ggml-rpc.cpp 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include <cinttypes>
  5. #include <string>
  6. #include <vector>
  7. #include <memory>
  8. #include <mutex>
  9. #include <unordered_map>
  10. #include <unordered_set>
  11. #ifdef _WIN32
  12. # define WIN32_LEAN_AND_MEAN
  13. # ifndef NOMINMAX
  14. # define NOMINMAX
  15. # endif
  16. # include <windows.h>
  17. # include <winsock2.h>
  18. #else
  19. # include <arpa/inet.h>
  20. # include <sys/socket.h>
  21. # include <sys/types.h>
  22. # include <netinet/in.h>
  23. # include <netinet/tcp.h>
  24. # include <netdb.h>
  25. # include <unistd.h>
  26. #endif
  27. #include <cstring>
  28. #define UNUSED GGML_UNUSED
  29. #define GGML_DEBUG 0
  30. #if (GGML_DEBUG >= 1)
  31. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  32. #else
  33. #define GGML_PRINT_DEBUG(...)
  34. #endif
  35. #ifdef _WIN32
  36. typedef SOCKET sockfd_t;
  37. using ssize_t = __int64;
  38. #else
  39. typedef int sockfd_t;
  40. #endif
  41. // cross-platform socket
  42. struct socket_t {
  43. sockfd_t fd;
  44. socket_t(sockfd_t fd) : fd(fd) {}
  45. ~socket_t() {
  46. GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
  47. #ifdef _WIN32
  48. closesocket(this->fd);
  49. #else
  50. close(this->fd);
  51. #endif
  52. }
  53. };
  54. // all RPC structures must be packed
  55. #pragma pack(push, 1)
  56. // ggml_tensor is serialized into rpc_tensor
  57. struct rpc_tensor {
  58. uint64_t id;
  59. uint32_t type;
  60. uint64_t buffer;
  61. uint32_t ne[GGML_MAX_DIMS];
  62. uint32_t nb[GGML_MAX_DIMS];
  63. uint32_t op;
  64. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  65. int32_t flags;
  66. uint64_t src[GGML_MAX_SRC];
  67. uint64_t view_src;
  68. uint64_t view_offs;
  69. uint64_t data;
  70. char name[GGML_MAX_NAME];
  71. char padding[4];
  72. };
  73. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  74. // RPC commands
  75. enum rpc_cmd {
  76. RPC_CMD_ALLOC_BUFFER = 0,
  77. RPC_CMD_GET_ALIGNMENT,
  78. RPC_CMD_GET_MAX_SIZE,
  79. RPC_CMD_BUFFER_GET_BASE,
  80. RPC_CMD_FREE_BUFFER,
  81. RPC_CMD_BUFFER_CLEAR,
  82. RPC_CMD_SET_TENSOR,
  83. RPC_CMD_GET_TENSOR,
  84. RPC_CMD_COPY_TENSOR,
  85. RPC_CMD_GRAPH_COMPUTE,
  86. RPC_CMD_GET_DEVICE_MEMORY,
  87. RPC_CMD_COUNT,
  88. };
  89. struct rpc_msg_alloc_buffer_req {
  90. uint64_t size;
  91. };
  92. struct rpc_msg_alloc_buffer_rsp {
  93. uint64_t remote_ptr;
  94. uint64_t remote_size;
  95. };
  96. struct rpc_msg_get_alignment_rsp {
  97. uint64_t alignment;
  98. };
  99. struct rpc_msg_get_max_size_rsp {
  100. uint64_t max_size;
  101. };
  102. struct rpc_msg_buffer_get_base_req {
  103. uint64_t remote_ptr;
  104. };
  105. struct rpc_msg_buffer_get_base_rsp {
  106. uint64_t base_ptr;
  107. };
  108. struct rpc_msg_free_buffer_req {
  109. uint64_t remote_ptr;
  110. };
  111. struct rpc_msg_buffer_clear_req {
  112. uint64_t remote_ptr;
  113. uint8_t value;
  114. };
  115. struct rpc_msg_get_tensor_req {
  116. rpc_tensor tensor;
  117. uint64_t offset;
  118. uint64_t size;
  119. };
  120. struct rpc_msg_copy_tensor_req {
  121. rpc_tensor src;
  122. rpc_tensor dst;
  123. };
  124. struct rpc_msg_copy_tensor_rsp {
  125. uint8_t result;
  126. };
  127. struct rpc_msg_graph_compute_rsp {
  128. uint8_t result;
  129. };
  130. struct rpc_msg_get_device_memory_rsp {
  131. uint64_t free_mem;
  132. uint64_t total_mem;
  133. };
  134. #pragma pack(pop)
  135. // RPC data structures
  136. static ggml_guid_t ggml_backend_rpc_guid() {
  137. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  138. return &guid;
  139. }
  140. struct ggml_backend_rpc_buffer_type_context {
  141. std::string endpoint;
  142. std::string name;
  143. size_t alignment;
  144. size_t max_size;
  145. };
  146. struct ggml_backend_rpc_context {
  147. std::string endpoint;
  148. std::string name;
  149. };
  150. struct ggml_backend_rpc_buffer_context {
  151. std::shared_ptr<socket_t> sock;
  152. std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
  153. uint64_t remote_ptr;
  154. };
  155. // RPC helper functions
  156. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  157. #ifdef _WIN32
  158. if (fd == INVALID_SOCKET) {
  159. return nullptr;
  160. }
  161. #else
  162. if (fd < 0) {
  163. return nullptr;
  164. }
  165. #endif
  166. return std::make_shared<socket_t>(fd);
  167. }
  168. static bool set_no_delay(sockfd_t sockfd) {
  169. int flag = 1;
  170. // set TCP_NODELAY to disable Nagle's algorithm
  171. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  172. return ret == 0;
  173. }
  174. static bool set_reuse_addr(sockfd_t sockfd) {
  175. int flag = 1;
  176. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  177. return ret == 0;
  178. }
  179. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  180. struct sockaddr_in addr;
  181. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  182. auto sock_ptr = make_socket(sockfd);
  183. if (sock_ptr == nullptr) {
  184. return nullptr;
  185. }
  186. if (!set_no_delay(sockfd)) {
  187. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  188. return nullptr;
  189. }
  190. addr.sin_family = AF_INET;
  191. addr.sin_port = htons(port);
  192. struct hostent * server = gethostbyname(host);
  193. if (server == NULL) {
  194. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  195. return nullptr;
  196. }
  197. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  198. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  199. return nullptr;
  200. }
  201. return sock_ptr;
  202. }
  203. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  204. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  205. auto client_socket = make_socket(client_socket_fd);
  206. if (client_socket == nullptr) {
  207. return nullptr;
  208. }
  209. if (!set_no_delay(client_socket_fd)) {
  210. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  211. return nullptr;
  212. }
  213. return client_socket;
  214. }
  215. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  216. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  217. auto sock = make_socket(sockfd);
  218. if (sock == nullptr) {
  219. return nullptr;
  220. }
  221. if (!set_reuse_addr(sockfd)) {
  222. fprintf(stderr, "Failed to set SO_REUSEADDR\n");
  223. return nullptr;
  224. }
  225. if (inet_addr(host) == INADDR_NONE) {
  226. fprintf(stderr, "Invalid host address: %s\n", host);
  227. return nullptr;
  228. }
  229. struct sockaddr_in serv_addr;
  230. serv_addr.sin_family = AF_INET;
  231. serv_addr.sin_addr.s_addr = inet_addr(host);
  232. serv_addr.sin_port = htons(port);
  233. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  234. return nullptr;
  235. }
  236. if (listen(sockfd, 1) < 0) {
  237. return nullptr;
  238. }
  239. return sock;
  240. }
  241. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  242. size_t bytes_sent = 0;
  243. while (bytes_sent < size) {
  244. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  245. if (n < 0) {
  246. return false;
  247. }
  248. bytes_sent += n;
  249. }
  250. return true;
  251. }
  252. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  253. size_t bytes_recv = 0;
  254. while (bytes_recv < size) {
  255. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  256. if (n <= 0) {
  257. return false;
  258. }
  259. bytes_recv += n;
  260. }
  261. return true;
  262. }
  263. static bool send_msg(sockfd_t sockfd, const void * msg, size_t msg_size) {
  264. if (!send_data(sockfd, &msg_size, sizeof(msg_size))) {
  265. return false;
  266. }
  267. return send_data(sockfd, msg, msg_size);
  268. }
  269. static bool recv_msg(sockfd_t sockfd, void * msg, size_t msg_size) {
  270. uint64_t size;
  271. if (!recv_data(sockfd, &size, sizeof(size))) {
  272. return false;
  273. }
  274. if (size != msg_size) {
  275. return false;
  276. }
  277. return recv_data(sockfd, msg, msg_size);
  278. }
  279. static bool recv_msg(sockfd_t sockfd, std::vector<uint8_t> & input) {
  280. uint64_t size;
  281. if (!recv_data(sockfd, &size, sizeof(size))) {
  282. return false;
  283. }
  284. try {
  285. input.resize(size);
  286. } catch (const std::bad_alloc & e) {
  287. fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", size);
  288. return false;
  289. }
  290. return recv_data(sockfd, input.data(), size);
  291. }
  292. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  293. size_t pos = endpoint.find(':');
  294. if (pos == std::string::npos) {
  295. return false;
  296. }
  297. host = endpoint.substr(0, pos);
  298. port = std::stoi(endpoint.substr(pos + 1));
  299. return true;
  300. }
  301. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  302. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  303. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
  304. uint8_t cmd_byte = cmd;
  305. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  306. return false;
  307. }
  308. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  309. return false;
  310. }
  311. if (!send_data(sock->fd, input, input_size)) {
  312. return false;
  313. }
  314. // TODO: currently the output_size is always known, do we need support for commands with variable output size?
  315. // even if we do, we can skip sending output_size from the server for commands with known output size
  316. uint64_t out_size;
  317. if (!recv_data(sock->fd, &out_size, sizeof(out_size))) {
  318. return false;
  319. }
  320. if (out_size != output_size) {
  321. return false;
  322. }
  323. if (!recv_data(sock->fd, output, output_size)) {
  324. return false;
  325. }
  326. return true;
  327. }
  328. // RPC client-side implementation
  329. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  330. static std::mutex mutex;
  331. std::lock_guard<std::mutex> lock(mutex);
  332. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  333. static bool initialized = false;
  334. auto it = sockets.find(endpoint);
  335. if (it != sockets.end()) {
  336. if (auto sock = it->second.lock()) {
  337. return sock;
  338. }
  339. }
  340. std::string host;
  341. int port;
  342. if (!parse_endpoint(endpoint, host, port)) {
  343. return nullptr;
  344. }
  345. #ifdef _WIN32
  346. if (!initialized) {
  347. WSADATA wsaData;
  348. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  349. if (res != 0) {
  350. return nullptr;
  351. }
  352. initialized = true;
  353. }
  354. #else
  355. UNUSED(initialized);
  356. #endif
  357. auto sock = socket_connect(host.c_str(), port);
  358. if (sock == nullptr) {
  359. return nullptr;
  360. }
  361. GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  362. sockets[endpoint] = sock;
  363. return sock;
  364. }
  365. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  366. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  367. rpc_msg_free_buffer_req request = {ctx->remote_ptr};
  368. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
  369. GGML_ASSERT(status);
  370. delete ctx;
  371. }
  372. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  373. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  374. if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
  375. return ctx->base_cache[buffer];
  376. }
  377. rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
  378. rpc_msg_buffer_get_base_rsp response;
  379. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
  380. GGML_ASSERT(status);
  381. void * base_ptr = reinterpret_cast<void *>(response.base_ptr);
  382. ctx->base_cache[buffer] = base_ptr;
  383. return base_ptr;
  384. }
  385. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  386. rpc_tensor result;
  387. result.id = reinterpret_cast<uint64_t>(tensor);
  388. result.type = tensor->type;
  389. if (tensor->buffer) {
  390. ggml_backend_buffer_t buffer = tensor->buffer;
  391. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  392. result.buffer = ctx->remote_ptr;
  393. } else {
  394. result.buffer = 0;
  395. }
  396. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  397. result.ne[i] = tensor->ne[i];
  398. result.nb[i] = tensor->nb[i];
  399. }
  400. result.op = tensor->op;
  401. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  402. result.op_params[i] = tensor->op_params[i];
  403. }
  404. result.flags = tensor->flags;
  405. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  406. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  407. }
  408. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  409. result.view_offs = tensor->view_offs;
  410. result.data = reinterpret_cast<uint64_t>(tensor->data);
  411. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  412. return result;
  413. }
  414. static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  415. UNUSED(buffer);
  416. if (ggml_is_quantized(tensor->type)) {
  417. // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
  418. GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
  419. }
  420. }
  421. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  422. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  423. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  424. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  425. std::vector<uint8_t> input(input_size, 0);
  426. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  427. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  428. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  429. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  430. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size(), nullptr, 0);
  431. GGML_ASSERT(status);
  432. }
  433. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  434. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  435. rpc_msg_get_tensor_req request;
  436. request.tensor = serialize_tensor(tensor);
  437. request.offset = offset;
  438. request.size = size;
  439. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
  440. GGML_ASSERT(status);
  441. }
  442. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  443. // check if src and dst are on the same server
  444. ggml_backend_buffer_t src_buffer = src->buffer;
  445. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  446. ggml_backend_buffer_t dst_buffer = dst->buffer;
  447. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  448. if (src_ctx->sock != dst_ctx->sock) {
  449. return false;
  450. }
  451. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  452. rpc_msg_copy_tensor_req request;
  453. request.src = serialize_tensor(src);
  454. request.dst = serialize_tensor(dst);
  455. rpc_msg_copy_tensor_rsp response;
  456. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
  457. GGML_ASSERT(status);
  458. return response.result;
  459. }
  460. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  461. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  462. rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
  463. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
  464. GGML_ASSERT(status);
  465. }
  466. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  467. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  468. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  469. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  470. /* .memset_tensor = */ NULL,
  471. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  472. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  473. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  474. /* .clear = */ ggml_backend_rpc_buffer_clear,
  475. /* .reset = */ NULL,
  476. };
  477. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  478. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  479. return buft_ctx->name.c_str();
  480. }
  481. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  482. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  483. rpc_msg_alloc_buffer_req request = {size};
  484. rpc_msg_alloc_buffer_rsp response;
  485. auto sock = get_socket(buft_ctx->endpoint);
  486. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
  487. GGML_ASSERT(status);
  488. if (response.remote_ptr != 0) {
  489. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  490. ggml_backend_rpc_buffer_interface,
  491. new ggml_backend_rpc_buffer_context{sock, {}, response.remote_ptr},
  492. response.remote_size);
  493. return buffer;
  494. } else {
  495. return nullptr;
  496. }
  497. }
  498. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  499. rpc_msg_get_alignment_rsp response;
  500. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
  501. GGML_ASSERT(status);
  502. return response.alignment;
  503. }
  504. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  505. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  506. return buft_ctx->alignment;
  507. }
  508. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  509. rpc_msg_get_max_size_rsp response;
  510. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
  511. GGML_ASSERT(status);
  512. return response.max_size;
  513. }
  514. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  515. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  516. return buft_ctx->max_size;
  517. }
  518. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  519. UNUSED(buft);
  520. return ggml_nbytes(tensor);
  521. }
  522. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  523. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  524. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  525. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  526. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  527. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  528. /* .is_host = */ NULL,
  529. };
  530. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  531. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  532. return rpc_ctx->name.c_str();
  533. }
  534. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  535. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  536. delete rpc_ctx;
  537. delete backend;
  538. }
  539. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  540. UNUSED(backend);
  541. // this is no-op because we don't have any async operations
  542. }
  543. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  544. if (tensor == nullptr) {
  545. return;
  546. }
  547. if (visited.find(tensor) != visited.end()) {
  548. return;
  549. }
  550. visited.insert(tensor);
  551. for (int i = 0; i < GGML_MAX_SRC; i++) {
  552. add_tensor(tensor->src[i], tensors, visited);
  553. }
  554. add_tensor(tensor->view_src, tensors, visited);
  555. tensors.push_back(serialize_tensor(tensor));
  556. }
  557. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  558. uint32_t n_nodes = cgraph->n_nodes;
  559. std::vector<rpc_tensor> tensors;
  560. std::unordered_set<ggml_tensor*> visited;
  561. for (uint32_t i = 0; i < n_nodes; i++) {
  562. add_tensor(cgraph->nodes[i], tensors, visited);
  563. }
  564. // serialization format:
  565. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  566. uint32_t n_tensors = tensors.size();
  567. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  568. output.resize(output_size, 0);
  569. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  570. for (uint32_t i = 0; i < n_nodes; i++) {
  571. memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  572. }
  573. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  574. *out_ntensors = n_tensors;
  575. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  576. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  577. }
  578. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  579. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  580. std::vector<uint8_t> input;
  581. serialize_graph(cgraph, input);
  582. rpc_msg_graph_compute_rsp response;
  583. auto sock = get_socket(rpc_ctx->endpoint);
  584. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
  585. GGML_ASSERT(status);
  586. return (enum ggml_status)response.result;
  587. }
  588. static ggml_backend_i ggml_backend_rpc_interface = {
  589. /* .get_name = */ ggml_backend_rpc_name,
  590. /* .free = */ ggml_backend_rpc_free,
  591. /* .set_tensor_async = */ NULL,
  592. /* .get_tensor_async = */ NULL,
  593. /* .cpy_tensor_async = */ NULL,
  594. /* .synchronize = */ ggml_backend_rpc_synchronize,
  595. /* .graph_plan_create = */ NULL,
  596. /* .graph_plan_free = */ NULL,
  597. /* .graph_plan_update = */ NULL,
  598. /* .graph_plan_compute = */ NULL,
  599. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  600. /* .event_record = */ NULL,
  601. /* .event_wait = */ NULL,
  602. };
  603. GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  604. static std::mutex mutex;
  605. std::lock_guard<std::mutex> lock(mutex);
  606. // NOTE: buffer types are allocated and never freed; this is by design
  607. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  608. auto it = buft_map.find(endpoint);
  609. if (it != buft_map.end()) {
  610. return it->second;
  611. }
  612. auto sock = get_socket(endpoint);
  613. if (sock == nullptr) {
  614. fprintf(stderr, "Failed to connect to %s\n", endpoint);
  615. return nullptr;
  616. }
  617. size_t alignment = get_alignment(sock);
  618. size_t max_size = get_max_size(sock);
  619. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  620. /* .endpoint = */ endpoint,
  621. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  622. /* .alignment = */ alignment,
  623. /* .max_size = */ max_size
  624. };
  625. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  626. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  627. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  628. /* .context = */ buft_ctx
  629. };
  630. buft_map[endpoint] = buft;
  631. return buft;
  632. }
  633. ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  634. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  635. /* .endpoint = */ endpoint,
  636. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  637. };
  638. ggml_backend_t backend = new ggml_backend {
  639. /* .guid = */ ggml_backend_rpc_guid(),
  640. /* .interface = */ ggml_backend_rpc_interface,
  641. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  642. /* .context = */ ctx
  643. };
  644. return backend;
  645. }
  646. GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend) {
  647. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  648. }
  649. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  650. rpc_msg_get_device_memory_rsp response;
  651. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
  652. GGML_ASSERT(status);
  653. *free = response.free_mem;
  654. *total = response.total_mem;
  655. }
  656. GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  657. auto sock = get_socket(endpoint);
  658. if (sock == nullptr) {
  659. *free = 0;
  660. *total = 0;
  661. return;
  662. }
  663. get_device_memory(sock, free, total);
  664. }
  665. // RPC server-side implementation
  666. class rpc_server {
  667. public:
  668. rpc_server(ggml_backend_t backend) : backend(backend) {}
  669. ~rpc_server();
  670. void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
  671. void get_alignment(rpc_msg_get_alignment_rsp & response);
  672. void get_max_size(rpc_msg_get_max_size_rsp & response);
  673. bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
  674. bool free_buffer(const rpc_msg_free_buffer_req & request);
  675. bool buffer_clear(const rpc_msg_buffer_clear_req & request);
  676. bool set_tensor(const std::vector<uint8_t> & input);
  677. bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
  678. bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
  679. bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
  680. private:
  681. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  682. ggml_tensor * create_node(uint64_t id,
  683. struct ggml_context * ctx,
  684. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  685. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  686. ggml_backend_t backend;
  687. std::unordered_set<ggml_backend_buffer_t> buffers;
  688. };
  689. void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
  690. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  691. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
  692. response.remote_ptr = 0;
  693. response.remote_size = 0;
  694. if (buffer != nullptr) {
  695. response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
  696. response.remote_size = buffer->size;
  697. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
  698. buffers.insert(buffer);
  699. } else {
  700. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
  701. }
  702. }
  703. void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
  704. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  705. size_t alignment = ggml_backend_buft_get_alignment(buft);
  706. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  707. response.alignment = alignment;
  708. }
  709. void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
  710. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  711. size_t max_size = ggml_backend_buft_get_max_size(buft);
  712. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  713. response.max_size = max_size;
  714. }
  715. bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
  716. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  717. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  718. if (buffers.find(buffer) == buffers.end()) {
  719. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  720. return false;
  721. }
  722. void * base = ggml_backend_buffer_get_base(buffer);
  723. response.base_ptr = reinterpret_cast<uint64_t>(base);
  724. return true;
  725. }
  726. bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) {
  727. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  728. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  729. if (buffers.find(buffer) == buffers.end()) {
  730. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  731. return false;
  732. }
  733. ggml_backend_buffer_free(buffer);
  734. buffers.erase(buffer);
  735. return true;
  736. }
  737. bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
  738. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value);
  739. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  740. if (buffers.find(buffer) == buffers.end()) {
  741. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  742. return false;
  743. }
  744. ggml_backend_buffer_clear(buffer, request.value);
  745. return true;
  746. }
  747. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  748. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  749. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  750. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  751. result->nb[i] = tensor->nb[i];
  752. }
  753. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  754. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  755. result->buffer = nullptr;
  756. }
  757. if (result->buffer) {
  758. // require that the tensor data does not go beyond the buffer end
  759. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  760. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  761. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  762. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  763. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  764. }
  765. result->op = (ggml_op) tensor->op;
  766. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  767. result->op_params[i] = tensor->op_params[i];
  768. }
  769. result->flags = tensor->flags;
  770. result->data = reinterpret_cast<void *>(tensor->data);
  771. ggml_set_name(result, tensor->name);
  772. return result;
  773. }
  774. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  775. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  776. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  777. return false;
  778. }
  779. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  780. uint64_t offset;
  781. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  782. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  783. struct ggml_init_params params {
  784. /*.mem_size =*/ ggml_tensor_overhead(),
  785. /*.mem_buffer =*/ NULL,
  786. /*.no_alloc =*/ true,
  787. };
  788. struct ggml_context * ctx = ggml_init(params);
  789. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  790. if (tensor == nullptr) {
  791. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  792. ggml_free(ctx);
  793. return false;
  794. }
  795. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  796. // sanitize tensor->data
  797. {
  798. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  799. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  800. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  801. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  802. }
  803. }
  804. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  805. ggml_backend_tensor_set(tensor, data, offset, size);
  806. ggml_free(ctx);
  807. return true;
  808. }
  809. bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
  810. struct ggml_init_params params {
  811. /*.mem_size =*/ ggml_tensor_overhead(),
  812. /*.mem_buffer =*/ NULL,
  813. /*.no_alloc =*/ true,
  814. };
  815. struct ggml_context * ctx = ggml_init(params);
  816. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  817. if (tensor == nullptr) {
  818. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  819. ggml_free(ctx);
  820. return false;
  821. }
  822. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
  823. // sanitize tensor->data
  824. {
  825. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  826. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  827. if (request.tensor.data + request.offset < p0 ||
  828. request.tensor.data + request.offset >= p1 ||
  829. request.size > (p1 - request.tensor.data - request.offset)) {
  830. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  831. }
  832. }
  833. response.resize(request.size, 0);
  834. ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
  835. ggml_free(ctx);
  836. return true;
  837. }
  838. bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response) {
  839. struct ggml_init_params params {
  840. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  841. /*.mem_buffer =*/ NULL,
  842. /*.no_alloc =*/ true,
  843. };
  844. struct ggml_context * ctx = ggml_init(params);
  845. ggml_tensor * src = deserialize_tensor(ctx, &request.src);
  846. ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
  847. if (src == nullptr || dst == nullptr) {
  848. GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__);
  849. ggml_free(ctx);
  850. return false;
  851. }
  852. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
  853. response.result = ggml_backend_buffer_copy_tensor(src, dst);
  854. ggml_free(ctx);
  855. return true;
  856. }
  857. ggml_tensor * rpc_server::create_node(uint64_t id,
  858. struct ggml_context * ctx,
  859. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  860. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  861. if (id == 0) {
  862. return nullptr;
  863. }
  864. if (tensor_map.find(id) != tensor_map.end()) {
  865. return tensor_map[id];
  866. }
  867. const rpc_tensor * tensor = tensor_ptrs.at(id);
  868. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  869. if (result == nullptr) {
  870. return nullptr;
  871. }
  872. tensor_map[id] = result;
  873. for (int i = 0; i < GGML_MAX_SRC; i++) {
  874. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  875. }
  876. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  877. result->view_offs = tensor->view_offs;
  878. return result;
  879. }
  880. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
  881. // serialization format:
  882. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  883. if (input.size() < sizeof(uint32_t)) {
  884. return false;
  885. }
  886. uint32_t n_nodes;
  887. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  888. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  889. return false;
  890. }
  891. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  892. uint32_t n_tensors;
  893. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  894. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  895. return false;
  896. }
  897. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  898. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  899. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  900. struct ggml_init_params params = {
  901. /*.mem_size =*/ buf_size,
  902. /*.mem_buffer =*/ NULL,
  903. /*.no_alloc =*/ true,
  904. };
  905. struct ggml_context * ctx = ggml_init(params);
  906. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  907. graph->n_nodes = n_nodes;
  908. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  909. for (uint32_t i = 0; i < n_tensors; i++) {
  910. tensor_ptrs[tensors[i].id] = &tensors[i];
  911. }
  912. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  913. for (uint32_t i = 0; i < n_nodes; i++) {
  914. int64_t id;
  915. memcpy(&id, &nodes[i], sizeof(id));
  916. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  917. }
  918. ggml_status status = ggml_backend_graph_compute(backend, graph);
  919. response.result = status;
  920. ggml_free(ctx);
  921. return true;
  922. }
  923. rpc_server::~rpc_server() {
  924. for (auto buffer : buffers) {
  925. ggml_backend_buffer_free(buffer);
  926. }
  927. }
  928. static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  929. rpc_server server(backend);
  930. while (true) {
  931. uint8_t cmd;
  932. if (!recv_data(sockfd, &cmd, 1)) {
  933. break;
  934. }
  935. if (cmd >= RPC_CMD_COUNT) {
  936. // fail fast if the command is invalid
  937. fprintf(stderr, "Unknown command: %d\n", cmd);
  938. break;
  939. }
  940. switch (cmd) {
  941. case RPC_CMD_ALLOC_BUFFER: {
  942. rpc_msg_alloc_buffer_req request;
  943. if (!recv_msg(sockfd, &request, sizeof(request))) {
  944. return;
  945. }
  946. rpc_msg_alloc_buffer_rsp response;
  947. server.alloc_buffer(request, response);
  948. if (!send_msg(sockfd, &response, sizeof(response))) {
  949. return;
  950. }
  951. break;
  952. }
  953. case RPC_CMD_GET_ALIGNMENT: {
  954. if (!recv_msg(sockfd, nullptr, 0)) {
  955. return;
  956. }
  957. rpc_msg_get_alignment_rsp response;
  958. server.get_alignment(response);
  959. if (!send_msg(sockfd, &response, sizeof(response))) {
  960. return;
  961. }
  962. break;
  963. }
  964. case RPC_CMD_GET_MAX_SIZE: {
  965. if (!recv_msg(sockfd, nullptr, 0)) {
  966. return;
  967. }
  968. rpc_msg_get_max_size_rsp response;
  969. server.get_max_size(response);
  970. if (!send_msg(sockfd, &response, sizeof(response))) {
  971. return;
  972. }
  973. break;
  974. }
  975. case RPC_CMD_BUFFER_GET_BASE: {
  976. rpc_msg_buffer_get_base_req request;
  977. if (!recv_msg(sockfd, &request, sizeof(request))) {
  978. return;
  979. }
  980. rpc_msg_buffer_get_base_rsp response;
  981. if (!server.buffer_get_base(request, response)) {
  982. return;
  983. }
  984. if (!send_msg(sockfd, &response, sizeof(response))) {
  985. return;
  986. }
  987. break;
  988. }
  989. case RPC_CMD_FREE_BUFFER: {
  990. rpc_msg_free_buffer_req request;
  991. if (!recv_msg(sockfd, &request, sizeof(request))) {
  992. return;
  993. }
  994. if (!server.free_buffer(request)) {
  995. return;
  996. }
  997. if (!send_msg(sockfd, nullptr, 0)) {
  998. return;
  999. }
  1000. break;
  1001. }
  1002. case RPC_CMD_BUFFER_CLEAR: {
  1003. rpc_msg_buffer_clear_req request;
  1004. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1005. return;
  1006. }
  1007. if (!server.buffer_clear(request)) {
  1008. return;
  1009. }
  1010. if (!send_msg(sockfd, nullptr, 0)) {
  1011. return;
  1012. }
  1013. break;
  1014. }
  1015. case RPC_CMD_SET_TENSOR: {
  1016. std::vector<uint8_t> input;
  1017. if (!recv_msg(sockfd, input)) {
  1018. return;
  1019. }
  1020. if (!server.set_tensor(input)) {
  1021. return;
  1022. }
  1023. if (!send_msg(sockfd, nullptr, 0)) {
  1024. return;
  1025. }
  1026. break;
  1027. }
  1028. case RPC_CMD_GET_TENSOR: {
  1029. rpc_msg_get_tensor_req request;
  1030. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1031. return;
  1032. }
  1033. std::vector<uint8_t> response;
  1034. if (!server.get_tensor(request, response)) {
  1035. return;
  1036. }
  1037. if (!send_msg(sockfd, response.data(), response.size())) {
  1038. return;
  1039. }
  1040. break;
  1041. }
  1042. case RPC_CMD_COPY_TENSOR: {
  1043. rpc_msg_copy_tensor_req request;
  1044. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1045. return;
  1046. }
  1047. rpc_msg_copy_tensor_rsp response;
  1048. if (!server.copy_tensor(request, response)) {
  1049. return;
  1050. }
  1051. if (!send_msg(sockfd, &response, sizeof(response))) {
  1052. return;
  1053. }
  1054. break;
  1055. }
  1056. case RPC_CMD_GRAPH_COMPUTE: {
  1057. std::vector<uint8_t> input;
  1058. if (!recv_msg(sockfd, input)) {
  1059. return;
  1060. }
  1061. rpc_msg_graph_compute_rsp response;
  1062. if (!server.graph_compute(input, response)) {
  1063. return;
  1064. }
  1065. if (!send_msg(sockfd, &response, sizeof(response))) {
  1066. return;
  1067. }
  1068. break;
  1069. }
  1070. case RPC_CMD_GET_DEVICE_MEMORY: {
  1071. if (!recv_msg(sockfd, nullptr, 0)) {
  1072. return;
  1073. }
  1074. rpc_msg_get_device_memory_rsp response;
  1075. response.free_mem = free_mem;
  1076. response.total_mem = total_mem;
  1077. if (!send_msg(sockfd, &response, sizeof(response))) {
  1078. return;
  1079. }
  1080. break;
  1081. }
  1082. default: {
  1083. fprintf(stderr, "Unknown command: %d\n", cmd);
  1084. return;
  1085. }
  1086. }
  1087. }
  1088. }
  1089. void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
  1090. std::string host;
  1091. int port;
  1092. if (!parse_endpoint(endpoint, host, port)) {
  1093. return;
  1094. }
  1095. #ifdef _WIN32
  1096. {
  1097. WSADATA wsaData;
  1098. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1099. if (res != 0) {
  1100. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1101. return;
  1102. }
  1103. }
  1104. #endif
  1105. auto server_socket = create_server_socket(host.c_str(), port);
  1106. if (server_socket == nullptr) {
  1107. fprintf(stderr, "Failed to create server socket\n");
  1108. return;
  1109. }
  1110. while (true) {
  1111. auto client_socket = socket_accept(server_socket->fd);
  1112. if (client_socket == nullptr) {
  1113. fprintf(stderr, "Failed to accept client connection\n");
  1114. return;
  1115. }
  1116. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  1117. fflush(stdout);
  1118. rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
  1119. printf("Client connection closed\n");
  1120. fflush(stdout);
  1121. }
  1122. #ifdef _WIN32
  1123. WSACleanup();
  1124. #endif
  1125. }
  1126. // device interface
  1127. struct ggml_backend_rpc_device_context {
  1128. std::string endpoint;
  1129. std::string name;
  1130. };
  1131. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1132. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1133. return ctx->name.c_str();
  1134. }
  1135. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1136. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1137. return ctx->name.c_str();
  1138. }
  1139. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1140. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1141. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
  1142. UNUSED(dev);
  1143. }
  1144. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1145. // TODO: obtain value from the server
  1146. return GGML_BACKEND_DEVICE_TYPE_GPU;
  1147. UNUSED(dev);
  1148. }
  1149. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1150. props->name = ggml_backend_rpc_device_get_name(dev);
  1151. props->description = ggml_backend_rpc_device_get_description(dev);
  1152. props->type = ggml_backend_rpc_device_get_type(dev);
  1153. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1154. props->caps = {
  1155. /* .async = */ false,
  1156. /* .host_buffer = */ false,
  1157. /* .buffer_from_host_ptr = */ false,
  1158. /* .events = */ false,
  1159. };
  1160. }
  1161. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1162. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1163. return ggml_backend_rpc_init(ctx->endpoint.c_str());
  1164. UNUSED(params);
  1165. }
  1166. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1167. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1168. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  1169. UNUSED(dev);
  1170. }
  1171. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1172. UNUSED(dev);
  1173. UNUSED(op);
  1174. //TODO: call the remote backend and cache the results
  1175. return true;
  1176. }
  1177. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1178. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1179. return false;
  1180. }
  1181. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1182. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1183. return buft_ctx->endpoint == dev_ctx->endpoint;
  1184. }
  1185. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1186. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1187. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1188. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1189. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1190. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1191. /* .init_backend = */ ggml_backend_rpc_device_init,
  1192. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1193. /* .get_host_buffer_type = */ NULL,
  1194. /* .buffer_from_host_ptr = */ NULL,
  1195. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1196. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1197. /* .offload_op = */ NULL,
  1198. /* .event_new = */ NULL,
  1199. /* .event_free = */ NULL,
  1200. /* .event_synchronize = */ NULL,
  1201. };
  1202. // backend reg interface
  1203. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1204. return "RPC";
  1205. UNUSED(reg);
  1206. }
  1207. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1208. return 0;
  1209. UNUSED(reg);
  1210. }
  1211. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1212. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
  1213. UNUSED(reg);
  1214. UNUSED(index);
  1215. }
  1216. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1217. if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
  1218. return (void *)ggml_backend_rpc_add_device;
  1219. }
  1220. return NULL;
  1221. UNUSED(reg);
  1222. }
  1223. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1224. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1225. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1226. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1227. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1228. };
  1229. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1230. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1231. /* .iface = */ ggml_backend_rpc_reg_i,
  1232. /* .context = */ NULL,
  1233. };
  1234. return &ggml_backend_rpc_reg;
  1235. }
  1236. ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
  1237. static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
  1238. static std::mutex mutex;
  1239. std::lock_guard<std::mutex> lock(mutex);
  1240. if (dev_map.find(endpoint) != dev_map.end()) {
  1241. return dev_map[endpoint];
  1242. }
  1243. ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
  1244. /* .endpoint = */ endpoint,
  1245. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  1246. };
  1247. ggml_backend_dev_t dev = new ggml_backend_device {
  1248. /* .iface = */ ggml_backend_rpc_device_i,
  1249. /* .reg = */ ggml_backend_rpc_reg(),
  1250. /* .context = */ ctx,
  1251. };
  1252. dev_map[endpoint] = dev;
  1253. return dev;
  1254. }