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5268. }
  5269. } break;
  5270. case LLM_ARCH_PHI2:
  5271. {
  5272. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5273. // output
  5274. {
  5275. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5276. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5277. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5278. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5279. }
  5280. for (int i = 0; i < n_layer; ++i) {
  5281. ggml_context * ctx_layer = ctx_for_layer(i);
  5282. ggml_context * ctx_split = ctx_for_layer_split(i);
  5283. auto & layer = model.layers[i];
  5284. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5285. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5286. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5287. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5288. if (layer.wqkv == nullptr) {
  5289. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5290. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5291. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5292. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5293. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5294. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5295. }
  5296. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5297. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5298. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5299. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5300. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5301. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5302. }
  5303. } break;
  5304. case LLM_ARCH_PHI3:
  5305. {
  5306. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5307. // output
  5308. {
  5309. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5310. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5311. }
  5312. for (int i = 0; i < n_layer; ++i) {
  5313. ggml_context* ctx_layer = ctx_for_layer(i);
  5314. ggml_context* ctx_split = ctx_for_layer_split(i);
  5315. auto & layer = model.layers[i];
  5316. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5317. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5318. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5319. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5320. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5321. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5322. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5323. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5324. }
  5325. } break;
  5326. case LLM_ARCH_PLAMO:
  5327. {
  5328. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5329. // output
  5330. {
  5331. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5332. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5333. }
  5334. for (int i = 0; i < n_layer; ++i) {
  5335. ggml_context * ctx_layer = ctx_for_layer(i);
  5336. ggml_context * ctx_split = ctx_for_layer_split(i);
  5337. auto & layer = model.layers[i];
  5338. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5339. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5340. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5341. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5342. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5343. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5344. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5345. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5346. }
  5347. } break;
  5348. case LLM_ARCH_GPT2:
  5349. {
  5350. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5351. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5352. // output
  5353. {
  5354. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5355. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5356. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5357. }
  5358. for (int i = 0; i < n_layer; ++i) {
  5359. ggml_context * ctx_layer = ctx_for_layer(i);
  5360. ggml_context * ctx_split = ctx_for_layer_split(i);
  5361. auto & layer = model.layers[i];
  5362. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5363. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5364. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5365. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5366. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5367. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5368. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5369. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5370. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5371. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5372. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5373. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5374. }
  5375. } break;
  5376. case LLM_ARCH_CODESHELL:
  5377. {
  5378. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5379. // output
  5380. {
  5381. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5382. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5383. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5384. }
  5385. for (int i = 0; i < n_layer; ++i) {
  5386. ggml_context * ctx_layer = ctx_for_layer(i);
  5387. ggml_context * ctx_split = ctx_for_layer_split(i);
  5388. auto & layer = model.layers[i];
  5389. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5390. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5391. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5392. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5393. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5394. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5395. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5396. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5397. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5398. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5399. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5400. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5401. }
  5402. } break;
  5403. case LLM_ARCH_ORION:
  5404. {
  5405. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5406. {
  5407. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5408. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5409. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5410. }
  5411. for (int i = 0; i < n_layer; ++i) {
  5412. ggml_context * ctx_layer = ctx_for_layer(i);
  5413. ggml_context * ctx_split = ctx_for_layer_split(i);
  5414. auto & layer = model.layers[i];
  5415. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5416. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5417. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5418. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5419. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5420. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5421. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5422. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5423. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5424. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5425. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5426. }
  5427. } break;
  5428. case LLM_ARCH_INTERNLM2:
  5429. {
  5430. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5431. // output
  5432. {
  5433. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5434. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5435. }
  5436. for (int i = 0; i < n_layer; ++i) {
  5437. ggml_context * ctx_layer = ctx_for_layer(i);
  5438. ggml_context * ctx_split = ctx_for_layer_split(i);
  5439. auto & layer = model.layers[i];
  5440. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5441. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5442. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5443. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5444. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5445. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5446. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5447. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5448. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5449. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5450. }
  5451. } break;
  5452. case LLM_ARCH_GEMMA:
  5453. {
  5454. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5455. // output
  5456. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5457. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5458. const int64_t n_ff = hparams.n_ff;
  5459. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5460. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5461. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5462. for (uint32_t i = 0; i < n_layer; ++i) {
  5463. ggml_context * ctx_layer = ctx_for_layer(i);
  5464. ggml_context * ctx_split = ctx_for_layer_split(i);
  5465. auto & layer = model.layers[i];
  5466. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5467. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5468. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5469. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5470. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5471. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5472. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5473. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5474. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5475. }
  5476. } break;
  5477. case LLM_ARCH_STARCODER2:
  5478. {
  5479. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5480. // output
  5481. {
  5482. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5483. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5484. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5485. // if output is NULL, init from the input tok embed
  5486. if (model.output == NULL) {
  5487. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5488. }
  5489. }
  5490. for (int i = 0; i < n_layer; ++i) {
  5491. ggml_context * ctx_layer = ctx_for_layer(i);
  5492. ggml_context * ctx_split = ctx_for_layer_split(i);
  5493. auto & layer = model.layers[i];
  5494. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5495. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5496. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5497. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5498. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5499. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5500. // optional bias tensors
  5501. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5502. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5503. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5504. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5505. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5506. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5507. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5508. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5509. // optional bias tensors
  5510. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5511. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5512. }
  5513. } break;
  5514. case LLM_ARCH_MAMBA:
  5515. {
  5516. const int64_t d_conv = hparams.ssm_d_conv;
  5517. const int64_t d_inner = hparams.ssm_d_inner;
  5518. const int64_t d_state = hparams.ssm_d_state;
  5519. const int64_t dt_rank = hparams.ssm_dt_rank;
  5520. // only an expansion factor of 2 is supported for now
  5521. GGML_ASSERT(2 * n_embd == d_inner);
  5522. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5523. // output
  5524. {
  5525. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5526. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5527. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5528. if (model.output == NULL) {
  5529. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5530. }
  5531. }
  5532. for (int i = 0; i < n_layer; ++i) {
  5533. ggml_context * ctx_layer = ctx_for_layer(i);
  5534. ggml_context * ctx_split = ctx_for_layer_split(i);
  5535. auto & layer = model.layers[i];
  5536. // norm
  5537. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5538. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5539. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5540. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5541. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5542. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5543. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5544. // no "weight" suffix for these
  5545. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5546. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5547. // out_proj
  5548. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5549. }
  5550. } break;
  5551. case LLM_ARCH_XVERSE:
  5552. {
  5553. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5554. {
  5555. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5556. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5557. }
  5558. for (int i = 0; i < n_layer; ++i) {
  5559. ggml_context * ctx_layer = ctx_for_layer(i);
  5560. ggml_context * ctx_split = ctx_for_layer_split(i);
  5561. auto & layer = model.layers[i];
  5562. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5563. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5564. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5565. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5566. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5567. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5568. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5569. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5570. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5571. }
  5572. } break;
  5573. case LLM_ARCH_COMMAND_R:
  5574. {
  5575. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5576. // output
  5577. {
  5578. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5579. // init output from the input tok embed
  5580. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5581. }
  5582. for (int i = 0; i < n_layer; ++i) {
  5583. ggml_context * ctx_layer = ctx_for_layer(i);
  5584. ggml_context * ctx_split = ctx_for_layer_split(i);
  5585. auto & layer = model.layers[i];
  5586. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5587. if (n_layer >= 64){
  5588. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5589. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5590. }
  5591. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5592. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5593. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5594. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5595. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5596. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5597. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5598. }
  5599. } break;
  5600. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5601. {
  5602. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5603. // output
  5604. {
  5605. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5606. // if output is NULL, init from the input tok embed
  5607. if (model.output == NULL) {
  5608. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5609. }
  5610. }
  5611. for (int i = 0; i < n_layer; ++i) {
  5612. ggml_context * ctx_split = ctx_for_layer_split(i);
  5613. auto & layer = model.layers[i];
  5614. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5615. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5616. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5617. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5618. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5619. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5620. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5621. }
  5622. } break;
  5623. case LLM_ARCH_GPTNEOX:
  5624. {
  5625. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5626. // output
  5627. {
  5628. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5629. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5630. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5631. }
  5632. for (int i = 0; i < n_layer; ++i) {
  5633. ggml_context * ctx_layer = ctx_for_layer(i);
  5634. ggml_context * ctx_split = ctx_for_layer_split(i);
  5635. auto & layer = model.layers[i];
  5636. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5637. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5638. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5639. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5640. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5641. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5642. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5643. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5644. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5645. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5646. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5647. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5648. }
  5649. } break;
  5650. case LLM_ARCH_ARCTIC:
  5651. {
  5652. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5653. // output
  5654. {
  5655. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5656. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5657. // if output is NULL, init from the input tok embed
  5658. if (model.output == NULL) {
  5659. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5660. }
  5661. }
  5662. for (int i = 0; i < n_layer; ++i) {
  5663. ggml_context * ctx_layer = ctx_for_layer(i);
  5664. ggml_context * ctx_split = ctx_for_layer_split(i);
  5665. auto & layer = model.layers[i];
  5666. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5667. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5668. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5669. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5670. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5671. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5672. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5673. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5674. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5675. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5676. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5677. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5678. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5679. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5680. }
  5681. } break;
  5682. case LLM_ARCH_DEEPSEEK2:
  5683. {
  5684. bool is_lite = (hparams.n_layer == 27);
  5685. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5686. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5687. const uint32_t q_lora_rank = hparams.n_lora_q;
  5688. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5689. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5690. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5691. // output
  5692. {
  5693. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5694. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5695. }
  5696. for (int i = 0; i < n_layer; ++i) {
  5697. ggml_context * ctx_layer = ctx_for_layer(i);
  5698. ggml_context * ctx_split = ctx_for_layer_split(i);
  5699. auto & layer = model.layers[i];
  5700. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5701. if (!is_lite) {
  5702. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5703. }
  5704. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5705. if (!is_lite) {
  5706. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5707. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5708. } else {
  5709. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5710. }
  5711. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5712. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5713. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5714. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5715. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5716. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5717. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5718. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5719. } else {
  5720. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5721. GGML_ASSERT(hparams.n_expert > 0);
  5722. GGML_ASSERT(hparams.n_expert_used > 0);
  5723. // MoE branch
  5724. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5725. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5726. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5727. // Shared expert branch
  5728. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5729. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5730. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5731. }
  5732. }
  5733. } break;
  5734. default:
  5735. throw std::runtime_error("unknown architecture");
  5736. }
  5737. }
  5738. ml.done_getting_tensors();
  5739. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5740. model.mappings.reserve(ml.mappings.size());
  5741. // create the backend buffers
  5742. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5743. ctx_bufs.reserve(ctx_map.size());
  5744. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5745. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5746. model.bufs.reserve(n_max_backend_buffer);
  5747. for (auto & it : ctx_map) {
  5748. ggml_backend_buffer_type_t buft = it.first;
  5749. ggml_context * ctx = it.second;
  5750. llama_buf_map bufs;
  5751. bufs.reserve(n_max_backend_buffer);
  5752. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5753. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5754. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5755. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5756. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5757. void * addr = nullptr;
  5758. size_t first, last;
  5759. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5760. if (first >= last) {
  5761. continue;
  5762. }
  5763. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5764. if (buf == nullptr) {
  5765. throw std::runtime_error("unable to allocate backend CPU buffer");
  5766. }
  5767. model.bufs.push_back(buf);
  5768. bufs.emplace(idx, buf);
  5769. #ifdef GGML_USE_CUDA
  5770. if (n_layer >= n_gpu_layers) {
  5771. ggml_backend_cuda_register_host_buffer(
  5772. ggml_backend_buffer_get_base(buf),
  5773. ggml_backend_buffer_get_size(buf));
  5774. }
  5775. #endif
  5776. }
  5777. }
  5778. #ifdef GGML_USE_METAL
  5779. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5780. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5781. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5782. void * addr = nullptr;
  5783. size_t first, last;
  5784. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5785. if (first >= last) {
  5786. continue;
  5787. }
  5788. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5789. if (buf == nullptr) {
  5790. throw std::runtime_error("unable to allocate backend metal buffer");
  5791. }
  5792. model.bufs.push_back(buf);
  5793. bufs.emplace(idx, buf);
  5794. }
  5795. }
  5796. #endif
  5797. else {
  5798. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5799. if (buf == nullptr) {
  5800. throw std::runtime_error("unable to allocate backend buffer");
  5801. }
  5802. model.bufs.push_back(buf);
  5803. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5804. model.mlock_bufs.emplace_back(new llama_mlock);
  5805. auto & mlock_buf = model.mlock_bufs.back();
  5806. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5807. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5808. }
  5809. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5810. bufs.emplace(idx, buf);
  5811. }
  5812. }
  5813. if (bufs.empty()) {
  5814. throw std::runtime_error("failed to allocate buffer");
  5815. }
  5816. for (auto & buf : bufs) {
  5817. // indicate that this buffer contains weights
  5818. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5819. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5820. }
  5821. ctx_bufs.emplace_back(ctx, bufs);
  5822. }
  5823. if (llama_supports_gpu_offload()) {
  5824. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5825. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5826. if (n_gpu_layers > (int) hparams.n_layer) {
  5827. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5828. }
  5829. const int max_backend_supported_layers = hparams.n_layer + 1;
  5830. const int max_offloadable_layers = hparams.n_layer + 1;
  5831. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5832. }
  5833. // print memory requirements
  5834. for (ggml_backend_buffer_t buf : model.bufs) {
  5835. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5836. }
  5837. // populate tensors_by_name
  5838. for (ggml_context * ctx : model.ctxs) {
  5839. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5840. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5841. }
  5842. }
  5843. // load tensor data
  5844. for (auto & it : ctx_bufs) {
  5845. ggml_context * ctx = it.first;
  5846. auto & bufs = it.second;
  5847. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5848. return false;
  5849. }
  5850. }
  5851. if (use_mmap_buffer) {
  5852. for (auto & mapping : ml.mappings) {
  5853. model.mappings.emplace_back(std::move(mapping));
  5854. }
  5855. }
  5856. // loading time will be recalculate after the first eval, so
  5857. // we take page faults deferred by mmap() into consideration
  5858. model.t_load_us = ggml_time_us() - model.t_start_us;
  5859. return true;
  5860. }
  5861. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5862. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5863. try {
  5864. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5865. model.hparams.vocab_only = params.vocab_only;
  5866. try {
  5867. llm_load_arch(ml, model);
  5868. } catch(const std::exception & e) {
  5869. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5870. }
  5871. try {
  5872. llm_load_hparams(ml, model);
  5873. } catch(const std::exception & e) {
  5874. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5875. }
  5876. try {
  5877. llm_load_vocab(ml, model);
  5878. } catch(const std::exception & e) {
  5879. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5880. }
  5881. llm_load_print_meta(ml, model);
  5882. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5883. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5884. throw std::runtime_error("vocab size mismatch");
  5885. }
  5886. if (params.vocab_only) {
  5887. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5888. return 0;
  5889. }
  5890. #ifdef GGML_USE_KOMPUTE
  5891. if (params.n_gpu_layers > 0 && (
  5892. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5893. || !(
  5894. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5895. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5896. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5897. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5898. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5899. )
  5900. )) {
  5901. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5902. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5903. params.n_gpu_layers = 0;
  5904. }
  5905. #endif
  5906. if (!llm_load_tensors(
  5907. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5908. params.progress_callback, params.progress_callback_user_data
  5909. )) {
  5910. return -2;
  5911. }
  5912. } catch (const std::exception & err) {
  5913. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5914. return -1;
  5915. }
  5916. return 0;
  5917. }
  5918. //
  5919. // llm_build
  5920. //
  5921. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5922. enum llm_ffn_op_type {
  5923. LLM_FFN_SILU,
  5924. LLM_FFN_GELU,
  5925. LLM_FFN_RELU,
  5926. LLM_FFN_RELU_SQR,
  5927. };
  5928. enum llm_ffn_gate_type {
  5929. LLM_FFN_SEQ,
  5930. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5931. };
  5932. enum llm_norm_type {
  5933. LLM_NORM,
  5934. LLM_NORM_RMS,
  5935. };
  5936. static struct ggml_tensor * llm_build_inp_embd(
  5937. struct ggml_context * ctx,
  5938. struct llama_context & lctx,
  5939. const llama_hparams & hparams,
  5940. const llama_batch & batch,
  5941. struct ggml_tensor * tok_embd,
  5942. const llm_build_cb & cb) {
  5943. const int64_t n_embd = hparams.n_embd;
  5944. struct ggml_tensor * inpL;
  5945. if (batch.token) {
  5946. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5947. cb(lctx.inp_tokens, "inp_tokens", -1);
  5948. ggml_set_input(lctx.inp_tokens);
  5949. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5950. } else {
  5951. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5952. inpL = lctx.inp_embd;
  5953. ggml_set_input(lctx.inp_embd);
  5954. }
  5955. cb(inpL, "inp_embd", -1);
  5956. return inpL;
  5957. }
  5958. static void llm_build_kv_store(
  5959. struct ggml_context * ctx,
  5960. const llama_hparams & hparams,
  5961. const llama_cparams & cparams,
  5962. const llama_kv_cache & kv,
  5963. struct ggml_cgraph * graph,
  5964. struct ggml_tensor * k_cur,
  5965. struct ggml_tensor * v_cur,
  5966. int32_t n_tokens,
  5967. int32_t kv_head,
  5968. const llm_build_cb & cb,
  5969. int64_t il) {
  5970. const int64_t n_ctx = cparams.n_ctx;
  5971. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5972. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5973. GGML_ASSERT(kv.size == n_ctx);
  5974. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5975. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5976. cb(k_cache_view, "k_cache_view", il);
  5977. // note: storing RoPE-ed version of K in the KV cache
  5978. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5979. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5980. struct ggml_tensor * v_cache_view = nullptr;
  5981. if (cparams.flash_attn) {
  5982. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5983. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5984. } else {
  5985. // note: the V cache is transposed when not using flash attention
  5986. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5987. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5988. (kv_head)*ggml_element_size(kv.v_l[il]));
  5989. v_cur = ggml_transpose(ctx, v_cur);
  5990. }
  5991. cb(v_cache_view, "v_cache_view", il);
  5992. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5993. }
  5994. static struct ggml_tensor * llm_build_norm(
  5995. struct ggml_context * ctx,
  5996. struct ggml_tensor * cur,
  5997. const llama_hparams & hparams,
  5998. struct ggml_tensor * mw,
  5999. struct ggml_tensor * mb,
  6000. llm_norm_type type,
  6001. const llm_build_cb & cb,
  6002. int il) {
  6003. switch (type) {
  6004. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  6005. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  6006. }
  6007. if (mw || mb) {
  6008. cb(cur, "norm", il);
  6009. }
  6010. if (mw) {
  6011. cur = ggml_mul(ctx, cur, mw);
  6012. if (mb) {
  6013. cb(cur, "norm_w", il);
  6014. }
  6015. }
  6016. if (mb) {
  6017. cur = ggml_add(ctx, cur, mb);
  6018. }
  6019. return cur;
  6020. }
  6021. static struct ggml_tensor * llm_build_ffn(
  6022. struct ggml_context * ctx,
  6023. struct ggml_tensor * cur,
  6024. struct ggml_tensor * up,
  6025. struct ggml_tensor * up_b,
  6026. struct ggml_tensor * gate,
  6027. struct ggml_tensor * gate_b,
  6028. struct ggml_tensor * down,
  6029. struct ggml_tensor * down_b,
  6030. struct ggml_tensor * act_scales,
  6031. llm_ffn_op_type type_op,
  6032. llm_ffn_gate_type type_gate,
  6033. const llm_build_cb & cb,
  6034. int il) {
  6035. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  6036. cb(tmp, "ffn_up", il);
  6037. if (up_b) {
  6038. tmp = ggml_add(ctx, tmp, up_b);
  6039. cb(tmp, "ffn_up_b", il);
  6040. }
  6041. if (gate) {
  6042. switch (type_gate) {
  6043. case LLM_FFN_SEQ:
  6044. {
  6045. cur = ggml_mul_mat(ctx, gate, tmp);
  6046. cb(cur, "ffn_gate", il);
  6047. } break;
  6048. case LLM_FFN_PAR:
  6049. {
  6050. cur = ggml_mul_mat(ctx, gate, cur);
  6051. cb(cur, "ffn_gate", il);
  6052. } break;
  6053. }
  6054. if (gate_b) {
  6055. cur = ggml_add(ctx, cur, gate_b);
  6056. cb(cur, "ffn_gate_b", il);
  6057. }
  6058. } else {
  6059. cur = tmp;
  6060. }
  6061. switch (type_op) {
  6062. case LLM_FFN_SILU:
  6063. {
  6064. cur = ggml_silu(ctx, cur);
  6065. cb(cur, "ffn_silu", il);
  6066. } break;
  6067. case LLM_FFN_GELU:
  6068. {
  6069. cur = ggml_gelu(ctx, cur);
  6070. cb(cur, "ffn_gelu", il);
  6071. if (act_scales != NULL) {
  6072. cur = ggml_div(ctx, cur, act_scales);
  6073. cb(cur, "ffn_act", il);
  6074. }
  6075. } break;
  6076. case LLM_FFN_RELU:
  6077. {
  6078. cur = ggml_relu(ctx, cur);
  6079. cb(cur, "ffn_relu", il);
  6080. } break;
  6081. case LLM_FFN_RELU_SQR:
  6082. {
  6083. cur = ggml_relu(ctx, cur);
  6084. cb(cur, "ffn_relu", il);
  6085. cur = ggml_sqr(ctx, cur);
  6086. cb(cur, "ffn_sqr(relu)", il);
  6087. } break;
  6088. }
  6089. if (type_gate == LLM_FFN_PAR) {
  6090. cur = ggml_mul(ctx, cur, tmp);
  6091. cb(cur, "ffn_gate_par", il);
  6092. }
  6093. cur = ggml_mul_mat(ctx, down, cur);
  6094. if (down_b) {
  6095. cb(cur, "ffn_down", il);
  6096. }
  6097. if (down_b) {
  6098. cur = ggml_add(ctx, cur, down_b);
  6099. }
  6100. return cur;
  6101. }
  6102. static struct ggml_tensor * llm_build_moe_ffn(
  6103. struct ggml_context * ctx,
  6104. struct ggml_tensor * cur,
  6105. struct ggml_tensor * gate_inp,
  6106. struct ggml_tensor * up_exps,
  6107. struct ggml_tensor * gate_exps,
  6108. struct ggml_tensor * down_exps,
  6109. int64_t n_expert,
  6110. int64_t n_expert_used,
  6111. llm_ffn_op_type type_op,
  6112. bool norm_w,
  6113. bool scale_w,
  6114. float w_scale,
  6115. const llm_build_cb & cb,
  6116. int il) {
  6117. int64_t n_embd = cur->ne[0];
  6118. int64_t n_tokens = cur->ne[1];
  6119. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  6120. cb(logits, "ffn_moe_logits", il);
  6121. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  6122. cb(probs, "ffn_moe_probs", il);
  6123. // select experts
  6124. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  6125. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  6126. cb(selected_experts, "ffn_moe_topk", il);
  6127. ggml_tensor * weights = ggml_get_rows(ctx,
  6128. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  6129. cb(weights, "ffn_moe_weights", il);
  6130. if (norm_w) {
  6131. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  6132. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  6133. cb(weights_sum, "ffn_moe_weights_sum", il);
  6134. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  6135. cb(weights, "ffn_moe_weights_norm", il);
  6136. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  6137. }
  6138. if (scale_w) {
  6139. weights = ggml_scale(ctx, weights, w_scale);
  6140. cb(weights, "ffn_moe_weights_scaled", il);
  6141. }
  6142. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  6143. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6144. cb(up, "ffn_moe_up", il);
  6145. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6146. cb(gate, "ffn_moe_gate", il);
  6147. switch (type_op) {
  6148. case LLM_FFN_SILU:
  6149. {
  6150. gate = ggml_silu(ctx, gate);
  6151. cb(gate, "ffn_moe_silu", il);
  6152. } break;
  6153. case LLM_FFN_GELU:
  6154. {
  6155. gate = ggml_gelu(ctx, gate);
  6156. cb(gate, "ffn_moe_gelu", il);
  6157. } break;
  6158. default:
  6159. GGML_ASSERT(false);
  6160. }
  6161. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  6162. cb(par, "ffn_moe_gate_par", il);
  6163. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  6164. cb(experts, "ffn_moe_down", il);
  6165. experts = ggml_mul(ctx, experts, weights);
  6166. // aggregate experts
  6167. ggml_tensor * moe_out = nullptr;
  6168. for (int i = 0; i < n_expert_used; ++i) {
  6169. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  6170. experts->nb[2], i*experts->nb[1]);
  6171. if (i == 0) {
  6172. moe_out = cur_expert;
  6173. } else {
  6174. moe_out = ggml_add(ctx, moe_out, cur_expert);
  6175. }
  6176. }
  6177. if (n_expert_used == 1) {
  6178. // avoid returning a non-contiguous tensor
  6179. moe_out = ggml_cont(ctx, moe_out);
  6180. }
  6181. return moe_out;
  6182. }
  6183. static struct ggml_tensor * llm_build_kqv(
  6184. struct ggml_context * ctx,
  6185. const llama_model & model,
  6186. const llama_hparams & hparams,
  6187. const llama_cparams & cparams,
  6188. const llama_kv_cache & kv,
  6189. struct ggml_cgraph * graph,
  6190. struct ggml_tensor * wo,
  6191. struct ggml_tensor * wo_b,
  6192. struct ggml_tensor * q_cur,
  6193. struct ggml_tensor * kq_mask,
  6194. int32_t n_tokens,
  6195. int32_t n_kv,
  6196. float kq_scale,
  6197. const llm_build_cb & cb,
  6198. int il) {
  6199. const int64_t n_ctx = cparams.n_ctx;
  6200. const int64_t n_head = hparams.n_head;
  6201. const int64_t n_head_kv = hparams.n_head_kv;
  6202. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6203. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6204. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6205. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6206. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  6207. cb(q, "q", il);
  6208. struct ggml_tensor * k =
  6209. ggml_view_3d(ctx, kv.k_l[il],
  6210. n_embd_head_k, n_kv, n_head_kv,
  6211. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6212. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6213. 0);
  6214. cb(k, "k", il);
  6215. struct ggml_tensor * cur;
  6216. if (cparams.flash_attn) {
  6217. GGML_UNUSED(model);
  6218. GGML_UNUSED(n_ctx);
  6219. // split cached v into n_head heads (not transposed)
  6220. struct ggml_tensor * v =
  6221. ggml_view_3d(ctx, kv.v_l[il],
  6222. n_embd_head_v, n_kv, n_head_kv,
  6223. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6224. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6225. 0);
  6226. cb(v, "v", il);
  6227. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6228. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6229. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6230. }
  6231. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6232. } else {
  6233. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6234. cb(kq, "kq", il);
  6235. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6236. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6237. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6238. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6239. }
  6240. if (model.arch == LLM_ARCH_GROK) {
  6241. // need to do the following:
  6242. // multiply by attn_output_multiplyer of 0.08838834764831845
  6243. // and then :
  6244. // kq = 30 * tanh(kq / 30)
  6245. // before the softmax below
  6246. //try from phi2
  6247. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6248. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6249. kq = ggml_scale(ctx, kq, 30);
  6250. }
  6251. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6252. cb(kq, "kq_soft_max_ext", il);
  6253. GGML_ASSERT(kv.size == n_ctx);
  6254. // split cached v into n_head heads
  6255. struct ggml_tensor * v =
  6256. ggml_view_3d(ctx, kv.v_l[il],
  6257. n_kv, n_embd_head_v, n_head_kv,
  6258. ggml_element_size(kv.v_l[il])*n_ctx,
  6259. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  6260. 0);
  6261. cb(v, "v", il);
  6262. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  6263. cb(kqv, "kqv", il);
  6264. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  6265. cb(kqv_merged, "kqv_merged", il);
  6266. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  6267. cb(cur, "kqv_merged_cont", il);
  6268. }
  6269. ggml_build_forward_expand(graph, cur);
  6270. cur = ggml_mul_mat(ctx, wo, cur);
  6271. if (wo_b) {
  6272. cb(cur, "kqv_wo", il);
  6273. }
  6274. if (wo_b) {
  6275. cur = ggml_add(ctx, cur, wo_b);
  6276. }
  6277. return cur;
  6278. }
  6279. static struct ggml_tensor * llm_build_kv(
  6280. struct ggml_context * ctx,
  6281. const llama_model & model,
  6282. const llama_hparams & hparams,
  6283. const llama_cparams & cparams,
  6284. const llama_kv_cache & kv,
  6285. struct ggml_cgraph * graph,
  6286. struct ggml_tensor * wo,
  6287. struct ggml_tensor * wo_b,
  6288. struct ggml_tensor * k_cur,
  6289. struct ggml_tensor * v_cur,
  6290. struct ggml_tensor * q_cur,
  6291. struct ggml_tensor * kq_mask,
  6292. int32_t n_tokens,
  6293. int32_t kv_head,
  6294. int32_t n_kv,
  6295. float kq_scale,
  6296. const llm_build_cb & cb,
  6297. int il) {
  6298. // these nodes are added to the graph together so that they are not reordered
  6299. // by doing so, the number of splits in the graph is reduced
  6300. ggml_build_forward_expand(graph, q_cur);
  6301. ggml_build_forward_expand(graph, k_cur);
  6302. ggml_build_forward_expand(graph, v_cur);
  6303. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6304. struct ggml_tensor * cur;
  6305. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6306. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6307. cb(cur, "kqv_out", il);
  6308. return cur;
  6309. }
  6310. struct llm_build_context {
  6311. const llama_model & model;
  6312. llama_context & lctx;
  6313. const llama_hparams & hparams;
  6314. const llama_cparams & cparams;
  6315. const llama_batch & batch;
  6316. const llama_kv_cache & kv_self;
  6317. const int64_t n_embd;
  6318. const int64_t n_layer;
  6319. const int64_t n_rot;
  6320. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6321. const int64_t n_head;
  6322. const int64_t n_head_kv;
  6323. const int64_t n_embd_head_k;
  6324. const int64_t n_embd_k_gqa;
  6325. const int64_t n_embd_head_v;
  6326. const int64_t n_embd_v_gqa;
  6327. const int64_t n_expert;
  6328. const int64_t n_expert_used;
  6329. const float freq_base;
  6330. const float freq_scale;
  6331. const float ext_factor;
  6332. const float attn_factor;
  6333. const float beta_fast;
  6334. const float beta_slow;
  6335. const float norm_eps;
  6336. const float norm_rms_eps;
  6337. const int32_t n_tokens;
  6338. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6339. const int32_t n_outputs;
  6340. const int32_t kv_head; // index of where we store new KV data in the cache
  6341. const int32_t n_ctx_orig;
  6342. const bool flash_attn;
  6343. const enum llama_pooling_type pooling_type;
  6344. const enum llama_rope_type rope_type;
  6345. const llm_build_cb & cb;
  6346. std::vector<uint8_t> & buf_compute_meta;
  6347. struct ggml_context * ctx0 = nullptr;
  6348. // TODO: consider making the entire interface noexcept
  6349. llm_build_context(
  6350. llama_context & lctx,
  6351. const llama_batch & batch,
  6352. const llm_build_cb & cb,
  6353. bool worst_case) :
  6354. model (lctx.model),
  6355. lctx (lctx),
  6356. hparams (model.hparams),
  6357. cparams (lctx.cparams),
  6358. batch (batch),
  6359. kv_self (lctx.kv_self),
  6360. n_embd (hparams.n_embd),
  6361. n_layer (hparams.n_layer),
  6362. n_rot (hparams.n_rot),
  6363. n_ctx (cparams.n_ctx),
  6364. n_head (hparams.n_head),
  6365. n_head_kv (hparams.n_head_kv),
  6366. n_embd_head_k (hparams.n_embd_head_k),
  6367. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6368. n_embd_head_v (hparams.n_embd_head_v),
  6369. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6370. n_expert (hparams.n_expert),
  6371. n_expert_used (hparams.n_expert_used),
  6372. freq_base (cparams.rope_freq_base),
  6373. freq_scale (cparams.rope_freq_scale),
  6374. ext_factor (cparams.yarn_ext_factor),
  6375. attn_factor (cparams.yarn_attn_factor),
  6376. beta_fast (cparams.yarn_beta_fast),
  6377. beta_slow (cparams.yarn_beta_slow),
  6378. norm_eps (hparams.f_norm_eps),
  6379. norm_rms_eps (hparams.f_norm_rms_eps),
  6380. n_tokens (batch.n_tokens),
  6381. n_kv (worst_case ? kv_self.size : kv_self.n),
  6382. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6383. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6384. n_ctx_orig (cparams.n_ctx_orig_yarn),
  6385. flash_attn (cparams.flash_attn),
  6386. pooling_type (cparams.pooling_type),
  6387. rope_type (hparams.rope_type),
  6388. cb (cb),
  6389. buf_compute_meta (lctx.buf_compute_meta) {
  6390. // all initializations should be done in init()
  6391. }
  6392. void init() {
  6393. struct ggml_init_params params = {
  6394. /*.mem_size =*/ buf_compute_meta.size(),
  6395. /*.mem_buffer =*/ buf_compute_meta.data(),
  6396. /*.no_alloc =*/ true,
  6397. };
  6398. ctx0 = ggml_init(params);
  6399. lctx.inp_tokens = nullptr;
  6400. lctx.inp_embd = nullptr;
  6401. lctx.inp_pos = nullptr;
  6402. lctx.inp_out_ids = nullptr;
  6403. lctx.inp_KQ_mask = nullptr;
  6404. lctx.inp_K_shift = nullptr;
  6405. lctx.inp_mean = nullptr;
  6406. lctx.inp_cls = nullptr;
  6407. lctx.inp_s_copy = nullptr;
  6408. lctx.inp_s_mask = nullptr;
  6409. lctx.inp_s_seq = nullptr;
  6410. }
  6411. void free() {
  6412. if (ctx0) {
  6413. ggml_free(ctx0);
  6414. ctx0 = nullptr;
  6415. }
  6416. }
  6417. struct ggml_cgraph * build_k_shift() {
  6418. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6419. GGML_ASSERT(kv_self.size == n_ctx);
  6420. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6421. cb(lctx.inp_K_shift, "K_shift", -1);
  6422. ggml_set_input(lctx.inp_K_shift);
  6423. for (int il = 0; il < n_layer; ++il) {
  6424. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6425. struct ggml_tensor * tmp =
  6426. // we rotate only the first n_rot dimensions
  6427. ggml_rope_ext_inplace(ctx0,
  6428. ggml_view_3d(ctx0, kv_self.k_l[il],
  6429. n_embd_head_k, n_head_kv, n_ctx,
  6430. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6431. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6432. 0),
  6433. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6434. ext_factor, attn_factor, beta_fast, beta_slow);
  6435. cb(tmp, "K_shifted", il);
  6436. ggml_build_forward_expand(gf, tmp);
  6437. }
  6438. return gf;
  6439. }
  6440. struct ggml_cgraph * build_s_copy() {
  6441. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6442. GGML_ASSERT(kv_self.recurrent);
  6443. struct ggml_tensor * state_copy = build_inp_s_copy();
  6444. for (int il = 0; il < n_layer; ++il) {
  6445. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6446. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6447. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6448. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6449. // TODO: name the intermediate tensors with cb()
  6450. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6451. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6452. }
  6453. return gf;
  6454. }
  6455. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6456. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6457. for (uint32_t i = 0; i < ids.size(); ++i) {
  6458. const uint32_t id = ids[i];
  6459. if (i == id || id == ids.size()) {
  6460. continue;
  6461. }
  6462. uint32_t nm = 1;
  6463. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6464. nm++;
  6465. }
  6466. for (int il = 0; il < n_layer; ++il) {
  6467. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6468. n_embd_k_gqa, nm,
  6469. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6470. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6471. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6472. n_embd_k_gqa, nm,
  6473. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6474. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6475. ggml_tensor * view_v_src;
  6476. ggml_tensor * view_v_dst;
  6477. if (flash_attn) {
  6478. // NOTE: the V cache is not transposed when using flash attention
  6479. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6480. n_embd_v_gqa, nm,
  6481. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6482. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6483. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6484. n_embd_v_gqa, nm,
  6485. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6486. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6487. } else {
  6488. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6489. nm, n_embd_v_gqa,
  6490. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6491. ggml_row_size(kv_self.v_l[il]->type, i));
  6492. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6493. nm, n_embd_v_gqa,
  6494. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6495. ggml_row_size(kv_self.v_l[il]->type, id));
  6496. }
  6497. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6498. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6499. }
  6500. i += nm - 1;
  6501. }
  6502. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6503. return gf;
  6504. }
  6505. struct ggml_tensor * build_inp_pos() {
  6506. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6507. cb(lctx.inp_pos, "inp_pos", -1);
  6508. ggml_set_input(lctx.inp_pos);
  6509. return lctx.inp_pos;
  6510. }
  6511. struct ggml_tensor * build_rope_factors(int il) {
  6512. // choose long/short freq factors based on the context size
  6513. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6514. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  6515. return model.layers[il].rope_long;
  6516. }
  6517. return model.layers[il].rope_short;
  6518. }
  6519. struct ggml_tensor * build_inp_out_ids() {
  6520. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6521. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6522. ggml_set_input(lctx.inp_out_ids);
  6523. return lctx.inp_out_ids;
  6524. }
  6525. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6526. if (causal) {
  6527. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6528. } else {
  6529. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6530. }
  6531. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6532. ggml_set_input(lctx.inp_KQ_mask);
  6533. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6534. }
  6535. struct ggml_tensor * build_inp_mean() {
  6536. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6537. cb(lctx.inp_mean, "inp_mean", -1);
  6538. ggml_set_input(lctx.inp_mean);
  6539. return lctx.inp_mean;
  6540. }
  6541. struct ggml_tensor * build_inp_cls() {
  6542. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6543. cb(lctx.inp_cls, "inp_cls", -1);
  6544. ggml_set_input(lctx.inp_cls);
  6545. return lctx.inp_cls;
  6546. }
  6547. struct ggml_tensor * build_inp_s_copy() {
  6548. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6549. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6550. ggml_set_input(lctx.inp_s_copy);
  6551. return lctx.inp_s_copy;
  6552. }
  6553. struct ggml_tensor * build_inp_s_mask() {
  6554. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6555. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6556. ggml_set_input(lctx.inp_s_mask);
  6557. return lctx.inp_s_mask;
  6558. }
  6559. struct ggml_tensor * build_inp_s_seq() {
  6560. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6561. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6562. ggml_set_input(lctx.inp_s_seq);
  6563. return lctx.inp_s_seq;
  6564. }
  6565. struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
  6566. // find result_norm tensor for input
  6567. struct ggml_tensor * inp = nullptr;
  6568. for (int i = gf->n_nodes - 1; i >= 0; --i) {
  6569. inp = gf->nodes[i];
  6570. if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
  6571. break;
  6572. } else {
  6573. inp = nullptr;
  6574. }
  6575. }
  6576. GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
  6577. struct ggml_tensor * cur;
  6578. switch (pooling_type) {
  6579. case LLAMA_POOLING_TYPE_MEAN:
  6580. {
  6581. struct ggml_tensor * inp_mean = build_inp_mean();
  6582. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
  6583. } break;
  6584. case LLAMA_POOLING_TYPE_CLS:
  6585. case LLAMA_POOLING_TYPE_LAST:
  6586. {
  6587. struct ggml_tensor * inp_cls = build_inp_cls();
  6588. cur = ggml_get_rows(ctx0, inp, inp_cls);
  6589. } break;
  6590. case LLAMA_POOLING_TYPE_NONE:
  6591. {
  6592. cur = inp;
  6593. } break;
  6594. default:
  6595. {
  6596. GGML_ASSERT(false && "unknown pooling type");
  6597. } break;
  6598. }
  6599. cb(cur, "result_embd_pooled", -1);
  6600. ggml_build_forward_expand(gf, cur);
  6601. return gf;
  6602. }
  6603. struct ggml_cgraph * build_llama() {
  6604. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6605. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6606. int32_t n_tokens = this->n_tokens;
  6607. const int64_t n_embd_head = hparams.n_embd_head_v;
  6608. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6609. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6610. struct ggml_tensor * cur;
  6611. struct ggml_tensor * inpL;
  6612. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6613. // inp_pos - contains the positions
  6614. struct ggml_tensor * inp_pos = build_inp_pos();
  6615. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6616. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6617. for (int il = 0; il < n_layer; ++il) {
  6618. struct ggml_tensor * inpSA = inpL;
  6619. // norm
  6620. cur = llm_build_norm(ctx0, inpL, hparams,
  6621. model.layers[il].attn_norm, NULL,
  6622. LLM_NORM_RMS, cb, il);
  6623. cb(cur, "attn_norm", il);
  6624. // self-attention
  6625. {
  6626. // compute Q and K and RoPE them
  6627. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6628. cb(Qcur, "Qcur", il);
  6629. if (model.layers[il].bq) {
  6630. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6631. cb(Qcur, "Qcur", il);
  6632. }
  6633. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6634. cb(Kcur, "Kcur", il);
  6635. if (model.layers[il].bk) {
  6636. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6637. cb(Kcur, "Kcur", il);
  6638. }
  6639. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6640. cb(Vcur, "Vcur", il);
  6641. if (model.layers[il].bv) {
  6642. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6643. cb(Vcur, "Vcur", il);
  6644. }
  6645. Qcur = ggml_rope_ext(
  6646. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6647. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6648. ext_factor, attn_factor, beta_fast, beta_slow
  6649. );
  6650. cb(Qcur, "Qcur", il);
  6651. Kcur = ggml_rope_ext(
  6652. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6653. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6654. ext_factor, attn_factor, beta_fast, beta_slow
  6655. );
  6656. cb(Kcur, "Kcur", il);
  6657. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6658. model.layers[il].wo, model.layers[il].bo,
  6659. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6660. }
  6661. if (il == n_layer - 1) {
  6662. // skip computing output for unused tokens
  6663. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6664. n_tokens = n_outputs;
  6665. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6666. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6667. }
  6668. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6669. cb(ffn_inp, "ffn_inp", il);
  6670. // feed-forward network
  6671. if (model.layers[il].ffn_gate_inp == nullptr) {
  6672. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6673. model.layers[il].ffn_norm, NULL,
  6674. LLM_NORM_RMS, cb, il);
  6675. cb(cur, "ffn_norm", il);
  6676. cur = llm_build_ffn(ctx0, cur,
  6677. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6678. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6679. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6680. NULL,
  6681. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6682. cb(cur, "ffn_out", il);
  6683. } else {
  6684. // MoE branch
  6685. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6686. model.layers[il].ffn_norm, NULL,
  6687. LLM_NORM_RMS, cb, il);
  6688. cb(cur, "ffn_norm", il);
  6689. cur = llm_build_moe_ffn(ctx0, cur,
  6690. model.layers[il].ffn_gate_inp,
  6691. model.layers[il].ffn_up_exps,
  6692. model.layers[il].ffn_gate_exps,
  6693. model.layers[il].ffn_down_exps,
  6694. n_expert, n_expert_used,
  6695. LLM_FFN_SILU, true,
  6696. false, 0.0,
  6697. cb, il);
  6698. cb(cur, "ffn_moe_out", il);
  6699. }
  6700. cur = ggml_add(ctx0, cur, ffn_inp);
  6701. cb(cur, "ffn_out", il);
  6702. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6703. if (layer_dir != nullptr) {
  6704. cur = ggml_add(ctx0, cur, layer_dir);
  6705. }
  6706. cb(cur, "l_out", il);
  6707. // input for next layer
  6708. inpL = cur;
  6709. }
  6710. cur = inpL;
  6711. cur = llm_build_norm(ctx0, cur, hparams,
  6712. model.output_norm, NULL,
  6713. LLM_NORM_RMS, cb, -1);
  6714. cb(cur, "result_norm", -1);
  6715. // lm_head
  6716. cur = ggml_mul_mat(ctx0, model.output, cur);
  6717. cb(cur, "result_output", -1);
  6718. ggml_build_forward_expand(gf, cur);
  6719. return gf;
  6720. }
  6721. struct ggml_cgraph * build_baichuan() {
  6722. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6723. const int64_t n_embd_head = hparams.n_embd_head_v;
  6724. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6725. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6726. struct ggml_tensor * cur;
  6727. struct ggml_tensor * inpL;
  6728. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6729. // inp_pos - contains the positions
  6730. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6731. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6732. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6733. for (int il = 0; il < n_layer; ++il) {
  6734. struct ggml_tensor * inpSA = inpL;
  6735. cur = llm_build_norm(ctx0, inpL, hparams,
  6736. model.layers[il].attn_norm, NULL,
  6737. LLM_NORM_RMS, cb, il);
  6738. cb(cur, "attn_norm", il);
  6739. // self-attention
  6740. {
  6741. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6742. cb(Qcur, "Qcur", il);
  6743. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6744. cb(Kcur, "Kcur", il);
  6745. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6746. cb(Vcur, "Vcur", il);
  6747. switch (model.type) {
  6748. case MODEL_7B:
  6749. Qcur = ggml_rope_ext(
  6750. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6751. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6752. ext_factor, attn_factor, beta_fast, beta_slow
  6753. );
  6754. Kcur = ggml_rope_ext(
  6755. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6756. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6757. ext_factor, attn_factor, beta_fast, beta_slow
  6758. );
  6759. break;
  6760. case MODEL_13B:
  6761. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6762. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6763. break;
  6764. default:
  6765. GGML_ASSERT(false);
  6766. }
  6767. cb(Qcur, "Qcur", il);
  6768. cb(Kcur, "Kcur", il);
  6769. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6770. model.layers[il].wo, NULL,
  6771. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6772. }
  6773. if (il == n_layer - 1) {
  6774. // skip computing output for unused tokens
  6775. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6776. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6777. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6778. }
  6779. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6780. cb(ffn_inp, "ffn_inp", il);
  6781. // feed-forward network
  6782. {
  6783. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6784. model.layers[il].ffn_norm, NULL,
  6785. LLM_NORM_RMS, cb, il);
  6786. cb(cur, "ffn_norm", il);
  6787. cur = llm_build_ffn(ctx0, cur,
  6788. model.layers[il].ffn_up, NULL,
  6789. model.layers[il].ffn_gate, NULL,
  6790. model.layers[il].ffn_down, NULL,
  6791. NULL,
  6792. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6793. cb(cur, "ffn_out", il);
  6794. }
  6795. cur = ggml_add(ctx0, cur, ffn_inp);
  6796. cb(cur, "l_out", il);
  6797. // input for next layer
  6798. inpL = cur;
  6799. }
  6800. cur = inpL;
  6801. cur = llm_build_norm(ctx0, cur, hparams,
  6802. model.output_norm, NULL,
  6803. LLM_NORM_RMS, cb, -1);
  6804. cb(cur, "result_norm", -1);
  6805. // lm_head
  6806. cur = ggml_mul_mat(ctx0, model.output, cur);
  6807. cb(cur, "result_output", -1);
  6808. ggml_build_forward_expand(gf, cur);
  6809. return gf;
  6810. }
  6811. struct ggml_cgraph * build_xverse() {
  6812. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6813. const int64_t n_embd_head = hparams.n_embd_head_v;
  6814. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6815. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6816. struct ggml_tensor * cur;
  6817. struct ggml_tensor * inpL;
  6818. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6819. // inp_pos - contains the positions
  6820. struct ggml_tensor * inp_pos = build_inp_pos();
  6821. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6822. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6823. for (int il = 0; il < n_layer; ++il) {
  6824. struct ggml_tensor * inpSA = inpL;
  6825. cur = llm_build_norm(ctx0, inpL, hparams,
  6826. model.layers[il].attn_norm, NULL,
  6827. LLM_NORM_RMS, cb, il);
  6828. cb(cur, "attn_norm", il);
  6829. // self-attention
  6830. {
  6831. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6832. cb(Qcur, "Qcur", il);
  6833. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6834. cb(Kcur, "Kcur", il);
  6835. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6836. cb(Vcur, "Vcur", il);
  6837. Qcur = ggml_rope_ext(
  6838. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6839. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6840. ext_factor, attn_factor, beta_fast, beta_slow
  6841. );
  6842. cb(Qcur, "Qcur", il);
  6843. Kcur = ggml_rope_ext(
  6844. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6845. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6846. ext_factor, attn_factor, beta_fast, beta_slow
  6847. );
  6848. cb(Kcur, "Kcur", il);
  6849. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6850. model.layers[il].wo, NULL,
  6851. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6852. }
  6853. if (il == n_layer - 1) {
  6854. // skip computing output for unused tokens
  6855. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6856. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6857. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6858. }
  6859. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6860. cb(ffn_inp, "ffn_inp", il);
  6861. // feed-forward network
  6862. {
  6863. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6864. model.layers[il].ffn_norm, NULL,
  6865. LLM_NORM_RMS, cb, il);
  6866. cb(cur, "ffn_norm", il);
  6867. cur = llm_build_ffn(ctx0, cur,
  6868. model.layers[il].ffn_up, NULL,
  6869. model.layers[il].ffn_gate, NULL,
  6870. model.layers[il].ffn_down, NULL,
  6871. NULL,
  6872. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6873. cb(cur, "ffn_out", il);
  6874. }
  6875. cur = ggml_add(ctx0, cur, ffn_inp);
  6876. cb(cur, "l_out", il);
  6877. // input for next layer
  6878. inpL = cur;
  6879. }
  6880. cur = inpL;
  6881. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6882. cb(cur, "result_norm", -1);
  6883. // lm_head
  6884. cur = ggml_mul_mat(ctx0, model.output, cur);
  6885. cb(cur, "result_output", -1);
  6886. ggml_build_forward_expand(gf, cur);
  6887. return gf;
  6888. }
  6889. struct ggml_cgraph * build_falcon() {
  6890. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6891. const int64_t n_embd_head = hparams.n_embd_head_v;
  6892. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6893. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6894. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6895. struct ggml_tensor * cur;
  6896. struct ggml_tensor * inpL;
  6897. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6898. // inp_pos - contains the positions
  6899. struct ggml_tensor * inp_pos = build_inp_pos();
  6900. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6901. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6902. for (int il = 0; il < n_layer; ++il) {
  6903. struct ggml_tensor * attn_norm;
  6904. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6905. model.layers[il].attn_norm,
  6906. model.layers[il].attn_norm_b,
  6907. LLM_NORM, cb, il);
  6908. cb(attn_norm, "attn_norm", il);
  6909. // self-attention
  6910. {
  6911. if (model.layers[il].attn_norm_2) {
  6912. // Falcon-40B
  6913. cur = llm_build_norm(ctx0, inpL, hparams,
  6914. model.layers[il].attn_norm_2,
  6915. model.layers[il].attn_norm_2_b,
  6916. LLM_NORM, cb, il);
  6917. cb(cur, "attn_norm_2", il);
  6918. } else {
  6919. cur = attn_norm;
  6920. }
  6921. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6922. cb(cur, "wqkv", il);
  6923. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6924. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6925. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6926. cb(Qcur, "Qcur", il);
  6927. cb(Kcur, "Kcur", il);
  6928. cb(Vcur, "Vcur", il);
  6929. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6930. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6931. // using mode = 2 for neox mode
  6932. Qcur = ggml_rope_ext(
  6933. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6934. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6935. );
  6936. cb(Qcur, "Qcur", il);
  6937. Kcur = ggml_rope_ext(
  6938. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6939. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6940. );
  6941. cb(Kcur, "Kcur", il);
  6942. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6943. model.layers[il].wo, NULL,
  6944. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6945. }
  6946. if (il == n_layer - 1) {
  6947. // skip computing output for unused tokens
  6948. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6949. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6950. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6951. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6952. }
  6953. struct ggml_tensor * ffn_inp = cur;
  6954. // feed forward
  6955. {
  6956. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6957. model.layers[il].ffn_up, NULL,
  6958. NULL, NULL,
  6959. model.layers[il].ffn_down, NULL,
  6960. NULL,
  6961. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6962. cb(cur, "ffn_out", il);
  6963. }
  6964. cur = ggml_add(ctx0, cur, ffn_inp);
  6965. cb(cur, "l_out", il);
  6966. cur = ggml_add(ctx0, cur, inpL);
  6967. cb(cur, "l_out", il);
  6968. // input for next layer
  6969. inpL = cur;
  6970. }
  6971. cur = inpL;
  6972. // norm
  6973. cur = llm_build_norm(ctx0, cur, hparams,
  6974. model.output_norm,
  6975. model.output_norm_b,
  6976. LLM_NORM, cb, -1);
  6977. cb(cur, "result_norm", -1);
  6978. cur = ggml_mul_mat(ctx0, model.output, cur);
  6979. cb(cur, "result_output", -1);
  6980. ggml_build_forward_expand(gf, cur);
  6981. return gf;
  6982. }
  6983. struct ggml_cgraph * build_grok() {
  6984. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6985. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6986. int32_t n_tokens = this->n_tokens;
  6987. const int64_t n_embd_head = hparams.n_embd_head_v;
  6988. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6989. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6990. struct ggml_tensor * cur;
  6991. struct ggml_tensor * inpL;
  6992. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6993. // multiply by embedding_multiplier_scale of 78.38367176906169
  6994. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6995. // inp_pos - contains the positions
  6996. struct ggml_tensor * inp_pos = build_inp_pos();
  6997. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6998. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6999. for (int il = 0; il < n_layer; ++il) {
  7000. struct ggml_tensor * inpSA = inpL;
  7001. // norm
  7002. cur = llm_build_norm(ctx0, inpL, hparams,
  7003. model.layers[il].attn_norm, NULL,
  7004. LLM_NORM_RMS, cb, il);
  7005. cb(cur, "attn_norm", il);
  7006. // self-attention
  7007. {
  7008. // compute Q and K and RoPE them
  7009. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7010. cb(Qcur, "Qcur", il);
  7011. if (model.layers[il].bq) {
  7012. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7013. cb(Qcur, "Qcur", il);
  7014. }
  7015. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7016. cb(Kcur, "Kcur", il);
  7017. if (model.layers[il].bk) {
  7018. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7019. cb(Kcur, "Kcur", il);
  7020. }
  7021. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7022. cb(Vcur, "Vcur", il);
  7023. if (model.layers[il].bv) {
  7024. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7025. cb(Vcur, "Vcur", il);
  7026. }
  7027. Qcur = ggml_rope_ext(
  7028. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7029. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7030. ext_factor, attn_factor, beta_fast, beta_slow
  7031. );
  7032. cb(Qcur, "Qcur", il);
  7033. Kcur = ggml_rope_ext(
  7034. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7035. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7036. ext_factor, attn_factor, beta_fast, beta_slow
  7037. );
  7038. cb(Kcur, "Kcur", il);
  7039. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7040. model.layers[il].wo, model.layers[il].bo,
  7041. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7042. }
  7043. if (il == n_layer - 1) {
  7044. // skip computing output for unused tokens
  7045. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7046. n_tokens = n_outputs;
  7047. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7048. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7049. }
  7050. // Grok
  7051. // if attn_out_norm is present then apply it before adding the input
  7052. if (model.layers[il].attn_out_norm) {
  7053. cur = llm_build_norm(ctx0, cur, hparams,
  7054. model.layers[il].attn_out_norm, NULL,
  7055. LLM_NORM_RMS, cb, il);
  7056. cb(cur, "attn_out_norm", il);
  7057. }
  7058. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7059. cb(ffn_inp, "ffn_inp", il);
  7060. // feed-forward network
  7061. // MoE branch
  7062. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7063. model.layers[il].ffn_norm, NULL,
  7064. LLM_NORM_RMS, cb, il);
  7065. cb(cur, "ffn_norm", il);
  7066. cur = llm_build_moe_ffn(ctx0, cur,
  7067. model.layers[il].ffn_gate_inp,
  7068. model.layers[il].ffn_up_exps,
  7069. model.layers[il].ffn_gate_exps,
  7070. model.layers[il].ffn_down_exps,
  7071. n_expert, n_expert_used,
  7072. LLM_FFN_GELU, true,
  7073. false, 0.0,
  7074. cb, il);
  7075. cb(cur, "ffn_moe_out", il);
  7076. // Grok
  7077. // if layer_out_norm is present then apply it before adding the input
  7078. // Idea: maybe ffn_out_norm is a better name
  7079. if (model.layers[il].layer_out_norm) {
  7080. cur = llm_build_norm(ctx0, cur, hparams,
  7081. model.layers[il].layer_out_norm, NULL,
  7082. LLM_NORM_RMS, cb, il);
  7083. cb(cur, "layer_out_norm", il);
  7084. }
  7085. cur = ggml_add(ctx0, cur, ffn_inp);
  7086. cb(cur, "ffn_out", il);
  7087. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7088. if (layer_dir != nullptr) {
  7089. cur = ggml_add(ctx0, cur, layer_dir);
  7090. }
  7091. cb(cur, "l_out", il);
  7092. // input for next layer
  7093. inpL = cur;
  7094. }
  7095. cur = inpL;
  7096. cur = llm_build_norm(ctx0, cur, hparams,
  7097. model.output_norm, NULL,
  7098. LLM_NORM_RMS, cb, -1);
  7099. cb(cur, "result_norm", -1);
  7100. // lm_head
  7101. cur = ggml_mul_mat(ctx0, model.output, cur);
  7102. // Grok
  7103. // multiply logits by output_multiplier_scale of 0.5773502691896257
  7104. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  7105. cb(cur, "result_output", -1);
  7106. ggml_build_forward_expand(gf, cur);
  7107. return gf;
  7108. }
  7109. struct ggml_cgraph * build_dbrx() {
  7110. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7111. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7112. int32_t n_tokens = this->n_tokens;
  7113. const int64_t n_embd_head = hparams.n_embd_head_v;
  7114. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7115. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7116. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7117. struct ggml_tensor * cur;
  7118. struct ggml_tensor * inpL;
  7119. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7120. // inp_pos - contains the positions
  7121. struct ggml_tensor * inp_pos = build_inp_pos();
  7122. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7123. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7124. for (int il = 0; il < n_layer; ++il) {
  7125. struct ggml_tensor * inpSA = inpL;
  7126. // norm
  7127. cur = llm_build_norm(ctx0, inpL, hparams,
  7128. model.layers[il].attn_norm, NULL,
  7129. LLM_NORM, cb, il);
  7130. cb(cur, "attn_norm", il);
  7131. // self-attention
  7132. {
  7133. struct ggml_tensor * Qcur = nullptr;
  7134. struct ggml_tensor * Kcur = nullptr;
  7135. struct ggml_tensor * Vcur = nullptr;
  7136. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7137. cb(cur, "wqkv", il);
  7138. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7139. cb(cur, "wqkv_clamped", il);
  7140. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7141. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7142. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7143. cb(Qcur, "Qcur", il);
  7144. cb(Kcur, "Kcur", il);
  7145. cb(Vcur, "Vcur", il);
  7146. Qcur = ggml_rope_ext(
  7147. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7148. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7149. ext_factor, attn_factor, beta_fast, beta_slow
  7150. );
  7151. cb(Qcur, "Qcur", il);
  7152. Kcur = ggml_rope_ext(
  7153. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7154. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7155. ext_factor, attn_factor, beta_fast, beta_slow
  7156. );
  7157. cb(Kcur, "Kcur", il);
  7158. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7159. model.layers[il].wo, NULL,
  7160. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7161. }
  7162. if (il == n_layer - 1) {
  7163. // skip computing output for unused tokens
  7164. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7165. n_tokens = n_outputs;
  7166. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7167. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7168. }
  7169. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7170. cb(ffn_inp, "ffn_inp", il);
  7171. // feed-forward network
  7172. // MoE branch
  7173. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7174. model.layers[il].attn_out_norm, NULL,
  7175. LLM_NORM, cb, il);
  7176. cb(cur, "attn_out_norm", il);
  7177. cur = llm_build_moe_ffn(ctx0, cur,
  7178. model.layers[il].ffn_gate_inp,
  7179. model.layers[il].ffn_up_exps,
  7180. model.layers[il].ffn_gate_exps,
  7181. model.layers[il].ffn_down_exps,
  7182. n_expert, n_expert_used,
  7183. LLM_FFN_SILU, true,
  7184. false, 0.0,
  7185. cb, il);
  7186. cb(cur, "ffn_moe_out", il);
  7187. cur = ggml_add(ctx0, cur, ffn_inp);
  7188. cb(cur, "ffn_out", il);
  7189. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7190. if (layer_dir != nullptr) {
  7191. cur = ggml_add(ctx0, cur, layer_dir);
  7192. }
  7193. cb(cur, "l_out", il);
  7194. // input for next layer
  7195. inpL = cur;
  7196. }
  7197. cur = inpL;
  7198. cur = llm_build_norm(ctx0, cur, hparams,
  7199. model.output_norm, NULL,
  7200. LLM_NORM, cb, -1);
  7201. cb(cur, "result_norm", -1);
  7202. // lm_head
  7203. cur = ggml_mul_mat(ctx0, model.output, cur);
  7204. cb(cur, "result_output", -1);
  7205. ggml_build_forward_expand(gf, cur);
  7206. return gf;
  7207. }
  7208. struct ggml_cgraph * build_starcoder() {
  7209. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7210. const int64_t n_embd_head = hparams.n_embd_head_v;
  7211. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7212. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7213. struct ggml_tensor * cur;
  7214. struct ggml_tensor * inpL;
  7215. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7216. // inp_pos - contains the positions
  7217. struct ggml_tensor * inp_pos = build_inp_pos();
  7218. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7219. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7220. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7221. cb(pos, "pos_embd", -1);
  7222. inpL = ggml_add(ctx0, inpL, pos);
  7223. cb(inpL, "inpL", -1);
  7224. for (int il = 0; il < n_layer; ++il) {
  7225. cur = llm_build_norm(ctx0, inpL, hparams,
  7226. model.layers[il].attn_norm,
  7227. model.layers[il].attn_norm_b,
  7228. LLM_NORM, cb, il);
  7229. cb(cur, "attn_norm", il);
  7230. // self-attention
  7231. {
  7232. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7233. cb(cur, "wqkv", il);
  7234. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7235. cb(cur, "bqkv", il);
  7236. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7237. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7238. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7239. cb(Qcur, "Qcur", il);
  7240. cb(Kcur, "Kcur", il);
  7241. cb(Vcur, "Vcur", il);
  7242. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7243. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7244. model.layers[il].wo, model.layers[il].bo,
  7245. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7246. }
  7247. if (il == n_layer - 1) {
  7248. // skip computing output for unused tokens
  7249. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7250. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7251. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7252. }
  7253. // add the input
  7254. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7255. cb(ffn_inp, "ffn_inp", il);
  7256. // FF
  7257. {
  7258. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7259. model.layers[il].ffn_norm,
  7260. model.layers[il].ffn_norm_b,
  7261. LLM_NORM, cb, il);
  7262. cb(cur, "ffn_norm", il);
  7263. cur = llm_build_ffn(ctx0, cur,
  7264. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7265. NULL, NULL,
  7266. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7267. NULL,
  7268. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7269. cb(cur, "ffn_out", il);
  7270. }
  7271. inpL = ggml_add(ctx0, cur, ffn_inp);
  7272. cb(inpL, "l_out", il);
  7273. }
  7274. cur = llm_build_norm(ctx0, inpL, hparams,
  7275. model.output_norm,
  7276. model.output_norm_b,
  7277. LLM_NORM, cb, -1);
  7278. cb(cur, "result_norm", -1);
  7279. cur = ggml_mul_mat(ctx0, model.output, cur);
  7280. cb(cur, "result_output", -1);
  7281. ggml_build_forward_expand(gf, cur);
  7282. return gf;
  7283. }
  7284. struct ggml_cgraph * build_refact() {
  7285. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7286. const int64_t n_embd_head = hparams.n_embd_head_v;
  7287. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7288. struct ggml_tensor * cur;
  7289. struct ggml_tensor * inpL;
  7290. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7291. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7292. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7293. for (int il = 0; il < n_layer; ++il) {
  7294. struct ggml_tensor * inpSA = inpL;
  7295. cur = llm_build_norm(ctx0, inpL, hparams,
  7296. model.layers[il].attn_norm, NULL,
  7297. LLM_NORM_RMS, cb, il);
  7298. cb(cur, "attn_norm", il);
  7299. // self-attention
  7300. {
  7301. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7302. cb(Qcur, "Qcur", il);
  7303. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7304. cb(Kcur, "Kcur", il);
  7305. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7306. cb(Vcur, "Vcur", il);
  7307. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7308. cb(Kcur, "Kcur", il);
  7309. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7310. cb(Qcur, "Qcur", il);
  7311. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7312. model.layers[il].wo, NULL,
  7313. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7314. }
  7315. if (il == n_layer - 1) {
  7316. // skip computing output for unused tokens
  7317. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7318. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7319. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7320. }
  7321. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7322. cb(ffn_inp, "ffn_inp", il);
  7323. // feed-forward network
  7324. {
  7325. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7326. model.layers[il].ffn_norm, NULL,
  7327. LLM_NORM_RMS, cb, il);
  7328. cb(cur, "ffn_norm", il);
  7329. cur = llm_build_ffn(ctx0, cur,
  7330. model.layers[il].ffn_up, NULL,
  7331. model.layers[il].ffn_gate, NULL,
  7332. model.layers[il].ffn_down, NULL,
  7333. NULL,
  7334. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7335. cb(cur, "ffn_out", il);
  7336. }
  7337. cur = ggml_add(ctx0, cur, ffn_inp);
  7338. cb(cur, "l_out", il);
  7339. // input for next layer
  7340. inpL = cur;
  7341. }
  7342. cur = inpL;
  7343. cur = llm_build_norm(ctx0, cur, hparams,
  7344. model.output_norm, NULL,
  7345. LLM_NORM_RMS, cb, -1);
  7346. cb(cur, "result_norm", -1);
  7347. // lm_head
  7348. cur = ggml_mul_mat(ctx0, model.output, cur);
  7349. cb(cur, "result_output", -1);
  7350. ggml_build_forward_expand(gf, cur);
  7351. return gf;
  7352. }
  7353. struct ggml_cgraph * build_bert() {
  7354. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7355. const int64_t n_embd_head = hparams.n_embd_head_v;
  7356. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7357. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7358. struct ggml_tensor * cur;
  7359. struct ggml_tensor * inpL;
  7360. struct ggml_tensor * inp_pos = nullptr;
  7361. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7362. inp_pos = build_inp_pos();
  7363. }
  7364. // construct input embeddings (token, type, position)
  7365. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7366. // token types are hardcoded to zero ("Sentence A")
  7367. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7368. inpL = ggml_add(ctx0, inpL, type_row0);
  7369. if (model.arch == LLM_ARCH_BERT) {
  7370. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7371. }
  7372. cb(inpL, "inp_embd", -1);
  7373. // embed layer norm
  7374. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7375. cb(inpL, "inp_norm", -1);
  7376. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7377. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7378. // iterate layers
  7379. for (int il = 0; il < n_layer; ++il) {
  7380. struct ggml_tensor * cur = inpL;
  7381. struct ggml_tensor * Qcur;
  7382. struct ggml_tensor * Kcur;
  7383. struct ggml_tensor * Vcur;
  7384. // self-attention
  7385. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7386. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7387. cb(Qcur, "Qcur", il);
  7388. if (model.layers[il].attn_q_norm) {
  7389. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7390. model.layers[il].attn_q_norm,
  7391. model.layers[il].attn_q_norm_b,
  7392. LLM_NORM, cb, il);
  7393. }
  7394. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7395. cb(Kcur, "Kcur", il);
  7396. if (model.layers[il].attn_k_norm) {
  7397. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7398. model.layers[il].attn_k_norm,
  7399. model.layers[il].attn_k_norm_b,
  7400. LLM_NORM, cb, il);
  7401. }
  7402. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7403. cb(Vcur, "Vcur", il);
  7404. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7405. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7406. } else {
  7407. // compute Q and K and RoPE them
  7408. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7409. cb(cur, "wqkv", il);
  7410. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7411. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7412. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7413. cb(Qcur, "Qcur", il);
  7414. cb(Kcur, "Kcur", il);
  7415. cb(Vcur, "Vcur", il);
  7416. Qcur = ggml_rope_ext(
  7417. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7418. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7419. ext_factor, attn_factor, beta_fast, beta_slow
  7420. );
  7421. cb(Qcur, "Qcur", il);
  7422. Kcur = ggml_rope_ext(
  7423. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7424. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7425. ext_factor, attn_factor, beta_fast, beta_slow
  7426. );
  7427. cb(Kcur, "Kcur", il);
  7428. }
  7429. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7430. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7431. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7432. cb(kq, "kq", il);
  7433. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7434. cb(kq, "kq_soft_max_ext", il);
  7435. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7436. cb(v, "v", il);
  7437. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7438. cb(kqv, "kqv", il);
  7439. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7440. cb(kqv_merged, "kqv_merged", il);
  7441. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7442. cb(cur, "kqv_merged_cont", il);
  7443. ggml_build_forward_expand(gf, cur);
  7444. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7445. if (model.layers[il].bo) {
  7446. cb(cur, "kqv_wo", il);
  7447. }
  7448. if (model.layers[il].bo) {
  7449. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7450. }
  7451. cb(cur, "kqv_out", il);
  7452. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7453. // skip computing output for unused tokens
  7454. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7455. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7456. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7457. }
  7458. // re-add the layer input
  7459. cur = ggml_add(ctx0, cur, inpL);
  7460. // attention layer norm
  7461. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7462. if (model.layers[il].attn_norm_2 != nullptr) {
  7463. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  7464. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
  7465. }
  7466. struct ggml_tensor * ffn_inp = cur;
  7467. cb(ffn_inp, "ffn_inp", il);
  7468. // feed-forward network
  7469. if (model.arch == LLM_ARCH_BERT) {
  7470. cur = llm_build_ffn(ctx0, cur,
  7471. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7472. NULL, NULL,
  7473. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7474. NULL,
  7475. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7476. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7477. cur = llm_build_ffn(ctx0, cur,
  7478. model.layers[il].ffn_up, NULL,
  7479. model.layers[il].ffn_gate, NULL,
  7480. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7481. NULL,
  7482. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7483. } else {
  7484. cur = llm_build_ffn(ctx0, cur,
  7485. model.layers[il].ffn_up, NULL,
  7486. model.layers[il].ffn_gate, NULL,
  7487. model.layers[il].ffn_down, NULL,
  7488. NULL,
  7489. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7490. }
  7491. cb(cur, "ffn_out", il);
  7492. // attentions bypass the intermediate layer
  7493. cur = ggml_add(ctx0, cur, ffn_inp);
  7494. // output layer norm
  7495. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7496. // input for next layer
  7497. inpL = cur;
  7498. }
  7499. // final output
  7500. cur = inpL;
  7501. cb(cur, "result_embd", -1);
  7502. ggml_build_forward_expand(gf, cur);
  7503. return gf;
  7504. }
  7505. struct ggml_cgraph * build_bloom() {
  7506. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7507. const int64_t n_embd_head = hparams.n_embd_head_v;
  7508. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7509. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7510. struct ggml_tensor * cur;
  7511. struct ggml_tensor * inpL;
  7512. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7513. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7514. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7515. inpL = llm_build_norm(ctx0, inpL, hparams,
  7516. model.tok_norm,
  7517. model.tok_norm_b,
  7518. LLM_NORM, cb, -1);
  7519. cb(inpL, "inp_norm", -1);
  7520. for (int il = 0; il < n_layer; ++il) {
  7521. cur = llm_build_norm(ctx0, inpL, hparams,
  7522. model.layers[il].attn_norm,
  7523. model.layers[il].attn_norm_b,
  7524. LLM_NORM, cb, il);
  7525. cb(cur, "attn_norm", il);
  7526. // self-attention
  7527. {
  7528. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7529. cb(cur, "wqkv", il);
  7530. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7531. cb(cur, "bqkv", il);
  7532. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7533. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7534. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7535. cb(Qcur, "Qcur", il);
  7536. cb(Kcur, "Kcur", il);
  7537. cb(Vcur, "Vcur", il);
  7538. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7539. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7540. model.layers[il].wo, model.layers[il].bo,
  7541. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7542. }
  7543. if (il == n_layer - 1) {
  7544. // skip computing output for unused tokens
  7545. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7546. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7547. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7548. }
  7549. // Add the input
  7550. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7551. cb(ffn_inp, "ffn_inp", il);
  7552. // FF
  7553. {
  7554. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7555. model.layers[il].ffn_norm,
  7556. model.layers[il].ffn_norm_b,
  7557. LLM_NORM, cb, il);
  7558. cb(cur, "ffn_norm", il);
  7559. cur = llm_build_ffn(ctx0, cur,
  7560. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7561. NULL, NULL,
  7562. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7563. NULL,
  7564. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7565. cb(cur, "ffn_out", il);
  7566. }
  7567. inpL = ggml_add(ctx0, cur, ffn_inp);
  7568. cb(inpL, "l_out", il);
  7569. }
  7570. cur = llm_build_norm(ctx0, inpL, hparams,
  7571. model.output_norm,
  7572. model.output_norm_b,
  7573. LLM_NORM, cb, -1);
  7574. cb(cur, "result_norm", -1);
  7575. cur = ggml_mul_mat(ctx0, model.output, cur);
  7576. cb(cur, "result_output", -1);
  7577. ggml_build_forward_expand(gf, cur);
  7578. return gf;
  7579. }
  7580. struct ggml_cgraph * build_mpt() {
  7581. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7582. const int64_t n_embd_head = hparams.n_embd_head_v;
  7583. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7584. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7585. struct ggml_tensor * cur;
  7586. struct ggml_tensor * pos;
  7587. struct ggml_tensor * inpL;
  7588. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7589. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7590. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7591. if (model.pos_embd) {
  7592. // inp_pos - contains the positions
  7593. struct ggml_tensor * inp_pos = build_inp_pos();
  7594. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7595. cb(pos, "pos_embd", -1);
  7596. inpL = ggml_add(ctx0, inpL, pos);
  7597. cb(inpL, "inpL", -1);
  7598. }
  7599. for (int il = 0; il < n_layer; ++il) {
  7600. struct ggml_tensor * attn_norm;
  7601. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7602. model.layers[il].attn_norm,
  7603. model.layers[il].attn_norm_b,
  7604. LLM_NORM, cb, il);
  7605. cb(attn_norm, "attn_norm", il);
  7606. // self-attention
  7607. {
  7608. cur = attn_norm;
  7609. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7610. cb(cur, "wqkv", il);
  7611. if (model.layers[il].bqkv){
  7612. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7613. cb(cur, "bqkv", il);
  7614. }
  7615. if (hparams.f_clamp_kqv > 0.0f) {
  7616. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7617. cb(cur, "wqkv_clamped", il);
  7618. }
  7619. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7620. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7621. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7622. cb(Qcur, "Qcur", il);
  7623. cb(Kcur, "Kcur", il);
  7624. cb(Vcur, "Vcur", il);
  7625. // Q/K Layernorm
  7626. if (model.layers[il].attn_q_norm) {
  7627. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7628. model.layers[il].attn_q_norm,
  7629. model.layers[il].attn_q_norm_b,
  7630. LLM_NORM, cb, il);
  7631. cb(Qcur, "Qcur", il);
  7632. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7633. model.layers[il].attn_k_norm,
  7634. model.layers[il].attn_k_norm_b,
  7635. LLM_NORM, cb, il);
  7636. cb(Kcur, "Kcur", il);
  7637. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7638. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7639. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7640. model.layers[il].wo, model.layers[il].bo,
  7641. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7642. } else {
  7643. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7644. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7645. model.layers[il].wo, model.layers[il].bo,
  7646. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7647. }
  7648. }
  7649. if (il == n_layer - 1) {
  7650. // skip computing output for unused tokens
  7651. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7652. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7653. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7654. }
  7655. // Add the input
  7656. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7657. cb(ffn_inp, "ffn_inp", il);
  7658. // feed forward
  7659. {
  7660. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7661. model.layers[il].ffn_norm,
  7662. model.layers[il].ffn_norm_b,
  7663. LLM_NORM, cb, il);
  7664. cb(cur, "ffn_norm", il);
  7665. cur = llm_build_ffn(ctx0, cur,
  7666. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7667. NULL, NULL,
  7668. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7669. model.layers[il].ffn_act,
  7670. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7671. cb(cur, "ffn_out", il);
  7672. }
  7673. cur = ggml_add(ctx0, cur, ffn_inp);
  7674. cb(cur, "l_out", il);
  7675. // input for next layer
  7676. inpL = cur;
  7677. }
  7678. cur = inpL;
  7679. cur = llm_build_norm(ctx0, cur, hparams,
  7680. model.output_norm,
  7681. model.output_norm_b,
  7682. LLM_NORM, cb, -1);
  7683. cb(cur, "result_norm", -1);
  7684. cur = ggml_mul_mat(ctx0, model.output, cur);
  7685. cb(cur, "result_output", -1);
  7686. ggml_build_forward_expand(gf, cur);
  7687. return gf;
  7688. }
  7689. struct ggml_cgraph * build_stablelm() {
  7690. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7691. const int64_t n_embd_head = hparams.n_embd_head_v;
  7692. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7693. struct ggml_tensor * cur;
  7694. struct ggml_tensor * inpL;
  7695. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7696. // inp_pos - contains the positions
  7697. struct ggml_tensor * inp_pos = build_inp_pos();
  7698. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7699. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7700. for (int il = 0; il < n_layer; ++il) {
  7701. // norm
  7702. cur = llm_build_norm(ctx0, inpL, hparams,
  7703. model.layers[il].attn_norm,
  7704. model.layers[il].attn_norm_b,
  7705. LLM_NORM, cb, il);
  7706. cb(cur, "attn_norm", il);
  7707. struct ggml_tensor * inpSA = cur;
  7708. // self-attention
  7709. {
  7710. // compute Q and K and RoPE them
  7711. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7712. cb(Qcur, "Qcur", il);
  7713. if (model.layers[il].bq) {
  7714. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7715. cb(Qcur, "Qcur", il);
  7716. }
  7717. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7718. cb(Kcur, "Kcur", il);
  7719. if (model.layers[il].bk) {
  7720. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7721. cb(Kcur, "Kcur", il);
  7722. }
  7723. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7724. cb(Vcur, "Vcur", il);
  7725. if (model.layers[il].bv) {
  7726. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7727. cb(Vcur, "Vcur", il);
  7728. }
  7729. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7730. cb(Qcur, "Qcur", il);
  7731. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7732. cb(Kcur, "Kcur", il);
  7733. if (model.layers[il].attn_q_norm) {
  7734. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7735. model.layers[il].attn_q_norm,
  7736. NULL,
  7737. LLM_NORM, cb, il);
  7738. cb(Qcur, "Qcur", il);
  7739. }
  7740. if (model.layers[il].attn_k_norm) {
  7741. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7742. model.layers[il].attn_k_norm,
  7743. NULL,
  7744. LLM_NORM, cb, il);
  7745. cb(Kcur, "Kcur", il);
  7746. }
  7747. Qcur = ggml_rope_ext(
  7748. ctx0, Qcur, inp_pos, nullptr,
  7749. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7750. ext_factor, attn_factor, beta_fast, beta_slow
  7751. );
  7752. cb(Qcur, "Qcur", il);
  7753. Kcur = ggml_rope_ext(
  7754. ctx0, Kcur, inp_pos, nullptr,
  7755. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7756. ext_factor, attn_factor, beta_fast, beta_slow
  7757. );
  7758. cb(Kcur, "Kcur", il);
  7759. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7760. model.layers[il].wo, NULL,
  7761. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7762. }
  7763. if (il == n_layer - 1) {
  7764. // skip computing output for unused tokens
  7765. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7766. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7767. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7768. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7769. }
  7770. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7771. cb(ffn_inp, "ffn_inp", il);
  7772. // feed-forward network
  7773. {
  7774. if (model.layers[il].ffn_norm) {
  7775. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7776. model.layers[il].ffn_norm,
  7777. model.layers[il].ffn_norm_b,
  7778. LLM_NORM, cb, il);
  7779. cb(cur, "ffn_norm", il);
  7780. } else {
  7781. // parallel residual
  7782. cur = inpSA;
  7783. }
  7784. cur = llm_build_ffn(ctx0, cur,
  7785. model.layers[il].ffn_up, NULL,
  7786. model.layers[il].ffn_gate, NULL,
  7787. model.layers[il].ffn_down, NULL,
  7788. NULL,
  7789. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7790. cb(cur, "ffn_out", il);
  7791. }
  7792. cur = ggml_add(ctx0, cur, ffn_inp);
  7793. cb(cur, "l_out", il);
  7794. // input for next layer
  7795. inpL = cur;
  7796. }
  7797. cur = inpL;
  7798. cur = llm_build_norm(ctx0, cur, hparams,
  7799. model.output_norm,
  7800. model.output_norm_b,
  7801. LLM_NORM, cb, -1);
  7802. cb(cur, "result_norm", -1);
  7803. // lm_head
  7804. cur = ggml_mul_mat(ctx0, model.output, cur);
  7805. cb(cur, "result_output", -1);
  7806. ggml_build_forward_expand(gf, cur);
  7807. return gf;
  7808. }
  7809. struct ggml_cgraph * build_qwen() {
  7810. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7811. const int64_t n_embd_head = hparams.n_embd_head_v;
  7812. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7813. struct ggml_tensor * cur;
  7814. struct ggml_tensor * inpL;
  7815. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7816. // inp_pos - contains the positions
  7817. struct ggml_tensor * inp_pos = build_inp_pos();
  7818. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7819. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7820. for (int il = 0; il < n_layer; ++il) {
  7821. struct ggml_tensor * inpSA = inpL;
  7822. cur = llm_build_norm(ctx0, inpL, hparams,
  7823. model.layers[il].attn_norm, NULL,
  7824. LLM_NORM_RMS, cb, il);
  7825. cb(cur, "attn_norm", il);
  7826. // self-attention
  7827. {
  7828. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7829. cb(cur, "wqkv", il);
  7830. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7831. cb(cur, "bqkv", il);
  7832. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7833. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7834. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7835. cb(Qcur, "Qcur", il);
  7836. cb(Kcur, "Kcur", il);
  7837. cb(Vcur, "Vcur", il);
  7838. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7839. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7840. // using mode = 2 for neox mode
  7841. Qcur = ggml_rope_ext(
  7842. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7843. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7844. );
  7845. cb(Qcur, "Qcur", il);
  7846. Kcur = ggml_rope_ext(
  7847. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7848. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7849. );
  7850. cb(Kcur, "Kcur", il);
  7851. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7852. model.layers[il].wo, NULL,
  7853. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7854. }
  7855. if (il == n_layer - 1) {
  7856. // skip computing output for unused tokens
  7857. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7858. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7859. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7860. }
  7861. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7862. cb(ffn_inp, "ffn_inp", il);
  7863. // feed-forward forward
  7864. {
  7865. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7866. model.layers[il].ffn_norm, NULL,
  7867. LLM_NORM_RMS, cb, il);
  7868. cb(cur, "ffn_norm", il);
  7869. cur = llm_build_ffn(ctx0, cur,
  7870. model.layers[il].ffn_up, NULL,
  7871. model.layers[il].ffn_gate, NULL,
  7872. model.layers[il].ffn_down, NULL,
  7873. NULL,
  7874. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7875. cb(cur, "ffn_out", il);
  7876. }
  7877. cur = ggml_add(ctx0, cur, ffn_inp);
  7878. cb(cur, "l_out", il);
  7879. // input for next layer
  7880. inpL = cur;
  7881. }
  7882. cur = inpL;
  7883. cur = llm_build_norm(ctx0, cur, hparams,
  7884. model.output_norm, NULL,
  7885. LLM_NORM_RMS, cb, -1);
  7886. cb(cur, "result_norm", -1);
  7887. // lm_head
  7888. cur = ggml_mul_mat(ctx0, model.output, cur);
  7889. cb(cur, "result_output", -1);
  7890. ggml_build_forward_expand(gf, cur);
  7891. return gf;
  7892. }
  7893. struct ggml_cgraph * build_qwen2() {
  7894. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7895. const int64_t n_embd_head = hparams.n_embd_head_v;
  7896. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7897. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7898. struct ggml_tensor * cur;
  7899. struct ggml_tensor * inpL;
  7900. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7901. // inp_pos - contains the positions
  7902. struct ggml_tensor * inp_pos = build_inp_pos();
  7903. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7904. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7905. for (int il = 0; il < n_layer; ++il) {
  7906. struct ggml_tensor * inpSA = inpL;
  7907. // norm
  7908. cur = llm_build_norm(ctx0, inpL, hparams,
  7909. model.layers[il].attn_norm, NULL,
  7910. LLM_NORM_RMS, cb, il);
  7911. cb(cur, "attn_norm", il);
  7912. // self-attention
  7913. {
  7914. // compute Q and K and RoPE them
  7915. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7916. cb(Qcur, "Qcur", il);
  7917. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7918. cb(Qcur, "Qcur", il);
  7919. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7920. cb(Kcur, "Kcur", il);
  7921. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7922. cb(Kcur, "Kcur", il);
  7923. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7924. cb(Vcur, "Vcur", il);
  7925. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7926. cb(Vcur, "Vcur", il);
  7927. Qcur = ggml_rope_ext(
  7928. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7929. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7930. ext_factor, attn_factor, beta_fast, beta_slow
  7931. );
  7932. cb(Qcur, "Qcur", il);
  7933. Kcur = ggml_rope_ext(
  7934. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7935. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7936. ext_factor, attn_factor, beta_fast, beta_slow
  7937. );
  7938. cb(Kcur, "Kcur", il);
  7939. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7940. model.layers[il].wo, model.layers[il].bo,
  7941. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7942. }
  7943. if (il == n_layer - 1) {
  7944. // skip computing output for unused tokens
  7945. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7946. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7947. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7948. }
  7949. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7950. cb(ffn_inp, "ffn_inp", il);
  7951. // feed-forward network
  7952. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7953. model.layers[il].ffn_norm, NULL,
  7954. LLM_NORM_RMS, cb, il);
  7955. cb(cur, "ffn_norm", il);
  7956. cur = llm_build_ffn(ctx0, cur,
  7957. model.layers[il].ffn_up, NULL,
  7958. model.layers[il].ffn_gate, NULL,
  7959. model.layers[il].ffn_down, NULL,
  7960. NULL,
  7961. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7962. cb(cur, "ffn_out", il);
  7963. cur = ggml_add(ctx0, cur, ffn_inp);
  7964. cb(cur, "l_out", il);
  7965. // input for next layer
  7966. inpL = cur;
  7967. }
  7968. cur = inpL;
  7969. cur = llm_build_norm(ctx0, cur, hparams,
  7970. model.output_norm, NULL,
  7971. LLM_NORM_RMS, cb, -1);
  7972. cb(cur, "result_norm", -1);
  7973. // lm_head
  7974. cur = ggml_mul_mat(ctx0, model.output, cur);
  7975. cb(cur, "result_output", -1);
  7976. ggml_build_forward_expand(gf, cur);
  7977. return gf;
  7978. }
  7979. struct ggml_cgraph * build_qwen2moe() {
  7980. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7981. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7982. int32_t n_tokens = this->n_tokens;
  7983. const int64_t n_embd_head = hparams.n_embd_head_v;
  7984. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7985. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7986. struct ggml_tensor * cur;
  7987. struct ggml_tensor * inpL;
  7988. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7989. // inp_pos - contains the positions
  7990. struct ggml_tensor * inp_pos = build_inp_pos();
  7991. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7992. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7993. for (int il = 0; il < n_layer; ++il) {
  7994. struct ggml_tensor * inpSA = inpL;
  7995. // norm
  7996. cur = llm_build_norm(ctx0, inpL, hparams,
  7997. model.layers[il].attn_norm, NULL,
  7998. LLM_NORM_RMS, cb, il);
  7999. cb(cur, "attn_norm", il);
  8000. // self_attention
  8001. {
  8002. // compute Q and K and RoPE them
  8003. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8004. cb(Qcur, "Qcur", il);
  8005. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8006. cb(Qcur, "Qcur", il);
  8007. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8008. cb(Kcur, "Kcur", il);
  8009. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8010. cb(Kcur, "Kcur", il);
  8011. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8012. cb(Vcur, "Vcur", il);
  8013. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8014. cb(Vcur, "Vcur", il);
  8015. Qcur = ggml_rope_ext(
  8016. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8017. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8018. ext_factor, attn_factor, beta_fast, beta_slow
  8019. );
  8020. cb(Qcur, "Qcur", il);
  8021. Kcur = ggml_rope_ext(
  8022. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8023. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8024. ext_factor, attn_factor, beta_fast, beta_slow
  8025. );
  8026. cb(Kcur, "Kcur", il);
  8027. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8028. model.layers[il].wo, model.layers[il].bo,
  8029. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8030. }
  8031. if (il == n_layer - 1) {
  8032. // skip computing output for unused tokens
  8033. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8034. n_tokens = n_outputs;
  8035. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8036. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8037. }
  8038. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8039. cb(ffn_inp, "ffn_inp", il);
  8040. // MoE branch
  8041. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8042. model.layers[il].ffn_norm, NULL,
  8043. LLM_NORM_RMS, cb, il);
  8044. cb(cur, "ffn_norm", il);
  8045. ggml_tensor * moe_out =
  8046. llm_build_moe_ffn(ctx0, cur,
  8047. model.layers[il].ffn_gate_inp,
  8048. model.layers[il].ffn_up_exps,
  8049. model.layers[il].ffn_gate_exps,
  8050. model.layers[il].ffn_down_exps,
  8051. n_expert, n_expert_used,
  8052. LLM_FFN_SILU, false,
  8053. false, 0.0,
  8054. cb, il);
  8055. cb(cur, "ffn_moe_out", il);
  8056. // FFN shared expert
  8057. {
  8058. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  8059. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  8060. // sigmoid
  8061. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  8062. cb(cur_gate, "ffn_shexp_gate", il);
  8063. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  8064. model.layers[il].ffn_up_shexp, NULL,
  8065. model.layers[il].ffn_gate_shexp, NULL,
  8066. model.layers[il].ffn_down_shexp, NULL,
  8067. NULL,
  8068. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8069. cb(cur_ffn, "ffn_shexp", il);
  8070. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  8071. cb(ffn_shexp_out, "ffn_shexp_out", il);
  8072. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  8073. cb(moe_out, "ffn_out", il);
  8074. cur = moe_out;
  8075. }
  8076. cur = ggml_add(ctx0, cur, ffn_inp);
  8077. cb(cur, "l_out", il);
  8078. // input for next layer
  8079. inpL = cur;
  8080. }
  8081. cur = inpL;
  8082. cur = llm_build_norm(ctx0, cur, hparams,
  8083. model.output_norm, NULL,
  8084. LLM_NORM_RMS, cb, -1);
  8085. cb(cur, "result_norm", -1);
  8086. // lm_head
  8087. cur = ggml_mul_mat(ctx0, model.output, cur);
  8088. cb(cur, "result_output", -1);
  8089. ggml_build_forward_expand(gf, cur);
  8090. return gf;
  8091. }
  8092. struct ggml_cgraph * build_phi2() {
  8093. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8094. const int64_t n_embd_head = hparams.n_embd_head_v;
  8095. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8096. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8097. struct ggml_tensor * cur;
  8098. struct ggml_tensor * attn_norm_output;
  8099. struct ggml_tensor * ffn_output;
  8100. struct ggml_tensor * inpL;
  8101. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8102. // inp_pos - contains the positions
  8103. struct ggml_tensor * inp_pos = build_inp_pos();
  8104. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8105. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8106. for (int il = 0; il < n_layer; ++il) {
  8107. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8108. model.layers[il].attn_norm,
  8109. model.layers[il].attn_norm_b,
  8110. LLM_NORM, cb, il);
  8111. cb(attn_norm_output, "attn_norm", il);
  8112. // self-attention
  8113. {
  8114. struct ggml_tensor * Qcur = nullptr;
  8115. struct ggml_tensor * Kcur = nullptr;
  8116. struct ggml_tensor * Vcur = nullptr;
  8117. if (model.layers[il].wqkv) {
  8118. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8119. cb(cur, "wqkv", il);
  8120. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8121. cb(cur, "bqkv", il);
  8122. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8123. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8124. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8125. } else {
  8126. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8127. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8128. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8129. }
  8130. cb(Qcur, "Qcur", il);
  8131. cb(Kcur, "Kcur", il);
  8132. cb(Vcur, "Vcur", il);
  8133. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8134. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8135. Qcur = ggml_rope_ext(
  8136. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8137. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8138. );
  8139. cb(Qcur, "Qcur", il);
  8140. // with phi2, we scale the Q to avoid precision issues
  8141. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  8142. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  8143. cb(Qcur, "Qcur", il);
  8144. Kcur = ggml_rope_ext(
  8145. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8146. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8147. );
  8148. cb(Kcur, "Kcur", il);
  8149. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8150. model.layers[il].wo, model.layers[il].bo,
  8151. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8152. }
  8153. if (il == n_layer - 1) {
  8154. // skip computing output for unused tokens
  8155. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8156. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8157. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8158. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  8159. }
  8160. // FF
  8161. {
  8162. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  8163. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8164. NULL, NULL,
  8165. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8166. NULL,
  8167. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8168. cb(ffn_output, "ffn_out", il);
  8169. }
  8170. cur = ggml_add(ctx0, cur, ffn_output);
  8171. cb(cur, "l_out", il);
  8172. cur = ggml_add(ctx0, cur, inpL);
  8173. cb(cur, "l_out", il);
  8174. inpL = cur;
  8175. }
  8176. cur = llm_build_norm(ctx0, inpL, hparams,
  8177. model.output_norm,
  8178. model.output_norm_b,
  8179. LLM_NORM, cb, -1);
  8180. cb(cur, "result_norm", -1);
  8181. cur = ggml_mul_mat(ctx0, model.output, cur);
  8182. cb(cur, "result_output_no_bias", -1);
  8183. cur = ggml_add(ctx0, cur, model.output_b);
  8184. cb(cur, "result_output", -1);
  8185. ggml_build_forward_expand(gf, cur);
  8186. return gf;
  8187. }
  8188. struct ggml_cgraph * build_phi3() {
  8189. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8190. const int64_t n_embd_head = hparams.n_embd_head_v;
  8191. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8192. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8193. struct ggml_tensor * cur;
  8194. struct ggml_tensor * inpL;
  8195. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8196. // inp_pos - contains the positions
  8197. struct ggml_tensor * inp_pos = build_inp_pos();
  8198. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8199. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8200. for (int il = 0; il < n_layer; ++il) {
  8201. auto residual = inpL;
  8202. // self-attention
  8203. {
  8204. // rope freq factors for 128k context
  8205. struct ggml_tensor * rope_factors = build_rope_factors(il);
  8206. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8207. model.layers[il].attn_norm,
  8208. NULL,
  8209. LLM_NORM_RMS, cb, il);
  8210. cb(attn_norm_output, "attn_norm", il);
  8211. struct ggml_tensor * Qcur = nullptr;
  8212. struct ggml_tensor * Kcur = nullptr;
  8213. struct ggml_tensor * Vcur = nullptr;
  8214. if (model.layers[il].wqkv) {
  8215. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8216. cb(cur, "wqkv", il);
  8217. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  8218. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  8219. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  8220. }
  8221. else {
  8222. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8223. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8224. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8225. }
  8226. cb(Qcur, "Qcur", il);
  8227. cb(Kcur, "Kcur", il);
  8228. cb(Vcur, "Vcur", il);
  8229. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8230. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8231. Qcur = ggml_rope_ext(
  8232. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8233. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8234. );
  8235. cb(Qcur, "Qcur", il);
  8236. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8237. cb(Qcur, "Qcur", il);
  8238. Kcur = ggml_rope_ext(
  8239. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8240. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8241. );
  8242. cb(Kcur, "Kcur", il);
  8243. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8244. model.layers[il].wo, model.layers[il].bo,
  8245. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8246. }
  8247. if (il == n_layer - 1) {
  8248. // skip computing output for unused tokens
  8249. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  8250. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8251. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  8252. }
  8253. cur = ggml_add(ctx0, cur, residual);
  8254. residual = cur;
  8255. cur = llm_build_norm(ctx0, cur, hparams,
  8256. model.layers[il].ffn_norm, NULL,
  8257. LLM_NORM_RMS, cb, il);
  8258. cb(cur, "ffn_norm", il);
  8259. // FF
  8260. // special-case: the up and gate tensors are merged into a single tensor
  8261. // TOOD: support into llm_build_ffn
  8262. {
  8263. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  8264. cb(up, "ffn_up", il);
  8265. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  8266. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  8267. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  8268. cb(y, "ffn_gate", il);
  8269. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  8270. cb(down, "ffn_down", il);
  8271. cur = down;
  8272. cb(cur, "ffn_out", il);
  8273. }
  8274. cur = ggml_add(ctx0, residual, cur);
  8275. cb(cur, "l_out", il);
  8276. inpL = cur;
  8277. }
  8278. cur = llm_build_norm(ctx0, inpL, hparams,
  8279. model.output_norm,
  8280. NULL,
  8281. LLM_NORM_RMS, cb, -1);
  8282. cb(cur, "result_norm", -1);
  8283. cur = ggml_mul_mat(ctx0, model.output, cur);
  8284. cb(cur, "result_output", -1);
  8285. ggml_build_forward_expand(gf, cur);
  8286. return gf;
  8287. }
  8288. struct ggml_cgraph * build_plamo() {
  8289. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8290. const int64_t n_embd_head = hparams.n_embd_head_v;
  8291. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8292. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8293. struct ggml_tensor * cur;
  8294. struct ggml_tensor * inpL;
  8295. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8296. // inp_pos - contains the positions
  8297. struct ggml_tensor * inp_pos = build_inp_pos();
  8298. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8299. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8300. for (int il = 0; il < n_layer; ++il) {
  8301. // norm
  8302. cur = llm_build_norm(ctx0, inpL, hparams,
  8303. model.layers[il].attn_norm, NULL,
  8304. LLM_NORM_RMS, cb, il);
  8305. cb(cur, "attn_norm", il);
  8306. struct ggml_tensor * attention_norm = cur;
  8307. // self-attention
  8308. {
  8309. // compute Q and K and RoPE them
  8310. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8311. cb(Qcur, "Qcur", il);
  8312. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8313. cb(Kcur, "Kcur", il);
  8314. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8315. cb(Vcur, "Vcur", il);
  8316. Qcur = ggml_rope_ext(
  8317. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8318. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8319. ext_factor, attn_factor, beta_fast, beta_slow);
  8320. cb(Qcur, "Qcur", il);
  8321. Kcur = ggml_rope_ext(
  8322. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8323. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8324. ext_factor, attn_factor, beta_fast, beta_slow);
  8325. cb(Kcur, "Kcur", il);
  8326. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8327. model.layers[il].wo, NULL,
  8328. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8329. }
  8330. struct ggml_tensor * sa_out = cur;
  8331. cur = attention_norm;
  8332. if (il == n_layer - 1) {
  8333. // skip computing output for unused tokens
  8334. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8335. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8336. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8337. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8338. }
  8339. // feed-forward network
  8340. {
  8341. cur = llm_build_ffn(ctx0, cur,
  8342. model.layers[il].ffn_up, NULL,
  8343. model.layers[il].ffn_gate, NULL,
  8344. model.layers[il].ffn_down, NULL,
  8345. NULL,
  8346. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8347. cb(cur, "ffn_out", il);
  8348. }
  8349. cur = ggml_add(ctx0, cur, sa_out);
  8350. cb(cur, "l_out", il);
  8351. cur = ggml_add(ctx0, cur, inpL);
  8352. cb(cur, "l_out", il);
  8353. // input for next layer
  8354. inpL = cur;
  8355. }
  8356. cur = inpL;
  8357. cur = llm_build_norm(ctx0, cur, hparams,
  8358. model.output_norm, NULL,
  8359. LLM_NORM_RMS, cb, -1);
  8360. cb(cur, "result_norm", -1);
  8361. // lm_head
  8362. cur = ggml_mul_mat(ctx0, model.output, cur);
  8363. cb(cur, "result_output", -1);
  8364. ggml_build_forward_expand(gf, cur);
  8365. return gf;
  8366. }
  8367. struct ggml_cgraph * build_gpt2() {
  8368. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8369. const int64_t n_embd_head = hparams.n_embd_head_v;
  8370. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8371. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8372. struct ggml_tensor * cur;
  8373. struct ggml_tensor * pos;
  8374. struct ggml_tensor * inpL;
  8375. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8376. // inp_pos - contains the positions
  8377. struct ggml_tensor * inp_pos = build_inp_pos();
  8378. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8379. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8380. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8381. cb(pos, "pos_embd", -1);
  8382. inpL = ggml_add(ctx0, inpL, pos);
  8383. cb(inpL, "inpL", -1);
  8384. for (int il = 0; il < n_layer; ++il) {
  8385. cur = llm_build_norm(ctx0, inpL, hparams,
  8386. model.layers[il].attn_norm,
  8387. model.layers[il].attn_norm_b,
  8388. LLM_NORM, cb, il);
  8389. cb(cur, "attn_norm", il);
  8390. // self-attention
  8391. {
  8392. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8393. cb(cur, "wqkv", il);
  8394. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8395. cb(cur, "bqkv", il);
  8396. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8397. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8398. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8399. cb(Qcur, "Qcur", il);
  8400. cb(Kcur, "Kcur", il);
  8401. cb(Vcur, "Vcur", il);
  8402. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8403. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8404. model.layers[il].wo, model.layers[il].bo,
  8405. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8406. }
  8407. if (il == n_layer - 1) {
  8408. // skip computing output for unused tokens
  8409. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8410. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8411. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8412. }
  8413. // add the input
  8414. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8415. cb(ffn_inp, "ffn_inp", il);
  8416. // FF
  8417. {
  8418. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8419. model.layers[il].ffn_norm,
  8420. model.layers[il].ffn_norm_b,
  8421. LLM_NORM, cb, il);
  8422. cb(cur, "ffn_norm", il);
  8423. cur = llm_build_ffn(ctx0, cur,
  8424. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8425. NULL, NULL,
  8426. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8427. NULL,
  8428. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8429. cb(cur, "ffn_out", il);
  8430. }
  8431. inpL = ggml_add(ctx0, cur, ffn_inp);
  8432. cb(inpL, "l_out", il);
  8433. }
  8434. cur = llm_build_norm(ctx0, inpL, hparams,
  8435. model.output_norm,
  8436. model.output_norm_b,
  8437. LLM_NORM, cb, -1);
  8438. cb(cur, "result_norm", -1);
  8439. cur = ggml_mul_mat(ctx0, model.output, cur);
  8440. cb(cur, "result_output", -1);
  8441. ggml_build_forward_expand(gf, cur);
  8442. return gf;
  8443. }
  8444. struct ggml_cgraph * build_codeshell() {
  8445. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8446. const int64_t n_embd_head = hparams.n_embd_head_v;
  8447. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8448. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8449. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8450. struct ggml_tensor * cur;
  8451. struct ggml_tensor * inpL;
  8452. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8453. // inp_pos - contains the positions
  8454. struct ggml_tensor * inp_pos = build_inp_pos();
  8455. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8456. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8457. for (int il = 0; il < n_layer; ++il) {
  8458. cur = llm_build_norm(ctx0, inpL, hparams,
  8459. model.layers[il].attn_norm,
  8460. model.layers[il].attn_norm_b,
  8461. LLM_NORM, cb, il);
  8462. cb(cur, "attn_norm", il);
  8463. // self-attention
  8464. {
  8465. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8466. cb(cur, "wqkv", il);
  8467. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8468. cb(cur, "bqkv", il);
  8469. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8470. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8471. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8472. cb(tmpq, "tmpq", il);
  8473. cb(tmpk, "tmpk", il);
  8474. cb(Vcur, "Vcur", il);
  8475. struct ggml_tensor * Qcur = ggml_rope_ext(
  8476. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8477. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8478. ext_factor, attn_factor, beta_fast, beta_slow
  8479. );
  8480. cb(Qcur, "Qcur", il);
  8481. struct ggml_tensor * Kcur = ggml_rope_ext(
  8482. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8483. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8484. ext_factor, attn_factor, beta_fast, beta_slow
  8485. );
  8486. cb(Kcur, "Kcur", il);
  8487. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8488. model.layers[il].wo, model.layers[il].bo,
  8489. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8490. }
  8491. if (il == n_layer - 1) {
  8492. // skip computing output for unused tokens
  8493. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8494. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8495. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8496. }
  8497. // add the input
  8498. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8499. cb(ffn_inp, "ffn_inp", il);
  8500. // FF
  8501. {
  8502. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8503. model.layers[il].ffn_norm,
  8504. model.layers[il].ffn_norm_b,
  8505. LLM_NORM, cb, il);
  8506. cb(cur, "ffn_norm", il);
  8507. cur = llm_build_ffn(ctx0, cur,
  8508. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8509. NULL, NULL,
  8510. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8511. NULL,
  8512. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8513. cb(cur, "ffn_out", il);
  8514. }
  8515. inpL = ggml_add(ctx0, cur, ffn_inp);
  8516. cb(inpL, "l_out", il);
  8517. }
  8518. cur = llm_build_norm(ctx0, inpL, hparams,
  8519. model.output_norm,
  8520. model.output_norm_b,
  8521. LLM_NORM, cb, -1);
  8522. cb(cur, "result_norm", -1);
  8523. cur = ggml_mul_mat(ctx0, model.output, cur);
  8524. cb(cur, "result_output", -1);
  8525. ggml_build_forward_expand(gf, cur);
  8526. return gf;
  8527. }
  8528. struct ggml_cgraph * build_orion() {
  8529. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8530. const int64_t n_embd_head = hparams.n_embd_head_v;
  8531. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8532. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8533. struct ggml_tensor * cur;
  8534. struct ggml_tensor * inpL;
  8535. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8536. // inp_pos - contains the positions
  8537. struct ggml_tensor * inp_pos = build_inp_pos();
  8538. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8539. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8540. for (int il = 0; il < n_layer; ++il) {
  8541. struct ggml_tensor * inpSA = inpL;
  8542. // norm
  8543. cur = llm_build_norm(ctx0, inpL, hparams,
  8544. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8545. LLM_NORM, cb, il);
  8546. cb(cur, "attn_norm", il);
  8547. // self-attention
  8548. {
  8549. // compute Q and K and RoPE them
  8550. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8551. cb(Qcur, "Qcur", il);
  8552. // if (model.layers[il].bq) {
  8553. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8554. // cb(Qcur, "Qcur", il);
  8555. // }
  8556. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8557. cb(Kcur, "Kcur", il);
  8558. // if (model.layers[il].bk) {
  8559. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8560. // cb(Kcur, "Kcur", il);
  8561. // }
  8562. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8563. cb(Vcur, "Vcur", il);
  8564. // if (model.layers[il].bv) {
  8565. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8566. // cb(Vcur, "Vcur", il);
  8567. // }
  8568. Qcur = ggml_rope_ext(
  8569. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8570. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8571. ext_factor, attn_factor, beta_fast, beta_slow
  8572. );
  8573. cb(Qcur, "Qcur", il);
  8574. Kcur = ggml_rope_ext(
  8575. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8576. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8577. ext_factor, attn_factor, beta_fast, beta_slow
  8578. );
  8579. cb(Kcur, "Kcur", il);
  8580. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8581. model.layers[il].wo, NULL,
  8582. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8583. }
  8584. if (il == n_layer - 1) {
  8585. // skip computing output for unused tokens
  8586. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8587. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8588. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8589. }
  8590. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8591. cb(ffn_inp, "ffn_inp", il);
  8592. // feed-forward network
  8593. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8594. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8595. LLM_NORM, cb, il);
  8596. cb(cur, "ffn_norm", il);
  8597. cur = llm_build_ffn(ctx0, cur,
  8598. model.layers[il].ffn_up, NULL,
  8599. model.layers[il].ffn_gate, NULL,
  8600. model.layers[il].ffn_down, NULL,
  8601. NULL,
  8602. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8603. cb(cur, "ffn_out", il);
  8604. cur = ggml_add(ctx0, cur, ffn_inp);
  8605. cb(cur, "l_out", il);
  8606. // input for next layer
  8607. inpL = cur;
  8608. }
  8609. cur = inpL;
  8610. cur = llm_build_norm(ctx0, cur, hparams,
  8611. model.output_norm, model.output_norm_b,
  8612. LLM_NORM, cb, -1);
  8613. cb(cur, "result_norm", -1);
  8614. // lm_head
  8615. cur = ggml_mul_mat(ctx0, model.output, cur);
  8616. cb(cur, "result_output", -1);
  8617. ggml_build_forward_expand(gf, cur);
  8618. return gf;
  8619. }
  8620. struct ggml_cgraph * build_internlm2() {
  8621. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8622. const int64_t n_embd_head = hparams.n_embd_head_v;
  8623. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8624. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8625. struct ggml_tensor * cur;
  8626. struct ggml_tensor * inpL;
  8627. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8628. // inp_pos - contains the positions
  8629. struct ggml_tensor * inp_pos = build_inp_pos();
  8630. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8631. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8632. for (int il = 0; il < n_layer; ++il) {
  8633. struct ggml_tensor * inpSA = inpL;
  8634. // norm
  8635. cur = llm_build_norm(ctx0, inpL, hparams,
  8636. model.layers[il].attn_norm, NULL,
  8637. LLM_NORM_RMS, cb, il);
  8638. cb(cur, "attn_norm", il);
  8639. // self-attention
  8640. {
  8641. // compute Q and K and RoPE them
  8642. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8643. cb(Qcur, "Qcur", il);
  8644. if (model.layers[il].bq) {
  8645. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8646. cb(Qcur, "Qcur", il);
  8647. }
  8648. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8649. cb(Kcur, "Kcur", il);
  8650. if (model.layers[il].bk) {
  8651. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8652. cb(Kcur, "Kcur", il);
  8653. }
  8654. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8655. cb(Vcur, "Vcur", il);
  8656. if (model.layers[il].bv) {
  8657. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8658. cb(Vcur, "Vcur", il);
  8659. }
  8660. Qcur = ggml_rope_ext(
  8661. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8662. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8663. ext_factor, attn_factor, beta_fast, beta_slow
  8664. );
  8665. cb(Qcur, "Qcur", il);
  8666. Kcur = ggml_rope_ext(
  8667. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8668. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8669. ext_factor, attn_factor, beta_fast, beta_slow
  8670. );
  8671. cb(Kcur, "Kcur", il);
  8672. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8673. model.layers[il].wo, model.layers[il].bo,
  8674. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8675. }
  8676. if (il == n_layer - 1) {
  8677. // skip computing output for unused tokens
  8678. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8679. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8680. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8681. }
  8682. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8683. cb(ffn_inp, "ffn_inp", il);
  8684. // feed-forward network
  8685. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8686. model.layers[il].ffn_norm, NULL,
  8687. LLM_NORM_RMS, cb, il);
  8688. cb(cur, "ffn_norm", il);
  8689. cur = llm_build_ffn(ctx0, cur,
  8690. model.layers[il].ffn_up, NULL,
  8691. model.layers[il].ffn_gate, NULL,
  8692. model.layers[il].ffn_down, NULL,
  8693. NULL,
  8694. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8695. cb(cur, "ffn_out", il);
  8696. cur = ggml_add(ctx0, cur, ffn_inp);
  8697. cb(cur, "l_out", il);
  8698. // input for next layer
  8699. inpL = cur;
  8700. }
  8701. cur = inpL;
  8702. cur = llm_build_norm(ctx0, cur, hparams,
  8703. model.output_norm, NULL,
  8704. LLM_NORM_RMS, cb, -1);
  8705. cb(cur, "result_norm", -1);
  8706. // lm_head
  8707. cur = ggml_mul_mat(ctx0, model.output, cur);
  8708. cb(cur, "result_output", -1);
  8709. ggml_build_forward_expand(gf, cur);
  8710. return gf;
  8711. }
  8712. // ref: https://arxiv.org/abs/2203.03466
  8713. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8714. // based on the original build_llama() function
  8715. struct ggml_cgraph * build_minicpm() {
  8716. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8717. const int64_t n_embd_head = hparams.n_embd_head_v;
  8718. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8719. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8720. const int64_t n_embd = hparams.n_embd;
  8721. //TODO: if the model varies, these parameters need to be read from the model
  8722. const int64_t n_embd_base = 256;
  8723. const float scale_embd = 12.0f;
  8724. const float scale_depth = 1.4f;
  8725. struct ggml_tensor * cur;
  8726. struct ggml_tensor * inpL;
  8727. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8728. // scale the input embeddings
  8729. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8730. cb(inpL, "inp_scaled", -1);
  8731. // inp_pos - contains the positions
  8732. struct ggml_tensor * inp_pos = build_inp_pos();
  8733. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8734. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8735. for (int il = 0; il < n_layer; ++il) {
  8736. struct ggml_tensor * inpSA = inpL;
  8737. // norm
  8738. cur = llm_build_norm(ctx0, inpL, hparams,
  8739. model.layers[il].attn_norm, NULL,
  8740. LLM_NORM_RMS, cb, il);
  8741. cb(cur, "attn_norm", il);
  8742. // self-attention
  8743. {
  8744. // compute Q and K and RoPE them
  8745. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8746. cb(Qcur, "Qcur", il);
  8747. if (model.layers[il].bq) {
  8748. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8749. cb(Qcur, "Qcur", il);
  8750. }
  8751. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8752. cb(Kcur, "Kcur", il);
  8753. if (model.layers[il].bk) {
  8754. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8755. cb(Kcur, "Kcur", il);
  8756. }
  8757. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8758. cb(Vcur, "Vcur", il);
  8759. if (model.layers[il].bv) {
  8760. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8761. cb(Vcur, "Vcur", il);
  8762. }
  8763. Qcur = ggml_rope_ext(
  8764. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8765. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8766. ext_factor, attn_factor, beta_fast, beta_slow
  8767. );
  8768. cb(Qcur, "Qcur", il);
  8769. Kcur = ggml_rope_ext(
  8770. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8771. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8772. ext_factor, attn_factor, beta_fast, beta_slow
  8773. );
  8774. cb(Kcur, "Kcur", il);
  8775. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8776. model.layers[il].wo, model.layers[il].bo,
  8777. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8778. }
  8779. if (il == n_layer - 1) {
  8780. // skip computing output for unused tokens
  8781. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8782. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8783. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8784. }
  8785. // scale_res - scale the hidden states for residual connection
  8786. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8787. cur = ggml_scale(ctx0, cur, scale_res);
  8788. cb(cur, "hidden_scaled", -1);
  8789. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8790. cb(ffn_inp, "ffn_inp", il);
  8791. // feed-forward network
  8792. {
  8793. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8794. model.layers[il].ffn_norm, NULL,
  8795. LLM_NORM_RMS, cb, il);
  8796. cb(cur, "ffn_norm", il);
  8797. cur = llm_build_ffn(ctx0, cur,
  8798. model.layers[il].ffn_up, NULL,
  8799. model.layers[il].ffn_gate, NULL,
  8800. model.layers[il].ffn_down, NULL,
  8801. NULL,
  8802. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8803. cb(cur, "ffn_out", il);
  8804. }
  8805. // scale the hidden states for residual connection
  8806. cur = ggml_scale(ctx0, cur, scale_res);
  8807. cb(cur, "hidden_scaled_ffn", -1);
  8808. cur = ggml_add(ctx0, cur, ffn_inp);
  8809. cb(cur, "l_out", il);
  8810. // input for next layer
  8811. inpL = cur;
  8812. }
  8813. cur = inpL;
  8814. cur = llm_build_norm(ctx0, cur, hparams,
  8815. model.output_norm, NULL,
  8816. LLM_NORM_RMS, cb, -1);
  8817. cb(cur, "result_norm", -1);
  8818. // lm_head scaling
  8819. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8820. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8821. cb(cur, "lmhead_scaling", -1);
  8822. // lm_head
  8823. cur = ggml_mul_mat(ctx0, model.output, cur);
  8824. cb(cur, "result_output", -1);
  8825. ggml_build_forward_expand(gf, cur);
  8826. return gf;
  8827. }
  8828. struct ggml_cgraph * build_gemma() {
  8829. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8830. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8831. struct ggml_tensor * cur;
  8832. struct ggml_tensor * inpL;
  8833. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8834. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8835. cb(inpL, "inp_scaled", -1);
  8836. // inp_pos - contains the positions
  8837. struct ggml_tensor * inp_pos = build_inp_pos();
  8838. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8839. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8840. for (int il = 0; il < n_layer; ++il) {
  8841. // norm
  8842. cur = llm_build_norm(ctx0, inpL, hparams,
  8843. model.layers[il].attn_norm, NULL,
  8844. LLM_NORM_RMS, cb, il);
  8845. cb(cur, "attn_norm", il);
  8846. // self-attention
  8847. {
  8848. // compute Q and K and RoPE them
  8849. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8850. cb(Qcur, "Qcur", il);
  8851. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8852. cb(Kcur, "Kcur", il);
  8853. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8854. cb(Vcur, "Vcur", il);
  8855. Qcur = ggml_rope_ext(
  8856. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8857. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8858. ext_factor, attn_factor, beta_fast, beta_slow);
  8859. cb(Qcur, "Qcur", il);
  8860. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8861. cb(Qcur, "Qcur_scaled", il);
  8862. Kcur = ggml_rope_ext(
  8863. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8864. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8865. ext_factor, attn_factor, beta_fast, beta_slow);
  8866. cb(Kcur, "Kcur", il);
  8867. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8868. model.layers[il].wo, NULL,
  8869. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8870. }
  8871. if (il == n_layer - 1) {
  8872. // skip computing output for unused tokens
  8873. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8874. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8875. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8876. }
  8877. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8878. cb(sa_out, "sa_out", il);
  8879. cur = llm_build_norm(ctx0, sa_out, hparams,
  8880. model.layers[il].ffn_norm, NULL,
  8881. LLM_NORM_RMS, cb, il);
  8882. cb(cur, "ffn_norm", il);
  8883. // feed-forward network
  8884. {
  8885. cur = llm_build_ffn(ctx0, cur,
  8886. model.layers[il].ffn_up, NULL,
  8887. model.layers[il].ffn_gate, NULL,
  8888. model.layers[il].ffn_down, NULL,
  8889. NULL,
  8890. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8891. cb(cur, "ffn_out", il);
  8892. }
  8893. cur = ggml_add(ctx0, cur, sa_out);
  8894. cb(cur, "l_out", il);
  8895. // input for next layer
  8896. inpL = cur;
  8897. }
  8898. cur = inpL;
  8899. cur = llm_build_norm(ctx0, cur, hparams,
  8900. model.output_norm, NULL,
  8901. LLM_NORM_RMS, cb, -1);
  8902. cb(cur, "result_norm", -1);
  8903. // lm_head
  8904. cur = ggml_mul_mat(ctx0, model.output, cur);
  8905. cb(cur, "result_output", -1);
  8906. ggml_build_forward_expand(gf, cur);
  8907. return gf;
  8908. }
  8909. struct ggml_cgraph * build_starcoder2() {
  8910. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8911. const int64_t n_embd_head = hparams.n_embd_head_v;
  8912. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8913. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8914. struct ggml_tensor * cur;
  8915. struct ggml_tensor * inpL;
  8916. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8917. // inp_pos - contains the positions
  8918. struct ggml_tensor * inp_pos = build_inp_pos();
  8919. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8920. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8921. for (int il = 0; il < n_layer; ++il) {
  8922. struct ggml_tensor * inpSA = inpL;
  8923. // norm
  8924. cur = llm_build_norm(ctx0, inpL, hparams,
  8925. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8926. LLM_NORM, cb, il);
  8927. cb(cur, "attn_norm", il);
  8928. // self-attention
  8929. {
  8930. // compute Q and K and RoPE them
  8931. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8932. cb(Qcur, "Qcur", il);
  8933. if (model.layers[il].bq) {
  8934. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8935. cb(Qcur, "Qcur", il);
  8936. }
  8937. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8938. cb(Kcur, "Kcur", il);
  8939. if (model.layers[il].bk) {
  8940. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8941. cb(Kcur, "Kcur", il);
  8942. }
  8943. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8944. cb(Vcur, "Vcur", il);
  8945. if (model.layers[il].bv) {
  8946. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8947. cb(Vcur, "Vcur", il);
  8948. }
  8949. Qcur = ggml_rope_ext(
  8950. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8951. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8952. ext_factor, attn_factor, beta_fast, beta_slow
  8953. );
  8954. cb(Qcur, "Qcur", il);
  8955. Kcur = ggml_rope_ext(
  8956. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8957. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8958. ext_factor, attn_factor, beta_fast, beta_slow
  8959. );
  8960. cb(Kcur, "Kcur", il);
  8961. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8962. model.layers[il].wo, model.layers[il].bo,
  8963. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8964. }
  8965. if (il == n_layer - 1) {
  8966. // skip computing output for unused tokens
  8967. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8968. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8969. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8970. }
  8971. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8972. cb(ffn_inp, "ffn_inp", il);
  8973. // feed-forward network
  8974. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8975. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8976. LLM_NORM, cb, il);
  8977. cb(cur, "ffn_norm", il);
  8978. cur = llm_build_ffn(ctx0, cur,
  8979. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8980. NULL, NULL,
  8981. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8982. NULL,
  8983. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8984. cb(cur, "ffn_out", il);
  8985. cur = ggml_add(ctx0, cur, ffn_inp);
  8986. cb(cur, "l_out", il);
  8987. // input for next layer
  8988. inpL = cur;
  8989. }
  8990. cur = inpL;
  8991. cur = llm_build_norm(ctx0, cur, hparams,
  8992. model.output_norm, model.output_norm_b,
  8993. LLM_NORM, cb, -1);
  8994. cb(cur, "result_norm", -1);
  8995. // lm_head
  8996. cur = ggml_mul_mat(ctx0, model.output, cur);
  8997. cb(cur, "result_output", -1);
  8998. ggml_build_forward_expand(gf, cur);
  8999. return gf;
  9000. }
  9001. struct ggml_cgraph * build_mamba() {
  9002. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9003. const int64_t d_model = n_embd;
  9004. const int64_t d_conv = hparams.ssm_d_conv;
  9005. const int64_t d_inner = hparams.ssm_d_inner;
  9006. GGML_ASSERT(2 * d_model == d_inner);
  9007. const int64_t d_state = hparams.ssm_d_state;
  9008. const int64_t dt_rank = hparams.ssm_dt_rank;
  9009. struct ggml_tensor * cur;
  9010. struct ggml_tensor * inpL;
  9011. // {n_embd, n_tokens}
  9012. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9013. struct ggml_tensor * state_mask = build_inp_s_mask();
  9014. struct ggml_tensor * state_seq = build_inp_s_seq();
  9015. for (int il = 0; il < n_layer; ++il) {
  9016. // (ab)using the KV cache to store the states
  9017. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  9018. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  9019. // clear states of sequences which are starting at the beginning of this batch
  9020. {
  9021. conv_states = ggml_mul(ctx0,
  9022. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  9023. state_mask);
  9024. ssm_states = ggml_mul(ctx0,
  9025. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  9026. state_mask);
  9027. }
  9028. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  9029. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  9030. // norm
  9031. cur = llm_build_norm(ctx0, inpL, hparams,
  9032. model.layers[il].attn_norm, NULL,
  9033. LLM_NORM_RMS, cb, il);
  9034. cb(cur, "attn_norm", il);
  9035. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  9036. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  9037. // split the above in two
  9038. // => {d_inner, n_tokens}
  9039. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  9040. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  9041. // conv
  9042. {
  9043. // Custom operator which is needed only to ease simultaneous sequence processing.
  9044. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  9045. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  9046. // then element-wise multiply that with the conv1d weigth,
  9047. // then sum the elements of each row,
  9048. // (the last two steps are a dot product over rows (also doable with mul_mat))
  9049. // then permute away the ne[0] dimension,
  9050. // and then you're left with the resulting x tensor.
  9051. // The new conv_states is the last (d_conv - 1) columns
  9052. // of the last 3rd dimensional "layer" of the self-overlapping view.
  9053. // For simultaneous sequences, it's more complicated.
  9054. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  9055. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  9056. ggml_build_forward_expand(gf,
  9057. ggml_cpy(ctx0,
  9058. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  9059. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  9060. // extract x from x_conv
  9061. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  9062. // bias
  9063. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  9064. x = ggml_silu(ctx0, x);
  9065. }
  9066. // ssm
  9067. {
  9068. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  9069. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  9070. // split
  9071. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  9072. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  9073. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  9074. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  9075. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  9076. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  9077. // Custom operator to optimize the parallel associative scan
  9078. // as described in the Annex D of the Mamba paper.
  9079. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  9080. // because only a single tensor can be returned.
  9081. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  9082. // store last states (the second part of y_ssm_states)
  9083. ggml_build_forward_expand(gf,
  9084. ggml_cpy(ctx0,
  9085. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  9086. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  9087. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  9088. if (il == n_layer - 1) {
  9089. // skip computing output for unused tokens
  9090. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9091. x = ggml_get_rows(ctx0, x, inp_out_ids);
  9092. y = ggml_get_rows(ctx0, y, inp_out_ids);
  9093. z = ggml_get_rows(ctx0, z, inp_out_ids);
  9094. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9095. }
  9096. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  9097. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  9098. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  9099. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  9100. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  9101. }
  9102. // residual
  9103. cur = ggml_add(ctx0, cur, inpL);
  9104. cb(cur, "l_out", il);
  9105. // input for next layer
  9106. inpL = cur;
  9107. }
  9108. // final rmsnorm
  9109. cur = llm_build_norm(ctx0, inpL, hparams,
  9110. model.output_norm, NULL,
  9111. LLM_NORM_RMS, cb, -1);
  9112. cb(cur, "result_norm", -1);
  9113. // lm_head
  9114. cur = ggml_mul_mat(ctx0, model.output, cur);
  9115. cb(cur, "result_output", -1);
  9116. ggml_build_forward_expand(gf, cur);
  9117. return gf;
  9118. }
  9119. struct ggml_cgraph * build_command_r() {
  9120. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9121. const int64_t n_embd_head = hparams.n_embd_head_v;
  9122. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9123. const float f_logit_scale = hparams.f_logit_scale;
  9124. struct ggml_tensor * cur;
  9125. struct ggml_tensor * inpL;
  9126. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9127. // inp_pos - contains the positions
  9128. struct ggml_tensor * inp_pos = build_inp_pos();
  9129. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9130. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9131. for (int il = 0; il < n_layer; ++il) {
  9132. // norm
  9133. cur = llm_build_norm(ctx0, inpL, hparams,
  9134. model.layers[il].attn_norm, NULL,
  9135. LLM_NORM, cb, il);
  9136. cb(cur, "attn_norm", il);
  9137. struct ggml_tensor * ffn_inp = cur;
  9138. // self-attention
  9139. {
  9140. // compute Q and K and RoPE them
  9141. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9142. cb(Qcur, "Qcur", il);
  9143. if (model.layers[il].bq) {
  9144. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9145. cb(Qcur, "Qcur", il);
  9146. }
  9147. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9148. cb(Kcur, "Kcur", il);
  9149. if (model.layers[il].bk) {
  9150. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9151. cb(Kcur, "Kcur", il);
  9152. }
  9153. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9154. cb(Vcur, "Vcur", il);
  9155. if (model.layers[il].bv) {
  9156. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9157. cb(Vcur, "Vcur", il);
  9158. }
  9159. if (model.layers[il].attn_q_norm) {
  9160. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9161. ggml_element_size(Qcur) * n_embd_head,
  9162. ggml_element_size(Qcur) * n_embd_head * n_head,
  9163. 0);
  9164. cb(Qcur, "Qcur", il);
  9165. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9166. ggml_element_size(Kcur) * n_embd_head,
  9167. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9168. 0);
  9169. cb(Kcur, "Kcur", il);
  9170. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  9171. model.layers[il].attn_q_norm,
  9172. NULL,
  9173. LLM_NORM, cb, il);
  9174. cb(Qcur, "Qcur", il);
  9175. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  9176. model.layers[il].attn_k_norm,
  9177. NULL,
  9178. LLM_NORM, cb, il);
  9179. cb(Kcur, "Kcur", il);
  9180. }
  9181. Qcur = ggml_rope_ext(
  9182. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9183. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9184. ext_factor, attn_factor, beta_fast, beta_slow
  9185. );
  9186. cb(Qcur, "Qcur", il);
  9187. Kcur = ggml_rope_ext(
  9188. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9189. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9190. ext_factor, attn_factor, beta_fast, beta_slow
  9191. );
  9192. cb(Kcur, "Kcur", il);
  9193. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9194. model.layers[il].wo, model.layers[il].bo,
  9195. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9196. }
  9197. if (il == n_layer - 1) {
  9198. // skip computing output for unused tokens
  9199. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9200. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9201. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9202. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  9203. }
  9204. struct ggml_tensor * attn_out = cur;
  9205. // feed-forward network
  9206. {
  9207. cur = llm_build_ffn(ctx0, ffn_inp,
  9208. model.layers[il].ffn_up, NULL,
  9209. model.layers[il].ffn_gate, NULL,
  9210. model.layers[il].ffn_down, NULL,
  9211. NULL,
  9212. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9213. cb(cur, "ffn_out", il);
  9214. }
  9215. // add together residual + FFN + self-attention
  9216. cur = ggml_add(ctx0, cur, inpL);
  9217. cur = ggml_add(ctx0, cur, attn_out);
  9218. cb(cur, "l_out", il);
  9219. // input for next layer
  9220. inpL = cur;
  9221. }
  9222. cur = inpL;
  9223. cur = llm_build_norm(ctx0, cur, hparams,
  9224. model.output_norm, NULL,
  9225. LLM_NORM, cb, -1);
  9226. cb(cur, "result_norm", -1);
  9227. // lm_head
  9228. cur = ggml_mul_mat(ctx0, model.output, cur);
  9229. if (f_logit_scale) {
  9230. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9231. }
  9232. cb(cur, "result_output", -1);
  9233. ggml_build_forward_expand(gf, cur);
  9234. return gf;
  9235. }
  9236. // ref: https://allenai.org/olmo
  9237. // based on the original build_llama() function, changes:
  9238. // * non-parametric layer norm
  9239. // * clamp qkv
  9240. // * removed bias
  9241. // * removed MoE
  9242. struct ggml_cgraph * build_olmo() {
  9243. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9244. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9245. int32_t n_tokens = this->n_tokens;
  9246. const int64_t n_embd_head = hparams.n_embd_head_v;
  9247. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9248. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9249. struct ggml_tensor * cur;
  9250. struct ggml_tensor * inpL;
  9251. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9252. // inp_pos - contains the positions
  9253. struct ggml_tensor * inp_pos = build_inp_pos();
  9254. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9255. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9256. for (int il = 0; il < n_layer; ++il) {
  9257. struct ggml_tensor * inpSA = inpL;
  9258. // norm
  9259. cur = llm_build_norm(ctx0, inpL, hparams,
  9260. NULL, NULL,
  9261. LLM_NORM, cb, il);
  9262. cb(cur, "attn_norm", il);
  9263. // self-attention
  9264. {
  9265. // compute Q and K and RoPE them
  9266. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9267. cb(Qcur, "Qcur", il);
  9268. if (hparams.f_clamp_kqv > 0.0f) {
  9269. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9270. cb(Qcur, "Qcur", il);
  9271. }
  9272. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9273. cb(Kcur, "Kcur", il);
  9274. if (hparams.f_clamp_kqv > 0.0f) {
  9275. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9276. cb(Kcur, "Kcur", il);
  9277. }
  9278. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9279. cb(Vcur, "Vcur", il);
  9280. if (hparams.f_clamp_kqv > 0.0f) {
  9281. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9282. cb(Vcur, "Vcur", il);
  9283. }
  9284. Qcur = ggml_rope_ext(
  9285. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9286. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9287. ext_factor, attn_factor, beta_fast, beta_slow
  9288. );
  9289. cb(Qcur, "Qcur", il);
  9290. Kcur = ggml_rope_ext(
  9291. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9292. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9293. ext_factor, attn_factor, beta_fast, beta_slow
  9294. );
  9295. cb(Kcur, "Kcur", il);
  9296. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9297. model.layers[il].wo, nullptr,
  9298. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9299. }
  9300. if (il == n_layer - 1) {
  9301. // skip computing output for unused tokens
  9302. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9303. n_tokens = n_outputs;
  9304. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9305. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9306. }
  9307. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9308. cb(ffn_inp, "ffn_inp", il);
  9309. // feed-forward network
  9310. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9311. NULL, NULL,
  9312. LLM_NORM, cb, il);
  9313. cb(cur, "ffn_norm", il);
  9314. cur = llm_build_ffn(ctx0, cur,
  9315. model.layers[il].ffn_up, NULL,
  9316. model.layers[il].ffn_gate, NULL,
  9317. model.layers[il].ffn_down, NULL,
  9318. NULL,
  9319. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9320. cb(cur, "ffn_out", il);
  9321. cur = ggml_add(ctx0, cur, ffn_inp);
  9322. cb(cur, "ffn_out", il);
  9323. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9324. if (layer_dir != nullptr) {
  9325. cur = ggml_add(ctx0, cur, layer_dir);
  9326. }
  9327. cb(cur, "l_out", il);
  9328. // input for next layer
  9329. inpL = cur;
  9330. }
  9331. cur = inpL;
  9332. cur = llm_build_norm(ctx0, cur, hparams,
  9333. NULL, NULL,
  9334. LLM_NORM, cb, -1);
  9335. cb(cur, "result_norm", -1);
  9336. // lm_head
  9337. cur = ggml_mul_mat(ctx0, model.output, cur);
  9338. cb(cur, "result_output", -1);
  9339. ggml_build_forward_expand(gf, cur);
  9340. return gf;
  9341. }
  9342. struct ggml_cgraph * build_gptneox() {
  9343. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9344. const int64_t n_embd_head = hparams.n_embd_head_v;
  9345. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9346. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9347. struct ggml_tensor * cur;
  9348. struct ggml_tensor * inpL;
  9349. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9350. // inp_pos - contains the positions
  9351. struct ggml_tensor * inp_pos = build_inp_pos();
  9352. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9353. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9354. for (int il = 0; il < n_layer; ++il) {
  9355. cur = llm_build_norm(ctx0, inpL, hparams,
  9356. model.layers[il].attn_norm,
  9357. model.layers[il].attn_norm_b,
  9358. LLM_NORM, cb, il);
  9359. cb(cur, "attn_norm", il);
  9360. // self-attention
  9361. {
  9362. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9363. cb(cur, "wqkv", il);
  9364. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9365. cb(cur, "bqkv", il);
  9366. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9367. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9368. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9369. cb(Qcur, "Qcur", il);
  9370. cb(Kcur, "Kcur", il);
  9371. cb(Vcur, "Vcur", il);
  9372. Qcur = ggml_rope_ext(
  9373. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9374. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9375. ext_factor, attn_factor, beta_fast, beta_slow
  9376. );
  9377. cb(Qcur, "Qcur", il);
  9378. Kcur = ggml_rope_ext(
  9379. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9380. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9381. ext_factor, attn_factor, beta_fast, beta_slow
  9382. );
  9383. cb(Kcur, "Kcur", il);
  9384. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9385. model.layers[il].wo, model.layers[il].bo,
  9386. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9387. }
  9388. if (il == n_layer - 1) {
  9389. // skip computing output for unused tokens
  9390. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9391. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9392. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9393. }
  9394. // ffn
  9395. if (hparams.use_par_res) {
  9396. // attention and ffn are computed in parallel
  9397. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9398. struct ggml_tensor * attn_out = cur;
  9399. cur = llm_build_norm(ctx0, inpL, hparams,
  9400. model.layers[il].ffn_norm,
  9401. model.layers[il].ffn_norm_b,
  9402. LLM_NORM, cb, il);
  9403. cb(cur, "ffn_norm", il);
  9404. cur = llm_build_ffn(ctx0, cur,
  9405. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9406. NULL, NULL,
  9407. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9408. NULL,
  9409. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9410. cb(cur, "ffn_out", il);
  9411. cur = ggml_add(ctx0, cur, inpL);
  9412. cb(cur, "ffn_out", il);
  9413. inpL = ggml_add(ctx0, cur, attn_out);
  9414. cb(inpL, "l_out", il);
  9415. } else {
  9416. // attention and ffn are computed sequentially
  9417. // x = x + attn(ln1(x))
  9418. // x = x + ffn(ln2(x))
  9419. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9420. cb(ffn_inp, "ffn_inp", il);
  9421. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9422. model.layers[il].ffn_norm,
  9423. model.layers[il].ffn_norm_b,
  9424. LLM_NORM, cb, il);
  9425. cb(cur, "ffn_norm", il);
  9426. cur = llm_build_ffn(ctx0, cur,
  9427. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9428. NULL, NULL,
  9429. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9430. NULL,
  9431. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9432. cb(cur, "ffn_out", il);
  9433. inpL = ggml_add(ctx0, cur, ffn_inp);
  9434. cb(inpL, "l_out", il);
  9435. }
  9436. }
  9437. cur = llm_build_norm(ctx0, inpL, hparams,
  9438. model.output_norm,
  9439. model.output_norm_b,
  9440. LLM_NORM, cb, -1);
  9441. cb(cur, "result_norm", -1);
  9442. cur = ggml_mul_mat(ctx0, model.output, cur);
  9443. cb(cur, "result_output", -1);
  9444. ggml_build_forward_expand(gf, cur);
  9445. return gf;
  9446. }
  9447. struct ggml_cgraph * build_arctic() {
  9448. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9449. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9450. int32_t n_tokens = this->n_tokens;
  9451. const int64_t n_embd_head = hparams.n_embd_head_v;
  9452. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9453. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9454. struct ggml_tensor * cur;
  9455. struct ggml_tensor * inpL;
  9456. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9457. // inp_pos - contains the positions
  9458. struct ggml_tensor * inp_pos = build_inp_pos();
  9459. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9460. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9461. for (int il = 0; il < n_layer; ++il) {
  9462. struct ggml_tensor * inpSA = inpL;
  9463. // norm
  9464. cur = llm_build_norm(ctx0, inpL, hparams,
  9465. model.layers[il].attn_norm, NULL,
  9466. LLM_NORM_RMS, cb, il);
  9467. cb(cur, "attn_norm", il);
  9468. // self-attention
  9469. {
  9470. // compute Q and K and RoPE them
  9471. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9472. cb(Qcur, "Qcur", il);
  9473. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9474. cb(Kcur, "Kcur", il);
  9475. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9476. cb(Vcur, "Vcur", il);
  9477. Qcur = ggml_rope_ext(
  9478. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9479. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9480. ext_factor, attn_factor, beta_fast, beta_slow
  9481. );
  9482. cb(Qcur, "Qcur", il);
  9483. Kcur = ggml_rope_ext(
  9484. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9485. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9486. ext_factor, attn_factor, beta_fast, beta_slow
  9487. );
  9488. cb(Kcur, "Kcur", il);
  9489. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9490. model.layers[il].wo, NULL,
  9491. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9492. }
  9493. if (il == n_layer - 1) {
  9494. // skip computing output for unused tokens
  9495. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9496. n_tokens = n_outputs;
  9497. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9498. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9499. }
  9500. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9501. cb(ffn_inp, "ffn_inp", il);
  9502. // feed-forward network
  9503. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9504. model.layers[il].ffn_norm, NULL,
  9505. LLM_NORM_RMS, cb, il);
  9506. cb(cur, "ffn_norm", il);
  9507. cur = llm_build_ffn(ctx0, cur,
  9508. model.layers[il].ffn_up, NULL,
  9509. model.layers[il].ffn_gate, NULL,
  9510. model.layers[il].ffn_down, NULL,
  9511. NULL,
  9512. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9513. cb(cur, "ffn_out", il);
  9514. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9515. cb(ffn_out, "ffn_out", il);
  9516. // MoE
  9517. cur = llm_build_norm(ctx0, inpSA, hparams,
  9518. model.layers[il].ffn_norm_exps, NULL,
  9519. LLM_NORM_RMS, cb, il);
  9520. cb(cur, "ffn_norm_exps", il);
  9521. cur = llm_build_moe_ffn(ctx0, cur,
  9522. model.layers[il].ffn_gate_inp,
  9523. model.layers[il].ffn_up_exps,
  9524. model.layers[il].ffn_gate_exps,
  9525. model.layers[il].ffn_down_exps,
  9526. n_expert, n_expert_used,
  9527. LLM_FFN_SILU, true,
  9528. false, 0.0,
  9529. cb, il);
  9530. cb(cur, "ffn_moe_out", il);
  9531. cur = ggml_add(ctx0, cur, ffn_out);
  9532. cb(cur, "ffn_out", il);
  9533. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9534. if (layer_dir != nullptr) {
  9535. cur = ggml_add(ctx0, cur, layer_dir);
  9536. }
  9537. cb(cur, "l_out", il);
  9538. // input for next layer
  9539. inpL = cur;
  9540. }
  9541. cur = inpL;
  9542. cur = llm_build_norm(ctx0, cur, hparams,
  9543. model.output_norm, NULL,
  9544. LLM_NORM_RMS, cb, -1);
  9545. cb(cur, "result_norm", -1);
  9546. // lm_head
  9547. cur = ggml_mul_mat(ctx0, model.output, cur);
  9548. cb(cur, "result_output", -1);
  9549. ggml_build_forward_expand(gf, cur);
  9550. return gf;
  9551. }
  9552. struct ggml_cgraph * build_deepseek2() {
  9553. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9554. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9555. int32_t n_tokens = this->n_tokens;
  9556. bool is_lite = (hparams.n_layer == 27);
  9557. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9558. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9559. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9560. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9561. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9562. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9563. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9564. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9565. struct ggml_tensor * cur;
  9566. struct ggml_tensor * inpL;
  9567. // {n_embd, n_tokens}
  9568. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9569. // inp_pos - contains the positions
  9570. struct ggml_tensor * inp_pos = build_inp_pos();
  9571. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9572. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9573. for (int il = 0; il < n_layer; ++il) {
  9574. struct ggml_tensor * inpSA = inpL;
  9575. // norm
  9576. cur = llm_build_norm(ctx0, inpL, hparams,
  9577. model.layers[il].attn_norm, NULL,
  9578. LLM_NORM_RMS, cb, il);
  9579. cb(cur, "attn_norm", il);
  9580. // self_attention
  9581. {
  9582. struct ggml_tensor * q = NULL;
  9583. if (!is_lite) {
  9584. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9585. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9586. cb(q, "q", il);
  9587. q = llm_build_norm(ctx0, q, hparams,
  9588. model.layers[il].attn_q_a_norm, NULL,
  9589. LLM_NORM_RMS, cb, il);
  9590. cb(q, "q", il);
  9591. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9592. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9593. cb(q, "q", il);
  9594. } else {
  9595. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9596. cb(q, "q", il);
  9597. }
  9598. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9599. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9600. ggml_row_size(q->type, hparams.n_embd_head_k),
  9601. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9602. 0);
  9603. cb(q_nope, "q_nope", il);
  9604. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9605. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9606. ggml_row_size(q->type, hparams.n_embd_head_k),
  9607. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9608. ggml_row_size(q->type, n_embd_head_qk_nope));
  9609. cb(q_pe, "q_pe", il);
  9610. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9611. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9612. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9613. // split into {kv_lora_rank, n_tokens}
  9614. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9615. kv_pe_compresseed->nb[1],
  9616. 0);
  9617. cb(kv_compressed, "kv_compressed", il);
  9618. // and {n_embd_head_qk_rope, n_tokens}
  9619. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9620. kv_pe_compresseed->nb[1],
  9621. kv_pe_compresseed->nb[1],
  9622. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9623. cb(k_pe, "k_pe", il);
  9624. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9625. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9626. model.layers[il].attn_kv_a_norm, NULL,
  9627. LLM_NORM_RMS, cb, il);
  9628. cb(kv_compressed, "kv_compressed", il);
  9629. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9630. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9631. cb(kv, "kv", il);
  9632. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9633. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9634. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9635. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9636. 0);
  9637. cb(k_nope, "k_nope", il);
  9638. // and {n_head * n_embd_head_v, n_tokens}
  9639. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9640. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9641. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9642. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9643. cb(v_states, "v_states", il);
  9644. v_states = ggml_cont(ctx0, v_states);
  9645. cb(v_states, "v_states", il);
  9646. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9647. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9648. 0);
  9649. cb(v_states, "v_states", il);
  9650. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9651. q_pe = ggml_rope_ext(
  9652. ctx0, q_pe, inp_pos, nullptr,
  9653. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9654. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9655. );
  9656. cb(q_pe, "q_pe", il);
  9657. // shared RoPE key
  9658. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9659. k_pe = ggml_rope_ext(
  9660. ctx0, k_pe, inp_pos, nullptr,
  9661. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9662. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9663. );
  9664. cb(k_pe, "k_pe", il);
  9665. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9666. cb(q_states, "q_states", il);
  9667. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9668. cb(k_states, "k_states", il);
  9669. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9670. model.layers[il].wo, NULL,
  9671. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9672. }
  9673. if (il == n_layer - 1) {
  9674. // skip computing output for unused tokens
  9675. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9676. n_tokens = n_outputs;
  9677. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9678. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9679. }
  9680. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9681. cb(ffn_inp, "ffn_inp", il);
  9682. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9683. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9684. model.layers[il].ffn_norm, NULL,
  9685. LLM_NORM_RMS, cb, il);
  9686. cb(cur, "ffn_norm", il);
  9687. cur = llm_build_ffn(ctx0, cur,
  9688. model.layers[il].ffn_up, NULL,
  9689. model.layers[il].ffn_gate, NULL,
  9690. model.layers[il].ffn_down, NULL,
  9691. NULL,
  9692. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9693. cb(cur, "ffn_out", il);
  9694. } else {
  9695. // MoE branch
  9696. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9697. model.layers[il].ffn_norm, NULL,
  9698. LLM_NORM_RMS, cb, il);
  9699. cb(cur, "ffn_norm", il);
  9700. ggml_tensor * moe_out =
  9701. llm_build_moe_ffn(ctx0, cur,
  9702. model.layers[il].ffn_gate_inp,
  9703. model.layers[il].ffn_up_exps,
  9704. model.layers[il].ffn_gate_exps,
  9705. model.layers[il].ffn_down_exps,
  9706. n_expert, n_expert_used,
  9707. LLM_FFN_SILU, false,
  9708. true, hparams.expert_weights_scale,
  9709. cb, il);
  9710. cb(moe_out, "ffn_moe_out", il);
  9711. // FFN shared expert
  9712. {
  9713. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9714. model.layers[il].ffn_up_shexp, NULL,
  9715. model.layers[il].ffn_gate_shexp, NULL,
  9716. model.layers[il].ffn_down_shexp, NULL,
  9717. NULL,
  9718. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9719. cb(ffn_shexp, "ffn_shexp", il);
  9720. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9721. cb(cur, "ffn_out", il);
  9722. }
  9723. }
  9724. cur = ggml_add(ctx0, cur, ffn_inp);
  9725. cb(cur, "l_out", il);
  9726. // input for next layer
  9727. inpL = cur;
  9728. }
  9729. cur = inpL;
  9730. cur = llm_build_norm(ctx0, cur, hparams,
  9731. model.output_norm, NULL,
  9732. LLM_NORM_RMS, cb, -1);
  9733. cb(cur, "result_norm", -1);
  9734. // lm_head
  9735. cur = ggml_mul_mat(ctx0, model.output, cur);
  9736. cb(cur, "result_output", -1);
  9737. ggml_build_forward_expand(gf, cur);
  9738. return gf;
  9739. }
  9740. };
  9741. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9742. llama_batch dummy;
  9743. dummy.n_tokens = 0;
  9744. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9745. struct llm_build_context llm(lctx, dummy, cb, false);
  9746. llm.init();
  9747. struct ggml_cgraph * result = llm.build_defrag(ids);
  9748. llm.free();
  9749. return result;
  9750. }
  9751. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9752. llama_batch dummy;
  9753. dummy.n_tokens = 0;
  9754. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9755. struct llm_build_context llm(lctx, dummy, cb, false);
  9756. llm.init();
  9757. struct ggml_cgraph * result = llm.build_k_shift();
  9758. llm.free();
  9759. return result;
  9760. }
  9761. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9762. llama_batch dummy;
  9763. dummy.n_tokens = 0;
  9764. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9765. struct llm_build_context llm(lctx, dummy, cb, false);
  9766. llm.init();
  9767. struct ggml_cgraph * result = llm.build_s_copy();
  9768. llm.free();
  9769. return result;
  9770. }
  9771. static struct ggml_cgraph * llama_build_graph(
  9772. llama_context & lctx,
  9773. const llama_batch & batch,
  9774. bool worst_case) {
  9775. const auto & model = lctx.model;
  9776. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9777. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9778. if (il >= 0) {
  9779. ggml_format_name(cur, "%s-%d", name, il);
  9780. } else {
  9781. ggml_set_name(cur, name);
  9782. }
  9783. if (!lctx.cparams.offload_kqv) {
  9784. if (strcmp(name, "kqv_merged_cont") == 0) {
  9785. // all nodes between the KV store and the attention output are run on the CPU
  9786. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9787. }
  9788. }
  9789. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9790. // FIXME: fix in ggml_backend_sched
  9791. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9792. if (batch.n_tokens < 32 || full_offload) {
  9793. if (il != -1 && strcmp(name, "norm") == 0) {
  9794. for (auto * backend : lctx.backends) {
  9795. if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
  9796. (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
  9797. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9798. break;
  9799. }
  9800. }
  9801. }
  9802. }
  9803. };
  9804. struct ggml_cgraph * result = NULL;
  9805. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9806. llm.init();
  9807. switch (model.arch) {
  9808. case LLM_ARCH_LLAMA:
  9809. {
  9810. result = llm.build_llama();
  9811. } break;
  9812. case LLM_ARCH_BAICHUAN:
  9813. {
  9814. result = llm.build_baichuan();
  9815. } break;
  9816. case LLM_ARCH_FALCON:
  9817. {
  9818. result = llm.build_falcon();
  9819. } break;
  9820. case LLM_ARCH_GROK:
  9821. {
  9822. result = llm.build_grok();
  9823. } break;
  9824. case LLM_ARCH_STARCODER:
  9825. {
  9826. result = llm.build_starcoder();
  9827. } break;
  9828. case LLM_ARCH_REFACT:
  9829. {
  9830. result = llm.build_refact();
  9831. } break;
  9832. case LLM_ARCH_BERT:
  9833. case LLM_ARCH_JINA_BERT_V2:
  9834. case LLM_ARCH_NOMIC_BERT:
  9835. {
  9836. result = llm.build_bert();
  9837. } break;
  9838. case LLM_ARCH_BLOOM:
  9839. {
  9840. result = llm.build_bloom();
  9841. } break;
  9842. case LLM_ARCH_MPT:
  9843. {
  9844. result = llm.build_mpt();
  9845. } break;
  9846. case LLM_ARCH_STABLELM:
  9847. {
  9848. result = llm.build_stablelm();
  9849. } break;
  9850. case LLM_ARCH_QWEN:
  9851. {
  9852. result = llm.build_qwen();
  9853. } break;
  9854. case LLM_ARCH_QWEN2:
  9855. {
  9856. result = llm.build_qwen2();
  9857. } break;
  9858. case LLM_ARCH_QWEN2MOE:
  9859. {
  9860. result = llm.build_qwen2moe();
  9861. } break;
  9862. case LLM_ARCH_PHI2:
  9863. {
  9864. result = llm.build_phi2();
  9865. } break;
  9866. case LLM_ARCH_PHI3:
  9867. {
  9868. result = llm.build_phi3();
  9869. } break;
  9870. case LLM_ARCH_PLAMO:
  9871. {
  9872. result = llm.build_plamo();
  9873. } break;
  9874. case LLM_ARCH_GPT2:
  9875. {
  9876. result = llm.build_gpt2();
  9877. } break;
  9878. case LLM_ARCH_CODESHELL:
  9879. {
  9880. result = llm.build_codeshell();
  9881. } break;
  9882. case LLM_ARCH_ORION:
  9883. {
  9884. result = llm.build_orion();
  9885. } break;
  9886. case LLM_ARCH_INTERNLM2:
  9887. {
  9888. result = llm.build_internlm2();
  9889. } break;
  9890. case LLM_ARCH_MINICPM:
  9891. {
  9892. result = llm.build_minicpm();
  9893. } break;
  9894. case LLM_ARCH_GEMMA:
  9895. {
  9896. result = llm.build_gemma();
  9897. } break;
  9898. case LLM_ARCH_STARCODER2:
  9899. {
  9900. result = llm.build_starcoder2();
  9901. } break;
  9902. case LLM_ARCH_MAMBA:
  9903. {
  9904. result = llm.build_mamba();
  9905. } break;
  9906. case LLM_ARCH_XVERSE:
  9907. {
  9908. result = llm.build_xverse();
  9909. } break;
  9910. case LLM_ARCH_COMMAND_R:
  9911. {
  9912. result = llm.build_command_r();
  9913. } break;
  9914. case LLM_ARCH_DBRX:
  9915. {
  9916. result = llm.build_dbrx();
  9917. } break;
  9918. case LLM_ARCH_OLMO:
  9919. {
  9920. result = llm.build_olmo();
  9921. } break;
  9922. case LLM_ARCH_GPTNEOX:
  9923. {
  9924. result = llm.build_gptneox();
  9925. } break;
  9926. case LLM_ARCH_ARCTIC:
  9927. {
  9928. result = llm.build_arctic();
  9929. } break;
  9930. case LLM_ARCH_DEEPSEEK2:
  9931. {
  9932. result = llm.build_deepseek2();
  9933. } break;
  9934. default:
  9935. GGML_ASSERT(false);
  9936. }
  9937. // add on pooling layer
  9938. if (lctx.cparams.embeddings) {
  9939. result = llm.append_pooling(result);
  9940. }
  9941. llm.free();
  9942. return result;
  9943. }
  9944. static void llama_set_k_shift(llama_context & lctx) {
  9945. const int64_t kv_size = lctx.kv_self.size;
  9946. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9947. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9948. for (int i = 0; i < kv_size; ++i) {
  9949. data[i] = lctx.kv_self.cells[i].delta;
  9950. }
  9951. }
  9952. static void llama_set_s_copy(llama_context & lctx) {
  9953. const int64_t kv_size = lctx.kv_self.size;
  9954. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9955. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9956. for (int i = 0; i < kv_size; ++i) {
  9957. data[i] = lctx.kv_self.cells[i].src;
  9958. }
  9959. }
  9960. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9961. //
  9962. // set input data
  9963. //
  9964. const auto & hparams = lctx.model.hparams;
  9965. const auto & cparams = lctx.cparams;
  9966. const auto & kv_self = lctx.kv_self;
  9967. if (batch.token) {
  9968. const int64_t n_tokens = batch.n_tokens;
  9969. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9970. }
  9971. if (batch.embd) {
  9972. const int64_t n_embd = hparams.n_embd;
  9973. const int64_t n_tokens = batch.n_tokens;
  9974. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9975. }
  9976. if (batch.pos && lctx.inp_pos) {
  9977. const int64_t n_tokens = batch.n_tokens;
  9978. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9979. }
  9980. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9981. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9982. const int64_t n_tokens = batch.n_tokens;
  9983. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9984. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9985. if (lctx.n_outputs == n_tokens) {
  9986. for (int i = 0; i < n_tokens; ++i) {
  9987. data[i] = i;
  9988. }
  9989. } else if (batch.logits) {
  9990. int32_t n_outputs = 0;
  9991. for (int i = 0; i < n_tokens; ++i) {
  9992. if (batch.logits[i]) {
  9993. data[n_outputs++] = i;
  9994. }
  9995. }
  9996. // the graph needs to have been passed the correct number of outputs
  9997. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9998. } else if (lctx.n_outputs == 1) {
  9999. // only keep last output
  10000. data[0] = n_tokens - 1;
  10001. } else {
  10002. GGML_ASSERT(lctx.n_outputs == 0);
  10003. }
  10004. }
  10005. GGML_ASSERT(
  10006. // (!a || b) is a logical implication (a -> b)
  10007. // !hparams.causal_attn -> !cparams.causal_attn
  10008. (hparams.causal_attn || !cparams.causal_attn) &&
  10009. "causal attention is not supported by this model"
  10010. );
  10011. if (lctx.inp_KQ_mask) {
  10012. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  10013. if (cparams.causal_attn) {
  10014. const int64_t n_kv = kv_self.n;
  10015. const int64_t n_tokens = batch.n_tokens;
  10016. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  10017. float * data = (float *) lctx.inp_KQ_mask->data;
  10018. // For causal attention, use only the previous KV cells
  10019. // of the correct sequence for each token of the batch.
  10020. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  10021. for (int h = 0; h < 1; ++h) {
  10022. for (int j = 0; j < n_tokens; ++j) {
  10023. const llama_pos pos = batch.pos[j];
  10024. const llama_seq_id seq_id = batch.seq_id[j][0];
  10025. for (int i = 0; i < n_kv; ++i) {
  10026. float f;
  10027. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  10028. f = -INFINITY;
  10029. } else {
  10030. if (hparams.use_alibi) {
  10031. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  10032. } else {
  10033. f = 0.0f;
  10034. }
  10035. }
  10036. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  10037. }
  10038. }
  10039. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  10040. for (int j = 0; j < n_kv; ++j) {
  10041. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  10042. }
  10043. }
  10044. }
  10045. } else {
  10046. // when using kv cache, the mask needs to match the kv cache size
  10047. const int64_t n_tokens = batch.n_tokens;
  10048. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  10049. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  10050. float * data = (float *) lctx.inp_KQ_mask->data;
  10051. for (int h = 0; h < 1; ++h) {
  10052. for (int j = 0; j < n_tokens; ++j) {
  10053. const llama_seq_id seq_id = batch.seq_id[j][0];
  10054. for (int i = 0; i < n_tokens; ++i) {
  10055. float f = -INFINITY;
  10056. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  10057. if (batch.seq_id[i][s] == seq_id) {
  10058. if (hparams.use_alibi) {
  10059. f = -fabs(batch.pos[i] - batch.pos[j]);
  10060. } else {
  10061. f = 0.0f;
  10062. }
  10063. break;
  10064. }
  10065. }
  10066. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  10067. }
  10068. for (int i = n_tokens; i < n_stride; ++i) {
  10069. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  10070. }
  10071. }
  10072. }
  10073. }
  10074. }
  10075. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  10076. const int64_t n_tokens = batch.n_tokens;
  10077. GGML_ASSERT(lctx.inp_mean);
  10078. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  10079. float * data = (float *) lctx.inp_mean->data;
  10080. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  10081. std::vector<uint64_t> sum(n_tokens, 0);
  10082. for (int i = 0; i < n_tokens; ++i) {
  10083. const llama_seq_id seq_id = batch.seq_id[i][0];
  10084. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  10085. sum[seq_id] += 1;
  10086. }
  10087. std::vector<float> div(n_tokens, 0.0f);
  10088. for (int i = 0; i < n_tokens; ++i) {
  10089. const uint64_t s = sum[i];
  10090. if (s > 0) {
  10091. div[i] = 1.0f/float(s);
  10092. }
  10093. }
  10094. for (int i = 0; i < n_tokens; ++i) {
  10095. const llama_seq_id seq_id = batch.seq_id[i][0];
  10096. data[seq_id*n_tokens + i] = div[seq_id];
  10097. }
  10098. }
  10099. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  10100. const int64_t n_tokens = batch.n_tokens;
  10101. GGML_ASSERT(lctx.inp_cls);
  10102. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  10103. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  10104. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  10105. for (int i = 0; i < n_tokens; ++i) {
  10106. const llama_seq_id seq_id = batch.seq_id[i][0];
  10107. const llama_pos pos = batch.pos[i];
  10108. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  10109. if (pos == 0) {
  10110. data[seq_id] = i;
  10111. }
  10112. }
  10113. }
  10114. if (cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
  10115. const int64_t n_tokens = batch.n_tokens;
  10116. GGML_ASSERT(lctx.inp_cls);
  10117. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  10118. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  10119. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  10120. std::vector<int> last_pos(n_tokens, -1);
  10121. std::vector<int> last_row(n_tokens, -1);
  10122. for (int i = 0; i < n_tokens; ++i) {
  10123. const llama_seq_id seq_id = batch.seq_id[i][0];
  10124. const llama_pos pos = batch.pos[i];
  10125. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
  10126. if (pos >= last_pos[seq_id]) {
  10127. last_pos[seq_id] = pos;
  10128. last_row[seq_id] = i;
  10129. }
  10130. }
  10131. for (int i = 0; i < n_tokens; ++i) {
  10132. if (last_row[i] >= 0) {
  10133. data[i] = last_row[i];
  10134. }
  10135. }
  10136. }
  10137. if (kv_self.recurrent) {
  10138. const int64_t n_kv = kv_self.n;
  10139. if (lctx.inp_s_mask) {
  10140. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  10141. float * data = (float *) lctx.inp_s_mask->data;
  10142. // states which are not affected by the current batch are left untouched
  10143. for (int i = 0; i < n_kv; ++i) {
  10144. llama_seq_id seq_id = i + lctx.kv_self.head;
  10145. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  10146. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  10147. data[i] = (float) has_self_seq;
  10148. // ensure current sequences will be kept
  10149. if (!has_self_seq && kv_cell.pos >= 0) {
  10150. kv_cell.seq_id.insert(seq_id);
  10151. }
  10152. }
  10153. }
  10154. // For Mamba (and other recurrent architectures),
  10155. // update the correct state(s)/sequence(s) for each token of the batch.
  10156. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  10157. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  10158. if (lctx.inp_s_seq) {
  10159. const int64_t n_tokens = batch.n_tokens;
  10160. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  10161. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  10162. for (int j = 0; j < n_tokens; ++j) {
  10163. const int32_t n_seq = batch.n_seq_id[j];
  10164. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  10165. for (int i = 0; i < n_kv; ++i) {
  10166. if (i < n_seq) {
  10167. // for this type of model, the head is the minimum seq_id of the batch
  10168. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  10169. } else {
  10170. data[j*n_kv + i] = -1;
  10171. }
  10172. }
  10173. }
  10174. }
  10175. }
  10176. }
  10177. // Make sure enough space is available for outputs.
  10178. // Returns max number of outputs for which space was reserved.
  10179. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  10180. const auto & cparams = lctx.cparams;
  10181. const auto & hparams = lctx.model.hparams;
  10182. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  10183. const auto n_batch = cparams.n_batch;
  10184. const auto n_vocab = hparams.n_vocab;
  10185. const auto n_embd = hparams.n_embd;
  10186. // TODO: use a per-batch flag for logits presence instead
  10187. const bool has_logits = !cparams.embeddings;
  10188. const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  10189. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  10190. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  10191. if (lctx.output_ids.empty()) {
  10192. // init, never resized afterwards
  10193. lctx.output_ids.resize(n_batch);
  10194. }
  10195. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  10196. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  10197. // alloc only when more than the current capacity is required
  10198. // TODO: also consider shrinking the buffer
  10199. if (!lctx.buf_output || prev_size < new_size) {
  10200. if (lctx.buf_output) {
  10201. #ifndef NDEBUG
  10202. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  10203. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  10204. #endif
  10205. ggml_backend_buffer_free(lctx.buf_output);
  10206. lctx.buf_output = nullptr;
  10207. lctx.logits = nullptr;
  10208. lctx.embd = nullptr;
  10209. }
  10210. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  10211. if (lctx.buf_output == nullptr) {
  10212. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  10213. return 0;
  10214. }
  10215. }
  10216. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  10217. lctx.logits = has_logits ? output_base : nullptr;
  10218. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  10219. lctx.output_size = n_outputs_max;
  10220. lctx.logits_size = logits_size;
  10221. lctx.embd_size = embd_size;
  10222. // set all ids as invalid (negative)
  10223. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  10224. ggml_backend_buffer_clear(lctx.buf_output, 0);
  10225. lctx.n_outputs = 0;
  10226. return n_outputs_max;
  10227. }
  10228. static void llama_graph_compute(
  10229. llama_context & lctx,
  10230. ggml_cgraph * gf,
  10231. int n_threads) {
  10232. #ifdef GGML_USE_METAL
  10233. if (ggml_backend_is_metal(lctx.backend_metal)) {
  10234. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  10235. }
  10236. #endif
  10237. if (lctx.backend_cpu != nullptr) {
  10238. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  10239. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  10240. }
  10241. #ifdef GGML_USE_BLAS
  10242. if (lctx.backend_blas != nullptr) {
  10243. ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
  10244. }
  10245. #endif
  10246. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  10247. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  10248. }
  10249. // decode a batch of tokens by evaluating the transformer
  10250. //
  10251. // - lctx: llama context
  10252. // - batch: batch to evaluate
  10253. //
  10254. // return 0 on success
  10255. // return positive int on warning
  10256. // return negative int on error
  10257. //
  10258. static int llama_decode_internal(
  10259. llama_context & lctx,
  10260. llama_batch batch_all) { // TODO: rename back to batch
  10261. const uint32_t n_tokens_all = batch_all.n_tokens;
  10262. if (n_tokens_all == 0) {
  10263. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  10264. return -1;
  10265. }
  10266. const auto & model = lctx.model;
  10267. const auto & hparams = model.hparams;
  10268. const auto & cparams = lctx.cparams;
  10269. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  10270. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  10271. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  10272. if (lctx.t_compute_start_us == 0) {
  10273. lctx.t_compute_start_us = ggml_time_us();
  10274. }
  10275. lctx.n_queued_tokens += n_tokens_all;
  10276. auto & kv_self = lctx.kv_self;
  10277. const int64_t n_embd = hparams.n_embd;
  10278. const int64_t n_vocab = hparams.n_vocab;
  10279. uint32_t n_outputs = 0;
  10280. uint32_t n_outputs_prev = 0;
  10281. const auto n_ubatch = cparams.n_ubatch;
  10282. std::vector<llama_pos> pos;
  10283. std::vector<int32_t> n_seq_id;
  10284. std::vector<llama_seq_id *> seq_id_arr;
  10285. std::vector<std::vector<llama_seq_id>> seq_id;
  10286. // count outputs
  10287. if (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE) {
  10288. n_outputs = n_tokens_all;
  10289. } else if (batch_all.logits) {
  10290. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10291. n_outputs += batch_all.logits[i] != 0;
  10292. }
  10293. } else if (lctx.logits_all) {
  10294. n_outputs = n_tokens_all;
  10295. } else {
  10296. // keep last output only
  10297. n_outputs = 1;
  10298. }
  10299. // reserve output buffer
  10300. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  10301. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  10302. return -2;
  10303. };
  10304. // set output mappings
  10305. if (batch_all.logits) {
  10306. int32_t i_logits = 0;
  10307. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10308. if (batch_all.logits[i]) {
  10309. lctx.output_ids[i] = i_logits++;
  10310. }
  10311. }
  10312. } else {
  10313. for (uint32_t i = 0; i < n_outputs; ++i) {
  10314. lctx.output_ids[i] = i;
  10315. }
  10316. }
  10317. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  10318. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  10319. llama_batch u_batch = {
  10320. /* .n_tokens = */ (int32_t) n_tokens,
  10321. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  10322. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  10323. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  10324. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  10325. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  10326. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  10327. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  10328. /* .all_pos_1 = */ batch_all.all_pos_1,
  10329. /* .all_seq_id = */ batch_all.all_seq_id,
  10330. };
  10331. // count the outputs in this u_batch
  10332. {
  10333. int32_t n_outputs_new = 0;
  10334. if (u_batch.logits) {
  10335. for (uint32_t i = 0; i < n_tokens; i++) {
  10336. n_outputs_new += u_batch.logits[i] != 0;
  10337. }
  10338. } else if (n_outputs == n_tokens_all) {
  10339. n_outputs_new = n_tokens;
  10340. } else {
  10341. // keep last output only
  10342. if (cur_token + n_tokens >= n_tokens_all) {
  10343. n_outputs_new = 1;
  10344. }
  10345. }
  10346. // needs to happen before the graph is built
  10347. lctx.n_outputs = n_outputs_new;
  10348. }
  10349. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10350. GGML_ASSERT(n_threads > 0);
  10351. // helpers for smoother batch API transition
  10352. // after deprecating the llama_eval calls, these will be removed
  10353. if (u_batch.pos == nullptr) {
  10354. pos.resize(n_tokens);
  10355. for (uint32_t i = 0; i < n_tokens; i++) {
  10356. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10357. }
  10358. u_batch.pos = pos.data();
  10359. }
  10360. if (u_batch.seq_id == nullptr) {
  10361. n_seq_id.resize(n_tokens);
  10362. seq_id.resize(n_tokens);
  10363. seq_id_arr.resize(n_tokens);
  10364. for (uint32_t i = 0; i < n_tokens; i++) {
  10365. n_seq_id[i] = 1;
  10366. seq_id[i].resize(1);
  10367. seq_id[i][0] = u_batch.all_seq_id;
  10368. seq_id_arr[i] = seq_id[i].data();
  10369. }
  10370. u_batch.n_seq_id = n_seq_id.data();
  10371. u_batch.seq_id = seq_id_arr.data();
  10372. }
  10373. // non-causal masks do not use the KV cache
  10374. if (hparams.causal_attn) {
  10375. llama_kv_cache_update(&lctx);
  10376. // if we have enough unused cells before the current head ->
  10377. // better to start searching from the beginning of the cache, hoping to fill it
  10378. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10379. kv_self.head = 0;
  10380. }
  10381. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10382. return 1;
  10383. }
  10384. if (!kv_self.recurrent) {
  10385. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10386. // after enough generations, the benefit from this heuristic disappears
  10387. // if we start defragmenting the cache, the benefit from this will be more important
  10388. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10389. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10390. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10391. }
  10392. }
  10393. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10394. ggml_backend_sched_reset(lctx.sched);
  10395. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10396. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10397. // the output is always the last tensor in the graph
  10398. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10399. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10400. if (lctx.n_outputs == 0) {
  10401. // no output
  10402. res = nullptr;
  10403. embd = nullptr;
  10404. } else if (cparams.embeddings) {
  10405. res = nullptr; // do not extract logits for embedding case
  10406. embd = gf->nodes[gf->n_nodes - 1];
  10407. if (strcmp(embd->name, "result_embd_pooled") != 0) {
  10408. embd = gf->nodes[gf->n_nodes - 2];
  10409. }
  10410. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
  10411. } else {
  10412. embd = nullptr; // do not extract embeddings when not needed
  10413. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10414. }
  10415. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10416. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10417. llama_set_inputs(lctx, u_batch);
  10418. llama_graph_compute(lctx, gf, n_threads);
  10419. // update the kv ring buffer
  10420. {
  10421. kv_self.head += n_tokens;
  10422. // Ensure kv cache head points to a valid index.
  10423. if (kv_self.head >= kv_self.size) {
  10424. kv_self.head = 0;
  10425. }
  10426. }
  10427. #ifdef GGML_PERF
  10428. // print timing information per ggml operation (for debugging purposes)
  10429. // requires GGML_PERF to be defined
  10430. ggml_graph_print(gf);
  10431. #endif
  10432. // plot the computation graph in dot format (for debugging purposes)
  10433. //if (n_past%100 == 0) {
  10434. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10435. //}
  10436. // extract logits
  10437. if (res) {
  10438. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10439. GGML_ASSERT(backend_res != nullptr);
  10440. GGML_ASSERT(lctx.logits != nullptr);
  10441. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10442. const int32_t n_outputs_new = lctx.n_outputs;
  10443. if (n_outputs_new) {
  10444. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10445. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10446. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10447. }
  10448. }
  10449. // extract embeddings
  10450. if (embd) {
  10451. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10452. GGML_ASSERT(backend_embd != nullptr);
  10453. switch (cparams.pooling_type) {
  10454. case LLAMA_POOLING_TYPE_NONE:
  10455. {
  10456. // extract token embeddings
  10457. GGML_ASSERT(lctx.embd != nullptr);
  10458. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10459. const int32_t n_outputs_new = lctx.n_outputs;
  10460. if (n_outputs_new) {
  10461. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10462. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10463. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10464. }
  10465. } break;
  10466. case LLAMA_POOLING_TYPE_MEAN:
  10467. case LLAMA_POOLING_TYPE_CLS:
  10468. case LLAMA_POOLING_TYPE_LAST:
  10469. {
  10470. // extract sequence embeddings
  10471. auto & embd_seq_out = lctx.embd_seq;
  10472. embd_seq_out.clear();
  10473. for (uint32_t i = 0; i < n_tokens; i++) {
  10474. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10475. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10476. continue;
  10477. }
  10478. embd_seq_out[seq_id].resize(n_embd);
  10479. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10480. }
  10481. } break;
  10482. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10483. {
  10484. GGML_ASSERT(false && "unknown pooling type");
  10485. } break;
  10486. }
  10487. }
  10488. n_outputs_prev += lctx.n_outputs;
  10489. }
  10490. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10491. lctx.n_outputs = n_outputs;
  10492. // wait for the computation to finish (automatically done when obtaining the model output)
  10493. //llama_synchronize(&lctx);
  10494. // decide if we need to defrag the kv cache
  10495. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10496. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10497. // queue defragmentation for next llama_kv_cache_update
  10498. if (fragmentation > cparams.defrag_thold) {
  10499. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10500. llama_kv_cache_defrag(kv_self);
  10501. }
  10502. }
  10503. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10504. // overlap with device computation.
  10505. ggml_backend_sched_reset(lctx.sched);
  10506. return 0;
  10507. }
  10508. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10509. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10510. auto & kv_self = lctx.kv_self;
  10511. const auto & hparams = lctx.model.hparams;
  10512. const uint32_t n_layer = hparams.n_layer;
  10513. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10514. const uint32_t n_used = kv_self.used;
  10515. assert(n_used <= n_kv);
  10516. //const int64_t t_start = ggml_time_us();
  10517. // number of cells moved
  10518. uint32_t n_moves = 0;
  10519. // each move requires 6*n_layer tensors (see build_defrag)
  10520. // - source view, destination view, copy operation
  10521. // - x2 for keys and values
  10522. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10523. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10524. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10525. // determine which KV cells to move where
  10526. //
  10527. // cell i moves to ids[i]
  10528. //
  10529. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10530. //
  10531. std::vector<uint32_t> ids(n_kv, n_kv);
  10532. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10533. const auto & cell0 = kv_self.cells[i0];
  10534. if (!cell0.is_empty()) {
  10535. ids[i0] = i0;
  10536. continue;
  10537. }
  10538. // found a hole - fill it with data from the end of the cache
  10539. uint32_t nh = 1;
  10540. // determine the size of the hole
  10541. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10542. nh++;
  10543. }
  10544. uint32_t nf = 0;
  10545. uint32_t is = n_kv - 1;
  10546. // starting from the end, find nh non-empty cells
  10547. for (; is > i0; --is) {
  10548. const auto & cell1 = kv_self.cells[is];
  10549. if (cell1.is_empty() || ids[is] != n_kv) {
  10550. continue;
  10551. }
  10552. // non-empty cell which is not yet moved
  10553. nf++;
  10554. if (nf == nh) {
  10555. break;
  10556. }
  10557. }
  10558. // this can only happen if `n_used` is not accurate, which would be a bug
  10559. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10560. nf = 0;
  10561. uint32_t i1 = is;
  10562. // are we moving a continuous block of memory?
  10563. bool cont = false;
  10564. // should we stop searching for the next move?
  10565. bool stop = false;
  10566. // go back and move the nf cells to the hole
  10567. for (; i1 < n_kv; ++i1) {
  10568. auto & cell1 = kv_self.cells[i1];
  10569. if (cell1.is_empty() || ids[i1] != n_kv) {
  10570. if (n_moves == max_moves) {
  10571. stop = true;
  10572. break;
  10573. }
  10574. cont = false;
  10575. continue;
  10576. }
  10577. // this cell goes to (i0 + nf)
  10578. ids[i1] = i0 + nf;
  10579. // move the cell meta data
  10580. kv_self.cells[i0 + nf] = cell1;
  10581. // clear the old cell and move the head there
  10582. cell1 = llama_kv_cell();
  10583. kv_self.head = n_used;
  10584. if (!cont) {
  10585. n_moves++;
  10586. cont = true;
  10587. }
  10588. nf++;
  10589. if (nf == nh) {
  10590. break;
  10591. }
  10592. }
  10593. if (stop || n_moves == max_moves) {
  10594. break;
  10595. }
  10596. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10597. i0 += nh - 1;
  10598. }
  10599. if (n_moves == 0) {
  10600. return;
  10601. }
  10602. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10603. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10604. #if 0
  10605. // CPU defrag
  10606. //
  10607. // TODO: optimizations are possible:
  10608. // - multiple threads
  10609. // - avoid copying to the host memory when already there
  10610. //
  10611. // likely not worth the effort, as we have ggml_graph based defrag
  10612. //
  10613. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10614. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10615. const uint32_t kv_size = kv_self.size;
  10616. std::vector<uint8_t> buf_k;
  10617. std::vector<uint8_t> buf_v;
  10618. for (uint32_t il = 0; il < n_layer; ++il) {
  10619. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10620. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10621. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10622. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10623. buf_k.resize(k_size);
  10624. buf_v.resize(v_size);
  10625. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10626. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10627. // batch move [i, i+nm) to [id, id+nm)
  10628. // note: cells can move only to a lower index
  10629. for (uint32_t i = 0; i < n_kv; ++i) {
  10630. const uint32_t id = ids[i];
  10631. if (i == id || id == n_kv) {
  10632. continue;
  10633. }
  10634. uint32_t nm = 1;
  10635. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10636. nm++;
  10637. }
  10638. // move keys
  10639. {
  10640. const int64_t os = i*k_size_row;
  10641. const int64_t od = id*k_size_row;
  10642. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10643. }
  10644. // move values (note: they are transposed)
  10645. {
  10646. const int64_t os = i;
  10647. const int64_t od = id;
  10648. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10649. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10650. }
  10651. }
  10652. i += nm - 1;
  10653. }
  10654. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10655. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10656. }
  10657. #else
  10658. // ggml_graph defrag
  10659. ggml_backend_sched_reset(lctx.sched);
  10660. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10661. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10662. #endif
  10663. //const int64_t t_end = ggml_time_us();
  10664. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10665. }
  10666. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10667. bool need_reserve = false;
  10668. // apply K-shift if needed
  10669. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10670. {
  10671. ggml_backend_sched_reset(lctx.sched);
  10672. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10673. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10674. llama_set_k_shift(lctx);
  10675. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10676. need_reserve = true;
  10677. }
  10678. {
  10679. auto & kv_self = lctx.kv_self;
  10680. kv_self.has_shift = false;
  10681. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10682. kv_self.cells[i].delta = 0;
  10683. }
  10684. }
  10685. }
  10686. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10687. {
  10688. ggml_backend_sched_reset(lctx.sched);
  10689. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10690. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10691. llama_set_s_copy(lctx);
  10692. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10693. need_reserve = true;
  10694. }
  10695. {
  10696. auto & kv_self = lctx.kv_self;
  10697. kv_self.do_copy = false;
  10698. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10699. kv_self.cells[i].src = i;
  10700. }
  10701. }
  10702. }
  10703. // defragment the KV cache if needed
  10704. if (lctx.kv_self.do_defrag) {
  10705. llama_kv_cache_defrag_internal(lctx);
  10706. need_reserve = true;
  10707. lctx.kv_self.do_defrag = false;
  10708. }
  10709. // reserve a worst case graph again
  10710. if (need_reserve) {
  10711. // TODO: extract to a function
  10712. // build worst-case graph
  10713. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10714. int n_past = lctx.cparams.n_ctx - n_tokens;
  10715. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10716. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10717. // initialize scheduler with the worst-case graph
  10718. ggml_backend_sched_reset(lctx.sched);
  10719. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10720. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10721. }
  10722. }
  10723. }
  10724. //
  10725. // tokenizer
  10726. //
  10727. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10728. return vocab.type;
  10729. }
  10730. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10731. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10732. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  10733. }
  10734. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10735. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10736. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  10737. }
  10738. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10739. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10740. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  10741. }
  10742. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10743. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10744. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  10745. }
  10746. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10747. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10748. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  10749. }
  10750. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10751. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10752. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10753. const auto & token_data = vocab.id_to_token.at(id);
  10754. switch (llama_vocab_get_type(vocab)) {
  10755. case LLAMA_VOCAB_TYPE_SPM: {
  10756. auto buf = token_data.text.substr(3, 2);
  10757. return strtol(buf.c_str(), NULL, 16);
  10758. }
  10759. case LLAMA_VOCAB_TYPE_BPE: {
  10760. GGML_ASSERT(false);
  10761. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10762. }
  10763. case LLAMA_VOCAB_TYPE_WPM: {
  10764. GGML_ASSERT(false);
  10765. }
  10766. default:
  10767. GGML_ASSERT(false);
  10768. }
  10769. }
  10770. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10771. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10772. static const char * hex = "0123456789ABCDEF";
  10773. switch (llama_vocab_get_type(vocab)) {
  10774. case LLAMA_VOCAB_TYPE_SPM: {
  10775. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10776. auto token = vocab.token_to_id.find(buf);
  10777. if (token != vocab.token_to_id.end()) {
  10778. return (*token).second;
  10779. }
  10780. // Try to fall back to just the byte as a string
  10781. const char buf2[2] = { (char)ch, 0 };
  10782. return vocab.token_to_id.at(buf2);
  10783. }
  10784. case LLAMA_VOCAB_TYPE_WPM:
  10785. case LLAMA_VOCAB_TYPE_BPE: {
  10786. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10787. }
  10788. default:
  10789. GGML_ASSERT(false);
  10790. }
  10791. }
  10792. static void llama_escape_whitespace(std::string & text) {
  10793. replace_all(text, " ", "\xe2\x96\x81");
  10794. }
  10795. static void llama_unescape_whitespace(std::string & word) {
  10796. replace_all(word, "\xe2\x96\x81", " ");
  10797. }
  10798. struct llm_symbol {
  10799. using index = int;
  10800. index prev;
  10801. index next;
  10802. const char * text;
  10803. size_t n;
  10804. };
  10805. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10806. // SPM tokenizer
  10807. // original implementation:
  10808. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10809. struct llm_bigram_spm {
  10810. struct comparator {
  10811. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10812. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10813. }
  10814. };
  10815. using queue_storage = std::vector<llm_bigram_spm>;
  10816. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10817. llm_symbol::index left;
  10818. llm_symbol::index right;
  10819. float score;
  10820. size_t size;
  10821. };
  10822. struct llm_tokenizer_spm {
  10823. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10824. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10825. // split string into utf8 chars
  10826. int index = 0;
  10827. size_t offs = 0;
  10828. while (offs < text.size()) {
  10829. llm_symbol sym;
  10830. size_t len = utf8_len(text[offs]);
  10831. sym.text = text.c_str() + offs;
  10832. sym.n = std::min(len, text.size() - offs);
  10833. offs += sym.n;
  10834. sym.prev = index - 1;
  10835. sym.next = offs == text.size() ? -1 : index + 1;
  10836. index++;
  10837. symbols.emplace_back(sym);
  10838. }
  10839. // seed the work queue with all possible 2-character tokens.
  10840. for (size_t i = 1; i < symbols.size(); ++i) {
  10841. try_add_bigram(i - 1, i);
  10842. }
  10843. // keep substituting the highest frequency pairs for as long as we can.
  10844. while (!work_queue.empty()) {
  10845. auto bigram = work_queue.top();
  10846. work_queue.pop();
  10847. auto & left_sym = symbols[bigram.left];
  10848. auto & right_sym = symbols[bigram.right];
  10849. // if one of the symbols already got merged, skip it.
  10850. if (left_sym.n == 0 || right_sym.n == 0 ||
  10851. left_sym.n + right_sym.n != bigram.size) {
  10852. continue;
  10853. }
  10854. // merge the right sym into the left one
  10855. left_sym.n += right_sym.n;
  10856. right_sym.n = 0;
  10857. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10858. // remove the right sym from the chain
  10859. left_sym.next = right_sym.next;
  10860. if (right_sym.next >= 0) {
  10861. symbols[right_sym.next].prev = bigram.left;
  10862. }
  10863. // find more substitutions
  10864. try_add_bigram(left_sym.prev, bigram.left);
  10865. try_add_bigram(bigram.left, left_sym.next);
  10866. }
  10867. for (int i = 0; i != -1; i = symbols[i].next) {
  10868. auto & symbol = symbols[i];
  10869. resegment(symbol, output);
  10870. }
  10871. }
  10872. private:
  10873. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10874. auto text = std::string(symbol.text, symbol.n);
  10875. auto token = vocab.token_to_id.find(text);
  10876. // Do we need to support is_unused?
  10877. if (token != vocab.token_to_id.end()) {
  10878. output.push_back((*token).second);
  10879. return;
  10880. }
  10881. const auto p = rev_merge.find(text);
  10882. if (p == rev_merge.end()) {
  10883. // output any symbols that did not form tokens as bytes.
  10884. output.reserve(output.size() + symbol.n);
  10885. for (int j = 0; j < (int)symbol.n; ++j) {
  10886. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10887. output.push_back(token_id);
  10888. }
  10889. return;
  10890. }
  10891. resegment(symbols[p->second.first], output);
  10892. resegment(symbols[p->second.second], output);
  10893. }
  10894. void try_add_bigram(int left, int right) {
  10895. if (left == -1 || right == -1) {
  10896. return;
  10897. }
  10898. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10899. auto token = vocab.token_to_id.find(text);
  10900. if (token == vocab.token_to_id.end()) {
  10901. return;
  10902. }
  10903. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10904. return;
  10905. }
  10906. const auto & tok_data = vocab.id_to_token[(*token).second];
  10907. llm_bigram_spm bigram;
  10908. bigram.left = left;
  10909. bigram.right = right;
  10910. bigram.score = tok_data.score;
  10911. bigram.size = text.size();
  10912. work_queue.push(bigram);
  10913. // Do we need to support is_unused?
  10914. rev_merge[text] = std::make_pair(left, right);
  10915. }
  10916. const llama_vocab & vocab;
  10917. std::vector<llm_symbol> symbols;
  10918. llm_bigram_spm::queue work_queue;
  10919. std::map<std::string, std::pair<int, int>> rev_merge;
  10920. };
  10921. // BPE tokenizer
  10922. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10923. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10924. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10925. struct llm_bigram_bpe {
  10926. struct comparator {
  10927. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10928. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10929. }
  10930. };
  10931. using queue_storage = std::vector<llm_bigram_bpe>;
  10932. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10933. llm_symbol::index left;
  10934. llm_symbol::index right;
  10935. std::string text;
  10936. int rank;
  10937. size_t size;
  10938. };
  10939. struct llm_tokenizer_bpe {
  10940. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
  10941. GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
  10942. switch (vocab.type_pre) {
  10943. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10944. regex_exprs = {
  10945. // original regex from tokenizer.json
  10946. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10947. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10948. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10949. };
  10950. break;
  10951. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10952. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10953. regex_exprs = {
  10954. // same as llama3
  10955. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10956. };
  10957. break;
  10958. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10959. regex_exprs = {
  10960. "[\r\n]",
  10961. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10962. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10963. "\\s+$",
  10964. "[一-龥ࠀ-一가-퟿]+",
  10965. "\\p{N}+",
  10966. };
  10967. break;
  10968. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10969. regex_exprs = {
  10970. "[\r\n]",
  10971. "\\s?\\p{L}+",
  10972. "\\s?\\p{P}+",
  10973. "[一-龥ࠀ-一가-퟿]+",
  10974. "\\p{N}",
  10975. };
  10976. break;
  10977. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10978. regex_exprs = {
  10979. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  10980. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10981. "[0-9][0-9][0-9]",
  10982. };
  10983. break;
  10984. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10985. // TODO: MPT pre-tokenization regexes are unknown
  10986. // the following are close, but not exact. run the following:
  10987. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10988. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10989. regex_exprs = {
  10990. "\\s?\\p{L}+",
  10991. "\\s?\\p{P}+",
  10992. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10993. };
  10994. break;
  10995. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10996. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10997. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10998. regex_exprs = {
  10999. "\\p{N}",
  11000. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11001. };
  11002. break;
  11003. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  11004. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  11005. regex_exprs = {
  11006. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11007. };
  11008. break;
  11009. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  11010. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  11011. regex_exprs = {
  11012. // original regex from tokenizer.json
  11013. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  11014. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  11015. };
  11016. break;
  11017. case LLAMA_VOCAB_PRE_TYPE_PORO:
  11018. regex_exprs = {
  11019. " ?[^(\\s|.,!?…。,、।۔،)]+",
  11020. };
  11021. break;
  11022. default:
  11023. // default regex for BPE tokenization pre-processing
  11024. regex_exprs = {
  11025. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  11026. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11027. "\\p{N}+",
  11028. "[0-9][0-9][0-9]",
  11029. };
  11030. break;
  11031. }
  11032. }
  11033. void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
  11034. output.push_back(token_id);
  11035. }
  11036. bool append_bos(std::vector<llama_vocab::id> & output) const {
  11037. if (vocab.tokenizer_add_bos) {
  11038. GGML_ASSERT(vocab.special_bos_id != -1);
  11039. output.push_back(vocab.special_bos_id);
  11040. return true;
  11041. }
  11042. return false;
  11043. }
  11044. bool append_eos(std::vector<llama_vocab::id> & output) const {
  11045. if (vocab.tokenizer_add_eos) {
  11046. GGML_ASSERT(vocab.special_eos_id != -1);
  11047. output.push_back(vocab.special_eos_id);
  11048. return true;
  11049. }
  11050. return false;
  11051. }
  11052. void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
  11053. if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11054. LLAMA_LOG_WARN(
  11055. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11056. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11057. "Are you sure this is what you want?\n", __FUNCTION__);
  11058. }
  11059. if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
  11060. LLAMA_LOG_WARN(
  11061. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  11062. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  11063. "Are you sure this is what you want?\n", __FUNCTION__);
  11064. }
  11065. }
  11066. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  11067. int final_prev_index = -1;
  11068. const auto word_collection = unicode_regex_split(text, regex_exprs);
  11069. symbols_final.clear();
  11070. for (auto & word : word_collection) {
  11071. work_queue = llm_bigram_bpe::queue();
  11072. symbols.clear();
  11073. int index = 0;
  11074. size_t offset = 0;
  11075. if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  11076. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  11077. offset = word.size();
  11078. }
  11079. while (offset < word.size()) {
  11080. llm_symbol sym;
  11081. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  11082. sym.text = word.c_str() + offset;
  11083. sym.n = char_len;
  11084. offset += sym.n;
  11085. sym.prev = index - 1;
  11086. sym.next = offset == word.size() ? -1 : index + 1;
  11087. index++;
  11088. symbols.emplace_back(sym);
  11089. }
  11090. for (size_t i = 1; i < symbols.size(); ++i) {
  11091. add_new_bigram(i - 1, i);
  11092. }
  11093. // build token(s)
  11094. while (!work_queue.empty()) {
  11095. auto bigram = work_queue.top();
  11096. work_queue.pop();
  11097. auto & left_symbol = symbols[bigram.left];
  11098. auto & right_symbol = symbols[bigram.right];
  11099. if (left_symbol.n == 0 || right_symbol.n == 0) {
  11100. continue;
  11101. }
  11102. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  11103. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  11104. if (left_token + right_token != bigram.text) {
  11105. continue; // Skip this bigram if it's outdated
  11106. }
  11107. // merge the right sym into the left one
  11108. left_symbol.n += right_symbol.n;
  11109. right_symbol.n = 0;
  11110. // remove the right sym from the chain
  11111. left_symbol.next = right_symbol.next;
  11112. if (right_symbol.next >= 0) {
  11113. symbols[right_symbol.next].prev = bigram.left;
  11114. }
  11115. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  11116. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  11117. }
  11118. // add the finished tokens to the final list keeping correct order for next and prev
  11119. for (auto & sym : symbols) {
  11120. if (sym.n > 0) {
  11121. sym.prev = final_prev_index;
  11122. sym.next = -1;
  11123. if (final_prev_index != -1) {
  11124. symbols_final[final_prev_index].next = symbols_final.size();
  11125. }
  11126. symbols_final.emplace_back(sym);
  11127. final_prev_index = symbols_final.size() - 1;
  11128. }
  11129. }
  11130. }
  11131. symbols = symbols_final;
  11132. if (!symbols.empty()) {
  11133. for (int i = 0; i != -1; i = symbols[i].next) {
  11134. auto & symbol = symbols[i];
  11135. if (symbol.n == 0) {
  11136. continue;
  11137. }
  11138. const std::string str = std::string(symbol.text, symbol.n);
  11139. const auto token = vocab.token_to_id.find(str);
  11140. if (token == vocab.token_to_id.end()) {
  11141. for (auto j = str.begin(); j != str.end(); ++j) {
  11142. std::string byte_str(1, *j);
  11143. auto token_multibyte = vocab.token_to_id.find(byte_str);
  11144. if (token_multibyte != vocab.token_to_id.end()) {
  11145. output.push_back(token_multibyte->second);
  11146. }
  11147. }
  11148. } else {
  11149. output.push_back((*token).second);
  11150. }
  11151. }
  11152. }
  11153. }
  11154. private:
  11155. void add_new_bigram(int left, int right) {
  11156. if (left == -1 || right == -1) {
  11157. return;
  11158. }
  11159. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  11160. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  11161. int rank_found = -1;
  11162. rank_found = vocab.find_bpe_rank(left_token, right_token);
  11163. if (rank_found < 0) {
  11164. return;
  11165. }
  11166. llm_bigram_bpe bigram;
  11167. bigram.left = left;
  11168. bigram.right = right;
  11169. bigram.text = left_token + right_token;
  11170. bigram.size = left_token.size() + right_token.size();
  11171. bigram.rank = rank_found;
  11172. work_queue.push(bigram);
  11173. }
  11174. const llama_vocab & vocab;
  11175. std::vector<std::string> regex_exprs;
  11176. std::vector<llm_symbol> symbols;
  11177. std::vector<llm_symbol> symbols_final;
  11178. llm_bigram_bpe::queue work_queue;
  11179. };
  11180. struct llm_tokenizer_wpm {
  11181. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  11182. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
  11183. const auto & token_map = vocab.token_to_id;
  11184. // normalize and split by whitespace
  11185. std::vector<std::string> words = preprocess(text);
  11186. // bos token prepended already
  11187. // find the longest tokens that form the words
  11188. for (const std::string & word : words) {
  11189. // skip empty words
  11190. if (word.size() == 0) {
  11191. continue;
  11192. }
  11193. // prepend phantom space
  11194. const std::string word1 = "\xe2\x96\x81" + word;
  11195. const int n = word1.size();
  11196. const size_t current_tokens = output.size();
  11197. // we're at the start of a new word
  11198. // move through character position in word
  11199. for (int i = 0; i < n; ++i) {
  11200. // loop through possible match length
  11201. bool match = false;
  11202. for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
  11203. auto it = token_map.find(word1.substr(i, j - i));
  11204. if (it != token_map.end()) {
  11205. output.push_back(it->second);
  11206. match = true;
  11207. i = j - 1;
  11208. break;
  11209. }
  11210. }
  11211. if (!match) { // discard all
  11212. output.resize(current_tokens);
  11213. break; // and discard next tokens
  11214. }
  11215. }
  11216. // we didn't find any matches for this word
  11217. if (current_tokens == output.size()) {
  11218. output.push_back(vocab.special_unk_id);
  11219. }
  11220. }
  11221. }
  11222. // TODO: reduce string copies by using cpts_offs array
  11223. std::vector<std::string> preprocess(const std::string & text) const {
  11224. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  11225. std::vector<std::string> words(1, "");
  11226. for (const uint32_t cpt : cpts_nfd) {
  11227. const auto flags = unicode_cpt_flags(cpt);
  11228. if (flags.is_whitespace) {
  11229. if (words.back().size()) { // finish previous word if any
  11230. words.emplace_back();
  11231. }
  11232. continue;
  11233. }
  11234. assert (!flags.is_separator);
  11235. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  11236. continue;
  11237. }
  11238. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  11239. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  11240. if (words.back().size()) { // finish previous word if any
  11241. words.emplace_back();
  11242. }
  11243. words.back() = s; // single char word
  11244. words.emplace_back(); // start a new word
  11245. } else {
  11246. words.back() += s; // append char to word
  11247. }
  11248. }
  11249. if (!words.back().size()) {
  11250. words.pop_back();
  11251. }
  11252. return words;
  11253. }
  11254. static bool is_chinese_char(uint32_t cpt) {
  11255. return
  11256. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  11257. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  11258. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  11259. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  11260. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  11261. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  11262. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  11263. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  11264. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  11265. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  11266. }
  11267. const llama_vocab & vocab;
  11268. };
  11269. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  11270. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  11271. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  11272. } FRAGMENT_BUFFER_VARIANT_TYPE;
  11273. struct fragment_buffer_variant {
  11274. fragment_buffer_variant(llama_vocab::id _token)
  11275. :
  11276. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  11277. token(_token),
  11278. raw_text(_dummy),
  11279. offset(0),
  11280. length(0) {}
  11281. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  11282. :
  11283. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  11284. token((llama_vocab::id) - 1),
  11285. raw_text(_raw_text),
  11286. offset(_offset),
  11287. length(_length){
  11288. GGML_ASSERT(_offset >= 0);
  11289. GGML_ASSERT(_length >= 1);
  11290. GGML_ASSERT(offset + length <= raw_text.length());
  11291. }
  11292. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  11293. const llama_vocab::id token;
  11294. const std::string _dummy;
  11295. const std::string & raw_text;
  11296. const uint64_t offset;
  11297. const uint64_t length;
  11298. };
  11299. // #define PRETOKENIZERDEBUG
  11300. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  11301. // for each special token
  11302. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  11303. const auto & data = vocab.id_to_token[special_id];
  11304. const auto & special_token = data.text;
  11305. // for each text fragment
  11306. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  11307. while (it != buffer.end()) {
  11308. auto & fragment = (*it);
  11309. // if a fragment is text ( not yet processed )
  11310. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11311. auto & raw_text = fragment.raw_text;
  11312. auto raw_text_base_offset = fragment.offset;
  11313. auto raw_text_base_length = fragment.length;
  11314. // loop over the text
  11315. while (true) {
  11316. // find the first occurrence of a given special token in this fragment
  11317. // passing offset argument only limit the "search area" but match coordinates
  11318. // are still relative to the source full raw_text
  11319. auto match = raw_text.find(special_token, raw_text_base_offset);
  11320. // no occurrences found, stop processing this fragment for a given special token
  11321. if (match == std::string::npos) break;
  11322. // check if match is within bounds of offset <-> length
  11323. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  11324. #ifdef PRETOKENIZERDEBUG
  11325. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11326. #endif
  11327. auto source = std::distance(buffer.begin(), it);
  11328. // if match is further than base offset
  11329. // then we have some text to the left of it
  11330. if (match > raw_text_base_offset) {
  11331. // left
  11332. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  11333. int64_t left_reminder_length = match - raw_text_base_offset;
  11334. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  11335. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  11336. left_reminder_length--;
  11337. }
  11338. }
  11339. if (left_reminder_length > 0) {
  11340. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  11341. it++;
  11342. }
  11343. #ifdef PRETOKENIZERDEBUG
  11344. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  11345. #endif
  11346. }
  11347. // special token
  11348. buffer.emplace_after(it, special_id);
  11349. it++;
  11350. // right
  11351. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11352. int64_t right_reminder_offset = match + special_token.length();
  11353. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11354. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  11355. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  11356. right_reminder_offset++;
  11357. right_reminder_length--;
  11358. }
  11359. }
  11360. if (right_reminder_length > 0) {
  11361. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11362. it++;
  11363. }
  11364. #ifdef PRETOKENIZERDEBUG
  11365. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11366. #endif
  11367. if (source == 0) {
  11368. buffer.erase_after(buffer.before_begin());
  11369. } else {
  11370. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11371. }
  11372. // repeat for the right side
  11373. raw_text_base_offset = right_reminder_offset;
  11374. raw_text_base_length = right_reminder_length;
  11375. #ifdef PRETOKENIZERDEBUG
  11376. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11377. #endif
  11378. } else {
  11379. if (source == 0) {
  11380. buffer.erase_after(buffer.before_begin());
  11381. } else {
  11382. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11383. }
  11384. break;
  11385. }
  11386. }
  11387. }
  11388. it++;
  11389. }
  11390. }
  11391. }
  11392. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11393. std::vector<llama_vocab::id> output;
  11394. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11395. if (!raw_text.empty()) {
  11396. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11397. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11398. }
  11399. switch (vocab.type) {
  11400. case LLAMA_VOCAB_TYPE_SPM:
  11401. {
  11402. // OG tokenizer behavior:
  11403. //
  11404. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11405. // tokenizer.encode('', add_special_tokens=False) returns []
  11406. bool is_prev_special = false;
  11407. if (add_special && vocab.tokenizer_add_bos) {
  11408. GGML_ASSERT(vocab.special_bos_id != -1);
  11409. output.push_back(vocab.special_bos_id);
  11410. is_prev_special = true;
  11411. }
  11412. for (const auto & fragment : fragment_buffer) {
  11413. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11414. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11415. if (vocab.tokenizer_add_space_prefix) {
  11416. if (!output.size() || is_prev_special) { // prefix with space if first token
  11417. raw_text = " " + raw_text;
  11418. }
  11419. }
  11420. #ifdef PRETOKENIZERDEBUG
  11421. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11422. #endif
  11423. llm_tokenizer_spm tokenizer(vocab);
  11424. llama_escape_whitespace(raw_text);
  11425. tokenizer.tokenize(raw_text, output);
  11426. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11427. output.push_back(fragment.token);
  11428. is_prev_special = true;
  11429. }
  11430. }
  11431. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11432. LLAMA_LOG_WARN(
  11433. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11434. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11435. "Are you sure this is what you want?\n", __FUNCTION__);
  11436. }
  11437. if (add_special && vocab.tokenizer_add_eos) {
  11438. GGML_ASSERT(vocab.special_eos_id != -1);
  11439. output.push_back(vocab.special_eos_id);
  11440. }
  11441. } break;
  11442. case LLAMA_VOCAB_TYPE_BPE:
  11443. {
  11444. llm_tokenizer_bpe tokenizer(vocab);
  11445. if (add_special) {
  11446. tokenizer.append_bos(output);
  11447. }
  11448. for (const auto & fragment : fragment_buffer) {
  11449. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11450. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11451. #ifdef PRETOKENIZERDEBUG
  11452. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11453. #endif
  11454. tokenizer.tokenize(raw_text, output);
  11455. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11456. tokenizer.append(fragment.token, output);
  11457. }
  11458. }
  11459. if (add_special) {
  11460. tokenizer.append_eos(output);
  11461. tokenizer.check_double_bos_eos(output);
  11462. }
  11463. } break;
  11464. case LLAMA_VOCAB_TYPE_WPM:
  11465. {
  11466. if (add_special) {
  11467. GGML_ASSERT(vocab.special_cls_id != -1);
  11468. output.push_back(vocab.special_cls_id);
  11469. }
  11470. llm_tokenizer_wpm tokenizer(vocab);
  11471. for (const auto & fragment : fragment_buffer) {
  11472. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11473. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11474. #ifdef PRETOKENIZERDEBUG
  11475. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11476. #endif
  11477. tokenizer.tokenize(raw_text, output);
  11478. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11479. output.push_back(fragment.token);
  11480. }
  11481. }
  11482. if (add_special) {
  11483. GGML_ASSERT(vocab.special_sep_id != -1);
  11484. output.push_back(vocab.special_sep_id);
  11485. }
  11486. } break;
  11487. case LLAMA_VOCAB_TYPE_NONE:
  11488. GGML_ASSERT(false);
  11489. }
  11490. return output;
  11491. }
  11492. //
  11493. // grammar - internal
  11494. //
  11495. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11496. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11497. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11498. const std::string & src,
  11499. llama_partial_utf8 partial_start) {
  11500. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11501. const char * pos = src.c_str();
  11502. std::vector<uint32_t> code_points;
  11503. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11504. code_points.reserve(src.size() + 1);
  11505. uint32_t value = partial_start.value;
  11506. int n_remain = partial_start.n_remain;
  11507. // continue previous decode, if applicable
  11508. while (*pos != 0 && n_remain > 0) {
  11509. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11510. if ((next_byte >> 6) != 2) {
  11511. // invalid sequence, abort
  11512. code_points.push_back(0);
  11513. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11514. }
  11515. value = (value << 6) + (next_byte & 0x3F);
  11516. ++pos;
  11517. --n_remain;
  11518. }
  11519. if (partial_start.n_remain > 0 && n_remain == 0) {
  11520. code_points.push_back(value);
  11521. }
  11522. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11523. while (*pos != 0) {
  11524. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11525. uint8_t highbits = first_byte >> 4;
  11526. n_remain = lookup[highbits] - 1;
  11527. if (n_remain < 0) {
  11528. // invalid sequence, abort
  11529. code_points.clear();
  11530. code_points.push_back(0);
  11531. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11532. }
  11533. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11534. value = first_byte & mask;
  11535. ++pos;
  11536. while (*pos != 0 && n_remain > 0) {
  11537. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11538. ++pos;
  11539. --n_remain;
  11540. }
  11541. if (n_remain == 0) {
  11542. code_points.push_back(value);
  11543. }
  11544. }
  11545. code_points.push_back(0);
  11546. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11547. }
  11548. // returns true iff pos points to the end of one of the definitions of a rule
  11549. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11550. switch (pos->type) {
  11551. case LLAMA_GRETYPE_END: return true; // NOLINT
  11552. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11553. default: return false;
  11554. }
  11555. }
  11556. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11557. // asserts that pos is pointing to a char range element
  11558. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11559. const llama_grammar_element * pos,
  11560. const uint32_t chr) {
  11561. bool found = false;
  11562. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11563. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11564. do {
  11565. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11566. // inclusive range, e.g. [a-z]
  11567. found = found || (pos->value <= chr && chr <= pos[1].value);
  11568. pos += 2;
  11569. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11570. // Any character matches "."
  11571. found = true;
  11572. pos += 1;
  11573. } else {
  11574. // exact char match, e.g. [a] or "a"
  11575. found = found || pos->value == chr;
  11576. pos += 1;
  11577. }
  11578. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11579. return std::make_pair(found == is_positive_char, pos);
  11580. }
  11581. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11582. // range at pos (regular or inverse range)
  11583. // asserts that pos is pointing to a char range element
  11584. static bool llama_grammar_match_partial_char(
  11585. const llama_grammar_element * pos,
  11586. const llama_partial_utf8 partial_utf8) {
  11587. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11588. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11589. uint32_t partial_value = partial_utf8.value;
  11590. int n_remain = partial_utf8.n_remain;
  11591. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11592. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11593. return false;
  11594. }
  11595. // range of possible code points this partial UTF-8 sequence could complete to
  11596. uint32_t low = partial_value << (n_remain * 6);
  11597. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11598. if (low == 0) {
  11599. if (n_remain == 2) {
  11600. low = 1 << 11;
  11601. } else if (n_remain == 3) {
  11602. low = 1 << 16;
  11603. }
  11604. }
  11605. do {
  11606. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11607. // inclusive range, e.g. [a-z]
  11608. if (pos->value <= high && low <= pos[1].value) {
  11609. return is_positive_char;
  11610. }
  11611. pos += 2;
  11612. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11613. // Any character matches "."
  11614. return true;
  11615. } else {
  11616. // exact char match, e.g. [a] or "a"
  11617. if (low <= pos->value && pos->value <= high) {
  11618. return is_positive_char;
  11619. }
  11620. pos += 1;
  11621. }
  11622. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11623. return !is_positive_char;
  11624. }
  11625. // transforms a grammar pushdown stack into N possible stacks, all ending
  11626. // at a character range (terminal element)
  11627. static void llama_grammar_advance_stack(
  11628. const std::vector<std::vector<llama_grammar_element>> & rules,
  11629. const std::vector<const llama_grammar_element *> & stack,
  11630. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11631. if (stack.empty()) {
  11632. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11633. new_stacks.emplace_back(stack);
  11634. }
  11635. return;
  11636. }
  11637. const llama_grammar_element * pos = stack.back();
  11638. switch (pos->type) {
  11639. case LLAMA_GRETYPE_RULE_REF: {
  11640. const size_t rule_id = static_cast<size_t>(pos->value);
  11641. const llama_grammar_element * subpos = rules[rule_id].data();
  11642. do {
  11643. // init new stack without the top (pos)
  11644. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11645. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11646. // if this rule ref is followed by another element, add that to stack
  11647. new_stack.push_back(pos + 1);
  11648. }
  11649. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11650. // if alternate is nonempty, add to stack
  11651. new_stack.push_back(subpos);
  11652. }
  11653. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11654. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11655. // scan to end of alternate def
  11656. subpos++;
  11657. }
  11658. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11659. // there's another alternate def of this rule to process
  11660. subpos++;
  11661. } else {
  11662. break;
  11663. }
  11664. } while (true);
  11665. break;
  11666. }
  11667. case LLAMA_GRETYPE_CHAR:
  11668. case LLAMA_GRETYPE_CHAR_NOT:
  11669. case LLAMA_GRETYPE_CHAR_ANY:
  11670. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11671. // only add the stack if it's not a duplicate of one we already have
  11672. new_stacks.emplace_back(stack);
  11673. }
  11674. break;
  11675. default:
  11676. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11677. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11678. // those
  11679. GGML_ASSERT(false);
  11680. }
  11681. }
  11682. // takes a set of possible pushdown stacks on a grammar, which are required to
  11683. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11684. // produces the N possible stacks if the given char is accepted at those
  11685. // positions
  11686. void llama_grammar_accept(
  11687. const std::vector<std::vector<llama_grammar_element>> & rules,
  11688. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11689. const uint32_t chr,
  11690. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11691. new_stacks.clear();
  11692. for (const auto & stack : stacks) {
  11693. if (stack.empty()) {
  11694. continue;
  11695. }
  11696. auto match = llama_grammar_match_char(stack.back(), chr);
  11697. if (match.first) {
  11698. const llama_grammar_element * pos = match.second;
  11699. // update top of stack to next element, if any
  11700. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11701. if (!llama_grammar_is_end_of_sequence(pos)) {
  11702. new_stack.push_back(pos);
  11703. }
  11704. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11705. }
  11706. }
  11707. }
  11708. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11709. const std::vector<std::vector<llama_grammar_element>> & rules,
  11710. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11711. const std::vector<llama_grammar_candidate> & candidates);
  11712. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11713. const std::vector<std::vector<llama_grammar_element>> & rules,
  11714. const std::vector<const llama_grammar_element *> & stack,
  11715. const std::vector<llama_grammar_candidate> & candidates) {
  11716. std::vector<llama_grammar_candidate> rejects;
  11717. rejects.reserve(candidates.size());
  11718. if (stack.empty()) {
  11719. for (const auto & tok : candidates) {
  11720. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11721. rejects.push_back(tok);
  11722. }
  11723. }
  11724. return rejects;
  11725. }
  11726. const llama_grammar_element * stack_pos = stack.back();
  11727. std::vector<llama_grammar_candidate> next_candidates;
  11728. next_candidates.reserve(candidates.size());
  11729. for (const auto & tok : candidates) {
  11730. if (*tok.code_points == 0) {
  11731. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11732. // that cannot satisfy this position in grammar
  11733. if (tok.partial_utf8.n_remain != 0 &&
  11734. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11735. rejects.push_back(tok);
  11736. }
  11737. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11738. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11739. } else {
  11740. rejects.push_back(tok);
  11741. }
  11742. }
  11743. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11744. // update top of stack to next element, if any
  11745. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11746. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11747. stack_after.push_back(stack_pos_after);
  11748. }
  11749. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11750. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11751. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11752. for (const auto & tok : next_rejects) {
  11753. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11754. }
  11755. return rejects;
  11756. }
  11757. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11758. const std::vector<std::vector<llama_grammar_element>> & rules,
  11759. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11760. const std::vector<llama_grammar_candidate> & candidates) {
  11761. GGML_ASSERT(!stacks.empty()); // REVIEW
  11762. if (candidates.empty()) {
  11763. return std::vector<llama_grammar_candidate>();
  11764. }
  11765. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11766. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11767. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11768. }
  11769. return rejects;
  11770. }
  11771. static bool llama_grammar_detect_left_recursion(
  11772. const std::vector<std::vector<llama_grammar_element>> & rules,
  11773. size_t rule_index,
  11774. std::vector<bool> * rules_visited,
  11775. std::vector<bool> * rules_in_progress,
  11776. std::vector<bool> * rules_may_be_empty) {
  11777. if ((*rules_in_progress)[rule_index]) {
  11778. return true;
  11779. }
  11780. (*rules_in_progress)[rule_index] = true;
  11781. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11782. // First check if the rule might produce the empty string. This could be done combined with the second
  11783. // step but it's more readable as two steps.
  11784. bool at_rule_start = true;
  11785. for (size_t i = 0; i < rule.size(); i++) {
  11786. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11787. if (at_rule_start) {
  11788. (*rules_may_be_empty)[rule_index] = true;
  11789. break;
  11790. }
  11791. at_rule_start = true;
  11792. } else {
  11793. at_rule_start = false;
  11794. }
  11795. }
  11796. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11797. // be empty)
  11798. bool recurse_into_nonterminal = true;
  11799. for (size_t i = 0; i < rule.size(); i++) {
  11800. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11801. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11802. return true;
  11803. }
  11804. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11805. recurse_into_nonterminal = false;
  11806. }
  11807. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11808. recurse_into_nonterminal = true;
  11809. } else {
  11810. recurse_into_nonterminal = false;
  11811. }
  11812. }
  11813. (*rules_in_progress)[rule_index] = false;
  11814. (*rules_visited)[rule_index] = true;
  11815. return false;
  11816. }
  11817. //
  11818. // grammar - external
  11819. //
  11820. struct llama_grammar * llama_grammar_init(
  11821. const llama_grammar_element ** rules,
  11822. size_t n_rules,
  11823. size_t start_rule_index) {
  11824. const llama_grammar_element * pos;
  11825. // copy rule definitions into vectors
  11826. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11827. for (size_t i = 0; i < n_rules; i++) {
  11828. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11829. vec_rules[i].push_back(*pos);
  11830. }
  11831. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11832. }
  11833. // Check for left recursion
  11834. std::vector<bool> rules_visited(n_rules);
  11835. std::vector<bool> rules_in_progress(n_rules);
  11836. std::vector<bool> rules_may_be_empty(n_rules);
  11837. for (size_t i = 0; i < n_rules; i++) {
  11838. if (rules_visited[i]) {
  11839. continue;
  11840. }
  11841. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11842. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11843. }
  11844. }
  11845. // loop over alternates of start rule to build initial stacks
  11846. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11847. pos = vec_rules[start_rule_index].data();
  11848. do {
  11849. std::vector<const llama_grammar_element *> stack;
  11850. if (!llama_grammar_is_end_of_sequence(pos)) {
  11851. // if alternate is nonempty, add to stack
  11852. stack.push_back(pos);
  11853. }
  11854. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11855. while (!llama_grammar_is_end_of_sequence(pos)) {
  11856. // scan to end of alternate def
  11857. pos++;
  11858. }
  11859. if (pos->type == LLAMA_GRETYPE_ALT) {
  11860. // there's another alternate def of this rule to process
  11861. pos++;
  11862. } else {
  11863. break;
  11864. }
  11865. } while (true);
  11866. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11867. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11868. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11869. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11870. }
  11871. void llama_grammar_free(struct llama_grammar * grammar) {
  11872. delete grammar;
  11873. }
  11874. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11875. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11876. // redirect elements in stacks to point to new rules
  11877. for (size_t is = 0; is < result->stacks.size(); is++) {
  11878. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11879. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11880. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11881. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11882. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11883. }
  11884. }
  11885. }
  11886. }
  11887. }
  11888. return result;
  11889. }
  11890. //
  11891. // sampling
  11892. //
  11893. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11894. if (seed == LLAMA_DEFAULT_SEED) {
  11895. seed = time(NULL);
  11896. }
  11897. ctx->rng.seed(seed);
  11898. }
  11899. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11900. GGML_ASSERT(candidates->size > 0);
  11901. const int64_t t_start_sample_us = ggml_time_us();
  11902. // Sort the logits in descending order
  11903. if (!candidates->sorted) {
  11904. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11905. return a.logit > b.logit;
  11906. });
  11907. candidates->sorted = true;
  11908. }
  11909. float max_l = candidates->data[0].logit;
  11910. float cum_sum = 0.0f;
  11911. for (size_t i = 0; i < candidates->size; ++i) {
  11912. float p = expf(candidates->data[i].logit - max_l);
  11913. candidates->data[i].p = p;
  11914. cum_sum += p;
  11915. }
  11916. for (size_t i = 0; i < candidates->size; ++i) {
  11917. candidates->data[i].p /= cum_sum;
  11918. }
  11919. if (ctx) {
  11920. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11921. }
  11922. }
  11923. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11924. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11925. // if (k >= (int32_t)candidates->size) {
  11926. // return;
  11927. // }
  11928. const int64_t t_start_sample_us = ggml_time_us();
  11929. if (k <= 0) {
  11930. k = candidates->size;
  11931. }
  11932. k = std::max(k, (int) min_keep);
  11933. k = std::min(k, (int) candidates->size);
  11934. // Sort scores in descending order
  11935. if (!candidates->sorted) {
  11936. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11937. return a.logit > b.logit;
  11938. };
  11939. if (k <= 128) {
  11940. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11941. } else {
  11942. constexpr int nbuckets = 128;
  11943. constexpr float bucket_low = -10.0f;
  11944. constexpr float bucket_high = 10.0f;
  11945. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11946. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11947. std::vector<int> bucket_idx(candidates->size);
  11948. std::vector<int> histo(nbuckets, 0);
  11949. for (int i = 0; i < (int)candidates->size; ++i) {
  11950. const float val = candidates->data[i].logit;
  11951. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11952. ib = std::max(0, std::min(nbuckets-1, ib));
  11953. bucket_idx[i] = ib;
  11954. ++histo[ib];
  11955. }
  11956. int nhave = 0;
  11957. int ib = nbuckets - 1;
  11958. for ( ; ib >= 0; --ib) {
  11959. nhave += histo[ib];
  11960. if (nhave >= k) break;
  11961. }
  11962. std::vector<llama_token_data> tmp_tokens(nhave);
  11963. auto ptr = tmp_tokens.data();
  11964. std::vector<llama_token_data*> bucket_ptrs;
  11965. bucket_ptrs.reserve(nbuckets - ib);
  11966. for (int j = nbuckets - 1; j >= ib; --j) {
  11967. bucket_ptrs.push_back(ptr);
  11968. ptr += histo[j];
  11969. }
  11970. for (int i = 0; i < (int)candidates->size; ++i) {
  11971. int j = bucket_idx[i];
  11972. if (j >= ib) {
  11973. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11974. }
  11975. }
  11976. ptr = tmp_tokens.data();
  11977. int ndone = 0;
  11978. for (int j = nbuckets-1; j > ib; --j) {
  11979. std::sort(ptr, ptr + histo[j], comp);
  11980. ptr += histo[j];
  11981. ndone += histo[j];
  11982. }
  11983. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11984. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11985. }
  11986. candidates->sorted = true;
  11987. }
  11988. candidates->size = k;
  11989. if (ctx) {
  11990. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11991. }
  11992. }
  11993. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11994. if (p >= 1.0f) {
  11995. return;
  11996. }
  11997. llama_sample_softmax(ctx, candidates);
  11998. const int64_t t_start_sample_us = ggml_time_us();
  11999. // Compute the cumulative probabilities
  12000. float cum_sum = 0.0f;
  12001. size_t last_idx = candidates->size;
  12002. for (size_t i = 0; i < candidates->size; ++i) {
  12003. cum_sum += candidates->data[i].p;
  12004. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  12005. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  12006. if (cum_sum >= p && i + 1 >= min_keep) {
  12007. last_idx = i + 1;
  12008. break;
  12009. }
  12010. }
  12011. // Resize the output vector to keep only the top-p tokens
  12012. candidates->size = last_idx;
  12013. if (ctx) {
  12014. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12015. }
  12016. }
  12017. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  12018. if (p <= 0.0f || !candidates->size) {
  12019. return;
  12020. }
  12021. const int64_t t_start_sample_us = ggml_time_us();
  12022. bool min_p_applied = false;
  12023. // if the candidates aren't sorted, try the unsorted implementation first
  12024. if (!candidates->sorted) {
  12025. std::vector<llama_token_data> filtered_tokens;
  12026. float max_logit = -FLT_MAX;
  12027. for (size_t i = 0; i < candidates->size; ++i) {
  12028. max_logit = std::max(max_logit, candidates->data[i].logit);
  12029. }
  12030. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  12031. for (size_t i = 0; i < candidates->size; ++i) {
  12032. if (candidates->data[i].logit >= min_logit) {
  12033. filtered_tokens.push_back(candidates->data[i]);
  12034. }
  12035. }
  12036. // if we have enough values the operation was a success
  12037. if (filtered_tokens.size() >= min_keep) {
  12038. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  12039. candidates->size = filtered_tokens.size();
  12040. min_p_applied = true;
  12041. }
  12042. }
  12043. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  12044. if (!min_p_applied) {
  12045. // Sort the logits in descending order
  12046. if (!candidates->sorted) {
  12047. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12048. return a.logit > b.logit;
  12049. });
  12050. candidates->sorted = true;
  12051. }
  12052. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  12053. size_t i = 1; // first token always matches
  12054. for (; i < candidates->size; ++i) {
  12055. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  12056. break; // prob too small
  12057. }
  12058. }
  12059. // Resize the output vector to keep only the matching tokens
  12060. candidates->size = i;
  12061. }
  12062. if (ctx) {
  12063. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12064. }
  12065. }
  12066. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  12067. if (z >= 1.0f || candidates->size <= 2) {
  12068. return;
  12069. }
  12070. llama_sample_softmax(nullptr, candidates);
  12071. const int64_t t_start_sample_us = ggml_time_us();
  12072. // Compute the first and second derivatives
  12073. std::vector<float> first_derivatives(candidates->size - 1);
  12074. std::vector<float> second_derivatives(candidates->size - 2);
  12075. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  12076. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  12077. }
  12078. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12079. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  12080. }
  12081. // Calculate absolute value of second derivatives
  12082. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12083. second_derivatives[i] = std::abs(second_derivatives[i]);
  12084. }
  12085. // Normalize the second derivatives
  12086. {
  12087. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  12088. if (second_derivatives_sum > 1e-6f) {
  12089. for (float & value : second_derivatives) {
  12090. value /= second_derivatives_sum;
  12091. }
  12092. } else {
  12093. for (float & value : second_derivatives) {
  12094. value = 1.0f / second_derivatives.size();
  12095. }
  12096. }
  12097. }
  12098. float cum_sum = 0.0f;
  12099. size_t last_idx = candidates->size;
  12100. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12101. cum_sum += second_derivatives[i];
  12102. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  12103. if (cum_sum > z && i >= min_keep) {
  12104. last_idx = i;
  12105. break;
  12106. }
  12107. }
  12108. // Resize the output vector to keep only the tokens above the tail location
  12109. candidates->size = last_idx;
  12110. if (ctx) {
  12111. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12112. }
  12113. }
  12114. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  12115. // Reference implementation:
  12116. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  12117. if (p >= 1.0f) {
  12118. return;
  12119. }
  12120. // Compute the softmax of logits and calculate entropy
  12121. llama_sample_softmax(nullptr, candidates);
  12122. const int64_t t_start_sample_us = ggml_time_us();
  12123. float entropy = 0.0f;
  12124. for (size_t i = 0; i < candidates->size; ++i) {
  12125. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  12126. }
  12127. // Compute the absolute difference between negative log probability and entropy for each candidate
  12128. std::vector<float> shifted_scores;
  12129. for (size_t i = 0; i < candidates->size; ++i) {
  12130. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  12131. shifted_scores.push_back(shifted_score);
  12132. }
  12133. // Sort tokens based on the shifted_scores and their corresponding indices
  12134. std::vector<size_t> indices(candidates->size);
  12135. std::iota(indices.begin(), indices.end(), 0);
  12136. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  12137. return shifted_scores[a] < shifted_scores[b];
  12138. });
  12139. // Compute the cumulative probabilities
  12140. float cum_sum = 0.0f;
  12141. size_t last_idx = indices.size();
  12142. for (size_t i = 0; i < indices.size(); ++i) {
  12143. size_t idx = indices[i];
  12144. cum_sum += candidates->data[idx].p;
  12145. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  12146. if (cum_sum > p && i >= min_keep - 1) {
  12147. last_idx = i + 1;
  12148. break;
  12149. }
  12150. }
  12151. // Resize the output vector to keep only the locally typical tokens
  12152. std::vector<llama_token_data> new_candidates;
  12153. for (size_t i = 0; i < last_idx; ++i) {
  12154. size_t idx = indices[i];
  12155. new_candidates.push_back(candidates->data[idx]);
  12156. }
  12157. // Replace the data in candidates with the new_candidates data
  12158. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  12159. candidates->size = new_candidates.size();
  12160. candidates->sorted = false;
  12161. if (ctx) {
  12162. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12163. }
  12164. }
  12165. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  12166. const int64_t t_start_sample_us = ggml_time_us();
  12167. // no need to do anything if there is only one (or zero) candidates
  12168. if(candidates_p->size <= 1) {
  12169. return;
  12170. }
  12171. // Calculate maximum possible entropy
  12172. float max_entropy = -logf(1.0f / candidates_p->size);
  12173. llama_sample_softmax(nullptr, candidates_p);
  12174. // Calculate entropy of the softmax probabilities
  12175. float entropy = 0.0f;
  12176. for (size_t i = 0; i < candidates_p->size; ++i) {
  12177. float prob = candidates_p->data[i].p;
  12178. if (prob > 0.0f) { // Ensure no log(0)
  12179. entropy -= prob * logf(prob);
  12180. }
  12181. }
  12182. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  12183. float normalized_entropy = entropy / max_entropy;
  12184. // Map the normalized entropy to the desired temperature range using the power function
  12185. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  12186. #ifdef DEBUG
  12187. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  12188. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  12189. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  12190. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  12191. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  12192. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  12193. #endif
  12194. // Apply the dynamically calculated temperature scaling
  12195. for (size_t i = 0; i < candidates_p->size; ++i) {
  12196. candidates_p->data[i].logit /= dyn_temp;
  12197. }
  12198. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  12199. double max_l_double = candidates_p->data[0].logit;
  12200. double cum_sum_double = 0.0;
  12201. for (size_t i = 0; i < candidates_p->size; ++i) {
  12202. double p = exp(candidates_p->data[i].logit - max_l_double);
  12203. candidates_p->data[i].p = p; // Store the scaled probability
  12204. cum_sum_double += p;
  12205. }
  12206. for (size_t i = 0; i < candidates_p->size; ++i) {
  12207. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  12208. }
  12209. #ifdef DEBUG
  12210. // Print the updated top 25 probabilities after temperature scaling
  12211. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  12212. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  12213. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  12214. }
  12215. #endif
  12216. if (ctx) {
  12217. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12218. }
  12219. }
  12220. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  12221. const int64_t t_start_sample_us = ggml_time_us();
  12222. for (size_t i = 0; i < candidates_p->size; ++i) {
  12223. candidates_p->data[i].logit /= temp;
  12224. }
  12225. if (ctx) {
  12226. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12227. }
  12228. }
  12229. void llama_sample_repetition_penalties(
  12230. struct llama_context * ctx,
  12231. llama_token_data_array * candidates,
  12232. const llama_token * last_tokens,
  12233. size_t penalty_last_n,
  12234. float penalty_repeat,
  12235. float penalty_freq,
  12236. float penalty_present) {
  12237. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  12238. return;
  12239. }
  12240. const int64_t t_start_sample_us = ggml_time_us();
  12241. // Create a frequency map to count occurrences of each token in last_tokens
  12242. std::unordered_map<llama_token, int> token_count;
  12243. for (size_t i = 0; i < penalty_last_n; ++i) {
  12244. token_count[last_tokens[i]]++;
  12245. }
  12246. // Apply frequency and presence penalties to the candidates
  12247. for (size_t i = 0; i < candidates->size; ++i) {
  12248. const auto token_iter = token_count.find(candidates->data[i].id);
  12249. if (token_iter == token_count.end()) {
  12250. continue;
  12251. }
  12252. const int count = token_iter->second;
  12253. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  12254. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  12255. if (candidates->data[i].logit <= 0) {
  12256. candidates->data[i].logit *= penalty_repeat;
  12257. } else {
  12258. candidates->data[i].logit /= penalty_repeat;
  12259. }
  12260. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  12261. }
  12262. candidates->sorted = false;
  12263. if (ctx) {
  12264. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12265. }
  12266. }
  12267. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  12268. GGML_ASSERT(ctx);
  12269. int64_t t_start_sample_us = ggml_time_us();
  12270. bool allow_eog = false;
  12271. for (const auto & stack : grammar->stacks) {
  12272. if (stack.empty()) {
  12273. allow_eog = true;
  12274. break;
  12275. }
  12276. }
  12277. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  12278. candidates_decoded.reserve(candidates->size);
  12279. std::vector<llama_grammar_candidate> candidates_grammar;
  12280. candidates_grammar.reserve(candidates->size);
  12281. for (size_t i = 0; i < candidates->size; ++i) {
  12282. const llama_token id = candidates->data[i].id;
  12283. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  12284. if (llama_token_is_eog(&ctx->model, id)) {
  12285. if (!allow_eog) {
  12286. candidates->data[i].logit = -INFINITY;
  12287. }
  12288. } else if (piece.empty() || piece[0] == 0) {
  12289. candidates->data[i].logit = -INFINITY;
  12290. } else {
  12291. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  12292. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  12293. }
  12294. }
  12295. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  12296. for (const auto & reject : rejects) {
  12297. candidates->data[reject.index].logit = -INFINITY;
  12298. }
  12299. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12300. }
  12301. static void llama_log_softmax(float * array, size_t size) {
  12302. float max_l = *std::max_element(array, array + size);
  12303. float sum = 0.f;
  12304. for (size_t i = 0; i < size; ++i) {
  12305. float p = expf(array[i] - max_l);
  12306. sum += p;
  12307. array[i] = p;
  12308. }
  12309. for (size_t i = 0; i < size; ++i) {
  12310. array[i] = logf(array[i] / sum);
  12311. }
  12312. }
  12313. void llama_sample_apply_guidance(
  12314. struct llama_context * ctx,
  12315. float * logits,
  12316. float * logits_guidance,
  12317. float scale) {
  12318. GGML_ASSERT(ctx);
  12319. const auto t_start_sample_us = ggml_time_us();
  12320. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  12321. llama_log_softmax(logits, n_vocab);
  12322. llama_log_softmax(logits_guidance, n_vocab);
  12323. for (int i = 0; i < n_vocab; ++i) {
  12324. auto & l = logits[i];
  12325. const auto & g = logits_guidance[i];
  12326. l = scale * (l - g) + g;
  12327. }
  12328. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12329. }
  12330. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  12331. GGML_ASSERT(ctx);
  12332. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  12333. int64_t t_start_sample_us;
  12334. t_start_sample_us = ggml_time_us();
  12335. llama_sample_softmax(nullptr, candidates);
  12336. // Estimate s_hat using the most probable m tokens
  12337. float s_hat = 0.0;
  12338. float sum_ti_bi = 0.0;
  12339. float sum_ti_sq = 0.0;
  12340. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12341. float t_i = logf(float(i + 2) / float(i + 1));
  12342. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12343. sum_ti_bi += t_i * b_i;
  12344. sum_ti_sq += t_i * t_i;
  12345. }
  12346. s_hat = sum_ti_bi / sum_ti_sq;
  12347. // Compute k from the estimated s_hat and target surprise value
  12348. float epsilon_hat = s_hat - 1;
  12349. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12350. // Sample the next word X using top-k sampling
  12351. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12352. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12353. llama_token X = llama_sample_token(ctx, candidates);
  12354. t_start_sample_us = ggml_time_us();
  12355. // Compute error as the difference between observed surprise and target surprise value
  12356. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12357. return candidate.id == X;
  12358. }));
  12359. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12360. float e = observed_surprise - tau;
  12361. // Update mu using the learning rate and error
  12362. *mu = *mu - eta * e;
  12363. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12364. return X;
  12365. }
  12366. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12367. int64_t t_start_sample_us;
  12368. t_start_sample_us = ggml_time_us();
  12369. llama_sample_softmax(ctx, candidates);
  12370. // Truncate the words with surprise values greater than mu
  12371. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12372. return -log2f(candidate.p) > *mu;
  12373. }));
  12374. if (candidates->size == 0) {
  12375. candidates->size = 1;
  12376. }
  12377. if (ctx) {
  12378. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12379. }
  12380. // Normalize the probabilities of the remaining words
  12381. llama_sample_softmax(ctx, candidates);
  12382. // Sample the next word X from the remaining words
  12383. llama_token X = llama_sample_token(ctx, candidates);
  12384. t_start_sample_us = ggml_time_us();
  12385. // Compute error as the difference between observed surprise and target surprise value
  12386. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12387. return candidate.id == X;
  12388. }));
  12389. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12390. float e = observed_surprise - tau;
  12391. // Update mu using the learning rate and error
  12392. *mu = *mu - eta * e;
  12393. if (ctx) {
  12394. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12395. }
  12396. return X;
  12397. }
  12398. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12399. const int64_t t_start_sample_us = ggml_time_us();
  12400. // Find max element
  12401. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12402. return a.logit < b.logit;
  12403. });
  12404. llama_token result = max_iter->id;
  12405. if (ctx) {
  12406. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12407. ctx->n_sample++;
  12408. }
  12409. return result;
  12410. }
  12411. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12412. GGML_ASSERT(ctx);
  12413. const int64_t t_start_sample_us = ggml_time_us();
  12414. llama_sample_softmax(nullptr, candidates);
  12415. std::vector<float> probs;
  12416. probs.reserve(candidates->size);
  12417. for (size_t i = 0; i < candidates->size; ++i) {
  12418. probs.push_back(candidates->data[i].p);
  12419. }
  12420. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12421. int idx = dist(rng);
  12422. llama_token result = candidates->data[idx].id;
  12423. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12424. ctx->n_sample++;
  12425. return result;
  12426. }
  12427. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12428. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12429. }
  12430. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12431. const int64_t t_start_sample_us = ggml_time_us();
  12432. if (llama_token_is_eog(&ctx->model, token)) {
  12433. for (const auto & stack : grammar->stacks) {
  12434. if (stack.empty()) {
  12435. return;
  12436. }
  12437. }
  12438. GGML_ASSERT(false);
  12439. }
  12440. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  12441. // Note terminating 0 in decoded string
  12442. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12443. const auto & code_points = decoded.first;
  12444. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12445. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12446. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12447. grammar->stacks = tmp_new_stacks;
  12448. }
  12449. grammar->partial_utf8 = decoded.second;
  12450. GGML_ASSERT(!grammar->stacks.empty());
  12451. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12452. }
  12453. //
  12454. // quantization
  12455. //
  12456. struct quantize_state_internal {
  12457. const llama_model & model;
  12458. const llama_model_quantize_params * params;
  12459. int n_attention_wv = 0;
  12460. int n_ffn_down = 0;
  12461. int n_ffn_gate = 0;
  12462. int n_ffn_up = 0;
  12463. int i_attention_wv = 0;
  12464. int i_ffn_down = 0;
  12465. int i_ffn_gate = 0;
  12466. int i_ffn_up = 0;
  12467. int n_k_quantized = 0;
  12468. int n_fallback = 0;
  12469. bool has_imatrix = false;
  12470. // used to figure out if a model shares tok_embd with the output weight
  12471. bool has_output = false;
  12472. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12473. : model(model)
  12474. , params(params)
  12475. {}
  12476. };
  12477. static void llama_tensor_dequantize_internal(
  12478. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12479. const size_t nelements, const int nthread
  12480. ) {
  12481. if (output.size() < nelements) {
  12482. output.resize(nelements);
  12483. }
  12484. float * f32_output = (float *) output.data();
  12485. ggml_type_traits_t qtype;
  12486. if (ggml_is_quantized(tensor->type)) {
  12487. qtype = ggml_internal_get_type_traits(tensor->type);
  12488. if (qtype.to_float == NULL) {
  12489. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12490. }
  12491. } else if (tensor->type != GGML_TYPE_F16 &&
  12492. tensor->type != GGML_TYPE_BF16) {
  12493. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12494. }
  12495. if (nthread < 2) {
  12496. if (tensor->type == GGML_TYPE_F16) {
  12497. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12498. } else if (tensor->type == GGML_TYPE_BF16) {
  12499. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12500. } else if (ggml_is_quantized(tensor->type)) {
  12501. qtype.to_float(tensor->data, f32_output, nelements);
  12502. } else {
  12503. GGML_ASSERT(false); // unreachable
  12504. }
  12505. return;
  12506. }
  12507. size_t block_size;
  12508. if (tensor->type == GGML_TYPE_F16 ||
  12509. tensor->type == GGML_TYPE_BF16) {
  12510. block_size = 1;
  12511. } else {
  12512. block_size = (size_t)ggml_blck_size(tensor->type);
  12513. }
  12514. size_t block_size_bytes = ggml_type_size(tensor->type);
  12515. GGML_ASSERT(nelements % block_size == 0);
  12516. size_t nblocks = nelements / block_size;
  12517. size_t blocks_per_thread = nblocks / nthread;
  12518. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12519. size_t in_buff_offs = 0;
  12520. size_t out_buff_offs = 0;
  12521. for (int tnum = 0; tnum < nthread; tnum++) {
  12522. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12523. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12524. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12525. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12526. if (typ == GGML_TYPE_F16) {
  12527. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12528. } else if (typ == GGML_TYPE_BF16) {
  12529. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12530. } else {
  12531. qtype.to_float(inbuf, outbuf, nels);
  12532. }
  12533. };
  12534. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12535. in_buff_offs += thr_block_bytes;
  12536. out_buff_offs += thr_elems;
  12537. }
  12538. for (auto & w : workers) { w.join(); }
  12539. workers.clear();
  12540. }
  12541. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12542. const std::string name = ggml_get_name(tensor);
  12543. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12544. const llm_arch arch = qs.model.arch;
  12545. const auto tn = LLM_TN(arch);
  12546. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12547. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12548. };
  12549. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12550. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12551. if (n_expert > 1) {
  12552. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12553. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12554. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12555. // tensor name.
  12556. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12557. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12558. }
  12559. if (i_layer < 0 || i_layer >= n_layer) {
  12560. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12561. }
  12562. }
  12563. return std::make_pair(i_layer, n_layer);
  12564. };
  12565. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12566. // with the quantization of the output tensor
  12567. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12568. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12569. new_type = qs.params->output_tensor_type;
  12570. } else {
  12571. int nx = tensor->ne[0];
  12572. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12573. new_type = GGML_TYPE_Q8_0;
  12574. }
  12575. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12576. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12577. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12578. new_type = GGML_TYPE_Q5_K;
  12579. }
  12580. else if (new_type != GGML_TYPE_Q8_0) {
  12581. new_type = GGML_TYPE_Q6_K;
  12582. }
  12583. }
  12584. } else if (name == "token_embd.weight") {
  12585. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12586. new_type = qs.params->token_embedding_type;
  12587. } else {
  12588. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12589. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12590. new_type = GGML_TYPE_Q2_K;
  12591. }
  12592. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12593. new_type = GGML_TYPE_IQ3_S;
  12594. }
  12595. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12596. new_type = GGML_TYPE_IQ3_S;
  12597. }
  12598. }
  12599. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12600. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12601. if (name.find("attn_v.weight") != std::string::npos) {
  12602. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12603. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12604. ++qs.i_attention_wv;
  12605. }
  12606. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12607. new_type = GGML_TYPE_Q4_K;
  12608. }
  12609. else if (name.find("ffn_down") != std::string::npos) {
  12610. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12611. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12612. }
  12613. ++qs.i_ffn_down;
  12614. }
  12615. else if (name.find("attn_output.weight") != std::string::npos) {
  12616. if (qs.model.hparams.n_expert == 8) {
  12617. new_type = GGML_TYPE_Q5_K;
  12618. } else {
  12619. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12620. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12621. }
  12622. }
  12623. } else if (name.find("attn_v.weight") != std::string::npos) {
  12624. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12625. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12626. }
  12627. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12628. new_type = GGML_TYPE_Q4_K;
  12629. }
  12630. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12631. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12632. }
  12633. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12634. new_type = GGML_TYPE_Q4_K;
  12635. }
  12636. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12637. new_type = GGML_TYPE_Q4_K;
  12638. }
  12639. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12640. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12641. }
  12642. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12643. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12644. new_type = GGML_TYPE_Q5_K;
  12645. }
  12646. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12647. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12648. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12649. if (qs.model.type == MODEL_70B) {
  12650. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12651. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12652. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12653. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12654. }
  12655. if (qs.model.hparams.n_expert == 8) {
  12656. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12657. // TODO: explore better strategies
  12658. new_type = GGML_TYPE_Q8_0;
  12659. }
  12660. ++qs.i_attention_wv;
  12661. } else if (name.find("attn_k.weight") != std::string::npos) {
  12662. if (qs.model.hparams.n_expert == 8) {
  12663. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12664. // TODO: explore better strategies
  12665. new_type = GGML_TYPE_Q8_0;
  12666. }
  12667. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12668. new_type = GGML_TYPE_IQ3_XXS;
  12669. }
  12670. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12671. new_type = GGML_TYPE_IQ2_S;
  12672. }
  12673. } else if (name.find("attn_q.weight") != std::string::npos) {
  12674. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12675. new_type = GGML_TYPE_IQ3_XXS;
  12676. }
  12677. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12678. new_type = GGML_TYPE_IQ2_S;
  12679. }
  12680. } else if (name.find("ffn_down") != std::string::npos) {
  12681. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12682. int i_layer = info.first, n_layer = info.second;
  12683. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12684. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12685. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12686. }
  12687. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12688. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12689. }
  12690. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12691. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12692. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12693. : GGML_TYPE_Q3_K;
  12694. }
  12695. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12696. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12697. new_type = GGML_TYPE_Q4_K;
  12698. }
  12699. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12700. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12701. }
  12702. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12703. if (arch == LLM_ARCH_FALCON) {
  12704. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12705. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12706. } else {
  12707. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12708. }
  12709. }
  12710. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12711. new_type = GGML_TYPE_Q5_K;
  12712. }
  12713. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12714. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12715. new_type = GGML_TYPE_Q5_K;
  12716. }
  12717. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12718. && qs.has_imatrix && i_layer < n_layer/8) {
  12719. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12720. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12721. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12722. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12723. }
  12724. ++qs.i_ffn_down;
  12725. } else if (name.find("attn_output.weight") != std::string::npos) {
  12726. if (arch != LLM_ARCH_FALCON) {
  12727. if (qs.model.hparams.n_expert == 8) {
  12728. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12729. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12730. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12731. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12732. new_type = GGML_TYPE_Q5_K;
  12733. }
  12734. } else {
  12735. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12736. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12737. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12738. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12739. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12740. }
  12741. } else {
  12742. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12743. }
  12744. }
  12745. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12746. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12747. new_type = GGML_TYPE_Q4_K;
  12748. }
  12749. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12750. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12751. }
  12752. else if (name.find("ffn_gate") != std::string::npos) {
  12753. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12754. int i_layer = info.first, n_layer = info.second;
  12755. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12756. new_type = GGML_TYPE_IQ3_XXS;
  12757. }
  12758. ++qs.i_ffn_gate;
  12759. }
  12760. else if (name.find("ffn_up") != std::string::npos) {
  12761. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12762. int i_layer = info.first, n_layer = info.second;
  12763. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12764. new_type = GGML_TYPE_IQ3_XXS;
  12765. }
  12766. ++qs.i_ffn_up;
  12767. }
  12768. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12769. //}
  12770. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12771. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12772. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12773. //}
  12774. // This can be used to reduce the size of the Q5_K_S model.
  12775. // The associated PPL increase is fully in line with the size reduction
  12776. //else {
  12777. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12778. //}
  12779. bool convert_incompatible_tensor = false;
  12780. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12781. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12782. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12783. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12784. new_type == GGML_TYPE_IQ1_M) {
  12785. int nx = tensor->ne[0];
  12786. int ny = tensor->ne[1];
  12787. if (nx % QK_K != 0) {
  12788. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12789. convert_incompatible_tensor = true;
  12790. } else {
  12791. ++qs.n_k_quantized;
  12792. }
  12793. }
  12794. if (convert_incompatible_tensor) {
  12795. switch (new_type) {
  12796. case GGML_TYPE_IQ2_XXS:
  12797. case GGML_TYPE_IQ2_XS:
  12798. case GGML_TYPE_IQ2_S:
  12799. case GGML_TYPE_IQ3_XXS:
  12800. case GGML_TYPE_IQ3_S:
  12801. case GGML_TYPE_IQ1_S:
  12802. case GGML_TYPE_IQ1_M:
  12803. case GGML_TYPE_Q2_K:
  12804. case GGML_TYPE_Q3_K:
  12805. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12806. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12807. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12808. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12809. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12810. }
  12811. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12812. ++qs.n_fallback;
  12813. }
  12814. return new_type;
  12815. }
  12816. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12817. if (nthread < 2) {
  12818. // single-thread
  12819. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12820. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12821. throw std::runtime_error("quantized data validation failed");
  12822. }
  12823. return new_size;
  12824. }
  12825. std::mutex mutex;
  12826. int64_t counter = 0;
  12827. size_t new_size = 0;
  12828. bool valid = true;
  12829. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12830. nrows, n_per_row, imatrix]() {
  12831. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12832. size_t local_size = 0;
  12833. while (true) {
  12834. std::unique_lock<std::mutex> lock(mutex);
  12835. int64_t first_row = counter; counter += nrows_per_chunk;
  12836. if (first_row >= nrows) {
  12837. if (local_size > 0) {
  12838. new_size += local_size;
  12839. }
  12840. break;
  12841. }
  12842. lock.unlock();
  12843. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12844. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12845. local_size += this_size;
  12846. // validate the quantized data
  12847. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12848. void * this_data = (char *) new_data + first_row * row_size;
  12849. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12850. std::unique_lock<std::mutex> lock(mutex);
  12851. valid = false;
  12852. break;
  12853. }
  12854. }
  12855. };
  12856. for (int it = 0; it < nthread - 1; ++it) {
  12857. workers.emplace_back(compute);
  12858. }
  12859. compute();
  12860. for (auto & w : workers) { w.join(); }
  12861. workers.clear();
  12862. if (!valid) {
  12863. throw std::runtime_error("quantized data validation failed");
  12864. }
  12865. return new_size;
  12866. }
  12867. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12868. ggml_type default_type;
  12869. llama_ftype ftype = params->ftype;
  12870. switch (params->ftype) {
  12871. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12872. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12873. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12874. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12875. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12876. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12877. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12878. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12879. // K-quants
  12880. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12881. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12882. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12883. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12884. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12885. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12886. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12887. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12888. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12889. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12890. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12891. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12892. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12893. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12894. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12895. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12896. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12897. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12898. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12899. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12900. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12901. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12902. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12903. }
  12904. int nthread = params->nthread;
  12905. if (nthread <= 0) {
  12906. nthread = std::thread::hardware_concurrency();
  12907. }
  12908. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12909. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12910. #if defined(__linux__) || defined(_WIN32)
  12911. constexpr bool use_mmap = true;
  12912. #else
  12913. constexpr bool use_mmap = false;
  12914. #endif
  12915. llama_model_kv_override * kv_overrides = nullptr;
  12916. if (params->kv_overrides) {
  12917. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12918. kv_overrides = v->data();
  12919. }
  12920. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12921. ml.init_mappings(false); // no prefetching
  12922. llama_model model;
  12923. llm_load_arch(ml, model);
  12924. llm_load_hparams(ml, model);
  12925. struct quantize_state_internal qs(model, params);
  12926. if (params->only_copy) {
  12927. ftype = model.ftype;
  12928. }
  12929. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12930. if (params->imatrix) {
  12931. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12932. if (imatrix_data) {
  12933. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12934. qs.has_imatrix = true;
  12935. // check imatrix for nans or infs
  12936. for (const auto & kv : *imatrix_data) {
  12937. for (float f : kv.second) {
  12938. if (!std::isfinite(f)) {
  12939. throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
  12940. }
  12941. }
  12942. }
  12943. }
  12944. }
  12945. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12946. struct gguf_context * ctx_out = gguf_init_empty();
  12947. // copy the KV pairs from the input file
  12948. gguf_set_kv (ctx_out, ml.meta);
  12949. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12950. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12951. // Remove split metadata
  12952. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12953. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12954. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12955. if (params->kv_overrides) {
  12956. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12957. for (auto & o : overrides) {
  12958. if (o.key[0] == 0) break;
  12959. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12960. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12961. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12962. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12963. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12964. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12965. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12966. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12967. } else {
  12968. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12969. }
  12970. }
  12971. }
  12972. for (int i = 0; i < ml.n_tensors; ++i) {
  12973. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12974. const std::string name = ggml_get_name(meta);
  12975. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12976. if (name.find("attn_v.weight") != std::string::npos ||
  12977. name.find("attn_qkv.weight") != std::string::npos) {
  12978. ++qs.n_attention_wv;
  12979. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12980. qs.has_output = true;
  12981. }
  12982. }
  12983. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12984. // sanity checks
  12985. //
  12986. // - qs.n_attention_wv == 0 for Mamba models
  12987. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12988. //
  12989. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12990. size_t total_size_org = 0;
  12991. size_t total_size_new = 0;
  12992. std::vector<std::thread> workers;
  12993. workers.reserve(nthread);
  12994. int idx = 0;
  12995. std::vector<no_init<uint8_t>> read_data;
  12996. std::vector<no_init<uint8_t>> work;
  12997. std::vector<no_init<float>> f32_conv_buf;
  12998. uint16_t n_split = 1;
  12999. // Assume split index is continuous
  13000. if (params->keep_split) {
  13001. for (int i = 0; i < ml.n_tensors; ++i) {
  13002. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  13003. }
  13004. }
  13005. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  13006. ctx_outs[0] = ctx_out;
  13007. // populate the original tensors so we get an initial meta data
  13008. for (int i = 0; i < ml.n_tensors; ++i) {
  13009. auto weight = ml.get_weight(i);
  13010. uint16_t i_split = params->keep_split ? weight->idx : 0;
  13011. struct ggml_tensor * tensor = weight->tensor;
  13012. if (ctx_outs[i_split] == NULL) {
  13013. ctx_outs[i_split] = gguf_init_empty();
  13014. }
  13015. gguf_add_tensor(ctx_outs[i_split], tensor);
  13016. }
  13017. // Set split info if needed
  13018. if (n_split > 1) {
  13019. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  13020. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  13021. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  13022. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  13023. }
  13024. }
  13025. int cur_split = -1;
  13026. std::ofstream fout;
  13027. auto close_ofstream = [&]() {
  13028. // Write metadata and close file handler
  13029. if (fout.is_open()) {
  13030. fout.seekp(0);
  13031. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  13032. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  13033. fout.write((const char *) data.data(), data.size());
  13034. fout.close();
  13035. }
  13036. };
  13037. auto new_ofstream = [&](int index) {
  13038. cur_split = index;
  13039. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  13040. std::string fname = fname_out;
  13041. if (params->keep_split) {
  13042. char split_path[PATH_MAX] = {0};
  13043. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  13044. fname = std::string(split_path);
  13045. }
  13046. fout = std::ofstream(fname, std::ios::binary);
  13047. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  13048. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  13049. // placeholder for the meta data
  13050. ::zeros(fout, meta_size);
  13051. };
  13052. const auto tn = LLM_TN(model.arch);
  13053. new_ofstream(0);
  13054. for (int i = 0; i < ml.n_tensors; ++i) {
  13055. auto weight = ml.get_weight(i);
  13056. struct ggml_tensor * tensor = weight->tensor;
  13057. if (weight->idx != cur_split && params->keep_split) {
  13058. close_ofstream();
  13059. new_ofstream(weight->idx);
  13060. }
  13061. const std::string name = ggml_get_name(tensor);
  13062. if (!ml.use_mmap) {
  13063. if (read_data.size() < ggml_nbytes(tensor)) {
  13064. read_data.resize(ggml_nbytes(tensor));
  13065. }
  13066. tensor->data = read_data.data();
  13067. }
  13068. ml.load_data_for(tensor);
  13069. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  13070. ++idx, ml.n_tensors,
  13071. ggml_get_name(tensor),
  13072. llama_format_tensor_shape(tensor).c_str(),
  13073. ggml_type_name(tensor->type));
  13074. // This used to be a regex, but <regex> has an extreme cost to compile times.
  13075. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  13076. // quantize only 2D and 3D tensors (experts)
  13077. quantize &= (ggml_n_dims(tensor) >= 2);
  13078. // do not quantize norm tensors
  13079. quantize &= name.find("_norm.weight") == std::string::npos;
  13080. quantize &= params->quantize_output_tensor || name != "output.weight";
  13081. quantize &= !params->only_copy;
  13082. // do not quantize expert gating tensors
  13083. // NOTE: can't use LLM_TN here because the layer number is not known
  13084. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  13085. // do not quantize positional embeddings and token types (BERT)
  13086. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  13087. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  13088. // do not quantize Mamba's small yet 2D weights
  13089. // NOTE: can't use LLM_TN here because the layer number is not known
  13090. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  13091. quantize &= name.find("ssm_x.weight") == std::string::npos;
  13092. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  13093. enum ggml_type new_type;
  13094. void * new_data;
  13095. size_t new_size;
  13096. if (quantize) {
  13097. new_type = default_type;
  13098. // get more optimal quantization type based on the tensor shape, layer, etc.
  13099. if (!params->pure && ggml_is_quantized(default_type)) {
  13100. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  13101. }
  13102. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  13103. new_type = params->token_embedding_type;
  13104. }
  13105. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  13106. new_type = params->output_tensor_type;
  13107. }
  13108. // If we've decided to quantize to the same type the tensor is already
  13109. // in then there's nothing to do.
  13110. quantize = tensor->type != new_type;
  13111. }
  13112. if (!quantize) {
  13113. new_type = tensor->type;
  13114. new_data = tensor->data;
  13115. new_size = ggml_nbytes(tensor);
  13116. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  13117. } else {
  13118. const int64_t nelements = ggml_nelements(tensor);
  13119. const float * imatrix = nullptr;
  13120. if (imatrix_data) {
  13121. auto it = imatrix_data->find(tensor->name);
  13122. if (it == imatrix_data->end()) {
  13123. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  13124. } else {
  13125. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  13126. imatrix = it->second.data();
  13127. } else {
  13128. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  13129. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  13130. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  13131. // this is a significant error and it may be good idea to abort the process if this happens,
  13132. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  13133. // tok_embd should be ignored in this case, since it always causes this warning
  13134. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  13135. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  13136. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  13137. }
  13138. }
  13139. }
  13140. }
  13141. if ((new_type == GGML_TYPE_IQ2_XXS ||
  13142. new_type == GGML_TYPE_IQ2_XS ||
  13143. new_type == GGML_TYPE_IQ2_S ||
  13144. new_type == GGML_TYPE_IQ1_S ||
  13145. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  13146. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  13147. LLAMA_LOG_ERROR("\n\n============================================================\n");
  13148. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  13149. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  13150. LLAMA_LOG_ERROR("============================================================\n\n");
  13151. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  13152. }
  13153. float * f32_data;
  13154. if (tensor->type == GGML_TYPE_F32) {
  13155. f32_data = (float *) tensor->data;
  13156. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  13157. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  13158. } else {
  13159. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  13160. f32_data = (float *) f32_conv_buf.data();
  13161. }
  13162. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  13163. fflush(stdout);
  13164. if (work.size() < (size_t)nelements * 4) {
  13165. work.resize(nelements * 4); // upper bound on size
  13166. }
  13167. new_data = work.data();
  13168. const int64_t n_per_row = tensor->ne[0];
  13169. const int64_t nrows = tensor->ne[1];
  13170. static const int64_t min_chunk_size = 32 * 512;
  13171. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  13172. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  13173. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  13174. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  13175. // quantize each expert separately since they have different importance matrices
  13176. new_size = 0;
  13177. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  13178. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  13179. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  13180. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  13181. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  13182. }
  13183. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  13184. }
  13185. total_size_org += ggml_nbytes(tensor);
  13186. total_size_new += new_size;
  13187. // update the gguf meta data as we go
  13188. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  13189. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  13190. // write tensor data + padding
  13191. fout.write((const char *) new_data, new_size);
  13192. zeros(fout, GGML_PAD(new_size, align) - new_size);
  13193. }
  13194. close_ofstream();
  13195. for (auto & c:ctx_outs) {
  13196. gguf_free(c);
  13197. }
  13198. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  13199. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  13200. if (qs.n_fallback > 0) {
  13201. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  13202. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  13203. }
  13204. }
  13205. static int llama_apply_lora_from_file_internal(
  13206. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  13207. ) {
  13208. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  13209. const int64_t t_start_lora_us = ggml_time_us();
  13210. llama_file fin(path_lora, "rb");
  13211. // verify magic and version
  13212. {
  13213. uint32_t magic = fin.read_u32();
  13214. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  13215. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  13216. return 1;
  13217. }
  13218. uint32_t format_version = fin.read_u32();
  13219. if (format_version != 1) {
  13220. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  13221. return 1;
  13222. }
  13223. }
  13224. int32_t lora_r = fin.read_u32();
  13225. int32_t lora_alpha = fin.read_u32();
  13226. float scaling = scale * (float)lora_alpha / (float)lora_r;
  13227. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  13228. // load base model
  13229. std::unique_ptr<llama_model_loader> ml;
  13230. if (path_base_model) {
  13231. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  13232. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  13233. ml->init_mappings(/*prefetch*/ false); // no prefetching
  13234. }
  13235. struct tensor_meta {
  13236. std::string name;
  13237. ggml_type type;
  13238. int32_t ne[2];
  13239. size_t offset;
  13240. };
  13241. std::map<std::string, tensor_meta> tensor_meta_map;
  13242. // load all tensor meta
  13243. while (true) {
  13244. if (fin.tell() == fin.size) {
  13245. // eof
  13246. break;
  13247. }
  13248. int32_t n_dims;
  13249. int32_t name_len;
  13250. int32_t ftype;
  13251. fin.read_raw(&n_dims, sizeof(n_dims));
  13252. fin.read_raw(&name_len, sizeof(name_len));
  13253. fin.read_raw(&ftype, sizeof(ftype));
  13254. if (n_dims != 1 && n_dims != 2) {
  13255. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  13256. return 1;
  13257. }
  13258. int32_t ne[2] = { 1, 1 };
  13259. for (int i = 0; i < n_dims; ++i) {
  13260. fin.read_raw(&ne[i], sizeof(ne[i]));
  13261. }
  13262. std::string name;
  13263. {
  13264. GGML_ASSERT(name_len < GGML_MAX_NAME);
  13265. char buf[GGML_MAX_NAME];
  13266. fin.read_raw(buf, name_len);
  13267. name = std::string(buf, name_len);
  13268. }
  13269. // check for lora suffix
  13270. std::string lora_suffix;
  13271. if (name.length() > 6) {
  13272. lora_suffix = name.substr(name.length() - 6);
  13273. }
  13274. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  13275. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  13276. return 1;
  13277. }
  13278. // tensor type
  13279. ggml_type wtype;
  13280. switch (ftype) {
  13281. case 0: wtype = GGML_TYPE_F32; break;
  13282. case 1: wtype = GGML_TYPE_F16; break;
  13283. default:
  13284. {
  13285. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13286. __func__, ftype);
  13287. return 1;
  13288. }
  13289. }
  13290. // data offset
  13291. size_t offset = fin.tell();
  13292. offset = (offset + 31) & -32;
  13293. // skip tensor data
  13294. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13295. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13296. }
  13297. bool warned = false;
  13298. int n_tensors = 0;
  13299. // apply
  13300. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13301. if (backend_cpu == nullptr) {
  13302. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13303. return 1;
  13304. }
  13305. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13306. std::vector<no_init<uint8_t>> read_buf;
  13307. for (const auto & it : model.tensors_by_name) {
  13308. const std::string & base_name = it.first;
  13309. ggml_tensor * model_t = it.second;
  13310. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13311. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13312. continue;
  13313. }
  13314. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13315. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13316. ggml_init_params lora_init_params = {
  13317. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13318. /* .mem_buffer */ nullptr,
  13319. /* .no_alloc */ true,
  13320. };
  13321. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13322. if (lora_ctx == nullptr) {
  13323. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13324. ggml_backend_free(backend_cpu);
  13325. return 1;
  13326. }
  13327. // create tensors
  13328. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13329. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13330. ggml_set_name(loraA, metaA.name.c_str());
  13331. ggml_set_name(loraB, metaB.name.c_str());
  13332. ggml_tensor * base_t;
  13333. if (ml) {
  13334. if (!ml->get_tensor_meta(base_name.c_str())) {
  13335. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13336. return 1;
  13337. }
  13338. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13339. } else {
  13340. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13341. }
  13342. ggml_set_name(base_t, base_name.c_str());
  13343. // allocate in backend buffer
  13344. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13345. if (lora_buf == nullptr) {
  13346. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13347. return 1;
  13348. }
  13349. // load tensor data
  13350. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13351. read_buf.resize(ggml_nbytes(tensor));
  13352. fin.seek(tensor_meta.offset, SEEK_SET);
  13353. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13354. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13355. };
  13356. load_tensor(metaA, loraA);
  13357. load_tensor(metaB, loraB);
  13358. // load base model tensor data
  13359. if (ml) {
  13360. ml->load_data_for(base_t);
  13361. } else {
  13362. ggml_backend_tensor_copy(model_t, base_t);
  13363. }
  13364. if (ggml_is_quantized(base_t->type) && !warned) {
  13365. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13366. "use a f16 or f32 base model with --lora-base\n", __func__);
  13367. warned = true;
  13368. }
  13369. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13370. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13371. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13372. ggml_free(lora_ctx);
  13373. ggml_backend_buffer_free(lora_buf);
  13374. ggml_backend_free(backend_cpu);
  13375. return 1;
  13376. }
  13377. auto build_lora_graph = [&]() {
  13378. // w = w + BA*s
  13379. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13380. ggml_set_name(BA, "BA");
  13381. if (scaling != 1.0f) {
  13382. BA = ggml_scale(lora_ctx, BA, scaling);
  13383. ggml_set_name(BA, "BA_scaled");
  13384. }
  13385. ggml_tensor * r;
  13386. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13387. ggml_set_name(r, "r_add");
  13388. if (base_t->type != model_t->type) {
  13389. // convert the result to the model type
  13390. r = ggml_cast(lora_ctx, r, model_t->type);
  13391. ggml_set_name(r, "r_cast");
  13392. }
  13393. return r;
  13394. };
  13395. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13396. ggml_tensor * r = build_lora_graph();
  13397. ggml_build_forward_expand(gf, r);
  13398. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13399. if (graph_buf == nullptr) {
  13400. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13401. ggml_free(lora_ctx);
  13402. ggml_backend_buffer_free(lora_buf);
  13403. ggml_backend_free(backend_cpu);
  13404. return 1;
  13405. }
  13406. ggml_backend_graph_compute(backend_cpu, gf);
  13407. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13408. #if 0
  13409. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13410. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13411. // sched compute
  13412. ggml_build_forward_expand(gf, build_graph());
  13413. ggml_backend_sched_init_measure(sched, gf);
  13414. // create the graph again, since the previous one was destroyed by the measure
  13415. ggml_graph_clear(gf);
  13416. ggml_build_forward_expand(gf, build_graph());
  13417. ggml_backend_sched_graph_compute(sched, gf);
  13418. ggml_backend_sched_free(sched);
  13419. #endif
  13420. ggml_backend_buffer_free(lora_buf);
  13421. ggml_backend_buffer_free(graph_buf);
  13422. ggml_free(lora_ctx);
  13423. n_tensors++;
  13424. if (n_tensors % 4 == 0) {
  13425. LLAMA_LOG_INFO(".");
  13426. }
  13427. }
  13428. ggml_backend_free(backend_cpu);
  13429. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13430. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13431. return 0;
  13432. }
  13433. //
  13434. // interface implementation
  13435. //
  13436. struct llama_model_params llama_model_default_params() {
  13437. struct llama_model_params result = {
  13438. /*.n_gpu_layers =*/ 0,
  13439. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13440. /*.main_gpu =*/ 0,
  13441. /*.tensor_split =*/ nullptr,
  13442. /*.rpc_servers =*/ nullptr,
  13443. /*.progress_callback =*/ nullptr,
  13444. /*.progress_callback_user_data =*/ nullptr,
  13445. /*.kv_overrides =*/ nullptr,
  13446. /*.vocab_only =*/ false,
  13447. /*.use_mmap =*/ true,
  13448. /*.use_mlock =*/ false,
  13449. /*.check_tensors =*/ false,
  13450. };
  13451. #ifdef GGML_USE_METAL
  13452. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13453. result.n_gpu_layers = 999;
  13454. #endif
  13455. return result;
  13456. }
  13457. struct llama_context_params llama_context_default_params() {
  13458. struct llama_context_params result = {
  13459. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13460. /*.n_ctx =*/ 512,
  13461. /*.n_batch =*/ 2048,
  13462. /*.n_ubatch =*/ 512,
  13463. /*.n_seq_max =*/ 1,
  13464. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13465. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13466. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13467. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13468. /*.rope_freq_base =*/ 0.0f,
  13469. /*.rope_freq_scale =*/ 0.0f,
  13470. /*.yarn_ext_factor =*/ -1.0f,
  13471. /*.yarn_attn_factor =*/ 1.0f,
  13472. /*.yarn_beta_fast =*/ 32.0f,
  13473. /*.yarn_beta_slow =*/ 1.0f,
  13474. /*.yarn_orig_ctx =*/ 0,
  13475. /*.defrag_thold =*/ -1.0f,
  13476. /*.cb_eval =*/ nullptr,
  13477. /*.cb_eval_user_data =*/ nullptr,
  13478. /*.type_k =*/ GGML_TYPE_F16,
  13479. /*.type_v =*/ GGML_TYPE_F16,
  13480. /*.logits_all =*/ false,
  13481. /*.embeddings =*/ false,
  13482. /*.offload_kqv =*/ true,
  13483. /*.flash_attn =*/ false,
  13484. /*.abort_callback =*/ nullptr,
  13485. /*.abort_callback_data =*/ nullptr,
  13486. };
  13487. return result;
  13488. }
  13489. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13490. struct llama_model_quantize_params result = {
  13491. /*.nthread =*/ 0,
  13492. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13493. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13494. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13495. /*.allow_requantize =*/ false,
  13496. /*.quantize_output_tensor =*/ true,
  13497. /*.only_copy =*/ false,
  13498. /*.pure =*/ false,
  13499. /*.keep_split =*/ false,
  13500. /*.imatrix =*/ nullptr,
  13501. /*.kv_overrides =*/ nullptr,
  13502. };
  13503. return result;
  13504. }
  13505. size_t llama_max_devices(void) {
  13506. #if defined(GGML_USE_RPC)
  13507. return GGML_RPC_MAX_SERVERS;
  13508. #elif defined(GGML_USE_METAL)
  13509. return 1;
  13510. #elif defined(GGML_USE_CUDA)
  13511. return GGML_CUDA_MAX_DEVICES;
  13512. #elif defined(GGML_USE_SYCL)
  13513. return GGML_SYCL_MAX_DEVICES;
  13514. #elif defined(GGML_USE_VULKAN)
  13515. return GGML_VK_MAX_DEVICES;
  13516. #else
  13517. return 1;
  13518. #endif
  13519. }
  13520. bool llama_supports_mmap(void) {
  13521. return llama_mmap::SUPPORTED;
  13522. }
  13523. bool llama_supports_mlock(void) {
  13524. return llama_mlock::SUPPORTED;
  13525. }
  13526. bool llama_supports_gpu_offload(void) {
  13527. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13528. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13529. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13530. return true;
  13531. #else
  13532. return false;
  13533. #endif
  13534. }
  13535. void llama_backend_init(void) {
  13536. ggml_time_init();
  13537. // needed to initialize f16 tables
  13538. {
  13539. struct ggml_init_params params = { 0, NULL, false };
  13540. struct ggml_context * ctx = ggml_init(params);
  13541. ggml_free(ctx);
  13542. }
  13543. }
  13544. void llama_numa_init(enum ggml_numa_strategy numa) {
  13545. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13546. ggml_numa_init(numa);
  13547. }
  13548. }
  13549. void llama_backend_free(void) {
  13550. ggml_quantize_free();
  13551. }
  13552. int64_t llama_time_us(void) {
  13553. return ggml_time_us();
  13554. }
  13555. struct llama_model * llama_load_model_from_file(
  13556. const char * path_model,
  13557. struct llama_model_params params) {
  13558. ggml_time_init();
  13559. llama_model * model = new llama_model;
  13560. unsigned cur_percentage = 0;
  13561. if (params.progress_callback == NULL) {
  13562. params.progress_callback_user_data = &cur_percentage;
  13563. params.progress_callback = [](float progress, void * ctx) {
  13564. unsigned * cur_percentage_p = (unsigned *) ctx;
  13565. unsigned percentage = (unsigned) (100 * progress);
  13566. while (percentage > *cur_percentage_p) {
  13567. *cur_percentage_p = percentage;
  13568. LLAMA_LOG_INFO(".");
  13569. if (percentage >= 100) {
  13570. LLAMA_LOG_INFO("\n");
  13571. }
  13572. }
  13573. return true;
  13574. };
  13575. }
  13576. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  13577. // split the servers set them into model->rpc_servers
  13578. std::string servers(params.rpc_servers);
  13579. size_t pos = 0;
  13580. while ((pos = servers.find(",")) != std::string::npos) {
  13581. std::string server = servers.substr(0, pos);
  13582. model->rpc_servers.push_back(server);
  13583. servers.erase(0, pos + 1);
  13584. }
  13585. model->rpc_servers.push_back(servers);
  13586. }
  13587. int status = llama_model_load(path_model, *model, params);
  13588. GGML_ASSERT(status <= 0);
  13589. if (status < 0) {
  13590. if (status == -1) {
  13591. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13592. } else if (status == -2) {
  13593. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13594. }
  13595. delete model;
  13596. return nullptr;
  13597. }
  13598. return model;
  13599. }
  13600. void llama_free_model(struct llama_model * model) {
  13601. delete model;
  13602. }
  13603. struct llama_context * llama_new_context_with_model(
  13604. struct llama_model * model,
  13605. struct llama_context_params params) {
  13606. if (!model) {
  13607. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13608. return nullptr;
  13609. }
  13610. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13611. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13612. return nullptr;
  13613. }
  13614. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13615. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13616. return nullptr;
  13617. }
  13618. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13619. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13620. params.flash_attn = false;
  13621. }
  13622. if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
  13623. LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
  13624. params.flash_attn = false;
  13625. }
  13626. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  13627. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  13628. return nullptr;
  13629. }
  13630. llama_context * ctx = new llama_context(*model);
  13631. const auto & hparams = model->hparams;
  13632. auto & cparams = ctx->cparams;
  13633. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13634. cparams.n_threads = params.n_threads;
  13635. cparams.n_threads_batch = params.n_threads_batch;
  13636. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13637. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13638. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13639. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13640. cparams.defrag_thold = params.defrag_thold;
  13641. cparams.embeddings = params.embeddings;
  13642. cparams.offload_kqv = params.offload_kqv;
  13643. cparams.flash_attn = params.flash_attn;
  13644. cparams.pooling_type = params.pooling_type;
  13645. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13646. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13647. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13648. // this is necessary due to kv_self.n being padded later during inference
  13649. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13650. // with causal attention, the batch size is limited by the context size
  13651. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13652. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13653. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13654. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13655. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13656. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13657. cparams.n_batch = GGML_KQ_MASK_PAD;
  13658. }
  13659. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13660. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13661. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  13662. hparams.n_ctx_train;
  13663. cparams.cb_eval = params.cb_eval;
  13664. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13665. auto rope_scaling_type = params.rope_scaling_type;
  13666. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13667. rope_scaling_type = hparams.rope_scaling_type_train;
  13668. }
  13669. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13670. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13671. }
  13672. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13673. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13674. }
  13675. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13676. cparams.causal_attn = hparams.causal_attn;
  13677. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13678. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13679. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13680. } else {
  13681. cparams.pooling_type = hparams.pooling_type;
  13682. }
  13683. }
  13684. if (params.seed == LLAMA_DEFAULT_SEED) {
  13685. params.seed = time(NULL);
  13686. }
  13687. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13688. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13689. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13690. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13691. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13692. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13693. ctx->abort_callback = params.abort_callback;
  13694. ctx->abort_callback_data = params.abort_callback_data;
  13695. ctx->rng = std::mt19937(params.seed);
  13696. ctx->logits_all = params.logits_all;
  13697. uint32_t kv_size = cparams.n_ctx;
  13698. ggml_type type_k = params.type_k;
  13699. ggml_type type_v = params.type_v;
  13700. // Mamba only needs a constant number of KV cache cells per sequence
  13701. if (model->arch == LLM_ARCH_MAMBA) {
  13702. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13703. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13704. // it's probably best to keep as much precision as possible for the states
  13705. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13706. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13707. }
  13708. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13709. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13710. if (!hparams.vocab_only) {
  13711. // initialize backends
  13712. #if defined(GGML_USE_METAL)
  13713. if (model->n_gpu_layers > 0) {
  13714. ctx->backend_metal = ggml_backend_metal_init();
  13715. if (ctx->backend_metal == nullptr) {
  13716. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13717. llama_free(ctx);
  13718. return nullptr;
  13719. }
  13720. ctx->backends.push_back(ctx->backend_metal);
  13721. }
  13722. #elif defined(GGML_USE_CUDA)
  13723. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13724. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13725. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13726. if (backend == nullptr) {
  13727. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13728. llama_free(ctx);
  13729. return nullptr;
  13730. }
  13731. ctx->backends.push_back(backend);
  13732. } else {
  13733. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13734. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13735. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13736. if (backend == nullptr) {
  13737. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13738. llama_free(ctx);
  13739. return nullptr;
  13740. }
  13741. ctx->backends.push_back(backend);
  13742. }
  13743. }
  13744. #elif defined(GGML_USE_VULKAN)
  13745. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13746. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13747. llama_free(ctx);
  13748. return nullptr;
  13749. }
  13750. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13751. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  13752. if (backend == nullptr) {
  13753. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13754. llama_free(ctx);
  13755. return nullptr;
  13756. }
  13757. ctx->backends.push_back(backend);
  13758. } else {
  13759. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13760. ggml_backend_t backend = ggml_backend_vk_init(device);
  13761. if (backend == nullptr) {
  13762. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13763. llama_free(ctx);
  13764. return nullptr;
  13765. }
  13766. ctx->backends.push_back(backend);
  13767. }
  13768. }
  13769. #elif defined(GGML_USE_SYCL)
  13770. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13771. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13772. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13773. if (backend == nullptr) {
  13774. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  13775. llama_free(ctx);
  13776. return nullptr;
  13777. }
  13778. ctx->backends.push_back(backend);
  13779. } else {
  13780. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13781. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13782. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13783. if (backend == nullptr) {
  13784. int id_list[GGML_SYCL_MAX_DEVICES];
  13785. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13786. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13787. llama_free(ctx);
  13788. return nullptr;
  13789. }
  13790. ctx->backends.push_back(backend);
  13791. }
  13792. }
  13793. #elif defined(GGML_USE_KOMPUTE)
  13794. if (model->n_gpu_layers > 0) {
  13795. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13796. if (backend == nullptr) {
  13797. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13798. llama_free(ctx);
  13799. return nullptr;
  13800. }
  13801. ctx->backends.push_back(backend);
  13802. }
  13803. #endif
  13804. #ifdef GGML_USE_BLAS
  13805. ctx->backend_blas = ggml_backend_blas_init();
  13806. if (ctx->backend_blas == nullptr) {
  13807. LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
  13808. } else {
  13809. ctx->backends.push_back(ctx->backend_blas);
  13810. }
  13811. #endif
  13812. #if defined(GGML_USE_RPC)
  13813. if (model->n_gpu_layers > 0) {
  13814. for (const auto & endpoint : model->rpc_servers) {
  13815. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  13816. if (backend == nullptr) {
  13817. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  13818. llama_free(ctx);
  13819. return nullptr;
  13820. }
  13821. ctx->backends.push_back(backend);
  13822. }
  13823. }
  13824. #endif
  13825. ctx->backend_cpu = ggml_backend_cpu_init();
  13826. if (ctx->backend_cpu == nullptr) {
  13827. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13828. llama_free(ctx);
  13829. return nullptr;
  13830. }
  13831. ctx->backends.push_back(ctx->backend_cpu);
  13832. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13833. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13834. llama_free(ctx);
  13835. return nullptr;
  13836. }
  13837. {
  13838. size_t memory_size_k = 0;
  13839. size_t memory_size_v = 0;
  13840. for (auto & k : ctx->kv_self.k_l) {
  13841. memory_size_k += ggml_nbytes(k);
  13842. }
  13843. for (auto & v : ctx->kv_self.v_l) {
  13844. memory_size_v += ggml_nbytes(v);
  13845. }
  13846. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13847. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13848. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13849. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13850. }
  13851. // graph outputs buffer
  13852. {
  13853. // resized during inference when a batch uses more outputs
  13854. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13855. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13856. llama_free(ctx);
  13857. return nullptr;
  13858. }
  13859. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13860. ggml_backend_buffer_name(ctx->buf_output),
  13861. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13862. }
  13863. // scheduler and compute buffers
  13864. {
  13865. // buffer types used for the compute buffer of each backend
  13866. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13867. for (auto * backend : ctx->backends) {
  13868. if (ggml_backend_is_cpu(backend)) {
  13869. // use host buffers for the CPU backend compute buffer
  13870. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13871. } else {
  13872. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13873. }
  13874. }
  13875. // buffer used to store the computation graph and the tensor meta data
  13876. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13877. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13878. bool pipeline_parallel =
  13879. llama_get_device_count(*model) > 1 &&
  13880. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13881. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13882. params.offload_kqv;
  13883. #ifndef GGML_USE_CUDA
  13884. // pipeline parallelism requires support for async compute and events
  13885. // currently this is only implemented in the CUDA backend
  13886. pipeline_parallel = false;
  13887. #endif
  13888. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13889. if (pipeline_parallel) {
  13890. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13891. }
  13892. // build worst-case graph
  13893. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13894. int n_past = cparams.n_ctx - n_tokens;
  13895. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13896. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13897. // initialize scheduler with the worst-case graph
  13898. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13899. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13900. llama_free(ctx);
  13901. return nullptr;
  13902. }
  13903. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13904. ggml_backend_t backend = ctx->backends[i];
  13905. ggml_backend_buffer_type_t buft = backend_buft[i];
  13906. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13907. if (size > 1) {
  13908. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13909. ggml_backend_buft_name(buft),
  13910. size / 1024.0 / 1024.0);
  13911. }
  13912. }
  13913. // note: the number of splits during measure is higher than during inference due to the kv shift
  13914. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13915. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13916. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13917. }
  13918. }
  13919. return ctx;
  13920. }
  13921. void llama_free(struct llama_context * ctx) {
  13922. delete ctx;
  13923. }
  13924. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13925. return &ctx->model;
  13926. }
  13927. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13928. return ctx->cparams.n_ctx;
  13929. }
  13930. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13931. return ctx->cparams.n_batch;
  13932. }
  13933. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13934. return ctx->cparams.n_ubatch;
  13935. }
  13936. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13937. return ctx->kv_self.size;
  13938. }
  13939. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13940. return model->vocab.type;
  13941. }
  13942. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13943. switch (model->arch) {
  13944. // these models do not use RoPE
  13945. case LLM_ARCH_GPT2:
  13946. case LLM_ARCH_GPTJ:
  13947. case LLM_ARCH_MPT:
  13948. case LLM_ARCH_REFACT:
  13949. case LLM_ARCH_BLOOM:
  13950. case LLM_ARCH_MAMBA:
  13951. case LLM_ARCH_JINA_BERT_V2:
  13952. return LLAMA_ROPE_TYPE_NONE;
  13953. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13954. case LLM_ARCH_LLAMA:
  13955. case LLM_ARCH_BAICHUAN:
  13956. case LLM_ARCH_STARCODER:
  13957. case LLM_ARCH_PLAMO:
  13958. case LLM_ARCH_CODESHELL:
  13959. case LLM_ARCH_ORION:
  13960. case LLM_ARCH_INTERNLM2:
  13961. case LLM_ARCH_MINICPM:
  13962. case LLM_ARCH_XVERSE:
  13963. case LLM_ARCH_COMMAND_R:
  13964. case LLM_ARCH_OLMO:
  13965. case LLM_ARCH_ARCTIC:
  13966. case LLM_ARCH_DEEPSEEK2:
  13967. return LLAMA_ROPE_TYPE_NORM;
  13968. // the pairs of head values are offset by n_rot/2
  13969. case LLM_ARCH_FALCON:
  13970. case LLM_ARCH_GROK:
  13971. case LLM_ARCH_DBRX:
  13972. case LLM_ARCH_BERT:
  13973. case LLM_ARCH_NOMIC_BERT:
  13974. case LLM_ARCH_STABLELM:
  13975. case LLM_ARCH_QWEN:
  13976. case LLM_ARCH_QWEN2:
  13977. case LLM_ARCH_QWEN2MOE:
  13978. case LLM_ARCH_PHI2:
  13979. case LLM_ARCH_PHI3:
  13980. case LLM_ARCH_GEMMA:
  13981. case LLM_ARCH_STARCODER2:
  13982. case LLM_ARCH_GPTNEOX:
  13983. return LLAMA_ROPE_TYPE_NEOX;
  13984. // all model arches should be listed explicitly here
  13985. case LLM_ARCH_UNKNOWN:
  13986. GGML_ASSERT(false && "unknown architecture");
  13987. break;
  13988. }
  13989. return LLAMA_ROPE_TYPE_NONE;
  13990. }
  13991. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13992. return ctx->cparams.pooling_type;
  13993. }
  13994. int32_t llama_n_vocab(const struct llama_model * model) {
  13995. return model->hparams.n_vocab;
  13996. }
  13997. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13998. return model->hparams.n_ctx_train;
  13999. }
  14000. int32_t llama_n_embd(const struct llama_model * model) {
  14001. return model->hparams.n_embd;
  14002. }
  14003. int32_t llama_n_layer(const struct llama_model * model) {
  14004. return model->hparams.n_layer;
  14005. }
  14006. float llama_rope_freq_scale_train(const struct llama_model * model) {
  14007. return model->hparams.rope_freq_scale_train;
  14008. }
  14009. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  14010. const auto & it = model->gguf_kv.find(key);
  14011. if (it == model->gguf_kv.end()) {
  14012. if (buf_size > 0) {
  14013. buf[0] = '\0';
  14014. }
  14015. return -1;
  14016. }
  14017. return snprintf(buf, buf_size, "%s", it->second.c_str());
  14018. }
  14019. int32_t llama_model_meta_count(const struct llama_model * model) {
  14020. return (int)model->gguf_kv.size();
  14021. }
  14022. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  14023. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  14024. if (buf_size > 0) {
  14025. buf[0] = '\0';
  14026. }
  14027. return -1;
  14028. }
  14029. auto it = model->gguf_kv.begin();
  14030. std::advance(it, i);
  14031. return snprintf(buf, buf_size, "%s", it->first.c_str());
  14032. }
  14033. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  14034. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  14035. if (buf_size > 0) {
  14036. buf[0] = '\0';
  14037. }
  14038. return -1;
  14039. }
  14040. auto it = model->gguf_kv.begin();
  14041. std::advance(it, i);
  14042. return snprintf(buf, buf_size, "%s", it->second.c_str());
  14043. }
  14044. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  14045. return snprintf(buf, buf_size, "%s %s %s",
  14046. llama_model_arch_name(model->arch),
  14047. llama_model_type_name(model->type),
  14048. llama_model_ftype_name(model->ftype).c_str());
  14049. }
  14050. uint64_t llama_model_size(const struct llama_model * model) {
  14051. uint64_t size = 0;
  14052. for (const auto & it : model->tensors_by_name) {
  14053. size += ggml_nbytes(it.second);
  14054. }
  14055. return size;
  14056. }
  14057. uint64_t llama_model_n_params(const struct llama_model * model) {
  14058. uint64_t nparams = 0;
  14059. for (const auto & it : model->tensors_by_name) {
  14060. nparams += ggml_nelements(it.second);
  14061. }
  14062. return nparams;
  14063. }
  14064. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  14065. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  14066. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  14067. return it.first == name;
  14068. });
  14069. if (it == model->tensors_by_name.end()) {
  14070. return nullptr;
  14071. }
  14072. return it->second;
  14073. }
  14074. uint32_t llama_model_quantize(
  14075. const char * fname_inp,
  14076. const char * fname_out,
  14077. const llama_model_quantize_params * params) {
  14078. try {
  14079. llama_model_quantize_internal(fname_inp, fname_out, params);
  14080. return 0;
  14081. } catch (const std::exception & err) {
  14082. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  14083. return 1;
  14084. }
  14085. }
  14086. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  14087. try {
  14088. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  14089. } catch (const std::exception & err) {
  14090. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  14091. return 1;
  14092. }
  14093. }
  14094. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  14095. GGML_ASSERT(cvec.tensors.empty());
  14096. GGML_ASSERT(cvec.ctxs.empty());
  14097. GGML_ASSERT(cvec.bufs.empty());
  14098. // count layer buffer types
  14099. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  14100. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  14101. buft_layer_count[model.buft_layer[i].buft]++;
  14102. }
  14103. // allocate contexts
  14104. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  14105. for (auto & it : buft_layer_count) {
  14106. int n_layers = it.second;
  14107. struct ggml_init_params params = {
  14108. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  14109. /*.mem_buffer =*/ NULL,
  14110. /*.no_alloc =*/ true,
  14111. };
  14112. ggml_context * ctx = ggml_init(params);
  14113. if (!ctx) {
  14114. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  14115. return 1;
  14116. }
  14117. ctx_map[it.first] = ctx;
  14118. }
  14119. // make tensors
  14120. cvec.tensors.reserve(model.hparams.n_layer);
  14121. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  14122. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14123. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  14124. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  14125. cvec.tensors.push_back(tensor);
  14126. }
  14127. // allocate tensors / buffers and zero
  14128. cvec.ctxs.reserve(ctx_map.size());
  14129. cvec.bufs.reserve(ctx_map.size());
  14130. for (auto it : ctx_map) {
  14131. ggml_backend_buffer_type_t buft = it.first;
  14132. ggml_context * ctx = it.second;
  14133. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  14134. if (!buf) {
  14135. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  14136. return false;
  14137. }
  14138. ggml_backend_buffer_clear(buf, 0);
  14139. cvec.ctxs.push_back(ctx);
  14140. cvec.bufs.push_back(buf);
  14141. }
  14142. return true;
  14143. }
  14144. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  14145. const llama_model & model = lctx->model;
  14146. llama_control_vector & cvec = lctx->cvec;
  14147. if (data == nullptr) {
  14148. // disable the current control vector (but leave allocated for later)
  14149. cvec.layer_start = -1;
  14150. cvec.layer_end = -1;
  14151. return 0;
  14152. }
  14153. if (n_embd != (int) model.hparams.n_embd) {
  14154. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  14155. return 1;
  14156. }
  14157. if (cvec.tensors.empty()) {
  14158. if (!llama_control_vector_init(cvec, model)) {
  14159. return 1;
  14160. }
  14161. }
  14162. cvec.layer_start = il_start;
  14163. cvec.layer_end = il_end;
  14164. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14165. assert(cvec.tensors[il] != nullptr);
  14166. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  14167. if (off + n_embd <= len) {
  14168. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  14169. }
  14170. }
  14171. return 0;
  14172. }
  14173. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  14174. struct llama_kv_cache_view result = {
  14175. /*.n_cells = */ 0,
  14176. /*.n_seq_max = */ n_seq_max,
  14177. /*.token_count = */ 0,
  14178. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  14179. /*.max_contiguous = */ 0,
  14180. /*.max_contiguous_idx = */ -1,
  14181. /*.cells = */ nullptr,
  14182. /*.cells_sequences = */ nullptr,
  14183. };
  14184. return result;
  14185. }
  14186. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  14187. if (view->cells != nullptr) {
  14188. free(view->cells);
  14189. view->cells = nullptr;
  14190. }
  14191. if (view->cells_sequences != nullptr) {
  14192. free(view->cells_sequences);
  14193. view->cells_sequences = nullptr;
  14194. }
  14195. }
  14196. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  14197. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  14198. view->n_cells = int32_t(ctx->kv_self.size);
  14199. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  14200. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  14201. view->cells = (struct llama_kv_cache_view_cell *)p;
  14202. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  14203. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  14204. view->cells_sequences = (llama_seq_id *)p;
  14205. }
  14206. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  14207. llama_kv_cache_view_cell * c_curr = view->cells;
  14208. llama_seq_id * cs_curr = view->cells_sequences;
  14209. int32_t used_cells = 0;
  14210. int32_t token_count = 0;
  14211. int32_t curr_contig_idx = -1;
  14212. uint32_t max_contig = 0;
  14213. int32_t max_contig_idx = -1;
  14214. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  14215. const size_t curr_size = kv_cells[i].seq_id.size();
  14216. token_count += curr_size;
  14217. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  14218. if (curr_size > 0) {
  14219. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  14220. max_contig = i - curr_contig_idx;
  14221. max_contig_idx = curr_contig_idx;
  14222. }
  14223. curr_contig_idx = -1;
  14224. } else if (curr_contig_idx < 0) {
  14225. curr_contig_idx = i;
  14226. }
  14227. int seq_idx = 0;
  14228. for (const llama_seq_id it : kv_cells[i].seq_id) {
  14229. if (seq_idx >= view->n_seq_max) {
  14230. break;
  14231. }
  14232. cs_curr[seq_idx] = it;
  14233. seq_idx++;
  14234. }
  14235. if (seq_idx != 0) {
  14236. used_cells++;
  14237. }
  14238. for (; seq_idx < view->n_seq_max; seq_idx++) {
  14239. cs_curr[seq_idx] = -1;
  14240. }
  14241. }
  14242. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  14243. max_contig_idx = curr_contig_idx;
  14244. max_contig = kv_cells.size() - curr_contig_idx;
  14245. }
  14246. view->max_contiguous = max_contig;
  14247. view->max_contiguous_idx = max_contig_idx;
  14248. view->token_count = token_count;
  14249. view->used_cells = used_cells;
  14250. if (uint32_t(used_cells) != ctx->kv_self.used) {
  14251. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  14252. __func__, ctx->kv_self.used, used_cells);
  14253. }
  14254. }
  14255. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  14256. int result = 0;
  14257. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  14258. result += ctx->kv_self.cells[i].seq_id.size();
  14259. }
  14260. return result;
  14261. }
  14262. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  14263. return ctx->kv_self.used;
  14264. }
  14265. void llama_kv_cache_clear(struct llama_context * ctx) {
  14266. llama_kv_cache_clear(ctx->kv_self);
  14267. }
  14268. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  14269. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  14270. }
  14271. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  14272. if (seq_id_src == seq_id_dst) {
  14273. return;
  14274. }
  14275. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  14276. }
  14277. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  14278. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  14279. }
  14280. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  14281. if (delta == 0) {
  14282. return;
  14283. }
  14284. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  14285. }
  14286. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  14287. if (d == 1) {
  14288. return;
  14289. }
  14290. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  14291. }
  14292. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  14293. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14294. }
  14295. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14296. llama_kv_cache_defrag(ctx->kv_self);
  14297. }
  14298. void llama_kv_cache_update(struct llama_context * ctx) {
  14299. llama_kv_cache_update_internal(*ctx);
  14300. }
  14301. // deprecated
  14302. size_t llama_get_state_size(const struct llama_context * ctx) {
  14303. return llama_state_get_size(ctx);
  14304. }
  14305. // deprecated
  14306. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14307. return llama_state_get_data(ctx, dst);
  14308. }
  14309. // deprecated
  14310. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14311. return llama_state_set_data(ctx, src);
  14312. }
  14313. // deprecated
  14314. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14315. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14316. }
  14317. // deprecated
  14318. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14319. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14320. }
  14321. // Returns the *maximum* size of the state
  14322. size_t llama_state_get_size(const struct llama_context * ctx) {
  14323. const auto & cparams = ctx->cparams;
  14324. const auto & hparams = ctx->model.hparams;
  14325. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14326. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14327. const size_t s_rng_size = sizeof(size_t);
  14328. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14329. const size_t s_n_outputs = sizeof(size_t);
  14330. // assume worst case for outputs although only currently set ones are serialized
  14331. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14332. const size_t s_logits_size = sizeof(size_t);
  14333. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14334. const size_t s_embedding_size = sizeof(size_t);
  14335. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14336. const size_t s_kv_buf_size = sizeof(size_t);
  14337. const size_t s_kv_head = sizeof(uint32_t);
  14338. const size_t s_kv_size = sizeof(uint32_t);
  14339. const size_t s_kv_used = sizeof(uint32_t);
  14340. const size_t s_v_trans = sizeof(uint32_t);
  14341. const size_t s_kv = ctx->kv_self.total_size();
  14342. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14343. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14344. const size_t s_total = (
  14345. + s_rng_size
  14346. + s_rng
  14347. + s_n_outputs
  14348. + s_output_pos
  14349. + s_logits_size
  14350. + s_logits
  14351. + s_embedding_size
  14352. + s_embedding
  14353. + s_kv_buf_size
  14354. + s_kv_head
  14355. + s_kv_size
  14356. + s_kv_used
  14357. + s_v_trans
  14358. + s_kv
  14359. + s_kv_cells
  14360. );
  14361. // on session change it is very likely that the state size has changed - so we need to update this function
  14362. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14363. return s_total;
  14364. }
  14365. // llama_context_data
  14366. struct llama_data_context {
  14367. virtual void write(const void * src, size_t size) = 0;
  14368. virtual size_t get_size_written() = 0;
  14369. virtual ~llama_data_context() = default;
  14370. };
  14371. struct llama_data_buffer_context : llama_data_context {
  14372. uint8_t * ptr;
  14373. size_t size_written = 0;
  14374. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14375. void write(const void * src, size_t size) override {
  14376. memcpy(ptr, src, size);
  14377. ptr += size;
  14378. size_written += size;
  14379. }
  14380. size_t get_size_written() override {
  14381. return size_written;
  14382. }
  14383. };
  14384. struct llama_data_file_context : llama_data_context {
  14385. llama_file * file;
  14386. size_t size_written = 0;
  14387. llama_data_file_context(llama_file * f) : file(f) {}
  14388. void write(const void * src, size_t size) override {
  14389. file->write_raw(src, size);
  14390. size_written += size;
  14391. }
  14392. size_t get_size_written() override {
  14393. return size_written;
  14394. }
  14395. };
  14396. /** copy state data into either a buffer or file depending on the passed in context
  14397. *
  14398. * file context:
  14399. * llama_file file("/path", "wb");
  14400. * llama_data_file_context data_ctx(&file);
  14401. * llama_state_get_data(ctx, &data_ctx);
  14402. *
  14403. * buffer context:
  14404. * std::vector<uint8_t> buf(max_size, 0);
  14405. * llama_data_buffer_context data_ctx(&buf.data());
  14406. * llama_state_get_data(ctx, &data_ctx);
  14407. *
  14408. */
  14409. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14410. llama_synchronize(ctx);
  14411. // copy rng
  14412. {
  14413. std::ostringstream rng_ss;
  14414. rng_ss << ctx->rng;
  14415. const std::string & rng_str = rng_ss.str();
  14416. const size_t rng_size = rng_str.size();
  14417. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14418. data_ctx->write(&rng_size, sizeof(rng_size));
  14419. data_ctx->write(rng_str.data(), rng_size);
  14420. }
  14421. // copy outputs
  14422. {
  14423. // Can't use ctx->n_outputs because it's not for the
  14424. // entire last batch when n_ubatch is smaller than n_batch
  14425. size_t n_outputs = 0;
  14426. // copy output ids
  14427. {
  14428. std::vector<int32_t> output_pos;
  14429. const size_t n_batch = ctx->cparams.n_batch;
  14430. const auto & output_ids = ctx->output_ids;
  14431. output_pos.resize(ctx->output_size);
  14432. // build a more compact representation of the output ids
  14433. for (size_t i = 0; i < n_batch; ++i) {
  14434. // map an output id to a position in the batch
  14435. int32_t pos = output_ids[i];
  14436. if (pos >= 0) {
  14437. if ((size_t) pos >= n_outputs) {
  14438. n_outputs = pos + 1;
  14439. }
  14440. GGML_ASSERT((size_t) pos < ctx->output_size);
  14441. output_pos[pos] = i;
  14442. }
  14443. }
  14444. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14445. if (n_outputs) {
  14446. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14447. }
  14448. }
  14449. // copy logits
  14450. {
  14451. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14452. data_ctx->write(&logits_size, sizeof(logits_size));
  14453. if (logits_size) {
  14454. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14455. }
  14456. }
  14457. // copy embeddings
  14458. {
  14459. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14460. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14461. if (embeddings_size) {
  14462. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14463. }
  14464. }
  14465. }
  14466. // copy kv cache
  14467. {
  14468. const auto & kv_self = ctx->kv_self;
  14469. const auto & hparams = ctx->model.hparams;
  14470. const uint32_t n_layer = hparams.n_layer;
  14471. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14472. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14473. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14474. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14475. const uint32_t kv_size = kv_self.size;
  14476. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14477. const uint32_t kv_used = kv_self.used;
  14478. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14479. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14480. data_ctx->write(&kv_head, sizeof(kv_head));
  14481. data_ctx->write(&kv_size, sizeof(kv_size));
  14482. data_ctx->write(&kv_used, sizeof(kv_used));
  14483. data_ctx->write(&v_trans, sizeof(v_trans));
  14484. if (kv_buf_size) {
  14485. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14486. std::vector<uint8_t> tmp_buf;
  14487. for (int il = 0; il < (int) n_layer; ++il) {
  14488. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14489. tmp_buf.resize(k_size);
  14490. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14491. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14492. if (kv_self.recurrent || !kv_self.v_trans) {
  14493. // v is contiguous for recurrent models
  14494. // TODO: use other tensors for state models than k and v
  14495. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14496. tmp_buf.resize(v_size);
  14497. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14498. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14499. continue;
  14500. }
  14501. // v is not contiguous, copy row by row
  14502. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14503. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14504. tmp_buf.resize(v_row_size);
  14505. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14506. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14507. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14508. }
  14509. }
  14510. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14511. }
  14512. for (uint32_t i = 0; i < kv_head; ++i) {
  14513. const auto & cell = kv_self.cells[i];
  14514. const llama_pos pos = cell.pos;
  14515. const size_t seq_id_size = cell.seq_id.size();
  14516. data_ctx->write(&pos, sizeof(pos));
  14517. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14518. for (auto seq_id : cell.seq_id) {
  14519. data_ctx->write(&seq_id, sizeof(seq_id));
  14520. }
  14521. }
  14522. }
  14523. }
  14524. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14525. llama_data_buffer_context data_ctx(dst);
  14526. llama_state_get_data_internal(ctx, &data_ctx);
  14527. return data_ctx.get_size_written();
  14528. }
  14529. // Sets the state reading from the specified source address
  14530. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14531. llama_synchronize(ctx);
  14532. const uint8_t * inp = src;
  14533. // set rng
  14534. {
  14535. size_t rng_size;
  14536. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14537. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14538. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14539. std::istringstream rng_ss(rng_str);
  14540. rng_ss >> ctx->rng;
  14541. GGML_ASSERT(!rng_ss.fail());
  14542. }
  14543. // set output ids
  14544. {
  14545. size_t n_outputs;
  14546. std::vector<int32_t> output_pos;
  14547. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14548. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14549. if (n_outputs) {
  14550. output_pos.resize(n_outputs);
  14551. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14552. inp += n_outputs * sizeof(int32_t);
  14553. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14554. int32_t id = output_pos[i];
  14555. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14556. ctx->output_ids[id] = i;
  14557. }
  14558. ctx->n_outputs = n_outputs;
  14559. }
  14560. }
  14561. // set logits
  14562. {
  14563. size_t logits_size;
  14564. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14565. GGML_ASSERT(ctx->logits_size >= logits_size);
  14566. if (logits_size) {
  14567. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14568. inp += logits_size * sizeof(float);
  14569. }
  14570. }
  14571. // set embeddings
  14572. {
  14573. size_t embeddings_size;
  14574. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14575. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14576. if (embeddings_size) {
  14577. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14578. inp += embeddings_size * sizeof(float);
  14579. }
  14580. }
  14581. // set kv cache
  14582. {
  14583. const auto & kv_self = ctx->kv_self;
  14584. const auto & hparams = ctx->model.hparams;
  14585. const uint32_t n_layer = hparams.n_layer;
  14586. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14587. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14588. size_t kv_buf_size;
  14589. uint32_t kv_head;
  14590. uint32_t kv_size;
  14591. uint32_t kv_used;
  14592. uint32_t v_trans;
  14593. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14594. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14595. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14596. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14597. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14598. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14599. if (kv_self.size != kv_size) {
  14600. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14601. GGML_ASSERT(kv_self.size >= kv_head);
  14602. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14603. __func__, kv_head, kv_size, kv_self.size);
  14604. }
  14605. llama_kv_cache_clear(ctx);
  14606. if (kv_buf_size) {
  14607. const size_t pre_kv_buf_size = inp - src;
  14608. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14609. for (int il = 0; il < (int) n_layer; ++il) {
  14610. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14611. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14612. inp += k_size;
  14613. if (kv_self.recurrent || !kv_self.v_trans) {
  14614. // v is contiguous for recurrent models
  14615. // TODO: use other tensors for state models than k and v
  14616. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14617. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14618. inp += v_size;
  14619. continue;
  14620. }
  14621. // v is not contiguous, copy row by row
  14622. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14623. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14624. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14625. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14626. inp += v_row_size;
  14627. }
  14628. }
  14629. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14630. }
  14631. ctx->kv_self.head = kv_head;
  14632. ctx->kv_self.used = kv_used;
  14633. for (uint32_t i = 0; i < kv_head; ++i) {
  14634. llama_pos pos;
  14635. size_t seq_id_size;
  14636. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14637. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14638. ctx->kv_self.cells[i].pos = pos;
  14639. llama_seq_id seq_id;
  14640. for (size_t j = 0; j < seq_id_size; ++j) {
  14641. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14642. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14643. }
  14644. }
  14645. }
  14646. const size_t nread = inp - src;
  14647. const size_t max_size = llama_state_get_size(ctx);
  14648. GGML_ASSERT(nread <= max_size);
  14649. return nread;
  14650. }
  14651. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14652. llama_file file(path_session, "rb");
  14653. // sanity checks
  14654. {
  14655. const uint32_t magic = file.read_u32();
  14656. const uint32_t version = file.read_u32();
  14657. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14658. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14659. return false;
  14660. }
  14661. llama_hparams session_hparams;
  14662. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14663. if (session_hparams != ctx->model.hparams) {
  14664. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14665. return false;
  14666. }
  14667. }
  14668. // load the prompt
  14669. {
  14670. const uint32_t n_token_count = file.read_u32();
  14671. if (n_token_count > n_token_capacity) {
  14672. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14673. return false;
  14674. }
  14675. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14676. *n_token_count_out = n_token_count;
  14677. }
  14678. // restore the context state
  14679. {
  14680. const size_t n_state_size_cur = file.size - file.tell();
  14681. const size_t n_state_size_max = llama_state_get_size(ctx);
  14682. if (n_state_size_cur > n_state_size_max) {
  14683. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14684. return false;
  14685. }
  14686. std::vector<uint8_t> state_data(n_state_size_max);
  14687. file.read_raw(state_data.data(), n_state_size_cur);
  14688. llama_state_set_data(ctx, state_data.data());
  14689. }
  14690. return true;
  14691. }
  14692. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14693. try {
  14694. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14695. } catch (const std::exception & err) {
  14696. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14697. return false;
  14698. }
  14699. }
  14700. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14701. llama_file file(path_session, "wb");
  14702. file.write_u32(LLAMA_SESSION_MAGIC);
  14703. file.write_u32(LLAMA_SESSION_VERSION);
  14704. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14705. // save the prompt
  14706. file.write_u32((uint32_t) n_token_count);
  14707. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14708. // save the context state using stream saving
  14709. llama_data_file_context data_ctx(&file);
  14710. llama_state_get_data_internal(ctx, &data_ctx);
  14711. return true;
  14712. }
  14713. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14714. try {
  14715. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14716. } catch (const std::exception & err) {
  14717. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14718. return false;
  14719. }
  14720. }
  14721. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14722. // save the size of size_t as a uint32_t for safety check
  14723. const size_t size_t_size_size = sizeof(uint32_t);
  14724. // other values
  14725. const size_t s_cell_count_size = sizeof(uint32_t);
  14726. const size_t s_layer_count_size = sizeof(uint32_t);
  14727. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14728. size_t s_cell_count = 0;
  14729. size_t s_cell_data_size = 0;
  14730. const auto & kv_self = ctx->kv_self;
  14731. const auto & hparams = ctx->model.hparams;
  14732. const uint32_t n_layer = hparams.n_layer;
  14733. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14734. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14735. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14736. const auto & cell = kv_self.cells[i];
  14737. if (cell.seq_id.count(seq_id) > 0) {
  14738. ++s_cell_count;
  14739. s_cell_data_size += sizeof(llama_pos);
  14740. }
  14741. }
  14742. for (int il = 0; il < (int)n_layer; ++il) {
  14743. // types of keys and values
  14744. s_cell_data_size += sizeof(int32_t) * 2;
  14745. // k_size_row and v_size_el values of layer
  14746. s_cell_data_size += sizeof(size_t) * 2;
  14747. // keys
  14748. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14749. s_cell_data_size += k_size_row * s_cell_count;
  14750. // values (transposed)
  14751. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14752. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14753. }
  14754. const size_t s_total = (
  14755. size_t_size_size +
  14756. s_cell_count_size +
  14757. s_layer_count_size +
  14758. n_embd_v_gqa_size +
  14759. s_cell_data_size
  14760. );
  14761. return s_total;
  14762. }
  14763. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14764. llama_synchronize(ctx);
  14765. const auto & kv_self = ctx->kv_self;
  14766. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14767. // Save the size of size_t as a uint32_t for safety check
  14768. const uint32_t size_t_size = sizeof(size_t);
  14769. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14770. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14771. uint32_t cell_count = 0;
  14772. // Count the number of cells with the specified seq_id
  14773. // Find all the ranges of cells with this seq id
  14774. {
  14775. uint32_t cell_range_begin = kv_self.size;
  14776. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14777. const auto & cell = kv_self.cells[i];
  14778. if (cell.has_seq_id(seq_id)) {
  14779. ++cell_count;
  14780. if (cell_range_begin == kv_self.size) {
  14781. cell_range_begin = i;
  14782. }
  14783. }
  14784. else {
  14785. if (cell_range_begin != kv_self.size) {
  14786. cell_ranges.emplace_back(cell_range_begin, i);
  14787. cell_range_begin = kv_self.size;
  14788. }
  14789. }
  14790. }
  14791. if (cell_range_begin != kv_self.size) {
  14792. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14793. }
  14794. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14795. uint32_t cell_count_check = 0;
  14796. for (const auto & range : cell_ranges) {
  14797. cell_count_check += range.second - range.first;
  14798. }
  14799. GGML_ASSERT(cell_count == cell_count_check);
  14800. }
  14801. // Write the cell count
  14802. data_ctx.write(&cell_count, sizeof(cell_count));
  14803. const auto & hparams = ctx->model.hparams;
  14804. const uint32_t n_layer = hparams.n_layer;
  14805. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14806. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14807. // Write the layer count
  14808. data_ctx.write(&n_layer, sizeof(n_layer));
  14809. // Write n_embd_v_gqa
  14810. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14811. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14812. for (const auto & range : cell_ranges) {
  14813. for (uint32_t i = range.first; i < range.second; ++i) {
  14814. const auto & cell = kv_self.cells[i];
  14815. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14816. }
  14817. }
  14818. // Iterate and write all the keys first, each row is a cell
  14819. // Get whole range at a time
  14820. std::vector<uint8_t> tmp_buf;
  14821. for (int il = 0; il < (int)n_layer; ++il) {
  14822. // Write key type
  14823. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14824. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14825. // Write row size of key
  14826. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14827. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14828. // Read each range of cells of k_size length each into tmp_buf and write out
  14829. for (const auto & range : cell_ranges) {
  14830. const size_t range_size = range.second - range.first;
  14831. tmp_buf.resize(range_size * k_size_row);
  14832. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14833. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14834. }
  14835. }
  14836. // TODO: simplify, reduce copy-paste
  14837. if (!kv_self.v_trans) {
  14838. for (int il = 0; il < (int)n_layer; ++il) {
  14839. // Write value type
  14840. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14841. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14842. // Write row size of value
  14843. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14844. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14845. // Read each range of cells of v_size length each into tmp_buf and write out
  14846. for (const auto & range : cell_ranges) {
  14847. const size_t range_size = range.second - range.first;
  14848. tmp_buf.resize(range_size * v_size_row);
  14849. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14850. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14851. }
  14852. }
  14853. } else {
  14854. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14855. const uint32_t kv_size = kv_self.size;
  14856. for (int il = 0; il < (int)n_layer; ++il) {
  14857. // Write value type
  14858. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14859. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14860. // Write element size
  14861. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14862. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14863. // For each row, we get the element values of each cell
  14864. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14865. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14866. for (const auto & range : cell_ranges) {
  14867. const size_t range_size = range.second - range.first;
  14868. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14869. tmp_buf.resize(range_size * v_size_el);
  14870. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14871. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14872. }
  14873. }
  14874. }
  14875. }
  14876. return data_ctx.get_size_written();
  14877. }
  14878. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14879. llama_data_buffer_context data_ctx(dst);
  14880. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14881. }
  14882. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14883. llama_synchronize(ctx);
  14884. auto & kv_self = ctx->kv_self;
  14885. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14886. // Wipe the slot
  14887. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14888. const uint8_t * inp = src;
  14889. // Read size of size_t
  14890. uint32_t size_t_size;
  14891. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14892. inp += sizeof(size_t_size);
  14893. if (size_t_size != sizeof(size_t)) {
  14894. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14895. return 0;
  14896. }
  14897. // Read the cell count
  14898. uint32_t cell_count;
  14899. memcpy(&cell_count, inp, sizeof(cell_count));
  14900. inp += sizeof(cell_count);
  14901. // Read the layer count
  14902. uint32_t n_layer_ref;
  14903. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14904. inp += sizeof(n_layer_ref);
  14905. // Read n_embd_v_gqa
  14906. uint32_t n_embd_v_gqa_ref;
  14907. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14908. inp += sizeof(n_embd_v_gqa_ref);
  14909. // Sanity check model compatibility
  14910. const auto & hparams = ctx->model.hparams;
  14911. const uint32_t n_layer = hparams.n_layer;
  14912. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14913. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14914. if (n_layer != n_layer_ref) {
  14915. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14916. return 0;
  14917. }
  14918. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14919. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14920. return 0;
  14921. }
  14922. // Allocate the new cells for the slot
  14923. if (cell_count) {
  14924. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14925. batch.n_tokens = cell_count;
  14926. for (uint32_t i = 0; i < cell_count; ++i) {
  14927. llama_pos pos;
  14928. memcpy(&pos, inp, sizeof(pos));
  14929. inp += sizeof(pos);
  14930. batch.pos[i] = pos;
  14931. batch.n_seq_id[i] = 1;
  14932. batch.seq_id[i][0] = dest_seq_id;
  14933. }
  14934. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14935. llama_batch_free(batch);
  14936. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14937. return 0;
  14938. }
  14939. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14940. // Assume that this is one contiguous block of cells
  14941. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14942. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14943. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14944. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14945. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14946. // Cleanup
  14947. llama_batch_free(batch);
  14948. }
  14949. const uint32_t kv_size = kv_self.size;
  14950. const uint32_t kv_head = kv_self.head;
  14951. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14952. for (int il = 0; il < (int)n_layer; ++il) {
  14953. // Read type of key
  14954. int32_t k_type_i_ref;
  14955. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14956. inp += sizeof(k_type_i_ref);
  14957. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14958. if (k_type_i != k_type_i_ref) {
  14959. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14960. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14961. return 0;
  14962. }
  14963. // Read row size of key
  14964. size_t k_size_row_ref;
  14965. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14966. inp += sizeof(k_size_row_ref);
  14967. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14968. if (k_size_row != k_size_row_ref) {
  14969. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14970. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14971. return 0;
  14972. }
  14973. if (cell_count) {
  14974. // Read and set the keys for the whole cell range
  14975. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14976. inp += cell_count * k_size_row;
  14977. }
  14978. }
  14979. // TODO: simplify, reduce copy-paste
  14980. if (!kv_self.v_trans) {
  14981. for (int il = 0; il < (int)n_layer; ++il) {
  14982. // Read type of value
  14983. int32_t v_type_i_ref;
  14984. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14985. inp += sizeof(v_type_i_ref);
  14986. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14987. if (v_type_i != v_type_i_ref) {
  14988. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14989. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14990. return 0;
  14991. }
  14992. // Read row size of value
  14993. size_t v_size_row_ref;
  14994. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14995. inp += sizeof(v_size_row_ref);
  14996. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14997. if (v_size_row != v_size_row_ref) {
  14998. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14999. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  15000. return 0;
  15001. }
  15002. if (cell_count) {
  15003. // Read and set the values for the whole cell range
  15004. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  15005. inp += cell_count * v_size_row;
  15006. }
  15007. }
  15008. } else {
  15009. // For each layer, read the values for each cell (transposed)
  15010. for (int il = 0; il < (int)n_layer; ++il) {
  15011. // Read type of value
  15012. int32_t v_type_i_ref;
  15013. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  15014. inp += sizeof(v_type_i_ref);
  15015. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  15016. if (v_type_i != v_type_i_ref) {
  15017. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15018. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  15019. return 0;
  15020. }
  15021. // Read element size of value
  15022. size_t v_size_el_ref;
  15023. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  15024. inp += sizeof(v_size_el_ref);
  15025. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  15026. if (v_size_el != v_size_el_ref) {
  15027. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15028. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  15029. return 0;
  15030. }
  15031. if (cell_count) {
  15032. // For each row in the transposed matrix, read the values for the whole cell range
  15033. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  15034. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  15035. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  15036. inp += cell_count * v_size_el;
  15037. }
  15038. }
  15039. }
  15040. }
  15041. const size_t nread = inp - src;
  15042. return nread;
  15043. }
  15044. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15045. llama_file file(filepath, "wb");
  15046. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  15047. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  15048. // save the prompt
  15049. file.write_u32((uint32_t)n_token_count);
  15050. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  15051. // save the context state using stream saving
  15052. llama_data_file_context data_ctx(&file);
  15053. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  15054. const size_t res = file.tell();
  15055. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  15056. return res;
  15057. }
  15058. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15059. llama_file file(filepath, "rb");
  15060. // version checks
  15061. {
  15062. const uint32_t magic = file.read_u32();
  15063. const uint32_t version = file.read_u32();
  15064. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  15065. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  15066. return 0;
  15067. }
  15068. }
  15069. // load the prompt
  15070. {
  15071. const uint32_t n_token_count = file.read_u32();
  15072. if (n_token_count > n_token_capacity) {
  15073. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  15074. return 0;
  15075. }
  15076. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  15077. *n_token_count_out = n_token_count;
  15078. }
  15079. // restore the context state
  15080. {
  15081. const size_t state_size = file.size - file.tell();
  15082. std::vector<uint8_t> state_data(state_size);
  15083. file.read_raw(state_data.data(), state_size);
  15084. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  15085. if (!nread) {
  15086. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  15087. return 0;
  15088. }
  15089. GGML_ASSERT(nread <= state_size);
  15090. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  15091. }
  15092. return file.tell();
  15093. }
  15094. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15095. try {
  15096. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  15097. } catch (const std::exception & err) {
  15098. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  15099. return 0;
  15100. }
  15101. }
  15102. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15103. try {
  15104. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  15105. } catch (const std::exception & err) {
  15106. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  15107. return 0;
  15108. }
  15109. }
  15110. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  15111. ctx->cparams.n_threads = n_threads;
  15112. ctx->cparams.n_threads_batch = n_threads_batch;
  15113. }
  15114. uint32_t llama_n_threads(struct llama_context * ctx) {
  15115. return ctx->cparams.n_threads;
  15116. }
  15117. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  15118. return ctx->cparams.n_threads_batch;
  15119. }
  15120. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  15121. ctx->abort_callback = abort_callback;
  15122. ctx->abort_callback_data = abort_callback_data;
  15123. }
  15124. void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
  15125. ctx->cparams.embeddings = embeddings;
  15126. }
  15127. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  15128. ctx->cparams.causal_attn = causal_attn;
  15129. }
  15130. struct llama_batch llama_batch_get_one(
  15131. llama_token * tokens,
  15132. int32_t n_tokens,
  15133. llama_pos pos_0,
  15134. llama_seq_id seq_id) {
  15135. return {
  15136. /*n_tokens =*/ n_tokens,
  15137. /*tokens =*/ tokens,
  15138. /*embd =*/ nullptr,
  15139. /*pos =*/ nullptr,
  15140. /*n_seq_id =*/ nullptr,
  15141. /*seq_id =*/ nullptr,
  15142. /*logits =*/ nullptr,
  15143. /*all_pos_0 =*/ pos_0,
  15144. /*all_pos_1 =*/ 1,
  15145. /*all_seq_id =*/ seq_id,
  15146. };
  15147. }
  15148. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  15149. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  15150. if (embd) {
  15151. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  15152. } else {
  15153. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  15154. }
  15155. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  15156. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  15157. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  15158. for (int i = 0; i < n_tokens_alloc; ++i) {
  15159. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  15160. }
  15161. batch.seq_id[n_tokens_alloc] = nullptr;
  15162. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  15163. return batch;
  15164. }
  15165. void llama_batch_free(struct llama_batch batch) {
  15166. if (batch.token) free(batch.token);
  15167. if (batch.embd) free(batch.embd);
  15168. if (batch.pos) free(batch.pos);
  15169. if (batch.n_seq_id) free(batch.n_seq_id);
  15170. if (batch.seq_id) {
  15171. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  15172. free(batch.seq_id[i]);
  15173. }
  15174. free(batch.seq_id);
  15175. }
  15176. if (batch.logits) free(batch.logits);
  15177. }
  15178. int32_t llama_decode(
  15179. struct llama_context * ctx,
  15180. struct llama_batch batch) {
  15181. const int ret = llama_decode_internal(*ctx, batch);
  15182. if (ret < 0) {
  15183. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  15184. }
  15185. return ret;
  15186. }
  15187. void llama_synchronize(struct llama_context * ctx) {
  15188. ggml_backend_sched_synchronize(ctx->sched);
  15189. // FIXME: if multiple single tokens are evaluated without a synchronization,
  15190. // the stats will be added to the prompt evaluation stats
  15191. // this should only happen when using batch size 1 to evaluate a batch
  15192. // add the evaluation to the stats
  15193. if (ctx->n_queued_tokens == 1) {
  15194. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15195. ctx->n_eval++;
  15196. } else if (ctx->n_queued_tokens > 1) {
  15197. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15198. ctx->n_p_eval += ctx->n_queued_tokens;
  15199. }
  15200. // get a more accurate load time, upon first eval
  15201. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  15202. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  15203. ctx->has_evaluated_once = true;
  15204. }
  15205. ctx->n_queued_tokens = 0;
  15206. ctx->t_compute_start_us = 0;
  15207. }
  15208. float * llama_get_logits(struct llama_context * ctx) {
  15209. llama_synchronize(ctx);
  15210. return ctx->logits;
  15211. }
  15212. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  15213. int32_t j = -1;
  15214. llama_synchronize(ctx);
  15215. try {
  15216. if (ctx->logits == nullptr) {
  15217. throw std::runtime_error("no logits");
  15218. }
  15219. if (i < 0) {
  15220. j = ctx->n_outputs + i;
  15221. if (j < 0) {
  15222. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15223. }
  15224. } else if ((size_t) i >= ctx->output_ids.size()) {
  15225. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15226. } else {
  15227. j = ctx->output_ids[i];
  15228. }
  15229. if (j < 0) {
  15230. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15231. }
  15232. if (j >= ctx->n_outputs) {
  15233. // This should not happen
  15234. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15235. }
  15236. return ctx->logits + j*ctx->model.hparams.n_vocab;
  15237. } catch (const std::exception & err) {
  15238. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  15239. #ifndef NDEBUG
  15240. GGML_ASSERT(false);
  15241. #endif
  15242. return nullptr;
  15243. }
  15244. }
  15245. float * llama_get_embeddings(struct llama_context * ctx) {
  15246. llama_synchronize(ctx);
  15247. return ctx->embd;
  15248. }
  15249. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  15250. int32_t j = -1;
  15251. llama_synchronize(ctx);
  15252. try {
  15253. if (ctx->embd == nullptr) {
  15254. throw std::runtime_error("no embeddings");
  15255. }
  15256. if (i < 0) {
  15257. j = ctx->n_outputs + i;
  15258. if (j < 0) {
  15259. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15260. }
  15261. } else if ((size_t) i >= ctx->output_ids.size()) {
  15262. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15263. } else {
  15264. j = ctx->output_ids[i];
  15265. }
  15266. if (j < 0) {
  15267. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15268. }
  15269. if (j >= ctx->n_outputs) {
  15270. // This should not happen
  15271. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15272. }
  15273. return ctx->embd + j*ctx->model.hparams.n_embd;
  15274. } catch (const std::exception & err) {
  15275. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  15276. #ifndef NDEBUG
  15277. GGML_ASSERT(false);
  15278. #endif
  15279. return nullptr;
  15280. }
  15281. }
  15282. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  15283. llama_synchronize(ctx);
  15284. auto it = ctx->embd_seq.find(seq_id);
  15285. if (it == ctx->embd_seq.end()) {
  15286. return nullptr;
  15287. }
  15288. return it->second.data();
  15289. }
  15290. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  15291. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15292. return model->vocab.id_to_token[token].text.c_str();
  15293. }
  15294. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  15295. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15296. return model->vocab.id_to_token[token].score;
  15297. }
  15298. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  15299. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15300. return model->vocab.id_to_token[token].attr;
  15301. }
  15302. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15303. return token != -1 && (
  15304. token == llama_token_eos(model) ||
  15305. token == llama_token_eot(model)
  15306. );
  15307. }
  15308. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15309. return llama_is_control_token(model->vocab, token);
  15310. }
  15311. llama_token llama_token_bos(const struct llama_model * model) {
  15312. return model->vocab.special_bos_id;
  15313. }
  15314. llama_token llama_token_eos(const struct llama_model * model) {
  15315. return model->vocab.special_eos_id;
  15316. }
  15317. llama_token llama_token_cls(const struct llama_model * model) {
  15318. return model->vocab.special_cls_id;
  15319. }
  15320. llama_token llama_token_sep(const struct llama_model * model) {
  15321. return model->vocab.special_sep_id;
  15322. }
  15323. llama_token llama_token_nl(const struct llama_model * model) {
  15324. return model->vocab.linefeed_id;
  15325. }
  15326. int32_t llama_add_bos_token(const struct llama_model * model) {
  15327. return model->vocab.tokenizer_add_bos;
  15328. }
  15329. int32_t llama_add_eos_token(const struct llama_model * model) {
  15330. return model->vocab.tokenizer_add_eos;
  15331. }
  15332. llama_token llama_token_prefix(const struct llama_model * model) {
  15333. return model->vocab.special_prefix_id;
  15334. }
  15335. llama_token llama_token_middle(const struct llama_model * model) {
  15336. return model->vocab.special_middle_id;
  15337. }
  15338. llama_token llama_token_suffix(const struct llama_model * model) {
  15339. return model->vocab.special_suffix_id;
  15340. }
  15341. llama_token llama_token_eot(const struct llama_model * model) {
  15342. return model->vocab.special_eot_id;
  15343. }
  15344. int32_t llama_tokenize(
  15345. const struct llama_model * model,
  15346. const char * text,
  15347. int32_t text_len,
  15348. llama_token * tokens,
  15349. int32_t n_tokens_max,
  15350. bool add_special,
  15351. bool parse_special) {
  15352. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15353. if (n_tokens_max < (int) res.size()) {
  15354. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15355. return -((int) res.size());
  15356. }
  15357. for (size_t i = 0; i < res.size(); i++) {
  15358. tokens[i] = res[i];
  15359. }
  15360. return res.size();
  15361. }
  15362. static std::string llama_decode_text(const std::string & text) {
  15363. std::string decoded_text;
  15364. const auto cpts = unicode_cpts_from_utf8(text);
  15365. for (const auto cpt : cpts) {
  15366. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15367. try {
  15368. decoded_text += unicode_utf8_to_byte(utf8);
  15369. } catch (const std::out_of_range & e) {
  15370. decoded_text += "[UNK_BYTE_0x";
  15371. for (const auto c : utf8) {
  15372. decoded_text += format("%02x", (uint8_t) c);
  15373. }
  15374. decoded_text += text + "]";
  15375. }
  15376. }
  15377. return decoded_text;
  15378. }
  15379. // does not write null-terminator to buf
  15380. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15381. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  15382. if (!special && llama_is_control_token(model->vocab, token)) {
  15383. return 0;
  15384. }
  15385. // if we have a cache - use it
  15386. {
  15387. const auto & cache = model->vocab.cache_token_to_piece;
  15388. if (!cache.empty()) {
  15389. const auto & res = cache.at(token);
  15390. if (length < (int) res.size()) {
  15391. return -(int) res.size();
  15392. }
  15393. memcpy(buf, res.c_str(), res.size());
  15394. return res.size();
  15395. }
  15396. }
  15397. if (0 <= token && token < llama_n_vocab(model)) {
  15398. switch (llama_vocab_get_type(model->vocab)) {
  15399. case LLAMA_VOCAB_TYPE_WPM:
  15400. case LLAMA_VOCAB_TYPE_SPM: {
  15401. // NOTE: we accept all unsupported token types,
  15402. // suppressing them like CONTROL tokens.
  15403. if (llama_is_normal_token(model->vocab, token)) {
  15404. std::string result = model->vocab.id_to_token[token].text;
  15405. llama_unescape_whitespace(result);
  15406. if (length < (int) result.length()) {
  15407. return -(int) result.length();
  15408. }
  15409. memcpy(buf, result.c_str(), result.length());
  15410. return result.length();
  15411. } else if (
  15412. (llama_is_user_defined_token(model->vocab, token)) ||
  15413. (llama_is_control_token (model->vocab, token) && special)) {
  15414. std::string result = model->vocab.id_to_token[token].text;
  15415. if (length < (int) result.length()) {
  15416. return -(int) result.length();
  15417. }
  15418. memcpy(buf, result.c_str(), result.length());
  15419. return result.length();
  15420. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15421. if (length < 3) {
  15422. return -3;
  15423. }
  15424. memcpy(buf, "\xe2\x96\x85", 3);
  15425. return 3;
  15426. } else if (llama_is_byte_token(model->vocab, token)) {
  15427. if (length < 1) {
  15428. return -1;
  15429. }
  15430. buf[0] = llama_token_to_byte(model->vocab, token);
  15431. return 1;
  15432. }
  15433. break;
  15434. }
  15435. case LLAMA_VOCAB_TYPE_BPE: {
  15436. // NOTE: we accept all unsupported token types,
  15437. // suppressing them like CONTROL tokens.
  15438. if (llama_is_normal_token(model->vocab, token)) {
  15439. std::string result = model->vocab.id_to_token[token].text;
  15440. result = llama_decode_text(result);
  15441. if (length < (int) result.length()) {
  15442. return -(int) result.length();
  15443. }
  15444. memcpy(buf, result.c_str(), result.length());
  15445. return result.length();
  15446. } else if (
  15447. (llama_is_user_defined_token(model->vocab, token)) ||
  15448. (llama_is_control_token (model->vocab, token) && special)) {
  15449. std::string result = model->vocab.id_to_token[token].text;
  15450. if (length < (int) result.length()) {
  15451. return -(int) result.length();
  15452. }
  15453. memcpy(buf, result.c_str(), result.length());
  15454. return result.length();
  15455. }
  15456. break;
  15457. }
  15458. default:
  15459. GGML_ASSERT(false);
  15460. }
  15461. }
  15462. return 0;
  15463. }
  15464. // trim whitespace from the beginning and end of a string
  15465. static std::string trim(const std::string & str) {
  15466. size_t start = 0;
  15467. size_t end = str.size();
  15468. while (start < end && isspace(str[start])) {
  15469. start += 1;
  15470. }
  15471. while (end > start && isspace(str[end - 1])) {
  15472. end -= 1;
  15473. }
  15474. return str.substr(start, end - start);
  15475. }
  15476. // Simple version of "llama_apply_chat_template" that only works with strings
  15477. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15478. static int32_t llama_chat_apply_template_internal(
  15479. const std::string & tmpl,
  15480. const std::vector<const llama_chat_message *> & chat,
  15481. std::string & dest, bool add_ass) {
  15482. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15483. std::stringstream ss;
  15484. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15485. // chatml template
  15486. for (auto message : chat) {
  15487. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15488. }
  15489. if (add_ass) {
  15490. ss << "<|im_start|>assistant\n";
  15491. }
  15492. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15493. // llama2 template and its variants
  15494. // [variant] support system message
  15495. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15496. // [variant] space before + after response
  15497. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15498. // [variant] add BOS inside history
  15499. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15500. // [variant] trim spaces from the input message
  15501. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15502. // construct the prompt
  15503. bool is_inside_turn = true; // skip BOS at the beginning
  15504. ss << "[INST] ";
  15505. for (auto message : chat) {
  15506. std::string content = strip_message ? trim(message->content) : message->content;
  15507. std::string role(message->role);
  15508. if (!is_inside_turn) {
  15509. is_inside_turn = true;
  15510. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15511. }
  15512. if (role == "system") {
  15513. if (support_system_message) {
  15514. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15515. } else {
  15516. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15517. ss << content << "\n";
  15518. }
  15519. } else if (role == "user") {
  15520. ss << content << " [/INST]";
  15521. } else {
  15522. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15523. is_inside_turn = false;
  15524. }
  15525. }
  15526. // llama2 templates seem to not care about "add_generation_prompt"
  15527. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15528. // Phi 3
  15529. for (auto message : chat) {
  15530. std::string role(message->role);
  15531. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15532. }
  15533. if (add_ass) {
  15534. ss << "<|assistant|>\n";
  15535. }
  15536. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15537. // zephyr template
  15538. for (auto message : chat) {
  15539. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15540. }
  15541. if (add_ass) {
  15542. ss << "<|assistant|>\n";
  15543. }
  15544. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15545. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15546. for (auto message : chat) {
  15547. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15548. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15549. }
  15550. if (add_ass) {
  15551. ss << "<s>assistant\n";
  15552. }
  15553. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15554. // google/gemma-7b-it
  15555. std::string system_prompt = "";
  15556. for (auto message : chat) {
  15557. std::string role(message->role);
  15558. if (role == "system") {
  15559. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15560. system_prompt = trim(message->content);
  15561. continue;
  15562. }
  15563. // in gemma, "assistant" is "model"
  15564. role = role == "assistant" ? "model" : message->role;
  15565. ss << "<start_of_turn>" << role << "\n";
  15566. if (!system_prompt.empty() && role != "model") {
  15567. ss << system_prompt << "\n\n";
  15568. system_prompt = "";
  15569. }
  15570. ss << trim(message->content) << "<end_of_turn>\n";
  15571. }
  15572. if (add_ass) {
  15573. ss << "<start_of_turn>model\n";
  15574. }
  15575. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15576. // OrionStarAI/Orion-14B-Chat
  15577. std::string system_prompt = "";
  15578. for (auto message : chat) {
  15579. std::string role(message->role);
  15580. if (role == "system") {
  15581. // there is no system message support, we will merge it with user prompt
  15582. system_prompt = message->content;
  15583. continue;
  15584. } else if (role == "user") {
  15585. ss << "Human: ";
  15586. if (!system_prompt.empty()) {
  15587. ss << system_prompt << "\n\n";
  15588. system_prompt = "";
  15589. }
  15590. ss << message->content << "\n\nAssistant: </s>";
  15591. } else {
  15592. ss << message->content << "</s>";
  15593. }
  15594. }
  15595. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15596. // openchat/openchat-3.5-0106,
  15597. for (auto message : chat) {
  15598. std::string role(message->role);
  15599. if (role == "system") {
  15600. ss << message->content << "<|end_of_turn|>";
  15601. } else {
  15602. role[0] = toupper(role[0]);
  15603. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15604. }
  15605. }
  15606. if (add_ass) {
  15607. ss << "GPT4 Correct Assistant:";
  15608. }
  15609. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15610. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15611. for (auto message : chat) {
  15612. std::string role(message->role);
  15613. if (role == "system") {
  15614. // Orca-Vicuna variant uses a system prefix
  15615. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15616. ss << "SYSTEM: " << message->content << "\n";
  15617. } else {
  15618. ss << message->content << "\n\n";
  15619. }
  15620. } else if (role == "user") {
  15621. ss << "USER: " << message->content << "\n";
  15622. } else if (role == "assistant") {
  15623. ss << "ASSISTANT: " << message->content << "</s>\n";
  15624. }
  15625. }
  15626. if (add_ass) {
  15627. ss << "ASSISTANT:";
  15628. }
  15629. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15630. // deepseek-ai/deepseek-coder-33b-instruct
  15631. for (auto message : chat) {
  15632. std::string role(message->role);
  15633. if (role == "system") {
  15634. ss << message->content;
  15635. } else if (role == "user") {
  15636. ss << "### Instruction:\n" << message->content << "\n";
  15637. } else if (role == "assistant") {
  15638. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15639. }
  15640. }
  15641. if (add_ass) {
  15642. ss << "### Response:\n";
  15643. }
  15644. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15645. // CohereForAI/c4ai-command-r-plus
  15646. for (auto message : chat) {
  15647. std::string role(message->role);
  15648. if (role == "system") {
  15649. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15650. } else if (role == "user") {
  15651. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15652. } else if (role == "assistant") {
  15653. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15654. }
  15655. }
  15656. if (add_ass) {
  15657. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15658. }
  15659. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15660. // Llama 3
  15661. for (auto message : chat) {
  15662. std::string role(message->role);
  15663. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15664. }
  15665. if (add_ass) {
  15666. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15667. }
  15668. } else {
  15669. // template not supported
  15670. return -1;
  15671. }
  15672. dest = ss.str();
  15673. return dest.size();
  15674. }
  15675. LLAMA_API int32_t llama_chat_apply_template(
  15676. const struct llama_model * model,
  15677. const char * tmpl,
  15678. const struct llama_chat_message * chat,
  15679. size_t n_msg,
  15680. bool add_ass,
  15681. char * buf,
  15682. int32_t length) {
  15683. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15684. if (tmpl == nullptr) {
  15685. GGML_ASSERT(model != nullptr);
  15686. // load template from model
  15687. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15688. std::string template_key = "tokenizer.chat_template";
  15689. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15690. if (res < 0) {
  15691. // worst case: there is no information about template, we will use chatml by default
  15692. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15693. } else {
  15694. curr_tmpl = std::string(model_template.data(), model_template.size());
  15695. }
  15696. }
  15697. // format the chat to string
  15698. std::vector<const llama_chat_message *> chat_vec;
  15699. chat_vec.resize(n_msg);
  15700. for (size_t i = 0; i < n_msg; i++) {
  15701. chat_vec[i] = &chat[i];
  15702. }
  15703. std::string formatted_chat;
  15704. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15705. if (res < 0) {
  15706. return res;
  15707. }
  15708. if (buf && length > 0) {
  15709. strncpy(buf, formatted_chat.c_str(), length);
  15710. }
  15711. return res;
  15712. }
  15713. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15714. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15715. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15716. return strlen(split_path);
  15717. }
  15718. return 0;
  15719. }
  15720. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15721. std::string str_split_path(split_path);
  15722. char postfix[32];
  15723. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15724. std::string str_postfix(postfix);
  15725. // check if dest ends with postfix
  15726. int size_prefix = str_split_path.size() - str_postfix.size();
  15727. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15728. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15729. return size_prefix;
  15730. }
  15731. return 0;
  15732. }
  15733. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15734. struct llama_timings result = {
  15735. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15736. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15737. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15738. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15739. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15740. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15741. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15742. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15743. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15744. };
  15745. return result;
  15746. }
  15747. void llama_print_timings(struct llama_context * ctx) {
  15748. const llama_timings timings = llama_get_timings(ctx);
  15749. LLAMA_LOG_INFO("\n");
  15750. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15751. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15752. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15753. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15754. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15755. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15756. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15757. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15758. }
  15759. void llama_reset_timings(struct llama_context * ctx) {
  15760. ctx->t_start_us = ggml_time_us();
  15761. ctx->t_sample_us = ctx->n_sample = 0;
  15762. ctx->t_eval_us = ctx->n_eval = 0;
  15763. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15764. }
  15765. const char * llama_print_system_info(void) {
  15766. static std::string s;
  15767. s = "";
  15768. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15769. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15770. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15771. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15772. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15773. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15774. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15775. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15776. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15777. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15778. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15779. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15780. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15781. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15782. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15783. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15784. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15785. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15786. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15787. #ifdef GGML_USE_LLAMAFILE
  15788. s += "LLAMAFILE = 1 | ";
  15789. #else
  15790. s += "LLAMAFILE = 0 | ";
  15791. #endif
  15792. return s.c_str();
  15793. }
  15794. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15795. fprintf(stream, "\n");
  15796. fprintf(stream, "###########\n");
  15797. fprintf(stream, "# Timings #\n");
  15798. fprintf(stream, "###########\n");
  15799. fprintf(stream, "\n");
  15800. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15801. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15802. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15803. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15804. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15805. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15806. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15807. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15808. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15809. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15810. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15811. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15812. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15813. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15814. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15815. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15816. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15817. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15818. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15819. }
  15820. // For internal test use
  15821. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15822. struct llama_context * ctx
  15823. ) {
  15824. return ctx->model.tensors_by_name;
  15825. }
  15826. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15827. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15828. g_state.log_callback_user_data = user_data;
  15829. #ifdef GGML_USE_METAL
  15830. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15831. #elif defined(GGML_USE_CUDA)
  15832. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15833. #endif
  15834. }
  15835. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15836. va_list args_copy;
  15837. va_copy(args_copy, args);
  15838. char buffer[128];
  15839. int len = vsnprintf(buffer, 128, format, args);
  15840. if (len < 128) {
  15841. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15842. } else {
  15843. char* buffer2 = new char[len+1];
  15844. vsnprintf(buffer2, len+1, format, args_copy);
  15845. buffer2[len] = 0;
  15846. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15847. delete[] buffer2;
  15848. }
  15849. va_end(args_copy);
  15850. }
  15851. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15852. va_list args;
  15853. va_start(args, format);
  15854. llama_log_internal_v(level, format, args);
  15855. va_end(args);
  15856. }
  15857. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15858. (void) level;
  15859. (void) user_data;
  15860. fputs(text, stderr);
  15861. fflush(stderr);
  15862. }