convert_hf_to_gguf.py 403 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. part_names: list[str]
  59. is_safetensors: bool
  60. hparams: dict[str, Any]
  61. tensor_names: set[str] | None
  62. gguf_writer: gguf.GGUFWriter
  63. model_name: str | None
  64. metadata_override: Path | None
  65. dir_model_card: Path
  66. remote_hf_model_id: str | None
  67. # subclasses should define this!
  68. model_arch: gguf.MODEL_ARCH
  69. # subclasses should initialize this!
  70. block_count: int
  71. tensor_map: gguf.TensorNameMap
  72. # Mistral format specifics
  73. is_mistral_format: bool = False
  74. disable_mistral_community_chat_template: bool = False
  75. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  76. use_temp_file: bool = False, eager: bool = False,
  77. metadata_override: Path | None = None, model_name: str | None = None,
  78. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  79. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  80. disable_mistral_community_chat_template: bool = False):
  81. if type(self) is ModelBase or \
  82. type(self) is TextModel or \
  83. type(self) is MmprojModel:
  84. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  85. self.dir_model = dir_model
  86. self.ftype = ftype
  87. self.fname_out = fname_out
  88. self.is_big_endian = is_big_endian
  89. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  90. self.use_temp_file = use_temp_file
  91. self.lazy = not eager or (remote_hf_model_id is not None)
  92. self.remote_hf_model_id = remote_hf_model_id
  93. if remote_hf_model_id is not None:
  94. self.is_safetensors = True
  95. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  96. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  97. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  98. self.tensor_names = set(name for name in remote_tensors.keys())
  99. for name, remote_tensor in remote_tensors.items():
  100. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  101. self.get_tensors = get_remote_tensors
  102. else:
  103. prefix = "model" if not self.is_mistral_format else "consolidated"
  104. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  105. self.is_safetensors = len(self.part_names) > 0
  106. if not self.is_safetensors:
  107. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  108. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  109. self.tensor_names = None
  110. self.metadata_override = metadata_override
  111. self.model_name = model_name
  112. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  113. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  114. if self.ftype == gguf.LlamaFileType.GUESSED:
  115. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  116. _, first_tensor = next(self.get_tensors())
  117. if first_tensor.dtype == torch.float16:
  118. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  119. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  120. else:
  121. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  122. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  123. # Configure GGUF Writer
  124. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  125. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  126. # Mistral specific
  127. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  128. @classmethod
  129. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  130. stem, suffix = path.stem, path.suffix
  131. new_name = f"{prefix}{stem}{suffix}"
  132. return path.with_name(new_name)
  133. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  134. key = next((k for k in keys if k in self.hparams), None)
  135. if key is not None:
  136. return self.hparams[key]
  137. if optional:
  138. return None
  139. raise KeyError(f"could not find any of: {keys}")
  140. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  141. tensor_names_from_parts: set[str] = set()
  142. if not self.is_mistral_format:
  143. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  144. index_name += ".index.json"
  145. index_file = self.dir_model / index_name
  146. if index_file.is_file():
  147. self.tensor_names = set()
  148. logger.info(f"gguf: loading model weight map from '{index_name}'")
  149. with open(index_file, "r", encoding="utf-8") as f:
  150. index: dict[str, Any] = json.load(f)
  151. weight_map = index.get("weight_map")
  152. if weight_map is None or not isinstance(weight_map, dict):
  153. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  154. self.tensor_names.update(weight_map.keys())
  155. else:
  156. self.tensor_names = tensor_names_from_parts
  157. weight_map = {}
  158. else:
  159. self.tensor_names = tensor_names_from_parts
  160. weight_map = {}
  161. for part_name in self.part_names:
  162. logger.info(f"gguf: loading model part '{part_name}'")
  163. ctx: ContextManager[Any]
  164. if self.is_safetensors:
  165. from safetensors import safe_open
  166. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  167. else:
  168. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  169. with ctx as model_part:
  170. tensor_names_from_parts.update(model_part.keys())
  171. for name in model_part.keys():
  172. if self.is_safetensors:
  173. if self.lazy:
  174. data = model_part.get_slice(name)
  175. data = LazyTorchTensor.from_safetensors_slice(data)
  176. else:
  177. data = model_part.get_tensor(name)
  178. else:
  179. data = model_part[name]
  180. if self.lazy:
  181. data = LazyTorchTensor.from_eager(data)
  182. yield name, data
  183. # verify tensor name presence and identify potentially missing files
  184. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  185. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  186. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  187. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  188. if len(extra) == 0 and len(missing_files) > 0:
  189. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  190. f"Missing tensors: {missing}")
  191. else:
  192. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  193. f"Missing tensors: {missing}\n"
  194. f"Extra tensors: {extra}")
  195. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  196. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  197. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  198. name: str = gguf.TENSOR_NAMES[key]
  199. if "{bid}" in name:
  200. assert bid is not None
  201. name = name.format(bid=bid)
  202. return name + suffix
  203. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  204. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  205. return False
  206. key_name: str = gguf.TENSOR_NAMES[key]
  207. if "{bid}" in key_name:
  208. if bid is None:
  209. return False
  210. key_name = key_name.format(bid=bid)
  211. else:
  212. if bid is not None:
  213. return False
  214. return name == (key_name + suffix)
  215. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  216. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  217. if new_name is None:
  218. raise ValueError(f"Can not map tensor {name!r}")
  219. return new_name
  220. def set_gguf_parameters(self):
  221. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  270. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  271. gguf.MODEL_TENSOR.TIME_MIX_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_W2,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  274. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  275. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  276. gguf.MODEL_TENSOR.POSNET_NORM1,
  277. gguf.MODEL_TENSOR.POSNET_NORM2,
  278. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  279. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  280. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  281. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  282. )
  283. )
  284. or not new_name.endswith(".weight")
  285. ):
  286. data_qtype = gguf.GGMLQuantizationType.F32
  287. if data_qtype is False and any(
  288. self.match_model_tensor_name(new_name, key, bid)
  289. for key in (
  290. gguf.MODEL_TENSOR.TOKEN_EMBD,
  291. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  292. gguf.MODEL_TENSOR.OUTPUT,
  293. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  294. gguf.MODEL_TENSOR.LAUREL_L,
  295. gguf.MODEL_TENSOR.LAUREL_R,
  296. )
  297. ):
  298. if self.ftype in (
  299. gguf.LlamaFileType.MOSTLY_TQ1_0,
  300. gguf.LlamaFileType.MOSTLY_TQ2_0,
  301. ):
  302. # TODO: use Q4_K and Q6_K
  303. data_qtype = gguf.GGMLQuantizationType.F16
  304. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  305. if isinstance(data_qtype, bool):
  306. if self.ftype == gguf.LlamaFileType.ALL_F32:
  307. data_qtype = gguf.GGMLQuantizationType.F32
  308. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  309. data_qtype = gguf.GGMLQuantizationType.F16
  310. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  311. data_qtype = gguf.GGMLQuantizationType.BF16
  312. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  313. data_qtype = gguf.GGMLQuantizationType.Q8_0
  314. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  315. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  316. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  317. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  318. else:
  319. raise ValueError(f"Unknown file type: {self.ftype.name}")
  320. try:
  321. data = gguf.quants.quantize(data, data_qtype)
  322. except gguf.QuantError as e:
  323. logger.warning("%s, %s", e, "falling back to F16")
  324. data_qtype = gguf.GGMLQuantizationType.F16
  325. data = gguf.quants.quantize(data, data_qtype)
  326. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  327. # reverse shape to make it similar to the internal ggml dimension order
  328. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  329. # n_dims is implicit in the shape
  330. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  331. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  332. def set_type(self):
  333. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  334. def prepare_metadata(self, vocab_only: bool):
  335. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  336. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  337. # If we are using HF model id, set the metadata name to the model id
  338. if self.remote_hf_model_id:
  339. self.metadata.name = self.remote_hf_model_id
  340. # Fallback to model directory name if metadata name is still missing
  341. if self.metadata.name is None:
  342. self.metadata.name = self.dir_model.name
  343. # Generate parameter weight class (useful for leader boards) if not yet determined
  344. if self.metadata.size_label is None and total_params > 0:
  345. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  346. self.set_type()
  347. logger.info("Set meta model")
  348. self.metadata.set_gguf_meta_model(self.gguf_writer)
  349. logger.info("Set model parameters")
  350. self.set_gguf_parameters()
  351. logger.info("Set model quantization version")
  352. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  353. def write_vocab(self):
  354. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  355. def write(self):
  356. self.prepare_tensors()
  357. self.prepare_metadata(vocab_only=False)
  358. self.gguf_writer.write_header_to_file(path=self.fname_out)
  359. self.gguf_writer.write_kv_data_to_file()
  360. self.gguf_writer.write_tensors_to_file(progress=True)
  361. self.gguf_writer.close()
  362. @staticmethod
  363. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  364. part_names: list[str] = []
  365. for filename in os.listdir(dir_model):
  366. if filename.startswith(prefix) and filename.endswith(suffix):
  367. part_names.append(filename)
  368. part_names.sort()
  369. return part_names
  370. @staticmethod
  371. def load_hparams(dir_model: Path, is_mistral_format: bool):
  372. if is_mistral_format:
  373. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  374. config = json.load(f)
  375. return config
  376. try:
  377. # for security reason, we don't allow loading remote code by default
  378. # if a model need remote code, we will fallback to config.json
  379. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  380. except Exception as e:
  381. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  382. logger.warning("Trying to load config.json instead")
  383. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  384. config = json.load(f)
  385. if "llm_config" in config:
  386. # rename for InternVL
  387. config["text_config"] = config["llm_config"]
  388. if "thinker_config" in config:
  389. # rename for Qwen2.5-Omni
  390. config["text_config"] = config["thinker_config"]["text_config"]
  391. return config
  392. @classmethod
  393. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  394. assert names
  395. def func(modelcls: AnyModel) -> AnyModel:
  396. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  397. for name in names:
  398. cls._model_classes[model_type][name] = modelcls
  399. return modelcls
  400. return func
  401. @classmethod
  402. def print_registered_models(cls):
  403. for model_type, model_classes in cls._model_classes.items():
  404. logger.error(f"{model_type.name} models:")
  405. for name in sorted(model_classes.keys()):
  406. logger.error(f" - {name}")
  407. @classmethod
  408. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  409. try:
  410. return cls._model_classes[model_type][arch]
  411. except KeyError:
  412. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  413. class TextModel(ModelBase):
  414. model_type = ModelType.TEXT
  415. hf_arch: str
  416. def __init__(self, *args, **kwargs):
  417. super().__init__(*args, **kwargs)
  418. if not self.is_mistral_format:
  419. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  420. else:
  421. self.hf_arch = ""
  422. if "text_config" in self.hparams:
  423. # move the text_config to the root level
  424. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  425. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  426. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  427. @classmethod
  428. def __init_subclass__(cls):
  429. # can't use an abstract property, because overriding it without type errors
  430. # would require using decorated functions instead of simply defining the property
  431. if "model_arch" not in cls.__dict__:
  432. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  433. def set_vocab(self):
  434. self._set_vocab_gpt2()
  435. def prepare_metadata(self, vocab_only: bool):
  436. super().prepare_metadata(vocab_only=vocab_only)
  437. total_params = self.gguf_writer.get_total_parameter_count()[0]
  438. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  439. output_type: str = self.ftype.name.partition("_")[2]
  440. # Filename Output
  441. if self.fname_out.is_dir():
  442. # Generate default filename based on model specification and available metadata
  443. if not vocab_only:
  444. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  445. else:
  446. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  447. # Use the default filename
  448. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  449. else:
  450. # Output path is a custom defined templated filename
  451. # Note: `not is_dir()` is used because `.is_file()` will not detect
  452. # file template strings as it doesn't actually exist as a file
  453. # Process templated file name with the output ftype, useful with the "auto" ftype
  454. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  455. logger.info("Set model tokenizer")
  456. self.set_vocab()
  457. def set_gguf_parameters(self):
  458. self.gguf_writer.add_block_count(self.block_count)
  459. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  460. self.gguf_writer.add_context_length(n_ctx)
  461. logger.info(f"gguf: context length = {n_ctx}")
  462. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  463. self.gguf_writer.add_embedding_length(n_embd)
  464. logger.info(f"gguf: embedding length = {n_embd}")
  465. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  466. self.gguf_writer.add_feed_forward_length(n_ff)
  467. logger.info(f"gguf: feed forward length = {n_ff}")
  468. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  469. self.gguf_writer.add_head_count(n_head)
  470. logger.info(f"gguf: head count = {n_head}")
  471. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  472. self.gguf_writer.add_head_count_kv(n_head_kv)
  473. logger.info(f"gguf: key-value head count = {n_head_kv}")
  474. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  475. self.gguf_writer.add_rope_freq_base(rope_theta)
  476. logger.info(f"gguf: rope theta = {rope_theta}")
  477. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  478. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  479. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  480. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  481. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  482. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  483. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  484. self.gguf_writer.add_expert_count(n_experts)
  485. logger.info(f"gguf: expert count = {n_experts}")
  486. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  487. self.gguf_writer.add_expert_used_count(n_experts_used)
  488. logger.info(f"gguf: experts used count = {n_experts_used}")
  489. if (head_dim := self.hparams.get("head_dim")) is not None:
  490. self.gguf_writer.add_key_length(head_dim)
  491. self.gguf_writer.add_value_length(head_dim)
  492. self.gguf_writer.add_file_type(self.ftype)
  493. logger.info(f"gguf: file type = {self.ftype}")
  494. def write_vocab(self):
  495. if len(self.gguf_writer.tensors) != 1:
  496. raise ValueError('Splitting the vocabulary is not supported')
  497. self.prepare_metadata(vocab_only=True)
  498. self.gguf_writer.write_header_to_file(path=self.fname_out)
  499. self.gguf_writer.write_kv_data_to_file()
  500. self.gguf_writer.close()
  501. def does_token_look_special(self, token: str | bytes) -> bool:
  502. if isinstance(token, (bytes, bytearray)):
  503. token_text = token.decode(encoding="utf-8")
  504. elif isinstance(token, memoryview):
  505. token_text = token.tobytes().decode(encoding="utf-8")
  506. else:
  507. token_text = token
  508. # Some models mark some added tokens which ought to be control tokens as not special.
  509. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  510. seems_special = token_text in (
  511. "<pad>", # deepseek-coder
  512. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  513. )
  514. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  515. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  516. # TODO: should these be marked as UNUSED instead? (maybe not)
  517. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  518. return seems_special
  519. # used for GPT-2 BPE and WordPiece vocabs
  520. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  521. tokens: list[str] = []
  522. toktypes: list[int] = []
  523. from transformers import AutoTokenizer
  524. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  525. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  526. assert max(tokenizer.vocab.values()) < vocab_size
  527. tokpre = self.get_vocab_base_pre(tokenizer)
  528. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  529. added_vocab = tokenizer.get_added_vocab()
  530. added_tokens_decoder = tokenizer.added_tokens_decoder
  531. for i in range(vocab_size):
  532. if i not in reverse_vocab:
  533. tokens.append(f"[PAD{i}]")
  534. toktypes.append(gguf.TokenType.UNUSED)
  535. else:
  536. token: str = reverse_vocab[i]
  537. if token in added_vocab:
  538. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  539. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  540. if not added_tokens_decoder[i].normalized:
  541. previous_token = token
  542. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  543. if previous_token != token:
  544. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  545. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  546. toktypes.append(gguf.TokenType.CONTROL)
  547. else:
  548. # NOTE: this was added for Gemma.
  549. # Encoding and decoding the tokens above isn't sufficient for this case.
  550. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  551. toktypes.append(gguf.TokenType.USER_DEFINED)
  552. else:
  553. toktypes.append(gguf.TokenType.NORMAL)
  554. tokens.append(token)
  555. return tokens, toktypes, tokpre
  556. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  557. # do not modify it manually!
  558. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  559. # Marker: Start get_vocab_base_pre
  560. def get_vocab_base_pre(self, tokenizer) -> str:
  561. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  562. # is specific for the BPE pre-tokenizer used by the model
  563. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  564. # use in llama.cpp to implement the same pre-tokenizer
  565. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  566. chktok = tokenizer.encode(chktxt)
  567. chkhsh = sha256(str(chktok).encode()).hexdigest()
  568. logger.debug(f"chktok: {chktok}")
  569. logger.debug(f"chkhsh: {chkhsh}")
  570. res = None
  571. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  572. # or pull the latest version of the model from Huggingface
  573. # don't edit the hashes manually!
  574. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  575. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  576. res = "chatglm-bpe"
  577. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  578. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  579. res = "chatglm-bpe"
  580. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  581. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  582. res = "glm4"
  583. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  584. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  585. res = "glm4"
  586. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  587. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  588. res = "minerva-7b"
  589. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  590. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  591. res = "hunyuan"
  592. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  593. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  594. res = "hunyuan-dense"
  595. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  596. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  597. res = "falcon-h1"
  598. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  599. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  600. res = "falcon-h1"
  601. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  602. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  603. res = "falcon-h1"
  604. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  605. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  606. res = "falcon-h1"
  607. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  608. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  609. res = "kimi-k2"
  610. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  611. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  612. res = "qwen2"
  613. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  614. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  615. res = "llama-bpe"
  616. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  617. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  618. res = "deepseek-llm"
  619. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  620. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  621. res = "deepseek-coder"
  622. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  623. # ref: https://huggingface.co/tiiuae/falcon-7b
  624. res = "falcon"
  625. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  626. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  627. res = "bert-bge"
  628. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  629. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  630. res = "falcon3"
  631. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  632. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  633. res = "bert-bge-large"
  634. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  635. # ref: https://huggingface.co/mosaicml/mpt-7b
  636. res = "mpt"
  637. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  638. # ref: https://huggingface.co/bigcode/starcoder2-3b
  639. res = "starcoder"
  640. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  641. # ref: https://huggingface.co/openai-community/gpt2
  642. res = "gpt-2"
  643. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  644. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  645. res = "stablelm2"
  646. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  647. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  648. res = "refact"
  649. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  650. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  651. res = "command-r"
  652. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  653. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  654. res = "qwen2"
  655. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  656. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  657. res = "olmo"
  658. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  659. # ref: https://huggingface.co/databricks/dbrx-base
  660. res = "dbrx"
  661. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  662. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  663. res = "jina-v1-en"
  664. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  665. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  666. res = "jina-v2-en"
  667. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  668. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  669. res = "jina-v2-es"
  670. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  671. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  672. res = "jina-v2-de"
  673. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  674. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  675. res = "smaug-bpe"
  676. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  677. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  678. res = "poro-chat"
  679. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  680. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  681. res = "jina-v2-code"
  682. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  683. # ref: https://huggingface.co/LumiOpen/Viking-7B
  684. res = "viking"
  685. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  686. # ref: https://huggingface.co/core42/jais-13b
  687. res = "jais"
  688. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  689. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  690. res = "codeshell"
  691. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  692. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  693. res = "tekken"
  694. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  695. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  696. res = "smollm"
  697. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  698. # ref: https://huggingface.co/bigscience/bloom
  699. res = "bloom"
  700. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  701. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  702. res = "gpt3-finnish"
  703. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  704. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  705. res = "exaone"
  706. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  707. # ref: https://huggingface.co/microsoft/phi-2
  708. res = "phi-2"
  709. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  710. # ref: https://huggingface.co/facebook/chameleon-7b
  711. res = "chameleon"
  712. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  713. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  714. res = "roberta-bpe"
  715. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  716. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  717. res = "gigachat"
  718. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  719. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  720. res = "megrez"
  721. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  722. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  723. res = "deepseek-v3"
  724. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  725. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  726. res = "deepseek-r1-qwen"
  727. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  728. # ref: https://huggingface.co/Xenova/gpt-4o
  729. res = "gpt-4o"
  730. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  731. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  732. res = "superbpe"
  733. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  734. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  735. res = "trillion"
  736. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  737. # ref: https://huggingface.co/inclusionAI/Ling-lite
  738. res = "bailingmoe"
  739. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  740. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  741. res = "llama4"
  742. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  743. # ref: https://huggingface.co/mistral-community/pixtral-12b
  744. res = "pixtral"
  745. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  746. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  747. res = "seed-coder"
  748. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  749. # ref: https://huggingface.co/skt/A.X-4.0
  750. res = "a.x-4.0"
  751. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  752. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  753. res = "midm-2.0"
  754. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  755. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  756. res = "lfm2"
  757. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  758. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  759. res = "exaone4"
  760. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  761. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  762. res = "mellum"
  763. if res is None:
  764. logger.warning("\n")
  765. logger.warning("**************************************************************************************")
  766. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  767. logger.warning("** There are 2 possible reasons for this:")
  768. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  769. logger.warning("** - the pre-tokenization config has changed upstream")
  770. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  771. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  772. logger.warning("**")
  773. logger.warning(f"** chkhsh: {chkhsh}")
  774. logger.warning("**************************************************************************************")
  775. logger.warning("\n")
  776. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  777. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  778. logger.debug(f"chkhsh: {chkhsh}")
  779. return res
  780. # Marker: End get_vocab_base_pre
  781. def _set_vocab_none(self) -> None:
  782. self.gguf_writer.add_tokenizer_model("none")
  783. def _set_vocab_gpt2(self) -> None:
  784. tokens, toktypes, tokpre = self.get_vocab_base()
  785. self.gguf_writer.add_tokenizer_model("gpt2")
  786. self.gguf_writer.add_tokenizer_pre(tokpre)
  787. self.gguf_writer.add_token_list(tokens)
  788. self.gguf_writer.add_token_types(toktypes)
  789. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  790. special_vocab.add_to_gguf(self.gguf_writer)
  791. def _set_vocab_qwen(self):
  792. dir_model = self.dir_model
  793. hparams = self.hparams
  794. tokens: list[str] = []
  795. toktypes: list[int] = []
  796. from transformers import AutoTokenizer
  797. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  798. vocab_size = hparams["vocab_size"]
  799. assert max(tokenizer.get_vocab().values()) < vocab_size
  800. tokpre = self.get_vocab_base_pre(tokenizer)
  801. merges = []
  802. vocab = {}
  803. mergeable_ranks = tokenizer.mergeable_ranks
  804. for token, rank in mergeable_ranks.items():
  805. vocab[QwenModel.token_bytes_to_string(token)] = rank
  806. if len(token) == 1:
  807. continue
  808. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  809. assert len(merged) == 2
  810. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  811. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  812. added_vocab = tokenizer.special_tokens
  813. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  814. for i in range(vocab_size):
  815. if i not in reverse_vocab:
  816. tokens.append(f"[PAD{i}]")
  817. toktypes.append(gguf.TokenType.UNUSED)
  818. elif reverse_vocab[i] in added_vocab:
  819. tokens.append(reverse_vocab[i])
  820. toktypes.append(gguf.TokenType.CONTROL)
  821. else:
  822. tokens.append(reverse_vocab[i])
  823. toktypes.append(gguf.TokenType.NORMAL)
  824. self.gguf_writer.add_tokenizer_model("gpt2")
  825. self.gguf_writer.add_tokenizer_pre(tokpre)
  826. self.gguf_writer.add_token_list(tokens)
  827. self.gguf_writer.add_token_types(toktypes)
  828. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  829. special_vocab.merges = merges
  830. # only add special tokens when they were not already loaded from config.json
  831. if len(special_vocab.special_token_ids) == 0:
  832. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  833. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  834. # this one is usually not in config.json anyway
  835. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  836. special_vocab.add_to_gguf(self.gguf_writer)
  837. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  838. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  839. self.gguf_writer.add_tokenizer_model("llama")
  840. self.gguf_writer.add_tokenizer_pre("default")
  841. self.gguf_writer.add_token_list(tokens)
  842. self.gguf_writer.add_token_scores(scores)
  843. self.gguf_writer.add_token_types(toktypes)
  844. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  845. special_vocab.add_to_gguf(self.gguf_writer)
  846. def _create_vocab_sentencepiece(self):
  847. from sentencepiece import SentencePieceProcessor
  848. tokenizer_path = self.dir_model / 'tokenizer.model'
  849. if not tokenizer_path.is_file():
  850. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  851. tokenizer = SentencePieceProcessor()
  852. tokenizer.LoadFromFile(str(tokenizer_path))
  853. vocab_size = self.find_hparam([
  854. "vocab_size_per_layer_input", # gemma3n
  855. "vocab_size",
  856. ], optional=True) or tokenizer.vocab_size()
  857. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  858. scores: list[float] = [-10000.0] * vocab_size
  859. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  860. for token_id in range(tokenizer.vocab_size()):
  861. if token_id >= vocab_size:
  862. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  863. break
  864. piece = tokenizer.IdToPiece(token_id)
  865. text = piece.encode("utf-8")
  866. score = tokenizer.GetScore(token_id)
  867. toktype = SentencePieceTokenTypes.NORMAL
  868. if tokenizer.IsUnknown(token_id):
  869. toktype = SentencePieceTokenTypes.UNKNOWN
  870. elif tokenizer.IsControl(token_id):
  871. toktype = SentencePieceTokenTypes.CONTROL
  872. elif tokenizer.IsUnused(token_id):
  873. toktype = SentencePieceTokenTypes.UNUSED
  874. elif tokenizer.IsByte(token_id):
  875. toktype = SentencePieceTokenTypes.BYTE
  876. tokens[token_id] = text
  877. scores[token_id] = score
  878. toktypes[token_id] = toktype
  879. added_tokens_file = self.dir_model / 'added_tokens.json'
  880. if added_tokens_file.is_file():
  881. with open(added_tokens_file, "r", encoding="utf-8") as f:
  882. added_tokens_json = json.load(f)
  883. for key in added_tokens_json:
  884. token_id = added_tokens_json[key]
  885. if token_id >= vocab_size:
  886. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  887. continue
  888. tokens[token_id] = key.encode("utf-8")
  889. scores[token_id] = -1000.0
  890. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  891. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  892. if tokenizer_config_file.is_file():
  893. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  894. tokenizer_config_json = json.load(f)
  895. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  896. for token_id, token_data in added_tokens_decoder.items():
  897. token_id = int(token_id)
  898. token: str = token_data["content"]
  899. if token_id >= vocab_size:
  900. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  901. continue
  902. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  903. if tokens[token_id] != token.encode("utf-8"):
  904. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  905. if token_data.get("special") or self.does_token_look_special(token):
  906. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  907. else:
  908. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  909. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  910. scores[token_id] = -1000.0
  911. tokens[token_id] = token.encode("utf-8")
  912. if vocab_size > len(tokens):
  913. pad_count = vocab_size - len(tokens)
  914. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  915. for i in range(1, pad_count + 1):
  916. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  917. scores.append(-1000.0)
  918. toktypes.append(SentencePieceTokenTypes.UNUSED)
  919. return tokens, scores, toktypes
  920. def _set_vocab_llama_hf(self):
  921. vocab = gguf.LlamaHfVocab(self.dir_model)
  922. tokens = []
  923. scores = []
  924. toktypes = []
  925. for text, score, toktype in vocab.all_tokens():
  926. tokens.append(text)
  927. scores.append(score)
  928. toktypes.append(toktype)
  929. assert len(tokens) == vocab.vocab_size
  930. self.gguf_writer.add_tokenizer_model("llama")
  931. self.gguf_writer.add_tokenizer_pre("default")
  932. self.gguf_writer.add_token_list(tokens)
  933. self.gguf_writer.add_token_scores(scores)
  934. self.gguf_writer.add_token_types(toktypes)
  935. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  936. special_vocab.add_to_gguf(self.gguf_writer)
  937. def _set_vocab_rwkv_world(self):
  938. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  939. vocab_size = self.hparams.get("vocab_size", 65536)
  940. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  941. toktypes: list[int] = [gguf.TokenType.CONTROL]
  942. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  943. lines = f.readlines()
  944. for line in lines:
  945. parts = line.split(' ')
  946. assert len(parts) >= 3
  947. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  948. token = token.encode("utf-8") if isinstance(token, str) else token
  949. assert isinstance(token, bytes)
  950. assert len(token) == token_len
  951. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  952. tokens.append(token_text.encode("utf-8"))
  953. toktypes.append(gguf.TokenType.NORMAL)
  954. remainder = vocab_size - len(tokens)
  955. assert remainder >= 0
  956. for i in range(len(tokens), vocab_size):
  957. tokens.append(f"[PAD{i}]".encode("utf-8"))
  958. toktypes.append(gguf.TokenType.UNUSED)
  959. self.gguf_writer.add_tokenizer_model("rwkv")
  960. self.gguf_writer.add_token_list(tokens)
  961. self.gguf_writer.add_token_types(toktypes)
  962. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  963. if special_vocab.chat_template is None:
  964. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  965. if template_path.is_file():
  966. with open(template_path, "r", encoding="utf-8") as f:
  967. template = f.read()
  968. else:
  969. template = "rwkv-world"
  970. special_vocab.chat_template = template
  971. # hack: Add '\n\n' as the EOT token to make it chat normally
  972. special_vocab._set_special_token("eot", 261)
  973. # hack: Override these as they have already been set (incorrectly)
  974. special_vocab.special_token_ids["bos"] = 0
  975. special_vocab.special_token_ids["eos"] = 0
  976. special_vocab.add_to_gguf(self.gguf_writer)
  977. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  978. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  979. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  980. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  981. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  982. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  983. assert field # tokenizer model
  984. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  985. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  986. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  987. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  988. assert field # token list
  989. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  990. if model_name == "llama-spm":
  991. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  992. assert field # token scores
  993. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  994. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  995. assert field # token types
  996. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  997. if model_name != "llama-spm":
  998. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  999. assert field # token merges
  1000. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1001. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1002. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1003. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1004. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1005. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1006. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1007. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1008. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1009. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1010. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1011. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1012. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1013. def _try_set_pooling_type(self) -> None:
  1014. # get pooling path
  1015. pooling_path = None
  1016. module_path = self.dir_model / "modules.json"
  1017. if module_path.is_file():
  1018. with open(module_path, encoding="utf-8") as f:
  1019. modules = json.load(f)
  1020. for mod in modules:
  1021. if mod["type"] == "sentence_transformers.models.Pooling":
  1022. pooling_path = mod["path"]
  1023. break
  1024. # get pooling type
  1025. if pooling_path is not None:
  1026. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1027. pooling = json.load(f)
  1028. if pooling["pooling_mode_mean_tokens"]:
  1029. pooling_type = gguf.PoolingType.MEAN
  1030. elif pooling["pooling_mode_cls_token"]:
  1031. pooling_type = gguf.PoolingType.CLS
  1032. elif pooling["pooling_mode_lasttoken"]:
  1033. pooling_type = gguf.PoolingType.LAST
  1034. else:
  1035. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1036. self.gguf_writer.add_pooling_type(pooling_type)
  1037. class MmprojModel(ModelBase):
  1038. model_type = ModelType.MMPROJ
  1039. model_arch = gguf.MODEL_ARCH.MMPROJ
  1040. preprocessor_config: dict[str, Any]
  1041. global_config: dict[str, Any]
  1042. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1043. has_vision_encoder: bool = True # by default
  1044. has_audio_encoder: bool = False
  1045. # for models having multiple encoders, we need to separate their hparams
  1046. hparams_vision: dict[str, Any] | None = None
  1047. hparams_audio: dict[str, Any] | None = None
  1048. def __init__(self, *args, **kwargs):
  1049. super().__init__(*args, **kwargs)
  1050. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1051. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1052. # get n_embd of the text model
  1053. if not self.is_mistral_format:
  1054. if "text_config" not in self.hparams:
  1055. self.hparams["text_config"] = {}
  1056. if "audio_config" not in self.hparams:
  1057. self.hparams["audio_config"] = {}
  1058. text_config = {**self.hparams, **self.hparams["text_config"]}
  1059. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1060. else:
  1061. text_config = {
  1062. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1063. }
  1064. self.n_embd_text = text_config.get("hidden_dim", 0)
  1065. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1066. # move vision config to the top level, while preserving the original hparams in global_config
  1067. import copy
  1068. self.global_config = copy.deepcopy(self.hparams)
  1069. self.hparams_vision = self.get_vision_config()
  1070. self.hparams_audio = self.get_audio_config()
  1071. if self.hparams_vision is None and self.hparams_audio is None:
  1072. raise ValueError("vision_config / audio_config not found in hparams")
  1073. # for compat with vision-only models
  1074. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1075. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1076. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1077. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1078. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1079. # load preprocessor config
  1080. if not self.is_mistral_format:
  1081. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1082. self.preprocessor_config = json.load(f)
  1083. def get_vision_config(self) -> dict[str, Any] | None:
  1084. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1085. return self.global_config.get(config_name)
  1086. def get_audio_config(self) -> dict[str, Any] | None:
  1087. return self.global_config.get("audio_config")
  1088. def set_type(self):
  1089. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1090. def set_gguf_parameters(self):
  1091. self.gguf_writer.add_file_type(self.ftype)
  1092. if self.has_vision_encoder:
  1093. self.gguf_writer.add_clip_has_vision_encoder(True)
  1094. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1095. # vision config
  1096. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1097. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1098. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1099. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1100. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1101. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1102. # preprocessor config
  1103. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1104. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1105. self.gguf_writer.add_vision_image_mean(image_mean)
  1106. self.gguf_writer.add_vision_image_std(image_std)
  1107. if self.has_audio_encoder:
  1108. self.gguf_writer.add_clip_has_audio_encoder(True)
  1109. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1110. # audio config
  1111. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1112. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1113. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1114. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1115. if not self.has_vision_encoder and not self.has_audio_encoder:
  1116. raise ValueError("MmprojModel must have either vision or audio encoder")
  1117. def write_vocab(self):
  1118. raise ValueError("MmprojModel does not support vocab writing")
  1119. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1120. assert self.hparams_vision is not None
  1121. return self._find_param(self.hparams_vision, keys, optional)
  1122. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1123. assert self.hparams_audio is not None
  1124. return self._find_param(self.hparams_audio, keys, optional)
  1125. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1126. key = next((k for k in keys if k in obj), None)
  1127. if key is not None:
  1128. return obj[key]
  1129. if optional:
  1130. return None
  1131. raise KeyError(f"could not find any of: {keys}")
  1132. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1133. del bid, name, n_dims # unused
  1134. if ".patch_embd.weight" in new_name:
  1135. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1136. return False
  1137. @ModelBase.register("GPTNeoXForCausalLM")
  1138. class GPTNeoXModel(TextModel):
  1139. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1140. def set_gguf_parameters(self):
  1141. block_count = self.hparams["num_hidden_layers"]
  1142. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1143. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1144. self.gguf_writer.add_block_count(block_count)
  1145. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1146. self.gguf_writer.add_rope_dimension_count(
  1147. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1148. )
  1149. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1150. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1151. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1152. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1153. del bid # unused
  1154. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1155. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1156. tensors: list[tuple[str, Tensor]] = []
  1157. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1158. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1159. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1160. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1161. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1162. data_torch = torch.cat(
  1163. (
  1164. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1165. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1166. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1167. ),
  1168. dim=0,
  1169. )
  1170. logger.info("re-format attention.linear_qkv.weight")
  1171. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1172. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1173. data_torch = torch.cat(
  1174. (
  1175. qkv_bias[:, 0, :].reshape((n_embed,)),
  1176. qkv_bias[:, 1, :].reshape((n_embed,)),
  1177. qkv_bias[:, 2, :].reshape((n_embed,)),
  1178. ),
  1179. dim=0,
  1180. )
  1181. logger.info("re-format attention.linear_qkv.bias")
  1182. tensors.append((self.map_tensor_name(name), data_torch))
  1183. return tensors
  1184. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1185. class BloomModel(TextModel):
  1186. model_arch = gguf.MODEL_ARCH.BLOOM
  1187. def set_gguf_parameters(self):
  1188. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1189. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1190. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1191. self.gguf_writer.add_embedding_length(n_embed)
  1192. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1193. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1194. self.gguf_writer.add_head_count(n_head)
  1195. self.gguf_writer.add_head_count_kv(n_head)
  1196. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1197. self.gguf_writer.add_file_type(self.ftype)
  1198. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1199. del bid # unused
  1200. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1201. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1202. name = re.sub(r'transformer\.', '', name)
  1203. tensors: list[tuple[str, Tensor]] = []
  1204. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1205. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1206. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1207. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1208. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1209. data_torch = torch.cat(
  1210. (
  1211. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1212. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1213. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1214. ),
  1215. dim=0,
  1216. )
  1217. logger.info("re-format attention.linear_qkv.weight")
  1218. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1219. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1220. data_torch = torch.cat(
  1221. (
  1222. qkv_bias[:, 0, :].reshape((n_embed,)),
  1223. qkv_bias[:, 1, :].reshape((n_embed,)),
  1224. qkv_bias[:, 2, :].reshape((n_embed,)),
  1225. ),
  1226. dim=0,
  1227. )
  1228. logger.info("re-format attention.linear_qkv.bias")
  1229. tensors.append((self.map_tensor_name(name), data_torch))
  1230. return tensors
  1231. @ModelBase.register("MPTForCausalLM")
  1232. class MPTModel(TextModel):
  1233. model_arch = gguf.MODEL_ARCH.MPT
  1234. def set_vocab(self):
  1235. try:
  1236. self._set_vocab_gpt2()
  1237. except Exception:
  1238. # Fallback for SEA-LION model
  1239. self._set_vocab_sentencepiece()
  1240. self.gguf_writer.add_add_bos_token(False)
  1241. self.gguf_writer.add_pad_token_id(3)
  1242. self.gguf_writer.add_eos_token_id(1)
  1243. self.gguf_writer.add_unk_token_id(0)
  1244. def set_gguf_parameters(self):
  1245. block_count = self.hparams["n_layers"]
  1246. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1247. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1248. self.gguf_writer.add_block_count(block_count)
  1249. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1250. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1251. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1252. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1253. self.gguf_writer.add_layer_norm_eps(1e-5)
  1254. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1255. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1256. if self.hparams["attn_config"]["alibi"]:
  1257. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1258. else:
  1259. self.gguf_writer.add_max_alibi_bias(0.0)
  1260. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1261. del bid # unused
  1262. if "scales" in name:
  1263. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1264. new_name = new_name.replace("scales", "act.scales")
  1265. else:
  1266. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1267. return [(new_name, data_torch)]
  1268. @ModelBase.register("OrionForCausalLM")
  1269. class OrionModel(TextModel):
  1270. model_arch = gguf.MODEL_ARCH.ORION
  1271. def set_vocab(self):
  1272. self._set_vocab_sentencepiece()
  1273. def set_gguf_parameters(self):
  1274. block_count = self.hparams["num_hidden_layers"]
  1275. head_count = self.hparams["num_attention_heads"]
  1276. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1277. ctx_length = 0
  1278. if "max_sequence_length" in self.hparams:
  1279. ctx_length = self.hparams["max_sequence_length"]
  1280. elif "max_position_embeddings" in self.hparams:
  1281. ctx_length = self.hparams["max_position_embeddings"]
  1282. elif "model_max_length" in self.hparams:
  1283. ctx_length = self.hparams["model_max_length"]
  1284. else:
  1285. raise ValueError("gguf: can not find ctx length parameter.")
  1286. self.gguf_writer.add_file_type(self.ftype)
  1287. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1288. self.gguf_writer.add_context_length(ctx_length)
  1289. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1290. self.gguf_writer.add_block_count(block_count)
  1291. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1292. self.gguf_writer.add_head_count(head_count)
  1293. self.gguf_writer.add_head_count_kv(head_count_kv)
  1294. # note: config provides rms norm but it is actually layer norm
  1295. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1296. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1297. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1298. class BaichuanModel(TextModel):
  1299. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1300. def set_vocab(self):
  1301. self._set_vocab_sentencepiece()
  1302. def set_gguf_parameters(self):
  1303. block_count = self.hparams["num_hidden_layers"]
  1304. head_count = self.hparams["num_attention_heads"]
  1305. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1306. ctx_length = 0
  1307. if "max_sequence_length" in self.hparams:
  1308. ctx_length = self.hparams["max_sequence_length"]
  1309. elif "max_position_embeddings" in self.hparams:
  1310. ctx_length = self.hparams["max_position_embeddings"]
  1311. elif "model_max_length" in self.hparams:
  1312. ctx_length = self.hparams["model_max_length"]
  1313. else:
  1314. raise ValueError("gguf: can not find ctx length parameter.")
  1315. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1316. self.gguf_writer.add_context_length(ctx_length)
  1317. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1318. self.gguf_writer.add_block_count(block_count)
  1319. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1320. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1321. self.gguf_writer.add_head_count(head_count)
  1322. self.gguf_writer.add_head_count_kv(head_count_kv)
  1323. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1324. self.gguf_writer.add_file_type(self.ftype)
  1325. rope_scaling = self.hparams.get("rope_scaling") or {}
  1326. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1327. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1328. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1330. head_count = self.hparams["num_attention_heads"]
  1331. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1332. tensors: list[tuple[str, Tensor]] = []
  1333. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1334. logger.info(f"Unpacking and permuting layer {bid}")
  1335. tensors = [
  1336. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1337. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1338. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1339. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1340. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1341. self._reverse_hf_part(data_torch, 2)),
  1342. ]
  1343. else:
  1344. tensors = [(self.map_tensor_name(name), data_torch)]
  1345. return tensors
  1346. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1347. if n_kv_head is not None and n_head != n_kv_head:
  1348. n_head //= n_kv_head
  1349. return (
  1350. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1351. .swapaxes(1, 2)
  1352. .reshape(weights.shape)
  1353. )
  1354. def _reverse_hf_permute_part(
  1355. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1356. ) -> Tensor:
  1357. r = weights.shape[0] // 3
  1358. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1359. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1360. r = weights.shape[0] // 3
  1361. return weights[r * n_part:r * n_part + r, ...]
  1362. @ModelBase.register("XverseForCausalLM")
  1363. class XverseModel(TextModel):
  1364. model_arch = gguf.MODEL_ARCH.XVERSE
  1365. def set_vocab(self):
  1366. assert (self.dir_model / "tokenizer.json").is_file()
  1367. dir_model = self.dir_model
  1368. hparams = self.hparams
  1369. tokens: list[bytes] = []
  1370. toktypes: list[int] = []
  1371. from transformers import AutoTokenizer
  1372. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1373. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1374. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1375. # because vocab_size is the count of items, and indexes start at 0.
  1376. max_vocab_index = max(tokenizer.get_vocab().values())
  1377. if max_vocab_index >= vocab_size:
  1378. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1379. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1380. added_vocab = tokenizer.get_added_vocab()
  1381. for token_id in range(vocab_size):
  1382. token_text = reverse_vocab[token_id].encode('utf-8')
  1383. # replace "\x00" to string with length > 0
  1384. if token_text == b"\x00":
  1385. toktype = gguf.TokenType.BYTE # special
  1386. token_text = f"<{token_text}>".encode('utf-8')
  1387. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1388. toktype = gguf.TokenType.BYTE # special
  1389. elif reverse_vocab[token_id] in added_vocab:
  1390. if tokenizer.added_tokens_decoder[token_id].special:
  1391. toktype = gguf.TokenType.CONTROL
  1392. else:
  1393. toktype = gguf.TokenType.USER_DEFINED
  1394. else:
  1395. toktype = gguf.TokenType.NORMAL
  1396. tokens.append(token_text)
  1397. toktypes.append(toktype)
  1398. self.gguf_writer.add_tokenizer_model("llama")
  1399. self.gguf_writer.add_tokenizer_pre("default")
  1400. self.gguf_writer.add_token_list(tokens)
  1401. self.gguf_writer.add_token_types(toktypes)
  1402. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1403. special_vocab.add_to_gguf(self.gguf_writer)
  1404. def set_gguf_parameters(self):
  1405. block_count = self.hparams["num_hidden_layers"]
  1406. head_count = self.hparams["num_attention_heads"]
  1407. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1408. ctx_length = 0
  1409. if "max_sequence_length" in self.hparams:
  1410. ctx_length = self.hparams["max_sequence_length"]
  1411. elif "max_position_embeddings" in self.hparams:
  1412. ctx_length = self.hparams["max_position_embeddings"]
  1413. elif "model_max_length" in self.hparams:
  1414. ctx_length = self.hparams["model_max_length"]
  1415. else:
  1416. raise ValueError("gguf: can not find ctx length parameter.")
  1417. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1418. self.gguf_writer.add_context_length(ctx_length)
  1419. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1420. self.gguf_writer.add_block_count(block_count)
  1421. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1422. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1423. self.gguf_writer.add_head_count(head_count)
  1424. self.gguf_writer.add_head_count_kv(head_count_kv)
  1425. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1426. self.gguf_writer.add_file_type(self.ftype)
  1427. rope_scaling = self.hparams.get("rope_scaling") or {}
  1428. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1429. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1430. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1432. del bid # unused
  1433. head_count = self.hparams["num_attention_heads"]
  1434. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1435. # HF models permute some of the tensors, so we need to undo that
  1436. if name.endswith("q_proj.weight"):
  1437. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1438. if name.endswith("k_proj.weight"):
  1439. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1440. return [(self.map_tensor_name(name), data_torch)]
  1441. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1442. if n_kv_head is not None and n_head != n_kv_head:
  1443. n_head //= n_kv_head
  1444. return (
  1445. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1446. .swapaxes(1, 2)
  1447. .reshape(weights.shape)
  1448. )
  1449. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1450. class FalconModel(TextModel):
  1451. model_arch = gguf.MODEL_ARCH.FALCON
  1452. def set_gguf_parameters(self):
  1453. block_count = self.hparams.get("num_hidden_layers")
  1454. if block_count is None:
  1455. block_count = self.hparams["n_layer"] # old name
  1456. n_head = self.hparams.get("num_attention_heads")
  1457. if n_head is None:
  1458. n_head = self.hparams["n_head"] # old name
  1459. n_head_kv = self.hparams.get("num_kv_heads")
  1460. if n_head_kv is None:
  1461. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1462. self.gguf_writer.add_context_length(2048) # not in config.json
  1463. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1464. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1465. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1466. self.gguf_writer.add_block_count(block_count)
  1467. self.gguf_writer.add_head_count(n_head)
  1468. self.gguf_writer.add_head_count_kv(n_head_kv)
  1469. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1470. self.gguf_writer.add_file_type(self.ftype)
  1471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1472. del bid # unused
  1473. # QKV tensor transform
  1474. # The original query_key_value tensor contains n_head_kv "kv groups",
  1475. # each consisting of n_head/n_head_kv query weights followed by one key
  1476. # and one value weight (shared by all query heads in the kv group).
  1477. # This layout makes it a big pain to work with in GGML.
  1478. # So we rearrange them here,, so that we have n_head query weights
  1479. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1480. # in contiguous fashion.
  1481. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1482. if "query_key_value" in name:
  1483. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1484. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1485. head_dim = self.hparams["hidden_size"] // n_head
  1486. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1487. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1488. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1489. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1490. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1491. return [(self.map_tensor_name(name), data_torch)]
  1492. @ModelBase.register("GPTBigCodeForCausalLM")
  1493. class StarCoderModel(TextModel):
  1494. model_arch = gguf.MODEL_ARCH.STARCODER
  1495. def set_gguf_parameters(self):
  1496. block_count = self.hparams["n_layer"]
  1497. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1498. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1499. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1500. self.gguf_writer.add_block_count(block_count)
  1501. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1502. self.gguf_writer.add_head_count_kv(1)
  1503. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1504. self.gguf_writer.add_file_type(self.ftype)
  1505. @ModelBase.register("GPTRefactForCausalLM")
  1506. class RefactModel(TextModel):
  1507. model_arch = gguf.MODEL_ARCH.REFACT
  1508. def set_vocab(self):
  1509. super().set_vocab()
  1510. # TODO: how to determine special FIM tokens automatically?
  1511. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1512. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1513. special_vocab._set_special_token("prefix", 1)
  1514. special_vocab._set_special_token("suffix", 3)
  1515. special_vocab._set_special_token("middle", 2)
  1516. special_vocab.chat_template = None # do not add it twice
  1517. special_vocab.add_to_gguf(self.gguf_writer)
  1518. def set_gguf_parameters(self):
  1519. hidden_dim = self.hparams["n_embd"]
  1520. inner_dim = 4 * hidden_dim
  1521. hidden_dim = int(2 * inner_dim / 3)
  1522. multiple_of = 256
  1523. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1524. block_count = self.hparams["n_layer"]
  1525. # refact uses Alibi. So this is from config.json which might be used by training.
  1526. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1527. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1528. self.gguf_writer.add_feed_forward_length(ff_dim)
  1529. self.gguf_writer.add_block_count(block_count)
  1530. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1531. self.gguf_writer.add_head_count_kv(1)
  1532. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1533. self.gguf_writer.add_file_type(self.ftype)
  1534. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1535. hidden_dim = self.hparams["n_embd"]
  1536. inner_dim = 4 * hidden_dim
  1537. hidden_dim = int(2 * inner_dim / 3)
  1538. multiple_of = 256
  1539. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1540. n_head = self.hparams["n_head"]
  1541. n_head_kv = 1
  1542. head_dim = self.hparams["n_embd"] // n_head
  1543. tensors: list[tuple[str, Tensor]] = []
  1544. if bid is not None:
  1545. if name == f"transformer.h.{bid}.attn.kv.weight":
  1546. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1547. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1548. elif name == f"transformer.h.{bid}.attn.q.weight":
  1549. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1550. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1551. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1552. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1553. if len(tensors) == 0:
  1554. tensors.append((self.map_tensor_name(name), data_torch))
  1555. return tensors
  1556. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1557. class StableLMModel(TextModel):
  1558. model_arch = gguf.MODEL_ARCH.STABLELM
  1559. def set_vocab(self):
  1560. if (self.dir_model / "tokenizer.json").is_file():
  1561. self._set_vocab_gpt2()
  1562. else:
  1563. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1564. self._set_vocab_qwen()
  1565. def set_gguf_parameters(self):
  1566. hparams = self.hparams
  1567. block_count = hparams["num_hidden_layers"]
  1568. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1569. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1570. self.gguf_writer.add_block_count(block_count)
  1571. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1572. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1573. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1574. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1575. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1576. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1577. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1578. self.gguf_writer.add_file_type(self.ftype)
  1579. _q_norms: list[dict[str, Tensor]] | None = None
  1580. _k_norms: list[dict[str, Tensor]] | None = None
  1581. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1582. n_head = self.hparams["num_attention_heads"]
  1583. n_kv_head = self.hparams["num_key_value_heads"]
  1584. if name.find("q_layernorm.norms") != -1:
  1585. assert bid is not None
  1586. if self._q_norms is None:
  1587. self._q_norms = [{} for _ in range(self.block_count)]
  1588. self._q_norms[bid][name] = data_torch
  1589. if len(self._q_norms[bid]) >= n_head:
  1590. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1591. else:
  1592. return []
  1593. if name.find("k_layernorm.norms") != -1:
  1594. assert bid is not None
  1595. if self._k_norms is None:
  1596. self._k_norms = [{} for _ in range(self.block_count)]
  1597. self._k_norms[bid][name] = data_torch
  1598. if len(self._k_norms[bid]) >= n_kv_head:
  1599. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1600. else:
  1601. return []
  1602. return [(self.map_tensor_name(name), data_torch)]
  1603. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1604. datas: list[Tensor] = []
  1605. # extract the norms in order
  1606. for xid in range(n_head):
  1607. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1608. datas.append(norms[ename])
  1609. del norms[ename]
  1610. data_torch = torch.stack(datas, dim=0)
  1611. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1612. new_name = self.map_tensor_name(merged_name)
  1613. return [(new_name, data_torch)]
  1614. def prepare_tensors(self):
  1615. super().prepare_tensors()
  1616. if self._q_norms is not None or self._k_norms is not None:
  1617. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1618. norms = (
  1619. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1620. ) + (
  1621. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1622. )
  1623. if len(norms) > 0:
  1624. raise ValueError(f"Unprocessed norms: {norms}")
  1625. @ModelBase.register(
  1626. "LLaMAForCausalLM",
  1627. "LlamaForCausalLM",
  1628. "MistralForCausalLM",
  1629. "MixtralForCausalLM",
  1630. "VLlama3ForCausalLM",
  1631. "LlavaForConditionalGeneration",
  1632. "VoxtralForConditionalGeneration",
  1633. "LlamaModel")
  1634. class LlamaModel(TextModel):
  1635. model_arch = gguf.MODEL_ARCH.LLAMA
  1636. undo_permute = True
  1637. def __init__(self, *args, **kwargs):
  1638. super().__init__(*args, **kwargs)
  1639. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1640. if self.hf_arch == "VLlama3ForCausalLM":
  1641. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1642. def _set_vocab_mistral(self):
  1643. vocab = MistralVocab(self.dir_model)
  1644. logger.info(
  1645. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1646. )
  1647. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1648. tokens = []
  1649. scores = []
  1650. toktypes = []
  1651. for text, score, toktype in vocab.all_tokens():
  1652. tokens.append(text)
  1653. scores.append(score)
  1654. toktypes.append(toktype)
  1655. assert len(tokens) == vocab.vocab_size, (
  1656. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1657. )
  1658. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1659. self.gguf_writer.add_tokenizer_pre("tekken")
  1660. self.gguf_writer.add_token_merges(
  1661. vocab.extract_vocab_merges_from_model()
  1662. )
  1663. logger.info(
  1664. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1665. )
  1666. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1667. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1668. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1669. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1670. self.gguf_writer.add_token_list(tokens)
  1671. self.gguf_writer.add_token_scores(scores)
  1672. self.gguf_writer.add_token_types(toktypes)
  1673. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1674. self.gguf_writer.add_add_bos_token(True)
  1675. self.gguf_writer.add_add_eos_token(False)
  1676. template_dir = Path(__file__).parent / "models/templates/"
  1677. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1678. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1679. if self.is_mistral_format:
  1680. logger.info(
  1681. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1682. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1683. )
  1684. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1685. self.gguf_writer.add_chat_template(template)
  1686. else:
  1687. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1688. def set_vocab(self):
  1689. if self.is_mistral_format:
  1690. return self._set_vocab_mistral()
  1691. path_tekken_json = self.dir_model / "tekken.json"
  1692. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1693. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1694. self._set_vocab_mistral()
  1695. try:
  1696. self._set_vocab_sentencepiece()
  1697. except FileNotFoundError:
  1698. try:
  1699. self._set_vocab_llama_hf()
  1700. except (FileNotFoundError, TypeError):
  1701. # Llama 3
  1702. self._set_vocab_gpt2()
  1703. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1704. if self.hparams.get("vocab_size", 32000) == 32016:
  1705. special_vocab = gguf.SpecialVocab(
  1706. self.dir_model, load_merges=False,
  1707. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1708. )
  1709. special_vocab._set_special_token("prefix", 32007)
  1710. special_vocab._set_special_token("suffix", 32008)
  1711. special_vocab._set_special_token("middle", 32009)
  1712. special_vocab._set_special_token("eot", 32010)
  1713. special_vocab.add_to_gguf(self.gguf_writer)
  1714. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1715. if tokenizer_config_file.is_file():
  1716. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1717. tokenizer_config_json = json.load(f)
  1718. if "add_prefix_space" in tokenizer_config_json:
  1719. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1720. # Apply to granite small models only
  1721. if self.hparams.get("vocab_size", 32000) == 49152:
  1722. self.gguf_writer.add_add_bos_token(False)
  1723. def set_gguf_parameters(self):
  1724. super().set_gguf_parameters()
  1725. hparams = self.hparams
  1726. if not self.is_mistral_format:
  1727. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1728. if (rope_dim := hparams.get("head_dim")) is None:
  1729. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1730. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1731. rope_scaling = self.hparams.get("rope_scaling") or {}
  1732. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1733. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1734. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1735. @staticmethod
  1736. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1737. if n_head_kv is not None and n_head != n_head_kv:
  1738. n_head = n_head_kv
  1739. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1740. .swapaxes(1, 2)
  1741. .reshape(weights.shape))
  1742. _experts: list[dict[str, Tensor]] | None = None
  1743. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1744. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1745. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1746. vision_prefixes = [
  1747. "vision_encoder.",
  1748. "vision_language_adapter.",
  1749. "patch_merger.",
  1750. "pre_mm_projector_norm",
  1751. ]
  1752. is_multimodal_tensor = "vision_tower" in name \
  1753. or "vision_model" in name \
  1754. or "audio_tower" in name \
  1755. or "model.connector" in name \
  1756. or "multi_modal_projector" in name \
  1757. or any(
  1758. name.startswith(prefix)
  1759. for prefix in vision_prefixes
  1760. )
  1761. if is_multimodal_tensor:
  1762. return [] # skip vision tensors
  1763. elif self.hf_arch == "LlamaModel":
  1764. name = "model." + name
  1765. elif name.startswith("model.text_model"):
  1766. name = name.replace("text_model.", "") # for SmolVLM
  1767. elif name.startswith("language_model."):
  1768. name = name.replace("language_model.", "") # for the rest
  1769. if self.undo_permute:
  1770. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1771. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1772. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1773. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1774. # process the experts separately
  1775. if name.find("block_sparse_moe.experts") != -1:
  1776. n_experts = self.hparams["num_local_experts"]
  1777. assert bid is not None
  1778. if self._experts is None:
  1779. self._experts = [{} for _ in range(self.block_count)]
  1780. self._experts[bid][name] = data_torch
  1781. if len(self._experts[bid]) >= n_experts * 3:
  1782. tensors: list[tuple[str, Tensor]] = []
  1783. # merge the experts into a single 3d tensor
  1784. for wid in ["w1", "w2", "w3"]:
  1785. datas: list[Tensor] = []
  1786. for xid in range(n_experts):
  1787. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1788. datas.append(self._experts[bid][ename])
  1789. del self._experts[bid][ename]
  1790. data_torch = torch.stack(datas, dim=0)
  1791. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1792. new_name = self.map_tensor_name(merged_name)
  1793. tensors.append((new_name, data_torch))
  1794. return tensors
  1795. else:
  1796. return []
  1797. return [(self.map_tensor_name(name), data_torch)]
  1798. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1799. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1800. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1801. base = self.hparams.get("rope_theta", 10000.0)
  1802. if (dim := self.hparams.get("head_dim")) is None:
  1803. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1804. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1805. factor = rope_scaling.get("factor", 8.0)
  1806. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1807. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1808. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1809. low_freq_wavelen = old_context_len / low_freq_factor
  1810. high_freq_wavelen = old_context_len / high_freq_factor
  1811. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1812. rope_factors = []
  1813. for freq in freqs:
  1814. wavelen = 2 * math.pi / freq
  1815. if wavelen < high_freq_wavelen:
  1816. rope_factors.append(1)
  1817. elif wavelen > low_freq_wavelen:
  1818. rope_factors.append(factor)
  1819. else:
  1820. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1821. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1822. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1823. def prepare_tensors(self):
  1824. super().prepare_tensors()
  1825. if self._experts is not None:
  1826. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1827. experts = [k for d in self._experts for k in d.keys()]
  1828. if len(experts) > 0:
  1829. raise ValueError(f"Unprocessed experts: {experts}")
  1830. @ModelBase.register("ArceeForCausalLM")
  1831. class ArceeModel(LlamaModel):
  1832. model_arch = gguf.MODEL_ARCH.ARCEE
  1833. def set_gguf_parameters(self):
  1834. super().set_gguf_parameters()
  1835. self._try_set_pooling_type()
  1836. rope_scaling = self.hparams.get("rope_scaling") or {}
  1837. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1838. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1839. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1840. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1841. @ModelBase.register(
  1842. "LlavaForConditionalGeneration", # pixtral
  1843. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1844. )
  1845. class LlavaVisionModel(MmprojModel):
  1846. img_break_tok_id = -1
  1847. def __init__(self, *args, **kwargs):
  1848. super().__init__(*args, **kwargs)
  1849. if self.hparams.get("model_type") == "pixtral":
  1850. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1851. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1852. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1853. elif self.is_mistral_format:
  1854. # hparams is already vision config here so norm_eps is only defined in global_config.
  1855. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1856. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1857. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1858. else:
  1859. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1860. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1861. def get_token_id(self, token: str) -> int:
  1862. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1863. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1864. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1865. for id_, token_data in added_tokens_decoder.items():
  1866. if token_data["content"] == token:
  1867. return int(id_)
  1868. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1869. def set_gguf_parameters(self):
  1870. super().set_gguf_parameters()
  1871. hparams = self.hparams
  1872. if hparams.get("model_type") == "pixtral":
  1873. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1874. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1875. # hidden_act
  1876. if hparams["hidden_act"] == "silu":
  1877. self.gguf_writer.add_vision_use_silu(True)
  1878. elif hparams["hidden_act"] == "gelu":
  1879. self.gguf_writer.add_vision_use_gelu(True)
  1880. else:
  1881. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1882. # spatial_merge_size
  1883. if "spatial_merge_size" in self.global_config:
  1884. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1886. del bid # unused
  1887. n_head = (
  1888. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1889. )
  1890. n_kv_head = n_head
  1891. valid_prefixes = (
  1892. "multi_modal_projector.",
  1893. "vision_tower.",
  1894. "vision_encoder.",
  1895. "vision_language_adapter.",
  1896. "patch_merger.",
  1897. "pre_mm_projector_norm",
  1898. )
  1899. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1900. # process vision tensors
  1901. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1902. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1903. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1904. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1905. return [(self.map_tensor_name(name), data_torch)]
  1906. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1907. if self.img_break_tok_id > 0 and embed_key in name:
  1908. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1909. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1910. img_break_embd = data_torch[self.img_break_tok_id]
  1911. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1912. return [(self.map_tensor_name(name), img_break_embd)]
  1913. return [] # skip other tensors
  1914. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1915. class SmolVLMModel(MmprojModel):
  1916. def __init__(self, *args, **kwargs):
  1917. super().__init__(*args, **kwargs)
  1918. if self.hparams["model_type"] == "smolvlm_vision":
  1919. # fix for SmolVLM2, missing some keys in config.json
  1920. # default values are taken from transformers code
  1921. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1922. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1923. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1924. def set_gguf_parameters(self):
  1925. super().set_gguf_parameters()
  1926. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1927. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1928. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1929. self.gguf_writer.add_vision_use_gelu(True)
  1930. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1931. if ".embeddings." in name:
  1932. return gguf.GGMLQuantizationType.F32
  1933. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1934. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1935. del bid # unused
  1936. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1937. if is_vision_tensor:
  1938. return [(self.map_tensor_name(name), data_torch)]
  1939. return [] # skip other tensors
  1940. @ModelBase.register("Llama4ForConditionalGeneration")
  1941. class Llama4Model(LlamaModel):
  1942. model_arch = gguf.MODEL_ARCH.LLAMA4
  1943. undo_permute = False
  1944. def __init__(self, *args, **kwargs):
  1945. super().__init__(*args, **kwargs)
  1946. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1947. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1948. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1949. def set_vocab(self):
  1950. self._set_vocab_gpt2()
  1951. def set_gguf_parameters(self):
  1952. super().set_gguf_parameters()
  1953. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1954. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1955. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1956. if name.startswith("language_model."):
  1957. name = name.replace("language_model.", "")
  1958. # split the gate_up into gate and up
  1959. if "gate_up_proj" in name:
  1960. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1961. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1962. dim_half = data_torch.shape[-1] // 2
  1963. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1964. return [
  1965. (self.map_tensor_name(name_gate), gate_proj_weight),
  1966. (self.map_tensor_name(name_up), up_proj_weight)
  1967. ]
  1968. if name.endswith("down_proj"):
  1969. name += ".weight"
  1970. data_torch = data_torch.transpose(-1, -2)
  1971. if "multi_modal_projector" in name or "vision_model" in name:
  1972. return []
  1973. return super().modify_tensors(data_torch, name, bid)
  1974. @ModelBase.register("Llama4ForConditionalGeneration")
  1975. class Llama4VisionModel(MmprojModel):
  1976. def set_gguf_parameters(self):
  1977. super().set_gguf_parameters()
  1978. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1979. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1980. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1981. assert self.hparams["hidden_act"] == "gelu"
  1982. self.gguf_writer.add_vision_use_gelu(True)
  1983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1984. del bid # unused
  1985. if "multi_modal_projector" in name or "vision_model" in name:
  1986. # process vision tensors
  1987. if "positional_embedding_vlm" in name and ".weight" not in name:
  1988. name += ".weight"
  1989. if "multi_modal_projector.linear_1" in name:
  1990. # despite the name with number postfix, this is a single fully connected layer
  1991. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1992. return [(self.map_tensor_name(name), data_torch)]
  1993. return []
  1994. @ModelBase.register("Mistral3ForConditionalGeneration")
  1995. class Mistral3Model(LlamaModel):
  1996. model_arch = gguf.MODEL_ARCH.LLAMA
  1997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1998. name = name.replace("language_model.", "")
  1999. if "multi_modal_projector" in name or "vision_tower" in name:
  2000. return []
  2001. return super().modify_tensors(data_torch, name, bid)
  2002. @ModelBase.register("DeciLMForCausalLM")
  2003. class DeciModel(TextModel):
  2004. model_arch = gguf.MODEL_ARCH.DECI
  2005. @staticmethod
  2006. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2007. # DeciLM-specific code
  2008. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2009. return DeciModel._find_multiple(intermediate_size, 256)
  2010. @staticmethod
  2011. def _find_multiple(n: int, k: int) -> int:
  2012. # DeciLM-specific code
  2013. if n % k == 0:
  2014. return n
  2015. return n + k - (n % k)
  2016. def __init__(self, *args, **kwargs):
  2017. super().__init__(*args, **kwargs)
  2018. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2019. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2020. assert self.block_count == len(_block_configs)
  2021. self._num_kv_heads = list()
  2022. self._num_heads = list()
  2023. _ffn_multipliers = list()
  2024. # ***linear attention layer***
  2025. # if n_heads_in_group is None and replace_with_linear is True
  2026. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2027. # ***attention-free layer***
  2028. # if n_heads_in_group is None and replace_with_linear is False
  2029. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2030. # ***normal attention-layer***
  2031. # if n_heads_in_group is not None, then
  2032. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2033. # _num_heads[il] is num_attention_head
  2034. # ***dummy layer*** for nemotron 253B
  2035. # if n_heads_in_group is None and ffn_mult is None
  2036. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2037. for il in range(len(_block_configs)):
  2038. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2039. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2040. self._num_kv_heads.append(0)
  2041. self._num_heads.append(self.hparams["num_attention_heads"])
  2042. else:
  2043. self._num_kv_heads.append(0)
  2044. self._num_heads.append(0)
  2045. else:
  2046. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2047. self._num_heads.append(self.hparams["num_attention_heads"])
  2048. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2049. _ffn_multipliers.append(0.0)
  2050. else:
  2051. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2052. assert self.block_count == len(self._num_kv_heads)
  2053. assert self.block_count == len(self._num_heads)
  2054. assert self.block_count == len(_ffn_multipliers)
  2055. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2056. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2057. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2058. self._ffn_dims: list[int] = [
  2059. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2060. for multiplier in _ffn_multipliers
  2061. ]
  2062. def set_vocab(self):
  2063. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2064. # eos_token from '|eot_id|' to '|end_of_text|'
  2065. if self.hparams.get("vocab_size", 128256) == 128256:
  2066. tokens, toktypes, tokpre = self.get_vocab_base()
  2067. self.gguf_writer.add_tokenizer_model("gpt2")
  2068. self.gguf_writer.add_tokenizer_pre(tokpre)
  2069. self.gguf_writer.add_token_list(tokens)
  2070. self.gguf_writer.add_token_types(toktypes)
  2071. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2072. special_vocab.add_to_gguf(self.gguf_writer)
  2073. else:
  2074. # DeciLM-7B
  2075. self._set_vocab_llama_hf()
  2076. def set_gguf_parameters(self):
  2077. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2078. assert self.block_count == len(self._num_kv_heads)
  2079. assert self.block_count == len(self._num_heads)
  2080. assert self.block_count == len(self._ffn_dims)
  2081. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2082. self.gguf_writer.add_rope_freq_base(rope_theta)
  2083. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2084. self.gguf_writer.add_head_count(self._num_heads)
  2085. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2086. self.gguf_writer.add_block_count(self.block_count)
  2087. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2088. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2089. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2090. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2091. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2092. self.gguf_writer.add_file_type(self.ftype)
  2093. else: # DeciLM-7B
  2094. super().set_gguf_parameters()
  2095. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2096. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2097. assert self.block_count == len(self._num_kv_heads)
  2098. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2099. hparams = self.hparams
  2100. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2101. if (rope_dim := hparams.get("head_dim")) is None:
  2102. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2103. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2104. rope_scaling = self.hparams.get("rope_scaling") or {}
  2105. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2106. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2107. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2108. @staticmethod
  2109. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2110. if n_head_kv is not None and n_head != n_head_kv:
  2111. n_head = n_head_kv
  2112. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2113. .swapaxes(1, 2)
  2114. .reshape(weights.shape))
  2115. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2116. n_head = self.hparams["num_attention_heads"]
  2117. if bid is not None:
  2118. if "num_key_value_heads_per_layer" in self.hparams:
  2119. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2120. elif "block_configs" in self.hparams:
  2121. n_kv_head = self._num_kv_heads[bid]
  2122. n_head = self._num_heads[bid]
  2123. else:
  2124. n_kv_head = self.hparams.get("num_key_value_heads")
  2125. else:
  2126. n_kv_head = self.hparams.get("num_key_value_heads")
  2127. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2128. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2129. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2130. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2131. return [(self.map_tensor_name(name), data_torch)]
  2132. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2133. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2134. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2135. base = self.hparams.get("rope_theta", 10000.0)
  2136. if (dim := self.hparams.get("head_dim")) is None:
  2137. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2138. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2139. factor = rope_scaling.get("factor", 8.0)
  2140. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2141. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2142. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2143. low_freq_wavelen = old_context_len / low_freq_factor
  2144. high_freq_wavelen = old_context_len / high_freq_factor
  2145. assert low_freq_wavelen != high_freq_wavelen
  2146. rope_factors = []
  2147. for freq in freqs:
  2148. wavelen = 2 * math.pi / freq
  2149. if wavelen < high_freq_wavelen:
  2150. rope_factors.append(1)
  2151. elif wavelen > low_freq_wavelen:
  2152. rope_factors.append(factor)
  2153. else:
  2154. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2155. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2156. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2157. def prepare_tensors(self):
  2158. super().prepare_tensors()
  2159. @ModelBase.register("BitnetForCausalLM")
  2160. class BitnetModel(TextModel):
  2161. model_arch = gguf.MODEL_ARCH.BITNET
  2162. def set_vocab(self):
  2163. self._set_vocab_sentencepiece()
  2164. def set_gguf_parameters(self):
  2165. super().set_gguf_parameters()
  2166. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2167. self.gguf_writer.add_rope_scaling_factor(1.0)
  2168. def weight_quant(self, weight: Tensor) -> Tensor:
  2169. dtype = weight.dtype
  2170. weight = weight.float()
  2171. scale = weight.abs().mean().clamp(min=1e-5)
  2172. iscale = 1 / scale
  2173. # TODO: multiply by the scale directly instead of inverting it twice
  2174. # (this is also unnecessarily doubly inverted upstream)
  2175. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2176. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2177. return result.type(dtype)
  2178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2179. new_name = self.map_tensor_name(name)
  2180. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2181. gguf.MODEL_TENSOR.ATTN_Q,
  2182. gguf.MODEL_TENSOR.ATTN_K,
  2183. gguf.MODEL_TENSOR.ATTN_V,
  2184. gguf.MODEL_TENSOR.ATTN_OUT,
  2185. gguf.MODEL_TENSOR.FFN_UP,
  2186. gguf.MODEL_TENSOR.FFN_DOWN,
  2187. gguf.MODEL_TENSOR.FFN_GATE,
  2188. ]):
  2189. # transform weight into 1/0/-1 (in fp32)
  2190. data_torch = self.weight_quant(data_torch)
  2191. yield (new_name, data_torch)
  2192. @ModelBase.register("GrokForCausalLM")
  2193. class GrokModel(TextModel):
  2194. model_arch = gguf.MODEL_ARCH.GROK
  2195. def set_vocab(self):
  2196. self._set_vocab_sentencepiece()
  2197. def __init__(self, *args, **kwargs):
  2198. super().__init__(*args, **kwargs)
  2199. def set_gguf_parameters(self):
  2200. super().set_gguf_parameters()
  2201. _experts: list[dict[str, Tensor]] | None = None
  2202. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2203. # process the experts separately
  2204. if name.find(".moe.") != -1:
  2205. n_experts = self.hparams["num_local_experts"]
  2206. assert bid is not None
  2207. if self._experts is None:
  2208. self._experts = [{} for _ in range(self.block_count)]
  2209. self._experts[bid][name] = data_torch
  2210. if len(self._experts[bid]) >= n_experts * 3:
  2211. tensors: list[tuple[str, Tensor]] = []
  2212. # merge the experts into a single 3d tensor
  2213. for wid in ["linear", "linear_1", "linear_v"]:
  2214. datas: list[Tensor] = []
  2215. for xid in range(n_experts):
  2216. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2217. datas.append(self._experts[bid][ename])
  2218. del self._experts[bid][ename]
  2219. data_torch = torch.stack(datas, dim=0)
  2220. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2221. new_name = self.map_tensor_name(merged_name)
  2222. tensors.append((new_name, data_torch))
  2223. return tensors
  2224. else:
  2225. return []
  2226. return [(self.map_tensor_name(name), data_torch)]
  2227. @ModelBase.register("DbrxForCausalLM")
  2228. class DbrxModel(TextModel):
  2229. model_arch = gguf.MODEL_ARCH.DBRX
  2230. def set_gguf_parameters(self):
  2231. ffn_config = self.hparams["ffn_config"]
  2232. attn_config = self.hparams["attn_config"]
  2233. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2234. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2235. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2236. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2237. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2238. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2239. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2240. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2241. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2242. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2243. self.gguf_writer.add_layer_norm_eps(1e-5)
  2244. self.gguf_writer.add_file_type(self.ftype)
  2245. logger.info(f"gguf: file type = {self.ftype}")
  2246. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2247. del bid # unused
  2248. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2249. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2250. n_embd = self.hparams["d_model"]
  2251. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2252. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2253. # But llama.cpp moe graph works differently
  2254. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2255. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2256. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2257. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2258. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2259. experts = False
  2260. for exp_tensor_name in exp_tensor_names.keys():
  2261. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2262. experts = True
  2263. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2264. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2265. data_torch = data_torch.permute(*permute_tensor)
  2266. break
  2267. # map tensor names
  2268. # In MoE models the ffn tensors are typically most of the model weights,
  2269. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2270. # Every other model has the weight names ending in .weight,
  2271. # let's assume that is the convention which is not the case for dbrx:
  2272. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2273. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2274. return [(new_name, data_torch)]
  2275. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2276. del name, new_name, bid # unused
  2277. return n_dims > 1
  2278. @ModelBase.register("MiniCPMForCausalLM")
  2279. class MiniCPMModel(TextModel):
  2280. model_arch = gguf.MODEL_ARCH.MINICPM
  2281. def set_gguf_parameters(self):
  2282. super().set_gguf_parameters()
  2283. embedding_scale = float(self.hparams["scale_emb"])
  2284. self.gguf_writer.add_embedding_scale(embedding_scale)
  2285. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2286. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2287. self.gguf_writer.add_residual_scale(residual_scale)
  2288. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2289. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2290. self.gguf_writer.add_logit_scale(logit_scale)
  2291. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2292. rope_scaling = self.hparams.get("rope_scaling") or {}
  2293. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2294. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2295. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2296. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2297. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2298. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2299. if rope_scaling is not None:
  2300. long_factors = rope_scaling.get('long_factor', None)
  2301. short_factors = rope_scaling.get('short_factor', None)
  2302. if long_factors is None or short_factors is None:
  2303. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2304. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2305. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2306. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2307. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2308. def set_vocab(self):
  2309. self._set_vocab_sentencepiece()
  2310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2311. del bid # unused
  2312. n_head = self.hparams["num_attention_heads"]
  2313. n_kv_head = self.hparams.get("num_key_value_heads")
  2314. # HF models permute some of the tensors, so we need to undo that
  2315. if name.endswith(("q_proj.weight")):
  2316. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2317. if name.endswith(("k_proj.weight")):
  2318. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2319. return [(self.map_tensor_name(name), data_torch)]
  2320. @ModelBase.register("MiniCPM3ForCausalLM")
  2321. class MiniCPM3Model(TextModel):
  2322. model_arch = gguf.MODEL_ARCH.MINICPM3
  2323. def set_gguf_parameters(self):
  2324. hparams = self.hparams
  2325. self.gguf_writer.add_file_type(self.ftype)
  2326. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2327. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2328. self.gguf_writer.add_block_count(self.block_count)
  2329. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2330. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2331. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2332. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2333. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2334. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2335. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2336. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2337. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2338. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2339. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2340. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2341. if rope_scaling is not None:
  2342. rope_dims = self.hparams["qk_rope_head_dim"]
  2343. long_factors = rope_scaling.get('long_factor', None)
  2344. short_factors = rope_scaling.get('short_factor', None)
  2345. if long_factors is None or short_factors is None:
  2346. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2347. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2348. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2349. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2350. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2351. def set_vocab(self):
  2352. self._set_vocab_sentencepiece()
  2353. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2354. if n_kv_head is not None and n_head != n_kv_head:
  2355. n_head //= n_kv_head
  2356. return (
  2357. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2358. .swapaxes(1, 2)
  2359. .reshape(weights.shape)
  2360. )
  2361. @ModelBase.register("QWenLMHeadModel")
  2362. class QwenModel(TextModel):
  2363. model_arch = gguf.MODEL_ARCH.QWEN
  2364. @staticmethod
  2365. def token_bytes_to_string(b):
  2366. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2367. byte_encoder = bytes_to_unicode()
  2368. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2369. @staticmethod
  2370. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2371. parts = [bytes([b]) for b in token]
  2372. while True:
  2373. min_idx = None
  2374. min_rank = None
  2375. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2376. rank = mergeable_ranks.get(pair[0] + pair[1])
  2377. if rank is not None and (min_rank is None or rank < min_rank):
  2378. min_idx = i
  2379. min_rank = rank
  2380. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2381. break
  2382. assert min_idx is not None
  2383. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2384. return parts
  2385. def set_vocab(self):
  2386. self._set_vocab_qwen()
  2387. def set_gguf_parameters(self):
  2388. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2389. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2390. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2391. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2392. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2393. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2394. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2395. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2396. self.gguf_writer.add_file_type(self.ftype)
  2397. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2398. class Qwen2Model(TextModel):
  2399. model_arch = gguf.MODEL_ARCH.QWEN2
  2400. def set_vocab(self):
  2401. try:
  2402. self._set_vocab_sentencepiece()
  2403. except FileNotFoundError:
  2404. self._set_vocab_gpt2()
  2405. def set_gguf_parameters(self):
  2406. super().set_gguf_parameters()
  2407. self._try_set_pooling_type()
  2408. rope_scaling = self.hparams.get("rope_scaling") or {}
  2409. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2410. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2411. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2412. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2414. if self.hf_arch == "Qwen2Model":
  2415. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2416. if "language_model." in name:
  2417. name = name.replace("language_model.", "") # for InternVL
  2418. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2419. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2420. # skip vision and audio tensors
  2421. return []
  2422. yield from super().modify_tensors(data_torch, name, bid)
  2423. @ModelBase.register("DreamModel")
  2424. class DreamModel(TextModel):
  2425. model_arch = gguf.MODEL_ARCH.DREAM
  2426. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2427. tokens: list[str] = []
  2428. toktypes: list[int] = []
  2429. from transformers import AutoTokenizer
  2430. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2431. vocab_dict = tokenizer.get_vocab()
  2432. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2433. assert max(vocab_dict.values()) < vocab_size
  2434. tokpre = self.get_vocab_base_pre(tokenizer)
  2435. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2436. added_vocab = tokenizer.get_added_vocab()
  2437. for i in range(vocab_size):
  2438. if i not in reverse_vocab:
  2439. tokens.append(f"[PAD{i}]")
  2440. toktypes.append(gguf.TokenType.UNUSED)
  2441. elif reverse_vocab[i] in added_vocab:
  2442. tokens.append(reverse_vocab[i])
  2443. # Check if it's a special token - treat special tokens as CONTROL tokens
  2444. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2445. if tokenizer.added_tokens_decoder[i].special:
  2446. toktypes.append(gguf.TokenType.CONTROL)
  2447. else:
  2448. toktypes.append(gguf.TokenType.USER_DEFINED)
  2449. else:
  2450. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2451. toktypes.append(gguf.TokenType.CONTROL)
  2452. else:
  2453. tokens.append(reverse_vocab[i])
  2454. toktypes.append(gguf.TokenType.NORMAL)
  2455. return tokens, toktypes, tokpre
  2456. def set_vocab(self):
  2457. try:
  2458. self._set_vocab_sentencepiece()
  2459. except FileNotFoundError:
  2460. self._set_vocab_gpt2()
  2461. def set_gguf_parameters(self):
  2462. super().set_gguf_parameters()
  2463. self._try_set_pooling_type()
  2464. # Dream models use non-causal attention for diffusion
  2465. self.gguf_writer.add_causal_attention(False)
  2466. # Handle RoPE scaling similar to Qwen2
  2467. rope_scaling = self.hparams.get("rope_scaling") or {}
  2468. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2469. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2470. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2471. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2472. # Add Dream-specific parameters
  2473. mask_token_id = self.hparams.get("mask_token_id")
  2474. if mask_token_id is not None:
  2475. self.gguf_writer.add_mask_token_id(mask_token_id)
  2476. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2477. # Dream model tensors should be mapped directly since it's the base model
  2478. yield from super().modify_tensors(data_torch, name, bid)
  2479. @ModelBase.register("LLaDAModelLM")
  2480. class LLaDAModel(TextModel):
  2481. model_arch = gguf.MODEL_ARCH.LLADA
  2482. undo_permute = True
  2483. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2484. tokens: list[str] = []
  2485. toktypes: list[int] = []
  2486. from transformers import AutoTokenizer
  2487. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2488. vocab_dict = tokenizer.get_vocab()
  2489. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2490. assert max(vocab_dict.values()) < vocab_size
  2491. tokpre = self.get_vocab_base_pre(tokenizer)
  2492. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2493. added_vocab = tokenizer.get_added_vocab()
  2494. for i in range(vocab_size):
  2495. if i not in reverse_vocab:
  2496. tokens.append(f"[PAD{i}]")
  2497. toktypes.append(gguf.TokenType.UNUSED)
  2498. elif reverse_vocab[i] in added_vocab:
  2499. tokens.append(reverse_vocab[i])
  2500. # Check if it's a special token - treat special tokens as CONTROL tokens
  2501. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2502. if tokenizer.added_tokens_decoder[i].special:
  2503. toktypes.append(gguf.TokenType.CONTROL)
  2504. else:
  2505. toktypes.append(gguf.TokenType.USER_DEFINED)
  2506. else:
  2507. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2508. toktypes.append(gguf.TokenType.CONTROL)
  2509. else:
  2510. tokens.append(reverse_vocab[i])
  2511. toktypes.append(gguf.TokenType.NORMAL)
  2512. return tokens, toktypes, tokpre
  2513. def set_vocab(self):
  2514. self._set_vocab_gpt2()
  2515. # LLaDA specific parameters
  2516. self.gguf_writer.add_add_bos_token(True)
  2517. def set_gguf_parameters(self):
  2518. super().set_gguf_parameters()
  2519. self._try_set_pooling_type()
  2520. # Add parameters similar to LlamaModel
  2521. hparams = self.hparams
  2522. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2523. if (rope_dim := hparams.get("head_dim")) is None:
  2524. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2525. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2526. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2527. # Set context length for LLaDA
  2528. context_length = self.hparams.get("max_sequence_length", 4096)
  2529. self.gguf_writer.add_context_length(context_length)
  2530. # Set embedding length (dimension size)
  2531. embedding_length = self.hparams.get("d_model", 4096)
  2532. self.gguf_writer.add_embedding_length(embedding_length)
  2533. # Set feed forward length (MLP hidden size)
  2534. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2535. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2536. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2537. self.gguf_writer.add_causal_attention(False)
  2538. # LLaDA models don't shift their logits
  2539. self.gguf_writer.add_diffusion_shift_logits(False)
  2540. @staticmethod
  2541. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2542. if n_head_kv is not None and n_head != n_head_kv:
  2543. n_head = n_head_kv
  2544. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2545. .swapaxes(1, 2)
  2546. .reshape(weights.shape))
  2547. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2548. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2549. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2550. if self.undo_permute:
  2551. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2552. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2553. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2554. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2555. # LLaDA model tensors should be mapped directly since it's the base model
  2556. yield from super().modify_tensors(data_torch, name, bid)
  2557. @ModelBase.register("Ernie4_5_ForCausalLM")
  2558. class Ernie4_5Model(TextModel):
  2559. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2560. def set_vocab(self):
  2561. self._set_vocab_sentencepiece()
  2562. def set_gguf_parameters(self):
  2563. super().set_gguf_parameters()
  2564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2565. num_heads = self.hparams["num_attention_heads"]
  2566. num_kv_heads = self.hparams["num_key_value_heads"]
  2567. if (head_dim := self.hparams.get("head_dim")) is None:
  2568. head_dim = self.hparams["hidden_size"] // num_heads
  2569. if "ernie." in name:
  2570. name = name.replace("ernie.", "model.")
  2571. # split the qkv weights
  2572. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2573. if "qkv_proj" in name:
  2574. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2575. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2576. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2577. total_q_dim = num_heads * head_dim
  2578. total_k_dim = num_kv_heads * head_dim
  2579. total_v_dim = num_kv_heads * head_dim
  2580. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2581. return [
  2582. (self.map_tensor_name(name_q), q_proj_weight),
  2583. (self.map_tensor_name(name_k), k_proj_weight),
  2584. (self.map_tensor_name(name_v), v_proj_weight)
  2585. ]
  2586. # split the up_gate_proj into gate and up
  2587. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2588. if "up_gate_proj" in name:
  2589. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2590. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2591. dim_half = data_torch.shape[0] // 2
  2592. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2593. return [
  2594. (self.map_tensor_name(name_gate), gate_proj_weight),
  2595. (self.map_tensor_name(name_up), up_proj_weight)
  2596. ]
  2597. return [(self.map_tensor_name(name), data_torch)]
  2598. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2599. class Ernie4_5MoeModel(Ernie4_5Model):
  2600. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2601. _experts: list[dict[str, Tensor]] | None = None
  2602. def __init__(self, *args, **kwargs):
  2603. super().__init__(*args, **kwargs)
  2604. self._experts = [{} for _ in range(self.block_count)]
  2605. def set_gguf_parameters(self):
  2606. super().set_gguf_parameters()
  2607. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2608. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2609. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2610. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2611. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2612. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2613. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2614. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2615. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2616. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2617. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2618. # Modify correction bias name as in DeepseekV2
  2619. if name.endswith("e_score_correction_bias"):
  2620. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2621. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2622. match = re.match(r"model.mtp_block.(\d+)", name)
  2623. if match:
  2624. return []
  2625. # skip all other MTP tensors for now
  2626. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2627. if match:
  2628. return []
  2629. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2630. if match:
  2631. return []
  2632. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2633. if match:
  2634. return []
  2635. # process the experts separately
  2636. if name.find("mlp.experts") != -1:
  2637. n_experts = self.hparams["moe_num_experts"]
  2638. assert bid is not None
  2639. if self._experts is None:
  2640. self._experts = [{} for _ in range(self.block_count)]
  2641. self._experts[bid][name] = data_torch
  2642. if len(self._experts[bid]) >= n_experts * 3:
  2643. tensors: list[tuple[str, Tensor]] = []
  2644. # merge the experts into a single 3d tensor
  2645. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2646. datas: list[Tensor] = []
  2647. for xid in range(n_experts):
  2648. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2649. datas.append(self._experts[bid][ename_to_retrieve])
  2650. del self._experts[bid][ename_to_retrieve]
  2651. data_torch = torch.stack(datas, dim=0)
  2652. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2653. new_name = self.map_tensor_name(merged_name)
  2654. tensors.append((new_name, data_torch))
  2655. return tensors
  2656. else:
  2657. return []
  2658. return [(self.map_tensor_name(name), data_torch)]
  2659. def prepare_tensors(self):
  2660. super().prepare_tensors()
  2661. if self._experts is not None:
  2662. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2663. experts = [k for d in self._experts for k in d.keys()]
  2664. if len(experts) > 0:
  2665. raise ValueError(f"Unprocessed experts: {experts}")
  2666. @ModelBase.register(
  2667. "Qwen2VLModel",
  2668. "Qwen2VLForConditionalGeneration",
  2669. "Qwen2_5_VLForConditionalGeneration",
  2670. "Qwen2_5OmniModel",
  2671. )
  2672. class Qwen2VLModel(TextModel):
  2673. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2674. def set_gguf_parameters(self):
  2675. super().set_gguf_parameters()
  2676. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2677. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2678. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2679. def set_vocab(self):
  2680. try:
  2681. self._set_vocab_sentencepiece()
  2682. except FileNotFoundError:
  2683. self._set_vocab_gpt2()
  2684. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2685. del bid # unused
  2686. if name.startswith("thinker."):
  2687. name = name.replace("thinker.", "")
  2688. if name.startswith("visual") or name.startswith("audio") or \
  2689. name.startswith("talker") or name.startswith("token2wav"):
  2690. # skip multimodal tensors
  2691. return []
  2692. return [(self.map_tensor_name(name), data_torch)]
  2693. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2694. class Qwen2VLVisionModel(MmprojModel):
  2695. def __init__(self, *args, **kwargs):
  2696. super().__init__(*args, **kwargs)
  2697. assert self.hparams_vision is not None
  2698. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2699. # rename config.json values
  2700. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2701. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2702. if "embed_dim" in self.hparams_vision: # qwen2vl
  2703. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2704. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2705. def set_gguf_parameters(self):
  2706. super().set_gguf_parameters()
  2707. assert self.hparams_vision is not None
  2708. hparams = self.hparams_vision
  2709. model_type = self.global_config['model_type']
  2710. if model_type == 'qwen2_vl':
  2711. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2712. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2713. if model_type == 'qwen2_5_omni':
  2714. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2715. else:
  2716. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2717. self.gguf_writer.add_vision_use_silu(True)
  2718. # find n_wa_pattern (window attention pattern)
  2719. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2720. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2721. n_wa_pattern = fullatt_block_indexes[0] + 1
  2722. # validate n_wa_pattern
  2723. for i in range(1, len(fullatt_block_indexes)):
  2724. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2725. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2726. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2727. else:
  2728. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2729. # default values below are taken from HF tranformers code
  2730. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2731. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2732. if ".position_embd." in new_name:
  2733. return gguf.GGMLQuantizationType.F32
  2734. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2735. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2736. del bid # unused
  2737. if name.startswith("visual."):
  2738. # process visual tensors
  2739. # split QKV tensors if needed
  2740. if ".qkv." in name:
  2741. if data_torch.ndim == 2: # weight
  2742. c3, _ = data_torch.shape
  2743. else: # bias
  2744. c3 = data_torch.shape[0]
  2745. assert c3 % 3 == 0
  2746. c = c3 // 3
  2747. wq = data_torch[:c]
  2748. wk = data_torch[c: c * 2]
  2749. wv = data_torch[c * 2:]
  2750. return [
  2751. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2752. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2753. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2754. ]
  2755. elif 'patch_embed.proj.weight' in name:
  2756. # split Conv3D into Conv2Ds
  2757. c1, c2, kt, kh, kw = data_torch.shape
  2758. del c1, c2, kh, kw # unused
  2759. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2760. return [
  2761. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2762. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2763. ]
  2764. else:
  2765. return [(self.map_tensor_name(name), data_torch)]
  2766. return [] # skip other tensors
  2767. @ModelBase.register("Qwen2_5OmniModel")
  2768. class Qwen25OmniModel(Qwen2VLVisionModel):
  2769. has_vision_encoder = True
  2770. has_audio_encoder = True
  2771. def __init__(self, *args, **kwargs):
  2772. super().__init__(*args, **kwargs)
  2773. assert self.hparams_audio is not None
  2774. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2775. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2776. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2777. def set_gguf_parameters(self):
  2778. super().set_gguf_parameters()
  2779. assert self.hparams_audio is not None
  2780. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2781. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2782. def get_vision_config(self) -> dict[str, Any] | None:
  2783. return self.global_config["thinker_config"].get("vision_config")
  2784. def get_audio_config(self) -> dict[str, Any] | None:
  2785. return self.global_config["thinker_config"].get("audio_config")
  2786. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2787. # SinusoidsPositionEmbedding
  2788. assert self.hparams_audio is not None
  2789. max_timescale = 10000
  2790. length = 1500
  2791. channels = self.hparams_audio["hidden_size"]
  2792. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2793. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2794. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2795. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2796. yield ("audio_tower.embed_positions.weight", pos_embd)
  2797. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2798. if ".conv" in name and ".weight" in name:
  2799. return gguf.GGMLQuantizationType.F16
  2800. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2802. if name.startswith("thinker."):
  2803. name = name.replace("thinker.", "")
  2804. if name.startswith("audio_tower"):
  2805. # process audio tensors
  2806. if "conv1.bias" in name or "conv2.bias" in name:
  2807. # transpose conv1 and conv2 bias
  2808. data_torch = data_torch.unsqueeze(-1)
  2809. if "audio_bos_eos_token" in name:
  2810. # this tensor is left unused in transformers code
  2811. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2812. return []
  2813. return [(self.map_tensor_name(name), data_torch)]
  2814. return super().modify_tensors(data_torch, name, bid)
  2815. @ModelBase.register("InternVisionModel")
  2816. class InternVisionModel(MmprojModel):
  2817. def set_gguf_parameters(self):
  2818. assert self.hparams_vision is not None
  2819. if isinstance(self.hparams_vision['image_size'], list):
  2820. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2821. if isinstance(self.hparams_vision['patch_size'], list):
  2822. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2823. super().set_gguf_parameters()
  2824. hparams = self.hparams
  2825. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2826. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2827. # hidden_act
  2828. if hparams["hidden_act"] == "silu":
  2829. self.gguf_writer.add_vision_use_silu(True)
  2830. elif hparams["hidden_act"] == "gelu":
  2831. self.gguf_writer.add_vision_use_gelu(True)
  2832. else:
  2833. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2834. # downsample_ratio
  2835. downsample_ratio = self.global_config.get("downsample_ratio")
  2836. assert downsample_ratio is not None
  2837. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2838. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2839. if ".position_embd." in new_name:
  2840. return gguf.GGMLQuantizationType.F32
  2841. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2842. def _mapping_interns1_name(self, name):
  2843. names_map = {
  2844. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2845. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2846. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2847. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2848. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2849. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2850. }
  2851. if name in names_map:
  2852. name = names_map[name]
  2853. return name
  2854. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2855. del bid # unused
  2856. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2857. # deal with intern-s1 special case
  2858. name = self._mapping_interns1_name(name)
  2859. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2860. # process visual tensors
  2861. # correct name
  2862. if name.startswith("vision_model"):
  2863. name = "vision_tower." + name
  2864. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2865. name += ".weight"
  2866. # split QKV tensors if needed
  2867. if ".qkv." in name:
  2868. if data_torch.ndim == 2: # weight
  2869. c3, _ = data_torch.shape
  2870. else: # bias
  2871. c3 = data_torch.shape[0]
  2872. assert c3 % 3 == 0
  2873. c = c3 // 3
  2874. wq = data_torch[:c]
  2875. wk = data_torch[c: c * 2]
  2876. wv = data_torch[c * 2:]
  2877. return [
  2878. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2879. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2880. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2881. ]
  2882. return [(self.map_tensor_name(name), data_torch)]
  2883. return [] # skip other tensors
  2884. @ModelBase.register("WavTokenizerDec")
  2885. class WavTokenizerDecModel(TextModel):
  2886. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2888. del bid # unused
  2889. if \
  2890. name.endswith("codebook.cluster_size") or \
  2891. name.endswith("codebook.embed_avg") or \
  2892. name.endswith("codebook.inited"):
  2893. logger.debug(f"Skipping {name!r}")
  2894. return []
  2895. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2896. return [(self.map_tensor_name(name), data_torch)]
  2897. def set_vocab(self):
  2898. self._set_vocab_none()
  2899. def set_gguf_parameters(self):
  2900. super().set_gguf_parameters()
  2901. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2902. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2903. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2904. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2905. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2906. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2907. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2908. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2909. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2910. self.gguf_writer.add_causal_attention(False)
  2911. @ModelBase.register("Qwen2MoeForCausalLM")
  2912. class Qwen2MoeModel(TextModel):
  2913. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2914. def set_gguf_parameters(self):
  2915. super().set_gguf_parameters()
  2916. if (n_experts := self.hparams.get("num_experts")) is not None:
  2917. self.gguf_writer.add_expert_count(n_experts)
  2918. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2919. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2920. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2921. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2922. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2923. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2924. # YaRN is not enabled by default
  2925. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2926. rope_scaling = self.hparams.get("rope_scaling") or {}
  2927. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2928. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2929. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2930. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2931. _experts: list[dict[str, Tensor]] | None = None
  2932. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2933. # process the experts separately
  2934. name = name.replace("language_model.", "") # InternVL
  2935. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2936. # skip visual tensors
  2937. return []
  2938. if name.find("experts") != -1:
  2939. n_experts = self.hparams["num_experts"]
  2940. assert bid is not None
  2941. if self._experts is None:
  2942. self._experts = [{} for _ in range(self.block_count)]
  2943. self._experts[bid][name] = data_torch
  2944. if len(self._experts[bid]) >= n_experts * 3:
  2945. tensors: list[tuple[str, Tensor]] = []
  2946. # merge the experts into a single 3d tensor
  2947. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2948. datas: list[Tensor] = []
  2949. for xid in range(n_experts):
  2950. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2951. datas.append(self._experts[bid][ename])
  2952. del self._experts[bid][ename]
  2953. data_torch = torch.stack(datas, dim=0)
  2954. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2955. new_name = self.map_tensor_name(merged_name)
  2956. tensors.append((new_name, data_torch))
  2957. return tensors
  2958. else:
  2959. return []
  2960. return [(self.map_tensor_name(name), data_torch)]
  2961. def prepare_tensors(self):
  2962. super().prepare_tensors()
  2963. if self._experts is not None:
  2964. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2965. experts = [k for d in self._experts for k in d.keys()]
  2966. if len(experts) > 0:
  2967. raise ValueError(f"Unprocessed experts: {experts}")
  2968. @ModelBase.register("Qwen3ForCausalLM")
  2969. class Qwen3Model(Qwen2Model):
  2970. model_arch = gguf.MODEL_ARCH.QWEN3
  2971. @ModelBase.register("Qwen3MoeForCausalLM")
  2972. class Qwen3MoeModel(Qwen2MoeModel):
  2973. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2974. def __init__(self, *args, **kwargs):
  2975. super().__init__(*args, **kwargs)
  2976. hparams = ModelBase.load_hparams(self.dir_model, False)
  2977. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2978. def set_vocab(self):
  2979. # deal with intern-s1
  2980. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  2981. self._set_vocab_interns1()
  2982. return
  2983. try:
  2984. self._set_vocab_sentencepiece()
  2985. except FileNotFoundError:
  2986. self._set_vocab_gpt2()
  2987. def _set_vocab_interns1(self):
  2988. tokens: list[str] = []
  2989. toktypes: list[int] = []
  2990. from transformers import AutoTokenizer
  2991. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2992. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  2993. vocab_size = self.hparams.get("vocab_size", len(vocab))
  2994. assert max(vocab.values()) < vocab_size
  2995. tokpre = self.get_vocab_base_pre(tokenizer)
  2996. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  2997. added_vocab = tokenizer.get_added_vocab()
  2998. added_tokens_decoder = tokenizer.added_tokens_decoder
  2999. for i in range(vocab_size):
  3000. if i not in reverse_vocab:
  3001. tokens.append(f"[PAD{i}]")
  3002. toktypes.append(gguf.TokenType.UNUSED)
  3003. else:
  3004. token: str = reverse_vocab[i]
  3005. if token in added_vocab:
  3006. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  3007. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  3008. if not added_tokens_decoder[i].normalized:
  3009. previous_token = token
  3010. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  3011. if previous_token != token:
  3012. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  3013. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  3014. toktypes.append(gguf.TokenType.CONTROL)
  3015. else:
  3016. toktypes.append(gguf.TokenType.USER_DEFINED)
  3017. else:
  3018. toktypes.append(gguf.TokenType.NORMAL)
  3019. tokens.append(token)
  3020. self.gguf_writer.add_tokenizer_model("gpt2")
  3021. self.gguf_writer.add_tokenizer_pre(tokpre)
  3022. self.gguf_writer.add_token_list(tokens)
  3023. self.gguf_writer.add_token_types(toktypes)
  3024. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3025. special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
  3026. additional_special_tokens = []
  3027. if special_tokens_map_file.is_file():
  3028. with open(special_tokens_map_file, encoding = 'utf-8') as f:
  3029. additional_special_tokens = json.load(f).get('additional_special_tokens', [])
  3030. tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
  3031. if tokenizer_cfg_file.is_file():
  3032. with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
  3033. added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
  3034. token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
  3035. for token in additional_special_tokens:
  3036. if token in token2ids_map:
  3037. special_vocab._set_special_token(token, token2ids_map[token])
  3038. special_vocab._set_special_token('eos', 151645)
  3039. special_vocab._set_special_token("bos", 151643)
  3040. special_vocab.add_to_gguf(self.gguf_writer)
  3041. @ModelBase.register("GPT2LMHeadModel")
  3042. class GPT2Model(TextModel):
  3043. model_arch = gguf.MODEL_ARCH.GPT2
  3044. def set_gguf_parameters(self):
  3045. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3046. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3047. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3048. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3049. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3050. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3051. self.gguf_writer.add_file_type(self.ftype)
  3052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3053. del bid # unused
  3054. tensors: list[tuple[str, Tensor]] = []
  3055. # we don't need these
  3056. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3057. return tensors
  3058. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3059. data_torch = data_torch.transpose(1, 0)
  3060. new_name = self.map_tensor_name(name)
  3061. tensors.append((new_name, data_torch))
  3062. return tensors
  3063. @ModelBase.register("PhiForCausalLM")
  3064. class Phi2Model(TextModel):
  3065. model_arch = gguf.MODEL_ARCH.PHI2
  3066. def set_gguf_parameters(self):
  3067. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3068. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3069. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3070. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3071. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3072. self.gguf_writer.add_embedding_length(n_embd)
  3073. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3074. self.gguf_writer.add_block_count(block_count)
  3075. self.gguf_writer.add_head_count(n_head)
  3076. self.gguf_writer.add_head_count_kv(n_head)
  3077. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3078. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3079. self.gguf_writer.add_file_type(self.ftype)
  3080. self.gguf_writer.add_add_bos_token(False)
  3081. @ModelBase.register("Phi3ForCausalLM")
  3082. class Phi3MiniModel(TextModel):
  3083. model_arch = gguf.MODEL_ARCH.PHI3
  3084. def set_vocab(self):
  3085. # Phi-4 model uses GPT2Tokenizer
  3086. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3087. if tokenizer_config_file.is_file():
  3088. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3089. tokenizer_config_json = json.load(f)
  3090. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3091. if tokenizer_class == 'GPT2Tokenizer':
  3092. return self._set_vocab_gpt2()
  3093. from sentencepiece import SentencePieceProcessor
  3094. tokenizer_path = self.dir_model / 'tokenizer.model'
  3095. if not tokenizer_path.is_file():
  3096. raise ValueError(f'Error: Missing {tokenizer_path}')
  3097. tokenizer = SentencePieceProcessor()
  3098. tokenizer.LoadFromFile(str(tokenizer_path))
  3099. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3100. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3101. scores: list[float] = [-10000.0] * vocab_size
  3102. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3103. for token_id in range(tokenizer.vocab_size()):
  3104. piece = tokenizer.IdToPiece(token_id)
  3105. text = piece.encode("utf-8")
  3106. score = tokenizer.GetScore(token_id)
  3107. toktype = SentencePieceTokenTypes.NORMAL
  3108. if tokenizer.IsUnknown(token_id):
  3109. toktype = SentencePieceTokenTypes.UNKNOWN
  3110. elif tokenizer.IsControl(token_id):
  3111. toktype = SentencePieceTokenTypes.CONTROL
  3112. elif tokenizer.IsUnused(token_id):
  3113. toktype = SentencePieceTokenTypes.UNUSED
  3114. elif tokenizer.IsByte(token_id):
  3115. toktype = SentencePieceTokenTypes.BYTE
  3116. tokens[token_id] = text
  3117. scores[token_id] = score
  3118. toktypes[token_id] = toktype
  3119. added_tokens_file = self.dir_model / 'added_tokens.json'
  3120. if added_tokens_file.is_file():
  3121. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3122. added_tokens_json = json.load(f)
  3123. for key in added_tokens_json:
  3124. token_id = added_tokens_json[key]
  3125. if token_id >= vocab_size:
  3126. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3127. continue
  3128. tokens[token_id] = key.encode("utf-8")
  3129. scores[token_id] = -1000.0
  3130. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3131. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3132. if tokenizer_config_file.is_file():
  3133. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3134. tokenizer_config_json = json.load(f)
  3135. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3136. for token_id, foken_data in added_tokens_decoder.items():
  3137. token_id = int(token_id)
  3138. token = foken_data["content"].encode("utf-8")
  3139. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3140. if tokens[token_id] != token:
  3141. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3142. tokens[token_id] = token
  3143. scores[token_id] = -1000.0
  3144. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3145. if foken_data.get("special"):
  3146. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3147. tokenizer_file = self.dir_model / 'tokenizer.json'
  3148. if tokenizer_file.is_file():
  3149. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3150. tokenizer_json = json.load(f)
  3151. added_tokens = tokenizer_json.get("added_tokens", [])
  3152. for foken_data in added_tokens:
  3153. token_id = int(foken_data["id"])
  3154. token = foken_data["content"].encode("utf-8")
  3155. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3156. if tokens[token_id] != token:
  3157. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3158. tokens[token_id] = token
  3159. scores[token_id] = -1000.0
  3160. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3161. if foken_data.get("special"):
  3162. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3163. self.gguf_writer.add_tokenizer_model("llama")
  3164. self.gguf_writer.add_tokenizer_pre("default")
  3165. self.gguf_writer.add_token_list(tokens)
  3166. self.gguf_writer.add_token_scores(scores)
  3167. self.gguf_writer.add_token_types(toktypes)
  3168. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3169. special_vocab.add_to_gguf(self.gguf_writer)
  3170. def set_gguf_parameters(self):
  3171. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3172. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3173. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3174. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3175. rms_eps = self.find_hparam(["rms_norm_eps"])
  3176. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3177. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3178. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3179. rope_dims = int(rot_pct * n_embd) // n_head
  3180. self.gguf_writer.add_context_length(max_pos_embds)
  3181. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3182. self.gguf_writer.add_embedding_length(n_embd)
  3183. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3184. self.gguf_writer.add_block_count(block_count)
  3185. self.gguf_writer.add_head_count(n_head)
  3186. self.gguf_writer.add_head_count_kv(n_head_kv)
  3187. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3188. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3189. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3190. self.gguf_writer.add_file_type(self.ftype)
  3191. sliding_window = self.hparams.get("sliding_window")
  3192. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3193. if sliding_window is None:
  3194. sliding_window = 0
  3195. self.gguf_writer.add_sliding_window(sliding_window)
  3196. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3197. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3198. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3199. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3200. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3201. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3202. rope_dims = int(rot_pct * n_embd) // n_head
  3203. # write rope scaling for long context (128k) model
  3204. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3205. if rope_scaling is None:
  3206. return
  3207. scale = max_pos_embds / orig_max_pos_embds
  3208. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3209. if len(rope_scaling_type) == 0:
  3210. raise KeyError('Missing the required key rope_scaling.type')
  3211. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3212. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3213. elif rope_scaling_type == 'yarn':
  3214. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3215. else:
  3216. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3217. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3218. long_factors = rope_scaling.get('long_factor', None)
  3219. short_factors = rope_scaling.get('short_factor', None)
  3220. if long_factors is None or short_factors is None:
  3221. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3222. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3223. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3224. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3225. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3226. @ModelBase.register("PhiMoEForCausalLM")
  3227. class PhiMoeModel(Phi3MiniModel):
  3228. model_arch = gguf.MODEL_ARCH.PHIMOE
  3229. _experts: list[dict[str, Tensor]] | None = None
  3230. def set_gguf_parameters(self):
  3231. super().set_gguf_parameters()
  3232. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3233. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3235. # process the experts separately
  3236. if name.find("block_sparse_moe.experts") != -1:
  3237. n_experts = self.hparams["num_local_experts"]
  3238. assert bid is not None
  3239. if self._experts is None:
  3240. self._experts = [{} for _ in range(self.block_count)]
  3241. self._experts[bid][name] = data_torch
  3242. if len(self._experts[bid]) >= n_experts * 3:
  3243. tensors: list[tuple[str, Tensor]] = []
  3244. # merge the experts into a single 3d tensor
  3245. for w_name in ["w1", "w2", "w3"]:
  3246. datas: list[Tensor] = []
  3247. for xid in range(n_experts):
  3248. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3249. datas.append(self._experts[bid][ename])
  3250. del self._experts[bid][ename]
  3251. data_torch = torch.stack(datas, dim=0)
  3252. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3253. new_name = self.map_tensor_name(merged_name)
  3254. tensors.append((new_name, data_torch))
  3255. return tensors
  3256. else:
  3257. return []
  3258. return [(self.map_tensor_name(name), data_torch)]
  3259. def prepare_tensors(self):
  3260. super().prepare_tensors()
  3261. if self._experts is not None:
  3262. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3263. experts = [k for d in self._experts for k in d.keys()]
  3264. if len(experts) > 0:
  3265. raise ValueError(f"Unprocessed experts: {experts}")
  3266. @ModelBase.register("PlamoForCausalLM")
  3267. class PlamoModel(TextModel):
  3268. model_arch = gguf.MODEL_ARCH.PLAMO
  3269. def set_vocab(self):
  3270. self._set_vocab_sentencepiece()
  3271. def set_gguf_parameters(self):
  3272. hparams = self.hparams
  3273. block_count = hparams["num_hidden_layers"]
  3274. self.gguf_writer.add_context_length(4096) # not in config.json
  3275. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3276. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3277. self.gguf_writer.add_block_count(block_count)
  3278. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3279. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3280. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3281. self.gguf_writer.add_file_type(self.ftype)
  3282. def shuffle_attn_q_weight(self, data_torch):
  3283. assert data_torch.size() == (5120, 5120)
  3284. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3285. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3286. data_torch = torch.reshape(data_torch, (5120, 5120))
  3287. return data_torch
  3288. def shuffle_attn_output_weight(self, data_torch):
  3289. assert data_torch.size() == (5120, 5120)
  3290. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3291. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3292. data_torch = torch.reshape(data_torch, (5120, 5120))
  3293. return data_torch
  3294. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3295. del bid # unused
  3296. new_name = self.map_tensor_name(name)
  3297. # shuffle for broadcasting of gqa in ggml_mul_mat
  3298. if new_name.endswith("attn_q.weight"):
  3299. data_torch = self.shuffle_attn_q_weight(data_torch)
  3300. elif new_name.endswith("attn_output.weight"):
  3301. data_torch = self.shuffle_attn_output_weight(data_torch)
  3302. return [(new_name, data_torch)]
  3303. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3304. class Plamo2Model(TextModel):
  3305. model_arch = gguf.MODEL_ARCH.PLAMO2
  3306. def set_vocab(self):
  3307. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3308. # We need to handle this specially
  3309. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3310. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3311. if not tokenizer_jsonl_path.is_file():
  3312. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3313. # Load tokenizer config
  3314. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3315. tokenizer_config = json.load(f)
  3316. # Load tokens from JSONL file (actually a list format)
  3317. tokens = []
  3318. scores = []
  3319. toktypes = []
  3320. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3321. for line_num, line in enumerate(f):
  3322. if line.strip():
  3323. token_data = json.loads(line)
  3324. # Format: [token, score, type, ?, ?, ?, ?]
  3325. token = token_data[0].encode("utf-8")
  3326. score = float(token_data[1])
  3327. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3328. tokens.append(token)
  3329. scores.append(score)
  3330. # Map token type strings to GGUF token types
  3331. if token_type_str == "UNKNOWN":
  3332. toktypes.append(gguf.TokenType.UNKNOWN)
  3333. elif token_type_str == "CONTROL":
  3334. toktypes.append(gguf.TokenType.CONTROL)
  3335. elif token_type_str == "BYTE":
  3336. toktypes.append(gguf.TokenType.BYTE)
  3337. else:
  3338. # Check for PLaMo-2 special tokens
  3339. token_str = token_data[0]
  3340. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3341. toktypes.append(gguf.TokenType.CONTROL)
  3342. else:
  3343. toktypes.append(gguf.TokenType.NORMAL)
  3344. vocab_size = self.hparams["vocab_size"]
  3345. if vocab_size > len(tokens):
  3346. pad_count = vocab_size - len(tokens)
  3347. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3348. for i in range(1, pad_count + 1):
  3349. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3350. scores.append(-1000.0)
  3351. toktypes.append(gguf.TokenType.UNUSED)
  3352. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3353. self.gguf_writer.add_tokenizer_model("plamo2")
  3354. self.gguf_writer.add_tokenizer_pre("default")
  3355. self.gguf_writer.add_token_list(tokens)
  3356. self.gguf_writer.add_token_scores(scores)
  3357. self.gguf_writer.add_token_types(toktypes)
  3358. # Add special tokens from config
  3359. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3360. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3361. self.gguf_writer.add_bos_token_id(token_id)
  3362. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3363. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3364. self.gguf_writer.add_eos_token_id(token_id)
  3365. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3366. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3367. self.gguf_writer.add_pad_token_id(token_id)
  3368. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3369. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3370. self.gguf_writer.add_sep_token_id(token_id)
  3371. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3372. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3373. self.gguf_writer.add_unk_token_id(token_id)
  3374. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3375. self.gguf_writer.add_eot_token_id(4)
  3376. self.gguf_writer.add_add_space_prefix(False)
  3377. def set_gguf_parameters(self):
  3378. hparams = self.hparams
  3379. block_count = hparams["num_hidden_layers"]
  3380. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3381. # Which layers are Mamba layers
  3382. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3383. # This logic matches modeling_plamo.py's is_mamba function
  3384. mamba_step = hparams.get("mamba_step", 2)
  3385. mamba_enabled = hparams.get("mamba_enabled", True)
  3386. mamba_layers = []
  3387. if mamba_enabled:
  3388. for i in range(block_count):
  3389. if block_count <= (mamba_step // 2):
  3390. # use attention in last layer
  3391. is_mamba = (i != block_count - 1)
  3392. else:
  3393. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3394. if is_mamba:
  3395. mamba_layers.append(0)
  3396. else:
  3397. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3398. if mamba_layers:
  3399. self.gguf_writer.add_head_count_kv(mamba_layers)
  3400. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3401. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3402. self.gguf_writer.add_block_count(block_count)
  3403. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3404. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3405. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3406. # Mamba parameters
  3407. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3408. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3409. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3410. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3411. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3412. self.gguf_writer.add_ssm_group_count(0)
  3413. # MLP feed forward parameters (for attention layers)
  3414. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3415. self.gguf_writer.add_file_type(self.ftype)
  3416. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3417. del bid # unused
  3418. if name.endswith(".A_log"):
  3419. data_torch = -torch.exp(data_torch)
  3420. elif name.endswith(".dt_bias"):
  3421. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3422. elif name.endswith(".dt_norm_weight"):
  3423. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3424. elif name.endswith(".B_norm_weight"):
  3425. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3426. elif name.endswith(".C_norm_weight"):
  3427. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3428. elif name.endswith(".k_weight"):
  3429. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3430. elif name.endswith(".q_weight"):
  3431. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3432. elif name.endswith(".conv1d.weight"):
  3433. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3434. assert data_torch.ndim == 2
  3435. elif name.endswith(".pre_mixer_norm.weight"):
  3436. data_torch += 1.0
  3437. elif name.endswith(".post_mixer_norm.weight"):
  3438. data_torch += 1.0 / 5
  3439. elif name.endswith(".pre_mlp_norm.weight"):
  3440. data_torch += 1.0
  3441. elif name.endswith(".post_mlp_norm.weight"):
  3442. data_torch += 1.0 / (5**1.5)
  3443. elif name.endswith(".norm.weight"):
  3444. data_torch += 1.0
  3445. new_name = self.map_tensor_name(name)
  3446. return [(new_name, data_torch)]
  3447. @ModelBase.register("CodeShellForCausalLM")
  3448. class CodeShellModel(TextModel):
  3449. model_arch = gguf.MODEL_ARCH.CODESHELL
  3450. def set_gguf_parameters(self):
  3451. block_count = self.hparams["n_layer"]
  3452. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3453. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3454. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3455. self.gguf_writer.add_block_count(block_count)
  3456. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3457. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3458. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3459. self.gguf_writer.add_file_type(self.ftype)
  3460. self.gguf_writer.add_rope_freq_base(10000.0)
  3461. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3462. self.gguf_writer.add_rope_scaling_factor(1.0)
  3463. _has_tok_embd = False
  3464. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3465. del bid # unused
  3466. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3467. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3468. new_name = self.map_tensor_name(name)
  3469. # assuming token_embd.weight is seen before output.weight
  3470. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3471. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3472. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3473. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3474. self.tensor_names.remove("transformer.wte.weight")
  3475. elif new_name == tok_embd_name:
  3476. self._has_tok_embd = True
  3477. return [(new_name, data_torch)]
  3478. @ModelBase.register("InternLM2ForCausalLM")
  3479. class InternLM2Model(TextModel):
  3480. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3481. def set_vocab(self):
  3482. # (TODO): Is there a better way?
  3483. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3484. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3485. # recognized as an empty string in C++.
  3486. from sentencepiece import SentencePieceProcessor
  3487. from sentencepiece import sentencepiece_model_pb2 as model
  3488. tokenizer_path = self.dir_model / 'tokenizer.model'
  3489. tokens: list[bytes] = []
  3490. scores: list[float] = []
  3491. toktypes: list[int] = []
  3492. if not tokenizer_path.is_file():
  3493. logger.error(f'Error: Missing {tokenizer_path}')
  3494. sys.exit(1)
  3495. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3496. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3497. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3498. tokenizer = SentencePieceProcessor()
  3499. tokenizer.LoadFromFile(str(tokenizer_path))
  3500. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3501. for token_id in range(vocab_size):
  3502. piece = tokenizer.IdToPiece(token_id)
  3503. text = piece.encode("utf-8")
  3504. score = tokenizer.GetScore(token_id)
  3505. if text == b"\x00":
  3506. # (TODO): fixme
  3507. # Hack here and replace the \x00 characters.
  3508. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3509. text = "🐉".encode("utf-8")
  3510. toktype = SentencePieceTokenTypes.NORMAL
  3511. if tokenizer.IsUnknown(token_id):
  3512. toktype = SentencePieceTokenTypes.UNKNOWN
  3513. elif tokenizer.IsControl(token_id):
  3514. toktype = SentencePieceTokenTypes.CONTROL
  3515. elif tokenizer.IsUnused(token_id):
  3516. toktype = SentencePieceTokenTypes.UNUSED
  3517. elif tokenizer.IsByte(token_id):
  3518. toktype = SentencePieceTokenTypes.BYTE
  3519. # take care of ununsed raw token
  3520. if piece.startswith('[UNUSED'):
  3521. toktype = SentencePieceTokenTypes.UNUSED
  3522. tokens.append(text)
  3523. scores.append(score)
  3524. toktypes.append(toktype)
  3525. added_tokens_file = self.dir_model / 'added_tokens.json'
  3526. if added_tokens_file.is_file():
  3527. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3528. added_tokens_json = json.load(f)
  3529. for key in added_tokens_json:
  3530. tokens.append(key.encode("utf-8"))
  3531. scores.append(-1000.0)
  3532. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3533. chat_eos_token = '<|im_end|>'
  3534. chat_eos_token_id = None
  3535. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3536. if tokenizer_config_file.is_file():
  3537. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3538. tokenizer_config_json = json.load(f)
  3539. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3540. for token_id, foken_data in added_tokens_decoder.items():
  3541. token_id = int(token_id)
  3542. token = foken_data["content"]
  3543. if token == chat_eos_token:
  3544. chat_eos_token_id = token_id
  3545. token = token.encode("utf-8")
  3546. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3547. if tokens[token_id] != token:
  3548. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3549. tokens[token_id] = token
  3550. scores[token_id] = -1000.0
  3551. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3552. if foken_data.get("special"):
  3553. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3554. tokenizer_file = self.dir_model / 'tokenizer.json'
  3555. if tokenizer_file.is_file():
  3556. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3557. tokenizer_json = json.load(f)
  3558. added_tokens = tokenizer_json.get("added_tokens", [])
  3559. for foken_data in added_tokens:
  3560. token_id = int(foken_data["id"])
  3561. token = foken_data["content"]
  3562. if token == chat_eos_token:
  3563. chat_eos_token_id = token_id
  3564. token = token.encode("utf-8")
  3565. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3566. if tokens[token_id] != token:
  3567. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3568. tokens[token_id] = token
  3569. scores[token_id] = -1000.0
  3570. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3571. if foken_data.get("special"):
  3572. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3573. self.gguf_writer.add_tokenizer_model("llama")
  3574. self.gguf_writer.add_tokenizer_pre("default")
  3575. self.gguf_writer.add_token_list(tokens)
  3576. self.gguf_writer.add_token_scores(scores)
  3577. self.gguf_writer.add_token_types(toktypes)
  3578. self.gguf_writer.add_add_space_prefix(add_prefix)
  3579. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3580. old_eos = special_vocab.special_token_ids["eos"]
  3581. if chat_eos_token_id is not None:
  3582. # For the chat model, we replace the eos with '<|im_end|>'.
  3583. # TODO: this is a hack, should be fixed
  3584. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3585. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3586. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3587. " in chat mode so that the conversation can end normally.")
  3588. special_vocab.add_to_gguf(self.gguf_writer)
  3589. def set_gguf_parameters(self):
  3590. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3591. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3592. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3593. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3594. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3595. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3596. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3597. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3598. self.gguf_writer.add_file_type(self.ftype)
  3599. rope_scaling = self.hparams.get("rope_scaling") or {}
  3600. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3601. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3602. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3604. num_heads = self.hparams["num_attention_heads"]
  3605. num_kv_heads = self.hparams["num_key_value_heads"]
  3606. n_embd = self.hparams["hidden_size"]
  3607. q_per_kv = num_heads // num_kv_heads
  3608. head_dim = n_embd // num_heads
  3609. num_groups = num_heads // q_per_kv
  3610. name = name.replace("language_model.", "") # InternVL
  3611. if name.startswith("mlp") or name.startswith("vision_model"):
  3612. # skip visual tensors
  3613. return []
  3614. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3615. qkv = data_torch
  3616. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3617. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3618. # The model weights of q and k equire additional reshape.
  3619. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3620. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3621. v = v.reshape((-1, v.shape[-1]))
  3622. return [
  3623. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3624. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3625. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3626. ]
  3627. else:
  3628. return [(self.map_tensor_name(name), data_torch)]
  3629. @ModelBase.register("InternLM3ForCausalLM")
  3630. class InternLM3Model(TextModel):
  3631. model_arch = gguf.MODEL_ARCH.LLAMA
  3632. def set_vocab(self):
  3633. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3634. self.gguf_writer.add_tokenizer_model("llama")
  3635. self.gguf_writer.add_tokenizer_pre("default")
  3636. self.gguf_writer.add_token_list(tokens)
  3637. self.gguf_writer.add_token_scores(scores)
  3638. self.gguf_writer.add_token_types(toktypes)
  3639. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3640. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3641. if tokenizer_config_file.is_file():
  3642. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3643. tokenizer_config_json = json.load(f)
  3644. if "add_prefix_space" in tokenizer_config_json:
  3645. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3646. if "added_tokens_decoder" in tokenizer_config_json:
  3647. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3648. if token_data.get("special"):
  3649. token_id = int(token_id)
  3650. token = token_data["content"]
  3651. special_vocab._set_special_token(token, token_id)
  3652. # update eos token
  3653. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3654. special_vocab.special_token_ids["eos"] = token_id
  3655. special_vocab.add_to_gguf(self.gguf_writer)
  3656. def set_gguf_parameters(self):
  3657. super().set_gguf_parameters()
  3658. hparams = self.hparams
  3659. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3660. if (rope_dim := hparams.get("head_dim")) is None:
  3661. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3662. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3663. rope_scaling = self.hparams.get("rope_scaling") or {}
  3664. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3665. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3666. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3667. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3668. n_head = self.hparams["num_attention_heads"]
  3669. n_kv_head = self.hparams.get("num_key_value_heads")
  3670. name = name.replace("language_model.", "") # InternVL
  3671. if name.startswith("mlp") or name.startswith("vision_model"):
  3672. # skip visual tensors
  3673. return []
  3674. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3675. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3676. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3677. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3678. return [(self.map_tensor_name(name), data_torch)]
  3679. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3680. class BertModel(TextModel):
  3681. model_arch = gguf.MODEL_ARCH.BERT
  3682. def __init__(self, *args, **kwargs):
  3683. super().__init__(*args, **kwargs)
  3684. self.vocab_size = None
  3685. if cls_out_labels := self.hparams.get("id2label"):
  3686. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3687. # Remove dummy labels added by AutoConfig
  3688. cls_out_labels = None
  3689. self.cls_out_labels = cls_out_labels
  3690. def set_gguf_parameters(self):
  3691. super().set_gguf_parameters()
  3692. self.gguf_writer.add_causal_attention(False)
  3693. self._try_set_pooling_type()
  3694. if self.cls_out_labels:
  3695. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3696. def set_vocab(self):
  3697. tokens, toktypes, tokpre = self.get_vocab_base()
  3698. self.vocab_size = len(tokens)
  3699. # we need this to validate the size of the token_type embeddings
  3700. # though currently we are passing all zeros to the token_type embeddings
  3701. # "Sequence A" or "Sequence B"
  3702. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3703. # convert to phantom space vocab
  3704. def phantom(tok):
  3705. if tok.startswith("[") and tok.endswith("]"):
  3706. return tok
  3707. if tok.startswith("##"):
  3708. return tok[2:]
  3709. return "\u2581" + tok
  3710. tokens = list(map(phantom, tokens))
  3711. # add vocab to gguf
  3712. self.gguf_writer.add_tokenizer_model("bert")
  3713. self.gguf_writer.add_tokenizer_pre(tokpre)
  3714. self.gguf_writer.add_token_list(tokens)
  3715. self.gguf_writer.add_token_types(toktypes)
  3716. # handle special tokens
  3717. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3718. special_vocab.add_to_gguf(self.gguf_writer)
  3719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3720. del bid # unused
  3721. if name.startswith("bert."):
  3722. name = name[5:]
  3723. if name.endswith(".gamma"):
  3724. name = name[:-6] + ".weight"
  3725. if name.endswith(".beta"):
  3726. name = name[:-5] + ".bias"
  3727. # we are only using BERT for embeddings so we don't need the pooling layer
  3728. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3729. return [] # we don't need these
  3730. if name.startswith("cls.predictions"):
  3731. return []
  3732. if name.startswith("cls.seq_relationship"):
  3733. return []
  3734. if self.cls_out_labels:
  3735. # For BertForSequenceClassification (direct projection layer)
  3736. if name == "classifier.weight":
  3737. name = "classifier.out_proj.weight"
  3738. if name == "classifier.bias":
  3739. name = "classifier.out_proj.bias"
  3740. return [(self.map_tensor_name(name), data_torch)]
  3741. def _xlmroberta_tokenizer_init(self) -> None:
  3742. # we need the pad_token_id to know how to chop down position_embd matrix
  3743. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3744. self._position_offset = 1 + pad_token_id
  3745. if "max_position_embeddings" in self.hparams:
  3746. self.hparams["max_position_embeddings"] -= self._position_offset
  3747. else:
  3748. self._position_offset = None
  3749. def _xlmroberta_set_vocab(self) -> None:
  3750. # to avoid TypeError: Descriptors cannot be created directly
  3751. # exception when importing sentencepiece_model_pb2
  3752. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3753. from sentencepiece import SentencePieceProcessor
  3754. from sentencepiece import sentencepiece_model_pb2 as model
  3755. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3756. tokenizer_json = {}
  3757. tokenizer_config_json = {}
  3758. if not tokenizer_path.is_file():
  3759. tokenizer_path = self.dir_model / 'tokenizer.json'
  3760. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3761. if not tokenizer_path.is_file():
  3762. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3763. from base64 import b64decode
  3764. from transformers import AutoTokenizer
  3765. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3766. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3767. tokenizer_json = json.load(fp)
  3768. if tokenizer_config_path.is_file():
  3769. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3770. tokenizer_config_json = json.load(fp)
  3771. add_prefix = tokenizer.add_prefix_space
  3772. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3773. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3774. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3775. else:
  3776. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3777. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3778. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3779. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3780. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3781. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3782. tokenizer = SentencePieceProcessor()
  3783. tokenizer.LoadFromFile(str(tokenizer_path))
  3784. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3785. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3786. scores: list[float] = [-10000.0] * vocab_size
  3787. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3788. if isinstance(tokenizer, SentencePieceProcessor):
  3789. for token_id in range(tokenizer.vocab_size()):
  3790. piece = tokenizer.IdToPiece(token_id)
  3791. text = piece.encode("utf-8")
  3792. score = tokenizer.GetScore(token_id)
  3793. toktype = SentencePieceTokenTypes.NORMAL
  3794. if tokenizer.IsUnknown(token_id):
  3795. toktype = SentencePieceTokenTypes.UNKNOWN
  3796. elif tokenizer.IsControl(token_id):
  3797. toktype = SentencePieceTokenTypes.CONTROL
  3798. elif tokenizer.IsUnused(token_id):
  3799. toktype = SentencePieceTokenTypes.UNUSED
  3800. elif tokenizer.IsByte(token_id):
  3801. toktype = SentencePieceTokenTypes.BYTE
  3802. tokens[token_id] = text
  3803. scores[token_id] = score
  3804. toktypes[token_id] = toktype
  3805. else:
  3806. added_vocab = tokenizer.get_added_vocab()
  3807. unk_token = tokenizer_config_json.get("unk_token")
  3808. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3809. for token_id in range(tokenizer.vocab_size):
  3810. piece = tokenizer._convert_id_to_token(token_id)
  3811. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3812. text = piece.encode("utf-8")
  3813. score = tokenizer_json["model"]["vocab"][token_id][1]
  3814. toktype = SentencePieceTokenTypes.NORMAL
  3815. if token_id == unk_token_id:
  3816. toktype = SentencePieceTokenTypes.UNKNOWN
  3817. elif token_id in tokenizer.all_special_ids:
  3818. toktype = SentencePieceTokenTypes.CONTROL
  3819. elif token_id in added_vocab.values():
  3820. toktype = SentencePieceTokenTypes.USER_DEFINED
  3821. # No reliable way to detect this, but jina doesn't have any
  3822. # elif tokenizer.IsByte(token_id):
  3823. # toktype = SentencePieceTokenTypes.BYTE
  3824. tokens[token_id] = text
  3825. scores[token_id] = score
  3826. toktypes[token_id] = toktype
  3827. if isinstance(tokenizer, SentencePieceProcessor):
  3828. # realign tokens (see HF tokenizer code)
  3829. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3830. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3831. toktypes = [
  3832. SentencePieceTokenTypes.CONTROL,
  3833. SentencePieceTokenTypes.CONTROL,
  3834. SentencePieceTokenTypes.CONTROL,
  3835. SentencePieceTokenTypes.UNKNOWN,
  3836. ] + toktypes[3:-1]
  3837. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3838. # Add mask token missing from sentencepiece.bpe.model
  3839. tokens[250001] = b'<mask>'
  3840. scores[250001] = 0.0
  3841. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3842. self.gguf_writer.add_tokenizer_model("t5")
  3843. self.gguf_writer.add_tokenizer_pre("default")
  3844. self.gguf_writer.add_token_list(tokens)
  3845. self.gguf_writer.add_token_scores(scores)
  3846. self.gguf_writer.add_token_types(toktypes)
  3847. self.gguf_writer.add_add_space_prefix(add_prefix)
  3848. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3849. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3850. if precompiled_charsmap:
  3851. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3852. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3853. special_vocab.add_to_gguf(self.gguf_writer)
  3854. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3855. class DistilBertModel(BertModel):
  3856. model_arch = gguf.MODEL_ARCH.BERT
  3857. def set_gguf_parameters(self):
  3858. self.gguf_writer.add_layer_norm_eps(1e-12)
  3859. logger.info("gguf: layer norm epsilon = 1e-12")
  3860. super().set_gguf_parameters()
  3861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3862. if name.startswith("distilbert."):
  3863. name = name[11:]
  3864. # These layers act as MLM head, so we don't need them
  3865. if name.startswith("vocab_"):
  3866. return []
  3867. return super().modify_tensors(data_torch, name, bid)
  3868. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3869. class RobertaModel(BertModel):
  3870. model_arch = gguf.MODEL_ARCH.BERT
  3871. def __init__(self, *args, **kwargs):
  3872. super().__init__(*args, **kwargs)
  3873. # we need the pad_token_id to know how to chop down position_embd matrix
  3874. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3875. self._position_offset = 1 + pad_token_id
  3876. if "max_position_embeddings" in self.hparams:
  3877. self.hparams["max_position_embeddings"] -= self._position_offset
  3878. else:
  3879. self._position_offset = None
  3880. def set_vocab(self):
  3881. """Support BPE tokenizers for roberta models"""
  3882. bpe_tok_path = self.dir_model / "tokenizer.json"
  3883. if bpe_tok_path.exists():
  3884. self._set_vocab_gpt2()
  3885. # we need this to validate the size of the token_type embeddings
  3886. # though currently we are passing all zeros to the token_type embeddings
  3887. # "Sequence A" or "Sequence B"
  3888. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3889. else:
  3890. return super().set_vocab()
  3891. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3892. # if name starts with "roberta.", remove the prefix
  3893. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3894. if name.startswith("roberta."):
  3895. name = name[8:]
  3896. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3897. if name == "embeddings.position_embeddings.weight":
  3898. if self._position_offset is not None:
  3899. data_torch = data_torch[self._position_offset:,:]
  3900. return super().modify_tensors(data_torch, name, bid)
  3901. @ModelBase.register("NomicBertModel")
  3902. class NomicBertModel(BertModel):
  3903. model_arch = gguf.MODEL_ARCH.BERT
  3904. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3905. hparams = kwargs.pop("hparams", None)
  3906. if hparams is None:
  3907. hparams = ModelBase.load_hparams(dir_model, False)
  3908. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3909. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3910. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3911. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3912. if self._tokenizer_is_xlmroberta:
  3913. self._xlmroberta_tokenizer_init()
  3914. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3915. if npos == 8192 and mtp == 2048:
  3916. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3917. elif npos == 2048 and mtp == 2048:
  3918. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3919. else:
  3920. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3921. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3922. # this doesn't do anything in the HF version
  3923. assert self.hparams["causal"] is False
  3924. # no bias tensors unless MoE
  3925. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3926. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3927. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3928. # norm at end of layer
  3929. assert self.hparams["prenorm"] is False
  3930. # standard RoPE
  3931. assert self.hparams["rotary_emb_fraction"] == 1.0
  3932. assert self.hparams["rotary_emb_interleaved"] is False
  3933. assert self.hparams["rotary_emb_scale_base"] is None
  3934. def set_vocab(self) -> None:
  3935. if self._tokenizer_is_xlmroberta:
  3936. return self._xlmroberta_set_vocab()
  3937. return super().set_vocab()
  3938. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3939. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3940. if "mlp.experts.bias" in name:
  3941. return [] # Explicitly return an empty list.
  3942. if "mlp.experts.mlp.w1" in name:
  3943. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3944. name += ".weight"
  3945. if "mlp.experts.mlp.w2" in name:
  3946. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3947. data_torch = data_torch.transpose(1, 2)
  3948. name += ".weight"
  3949. return [(self.map_tensor_name(name), data_torch)]
  3950. def set_gguf_parameters(self):
  3951. super().set_gguf_parameters()
  3952. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3953. if self.is_moe:
  3954. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3955. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3956. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3957. def _is_tokenizer_xlmroberta(self) -> bool:
  3958. with open(self.dir_model / "tokenizer.json") as f:
  3959. tokenizer_json = json.load(f)
  3960. toktyp = tokenizer_json["model"]["type"]
  3961. if toktyp == "Unigram":
  3962. return True
  3963. if toktyp == "WordPiece":
  3964. return False
  3965. raise ValueError(f"unknown tokenizer: {toktyp}")
  3966. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3967. class NeoBert(BertModel):
  3968. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3969. def set_gguf_parameters(self):
  3970. super().set_gguf_parameters()
  3971. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3972. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3973. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3974. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3975. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3976. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3977. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3978. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3979. def modify_tensors(self, data_torch, name, bid):
  3980. if name.startswith("decoder."):
  3981. return []
  3982. if name.startswith("model."):
  3983. name = name[6:]
  3984. return super().modify_tensors(data_torch, name, bid)
  3985. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3986. class XLMRobertaModel(BertModel):
  3987. model_arch = gguf.MODEL_ARCH.BERT
  3988. def __init__(self, *args, **kwargs):
  3989. super().__init__(*args, **kwargs)
  3990. self._xlmroberta_tokenizer_init()
  3991. def set_vocab(self):
  3992. self._xlmroberta_set_vocab()
  3993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3994. # if name starts with "roberta.", remove the prefix
  3995. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3996. if name.startswith("roberta."):
  3997. name = name[8:]
  3998. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3999. if name == "embeddings.position_embeddings.weight":
  4000. if self._position_offset is not None:
  4001. data_torch = data_torch[self._position_offset:,:]
  4002. return super().modify_tensors(data_torch, name, bid)
  4003. @ModelBase.register("GemmaForCausalLM")
  4004. class GemmaModel(TextModel):
  4005. model_arch = gguf.MODEL_ARCH.GEMMA
  4006. def set_vocab(self):
  4007. self._set_vocab_sentencepiece()
  4008. # TODO: these special tokens should be exported only for the CodeGemma family
  4009. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4010. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4011. special_vocab._set_special_token("prefix", 67)
  4012. special_vocab._set_special_token("suffix", 69)
  4013. special_vocab._set_special_token("middle", 68)
  4014. special_vocab._set_special_token("fsep", 70)
  4015. special_vocab._set_special_token("eot", 107)
  4016. special_vocab.chat_template = None # do not add it twice
  4017. special_vocab.add_to_gguf(self.gguf_writer)
  4018. self.gguf_writer.add_add_space_prefix(False)
  4019. def set_gguf_parameters(self):
  4020. hparams = self.hparams
  4021. block_count = hparams["num_hidden_layers"]
  4022. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4023. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4024. self.gguf_writer.add_block_count(block_count)
  4025. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4026. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4027. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4028. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4029. self.gguf_writer.add_key_length(hparams["head_dim"])
  4030. self.gguf_writer.add_value_length(hparams["head_dim"])
  4031. self.gguf_writer.add_file_type(self.ftype)
  4032. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4033. del bid # unused
  4034. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4035. # To prevent errors, skip loading lm_head.weight.
  4036. if name == "lm_head.weight":
  4037. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4038. return []
  4039. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4040. if name.endswith("norm.weight"):
  4041. data_torch = data_torch + 1
  4042. return [(self.map_tensor_name(name), data_torch)]
  4043. @ModelBase.register("Gemma2ForCausalLM")
  4044. class Gemma2Model(TextModel):
  4045. model_arch = gguf.MODEL_ARCH.GEMMA2
  4046. def set_vocab(self):
  4047. self._set_vocab_sentencepiece()
  4048. self.gguf_writer.add_add_space_prefix(False)
  4049. def set_gguf_parameters(self):
  4050. hparams = self.hparams
  4051. block_count = hparams["num_hidden_layers"]
  4052. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4053. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4054. self.gguf_writer.add_block_count(block_count)
  4055. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4056. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4057. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4058. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4059. self.gguf_writer.add_key_length(hparams["head_dim"])
  4060. self.gguf_writer.add_value_length(hparams["head_dim"])
  4061. self.gguf_writer.add_file_type(self.ftype)
  4062. self.gguf_writer.add_attn_logit_softcapping(
  4063. self.hparams["attn_logit_softcapping"]
  4064. )
  4065. self.gguf_writer.add_final_logit_softcapping(
  4066. self.hparams["final_logit_softcapping"]
  4067. )
  4068. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4070. del bid # unused
  4071. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4072. # To prevent errors, skip loading lm_head.weight.
  4073. if name == "lm_head.weight":
  4074. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4075. return []
  4076. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4077. if name.endswith("norm.weight"):
  4078. data_torch = data_torch + 1
  4079. return [(self.map_tensor_name(name), data_torch)]
  4080. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4081. class Gemma3Model(TextModel):
  4082. model_arch = gguf.MODEL_ARCH.GEMMA3
  4083. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4084. def set_vocab(self):
  4085. self._set_vocab_sentencepiece()
  4086. self.gguf_writer.add_add_space_prefix(False)
  4087. def set_gguf_parameters(self):
  4088. hparams = self.hparams
  4089. block_count = hparams["num_hidden_layers"]
  4090. # some default values are not specified in the hparams
  4091. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4092. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4093. self.gguf_writer.add_block_count(block_count)
  4094. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4095. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4096. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4097. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4098. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4099. self.gguf_writer.add_file_type(self.ftype)
  4100. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4101. # attn_logit_softcapping is removed in Gemma3
  4102. assert hparams.get("attn_logit_softcapping") is None
  4103. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4104. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4105. if hparams.get("rope_scaling") is not None:
  4106. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4107. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4108. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4109. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4111. del bid # unused
  4112. if "language_model." in name:
  4113. name = name.replace("language_model.", "")
  4114. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4115. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4116. return [] # skip vision tensors
  4117. # remove OOV (out-of-vocabulary) rows in token_embd
  4118. if "embed_tokens.weight" in name:
  4119. vocab = self._create_vocab_sentencepiece()
  4120. tokens = vocab[0]
  4121. data_torch = data_torch[:len(tokens)]
  4122. # ref code in Gemma3RMSNorm
  4123. # output = output * (1.0 + self.weight.float())
  4124. # note: this is not the case on gemma3n
  4125. if name.endswith("norm.weight"):
  4126. data_torch = data_torch + self.norm_shift
  4127. return [(self.map_tensor_name(name), data_torch)]
  4128. @ModelBase.register("Gemma3ForConditionalGeneration")
  4129. class Gemma3VisionModel(MmprojModel):
  4130. def set_gguf_parameters(self):
  4131. super().set_gguf_parameters()
  4132. hparams = self.hparams
  4133. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4134. # default values below are taken from HF tranformers code
  4135. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4136. self.gguf_writer.add_vision_use_gelu(True)
  4137. # calculate proj_scale_factor (used by tinygemma3 test model)
  4138. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4139. n_per_side = int(image_seq_length ** 0.5)
  4140. image_size = self.hparams["image_size"]
  4141. patch_size = self.hparams["patch_size"]
  4142. proj_scale_factor = (image_size // patch_size) // n_per_side
  4143. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4144. # we only need to write this if it's not the default value
  4145. # in this case, we are converting a test model
  4146. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4147. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4148. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4149. if "input_projection" in name:
  4150. return gguf.GGMLQuantizationType.F16
  4151. if ".embeddings." in name:
  4152. return gguf.GGMLQuantizationType.F32
  4153. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4154. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4155. del bid # unused
  4156. if "vision_model.head." in name:
  4157. return [] # skip redundant tensors for tinygemma3
  4158. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4159. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4160. # process vision tensors
  4161. name = name.replace("_weight", ".weight")
  4162. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4163. # the other norm values are part of SigLIP model, and they are already correct
  4164. # ref code: Gemma3RMSNorm
  4165. if "soft_emb_norm.weight" in name:
  4166. logger.info(f"Correcting norm value for '{name}'")
  4167. data_torch = data_torch + 1
  4168. return [(self.map_tensor_name(name), data_torch)]
  4169. return [] # skip other tensors
  4170. @ModelBase.register("Gemma3nForConditionalGeneration")
  4171. class Gemma3NModel(Gemma3Model):
  4172. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4173. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4174. _altup_proj: list[Tensor] = []
  4175. _altup_unembd: list[Tensor] = []
  4176. def __init__(self, *args, **kwargs):
  4177. super().__init__(*args, **kwargs)
  4178. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4179. self._altup_proj = [
  4180. torch.Tensor(), # to be replaced
  4181. torch.Tensor(), # to be replaced
  4182. torch.Tensor(), # to be replaced
  4183. ]
  4184. self._altup_unembd = [
  4185. torch.Tensor(), # to be replaced
  4186. torch.Tensor(), # to be replaced
  4187. torch.Tensor(), # to be replaced
  4188. ]
  4189. def set_vocab(self):
  4190. super().set_vocab()
  4191. def set_gguf_parameters(self):
  4192. super().set_gguf_parameters()
  4193. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4194. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4195. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4196. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4197. activation_sparsity_scale = []
  4198. for s in self.hparams["activation_sparsity_pattern"]:
  4199. normal_dist = torch.distributions.normal.Normal(0, 1)
  4200. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4201. activation_sparsity_scale.append(std_multiplier.item())
  4202. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4203. sliding_window_pattern = []
  4204. for t in self.hparams["layer_types"]:
  4205. sliding_window_pattern.append(t == "sliding_attention")
  4206. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4207. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4208. has_all = all(m.numel() > 0 for m in matrices)
  4209. if not has_all:
  4210. return None
  4211. else:
  4212. return torch.stack(matrices, dim=0)
  4213. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4214. if name.endswith("_scale"):
  4215. name = name + ".weight"
  4216. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4217. if "language_model." not in name:
  4218. return [] # skip non-language model tensors
  4219. if "altup_unembed_projections" in name:
  4220. data_torch = data_torch.to(device="cpu")
  4221. if ".0." in name:
  4222. self._altup_unembd[0] = data_torch
  4223. elif ".1." in name:
  4224. self._altup_unembd[1] = data_torch
  4225. elif ".2." in name:
  4226. self._altup_unembd[2] = data_torch
  4227. else:
  4228. raise ValueError(f"Unknown name: {name}")
  4229. out = self._stack_matrices(self._altup_unembd)
  4230. if out is not None:
  4231. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4232. else:
  4233. return []
  4234. if "altup_projections" in name:
  4235. data_torch = data_torch.to(device="cpu")
  4236. if ".0." in name:
  4237. self._altup_proj[0] = data_torch
  4238. elif ".1." in name:
  4239. self._altup_proj[1] = data_torch
  4240. elif ".2." in name:
  4241. self._altup_proj[2] = data_torch
  4242. else:
  4243. raise ValueError(f"Unknown name: {name}")
  4244. out = self._stack_matrices(self._altup_proj)
  4245. if out is not None:
  4246. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4247. else:
  4248. return []
  4249. return super().modify_tensors(data_torch, name, bid)
  4250. @ModelBase.register("Starcoder2ForCausalLM")
  4251. class StarCoder2Model(TextModel):
  4252. model_arch = gguf.MODEL_ARCH.STARCODER2
  4253. @ModelBase.register("Rwkv6ForCausalLM")
  4254. class Rwkv6Model(TextModel):
  4255. model_arch = gguf.MODEL_ARCH.RWKV6
  4256. def set_vocab(self):
  4257. self._set_vocab_rwkv_world()
  4258. def set_gguf_parameters(self):
  4259. block_count = self.hparams["num_hidden_layers"]
  4260. head_size = self.hparams["head_size"]
  4261. hidden_size = self.hparams["hidden_size"]
  4262. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4263. rescale_every_n_layers = self.hparams["rescale_every"]
  4264. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4265. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4266. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4267. # RWKV isn't context limited
  4268. self.gguf_writer.add_context_length(1048576)
  4269. self.gguf_writer.add_embedding_length(hidden_size)
  4270. self.gguf_writer.add_block_count(block_count)
  4271. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4272. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4273. self.gguf_writer.add_wkv_head_size(head_size)
  4274. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4275. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4276. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4277. self.gguf_writer.add_file_type(self.ftype)
  4278. # required by llama.cpp, unused
  4279. self.gguf_writer.add_head_count(0)
  4280. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4281. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4282. new_name = self.map_tensor_name(name)
  4283. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4284. new_name += ".weight"
  4285. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4286. data_torch = data_torch.transpose(0, 1)
  4287. if new_name.endswith("time_mix_w2.weight"):
  4288. data_torch = data_torch.permute(0, 2, 1)
  4289. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4290. data_torch = data_torch.squeeze()
  4291. try:
  4292. rescale_every_n_layers = self.hparams["rescale_every"]
  4293. if rescale_every_n_layers > 0:
  4294. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4295. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4296. except KeyError:
  4297. pass
  4298. # concat time_mix_lerp weights to reduce some cpu overhead
  4299. # also reduces the number of tensors in the model
  4300. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4301. try:
  4302. self.lerp_weights[bid][new_name] = data_torch
  4303. except KeyError:
  4304. self.lerp_weights[bid] = {new_name: data_torch}
  4305. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4306. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4307. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4308. yield (new_name, data)
  4309. return
  4310. yield (new_name, data_torch)
  4311. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4312. class RWKV6Qwen2Model(Rwkv6Model):
  4313. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4314. def set_vocab(self):
  4315. try:
  4316. self._set_vocab_sentencepiece()
  4317. except FileNotFoundError:
  4318. self._set_vocab_gpt2()
  4319. def set_gguf_parameters(self):
  4320. block_count = self.hparams["num_hidden_layers"]
  4321. num_attention_heads = self.hparams["num_attention_heads"]
  4322. num_key_value_heads = self.hparams["num_key_value_heads"]
  4323. hidden_size = self.hparams["hidden_size"]
  4324. head_size = hidden_size // num_attention_heads
  4325. rms_norm_eps = self.hparams["rms_norm_eps"]
  4326. intermediate_size = self.hparams["intermediate_size"]
  4327. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4328. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4329. # RWKV isn't context limited
  4330. self.gguf_writer.add_context_length(1048576)
  4331. self.gguf_writer.add_embedding_length(hidden_size)
  4332. self.gguf_writer.add_block_count(block_count)
  4333. self.gguf_writer.add_wkv_head_size(head_size)
  4334. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4335. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4336. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4337. self.gguf_writer.add_file_type(self.ftype)
  4338. # special parameters for time_mixing in RWKV6QWEN2
  4339. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4340. self.gguf_writer.add_token_shift_count(1)
  4341. # RWKV6QWEN2 use grouped key/value like GQA
  4342. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4343. # required by llama.cpp, unused
  4344. self.gguf_writer.add_head_count(0)
  4345. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4346. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4347. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4348. data = data.view(5, -1, data.shape[-1])
  4349. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4350. # permute them here to avoid code changes
  4351. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4352. if "w2" in new_name:
  4353. data = data.view(5, -1, data.shape[-1])
  4354. yield (new_name, data)
  4355. continue
  4356. yield (new_name, data)
  4357. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4358. class Rwkv7Model(TextModel):
  4359. model_arch = gguf.MODEL_ARCH.RWKV7
  4360. def set_vocab(self):
  4361. self._set_vocab_rwkv_world()
  4362. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4363. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4364. def set_gguf_parameters(self):
  4365. block_count = self.hparams["num_hidden_layers"]
  4366. try:
  4367. head_size = self.hparams["head_size"]
  4368. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4369. except KeyError:
  4370. head_size = self.hparams["head_dim"]
  4371. layer_norm_eps = self.hparams["norm_eps"]
  4372. hidden_size = self.hparams["hidden_size"]
  4373. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4374. # ICLR: In-Context-Learning-Rate
  4375. try:
  4376. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4377. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4378. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4379. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4380. except KeyError:
  4381. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4382. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4383. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4384. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4385. # RWKV isn't context limited
  4386. self.gguf_writer.add_context_length(1048576)
  4387. self.gguf_writer.add_embedding_length(hidden_size)
  4388. self.gguf_writer.add_block_count(block_count)
  4389. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4390. self.gguf_writer.add_wkv_head_size(head_size)
  4391. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4392. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4393. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4394. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4395. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4396. self.gguf_writer.add_file_type(self.ftype)
  4397. # required by llama.cpp, unused
  4398. self.gguf_writer.add_head_count(0)
  4399. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4400. lora_needs_transpose: bool = True
  4401. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4402. # unify tensor names here to make life easier
  4403. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4404. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4405. name = name.replace("time_mixer.", "")
  4406. # lora layer names in fla-hub's impl
  4407. if "_lora.lora" in name:
  4408. self.lora_needs_transpose = False
  4409. name = name.replace("_lora.lora.0.weight", "1.weight")
  4410. name = name.replace("_lora.lora.2.weight", "2.weight")
  4411. name = name.replace("_lora.lora.2.bias", "0.weight")
  4412. name = name.replace("feed_forward_norm", "ln2")
  4413. name = name.replace("g_norm", "ln_x")
  4414. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4415. # some models have dummy v0/v1/v2 on first layer while others don't
  4416. # ignore them all since they are not used
  4417. return
  4418. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4419. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4420. if bid is not None and "attention.x_" in name:
  4421. if "attention.x_x" in name:
  4422. # already concatenated
  4423. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4424. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4425. yield (new_name, data)
  4426. else:
  4427. try:
  4428. self.lerp_weights[bid][name] = data_torch
  4429. except KeyError:
  4430. self.lerp_weights[bid] = {name: data_torch}
  4431. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4432. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4433. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4434. yield (new_name, data)
  4435. return
  4436. else:
  4437. data_torch = data_torch.squeeze()
  4438. new_name = self.map_tensor_name(name)
  4439. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4440. new_name += ".weight"
  4441. if self.lora_needs_transpose and any(
  4442. new_name.endswith(t) for t in [
  4443. "time_mix_w1.weight", "time_mix_w2.weight",
  4444. "time_mix_a1.weight", "time_mix_a2.weight",
  4445. "time_mix_v1.weight", "time_mix_v2.weight",
  4446. "time_mix_g1.weight", "time_mix_g2.weight",
  4447. ]
  4448. ):
  4449. data_torch = data_torch.transpose(0, 1)
  4450. if 'r_k' in new_name:
  4451. data_torch = data_torch.flatten()
  4452. if bid == 0 and "time_mix_a" in new_name:
  4453. # dummy v0/v1/v2 on first layer
  4454. # easist way to make llama happy
  4455. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4456. yield (new_name, data_torch)
  4457. @ModelBase.register("RwkvHybridForCausalLM")
  4458. class ARwkv7Model(Rwkv7Model):
  4459. model_arch = gguf.MODEL_ARCH.ARWKV7
  4460. def set_vocab(self):
  4461. try:
  4462. self._set_vocab_sentencepiece()
  4463. except FileNotFoundError:
  4464. self._set_vocab_gpt2()
  4465. def set_gguf_parameters(self):
  4466. block_count = self.hparams["num_hidden_layers"]
  4467. hidden_size = self.hparams["hidden_size"]
  4468. head_size = self.hparams["head_size"]
  4469. rms_norm_eps = self.hparams["rms_norm_eps"]
  4470. intermediate_size = self.hparams["intermediate_size"]
  4471. wkv_has_gate = self.hparams["wkv_has_gate"]
  4472. assert self.hparams["wkv_version"] == 7
  4473. # ICLR: In-Context-Learning-Rate
  4474. lora_rank_decay = 64
  4475. lora_rank_iclr = 64
  4476. lora_rank_value_residual_mix = 32
  4477. lora_rank_gate = 128 if wkv_has_gate else 0
  4478. # RWKV isn't context limited
  4479. self.gguf_writer.add_context_length(1048576)
  4480. self.gguf_writer.add_embedding_length(hidden_size)
  4481. self.gguf_writer.add_block_count(block_count)
  4482. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4483. self.gguf_writer.add_wkv_head_size(head_size)
  4484. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4485. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4486. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4487. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4488. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4489. self.gguf_writer.add_file_type(self.ftype)
  4490. self.gguf_writer.add_token_shift_count(1)
  4491. # required by llama.cpp, unused
  4492. self.gguf_writer.add_head_count(0)
  4493. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4494. class MambaModel(TextModel):
  4495. model_arch = gguf.MODEL_ARCH.MAMBA
  4496. def __init__(self, dir_model: Path, *args, **kwargs):
  4497. # Avoid using AutoConfig for hparams
  4498. hparams = kwargs.pop("hparams", None)
  4499. if hparams is None:
  4500. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4501. hparams = json.load(f)
  4502. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4503. def set_vocab(self):
  4504. vocab_size = self.hparams["vocab_size"]
  4505. # Round vocab size to next multiple of 8
  4506. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4507. # pad using ceiling division
  4508. # ref: https://stackoverflow.com/a/17511341/22827863
  4509. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4510. self.hparams["vocab_size"] = vocab_size
  4511. if (self.dir_model / "tokenizer.json").is_file():
  4512. self._set_vocab_gpt2()
  4513. elif (self.dir_model / "tokenizer.model").is_file():
  4514. self._set_vocab_sentencepiece()
  4515. else:
  4516. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4517. self._set_vocab_builtin("gpt-neox", vocab_size)
  4518. def set_gguf_parameters(self):
  4519. d_model = self.find_hparam(["hidden_size", "d_model"])
  4520. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4521. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4522. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4523. # ceiling division
  4524. # ref: https://stackoverflow.com/a/17511341/22827863
  4525. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4526. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4527. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4528. use_dt_b_c_norm = False
  4529. # For falconmamba we do apply RMS norm on B / DT and C layers
  4530. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4531. use_dt_b_c_norm = True
  4532. # Fail early for models which don't have a block expansion factor of 2
  4533. assert d_inner == 2 * d_model
  4534. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4535. self.gguf_writer.add_embedding_length(d_model)
  4536. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4537. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4538. self.gguf_writer.add_block_count(self.block_count)
  4539. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4540. self.gguf_writer.add_ssm_inner_size(d_inner)
  4541. self.gguf_writer.add_ssm_state_size(d_state)
  4542. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4543. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4544. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4545. self.gguf_writer.add_file_type(self.ftype)
  4546. _tok_embd = None
  4547. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4548. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4549. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4550. new_name = self.map_tensor_name(name)
  4551. if name.endswith(".A_log"):
  4552. logger.debug("A_log --> A ==> " + new_name)
  4553. data_torch = -torch.exp(data_torch)
  4554. # [4 1 8192 1] -> [4 8192 1 1]
  4555. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4556. data_torch = data_torch.squeeze()
  4557. # assuming token_embd.weight is seen before output.weight
  4558. if self._tok_embd is not None and new_name == output_name:
  4559. if torch.equal(self._tok_embd, data_torch):
  4560. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4561. return []
  4562. elif new_name == tok_embd_name:
  4563. self._tok_embd = data_torch
  4564. return [(new_name, data_torch)]
  4565. @ModelBase.register("Mamba2ForCausalLM")
  4566. class Mamba2Model(TextModel):
  4567. model_arch = gguf.MODEL_ARCH.MAMBA2
  4568. def __init__(self, dir_model: Path, *args, **kwargs):
  4569. # Avoid using AutoConfig for hparams
  4570. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4571. hparams = kwargs.pop("hparams", None)
  4572. if hparams is None:
  4573. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4574. hparams = json.load(f)
  4575. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4576. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4577. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4578. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4579. def set_vocab(self):
  4580. vocab_size = self.hparams["vocab_size"]
  4581. # Round vocab size to next multiple of 16
  4582. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4583. # pad using ceiling division
  4584. # ref: https://stackoverflow.com/a/17511341/22827863
  4585. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4586. self.hparams["vocab_size"] = vocab_size
  4587. if (self.dir_model / "tokenizer.model").is_file():
  4588. self._set_vocab_sentencepiece()
  4589. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4590. # mamba-codestral
  4591. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4592. elif (self.dir_model / "tokenizer.json").is_file():
  4593. self._set_vocab_gpt2()
  4594. else:
  4595. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4596. self._set_vocab_builtin("gpt-neox", vocab_size)
  4597. def set_gguf_parameters(self):
  4598. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4599. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4600. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4601. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4602. # Fail early for models which don't have a block expansion factor of 2
  4603. # TODO: does this really matter?
  4604. # skip the assertion for FalconH1 Model
  4605. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4606. assert self.d_inner == 2 * self.d_model
  4607. assert self.d_inner % head_dim == 0
  4608. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4609. self.gguf_writer.add_embedding_length(self.d_model)
  4610. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4611. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4612. self.gguf_writer.add_block_count(self.block_count)
  4613. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4614. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4615. self.gguf_writer.add_ssm_state_size(d_state)
  4616. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4617. self.gguf_writer.add_ssm_group_count(self.n_group)
  4618. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4619. self.gguf_writer.add_file_type(self.ftype)
  4620. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4621. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4622. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4623. name = name.removeprefix("model.")
  4624. if name.endswith(".dt_bias"):
  4625. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4626. new_name = self.map_tensor_name(name)
  4627. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4628. data_torch = data_torch.squeeze()
  4629. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4630. gguf.MODEL_TENSOR.SSM_A,
  4631. gguf.MODEL_TENSOR.SSM_D,
  4632. ]):
  4633. # unsqueeze A to use similar shape semantics as Mamba-1
  4634. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4635. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4636. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4637. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4638. if name.endswith(".A_log"):
  4639. logger.debug("A_log --> A ==> " + new_name)
  4640. data_torch = -torch.exp(data_torch)
  4641. yield (new_name, data_torch)
  4642. @ModelBase.register("JambaForCausalLM")
  4643. class JambaModel(TextModel):
  4644. model_arch = gguf.MODEL_ARCH.JAMBA
  4645. def get_vocab_base_pre(self, tokenizer) -> str:
  4646. del tokenizer # unused
  4647. return "gpt-2"
  4648. def set_vocab(self):
  4649. if (self.dir_model / "tokenizer.model").is_file():
  4650. # Using Jamba's tokenizer.json causes errors on model load
  4651. # (something about "byte not found in vocab"),
  4652. # but there's a working tokenizer.model
  4653. self._set_vocab_sentencepiece()
  4654. else:
  4655. # Some Jamba models only have a tokenizer.json, which works.
  4656. self._set_vocab_gpt2()
  4657. def set_gguf_parameters(self):
  4658. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4659. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4660. d_inner = self.hparams["mamba_expand"] * d_model
  4661. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4662. # ceiling division
  4663. # ref: https://stackoverflow.com/a/17511341/22827863
  4664. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4665. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4666. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4667. n_kv_head = self.hparams["num_key_value_heads"]
  4668. attn_offset = self.hparams["attn_layer_offset"]
  4669. attn_period = self.hparams["attn_layer_period"]
  4670. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4671. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4672. ]
  4673. self.gguf_writer.add_block_count(self.block_count)
  4674. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4675. self.gguf_writer.add_embedding_length(d_model)
  4676. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4677. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4678. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4679. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4680. self.gguf_writer.add_ssm_inner_size(d_inner)
  4681. self.gguf_writer.add_ssm_state_size(d_state)
  4682. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4683. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4684. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4685. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4686. self.gguf_writer.add_file_type(self.ftype)
  4687. _experts: list[dict[str, Tensor]] | None = None
  4688. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4689. # Mini-Jamba
  4690. name = name.replace(".moe.", ".feed_forward.")
  4691. if bid is not None:
  4692. moe_offset = self.hparams["expert_layer_offset"]
  4693. moe_period = self.hparams["expert_layer_period"]
  4694. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4695. name = name.replace(".experts.0.", ".")
  4696. # process the experts separately
  4697. if ".feed_forward.experts." in name:
  4698. n_experts = self.hparams["num_experts"]
  4699. assert bid is not None
  4700. if self._experts is None:
  4701. self._experts = [{} for _ in range(self.block_count)]
  4702. self._experts[bid][name] = data_torch
  4703. if len(self._experts[bid]) >= n_experts * 3:
  4704. # merge the experts into a single 3d tensor
  4705. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4706. datas: list[Tensor] = []
  4707. for xid in range(n_experts):
  4708. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4709. datas.append(self._experts[bid][ename])
  4710. del self._experts[bid][ename]
  4711. data_torch = torch.stack(datas, dim=0)
  4712. # using the same merged name as qwen2moe
  4713. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4714. new_name = self.map_tensor_name(merged_name)
  4715. yield new_name, data_torch
  4716. return
  4717. new_name = self.map_tensor_name(name)
  4718. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4719. data_torch = data_torch.squeeze()
  4720. if name.endswith(".A_log"):
  4721. logger.debug("A_log --> A ==> " + new_name)
  4722. data_torch = -torch.exp(data_torch)
  4723. yield (new_name, data_torch)
  4724. def prepare_tensors(self):
  4725. super().prepare_tensors()
  4726. if self._experts is not None:
  4727. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4728. experts = [k for d in self._experts for k in d.keys()]
  4729. if len(experts) > 0:
  4730. raise ValueError(f"Unprocessed experts: {experts}")
  4731. @ModelBase.register("CohereForCausalLM")
  4732. class CommandR2Model(TextModel):
  4733. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4734. def __init__(self, *args, **kwargs):
  4735. super().__init__(*args, **kwargs)
  4736. # max_position_embeddings = 8192 in config.json but model was actually
  4737. # trained on 128k context length
  4738. # aya-23 models don't have model_max_length specified
  4739. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4740. def set_gguf_parameters(self):
  4741. super().set_gguf_parameters()
  4742. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4743. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4744. @ModelBase.register("Cohere2ForCausalLM")
  4745. class Cohere2Model(TextModel):
  4746. model_arch = gguf.MODEL_ARCH.COHERE2
  4747. def set_gguf_parameters(self):
  4748. super().set_gguf_parameters()
  4749. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4750. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4751. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4752. rotary_pct = self.hparams["rotary_pct"]
  4753. hidden_size = self.hparams["hidden_size"]
  4754. num_attention_heads = self.hparams["num_attention_heads"]
  4755. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4756. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4757. @ModelBase.register("OlmoForCausalLM")
  4758. @ModelBase.register("OLMoForCausalLM")
  4759. class OlmoModel(TextModel):
  4760. model_arch = gguf.MODEL_ARCH.OLMO
  4761. def set_gguf_parameters(self):
  4762. super().set_gguf_parameters()
  4763. self.gguf_writer.add_layer_norm_eps(1e-5)
  4764. clip_qkv = self.hparams.get("clip_qkv")
  4765. if clip_qkv is not None:
  4766. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4767. # Same as super class, but permuting q_proj, k_proj
  4768. # Copied from: LlamaModel
  4769. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4770. del bid # unused
  4771. n_head = self.hparams["num_attention_heads"]
  4772. n_kv_head = self.hparams.get("num_key_value_heads")
  4773. if name.endswith("q_proj.weight"):
  4774. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4775. if name.endswith("k_proj.weight"):
  4776. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4777. return [(self.map_tensor_name(name), data_torch)]
  4778. @ModelBase.register("SeedOssForCausalLM")
  4779. class SeedOssModel(TextModel):
  4780. model_arch = gguf.MODEL_ARCH.SEED_OSS
  4781. @ModelBase.register("Olmo2ForCausalLM")
  4782. class Olmo2Model(TextModel):
  4783. model_arch = gguf.MODEL_ARCH.OLMO2
  4784. @ModelBase.register("OlmoeForCausalLM")
  4785. class OlmoeModel(TextModel):
  4786. model_arch = gguf.MODEL_ARCH.OLMOE
  4787. def set_gguf_parameters(self):
  4788. super().set_gguf_parameters()
  4789. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4790. if (n_experts := self.hparams.get("num_experts")) is not None:
  4791. self.gguf_writer.add_expert_count(n_experts)
  4792. _experts: list[dict[str, Tensor]] | None = None
  4793. # Copied from: Qwen2MoeModel
  4794. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4795. # process the experts separately
  4796. if name.find("experts") != -1:
  4797. n_experts = self.hparams["num_experts"]
  4798. assert bid is not None
  4799. if self._experts is None:
  4800. self._experts = [{} for _ in range(self.block_count)]
  4801. self._experts[bid][name] = data_torch
  4802. if len(self._experts[bid]) >= n_experts * 3:
  4803. tensors: list[tuple[str, Tensor]] = []
  4804. # merge the experts into a single 3d tensor
  4805. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4806. datas: list[Tensor] = []
  4807. for xid in range(n_experts):
  4808. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4809. datas.append(self._experts[bid][ename])
  4810. del self._experts[bid][ename]
  4811. data_torch = torch.stack(datas, dim=0)
  4812. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4813. new_name = self.map_tensor_name(merged_name)
  4814. tensors.append((new_name, data_torch))
  4815. return tensors
  4816. else:
  4817. return []
  4818. return [(self.map_tensor_name(name), data_torch)]
  4819. # Copied from: Qwen2MoeModel
  4820. def prepare_tensors(self):
  4821. super().prepare_tensors()
  4822. if self._experts is not None:
  4823. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4824. experts = [k for d in self._experts for k in d.keys()]
  4825. if len(experts) > 0:
  4826. raise ValueError(f"Unprocessed experts: {experts}")
  4827. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4828. class JinaBertV2Model(BertModel):
  4829. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4830. def set_vocab(self):
  4831. tokenizer_class = 'BertTokenizer'
  4832. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4833. tokenizer_class = json.load(f)['tokenizer_class']
  4834. if tokenizer_class == 'BertTokenizer':
  4835. super().set_vocab()
  4836. elif tokenizer_class == 'RobertaTokenizer':
  4837. self._set_vocab_gpt2()
  4838. self.gguf_writer.add_token_type_count(2)
  4839. else:
  4840. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4841. @ModelBase.register("OpenELMForCausalLM")
  4842. class OpenELMModel(TextModel):
  4843. model_arch = gguf.MODEL_ARCH.OPENELM
  4844. @staticmethod
  4845. def _make_divisible(v: float | int, divisor: int) -> int:
  4846. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4847. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4848. # Make sure that round down does not go down by more than 10%.
  4849. if new_v < 0.9 * v:
  4850. new_v += divisor
  4851. return new_v
  4852. def __init__(self, *args, **kwargs):
  4853. super().__init__(*args, **kwargs)
  4854. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4855. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4856. self._n_embd: int = self.hparams["model_dim"]
  4857. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4858. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4859. self._ffn_dims: list[int] = [
  4860. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4861. for multiplier in ffn_multipliers
  4862. ]
  4863. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4864. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4865. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4866. def set_vocab(self):
  4867. try:
  4868. self._set_vocab_sentencepiece()
  4869. except FileNotFoundError:
  4870. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4871. def set_gguf_parameters(self):
  4872. n_embd = self._n_embd
  4873. head_dim = self.hparams["head_dim"]
  4874. rot_pct = 1.0
  4875. assert self.block_count == len(self._num_kv_heads)
  4876. assert self.block_count == len(self._num_query_heads)
  4877. assert self.block_count == len(self._ffn_dims)
  4878. self.gguf_writer.add_block_count(self.block_count)
  4879. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4880. self.gguf_writer.add_embedding_length(n_embd)
  4881. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4882. self.gguf_writer.add_head_count(self._num_query_heads)
  4883. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4884. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4885. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4886. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4887. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4888. self.gguf_writer.add_key_length(head_dim)
  4889. self.gguf_writer.add_value_length(head_dim)
  4890. self.gguf_writer.add_file_type(self.ftype)
  4891. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4892. if "n_layers" in keys:
  4893. return self.hparams["num_transformer_layers"]
  4894. return super().find_hparam(keys, optional)
  4895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4896. # split ff
  4897. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4898. ff_dim = self._ffn_dims[bid]
  4899. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4900. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4901. return
  4902. yield (self.map_tensor_name(name), data_torch)
  4903. @ModelBase.register("ArcticForCausalLM")
  4904. class ArcticModel(TextModel):
  4905. model_arch = gguf.MODEL_ARCH.ARCTIC
  4906. def set_vocab(self):
  4907. # The reason for using a custom implementation here is that the
  4908. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4909. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4910. from sentencepiece import SentencePieceProcessor
  4911. tokenizer_path = self.dir_model / 'tokenizer.model'
  4912. if not tokenizer_path.is_file():
  4913. logger.error(f'Error: Missing {tokenizer_path}')
  4914. sys.exit(1)
  4915. # Read the whole vocabulary from the tokenizer.model file
  4916. tokenizer = SentencePieceProcessor()
  4917. tokenizer.LoadFromFile(str(tokenizer_path))
  4918. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4919. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4920. scores: list[float] = [-10000.0] * vocab_size
  4921. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4922. for token_id in range(tokenizer.vocab_size()):
  4923. piece = tokenizer.IdToPiece(token_id)
  4924. text = piece.encode("utf-8")
  4925. score = tokenizer.GetScore(token_id)
  4926. toktype = SentencePieceTokenTypes.NORMAL
  4927. if tokenizer.IsUnknown(token_id):
  4928. toktype = SentencePieceTokenTypes.UNKNOWN
  4929. elif tokenizer.IsControl(token_id):
  4930. toktype = SentencePieceTokenTypes.CONTROL
  4931. elif tokenizer.IsUnused(token_id):
  4932. toktype = SentencePieceTokenTypes.UNUSED
  4933. elif tokenizer.IsByte(token_id):
  4934. toktype = SentencePieceTokenTypes.BYTE
  4935. tokens[token_id] = text
  4936. scores[token_id] = score
  4937. toktypes[token_id] = toktype
  4938. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4939. # of information about added/redefined tokens and modify them accordingly.
  4940. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4941. if tokenizer_config_file.is_file():
  4942. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4943. tokenizer_config_json = json.load(f)
  4944. if "added_tokens_decoder" in tokenizer_config_json:
  4945. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4946. for token_id, token_json in added_tokens_decoder.items():
  4947. token_id = int(token_id)
  4948. if token_id >= vocab_size:
  4949. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4950. continue
  4951. token_content = token_json["content"]
  4952. token_type = SentencePieceTokenTypes.USER_DEFINED
  4953. token_score = -10000.0
  4954. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4955. # Set the score to 0.0 as in the original tokenizer.model
  4956. if ("special" in token_json) and token_json["special"]:
  4957. if token_content == tokenizer_config_json["unk_token"]:
  4958. token_type = SentencePieceTokenTypes.UNKNOWN
  4959. else:
  4960. token_type = SentencePieceTokenTypes.CONTROL
  4961. token_score = 0.0
  4962. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4963. tokens[token_id] = token_content.encode("utf-8")
  4964. toktypes[token_id] = token_type
  4965. scores[token_id] = token_score
  4966. self.gguf_writer.add_tokenizer_model("llama")
  4967. self.gguf_writer.add_tokenizer_pre("default")
  4968. self.gguf_writer.add_token_list(tokens)
  4969. self.gguf_writer.add_token_scores(scores)
  4970. self.gguf_writer.add_token_types(toktypes)
  4971. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4972. special_vocab.add_to_gguf(self.gguf_writer)
  4973. def set_gguf_parameters(self):
  4974. super().set_gguf_parameters()
  4975. hparams = self.hparams
  4976. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4977. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4978. _experts: list[dict[str, Tensor]] | None = None
  4979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4980. n_head = self.hparams["num_attention_heads"]
  4981. n_kv_head = self.hparams.get("num_key_value_heads")
  4982. if name.endswith("q_proj.weight"):
  4983. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4984. if name.endswith("k_proj.weight"):
  4985. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4986. # process the experts separately
  4987. if name.find("block_sparse_moe.experts") != -1:
  4988. n_experts = self.hparams["num_local_experts"]
  4989. assert bid is not None
  4990. if self._experts is None:
  4991. self._experts = [{} for _ in range(self.block_count)]
  4992. self._experts[bid][name] = data_torch
  4993. if len(self._experts[bid]) >= n_experts * 3:
  4994. tensors: list[tuple[str, Tensor]] = []
  4995. # merge the experts into a single 3d tensor
  4996. for wid in ["w1", "w2", "w3"]:
  4997. datas: list[Tensor] = []
  4998. for xid in range(n_experts):
  4999. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5000. datas.append(self._experts[bid][ename])
  5001. del self._experts[bid][ename]
  5002. data_torch = torch.stack(datas, dim=0)
  5003. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5004. new_name = self.map_tensor_name(merged_name)
  5005. tensors.append((new_name, data_torch))
  5006. return tensors
  5007. else:
  5008. return []
  5009. return [(self.map_tensor_name(name), data_torch)]
  5010. def prepare_tensors(self):
  5011. super().prepare_tensors()
  5012. if self._experts is not None:
  5013. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5014. experts = [k for d in self._experts for k in d.keys()]
  5015. if len(experts) > 0:
  5016. raise ValueError(f"Unprocessed experts: {experts}")
  5017. @ModelBase.register("DeepseekForCausalLM")
  5018. class DeepseekModel(TextModel):
  5019. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5020. def set_vocab(self):
  5021. try:
  5022. self._set_vocab_sentencepiece()
  5023. except FileNotFoundError:
  5024. self._set_vocab_gpt2()
  5025. def set_gguf_parameters(self):
  5026. super().set_gguf_parameters()
  5027. hparams = self.hparams
  5028. if (rope_dim := hparams.get("head_dim")) is None:
  5029. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5030. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5032. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5033. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5034. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5035. self.gguf_writer.add_expert_weights_scale(1.0)
  5036. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5037. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5038. _experts: list[dict[str, Tensor]] | None = None
  5039. @staticmethod
  5040. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5041. if n_head_kv is not None and n_head != n_head_kv:
  5042. n_head = n_head_kv
  5043. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5044. .swapaxes(1, 2)
  5045. .reshape(weights.shape))
  5046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5047. n_head = self.hparams["num_attention_heads"]
  5048. n_kv_head = self.hparams.get("num_key_value_heads")
  5049. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5050. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5051. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5052. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5053. # process the experts separately
  5054. if name.find("mlp.experts") != -1:
  5055. n_experts = self.hparams["n_routed_experts"]
  5056. assert bid is not None
  5057. if self._experts is None:
  5058. self._experts = [{} for _ in range(self.block_count)]
  5059. self._experts[bid][name] = data_torch
  5060. if len(self._experts[bid]) >= n_experts * 3:
  5061. tensors: list[tuple[str, Tensor]] = []
  5062. # merge the experts into a single 3d tensor
  5063. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5064. datas: list[Tensor] = []
  5065. for xid in range(n_experts):
  5066. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5067. datas.append(self._experts[bid][ename])
  5068. del self._experts[bid][ename]
  5069. data_torch = torch.stack(datas, dim=0)
  5070. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5071. new_name = self.map_tensor_name(merged_name)
  5072. tensors.append((new_name, data_torch))
  5073. return tensors
  5074. else:
  5075. return []
  5076. return [(self.map_tensor_name(name), data_torch)]
  5077. def prepare_tensors(self):
  5078. super().prepare_tensors()
  5079. if self._experts is not None:
  5080. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5081. experts = [k for d in self._experts for k in d.keys()]
  5082. if len(experts) > 0:
  5083. raise ValueError(f"Unprocessed experts: {experts}")
  5084. @ModelBase.register("DeepseekV2ForCausalLM")
  5085. @ModelBase.register("DeepseekV3ForCausalLM")
  5086. @ModelBase.register("KimiVLForConditionalGeneration")
  5087. class DeepseekV2Model(TextModel):
  5088. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5089. def set_vocab(self):
  5090. try:
  5091. self._set_vocab_gpt2()
  5092. return
  5093. except Exception:
  5094. pass
  5095. from transformers import AutoTokenizer
  5096. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5097. tokpre = self.get_vocab_base_pre(tokenizer)
  5098. if tokpre == "kimi-k2":
  5099. # Build merges list using the approach similar to HunYuanMoE
  5100. merges = []
  5101. vocab = {}
  5102. mergeable_ranks = tokenizer.model._mergeable_ranks
  5103. for token, rank in mergeable_ranks.items():
  5104. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5105. if len(token) == 1:
  5106. continue
  5107. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5108. if len(merged) == 2:
  5109. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5110. # Build token list
  5111. vocab_size = self.hparams["vocab_size"]
  5112. special_tokens = tokenizer.special_tokens
  5113. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5114. tokens: list[str] = []
  5115. toktypes: list[int] = []
  5116. for i in range(vocab_size):
  5117. if i not in reverse_vocab:
  5118. tokens.append(f"[PAD{i}]")
  5119. toktypes.append(gguf.TokenType.UNUSED)
  5120. else:
  5121. token = reverse_vocab[i]
  5122. tokens.append(token)
  5123. if i in special_tokens.values():
  5124. toktypes.append(gguf.TokenType.CONTROL)
  5125. else:
  5126. toktypes.append(gguf.TokenType.NORMAL)
  5127. self.gguf_writer.add_tokenizer_model("gpt2")
  5128. self.gguf_writer.add_tokenizer_pre(tokpre)
  5129. self.gguf_writer.add_token_list(tokens)
  5130. self.gguf_writer.add_token_types(toktypes)
  5131. self.gguf_writer.add_token_merges(merges)
  5132. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5133. special_vocab.add_to_gguf(self.gguf_writer)
  5134. else:
  5135. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5136. def set_gguf_parameters(self):
  5137. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5138. self.hparams["num_key_value_heads"] = 1
  5139. super().set_gguf_parameters()
  5140. hparams = self.hparams
  5141. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5142. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5143. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5144. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5145. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5146. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5147. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5148. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5149. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5150. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5151. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5152. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5153. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5154. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5155. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5156. if hparams["scoring_func"] == "sigmoid":
  5157. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5158. elif hparams["scoring_func"] == "softmax":
  5159. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5160. else:
  5161. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5162. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5163. rope_scaling = self.hparams.get("rope_scaling") or {}
  5164. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5165. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5166. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5167. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5168. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5169. _experts: list[dict[str, Tensor]] | None = None
  5170. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5171. # skip vision tensors and remove "language_model." for Kimi-VL
  5172. if "vision_tower" in name or "multi_modal_projector" in name:
  5173. return []
  5174. if name.startswith("language_model."):
  5175. name = name.replace("language_model.", "")
  5176. # rename e_score_correction_bias tensors
  5177. if name.endswith("e_score_correction_bias"):
  5178. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5179. # skip Multi-Token Prediction (MTP) layers
  5180. block_count = self.hparams["num_hidden_layers"]
  5181. match = re.match(r"model.layers.(\d+)", name)
  5182. if match and int(match.group(1)) >= block_count:
  5183. return []
  5184. # process the experts separately
  5185. if name.find("mlp.experts") != -1:
  5186. n_experts = self.hparams["n_routed_experts"]
  5187. assert bid is not None
  5188. if self._experts is None:
  5189. self._experts = [{} for _ in range(self.block_count)]
  5190. self._experts[bid][name] = data_torch
  5191. if len(self._experts[bid]) >= n_experts * 3:
  5192. tensors: list[tuple[str, Tensor]] = []
  5193. # merge the experts into a single 3d tensor
  5194. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5195. datas: list[Tensor] = []
  5196. for xid in range(n_experts):
  5197. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5198. datas.append(self._experts[bid][ename])
  5199. del self._experts[bid][ename]
  5200. data_torch = torch.stack(datas, dim=0)
  5201. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5202. new_name = self.map_tensor_name(merged_name)
  5203. tensors.append((new_name, data_torch))
  5204. return tensors
  5205. else:
  5206. return []
  5207. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5208. if name.endswith("kv_b_proj.weight"):
  5209. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5210. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5211. n_head_kv = self.hparams["num_key_value_heads"]
  5212. v_head_dim = self.hparams["v_head_dim"]
  5213. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5214. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5215. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5216. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5217. k_b = k_b.transpose(1, 2)
  5218. return [
  5219. (self.map_tensor_name(name_kb), k_b),
  5220. (self.map_tensor_name(name_vb), v_b)
  5221. ]
  5222. return [(self.map_tensor_name(name), data_torch)]
  5223. def prepare_tensors(self):
  5224. super().prepare_tensors()
  5225. if self._experts is not None:
  5226. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5227. experts = [k for d in self._experts for k in d.keys()]
  5228. if len(experts) > 0:
  5229. raise ValueError(f"Unprocessed experts: {experts}")
  5230. @ModelBase.register("Dots1ForCausalLM")
  5231. class Dots1Model(Qwen2MoeModel):
  5232. model_arch = gguf.MODEL_ARCH.DOTS1
  5233. def __init__(self, *args, **kwargs):
  5234. super().__init__(*args, **kwargs)
  5235. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5236. def set_gguf_parameters(self):
  5237. super().set_gguf_parameters()
  5238. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5239. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5240. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5241. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5242. if self.hparams["scoring_func"] == "noaux_tc":
  5243. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5244. else:
  5245. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5246. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5247. if name.endswith("e_score_correction_bias"):
  5248. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5249. if "shared_experts" in name:
  5250. return [(self.map_tensor_name(name), data_torch)]
  5251. return super().modify_tensors(data_torch, name, bid)
  5252. @ModelBase.register("PLMForCausalLM")
  5253. class PLMModel(TextModel):
  5254. model_arch = gguf.MODEL_ARCH.PLM
  5255. def set_vocab(self):
  5256. self._set_vocab_gpt2()
  5257. def set_gguf_parameters(self):
  5258. super().set_gguf_parameters()
  5259. hparams = self.hparams
  5260. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5261. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5262. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5263. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5264. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5265. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5266. return [(self.map_tensor_name(name), data_torch)]
  5267. def prepare_tensors(self):
  5268. super().prepare_tensors()
  5269. @ModelBase.register("T5WithLMHeadModel")
  5270. @ModelBase.register("T5ForConditionalGeneration")
  5271. @ModelBase.register("MT5ForConditionalGeneration")
  5272. @ModelBase.register("UMT5ForConditionalGeneration")
  5273. class T5Model(TextModel):
  5274. model_arch = gguf.MODEL_ARCH.T5
  5275. def __init__(self, *args, **kwargs):
  5276. super().__init__(*args, **kwargs)
  5277. self.shared_token_embeddings_found = False
  5278. def set_vocab(self):
  5279. # to avoid TypeError: Descriptors cannot be created directly
  5280. # exception when importing sentencepiece_model_pb2
  5281. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5282. from sentencepiece import SentencePieceProcessor
  5283. from sentencepiece import sentencepiece_model_pb2 as model
  5284. tokenizer_path = self.dir_model / 'tokenizer.model'
  5285. # many older models use spiece.model tokenizer model filename
  5286. if not tokenizer_path.is_file():
  5287. tokenizer_path = self.dir_model / 'spiece.model'
  5288. if not tokenizer_path.is_file():
  5289. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5290. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5291. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5292. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5293. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5294. # assure the tokenizer model file name is correct
  5295. assert tokenizer_path.name == 'tokenizer.model'
  5296. return self._set_vocab_sentencepiece()
  5297. else:
  5298. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5299. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5300. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5301. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5302. tokenizer = SentencePieceProcessor()
  5303. tokenizer.LoadFromFile(str(tokenizer_path))
  5304. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5305. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5306. scores: list[float] = [-10000.0] * vocab_size
  5307. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5308. for token_id in range(tokenizer.vocab_size()):
  5309. piece = tokenizer.IdToPiece(token_id)
  5310. text = piece.encode("utf-8")
  5311. score = tokenizer.GetScore(token_id)
  5312. toktype = SentencePieceTokenTypes.NORMAL
  5313. if tokenizer.IsUnknown(token_id):
  5314. toktype = SentencePieceTokenTypes.UNKNOWN
  5315. elif tokenizer.IsControl(token_id):
  5316. toktype = SentencePieceTokenTypes.CONTROL
  5317. elif tokenizer.IsUnused(token_id):
  5318. toktype = SentencePieceTokenTypes.UNUSED
  5319. elif tokenizer.IsByte(token_id):
  5320. toktype = SentencePieceTokenTypes.BYTE
  5321. tokens[token_id] = text
  5322. scores[token_id] = score
  5323. toktypes[token_id] = toktype
  5324. added_tokens_file = self.dir_model / 'added_tokens.json'
  5325. if added_tokens_file.is_file():
  5326. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5327. added_tokens_json = json.load(f)
  5328. for key in added_tokens_json:
  5329. token_id = added_tokens_json[key]
  5330. if token_id >= vocab_size:
  5331. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5332. continue
  5333. tokens[token_id] = key.encode("utf-8")
  5334. scores[token_id] = -1000.0
  5335. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5336. if vocab_size > len(tokens):
  5337. pad_count = vocab_size - len(tokens)
  5338. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5339. for i in range(1, pad_count + 1):
  5340. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5341. scores.append(-1000.0)
  5342. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5343. self.gguf_writer.add_tokenizer_model("t5")
  5344. self.gguf_writer.add_tokenizer_pre("default")
  5345. self.gguf_writer.add_token_list(tokens)
  5346. self.gguf_writer.add_token_scores(scores)
  5347. self.gguf_writer.add_token_types(toktypes)
  5348. self.gguf_writer.add_add_space_prefix(add_prefix)
  5349. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5350. if precompiled_charsmap:
  5351. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5352. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5353. special_vocab.add_to_gguf(self.gguf_writer)
  5354. def set_gguf_parameters(self):
  5355. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5356. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5357. n_ctx = 512
  5358. self.gguf_writer.add_context_length(n_ctx)
  5359. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5360. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5361. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5362. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5363. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5364. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5365. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5366. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5367. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5368. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5369. self.gguf_writer.add_file_type(self.ftype)
  5370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5371. del bid # unused
  5372. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5373. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5374. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5375. # and decoder and ignore the remaining ones.
  5376. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5377. if not self.shared_token_embeddings_found:
  5378. name = "shared.weight"
  5379. self.shared_token_embeddings_found = True
  5380. else:
  5381. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5382. return []
  5383. return [(self.map_tensor_name(name), data_torch)]
  5384. @ModelBase.register("T5EncoderModel")
  5385. class T5EncoderModel(TextModel):
  5386. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5387. def __init__(self, *args, **kwargs):
  5388. super().__init__(*args, **kwargs)
  5389. self.shared_token_embeddings_found = False
  5390. def set_vocab(self):
  5391. # to avoid TypeError: Descriptors cannot be created directly
  5392. # exception when importing sentencepiece_model_pb2
  5393. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5394. from sentencepiece import SentencePieceProcessor
  5395. from sentencepiece import sentencepiece_model_pb2 as model
  5396. tokenizer_path = self.dir_model / 'tokenizer.model'
  5397. # many older models use spiece.model tokenizer model filename
  5398. if not tokenizer_path.is_file():
  5399. tokenizer_path = self.dir_model / 'spiece.model'
  5400. if not tokenizer_path.is_file():
  5401. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5402. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5403. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5404. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5405. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5406. # assure the tokenizer model file name is correct
  5407. assert tokenizer_path.name == 'tokenizer.model'
  5408. return self._set_vocab_sentencepiece()
  5409. else:
  5410. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5411. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5412. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5413. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5414. tokenizer = SentencePieceProcessor()
  5415. tokenizer.LoadFromFile(str(tokenizer_path))
  5416. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5417. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5418. scores: list[float] = [-10000.0] * vocab_size
  5419. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5420. for token_id in range(tokenizer.vocab_size()):
  5421. piece = tokenizer.IdToPiece(token_id)
  5422. text = piece.encode("utf-8")
  5423. score = tokenizer.GetScore(token_id)
  5424. toktype = SentencePieceTokenTypes.NORMAL
  5425. if tokenizer.IsUnknown(token_id):
  5426. toktype = SentencePieceTokenTypes.UNKNOWN
  5427. elif tokenizer.IsControl(token_id):
  5428. toktype = SentencePieceTokenTypes.CONTROL
  5429. elif tokenizer.IsUnused(token_id):
  5430. toktype = SentencePieceTokenTypes.UNUSED
  5431. elif tokenizer.IsByte(token_id):
  5432. toktype = SentencePieceTokenTypes.BYTE
  5433. tokens[token_id] = text
  5434. scores[token_id] = score
  5435. toktypes[token_id] = toktype
  5436. added_tokens_file = self.dir_model / 'added_tokens.json'
  5437. if added_tokens_file.is_file():
  5438. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5439. added_tokens_json = json.load(f)
  5440. for key in added_tokens_json:
  5441. token_id = added_tokens_json[key]
  5442. if token_id >= vocab_size:
  5443. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5444. continue
  5445. tokens[token_id] = key.encode("utf-8")
  5446. scores[token_id] = -1000.0
  5447. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5448. if vocab_size > len(tokens):
  5449. pad_count = vocab_size - len(tokens)
  5450. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5451. for i in range(1, pad_count + 1):
  5452. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5453. scores.append(-1000.0)
  5454. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5455. self.gguf_writer.add_tokenizer_model("t5")
  5456. self.gguf_writer.add_tokenizer_pre("default")
  5457. self.gguf_writer.add_token_list(tokens)
  5458. self.gguf_writer.add_token_scores(scores)
  5459. self.gguf_writer.add_token_types(toktypes)
  5460. self.gguf_writer.add_add_space_prefix(add_prefix)
  5461. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5462. if precompiled_charsmap:
  5463. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5464. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5465. special_vocab.add_to_gguf(self.gguf_writer)
  5466. def set_gguf_parameters(self):
  5467. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5468. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5469. n_ctx = 512
  5470. self.gguf_writer.add_context_length(n_ctx)
  5471. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5472. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5473. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5474. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5475. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5476. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5477. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5478. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5479. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5480. self.gguf_writer.add_file_type(self.ftype)
  5481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5482. del bid # unused
  5483. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5484. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5485. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5486. # and decoder and ignore the remaining ones.
  5487. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5488. if not self.shared_token_embeddings_found:
  5489. name = "shared.weight"
  5490. self.shared_token_embeddings_found = True
  5491. else:
  5492. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5493. return []
  5494. return [(self.map_tensor_name(name), data_torch)]
  5495. @ModelBase.register("JAISLMHeadModel")
  5496. class JaisModel(TextModel):
  5497. model_arch = gguf.MODEL_ARCH.JAIS
  5498. def __init__(self, *args, **kwargs):
  5499. super().__init__(*args, **kwargs)
  5500. # SwigLU activation
  5501. assert self.hparams["activation_function"] == "swiglu"
  5502. # ALiBi position embedding
  5503. assert self.hparams["position_embedding_type"] == "alibi"
  5504. # Embeddings scale
  5505. self.embeddings_scale = 1.0
  5506. if 'mup_embeddings_scale' in self.hparams:
  5507. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5508. elif 'embeddings_scale' in self.hparams:
  5509. self.embeddings_scale = self.hparams['embeddings_scale']
  5510. else:
  5511. assert False
  5512. self.width_scale = 1.0
  5513. if 'mup_output_alpha' in self.hparams:
  5514. assert 'mup_width_scale' in self.hparams
  5515. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5516. elif 'width_scale' in self.hparams:
  5517. self.width_scale = self.hparams['width_scale']
  5518. else:
  5519. assert False
  5520. self.max_alibi_bias = 8.0
  5521. def set_vocab(self):
  5522. self._set_vocab_gpt2()
  5523. def set_gguf_parameters(self):
  5524. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5525. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5526. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5527. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5528. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5529. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5530. self.gguf_writer.add_file_type(self.ftype)
  5531. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5532. del bid # unused
  5533. tensors: list[tuple[str, Tensor]] = []
  5534. # we don't need these
  5535. if name.endswith((".attn.bias")):
  5536. return tensors
  5537. if name.endswith(("relative_pe.slopes")):
  5538. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5539. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5540. # but Jais's PyTorch model simply precalculates the slope values and places them
  5541. # in relative_pes.slopes
  5542. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5543. first_val = float(data_torch[0].item())
  5544. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5545. return tensors
  5546. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5547. data_torch = data_torch.transpose(1, 0)
  5548. new_name = self.map_tensor_name(name)
  5549. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5550. tensors.append((new_name, data_torch * self.embeddings_scale))
  5551. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5552. tensors.append((new_name, data_torch * self.width_scale))
  5553. else:
  5554. tensors.append((new_name, data_torch))
  5555. return tensors
  5556. def prepare_tensors(self):
  5557. super().prepare_tensors()
  5558. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5559. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5560. class Glm4Model(TextModel):
  5561. model_arch = gguf.MODEL_ARCH.GLM4
  5562. def set_vocab(self):
  5563. from transformers import AutoTokenizer
  5564. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5565. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5566. tokens, toktypes, tokpre = self.get_vocab_base()
  5567. self.gguf_writer.add_tokenizer_model("gpt2")
  5568. self.gguf_writer.add_tokenizer_pre(tokpre)
  5569. self.gguf_writer.add_token_list(tokens)
  5570. self.gguf_writer.add_token_types(toktypes)
  5571. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5572. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5573. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5574. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5575. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5576. special_vocab.add_to_gguf(self.gguf_writer)
  5577. def set_gguf_parameters(self):
  5578. super().set_gguf_parameters()
  5579. if (rope_dim := self.hparams.get("head_dim")) is None:
  5580. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5581. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5582. rope_scaling = self.hparams.get("rope_scaling") or {}
  5583. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5584. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5585. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5586. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5588. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5589. return []
  5590. elif name.startswith("model.language_model."):
  5591. name = name.replace("language_model.", "") # for Glm4v
  5592. return super().modify_tensors(data_torch, name, bid)
  5593. @ModelBase.register("Glm4MoeForCausalLM")
  5594. class Glm4MoeModel(TextModel):
  5595. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5596. def __init__(self, *args, **kwargs):
  5597. super().__init__(*args, **kwargs)
  5598. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5599. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5600. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5601. def set_vocab(self):
  5602. from transformers import AutoTokenizer
  5603. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5604. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5605. tokens, toktypes, tokpre = self.get_vocab_base()
  5606. self.gguf_writer.add_tokenizer_model("gpt2")
  5607. self.gguf_writer.add_tokenizer_pre(tokpre)
  5608. self.gguf_writer.add_token_list(tokens)
  5609. self.gguf_writer.add_token_types(toktypes)
  5610. # Special tokens
  5611. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5612. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5613. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5614. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5615. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5616. # Patch broken chat template
  5617. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5618. special_vocab.chat_template = special_vocab.chat_template.replace(
  5619. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5620. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5621. special_vocab.add_to_gguf(self.gguf_writer)
  5622. def set_gguf_parameters(self):
  5623. super().set_gguf_parameters()
  5624. if (rope_dim := self.hparams.get("head_dim")) is None:
  5625. rope_dim = (
  5626. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5627. )
  5628. self.gguf_writer.add_rope_dimension_count(
  5629. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5630. )
  5631. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5632. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5633. self.gguf_writer.add_expert_count(n_routed_experts)
  5634. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5635. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5636. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5637. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5638. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5639. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5640. # Expert gating function (sigmoid for GLM4_MOE)
  5641. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5642. # Routed scaling factor
  5643. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5644. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5645. # Normalise topk probabilities
  5646. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5647. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5648. # NextN/MTP prediction layers
  5649. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5650. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5651. _experts: list[dict[str, Tensor]] | None = None
  5652. def modify_tensors(
  5653. self, data_torch: Tensor, name: str, bid: int | None
  5654. ) -> Iterable[tuple[str, Tensor]]:
  5655. if name.startswith("model.visual."): # ignore visual part
  5656. return []
  5657. elif name.startswith("model.language_model."):
  5658. name = name.replace("language_model.", "") # for multimodal variants
  5659. # Handle main token embedding (but not layer-specific NextN embeddings)
  5660. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5661. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5662. # Handle routed experts
  5663. if name.find("mlp.experts") != -1:
  5664. n_experts = self.hparams["n_routed_experts"]
  5665. assert bid is not None
  5666. if self._experts is None:
  5667. self._experts = [{} for _ in range(self.block_count)]
  5668. self._experts[bid][name] = data_torch
  5669. if len(self._experts[bid]) >= n_experts * 3:
  5670. tensors: list[tuple[str, Tensor]] = []
  5671. # merge the experts into a single 3d tensor
  5672. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5673. datas: list[Tensor] = []
  5674. for xid in range(n_experts):
  5675. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5676. datas.append(self._experts[bid][ename])
  5677. del self._experts[bid][ename]
  5678. data_torch = torch.stack(datas, dim=0)
  5679. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5680. new_name = self.map_tensor_name(merged_name)
  5681. tensors.append((new_name, data_torch))
  5682. return tensors
  5683. else:
  5684. return []
  5685. if name.endswith("e_score_correction_bias"):
  5686. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5687. new_name = self.map_tensor_name(name)
  5688. return [(new_name, data_torch)]
  5689. def prepare_tensors(self):
  5690. super().prepare_tensors()
  5691. if self._experts is not None:
  5692. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5693. experts = [k for d in self._experts for k in d.keys()]
  5694. if len(experts) > 0:
  5695. raise ValueError(f"Unprocessed experts: {experts}")
  5696. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5697. class ChatGLMModel(TextModel):
  5698. model_arch = gguf.MODEL_ARCH.CHATGLM
  5699. def set_vocab_chatglm3(self):
  5700. dir_model = self.dir_model
  5701. hparams = self.hparams
  5702. tokens: list[bytes] = []
  5703. toktypes: list[int] = []
  5704. scores: list[float] = []
  5705. from transformers import AutoTokenizer
  5706. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5707. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5708. assert max(tokenizer.get_vocab().values()) < vocab_size
  5709. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5710. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5711. for token_id in range(vocab_size):
  5712. piece = tokenizer._convert_id_to_token(token_id)
  5713. if token_id == 0:
  5714. piece = "<unk>"
  5715. elif token_id == 1:
  5716. piece = "<bos>"
  5717. elif token_id == 2:
  5718. piece = "<eos>"
  5719. text = piece.encode("utf-8")
  5720. score = 0.0
  5721. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5722. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5723. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5724. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5725. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5726. if piece in special_tokens:
  5727. toktype = SentencePieceTokenTypes.CONTROL
  5728. elif len(piece) == 0:
  5729. text = f"[PAD{token_id}]".encode("utf-8")
  5730. toktype = SentencePieceTokenTypes.UNUSED
  5731. else:
  5732. toktype = SentencePieceTokenTypes.USER_DEFINED
  5733. tokens.append(text)
  5734. scores.append(score)
  5735. toktypes.append(toktype)
  5736. continue
  5737. toktype = SentencePieceTokenTypes.NORMAL
  5738. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5739. toktype = SentencePieceTokenTypes.UNKNOWN
  5740. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5741. toktype = SentencePieceTokenTypes.CONTROL
  5742. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5743. toktype = SentencePieceTokenTypes.UNUSED
  5744. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5745. toktype = SentencePieceTokenTypes.BYTE
  5746. tokens.append(text)
  5747. scores.append(score)
  5748. toktypes.append(toktype)
  5749. self.gguf_writer.add_tokenizer_model("llama")
  5750. # glm3 needs prefix and suffix formatted as:
  5751. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5752. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5753. self.gguf_writer.add_token_list(tokens)
  5754. self.gguf_writer.add_token_scores(scores)
  5755. self.gguf_writer.add_token_types(toktypes)
  5756. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5757. special_vocab.add_to_gguf(self.gguf_writer)
  5758. @staticmethod
  5759. def token_bytes_to_string(b):
  5760. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5761. byte_encoder = bytes_to_unicode()
  5762. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5763. @staticmethod
  5764. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5765. parts = [bytes([b]) for b in token]
  5766. while True:
  5767. min_idx = None
  5768. min_rank = None
  5769. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5770. rank = mergeable_ranks.get(pair[0] + pair[1])
  5771. if rank is not None and (min_rank is None or rank < min_rank):
  5772. min_idx = i
  5773. min_rank = rank
  5774. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5775. break
  5776. assert min_idx is not None
  5777. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5778. return parts
  5779. def set_vocab(self):
  5780. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5781. self.set_vocab_chatglm3()
  5782. return
  5783. dir_model = self.dir_model
  5784. hparams = self.hparams
  5785. tokens: list[str] = []
  5786. toktypes: list[int] = []
  5787. from transformers import AutoTokenizer
  5788. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5789. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5790. assert max(tokenizer.get_vocab().values()) < vocab_size
  5791. tokens, toktypes, tokpre = self.get_vocab_base()
  5792. self.gguf_writer.add_tokenizer_model("gpt2")
  5793. self.gguf_writer.add_tokenizer_pre(tokpre)
  5794. self.gguf_writer.add_token_list(tokens)
  5795. self.gguf_writer.add_token_types(toktypes)
  5796. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5797. # only add special tokens when they were not already loaded from config.json
  5798. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5799. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5800. # this one is usually not in config.json anyway
  5801. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5802. special_vocab.add_to_gguf(self.gguf_writer)
  5803. def set_gguf_parameters(self):
  5804. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5805. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5806. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5807. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5808. self.gguf_writer.add_embedding_length(n_embed)
  5809. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5810. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5811. self.gguf_writer.add_head_count(n_head)
  5812. self.gguf_writer.add_head_count_kv(n_head_kv)
  5813. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5814. self.gguf_writer.add_file_type(self.ftype)
  5815. if "attention_dim" in self.hparams:
  5816. rope_dim = self.hparams["attention_dim"]
  5817. else:
  5818. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5819. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5820. self.gguf_writer.add_add_bos_token(False)
  5821. rope_freq = 10000
  5822. if "rope_ratio" in self.hparams:
  5823. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5824. self.gguf_writer.add_rope_freq_base(rope_freq)
  5825. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5826. del bid # unused
  5827. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5828. return []
  5829. name = name.removeprefix("transformer.")
  5830. return [(self.map_tensor_name(name), data_torch)]
  5831. @ModelBase.register("NemotronForCausalLM")
  5832. class NemotronModel(TextModel):
  5833. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5834. def set_vocab(self):
  5835. self._set_vocab_sentencepiece()
  5836. self.gguf_writer.add_pad_token_id(0)
  5837. self.gguf_writer.add_unk_token_id(1)
  5838. def set_gguf_parameters(self):
  5839. super().set_gguf_parameters()
  5840. hparams = self.hparams
  5841. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5842. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5843. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5844. # * Partial RoPE
  5845. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5846. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5847. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5848. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5849. # * RopeScaling for Nemotron
  5850. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5851. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5852. else:
  5853. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5854. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5855. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5856. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5857. # model.layers.{l}.input_layernorm.weight
  5858. # model.layers.{l}.post_attention_layernorm.weight
  5859. # model.norm.weight
  5860. if name.endswith("norm.weight"):
  5861. data_torch = data_torch + 1
  5862. return [(self.map_tensor_name(name), data_torch)]
  5863. @ModelBase.register("ExaoneForCausalLM")
  5864. class ExaoneModel(TextModel):
  5865. model_arch = gguf.MODEL_ARCH.EXAONE
  5866. def set_gguf_parameters(self):
  5867. hparams = self.hparams
  5868. assert (hparams["activation_function"] == "silu")
  5869. max_position_embeddings = hparams["max_position_embeddings"]
  5870. embed_dim = hparams["hidden_size"]
  5871. num_heads = hparams["num_attention_heads"]
  5872. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5873. layer_norm_eps = hparams["layer_norm_epsilon"]
  5874. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5875. num_layers = hparams["num_layers"]
  5876. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5877. # attention_dropout_rate = hparams["attention_dropout"]
  5878. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5879. # embed_dropout_rate = hparams["embed_dropout"]
  5880. self.gguf_writer.add_embedding_length(embed_dim)
  5881. self.gguf_writer.add_head_count(num_heads)
  5882. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5883. self.gguf_writer.add_context_length(max_position_embeddings)
  5884. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5885. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5886. self.gguf_writer.add_block_count(num_layers)
  5887. self.gguf_writer.add_file_type(self.ftype)
  5888. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5889. self.gguf_writer.add_rope_freq_base(rope_theta)
  5890. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5891. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5892. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5893. rope_scaling = self.hparams.get("rope_scaling") or {}
  5894. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5895. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5896. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5897. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5898. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5899. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5900. base = self.hparams.get("rope_theta", 10000.0)
  5901. if (dim := self.hparams.get("head_dim")) is None:
  5902. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5903. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5904. factor = rope_scaling.get("factor", 8.0)
  5905. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5906. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5907. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5908. low_freq_wavelen = old_context_len / low_freq_factor
  5909. high_freq_wavelen = old_context_len / high_freq_factor
  5910. assert low_freq_wavelen != high_freq_wavelen
  5911. rope_factors = []
  5912. for freq in freqs:
  5913. wavelen = 2 * math.pi / freq
  5914. if wavelen < high_freq_wavelen:
  5915. rope_factors.append(1)
  5916. elif wavelen > low_freq_wavelen:
  5917. rope_factors.append(factor)
  5918. else:
  5919. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5920. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5921. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5922. @ModelBase.register("Exaone4ForCausalLM")
  5923. class Exaone4Model(TextModel):
  5924. model_arch = gguf.MODEL_ARCH.EXAONE4
  5925. def set_vocab(self):
  5926. tokens, toktypes, tokpre = self.get_vocab_base()
  5927. self.gguf_writer.add_tokenizer_model("gpt2")
  5928. self.gguf_writer.add_tokenizer_pre(tokpre)
  5929. self.gguf_writer.add_token_list(tokens)
  5930. self.gguf_writer.add_token_types(toktypes)
  5931. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5932. special_vocab.add_to_gguf(self.gguf_writer)
  5933. def set_gguf_parameters(self):
  5934. super().set_gguf_parameters()
  5935. hparams = self.hparams
  5936. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5937. if hparams.get("sliding_window") is not None:
  5938. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5939. if "layer_types" in hparams:
  5940. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5941. elif "sliding_window_pattern" in hparams:
  5942. sliding_window_pattern = []
  5943. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5944. for i in range(hparams["num_hidden_layers"]):
  5945. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5946. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5947. for i in range(hparams["num_hidden_layers"]):
  5948. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5949. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5950. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5951. rope_scaling = self.hparams.get("rope_scaling") or {}
  5952. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5953. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5954. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5955. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5956. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5957. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5958. base = self.hparams.get("rope_theta", 10_000.0)
  5959. if (dim := self.hparams.get("head_dim")) is None:
  5960. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5961. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5962. factor = rope_scaling.get("factor", 16.0)
  5963. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5964. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5965. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5966. low_freq_wavelen = old_context_len / low_freq_factor
  5967. high_freq_wavelen = old_context_len / high_freq_factor
  5968. rope_factors = []
  5969. for freq in freqs:
  5970. wavelen = 2 * math.pi / freq
  5971. if wavelen < high_freq_wavelen:
  5972. rope_factors.append(1)
  5973. elif wavelen > low_freq_wavelen:
  5974. rope_factors.append(factor)
  5975. else:
  5976. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5977. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5978. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5979. @ModelBase.register("GraniteForCausalLM")
  5980. class GraniteModel(LlamaModel):
  5981. """Conversion for IBM's GraniteForCausalLM"""
  5982. model_arch = gguf.MODEL_ARCH.GRANITE
  5983. def set_gguf_parameters(self):
  5984. """Granite uses standard llama parameters with the following differences:
  5985. - No head_dim support
  5986. - New multiplier params:
  5987. - attention_scale
  5988. - embedding_scale
  5989. - residual_scale
  5990. - logits_scaling
  5991. """
  5992. if head_dim := self.hparams.pop("head_dim", None):
  5993. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5994. super().set_gguf_parameters()
  5995. # NOTE: Convert _multiplier params to _scale params for naming
  5996. # consistency
  5997. if attention_scale := self.hparams.get("attention_multiplier"):
  5998. self.gguf_writer.add_attention_scale(attention_scale)
  5999. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6000. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6001. self.gguf_writer.add_embedding_scale(embedding_scale)
  6002. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6003. if residual_scale := self.hparams.get("residual_multiplier"):
  6004. self.gguf_writer.add_residual_scale(residual_scale)
  6005. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6006. if logits_scale := self.hparams.get("logits_scaling"):
  6007. self.gguf_writer.add_logit_scale(logits_scale)
  6008. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6009. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6010. class GraniteMoeModel(GraniteModel):
  6011. """Conversion for IBM's GraniteMoeForCausalLM"""
  6012. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6013. def set_gguf_parameters(self):
  6014. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6015. - shared_intermediate_size
  6016. """
  6017. super().set_gguf_parameters()
  6018. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6019. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6020. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6021. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6022. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6023. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6024. the hidden size that is then split during forward. To keep compatibility
  6025. with existing mixtral support, we pull them apart here.
  6026. """
  6027. if name.endswith("block_sparse_moe.input_linear.weight"):
  6028. ffn_dim = self.hparams["intermediate_size"]
  6029. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6030. gate, up = data_torch.split(ffn_dim, dim=-2)
  6031. return [
  6032. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6033. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6034. ]
  6035. has_experts = bool(self.hparams.get('num_local_experts'))
  6036. if name.endswith("shared_mlp.input_linear.weight"):
  6037. ffn_dim = self.hparams["shared_intermediate_size"]
  6038. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6039. gate, up = data_torch.split(ffn_dim, dim=-2)
  6040. if has_experts:
  6041. return [
  6042. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6043. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6044. ]
  6045. return [
  6046. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6047. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6048. ]
  6049. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6050. return [
  6051. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6052. ]
  6053. return super().modify_tensors(data_torch, name, bid)
  6054. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6055. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6056. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6057. layers and optionally uses MoE w/ a shared expert"""
  6058. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6059. undo_permute = True
  6060. def __init__(self, *args, **kwargs):
  6061. # Hybrid mamba models use a prefix for the mamba-specific params.
  6062. # TODO: Extend this if the prefix(es) need to be configurable
  6063. self.hparam_prefixes = ["mamba"]
  6064. super().__init__(*args, **kwargs)
  6065. # Lists of which layers use ssm vs attention
  6066. self._attn_layers = self.get_attn_layers()
  6067. self._ssm_layers = [
  6068. i for i in range(self.block_count)
  6069. if i not in self._attn_layers
  6070. ]
  6071. # n_group and d_inner are used during reshape_tensors for mamba2
  6072. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  6073. self.n_group = self.find_hparam(["n_groups"])
  6074. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  6075. def get_attn_layers(self):
  6076. # Explicit list of layer type names
  6077. if layer_types := self.hparams.get("layer_types"):
  6078. return [
  6079. i for i, typ in enumerate(layer_types)
  6080. if typ == "attention"
  6081. ]
  6082. # Layer types indicated by index or period
  6083. attn_layers = self.hparams.get("attn_layer_indices", [])
  6084. if not attn_layers:
  6085. attn_period = self.hparams.get("attn_layer_period")
  6086. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6087. attn_offset = self.hparams.get("attn_layer_offset")
  6088. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6089. attn_layers = [
  6090. i for i in range(self.block_count)
  6091. if i % attn_period == attn_offset
  6092. ]
  6093. return attn_layers
  6094. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6095. prefixed = []
  6096. for pfx in self.hparam_prefixes:
  6097. prefixed.extend(
  6098. "_".join([pfx, k])
  6099. for k in keys
  6100. )
  6101. keys = list(keys) + prefixed
  6102. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6103. def modify_tensors(
  6104. self, data_torch: Tensor, name: str, bid: int | None
  6105. ) -> Iterable[tuple[str, Tensor]]:
  6106. if (
  6107. name.endswith("block_sparse_moe.input_linear.weight")
  6108. or "shared_mlp" in name
  6109. ):
  6110. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6111. # Determine whether this is a mamba layer or an attention layer
  6112. if bid in self._ssm_layers:
  6113. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6114. elif bid in self._attn_layers:
  6115. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6116. return [(self.map_tensor_name(name), data_torch)]
  6117. def set_gguf_parameters(self):
  6118. """This method merges params from both parents and some that are
  6119. specific to this model. The result is some duplication of how the params
  6120. get set. The following warnings are expected during conversion:
  6121. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6122. WARNING:Duplicated key name 'granitehybrid.context_length'
  6123. """
  6124. GraniteMoeModel.set_gguf_parameters(self)
  6125. ## Mamba mixer params ##
  6126. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6127. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  6128. self.gguf_writer.add_ssm_group_count(self.n_group)
  6129. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6130. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6131. # in llama.cpp
  6132. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  6133. ## Attention params ##
  6134. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6135. head_count_kv_vec = [
  6136. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6137. ]
  6138. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6139. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6140. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6141. ## If Bamba, use rope, otherwise don't
  6142. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  6143. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6144. if not use_rope:
  6145. self.gguf_writer.add_context_length(2**20)
  6146. ## Validation ##
  6147. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6148. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6149. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6150. def set_vocab(self):
  6151. self.hparams["pad_vocab_size_multiple"] = 8
  6152. Mamba2Model.set_vocab(self)
  6153. @ModelBase.register("BailingMoeForCausalLM")
  6154. class BailingMoeModel(TextModel):
  6155. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6156. def set_vocab(self):
  6157. self._set_vocab_gpt2()
  6158. def set_gguf_parameters(self):
  6159. super().set_gguf_parameters()
  6160. hparams = self.hparams
  6161. if (rope_dim := hparams.get("head_dim")) is None:
  6162. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6163. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6164. rope_scaling = self.hparams.get("rope_scaling") or {}
  6165. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6166. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6167. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6168. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6169. else:
  6170. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6171. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6172. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6173. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6174. self.gguf_writer.add_expert_weights_scale(1.0)
  6175. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6176. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6177. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6178. _experts: list[dict[str, Tensor]] | None = None
  6179. @staticmethod
  6180. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6181. if n_head_kv is not None and n_head != n_head_kv:
  6182. n_head = n_head_kv
  6183. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6184. .swapaxes(1, 2)
  6185. .reshape(weights.shape))
  6186. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6187. n_head = self.hparams["num_attention_heads"]
  6188. n_kv_head = self.hparams.get("num_key_value_heads")
  6189. n_embd = self.hparams["hidden_size"]
  6190. if (head_dim := self.hparams.get("head_dim")) is None:
  6191. head_dim = n_embd // n_head
  6192. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6193. if name.endswith("attention.dense.weight"):
  6194. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6195. elif name.endswith("query_key_value.weight"):
  6196. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6197. return [
  6198. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6199. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6200. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6201. ]
  6202. elif name.find("mlp.experts") != -1:
  6203. n_experts = self.hparams["num_experts"]
  6204. assert bid is not None
  6205. tensors: list[tuple[str, Tensor]] = []
  6206. if self._experts is None:
  6207. self._experts = [{} for _ in range(self.block_count)]
  6208. self._experts[bid][name] = data_torch
  6209. if len(self._experts[bid]) >= n_experts * 3:
  6210. # merge the experts into a single 3d tensor
  6211. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6212. datas: list[Tensor] = []
  6213. for xid in range(n_experts):
  6214. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6215. datas.append(self._experts[bid][ename])
  6216. del self._experts[bid][ename]
  6217. data_torch = torch.stack(datas, dim=0)
  6218. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6219. new_name = self.map_tensor_name(merged_name)
  6220. tensors.append((new_name, data_torch))
  6221. return tensors
  6222. new_name = self.map_tensor_name(name)
  6223. if new_name == output_name and self.hparams.get("norm_head"):
  6224. data_torch = data_torch.float()
  6225. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6226. return [(new_name, data_torch)]
  6227. def prepare_tensors(self):
  6228. super().prepare_tensors()
  6229. if self._experts is not None:
  6230. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6231. experts = [k for d in self._experts for k in d.keys()]
  6232. if len(experts) > 0:
  6233. raise ValueError(f"Unprocessed experts: {experts}")
  6234. @ModelBase.register("ChameleonForConditionalGeneration")
  6235. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6236. class ChameleonModel(TextModel):
  6237. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6238. def set_gguf_parameters(self):
  6239. super().set_gguf_parameters()
  6240. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6241. def set_vocab(self):
  6242. self._set_vocab_gpt2()
  6243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6244. # ignore image tokenizer for now
  6245. # TODO: remove this once image support is implemented for Chameleon
  6246. if name.startswith("model.vqmodel"):
  6247. return []
  6248. n_head = self.hparams["num_attention_heads"]
  6249. n_kv_head = self.hparams.get("num_key_value_heads")
  6250. hidden_dim = self.hparams.get("hidden_size")
  6251. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6252. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6253. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6254. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6255. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6256. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6257. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6258. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6259. return [(self.map_tensor_name(name), data_torch)]
  6260. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6261. @staticmethod
  6262. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6263. head_dim = hidden_dim // n_heads
  6264. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6265. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6266. return data_torch
  6267. @ModelBase.register("UltravoxModel")
  6268. class UltravoxModel(TextModel):
  6269. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6270. def __init__(self, *args, **kwargs):
  6271. super().__init__(*args, **kwargs)
  6272. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6273. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6274. class WhisperEncoderModel(MmprojModel):
  6275. has_vision_encoder = False # no vision encoder
  6276. has_audio_encoder = True
  6277. def __init__(self, *args, **kwargs):
  6278. super().__init__(*args, **kwargs)
  6279. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6280. self.hparams["hidden_size"] = self.hparams["d_model"]
  6281. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6282. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6283. def set_gguf_parameters(self):
  6284. super().set_gguf_parameters()
  6285. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6286. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6287. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6288. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6289. if ".conv" in name and ".weight" in name:
  6290. return gguf.GGMLQuantizationType.F16
  6291. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6292. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6293. del bid # unused
  6294. if name.startswith("language_model."):
  6295. # skip language model tensors
  6296. return []
  6297. # prevent clash naming with vision tensors
  6298. if name.startswith("multi_modal_projector"):
  6299. name = "audio." + name
  6300. if "conv1.bias" in name or "conv2.bias" in name:
  6301. # transpose conv1 and conv2 bias
  6302. data_torch = data_torch.unsqueeze(-1)
  6303. return [(self.map_tensor_name(name), data_torch)]
  6304. @ModelBase.register("UltravoxModel")
  6305. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6306. has_vision_encoder = False # no vision encoder
  6307. has_audio_encoder = True
  6308. def set_gguf_parameters(self):
  6309. super().set_gguf_parameters()
  6310. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6311. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6312. @ModelBase.register("VoxtralForConditionalGeneration")
  6313. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6314. has_vision_encoder = False # no vision encoder
  6315. has_audio_encoder = True
  6316. def set_gguf_parameters(self):
  6317. super().set_gguf_parameters()
  6318. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6319. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6320. @ModelBase.register("FalconH1ForCausalLM")
  6321. class FalconH1Model(Mamba2Model):
  6322. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6323. def __init__(self, *args, **kwargs):
  6324. # Set the hparam prefixes for Falcon Mamba2
  6325. self.hparam_prefixes = ["mamba"]
  6326. # Initialize the base Mamba2Model
  6327. super().__init__(*args, **kwargs)
  6328. # Use Llama conversion for attention
  6329. self._transformer_model_class = LlamaModel
  6330. # n_group and d_inner are used during reshape_tensors for mamba2
  6331. self.n_group = self.find_hparam(["n_groups"])
  6332. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6333. self.d_head = self.find_hparam(["d_head"])
  6334. # Initialize any Falcon Mamba2 specific attributes
  6335. self.has_attention = True # Falcon Mamba2 has attention components
  6336. # Load Falcon-H1 multipliers from hyperparameters
  6337. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6338. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6339. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6340. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6341. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6342. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6343. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6344. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6345. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6346. prefixed = []
  6347. for pfx in self.hparam_prefixes:
  6348. prefixed.extend(
  6349. "_".join([pfx, k])
  6350. for k in keys
  6351. )
  6352. keys = list(keys) + prefixed
  6353. return super().find_hparam(keys, *args, **kwargs)
  6354. def set_vocab(self):
  6355. self._set_vocab_gpt2()
  6356. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6357. tensors = list(super().modify_tensors(data_torch, name, bid))
  6358. tensor = tensors[0][1]
  6359. if "down_proj" in name:
  6360. tensor = tensor * self.mlp_multipliers[1]
  6361. elif "gate_proj" in name:
  6362. tensor = tensor * self.mlp_multipliers[0]
  6363. elif "k_proj" in name:
  6364. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6365. elif "q_proj" in name:
  6366. tensor = tensor * self.attention_in_multiplier
  6367. elif "v_proj" in name:
  6368. tensor = tensor * self.attention_in_multiplier
  6369. elif "o_proj" in name:
  6370. tensor = tensor * self.attention_out_multiplier
  6371. elif "out_proj" in name:
  6372. tensor = tensor * self.ssm_out_multiplier
  6373. elif "in_proj" in name:
  6374. tensor = tensor * self.ssm_in_multiplier
  6375. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6376. intermediate_size = self.hparams["mamba_d_ssm"]
  6377. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6378. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6379. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6380. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6381. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6382. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6383. elif "lm_head" in name:
  6384. tensor = tensor * self.hparams["lm_head_multiplier"]
  6385. elif "embed_tokens" in name:
  6386. tensor = tensor * self.hparams["embedding_multiplier"]
  6387. elif "mamba.norm" in name:
  6388. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6389. tensors = [(tensors[0][0], tensor)]
  6390. return tensors
  6391. def set_gguf_parameters(self):
  6392. super().set_gguf_parameters()
  6393. ## General Params ##
  6394. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6395. # Override some Mamba2 defaults
  6396. self.gguf_writer.add_block_count(self.block_count)
  6397. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6398. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6399. ## Attention params ##
  6400. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6401. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6402. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6403. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6404. ## Validation ##
  6405. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6406. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6407. # Add any other Falcon Mamba2 specific configuration
  6408. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6409. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6410. class HunYuanMoEModel(TextModel):
  6411. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6412. def set_vocab(self):
  6413. from transformers import AutoTokenizer
  6414. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6415. # 1. Get the pre-tokenizer identifier hash
  6416. tokpre = self.get_vocab_base_pre(tokenizer)
  6417. # 2. Reverse-engineer the merges list from mergeable_ranks
  6418. merges = []
  6419. vocab = {}
  6420. mergeable_ranks = tokenizer.mergeable_ranks
  6421. for token, rank in mergeable_ranks.items():
  6422. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6423. if len(token) == 1:
  6424. continue
  6425. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6426. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6427. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6428. # 3. Generate the tokens and toktypes lists
  6429. vocab_size = self.hparams["vocab_size"]
  6430. assert tokenizer.vocab_size == vocab_size
  6431. special_tokens = tokenizer.special_tokens
  6432. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6433. tokens: list[str] = []
  6434. toktypes: list[int] = []
  6435. for i in range(vocab_size):
  6436. if i not in reverse_vocab:
  6437. tokens.append(f"[PAD{i}]")
  6438. toktypes.append(gguf.TokenType.UNUSED)
  6439. else:
  6440. token = reverse_vocab[i]
  6441. tokens.append(token)
  6442. if i in special_tokens.values():
  6443. toktypes.append(gguf.TokenType.CONTROL)
  6444. else:
  6445. toktypes.append(gguf.TokenType.NORMAL)
  6446. # 4. Write all vocab-related fields to the GGUF writer
  6447. self.gguf_writer.add_tokenizer_model("gpt2")
  6448. self.gguf_writer.add_tokenizer_pre(tokpre)
  6449. self.gguf_writer.add_token_list(tokens)
  6450. self.gguf_writer.add_token_types(toktypes)
  6451. self.gguf_writer.add_token_merges(merges)
  6452. # 5. Add special tokens and chat templates
  6453. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6454. special_vocab.add_to_gguf(self.gguf_writer)
  6455. # FIX for BOS token: Overwrite incorrect id read from config.json
  6456. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6457. def set_gguf_parameters(self):
  6458. super().set_gguf_parameters()
  6459. hparams = self.hparams
  6460. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6461. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6462. moe_intermediate_size = hparams["moe_intermediate_size"]
  6463. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6464. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6465. moe_topk = hparams["moe_topk"]
  6466. assert all(topk == moe_topk[0] for topk in moe_topk)
  6467. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6468. moe_shared_expert = hparams["num_shared_expert"]
  6469. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6470. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6471. # Rope
  6472. rope_scaling = hparams.get("rope_scaling", {})
  6473. if rope_scaling.get("type") == "dynamic":
  6474. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6475. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6476. alpha = rope_scaling.get("alpha", 1000)
  6477. base = hparams.get("rope_theta", 10000.0)
  6478. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6479. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6480. self.gguf_writer.add_rope_freq_base(scaled_base)
  6481. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6482. self.gguf_writer.add_rope_scaling_factor(1)
  6483. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6484. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6485. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6486. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6487. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6488. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6489. _experts: list[dict[str, Tensor]] | None = None
  6490. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6491. if name == "lm_head.weight":
  6492. if self.hparams.get("tie_word_embeddings", False):
  6493. logger.info("Skipping tied output layer 'lm_head.weight'")
  6494. return []
  6495. if name.find("mlp.experts") != -1:
  6496. n_experts = self.hparams["num_experts"]
  6497. assert bid is not None
  6498. if self._experts is None:
  6499. self._experts = [{} for _ in range(self.block_count)]
  6500. self._experts[bid][name] = data_torch
  6501. if len(self._experts[bid]) >= n_experts * 3:
  6502. # merge the experts into a single 3d tensor
  6503. tensors: list[tuple[str, Tensor]] = []
  6504. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6505. datas: list[Tensor] = []
  6506. for xid in range(n_experts):
  6507. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6508. datas.append(self._experts[bid][ename])
  6509. del self._experts[bid][ename]
  6510. data_torch = torch.stack(datas, dim=0)
  6511. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6512. new_name = self.map_tensor_name(merged_name)
  6513. tensors.append((new_name, data_torch))
  6514. return tensors
  6515. else:
  6516. return []
  6517. return [(self.map_tensor_name(name), data_torch)]
  6518. def prepare_tensors(self):
  6519. super().prepare_tensors()
  6520. if self._experts is not None:
  6521. experts = [k for d in self._experts for k in d.keys()]
  6522. if len(experts) > 0:
  6523. raise ValueError(f"Unprocessed experts: {experts}")
  6524. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6525. class HunYuanModel(TextModel):
  6526. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6527. def set_vocab(self):
  6528. if (self.dir_model / "tokenizer.json").is_file():
  6529. self._set_vocab_gpt2()
  6530. else:
  6531. from transformers import AutoTokenizer
  6532. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6533. # 1. Get the pre-tokenizer identifier hash
  6534. tokpre = self.get_vocab_base_pre(tokenizer)
  6535. # 2. Reverse-engineer the merges list from mergeable_ranks
  6536. merges = []
  6537. vocab = {}
  6538. mergeable_ranks = tokenizer.mergeable_ranks
  6539. for token, rank in mergeable_ranks.items():
  6540. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6541. if len(token) == 1:
  6542. continue
  6543. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6544. if len(merged) == 2:
  6545. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6546. # 3. Generate the tokens and toktypes lists
  6547. vocab_size = self.hparams["vocab_size"]
  6548. assert tokenizer.vocab_size == vocab_size
  6549. special_tokens = tokenizer.special_tokens
  6550. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6551. tokens: list[str] = []
  6552. toktypes: list[int] = []
  6553. for i in range(vocab_size):
  6554. if i not in reverse_vocab:
  6555. tokens.append(f"[PAD{i}]")
  6556. toktypes.append(gguf.TokenType.UNUSED)
  6557. else:
  6558. token = reverse_vocab[i]
  6559. tokens.append(token)
  6560. if i in special_tokens.values():
  6561. toktypes.append(gguf.TokenType.CONTROL)
  6562. else:
  6563. toktypes.append(gguf.TokenType.NORMAL)
  6564. # 4. Write all vocab-related fields to the GGUF writer
  6565. self.gguf_writer.add_tokenizer_model("gpt2")
  6566. self.gguf_writer.add_tokenizer_pre(tokpre)
  6567. self.gguf_writer.add_token_list(tokens)
  6568. self.gguf_writer.add_token_types(toktypes)
  6569. self.gguf_writer.add_token_merges(merges)
  6570. # 5. Add special tokens and chat templates
  6571. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6572. special_vocab.add_to_gguf(self.gguf_writer)
  6573. # FIX for BOS token: Overwrite incorrect id read from config.json
  6574. if self.hparams['hidden_size'] == 4096:
  6575. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6576. def set_gguf_parameters(self):
  6577. super().set_gguf_parameters()
  6578. hparams = self.hparams
  6579. # Rope
  6580. rope_scaling = hparams.get("rope_scaling", {})
  6581. if rope_scaling.get("type") == "dynamic":
  6582. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6583. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6584. alpha = rope_scaling.get("alpha", 50)
  6585. base = hparams.get("rope_theta", 10000.0)
  6586. dim = hparams["head_dim"]
  6587. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6588. self.gguf_writer.add_rope_freq_base(scaled_base)
  6589. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6590. self.gguf_writer.add_rope_scaling_factor(1)
  6591. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6592. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6593. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6594. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6595. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6596. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6598. if name == "lm_head.weight":
  6599. if self.hparams.get("tie_word_embeddings", False):
  6600. logger.info("Skipping tied output layer 'lm_head.weight'")
  6601. return []
  6602. return [(self.map_tensor_name(name), data_torch)]
  6603. @ModelBase.register("SmolLM3ForCausalLM")
  6604. class SmolLM3Model(LlamaModel):
  6605. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6606. def set_vocab(self):
  6607. super().set_vocab()
  6608. # remove unsupported array slicing in chat template
  6609. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6610. from transformers import AutoTokenizer
  6611. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6612. if tokenizer.chat_template is not None:
  6613. chat_template = tokenizer.chat_template.replace("[:]", "")
  6614. self.gguf_writer.add_chat_template(chat_template)
  6615. @ModelBase.register("GptOssForCausalLM")
  6616. class GptOssModel(TextModel):
  6617. model_arch = gguf.MODEL_ARCH.GPT_OSS
  6618. def transform_nibble_layout(self, tensor):
  6619. assert tensor.dtype == torch.uint8
  6620. assert tensor.shape[-1] == 16
  6621. # swap nibbles
  6622. t_lo = tensor & 0x0F
  6623. t_hi = tensor & 0xF0
  6624. t_swapped = (t_lo << 4) | (t_hi >> 4)
  6625. tensor = t_swapped
  6626. # transform aaaa...bbbb... to abababab...
  6627. blk_a, blk_b = tensor.chunk(2, dim=-1)
  6628. # get a_
  6629. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  6630. blk_a1 = (blk_a << 4).view(-1, 1)
  6631. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  6632. # get _b
  6633. blk_b0 = (blk_b >> 4).view(-1, 1)
  6634. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  6635. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  6636. # swap once more
  6637. out = blk_a | blk_b
  6638. out_h = out & 0xF0
  6639. out_l = out & 0x0F
  6640. out = (out_h >> 4) | (out_l << 4)
  6641. return out
  6642. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  6643. assert blocks.dtype == torch.uint8
  6644. assert scales.dtype == torch.uint8
  6645. scales = scales.unsqueeze(-1)
  6646. assert len(blocks.shape) == 4
  6647. assert len(scales.shape) == 4
  6648. blocks = self.transform_nibble_layout(blocks)
  6649. new_data = torch.concat((scales, blocks), dim=-1)
  6650. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  6651. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  6652. # flatten last dim
  6653. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  6654. new_data = new_data.numpy()
  6655. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  6656. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6657. blocks0: Tensor = torch.zeros(1)
  6658. blocks1: Tensor = torch.zeros(1)
  6659. # we assume that tensors are loaded in the correct order
  6660. for name, data_torch in self.get_tensors():
  6661. if "mlp.experts.down_proj_blocks" in name:
  6662. blocks0 = data_torch
  6663. elif "mlp.experts.down_proj_scales" in name:
  6664. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  6665. self.repack_mxfp4(new_name, blocks0, data_torch)
  6666. elif "mlp.experts.gate_up_proj_blocks" in name:
  6667. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  6668. elif "mlp.experts.gate_up_proj_scales" in name:
  6669. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6670. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  6671. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  6672. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  6673. self.repack_mxfp4(new_name_up, blocks1, scales1)
  6674. return []
  6675. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6676. del bid # unused
  6677. if "sinks" in name:
  6678. name += ".weight"
  6679. # correct naming for down_proj
  6680. if "down_proj" in name:
  6681. if name.endswith("_bias"):
  6682. name = name.replace("down_proj_bias", "down_proj.bias")
  6683. elif "_blocks" not in name and "_scales" not in name:
  6684. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6685. name = name.replace("down_proj", "down_proj.weight")
  6686. data_torch = data_torch.transpose(-1, -2)
  6687. else:
  6688. # otherwise, it should already be repacked to ggml MXFP4 format
  6689. return []
  6690. # split the gate_up into gate and up
  6691. if "gate_up_proj" in name:
  6692. if name.endswith("_bias"):
  6693. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  6694. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  6695. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  6696. return [
  6697. (self.map_tensor_name(name_gate), gate_proj_bias),
  6698. (self.map_tensor_name(name_up), up_proj_bias)
  6699. ]
  6700. elif "_blocks" not in name and "_scales" not in name:
  6701. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6702. name_up = name.replace("gate_up_proj", "up_proj.weight")
  6703. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  6704. data_torch = data_torch.transpose(-1, -2)
  6705. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6706. return [
  6707. (self.map_tensor_name(name_gate), gate_proj_weight),
  6708. (self.map_tensor_name(name_up), up_proj_weight)
  6709. ]
  6710. else:
  6711. # otherwise, it should already be repacked to ggml MXFP4 format
  6712. return []
  6713. return [(self.map_tensor_name(name), data_torch)]
  6714. def set_vocab(self):
  6715. self._set_vocab_gpt2()
  6716. def set_gguf_parameters(self):
  6717. super().set_gguf_parameters()
  6718. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6719. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  6720. rope_scaling = self.hparams.get("rope_scaling") or {}
  6721. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  6722. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  6723. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6724. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6725. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  6726. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  6727. class LFM2Model(TextModel):
  6728. model_arch = gguf.MODEL_ARCH.LFM2
  6729. def _add_feed_forward_length(self):
  6730. ff_dim = self.hparams["block_ff_dim"]
  6731. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6732. ff_dim = self.hparams["block_ff_dim"]
  6733. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6734. multiple_of = self.hparams["block_multiple_of"]
  6735. if auto_adjust_ff_dim:
  6736. ff_dim = int(2 * ff_dim / 3)
  6737. # custom dim factor multiplier
  6738. if ffn_dim_multiplier is not None:
  6739. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6740. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6741. self.gguf_writer.add_feed_forward_length(ff_dim)
  6742. def set_gguf_parameters(self):
  6743. # set num_key_value_heads only for attention layers
  6744. self.hparams["num_key_value_heads"] = [
  6745. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6746. for layer_type in self.hparams["layer_types"]
  6747. ]
  6748. super().set_gguf_parameters()
  6749. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6750. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6751. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6752. self._add_feed_forward_length()
  6753. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6754. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6755. if is_vision_tensor:
  6756. # skip vision tensors
  6757. return []
  6758. name = name.replace("language_model.", "")
  6759. # conv op requires 2d tensor
  6760. if 'conv.conv' in name:
  6761. data_torch = data_torch.squeeze(1)
  6762. return [(self.map_tensor_name(name), data_torch)]
  6763. @ModelBase.register("Lfm2VlForConditionalGeneration")
  6764. class LFM2VLModel(MmprojModel):
  6765. def __init__(self, *args, **kwargs):
  6766. super().__init__(*args, **kwargs)
  6767. assert self.hparams_vision is not None
  6768. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  6769. self.hparams_vision["image_size"] = 256
  6770. def set_gguf_parameters(self):
  6771. super().set_gguf_parameters()
  6772. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  6773. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  6774. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  6775. self.gguf_writer.add_vision_use_gelu(True)
  6776. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  6777. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  6778. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  6779. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6780. del bid # unused
  6781. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6782. if is_vision_tensor:
  6783. # remove "model." prefix
  6784. name = name.replace("model.vision_tower.", "vision_tower.")
  6785. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  6786. if "patch_embedding.weight" in name:
  6787. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  6788. return [(self.map_tensor_name(name), data_torch)]
  6789. return [] # skip other tensors
  6790. @ModelBase.register("SmallThinkerForCausalLM")
  6791. class SmallThinkerModel(TextModel):
  6792. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6793. def set_gguf_parameters(self):
  6794. super().set_gguf_parameters()
  6795. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6796. self.gguf_writer.add_expert_count(n_experts)
  6797. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6798. self.gguf_writer.add_expert_used_count(n_experts_used)
  6799. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6800. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6801. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6802. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6803. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6804. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6805. else:
  6806. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6807. # YaRN is not enabled by default
  6808. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6809. rope_scaling = self.hparams.get("rope_scaling") or {}
  6810. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6811. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6812. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6813. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6814. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6815. if sliding_window_layout:
  6816. for i in sliding_window_layout:
  6817. if i != 0:
  6818. sliding_window = self.hparams.get("sliding_window_size")
  6819. if sliding_window:
  6820. self.gguf_writer.add_sliding_window(sliding_window)
  6821. break
  6822. _experts: list[dict[str, Tensor]] | None = None
  6823. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6824. # process the experts separately
  6825. if name.find("experts") != -1:
  6826. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6827. assert bid is not None
  6828. if self._experts is None:
  6829. self._experts = [{} for _ in range(self.block_count)]
  6830. self._experts[bid][name] = data_torch
  6831. if len(self._experts[bid]) >= n_experts * 3:
  6832. tensors: list[tuple[str, Tensor]] = []
  6833. # merge the experts into a single 3d tensor
  6834. for w_name in ["down", "gate", "up"]:
  6835. datas: list[Tensor] = []
  6836. for xid in range(n_experts):
  6837. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6838. datas.append(self._experts[bid][ename])
  6839. del self._experts[bid][ename]
  6840. data_torch = torch.stack(datas, dim=0)
  6841. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6842. new_name = self.map_tensor_name(merged_name)
  6843. tensors.append((new_name, data_torch))
  6844. return tensors
  6845. else:
  6846. return []
  6847. return [(self.map_tensor_name(name), data_torch)]
  6848. def prepare_tensors(self):
  6849. super().prepare_tensors()
  6850. if self._experts is not None:
  6851. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6852. experts = [k for d in self._experts for k in d.keys()]
  6853. if len(experts) > 0:
  6854. raise ValueError(f"Unprocessed experts: {experts}")
  6855. class MistralModel(LlamaModel):
  6856. model_arch = gguf.MODEL_ARCH.LLAMA
  6857. model_name = "Mistral"
  6858. hf_arch = ""
  6859. is_mistral_format = True
  6860. undo_permute = False
  6861. @staticmethod
  6862. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  6863. assert TokenizerVersion is not None, "mistral_common is not installed"
  6864. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  6865. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  6866. )
  6867. if vocab.tokenizer.version == TokenizerVersion.v1:
  6868. return "mistral-v1"
  6869. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6870. return "mistral-v3"
  6871. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6872. return "mistral-v3-tekken"
  6873. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6874. return "mistral-v7"
  6875. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6876. return "mistral-v7-tekken"
  6877. elif vocab.tokenizer.version == TokenizerVersion.v11:
  6878. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  6879. elif vocab.tokenizer.version == TokenizerVersion.v13:
  6880. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  6881. else:
  6882. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  6883. if is_mistral_format:
  6884. err_message += (
  6885. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  6886. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  6887. )
  6888. raise ValueError(err_message)
  6889. template_path = templates_dir / template_file
  6890. if not template_path.exists():
  6891. raise FileNotFoundError(f"Template file not found: {template_path}")
  6892. with open(template_path, "r", encoding="utf-8") as f:
  6893. template = f.read()
  6894. return template
  6895. class PixtralModel(LlavaVisionModel):
  6896. model_name = "Pixtral"
  6897. hf_arch = ""
  6898. is_mistral_format = True
  6899. def set_gguf_parameters(self):
  6900. super().set_gguf_parameters()
  6901. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  6902. self.gguf_writer.add_vision_attention_layernorm_eps(
  6903. self.find_hparam(["norm_eps"])
  6904. )
  6905. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  6906. self.gguf_writer.add_vision_use_silu(True)
  6907. # spatial_merge_size
  6908. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  6909. self.gguf_writer.add_vision_spatial_merge_size(
  6910. self.find_vparam(["spatial_merge_size"])
  6911. )
  6912. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  6913. if name == "vision_language_adapter.w_in.weight":
  6914. return "mm.1.weight"
  6915. elif name == "vision_language_adapter.w_out.weight":
  6916. return "mm.2.weight"
  6917. return super().map_tensor_name(name, try_suffixes)
  6918. ###### CONVERSION LOGIC ######
  6919. # tree of lazy tensors
  6920. class LazyTorchTensor(gguf.LazyBase):
  6921. _tensor_type = torch.Tensor
  6922. # to keep the type-checker happy
  6923. dtype: torch.dtype
  6924. shape: torch.Size
  6925. # only used when converting a torch.Tensor to a np.ndarray
  6926. _dtype_map: dict[torch.dtype, type] = {
  6927. torch.float16: np.float16,
  6928. torch.float32: np.float32,
  6929. torch.uint8: np.uint8,
  6930. }
  6931. # used for safetensors slices
  6932. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6933. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6934. _dtype_str_map: dict[str, torch.dtype] = {
  6935. "F64": torch.float64,
  6936. "F32": torch.float32,
  6937. "BF16": torch.bfloat16,
  6938. "F16": torch.float16,
  6939. # "U64": torch.uint64,
  6940. "I64": torch.int64,
  6941. # "U32": torch.uint32,
  6942. "I32": torch.int32,
  6943. # "U16": torch.uint16,
  6944. "I16": torch.int16,
  6945. "U8": torch.uint8,
  6946. "I8": torch.int8,
  6947. "BOOL": torch.bool,
  6948. "F8_E4M3": torch.float8_e4m3fn,
  6949. "F8_E5M2": torch.float8_e5m2,
  6950. }
  6951. def numpy(self) -> gguf.LazyNumpyTensor:
  6952. dtype = self._dtype_map[self.dtype]
  6953. return gguf.LazyNumpyTensor(
  6954. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6955. args=(self,),
  6956. func=(lambda s: s.numpy())
  6957. )
  6958. @classmethod
  6959. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6960. return torch.empty(size=shape, dtype=dtype, device="meta")
  6961. @classmethod
  6962. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6963. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6964. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6965. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6966. return cast(torch.Tensor, lazy)
  6967. @classmethod
  6968. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6969. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6970. shape = remote_tensor.shape
  6971. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6972. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6973. return cast(torch.Tensor, lazy)
  6974. @classmethod
  6975. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6976. del types # unused
  6977. if kwargs is None:
  6978. kwargs = {}
  6979. if func is torch.Tensor.numpy:
  6980. return args[0].numpy()
  6981. return cls._wrap_fn(func)(*args, **kwargs)
  6982. def parse_args() -> argparse.Namespace:
  6983. parser = argparse.ArgumentParser(
  6984. description="Convert a huggingface model to a GGML compatible file")
  6985. parser.add_argument(
  6986. "--vocab-only", action="store_true",
  6987. help="extract only the vocab",
  6988. )
  6989. parser.add_argument(
  6990. "--outfile", type=Path,
  6991. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6992. )
  6993. parser.add_argument(
  6994. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6995. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6996. )
  6997. parser.add_argument(
  6998. "--bigendian", action="store_true",
  6999. help="model is executed on big endian machine",
  7000. )
  7001. parser.add_argument(
  7002. "model", type=str,
  7003. help="directory containing model file or huggingface repository ID (if --remote)",
  7004. nargs="?",
  7005. )
  7006. parser.add_argument(
  7007. "--use-temp-file", action="store_true",
  7008. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7009. )
  7010. parser.add_argument(
  7011. "--no-lazy", action="store_true",
  7012. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7013. )
  7014. parser.add_argument(
  7015. "--model-name", type=str, default=None,
  7016. help="name of the model",
  7017. )
  7018. parser.add_argument(
  7019. "--verbose", action="store_true",
  7020. help="increase output verbosity",
  7021. )
  7022. parser.add_argument(
  7023. "--split-max-tensors", type=int, default=0,
  7024. help="max tensors in each split",
  7025. )
  7026. parser.add_argument(
  7027. "--split-max-size", type=str, default="0",
  7028. help="max size per split N(M|G)",
  7029. )
  7030. parser.add_argument(
  7031. "--dry-run", action="store_true",
  7032. help="only print out a split plan and exit, without writing any new files",
  7033. )
  7034. parser.add_argument(
  7035. "--no-tensor-first-split", action="store_true",
  7036. help="do not add tensors to the first split (disabled by default)"
  7037. )
  7038. parser.add_argument(
  7039. "--metadata", type=Path,
  7040. help="Specify the path for an authorship metadata override file"
  7041. )
  7042. parser.add_argument(
  7043. "--print-supported-models", action="store_true",
  7044. help="Print the supported models"
  7045. )
  7046. parser.add_argument(
  7047. "--remote", action="store_true",
  7048. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7049. )
  7050. parser.add_argument(
  7051. "--mmproj", action="store_true",
  7052. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7053. )
  7054. parser.add_argument(
  7055. "--mistral-format", action="store_true",
  7056. help="Whether the model is stored following the Mistral format.",
  7057. )
  7058. parser.add_argument(
  7059. "--disable-mistral-community-chat-template", action="store_true",
  7060. help=(
  7061. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7062. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7063. )
  7064. )
  7065. args = parser.parse_args()
  7066. if not args.print_supported_models and args.model is None:
  7067. parser.error("the following arguments are required: model")
  7068. return args
  7069. def split_str_to_n_bytes(split_str: str) -> int:
  7070. if split_str.endswith("K"):
  7071. n = int(split_str[:-1]) * 1000
  7072. elif split_str.endswith("M"):
  7073. n = int(split_str[:-1]) * 1000 * 1000
  7074. elif split_str.endswith("G"):
  7075. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7076. elif split_str.isnumeric():
  7077. n = int(split_str)
  7078. else:
  7079. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7080. if n < 0:
  7081. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7082. return n
  7083. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7084. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7085. # maybe we should fallback to text model's arch in that case, since not many models have both
  7086. text_config = hparams.get("text_config", {})
  7087. vision_config = hparams.get("vision_config", {})
  7088. arch = None
  7089. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7090. arch = arches[0]
  7091. elif "ssm_cfg" in hparams:
  7092. # For non-hf Mamba and Mamba2 models
  7093. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7094. # if "architectures" is found in the sub-config, use that instead
  7095. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7096. arch = text_config["architectures"][0]
  7097. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7098. arch = vision_config["architectures"][0]
  7099. if arch is None:
  7100. raise ValueError("Failed to detect model architecture")
  7101. return arch
  7102. def main() -> None:
  7103. args = parse_args()
  7104. if args.print_supported_models:
  7105. logger.error("Supported models:")
  7106. ModelBase.print_registered_models()
  7107. sys.exit(0)
  7108. if args.verbose:
  7109. logging.basicConfig(level=logging.DEBUG)
  7110. else:
  7111. logging.basicConfig(level=logging.INFO)
  7112. if args.remote:
  7113. hf_repo_id = args.model
  7114. from huggingface_hub import snapshot_download
  7115. local_dir = snapshot_download(
  7116. repo_id=hf_repo_id,
  7117. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  7118. dir_model = Path(local_dir)
  7119. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7120. else:
  7121. hf_repo_id = None
  7122. dir_model = Path(args.model)
  7123. if not dir_model.is_dir():
  7124. logger.error(f'Error: {dir_model} is not a directory')
  7125. sys.exit(1)
  7126. ftype_map: dict[str, gguf.LlamaFileType] = {
  7127. "f32": gguf.LlamaFileType.ALL_F32,
  7128. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7129. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7130. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7131. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7132. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7133. "auto": gguf.LlamaFileType.GUESSED,
  7134. }
  7135. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7136. if args.use_temp_file and is_split:
  7137. logger.error("Error: Cannot use temp file when splitting")
  7138. sys.exit(1)
  7139. if args.outfile is not None:
  7140. fname_out = args.outfile
  7141. elif hf_repo_id:
  7142. # if remote, use the model ID as the output file name
  7143. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7144. else:
  7145. fname_out = dir_model
  7146. logger.info(f"Loading model: {dir_model.name}")
  7147. if args.mmproj:
  7148. if "mmproj" not in fname_out.name:
  7149. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7150. is_mistral_format = args.mistral_format
  7151. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7152. with torch.inference_mode():
  7153. output_type = ftype_map[args.outtype]
  7154. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7155. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7156. if not is_mistral_format:
  7157. model_architecture = get_model_architecture(hparams, model_type)
  7158. logger.info(f"Model architecture: {model_architecture}")
  7159. try:
  7160. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7161. except NotImplementedError:
  7162. logger.error(f"Model {model_architecture} is not supported")
  7163. sys.exit(1)
  7164. elif args.mmproj:
  7165. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7166. model_class = PixtralModel
  7167. else:
  7168. model_class = MistralModel
  7169. model_instance = model_class(dir_model, output_type, fname_out,
  7170. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7171. eager=args.no_lazy,
  7172. metadata_override=args.metadata, model_name=args.model_name,
  7173. split_max_tensors=args.split_max_tensors,
  7174. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7175. small_first_shard=args.no_tensor_first_split,
  7176. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
  7177. )
  7178. if args.vocab_only:
  7179. logger.info("Exporting model vocab...")
  7180. model_instance.write_vocab()
  7181. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7182. else:
  7183. logger.info("Exporting model...")
  7184. model_instance.write()
  7185. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7186. logger.info(f"Model successfully exported to {out_path}")
  7187. if __name__ == '__main__':
  7188. main()