convert_hf_to_gguf.py 369 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  559. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  560. res = "minerva-7b"
  561. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  562. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  563. res = "hunyuan"
  564. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  565. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  566. res = "falcon-h1"
  567. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  568. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  569. res = "falcon-h1"
  570. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  577. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  578. res = "kimi-k2"
  579. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  580. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  581. res = "llama-bpe"
  582. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  583. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  584. res = "deepseek-llm"
  585. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  586. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  587. res = "deepseek-coder"
  588. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  589. # ref: https://huggingface.co/tiiuae/falcon-7b
  590. res = "falcon"
  591. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  592. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  593. res = "bert-bge"
  594. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  595. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  596. res = "falcon3"
  597. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  598. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  599. res = "bert-bge-large"
  600. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  601. # ref: https://huggingface.co/mosaicml/mpt-7b
  602. res = "mpt"
  603. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  604. # ref: https://huggingface.co/bigcode/starcoder2-3b
  605. res = "starcoder"
  606. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  607. # ref: https://huggingface.co/openai-community/gpt2
  608. res = "gpt-2"
  609. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  610. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  611. res = "stablelm2"
  612. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  613. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  614. res = "refact"
  615. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  616. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  617. res = "command-r"
  618. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  619. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  620. res = "qwen2"
  621. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  622. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  623. res = "olmo"
  624. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  625. # ref: https://huggingface.co/databricks/dbrx-base
  626. res = "dbrx"
  627. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  628. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  629. res = "jina-v1-en"
  630. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  631. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  632. res = "jina-v2-en"
  633. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  634. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  635. res = "jina-v2-es"
  636. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  637. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  638. res = "jina-v2-de"
  639. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  640. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  641. res = "smaug-bpe"
  642. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  643. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  644. res = "poro-chat"
  645. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  646. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  647. res = "jina-v2-code"
  648. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  649. # ref: https://huggingface.co/LumiOpen/Viking-7B
  650. res = "viking"
  651. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  652. # ref: https://huggingface.co/core42/jais-13b
  653. res = "jais"
  654. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  655. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  656. res = "codeshell"
  657. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  658. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  659. res = "tekken"
  660. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  661. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  662. res = "smollm"
  663. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  664. # ref: https://huggingface.co/bigscience/bloom
  665. res = "bloom"
  666. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  667. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  668. res = "gpt3-finnish"
  669. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  670. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  671. res = "exaone"
  672. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  673. # ref: https://huggingface.co/microsoft/phi-2
  674. res = "phi-2"
  675. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  676. # ref: https://huggingface.co/facebook/chameleon-7b
  677. res = "chameleon"
  678. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  679. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  680. res = "roberta-bpe"
  681. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  682. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  683. res = "gigachat"
  684. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  685. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  686. res = "megrez"
  687. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  688. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  689. res = "deepseek-v3"
  690. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  691. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  692. res = "deepseek-r1-qwen"
  693. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  694. # ref: https://huggingface.co/Xenova/gpt-4o
  695. res = "gpt-4o"
  696. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  697. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  698. res = "superbpe"
  699. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  700. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  701. res = "trillion"
  702. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  703. # ref: https://huggingface.co/inclusionAI/Ling-lite
  704. res = "bailingmoe"
  705. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  706. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  707. res = "llama4"
  708. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  709. # ref: https://huggingface.co/mistral-community/pixtral-12b
  710. res = "pixtral"
  711. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  712. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  713. res = "seed-coder"
  714. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  715. # ref: https://huggingface.co/skt/A.X-4.0
  716. res = "a.x-4.0"
  717. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  718. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  719. res = "midm-2.0"
  720. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  721. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  722. res = "lfm2"
  723. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  724. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  725. res = "exaone4"
  726. if res is None:
  727. logger.warning("\n")
  728. logger.warning("**************************************************************************************")
  729. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  730. logger.warning("** There are 2 possible reasons for this:")
  731. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  732. logger.warning("** - the pre-tokenization config has changed upstream")
  733. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  734. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  735. logger.warning("**")
  736. logger.warning(f"** chkhsh: {chkhsh}")
  737. logger.warning("**************************************************************************************")
  738. logger.warning("\n")
  739. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  740. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  741. logger.debug(f"chkhsh: {chkhsh}")
  742. return res
  743. # Marker: End get_vocab_base_pre
  744. def _set_vocab_none(self) -> None:
  745. self.gguf_writer.add_tokenizer_model("none")
  746. def _set_vocab_gpt2(self) -> None:
  747. tokens, toktypes, tokpre = self.get_vocab_base()
  748. self.gguf_writer.add_tokenizer_model("gpt2")
  749. self.gguf_writer.add_tokenizer_pre(tokpre)
  750. self.gguf_writer.add_token_list(tokens)
  751. self.gguf_writer.add_token_types(toktypes)
  752. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  753. special_vocab.add_to_gguf(self.gguf_writer)
  754. def _set_vocab_qwen(self):
  755. dir_model = self.dir_model
  756. hparams = self.hparams
  757. tokens: list[str] = []
  758. toktypes: list[int] = []
  759. from transformers import AutoTokenizer
  760. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  761. vocab_size = hparams["vocab_size"]
  762. assert max(tokenizer.get_vocab().values()) < vocab_size
  763. tokpre = self.get_vocab_base_pre(tokenizer)
  764. merges = []
  765. vocab = {}
  766. mergeable_ranks = tokenizer.mergeable_ranks
  767. for token, rank in mergeable_ranks.items():
  768. vocab[QwenModel.token_bytes_to_string(token)] = rank
  769. if len(token) == 1:
  770. continue
  771. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  772. assert len(merged) == 2
  773. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  774. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  775. added_vocab = tokenizer.special_tokens
  776. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  777. for i in range(vocab_size):
  778. if i not in reverse_vocab:
  779. tokens.append(f"[PAD{i}]")
  780. toktypes.append(gguf.TokenType.UNUSED)
  781. elif reverse_vocab[i] in added_vocab:
  782. tokens.append(reverse_vocab[i])
  783. toktypes.append(gguf.TokenType.CONTROL)
  784. else:
  785. tokens.append(reverse_vocab[i])
  786. toktypes.append(gguf.TokenType.NORMAL)
  787. self.gguf_writer.add_tokenizer_model("gpt2")
  788. self.gguf_writer.add_tokenizer_pre(tokpre)
  789. self.gguf_writer.add_token_list(tokens)
  790. self.gguf_writer.add_token_types(toktypes)
  791. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  792. special_vocab.merges = merges
  793. # only add special tokens when they were not already loaded from config.json
  794. if len(special_vocab.special_token_ids) == 0:
  795. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  796. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  797. # this one is usually not in config.json anyway
  798. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  799. special_vocab.add_to_gguf(self.gguf_writer)
  800. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  801. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  802. self.gguf_writer.add_tokenizer_model("llama")
  803. self.gguf_writer.add_tokenizer_pre("default")
  804. self.gguf_writer.add_token_list(tokens)
  805. self.gguf_writer.add_token_scores(scores)
  806. self.gguf_writer.add_token_types(toktypes)
  807. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  808. special_vocab.add_to_gguf(self.gguf_writer)
  809. def _create_vocab_sentencepiece(self):
  810. from sentencepiece import SentencePieceProcessor
  811. tokenizer_path = self.dir_model / 'tokenizer.model'
  812. if not tokenizer_path.is_file():
  813. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  814. tokenizer = SentencePieceProcessor()
  815. tokenizer.LoadFromFile(str(tokenizer_path))
  816. vocab_size = self.find_hparam([
  817. "vocab_size_per_layer_input", # gemma3n
  818. "vocab_size",
  819. ], optional=True) or tokenizer.vocab_size()
  820. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  821. scores: list[float] = [-10000.0] * vocab_size
  822. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  823. for token_id in range(tokenizer.vocab_size()):
  824. if token_id >= vocab_size:
  825. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  826. break
  827. piece = tokenizer.IdToPiece(token_id)
  828. text = piece.encode("utf-8")
  829. score = tokenizer.GetScore(token_id)
  830. toktype = SentencePieceTokenTypes.NORMAL
  831. if tokenizer.IsUnknown(token_id):
  832. toktype = SentencePieceTokenTypes.UNKNOWN
  833. elif tokenizer.IsControl(token_id):
  834. toktype = SentencePieceTokenTypes.CONTROL
  835. elif tokenizer.IsUnused(token_id):
  836. toktype = SentencePieceTokenTypes.UNUSED
  837. elif tokenizer.IsByte(token_id):
  838. toktype = SentencePieceTokenTypes.BYTE
  839. tokens[token_id] = text
  840. scores[token_id] = score
  841. toktypes[token_id] = toktype
  842. added_tokens_file = self.dir_model / 'added_tokens.json'
  843. if added_tokens_file.is_file():
  844. with open(added_tokens_file, "r", encoding="utf-8") as f:
  845. added_tokens_json = json.load(f)
  846. for key in added_tokens_json:
  847. token_id = added_tokens_json[key]
  848. if token_id >= vocab_size:
  849. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  850. continue
  851. tokens[token_id] = key.encode("utf-8")
  852. scores[token_id] = -1000.0
  853. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  854. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  855. if tokenizer_config_file.is_file():
  856. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  857. tokenizer_config_json = json.load(f)
  858. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  859. for token_id, token_data in added_tokens_decoder.items():
  860. token_id = int(token_id)
  861. token: str = token_data["content"]
  862. if token_id >= vocab_size:
  863. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  864. continue
  865. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  866. if tokens[token_id] != token.encode("utf-8"):
  867. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  868. if token_data.get("special") or self.does_token_look_special(token):
  869. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  870. else:
  871. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  872. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  873. scores[token_id] = -1000.0
  874. tokens[token_id] = token.encode("utf-8")
  875. if vocab_size > len(tokens):
  876. pad_count = vocab_size - len(tokens)
  877. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  878. for i in range(1, pad_count + 1):
  879. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  880. scores.append(-1000.0)
  881. toktypes.append(SentencePieceTokenTypes.UNUSED)
  882. return tokens, scores, toktypes
  883. def _set_vocab_llama_hf(self):
  884. vocab = gguf.LlamaHfVocab(self.dir_model)
  885. tokens = []
  886. scores = []
  887. toktypes = []
  888. for text, score, toktype in vocab.all_tokens():
  889. tokens.append(text)
  890. scores.append(score)
  891. toktypes.append(toktype)
  892. assert len(tokens) == vocab.vocab_size
  893. self.gguf_writer.add_tokenizer_model("llama")
  894. self.gguf_writer.add_tokenizer_pre("default")
  895. self.gguf_writer.add_token_list(tokens)
  896. self.gguf_writer.add_token_scores(scores)
  897. self.gguf_writer.add_token_types(toktypes)
  898. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  899. special_vocab.add_to_gguf(self.gguf_writer)
  900. def _set_vocab_rwkv_world(self):
  901. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  902. vocab_size = self.hparams.get("vocab_size", 65536)
  903. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  904. toktypes: list[int] = [gguf.TokenType.CONTROL]
  905. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  906. lines = f.readlines()
  907. for line in lines:
  908. parts = line.split(' ')
  909. assert len(parts) >= 3
  910. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  911. token = token.encode("utf-8") if isinstance(token, str) else token
  912. assert isinstance(token, bytes)
  913. assert len(token) == token_len
  914. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  915. tokens.append(token_text.encode("utf-8"))
  916. toktypes.append(gguf.TokenType.NORMAL)
  917. remainder = vocab_size - len(tokens)
  918. assert remainder >= 0
  919. for i in range(len(tokens), vocab_size):
  920. tokens.append(f"[PAD{i}]".encode("utf-8"))
  921. toktypes.append(gguf.TokenType.UNUSED)
  922. self.gguf_writer.add_tokenizer_model("rwkv")
  923. self.gguf_writer.add_token_list(tokens)
  924. self.gguf_writer.add_token_types(toktypes)
  925. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  926. if special_vocab.chat_template is None:
  927. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  928. if template_path.is_file():
  929. with open(template_path, "r", encoding="utf-8") as f:
  930. template = f.read()
  931. else:
  932. template = "rwkv-world"
  933. special_vocab.chat_template = template
  934. # hack: Add '\n\n' as the EOT token to make it chat normally
  935. special_vocab._set_special_token("eot", 261)
  936. # hack: Override these as they have already been set (incorrectly)
  937. special_vocab.special_token_ids["bos"] = 0
  938. special_vocab.special_token_ids["eos"] = 0
  939. special_vocab.add_to_gguf(self.gguf_writer)
  940. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  941. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  942. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  943. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  944. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  945. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  946. assert field # tokenizer model
  947. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  948. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  949. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  950. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  951. assert field # token list
  952. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  953. if model_name == "llama-spm":
  954. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  955. assert field # token scores
  956. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  957. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  958. assert field # token types
  959. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  960. if model_name != "llama-spm":
  961. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  962. assert field # token merges
  963. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  964. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  965. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  966. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  967. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  968. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  969. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  970. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  971. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  972. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  973. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  974. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  975. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  976. def _try_set_pooling_type(self) -> None:
  977. # get pooling path
  978. pooling_path = None
  979. module_path = self.dir_model / "modules.json"
  980. if module_path.is_file():
  981. with open(module_path, encoding="utf-8") as f:
  982. modules = json.load(f)
  983. for mod in modules:
  984. if mod["type"] == "sentence_transformers.models.Pooling":
  985. pooling_path = mod["path"]
  986. break
  987. # get pooling type
  988. if pooling_path is not None:
  989. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  990. pooling = json.load(f)
  991. if pooling["pooling_mode_mean_tokens"]:
  992. pooling_type = gguf.PoolingType.MEAN
  993. elif pooling["pooling_mode_cls_token"]:
  994. pooling_type = gguf.PoolingType.CLS
  995. elif pooling["pooling_mode_lasttoken"]:
  996. pooling_type = gguf.PoolingType.LAST
  997. else:
  998. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  999. self.gguf_writer.add_pooling_type(pooling_type)
  1000. class MmprojModel(ModelBase):
  1001. model_type = ModelType.MMPROJ
  1002. model_arch = gguf.MODEL_ARCH.MMPROJ
  1003. preprocessor_config: dict[str, Any]
  1004. global_config: dict[str, Any]
  1005. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1006. has_vision_encoder: bool = True # by default
  1007. has_audio_encoder: bool = False
  1008. # for models having multiple encoders, we need to separate their hparams
  1009. hparams_vision: dict[str, Any] | None = None
  1010. hparams_audio: dict[str, Any] | None = None
  1011. def __init__(self, *args, **kwargs):
  1012. super().__init__(*args, **kwargs)
  1013. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1014. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1015. # get n_embd of the text model
  1016. if "text_config" not in self.hparams:
  1017. self.hparams["text_config"] = {}
  1018. if "audio_config" not in self.hparams:
  1019. self.hparams["audio_config"] = {}
  1020. text_config = {**self.hparams, **self.hparams["text_config"]}
  1021. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1022. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1023. # move vision config to the top level, while preserving the original hparams in global_config
  1024. import copy
  1025. self.global_config = copy.deepcopy(self.hparams)
  1026. self.hparams_vision = self.get_vision_config()
  1027. self.hparams_audio = self.get_audio_config()
  1028. if self.hparams_vision is None and self.hparams_audio is None:
  1029. raise ValueError("vision_config / audio_config not found in hparams")
  1030. # for compat with vision-only models
  1031. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1032. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1033. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1034. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1035. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1036. # load preprocessor config
  1037. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1038. self.preprocessor_config = json.load(f)
  1039. def get_vision_config(self) -> dict[str, Any] | None:
  1040. return self.global_config.get("vision_config")
  1041. def get_audio_config(self) -> dict[str, Any] | None:
  1042. return self.global_config.get("audio_config")
  1043. def set_type(self):
  1044. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1045. def set_gguf_parameters(self):
  1046. self.gguf_writer.add_file_type(self.ftype)
  1047. if self.has_vision_encoder:
  1048. self.gguf_writer.add_clip_has_vision_encoder(True)
  1049. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1050. # vision config
  1051. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1052. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1053. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1054. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1055. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1056. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1057. # preprocessor config
  1058. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1059. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1060. if self.has_audio_encoder:
  1061. self.gguf_writer.add_clip_has_audio_encoder(True)
  1062. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1063. # audio config
  1064. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1065. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1066. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1067. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1068. if not self.has_vision_encoder and not self.has_audio_encoder:
  1069. raise ValueError("MmprojModel must have either vision or audio encoder")
  1070. def write_vocab(self):
  1071. raise ValueError("MmprojModel does not support vocab writing")
  1072. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1073. assert self.hparams_vision is not None
  1074. return self._find_param(self.hparams_vision, keys, optional)
  1075. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1076. assert self.hparams_audio is not None
  1077. return self._find_param(self.hparams_audio, keys, optional)
  1078. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1079. key = next((k for k in keys if k in obj), None)
  1080. if key is not None:
  1081. return obj[key]
  1082. if optional:
  1083. return None
  1084. raise KeyError(f"could not find any of: {keys}")
  1085. @ModelBase.register("GPTNeoXForCausalLM")
  1086. class GPTNeoXModel(TextModel):
  1087. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1088. def set_gguf_parameters(self):
  1089. block_count = self.hparams["num_hidden_layers"]
  1090. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1091. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1092. self.gguf_writer.add_block_count(block_count)
  1093. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1094. self.gguf_writer.add_rope_dimension_count(
  1095. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1096. )
  1097. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1098. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1099. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1101. del bid # unused
  1102. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1103. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1104. tensors: list[tuple[str, Tensor]] = []
  1105. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1106. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1107. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1108. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1109. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1110. data_torch = torch.cat(
  1111. (
  1112. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1113. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1114. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1115. ),
  1116. dim=0,
  1117. )
  1118. logger.info("re-format attention.linear_qkv.weight")
  1119. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1120. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1121. data_torch = torch.cat(
  1122. (
  1123. qkv_bias[:, 0, :].reshape((n_embed,)),
  1124. qkv_bias[:, 1, :].reshape((n_embed,)),
  1125. qkv_bias[:, 2, :].reshape((n_embed,)),
  1126. ),
  1127. dim=0,
  1128. )
  1129. logger.info("re-format attention.linear_qkv.bias")
  1130. tensors.append((self.map_tensor_name(name), data_torch))
  1131. return tensors
  1132. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1133. class BloomModel(TextModel):
  1134. model_arch = gguf.MODEL_ARCH.BLOOM
  1135. def set_gguf_parameters(self):
  1136. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1137. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1138. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1139. self.gguf_writer.add_embedding_length(n_embed)
  1140. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1141. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1142. self.gguf_writer.add_head_count(n_head)
  1143. self.gguf_writer.add_head_count_kv(n_head)
  1144. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1145. self.gguf_writer.add_file_type(self.ftype)
  1146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1147. del bid # unused
  1148. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1149. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1150. name = re.sub(r'transformer\.', '', name)
  1151. tensors: list[tuple[str, Tensor]] = []
  1152. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1153. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1154. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1155. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1156. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1157. data_torch = torch.cat(
  1158. (
  1159. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1160. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1161. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1162. ),
  1163. dim=0,
  1164. )
  1165. logger.info("re-format attention.linear_qkv.weight")
  1166. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1167. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1168. data_torch = torch.cat(
  1169. (
  1170. qkv_bias[:, 0, :].reshape((n_embed,)),
  1171. qkv_bias[:, 1, :].reshape((n_embed,)),
  1172. qkv_bias[:, 2, :].reshape((n_embed,)),
  1173. ),
  1174. dim=0,
  1175. )
  1176. logger.info("re-format attention.linear_qkv.bias")
  1177. tensors.append((self.map_tensor_name(name), data_torch))
  1178. return tensors
  1179. @ModelBase.register("MPTForCausalLM")
  1180. class MPTModel(TextModel):
  1181. model_arch = gguf.MODEL_ARCH.MPT
  1182. def set_vocab(self):
  1183. try:
  1184. self._set_vocab_gpt2()
  1185. except Exception:
  1186. # Fallback for SEA-LION model
  1187. self._set_vocab_sentencepiece()
  1188. self.gguf_writer.add_add_bos_token(False)
  1189. self.gguf_writer.add_pad_token_id(3)
  1190. self.gguf_writer.add_eos_token_id(1)
  1191. self.gguf_writer.add_unk_token_id(0)
  1192. def set_gguf_parameters(self):
  1193. block_count = self.hparams["n_layers"]
  1194. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1195. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1196. self.gguf_writer.add_block_count(block_count)
  1197. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1198. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1199. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1200. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1201. self.gguf_writer.add_layer_norm_eps(1e-5)
  1202. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1203. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1204. if self.hparams["attn_config"]["alibi"]:
  1205. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1206. else:
  1207. self.gguf_writer.add_max_alibi_bias(0.0)
  1208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1209. del bid # unused
  1210. if "scales" in name:
  1211. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1212. new_name = new_name.replace("scales", "act.scales")
  1213. else:
  1214. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1215. return [(new_name, data_torch)]
  1216. @ModelBase.register("OrionForCausalLM")
  1217. class OrionModel(TextModel):
  1218. model_arch = gguf.MODEL_ARCH.ORION
  1219. def set_vocab(self):
  1220. self._set_vocab_sentencepiece()
  1221. def set_gguf_parameters(self):
  1222. block_count = self.hparams["num_hidden_layers"]
  1223. head_count = self.hparams["num_attention_heads"]
  1224. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1225. ctx_length = 0
  1226. if "max_sequence_length" in self.hparams:
  1227. ctx_length = self.hparams["max_sequence_length"]
  1228. elif "max_position_embeddings" in self.hparams:
  1229. ctx_length = self.hparams["max_position_embeddings"]
  1230. elif "model_max_length" in self.hparams:
  1231. ctx_length = self.hparams["model_max_length"]
  1232. else:
  1233. raise ValueError("gguf: can not find ctx length parameter.")
  1234. self.gguf_writer.add_file_type(self.ftype)
  1235. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1236. self.gguf_writer.add_context_length(ctx_length)
  1237. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1238. self.gguf_writer.add_block_count(block_count)
  1239. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1240. self.gguf_writer.add_head_count(head_count)
  1241. self.gguf_writer.add_head_count_kv(head_count_kv)
  1242. # note: config provides rms norm but it is actually layer norm
  1243. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1244. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1245. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1246. class BaichuanModel(TextModel):
  1247. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1248. def set_vocab(self):
  1249. self._set_vocab_sentencepiece()
  1250. def set_gguf_parameters(self):
  1251. block_count = self.hparams["num_hidden_layers"]
  1252. head_count = self.hparams["num_attention_heads"]
  1253. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1254. ctx_length = 0
  1255. if "max_sequence_length" in self.hparams:
  1256. ctx_length = self.hparams["max_sequence_length"]
  1257. elif "max_position_embeddings" in self.hparams:
  1258. ctx_length = self.hparams["max_position_embeddings"]
  1259. elif "model_max_length" in self.hparams:
  1260. ctx_length = self.hparams["model_max_length"]
  1261. else:
  1262. raise ValueError("gguf: can not find ctx length parameter.")
  1263. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1264. self.gguf_writer.add_context_length(ctx_length)
  1265. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1266. self.gguf_writer.add_block_count(block_count)
  1267. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1268. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1269. self.gguf_writer.add_head_count(head_count)
  1270. self.gguf_writer.add_head_count_kv(head_count_kv)
  1271. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1272. self.gguf_writer.add_file_type(self.ftype)
  1273. rope_scaling = self.hparams.get("rope_scaling") or {}
  1274. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1275. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1276. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1278. head_count = self.hparams["num_attention_heads"]
  1279. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1280. tensors: list[tuple[str, Tensor]] = []
  1281. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1282. logger.info(f"Unpacking and permuting layer {bid}")
  1283. tensors = [
  1284. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1285. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1286. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1287. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1288. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1289. self._reverse_hf_part(data_torch, 2)),
  1290. ]
  1291. else:
  1292. tensors = [(self.map_tensor_name(name), data_torch)]
  1293. return tensors
  1294. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1295. if n_kv_head is not None and n_head != n_kv_head:
  1296. n_head //= n_kv_head
  1297. return (
  1298. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1299. .swapaxes(1, 2)
  1300. .reshape(weights.shape)
  1301. )
  1302. def _reverse_hf_permute_part(
  1303. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1304. ) -> Tensor:
  1305. r = weights.shape[0] // 3
  1306. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1307. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1308. r = weights.shape[0] // 3
  1309. return weights[r * n_part:r * n_part + r, ...]
  1310. @ModelBase.register("XverseForCausalLM")
  1311. class XverseModel(TextModel):
  1312. model_arch = gguf.MODEL_ARCH.XVERSE
  1313. def set_vocab(self):
  1314. assert (self.dir_model / "tokenizer.json").is_file()
  1315. dir_model = self.dir_model
  1316. hparams = self.hparams
  1317. tokens: list[bytes] = []
  1318. toktypes: list[int] = []
  1319. from transformers import AutoTokenizer
  1320. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1321. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1322. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1323. # because vocab_size is the count of items, and indexes start at 0.
  1324. max_vocab_index = max(tokenizer.get_vocab().values())
  1325. if max_vocab_index >= vocab_size:
  1326. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1327. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1328. added_vocab = tokenizer.get_added_vocab()
  1329. for token_id in range(vocab_size):
  1330. token_text = reverse_vocab[token_id].encode('utf-8')
  1331. # replace "\x00" to string with length > 0
  1332. if token_text == b"\x00":
  1333. toktype = gguf.TokenType.BYTE # special
  1334. token_text = f"<{token_text}>".encode('utf-8')
  1335. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1336. toktype = gguf.TokenType.BYTE # special
  1337. elif reverse_vocab[token_id] in added_vocab:
  1338. if tokenizer.added_tokens_decoder[token_id].special:
  1339. toktype = gguf.TokenType.CONTROL
  1340. else:
  1341. toktype = gguf.TokenType.USER_DEFINED
  1342. else:
  1343. toktype = gguf.TokenType.NORMAL
  1344. tokens.append(token_text)
  1345. toktypes.append(toktype)
  1346. self.gguf_writer.add_tokenizer_model("llama")
  1347. self.gguf_writer.add_tokenizer_pre("default")
  1348. self.gguf_writer.add_token_list(tokens)
  1349. self.gguf_writer.add_token_types(toktypes)
  1350. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1351. special_vocab.add_to_gguf(self.gguf_writer)
  1352. def set_gguf_parameters(self):
  1353. block_count = self.hparams["num_hidden_layers"]
  1354. head_count = self.hparams["num_attention_heads"]
  1355. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1356. ctx_length = 0
  1357. if "max_sequence_length" in self.hparams:
  1358. ctx_length = self.hparams["max_sequence_length"]
  1359. elif "max_position_embeddings" in self.hparams:
  1360. ctx_length = self.hparams["max_position_embeddings"]
  1361. elif "model_max_length" in self.hparams:
  1362. ctx_length = self.hparams["model_max_length"]
  1363. else:
  1364. raise ValueError("gguf: can not find ctx length parameter.")
  1365. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1366. self.gguf_writer.add_context_length(ctx_length)
  1367. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1368. self.gguf_writer.add_block_count(block_count)
  1369. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1370. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1371. self.gguf_writer.add_head_count(head_count)
  1372. self.gguf_writer.add_head_count_kv(head_count_kv)
  1373. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1374. self.gguf_writer.add_file_type(self.ftype)
  1375. rope_scaling = self.hparams.get("rope_scaling") or {}
  1376. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1377. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1378. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1380. del bid # unused
  1381. head_count = self.hparams["num_attention_heads"]
  1382. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1383. # HF models permute some of the tensors, so we need to undo that
  1384. if name.endswith("q_proj.weight"):
  1385. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1386. if name.endswith("k_proj.weight"):
  1387. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1388. return [(self.map_tensor_name(name), data_torch)]
  1389. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1390. if n_kv_head is not None and n_head != n_kv_head:
  1391. n_head //= n_kv_head
  1392. return (
  1393. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1394. .swapaxes(1, 2)
  1395. .reshape(weights.shape)
  1396. )
  1397. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1398. class FalconModel(TextModel):
  1399. model_arch = gguf.MODEL_ARCH.FALCON
  1400. def set_gguf_parameters(self):
  1401. block_count = self.hparams.get("num_hidden_layers")
  1402. if block_count is None:
  1403. block_count = self.hparams["n_layer"] # old name
  1404. n_head = self.hparams.get("num_attention_heads")
  1405. if n_head is None:
  1406. n_head = self.hparams["n_head"] # old name
  1407. n_head_kv = self.hparams.get("num_kv_heads")
  1408. if n_head_kv is None:
  1409. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1410. self.gguf_writer.add_context_length(2048) # not in config.json
  1411. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1412. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1413. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1414. self.gguf_writer.add_block_count(block_count)
  1415. self.gguf_writer.add_head_count(n_head)
  1416. self.gguf_writer.add_head_count_kv(n_head_kv)
  1417. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1418. self.gguf_writer.add_file_type(self.ftype)
  1419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1420. del bid # unused
  1421. # QKV tensor transform
  1422. # The original query_key_value tensor contains n_head_kv "kv groups",
  1423. # each consisting of n_head/n_head_kv query weights followed by one key
  1424. # and one value weight (shared by all query heads in the kv group).
  1425. # This layout makes it a big pain to work with in GGML.
  1426. # So we rearrange them here,, so that we have n_head query weights
  1427. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1428. # in contiguous fashion.
  1429. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1430. if "query_key_value" in name:
  1431. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1432. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1433. head_dim = self.hparams["hidden_size"] // n_head
  1434. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1435. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1436. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1437. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1438. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1439. return [(self.map_tensor_name(name), data_torch)]
  1440. @ModelBase.register("GPTBigCodeForCausalLM")
  1441. class StarCoderModel(TextModel):
  1442. model_arch = gguf.MODEL_ARCH.STARCODER
  1443. def set_gguf_parameters(self):
  1444. block_count = self.hparams["n_layer"]
  1445. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1446. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1447. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1448. self.gguf_writer.add_block_count(block_count)
  1449. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1450. self.gguf_writer.add_head_count_kv(1)
  1451. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1452. self.gguf_writer.add_file_type(self.ftype)
  1453. @ModelBase.register("GPTRefactForCausalLM")
  1454. class RefactModel(TextModel):
  1455. model_arch = gguf.MODEL_ARCH.REFACT
  1456. def set_vocab(self):
  1457. super().set_vocab()
  1458. # TODO: how to determine special FIM tokens automatically?
  1459. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1460. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1461. special_vocab._set_special_token("prefix", 1)
  1462. special_vocab._set_special_token("suffix", 3)
  1463. special_vocab._set_special_token("middle", 2)
  1464. special_vocab.chat_template = None # do not add it twice
  1465. special_vocab.add_to_gguf(self.gguf_writer)
  1466. def set_gguf_parameters(self):
  1467. hidden_dim = self.hparams["n_embd"]
  1468. inner_dim = 4 * hidden_dim
  1469. hidden_dim = int(2 * inner_dim / 3)
  1470. multiple_of = 256
  1471. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1472. block_count = self.hparams["n_layer"]
  1473. # refact uses Alibi. So this is from config.json which might be used by training.
  1474. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1475. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1476. self.gguf_writer.add_feed_forward_length(ff_dim)
  1477. self.gguf_writer.add_block_count(block_count)
  1478. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1479. self.gguf_writer.add_head_count_kv(1)
  1480. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1481. self.gguf_writer.add_file_type(self.ftype)
  1482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1483. hidden_dim = self.hparams["n_embd"]
  1484. inner_dim = 4 * hidden_dim
  1485. hidden_dim = int(2 * inner_dim / 3)
  1486. multiple_of = 256
  1487. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1488. n_head = self.hparams["n_head"]
  1489. n_head_kv = 1
  1490. head_dim = self.hparams["n_embd"] // n_head
  1491. tensors: list[tuple[str, Tensor]] = []
  1492. if bid is not None:
  1493. if name == f"transformer.h.{bid}.attn.kv.weight":
  1494. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1495. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1496. elif name == f"transformer.h.{bid}.attn.q.weight":
  1497. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1498. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1499. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1500. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1501. if len(tensors) == 0:
  1502. tensors.append((self.map_tensor_name(name), data_torch))
  1503. return tensors
  1504. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1505. class StableLMModel(TextModel):
  1506. model_arch = gguf.MODEL_ARCH.STABLELM
  1507. def set_vocab(self):
  1508. if (self.dir_model / "tokenizer.json").is_file():
  1509. self._set_vocab_gpt2()
  1510. else:
  1511. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1512. self._set_vocab_qwen()
  1513. def set_gguf_parameters(self):
  1514. hparams = self.hparams
  1515. block_count = hparams["num_hidden_layers"]
  1516. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1517. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1518. self.gguf_writer.add_block_count(block_count)
  1519. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1520. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1521. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1522. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1523. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1524. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1525. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1526. self.gguf_writer.add_file_type(self.ftype)
  1527. _q_norms: list[dict[str, Tensor]] | None = None
  1528. _k_norms: list[dict[str, Tensor]] | None = None
  1529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1530. n_head = self.hparams["num_attention_heads"]
  1531. n_kv_head = self.hparams["num_key_value_heads"]
  1532. if name.find("q_layernorm.norms") != -1:
  1533. assert bid is not None
  1534. if self._q_norms is None:
  1535. self._q_norms = [{} for _ in range(self.block_count)]
  1536. self._q_norms[bid][name] = data_torch
  1537. if len(self._q_norms[bid]) >= n_head:
  1538. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1539. else:
  1540. return []
  1541. if name.find("k_layernorm.norms") != -1:
  1542. assert bid is not None
  1543. if self._k_norms is None:
  1544. self._k_norms = [{} for _ in range(self.block_count)]
  1545. self._k_norms[bid][name] = data_torch
  1546. if len(self._k_norms[bid]) >= n_kv_head:
  1547. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1548. else:
  1549. return []
  1550. return [(self.map_tensor_name(name), data_torch)]
  1551. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1552. datas: list[Tensor] = []
  1553. # extract the norms in order
  1554. for xid in range(n_head):
  1555. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1556. datas.append(norms[ename])
  1557. del norms[ename]
  1558. data_torch = torch.stack(datas, dim=0)
  1559. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1560. new_name = self.map_tensor_name(merged_name)
  1561. return [(new_name, data_torch)]
  1562. def prepare_tensors(self):
  1563. super().prepare_tensors()
  1564. if self._q_norms is not None or self._k_norms is not None:
  1565. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1566. norms = (
  1567. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1568. ) + (
  1569. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1570. )
  1571. if len(norms) > 0:
  1572. raise ValueError(f"Unprocessed norms: {norms}")
  1573. @ModelBase.register(
  1574. "LLaMAForCausalLM",
  1575. "LlamaForCausalLM",
  1576. "MistralForCausalLM",
  1577. "MixtralForCausalLM",
  1578. "VLlama3ForCausalLM",
  1579. "LlavaForConditionalGeneration",
  1580. "VoxtralForConditionalGeneration",
  1581. "LlamaModel")
  1582. class LlamaModel(TextModel):
  1583. model_arch = gguf.MODEL_ARCH.LLAMA
  1584. undo_permute = True
  1585. def __init__(self, *args, **kwargs):
  1586. super().__init__(*args, **kwargs)
  1587. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1588. if self.hf_arch == "VLlama3ForCausalLM":
  1589. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1590. def set_vocab(self):
  1591. path_tekken_json = self.dir_model / "tekken.json"
  1592. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1593. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1594. return self.set_vocab_tekken()
  1595. try:
  1596. self._set_vocab_sentencepiece()
  1597. except FileNotFoundError:
  1598. try:
  1599. self._set_vocab_llama_hf()
  1600. except (FileNotFoundError, TypeError):
  1601. # Llama 3
  1602. self._set_vocab_gpt2()
  1603. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1604. if self.hparams.get("vocab_size", 32000) == 32016:
  1605. special_vocab = gguf.SpecialVocab(
  1606. self.dir_model, load_merges=False,
  1607. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1608. )
  1609. special_vocab._set_special_token("prefix", 32007)
  1610. special_vocab._set_special_token("suffix", 32008)
  1611. special_vocab._set_special_token("middle", 32009)
  1612. special_vocab._set_special_token("eot", 32010)
  1613. special_vocab.add_to_gguf(self.gguf_writer)
  1614. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1615. if tokenizer_config_file.is_file():
  1616. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1617. tokenizer_config_json = json.load(f)
  1618. if "add_prefix_space" in tokenizer_config_json:
  1619. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1620. # Apply to granite small models only
  1621. if self.hparams.get("vocab_size", 32000) == 49152:
  1622. self.gguf_writer.add_add_bos_token(False)
  1623. def set_vocab_tekken(self):
  1624. vocab = gguf.vocab.MistralVocab(self.dir_model)
  1625. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1626. tokens = []
  1627. scores = []
  1628. toktypes = []
  1629. for text, score, toktype in vocab.all_tokens():
  1630. tokens.append(text)
  1631. scores.append(score)
  1632. toktypes.append(toktype)
  1633. assert len(tokens) == vocab.vocab_size, (
  1634. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1635. )
  1636. if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
  1637. self.gguf_writer.add_tokenizer_pre("tekken")
  1638. self.gguf_writer.add_token_merges(
  1639. vocab.extract_vocab_merges_from_model()
  1640. )
  1641. logger.info(
  1642. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1643. )
  1644. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1645. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1646. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1647. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1648. self.gguf_writer.add_token_list(tokens)
  1649. self.gguf_writer.add_token_scores(scores)
  1650. self.gguf_writer.add_token_types(toktypes)
  1651. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1652. self.gguf_writer.add_add_bos_token(True)
  1653. self.gguf_writer.add_add_eos_token(False)
  1654. script_dir = Path(__file__).parent
  1655. template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
  1656. with open(template_path, "r", encoding="utf-8") as f:
  1657. template = f.read()
  1658. self.gguf_writer.add_chat_template(template)
  1659. def set_gguf_parameters(self):
  1660. super().set_gguf_parameters()
  1661. hparams = self.hparams
  1662. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1663. if (rope_dim := hparams.get("head_dim")) is None:
  1664. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1665. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1666. rope_scaling = self.hparams.get("rope_scaling") or {}
  1667. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1668. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1669. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1670. @staticmethod
  1671. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1672. if n_head_kv is not None and n_head != n_head_kv:
  1673. n_head = n_head_kv
  1674. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1675. .swapaxes(1, 2)
  1676. .reshape(weights.shape))
  1677. _experts: list[dict[str, Tensor]] | None = None
  1678. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1679. n_head = self.hparams["num_attention_heads"]
  1680. n_kv_head = self.hparams.get("num_key_value_heads")
  1681. is_multimodal_tensor = "vision_tower" in name \
  1682. or "vision_model" in name \
  1683. or "audio_tower" in name \
  1684. or "model.connector" in name \
  1685. or "multi_modal_projector" in name
  1686. if is_multimodal_tensor:
  1687. return [] # skip vision tensors
  1688. elif self.hf_arch == "LlamaModel":
  1689. name = "model." + name
  1690. elif name.startswith("model.text_model"):
  1691. name = name.replace("text_model.", "") # for SmolVLM
  1692. elif name.startswith("language_model."):
  1693. name = name.replace("language_model.", "") # for the rest
  1694. if self.undo_permute:
  1695. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1696. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1697. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1698. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1699. # process the experts separately
  1700. if name.find("block_sparse_moe.experts") != -1:
  1701. n_experts = self.hparams["num_local_experts"]
  1702. assert bid is not None
  1703. if self._experts is None:
  1704. self._experts = [{} for _ in range(self.block_count)]
  1705. self._experts[bid][name] = data_torch
  1706. if len(self._experts[bid]) >= n_experts * 3:
  1707. tensors: list[tuple[str, Tensor]] = []
  1708. # merge the experts into a single 3d tensor
  1709. for wid in ["w1", "w2", "w3"]:
  1710. datas: list[Tensor] = []
  1711. for xid in range(n_experts):
  1712. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1713. datas.append(self._experts[bid][ename])
  1714. del self._experts[bid][ename]
  1715. data_torch = torch.stack(datas, dim=0)
  1716. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1717. new_name = self.map_tensor_name(merged_name)
  1718. tensors.append((new_name, data_torch))
  1719. return tensors
  1720. else:
  1721. return []
  1722. return [(self.map_tensor_name(name), data_torch)]
  1723. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1724. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1725. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1726. base = self.hparams.get("rope_theta", 10000.0)
  1727. if (dim := self.hparams.get("head_dim")) is None:
  1728. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1729. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1730. factor = rope_scaling.get("factor", 8.0)
  1731. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1732. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1733. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1734. low_freq_wavelen = old_context_len / low_freq_factor
  1735. high_freq_wavelen = old_context_len / high_freq_factor
  1736. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1737. rope_factors = []
  1738. for freq in freqs:
  1739. wavelen = 2 * math.pi / freq
  1740. if wavelen < high_freq_wavelen:
  1741. rope_factors.append(1)
  1742. elif wavelen > low_freq_wavelen:
  1743. rope_factors.append(factor)
  1744. else:
  1745. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1746. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1747. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1748. def prepare_tensors(self):
  1749. super().prepare_tensors()
  1750. if self._experts is not None:
  1751. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1752. experts = [k for d in self._experts for k in d.keys()]
  1753. if len(experts) > 0:
  1754. raise ValueError(f"Unprocessed experts: {experts}")
  1755. @ModelBase.register("ArceeForCausalLM")
  1756. class ArceeModel(LlamaModel):
  1757. model_arch = gguf.MODEL_ARCH.ARCEE
  1758. def set_gguf_parameters(self):
  1759. super().set_gguf_parameters()
  1760. self._try_set_pooling_type()
  1761. rope_scaling = self.hparams.get("rope_scaling") or {}
  1762. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1763. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1764. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1765. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1766. @ModelBase.register(
  1767. "LlavaForConditionalGeneration", # pixtral
  1768. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1769. )
  1770. class LlavaVisionModel(MmprojModel):
  1771. img_break_tok_id = -1
  1772. def __init__(self, *args, **kwargs):
  1773. super().__init__(*args, **kwargs)
  1774. if self.hparams["model_type"] == "pixtral":
  1775. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1776. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1777. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1778. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1779. else:
  1780. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1781. def get_token_id(self, token: str) -> int:
  1782. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1783. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1784. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1785. for id_, token_data in added_tokens_decoder.items():
  1786. if token_data["content"] == token:
  1787. return int(id_)
  1788. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1789. def set_gguf_parameters(self):
  1790. super().set_gguf_parameters()
  1791. hparams = self.hparams
  1792. if hparams["model_type"] == "pixtral":
  1793. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1794. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1795. # hidden_act
  1796. if hparams["hidden_act"] == "silu":
  1797. self.gguf_writer.add_vision_use_silu(True)
  1798. elif hparams["hidden_act"] == "gelu":
  1799. self.gguf_writer.add_vision_use_gelu(True)
  1800. else:
  1801. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1802. # spatial_merge_size
  1803. if "spatial_merge_size" in self.global_config:
  1804. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1806. del bid # unused
  1807. n_head = self.hparams["num_attention_heads"]
  1808. n_kv_head = n_head
  1809. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1810. # process vision tensors
  1811. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1812. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1813. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1814. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1815. return [(self.map_tensor_name(name), data_torch)]
  1816. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1817. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1818. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1819. img_break_embd = data_torch[self.img_break_tok_id]
  1820. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1821. return [(self.map_tensor_name(name), img_break_embd)]
  1822. return [] # skip other tensors
  1823. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1824. class SmolVLMModel(MmprojModel):
  1825. def __init__(self, *args, **kwargs):
  1826. super().__init__(*args, **kwargs)
  1827. if self.hparams["model_type"] == "smolvlm_vision":
  1828. # fix for SmolVLM2, missing some keys in config.json
  1829. # default values are taken from transformers code
  1830. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1831. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1832. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1833. def set_gguf_parameters(self):
  1834. super().set_gguf_parameters()
  1835. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1836. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1837. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1838. self.gguf_writer.add_vision_use_gelu(True)
  1839. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1840. del bid, new_name, n_dims # unused
  1841. if ".embeddings." in name:
  1842. return gguf.GGMLQuantizationType.F32
  1843. return False
  1844. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1845. del bid # unused
  1846. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1847. if is_vision_tensor:
  1848. return [(self.map_tensor_name(name), data_torch)]
  1849. return [] # skip other tensors
  1850. @ModelBase.register("Llama4ForConditionalGeneration")
  1851. class Llama4Model(LlamaModel):
  1852. model_arch = gguf.MODEL_ARCH.LLAMA4
  1853. undo_permute = False
  1854. def __init__(self, *args, **kwargs):
  1855. super().__init__(*args, **kwargs)
  1856. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1857. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1858. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1859. def set_vocab(self):
  1860. self._set_vocab_gpt2()
  1861. def set_gguf_parameters(self):
  1862. super().set_gguf_parameters()
  1863. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1864. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1866. if name.startswith("language_model."):
  1867. name = name.replace("language_model.", "")
  1868. # split the gate_up into gate and up
  1869. if "gate_up_proj" in name:
  1870. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1871. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1872. dim_half = data_torch.shape[-1] // 2
  1873. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1874. return [
  1875. (self.map_tensor_name(name_gate), gate_proj_weight),
  1876. (self.map_tensor_name(name_up), up_proj_weight)
  1877. ]
  1878. if name.endswith("down_proj"):
  1879. name += ".weight"
  1880. data_torch = data_torch.transpose(-1, -2)
  1881. if "multi_modal_projector" in name or "vision_model" in name:
  1882. return []
  1883. return super().modify_tensors(data_torch, name, bid)
  1884. @ModelBase.register("Llama4ForConditionalGeneration")
  1885. class Llama4VisionModel(MmprojModel):
  1886. def set_gguf_parameters(self):
  1887. super().set_gguf_parameters()
  1888. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1889. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1890. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1891. assert self.hparams["hidden_act"] == "gelu"
  1892. self.gguf_writer.add_vision_use_gelu(True)
  1893. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1894. del bid # unused
  1895. if "multi_modal_projector" in name or "vision_model" in name:
  1896. # process vision tensors
  1897. if "positional_embedding_vlm" in name and ".weight" not in name:
  1898. name += ".weight"
  1899. if "multi_modal_projector.linear_1" in name:
  1900. # despite the name with number postfix, this is a single fully connected layer
  1901. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1902. return [(self.map_tensor_name(name), data_torch)]
  1903. return []
  1904. @ModelBase.register("Mistral3ForConditionalGeneration")
  1905. class Mistral3Model(LlamaModel):
  1906. model_arch = gguf.MODEL_ARCH.LLAMA
  1907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1908. name = name.replace("language_model.", "")
  1909. if "multi_modal_projector" in name or "vision_tower" in name:
  1910. return []
  1911. return super().modify_tensors(data_torch, name, bid)
  1912. @ModelBase.register("DeciLMForCausalLM")
  1913. class DeciModel(TextModel):
  1914. model_arch = gguf.MODEL_ARCH.DECI
  1915. @staticmethod
  1916. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1917. # DeciLM-specific code
  1918. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1919. return DeciModel._find_multiple(intermediate_size, 256)
  1920. @staticmethod
  1921. def _find_multiple(n: int, k: int) -> int:
  1922. # DeciLM-specific code
  1923. if n % k == 0:
  1924. return n
  1925. return n + k - (n % k)
  1926. def __init__(self, *args, **kwargs):
  1927. super().__init__(*args, **kwargs)
  1928. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1929. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1930. assert self.block_count == len(_block_configs)
  1931. self._num_kv_heads = list()
  1932. self._num_heads = list()
  1933. _ffn_multipliers = list()
  1934. # ***linear attention layer***
  1935. # if n_heads_in_group is None and replace_with_linear is True
  1936. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1937. # ***attention-free layer***
  1938. # if n_heads_in_group is None and replace_with_linear is False
  1939. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1940. # ***normal attention-layer***
  1941. # if n_heads_in_group is not None, then
  1942. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1943. # _num_heads[il] is num_attention_head
  1944. # ***dummy layer*** for nemotron 253B
  1945. # if n_heads_in_group is None and ffn_mult is None
  1946. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1947. for il in range(len(_block_configs)):
  1948. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1949. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1950. self._num_kv_heads.append(0)
  1951. self._num_heads.append(self.hparams["num_attention_heads"])
  1952. else:
  1953. self._num_kv_heads.append(0)
  1954. self._num_heads.append(0)
  1955. else:
  1956. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1957. self._num_heads.append(self.hparams["num_attention_heads"])
  1958. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1959. _ffn_multipliers.append(0.0)
  1960. else:
  1961. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1962. assert self.block_count == len(self._num_kv_heads)
  1963. assert self.block_count == len(self._num_heads)
  1964. assert self.block_count == len(_ffn_multipliers)
  1965. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1966. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1967. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1968. self._ffn_dims: list[int] = [
  1969. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1970. for multiplier in _ffn_multipliers
  1971. ]
  1972. def set_vocab(self):
  1973. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1974. # eos_token from '|eot_id|' to '|end_of_text|'
  1975. if self.hparams.get("vocab_size", 128256) == 128256:
  1976. tokens, toktypes, tokpre = self.get_vocab_base()
  1977. self.gguf_writer.add_tokenizer_model("gpt2")
  1978. self.gguf_writer.add_tokenizer_pre(tokpre)
  1979. self.gguf_writer.add_token_list(tokens)
  1980. self.gguf_writer.add_token_types(toktypes)
  1981. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1982. special_vocab.add_to_gguf(self.gguf_writer)
  1983. else:
  1984. # DeciLM-7B
  1985. self._set_vocab_llama_hf()
  1986. def set_gguf_parameters(self):
  1987. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1988. assert self.block_count == len(self._num_kv_heads)
  1989. assert self.block_count == len(self._num_heads)
  1990. assert self.block_count == len(self._ffn_dims)
  1991. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1992. self.gguf_writer.add_rope_freq_base(rope_theta)
  1993. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1994. self.gguf_writer.add_head_count(self._num_heads)
  1995. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1996. self.gguf_writer.add_block_count(self.block_count)
  1997. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1998. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1999. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2000. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2001. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2002. self.gguf_writer.add_file_type(self.ftype)
  2003. else: # DeciLM-7B
  2004. super().set_gguf_parameters()
  2005. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2006. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2007. assert self.block_count == len(self._num_kv_heads)
  2008. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2009. hparams = self.hparams
  2010. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2011. if (rope_dim := hparams.get("head_dim")) is None:
  2012. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2013. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2014. rope_scaling = self.hparams.get("rope_scaling") or {}
  2015. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2016. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2017. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2018. @staticmethod
  2019. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2020. if n_head_kv is not None and n_head != n_head_kv:
  2021. n_head = n_head_kv
  2022. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2023. .swapaxes(1, 2)
  2024. .reshape(weights.shape))
  2025. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2026. n_head = self.hparams["num_attention_heads"]
  2027. if bid is not None:
  2028. if "num_key_value_heads_per_layer" in self.hparams:
  2029. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2030. elif "block_configs" in self.hparams:
  2031. n_kv_head = self._num_kv_heads[bid]
  2032. n_head = self._num_heads[bid]
  2033. else:
  2034. n_kv_head = self.hparams.get("num_key_value_heads")
  2035. else:
  2036. n_kv_head = self.hparams.get("num_key_value_heads")
  2037. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2038. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2039. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2040. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2041. return [(self.map_tensor_name(name), data_torch)]
  2042. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2043. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2044. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2045. base = self.hparams.get("rope_theta", 10000.0)
  2046. if (dim := self.hparams.get("head_dim")) is None:
  2047. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2048. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2049. factor = rope_scaling.get("factor", 8.0)
  2050. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2051. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2052. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2053. low_freq_wavelen = old_context_len / low_freq_factor
  2054. high_freq_wavelen = old_context_len / high_freq_factor
  2055. assert low_freq_wavelen != high_freq_wavelen
  2056. rope_factors = []
  2057. for freq in freqs:
  2058. wavelen = 2 * math.pi / freq
  2059. if wavelen < high_freq_wavelen:
  2060. rope_factors.append(1)
  2061. elif wavelen > low_freq_wavelen:
  2062. rope_factors.append(factor)
  2063. else:
  2064. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2065. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2066. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2067. def prepare_tensors(self):
  2068. super().prepare_tensors()
  2069. @ModelBase.register("BitnetForCausalLM")
  2070. class BitnetModel(TextModel):
  2071. model_arch = gguf.MODEL_ARCH.BITNET
  2072. def set_vocab(self):
  2073. self._set_vocab_sentencepiece()
  2074. def set_gguf_parameters(self):
  2075. super().set_gguf_parameters()
  2076. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2077. self.gguf_writer.add_rope_scaling_factor(1.0)
  2078. def weight_quant(self, weight: Tensor) -> Tensor:
  2079. dtype = weight.dtype
  2080. weight = weight.float()
  2081. scale = weight.abs().mean().clamp(min=1e-5)
  2082. iscale = 1 / scale
  2083. # TODO: multiply by the scale directly instead of inverting it twice
  2084. # (this is also unnecessarily doubly inverted upstream)
  2085. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2086. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2087. return result.type(dtype)
  2088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2089. new_name = self.map_tensor_name(name)
  2090. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2091. gguf.MODEL_TENSOR.ATTN_Q,
  2092. gguf.MODEL_TENSOR.ATTN_K,
  2093. gguf.MODEL_TENSOR.ATTN_V,
  2094. gguf.MODEL_TENSOR.ATTN_OUT,
  2095. gguf.MODEL_TENSOR.FFN_UP,
  2096. gguf.MODEL_TENSOR.FFN_DOWN,
  2097. gguf.MODEL_TENSOR.FFN_GATE,
  2098. ]):
  2099. # transform weight into 1/0/-1 (in fp32)
  2100. data_torch = self.weight_quant(data_torch)
  2101. yield (new_name, data_torch)
  2102. @ModelBase.register("GrokForCausalLM")
  2103. class GrokModel(TextModel):
  2104. model_arch = gguf.MODEL_ARCH.GROK
  2105. def set_vocab(self):
  2106. self._set_vocab_sentencepiece()
  2107. def __init__(self, *args, **kwargs):
  2108. super().__init__(*args, **kwargs)
  2109. def set_gguf_parameters(self):
  2110. super().set_gguf_parameters()
  2111. _experts: list[dict[str, Tensor]] | None = None
  2112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2113. # process the experts separately
  2114. if name.find(".moe.") != -1:
  2115. n_experts = self.hparams["num_local_experts"]
  2116. assert bid is not None
  2117. if self._experts is None:
  2118. self._experts = [{} for _ in range(self.block_count)]
  2119. self._experts[bid][name] = data_torch
  2120. if len(self._experts[bid]) >= n_experts * 3:
  2121. tensors: list[tuple[str, Tensor]] = []
  2122. # merge the experts into a single 3d tensor
  2123. for wid in ["linear", "linear_1", "linear_v"]:
  2124. datas: list[Tensor] = []
  2125. for xid in range(n_experts):
  2126. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2127. datas.append(self._experts[bid][ename])
  2128. del self._experts[bid][ename]
  2129. data_torch = torch.stack(datas, dim=0)
  2130. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2131. new_name = self.map_tensor_name(merged_name)
  2132. tensors.append((new_name, data_torch))
  2133. return tensors
  2134. else:
  2135. return []
  2136. return [(self.map_tensor_name(name), data_torch)]
  2137. @ModelBase.register("DbrxForCausalLM")
  2138. class DbrxModel(TextModel):
  2139. model_arch = gguf.MODEL_ARCH.DBRX
  2140. def set_gguf_parameters(self):
  2141. ffn_config = self.hparams["ffn_config"]
  2142. attn_config = self.hparams["attn_config"]
  2143. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2144. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2145. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2146. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2147. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2148. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2149. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2150. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2151. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2152. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2153. self.gguf_writer.add_layer_norm_eps(1e-5)
  2154. self.gguf_writer.add_file_type(self.ftype)
  2155. logger.info(f"gguf: file type = {self.ftype}")
  2156. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2157. del bid # unused
  2158. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2159. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2160. n_embd = self.hparams["d_model"]
  2161. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2162. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2163. # But llama.cpp moe graph works differently
  2164. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2165. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2166. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2167. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2168. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2169. experts = False
  2170. for exp_tensor_name in exp_tensor_names.keys():
  2171. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2172. experts = True
  2173. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2174. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2175. data_torch = data_torch.permute(*permute_tensor)
  2176. break
  2177. # map tensor names
  2178. # In MoE models the ffn tensors are typically most of the model weights,
  2179. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2180. # Every other model has the weight names ending in .weight,
  2181. # let's assume that is the convention which is not the case for dbrx:
  2182. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2183. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2184. return [(new_name, data_torch)]
  2185. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2186. del name, new_name, bid # unused
  2187. return n_dims > 1
  2188. @ModelBase.register("MiniCPMForCausalLM")
  2189. class MiniCPMModel(TextModel):
  2190. model_arch = gguf.MODEL_ARCH.MINICPM
  2191. def set_gguf_parameters(self):
  2192. super().set_gguf_parameters()
  2193. embedding_scale = float(self.hparams["scale_emb"])
  2194. self.gguf_writer.add_embedding_scale(embedding_scale)
  2195. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2196. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2197. self.gguf_writer.add_residual_scale(residual_scale)
  2198. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2199. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2200. self.gguf_writer.add_logit_scale(logit_scale)
  2201. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2202. rope_scaling = self.hparams.get("rope_scaling") or {}
  2203. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2204. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2205. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2206. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2207. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2208. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2209. if rope_scaling is not None:
  2210. long_factors = rope_scaling.get('long_factor', None)
  2211. short_factors = rope_scaling.get('short_factor', None)
  2212. if long_factors is None or short_factors is None:
  2213. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2214. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2215. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2216. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2217. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2218. def set_vocab(self):
  2219. self._set_vocab_sentencepiece()
  2220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2221. del bid # unused
  2222. n_head = self.hparams["num_attention_heads"]
  2223. n_kv_head = self.hparams.get("num_key_value_heads")
  2224. # HF models permute some of the tensors, so we need to undo that
  2225. if name.endswith(("q_proj.weight")):
  2226. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2227. if name.endswith(("k_proj.weight")):
  2228. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2229. return [(self.map_tensor_name(name), data_torch)]
  2230. @ModelBase.register("MiniCPM3ForCausalLM")
  2231. class MiniCPM3Model(TextModel):
  2232. model_arch = gguf.MODEL_ARCH.MINICPM3
  2233. def set_gguf_parameters(self):
  2234. hparams = self.hparams
  2235. self.gguf_writer.add_file_type(self.ftype)
  2236. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2237. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2238. self.gguf_writer.add_block_count(self.block_count)
  2239. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2240. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2241. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2242. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2243. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2244. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2245. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2246. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2247. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2248. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2249. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2250. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2251. if rope_scaling is not None:
  2252. rope_dims = self.hparams["qk_rope_head_dim"]
  2253. long_factors = rope_scaling.get('long_factor', None)
  2254. short_factors = rope_scaling.get('short_factor', None)
  2255. if long_factors is None or short_factors is None:
  2256. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2257. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2258. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2259. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2260. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2261. def set_vocab(self):
  2262. self._set_vocab_sentencepiece()
  2263. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2264. if n_kv_head is not None and n_head != n_kv_head:
  2265. n_head //= n_kv_head
  2266. return (
  2267. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2268. .swapaxes(1, 2)
  2269. .reshape(weights.shape)
  2270. )
  2271. @ModelBase.register("QWenLMHeadModel")
  2272. class QwenModel(TextModel):
  2273. model_arch = gguf.MODEL_ARCH.QWEN
  2274. @staticmethod
  2275. def token_bytes_to_string(b):
  2276. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2277. byte_encoder = bytes_to_unicode()
  2278. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2279. @staticmethod
  2280. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2281. parts = [bytes([b]) for b in token]
  2282. while True:
  2283. min_idx = None
  2284. min_rank = None
  2285. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2286. rank = mergeable_ranks.get(pair[0] + pair[1])
  2287. if rank is not None and (min_rank is None or rank < min_rank):
  2288. min_idx = i
  2289. min_rank = rank
  2290. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2291. break
  2292. assert min_idx is not None
  2293. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2294. return parts
  2295. def set_vocab(self):
  2296. self._set_vocab_qwen()
  2297. def set_gguf_parameters(self):
  2298. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2299. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2300. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2301. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2302. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2303. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2304. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2305. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2306. self.gguf_writer.add_file_type(self.ftype)
  2307. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2308. class Qwen2Model(TextModel):
  2309. model_arch = gguf.MODEL_ARCH.QWEN2
  2310. def set_vocab(self):
  2311. try:
  2312. self._set_vocab_sentencepiece()
  2313. except FileNotFoundError:
  2314. self._set_vocab_gpt2()
  2315. def set_gguf_parameters(self):
  2316. super().set_gguf_parameters()
  2317. self._try_set_pooling_type()
  2318. rope_scaling = self.hparams.get("rope_scaling") or {}
  2319. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2320. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2321. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2322. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2324. if self.hf_arch == "Qwen2Model":
  2325. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2326. if "language_model." in name:
  2327. name = name.replace("language_model.", "") # for InternVL
  2328. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2329. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2330. # skip vision and audio tensors
  2331. return []
  2332. yield from super().modify_tensors(data_torch, name, bid)
  2333. @ModelBase.register("DreamModel")
  2334. class DreamModel(TextModel):
  2335. model_arch = gguf.MODEL_ARCH.DREAM
  2336. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2337. tokens: list[str] = []
  2338. toktypes: list[int] = []
  2339. from transformers import AutoTokenizer
  2340. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2341. vocab_dict = tokenizer.get_vocab()
  2342. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2343. assert max(vocab_dict.values()) < vocab_size
  2344. tokpre = self.get_vocab_base_pre(tokenizer)
  2345. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2346. added_vocab = tokenizer.get_added_vocab()
  2347. for i in range(vocab_size):
  2348. if i not in reverse_vocab:
  2349. tokens.append(f"[PAD{i}]")
  2350. toktypes.append(gguf.TokenType.UNUSED)
  2351. elif reverse_vocab[i] in added_vocab:
  2352. tokens.append(reverse_vocab[i])
  2353. # Check if it's a special token - treat special tokens as CONTROL tokens
  2354. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2355. if tokenizer.added_tokens_decoder[i].special:
  2356. toktypes.append(gguf.TokenType.CONTROL)
  2357. else:
  2358. toktypes.append(gguf.TokenType.USER_DEFINED)
  2359. else:
  2360. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2361. toktypes.append(gguf.TokenType.CONTROL)
  2362. else:
  2363. tokens.append(reverse_vocab[i])
  2364. toktypes.append(gguf.TokenType.NORMAL)
  2365. return tokens, toktypes, tokpre
  2366. def set_vocab(self):
  2367. try:
  2368. self._set_vocab_sentencepiece()
  2369. except FileNotFoundError:
  2370. self._set_vocab_gpt2()
  2371. def set_gguf_parameters(self):
  2372. super().set_gguf_parameters()
  2373. self._try_set_pooling_type()
  2374. # Dream models use non-causal attention for diffusion
  2375. self.gguf_writer.add_causal_attention(False)
  2376. # Handle RoPE scaling similar to Qwen2
  2377. rope_scaling = self.hparams.get("rope_scaling") or {}
  2378. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2379. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2380. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2381. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2382. # Add Dream-specific parameters
  2383. mask_token_id = self.hparams.get("mask_token_id")
  2384. if mask_token_id is not None:
  2385. self.gguf_writer.add_mask_token_id(mask_token_id)
  2386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2387. # Dream model tensors should be mapped directly since it's the base model
  2388. yield from super().modify_tensors(data_torch, name, bid)
  2389. @ModelBase.register("LLaDAModelLM")
  2390. class LLaDAModel(TextModel):
  2391. model_arch = gguf.MODEL_ARCH.LLADA
  2392. undo_permute = True
  2393. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2394. tokens: list[str] = []
  2395. toktypes: list[int] = []
  2396. from transformers import AutoTokenizer
  2397. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2398. vocab_dict = tokenizer.get_vocab()
  2399. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2400. assert max(vocab_dict.values()) < vocab_size
  2401. tokpre = self.get_vocab_base_pre(tokenizer)
  2402. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2403. added_vocab = tokenizer.get_added_vocab()
  2404. for i in range(vocab_size):
  2405. if i not in reverse_vocab:
  2406. tokens.append(f"[PAD{i}]")
  2407. toktypes.append(gguf.TokenType.UNUSED)
  2408. elif reverse_vocab[i] in added_vocab:
  2409. tokens.append(reverse_vocab[i])
  2410. # Check if it's a special token - treat special tokens as CONTROL tokens
  2411. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2412. if tokenizer.added_tokens_decoder[i].special:
  2413. toktypes.append(gguf.TokenType.CONTROL)
  2414. else:
  2415. toktypes.append(gguf.TokenType.USER_DEFINED)
  2416. else:
  2417. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2418. toktypes.append(gguf.TokenType.CONTROL)
  2419. else:
  2420. tokens.append(reverse_vocab[i])
  2421. toktypes.append(gguf.TokenType.NORMAL)
  2422. return tokens, toktypes, tokpre
  2423. def set_vocab(self):
  2424. self._set_vocab_gpt2()
  2425. # LLaDA specific parameters
  2426. self.gguf_writer.add_add_bos_token(True)
  2427. def set_gguf_parameters(self):
  2428. super().set_gguf_parameters()
  2429. self._try_set_pooling_type()
  2430. # Add parameters similar to LlamaModel
  2431. hparams = self.hparams
  2432. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2433. if (rope_dim := hparams.get("head_dim")) is None:
  2434. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2435. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2436. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2437. # Set context length for LLaDA
  2438. context_length = self.hparams.get("max_sequence_length", 4096)
  2439. self.gguf_writer.add_context_length(context_length)
  2440. # Set embedding length (dimension size)
  2441. embedding_length = self.hparams.get("d_model", 4096)
  2442. self.gguf_writer.add_embedding_length(embedding_length)
  2443. # Set feed forward length (MLP hidden size)
  2444. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2445. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2446. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2447. self.gguf_writer.add_causal_attention(False)
  2448. # LLaDA models don't shift their logits
  2449. self.gguf_writer.add_diffusion_shift_logits(False)
  2450. @staticmethod
  2451. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2452. if n_head_kv is not None and n_head != n_head_kv:
  2453. n_head = n_head_kv
  2454. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2455. .swapaxes(1, 2)
  2456. .reshape(weights.shape))
  2457. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2458. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2459. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2460. if self.undo_permute:
  2461. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2462. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2463. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2464. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2465. # LLaDA model tensors should be mapped directly since it's the base model
  2466. yield from super().modify_tensors(data_torch, name, bid)
  2467. @ModelBase.register("Ernie4_5_ForCausalLM")
  2468. class Ernie4_5Model(TextModel):
  2469. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2470. def set_vocab(self):
  2471. self._set_vocab_sentencepiece()
  2472. def set_gguf_parameters(self):
  2473. super().set_gguf_parameters()
  2474. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2475. num_heads = self.hparams["num_attention_heads"]
  2476. num_kv_heads = self.hparams["num_key_value_heads"]
  2477. if (head_dim := self.hparams.get("head_dim")) is None:
  2478. head_dim = self.hparams["hidden_size"] // num_heads
  2479. if "ernie." in name:
  2480. name = name.replace("ernie.", "model.")
  2481. # split the qkv weights
  2482. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2483. if "qkv_proj" in name:
  2484. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2485. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2486. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2487. total_q_dim = num_heads * head_dim
  2488. total_k_dim = num_kv_heads * head_dim
  2489. total_v_dim = num_kv_heads * head_dim
  2490. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2491. return [
  2492. (self.map_tensor_name(name_q), q_proj_weight),
  2493. (self.map_tensor_name(name_k), k_proj_weight),
  2494. (self.map_tensor_name(name_v), v_proj_weight)
  2495. ]
  2496. # split the up_gate_proj into gate and up
  2497. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2498. if "up_gate_proj" in name:
  2499. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2500. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2501. dim_half = data_torch.shape[0] // 2
  2502. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2503. return [
  2504. (self.map_tensor_name(name_gate), gate_proj_weight),
  2505. (self.map_tensor_name(name_up), up_proj_weight)
  2506. ]
  2507. return [(self.map_tensor_name(name), data_torch)]
  2508. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2509. class Ernie4_5MoeModel(Ernie4_5Model):
  2510. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2511. _experts: list[dict[str, Tensor]] | None = None
  2512. def __init__(self, *args, **kwargs):
  2513. super().__init__(*args, **kwargs)
  2514. self._experts = [{} for _ in range(self.block_count)]
  2515. def set_gguf_parameters(self):
  2516. super().set_gguf_parameters()
  2517. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2518. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2519. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2520. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2521. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2522. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2523. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2524. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2525. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2526. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2527. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2528. # Modify correction bias name as in DeepseekV2
  2529. if name.endswith("e_score_correction_bias"):
  2530. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2531. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2532. match = re.match(r"model.mtp_block.(\d+)", name)
  2533. if match:
  2534. return []
  2535. # skip all other MTP tensors for now
  2536. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2537. if match:
  2538. return []
  2539. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2540. if match:
  2541. return []
  2542. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2543. if match:
  2544. return []
  2545. # process the experts separately
  2546. if name.find("mlp.experts") != -1:
  2547. n_experts = self.hparams["moe_num_experts"]
  2548. assert bid is not None
  2549. if self._experts is None:
  2550. self._experts = [{} for _ in range(self.block_count)]
  2551. self._experts[bid][name] = data_torch
  2552. if len(self._experts[bid]) >= n_experts * 3:
  2553. tensors: list[tuple[str, Tensor]] = []
  2554. # merge the experts into a single 3d tensor
  2555. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2556. datas: list[Tensor] = []
  2557. for xid in range(n_experts):
  2558. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2559. datas.append(self._experts[bid][ename_to_retrieve])
  2560. del self._experts[bid][ename_to_retrieve]
  2561. data_torch = torch.stack(datas, dim=0)
  2562. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2563. new_name = self.map_tensor_name(merged_name)
  2564. tensors.append((new_name, data_torch))
  2565. return tensors
  2566. else:
  2567. return []
  2568. return [(self.map_tensor_name(name), data_torch)]
  2569. def prepare_tensors(self):
  2570. super().prepare_tensors()
  2571. if self._experts is not None:
  2572. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2573. experts = [k for d in self._experts for k in d.keys()]
  2574. if len(experts) > 0:
  2575. raise ValueError(f"Unprocessed experts: {experts}")
  2576. @ModelBase.register(
  2577. "Qwen2VLModel",
  2578. "Qwen2VLForConditionalGeneration",
  2579. "Qwen2_5_VLForConditionalGeneration",
  2580. "Qwen2_5OmniModel",
  2581. )
  2582. class Qwen2VLModel(TextModel):
  2583. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2584. def set_gguf_parameters(self):
  2585. super().set_gguf_parameters()
  2586. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2587. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2588. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2589. def set_vocab(self):
  2590. try:
  2591. self._set_vocab_sentencepiece()
  2592. except FileNotFoundError:
  2593. self._set_vocab_gpt2()
  2594. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2595. del bid # unused
  2596. if name.startswith("thinker."):
  2597. name = name.replace("thinker.", "")
  2598. if name.startswith("visual") or name.startswith("audio") or \
  2599. name.startswith("talker") or name.startswith("token2wav"):
  2600. # skip multimodal tensors
  2601. return []
  2602. return [(self.map_tensor_name(name), data_torch)]
  2603. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2604. class Qwen2VLVisionModel(MmprojModel):
  2605. def __init__(self, *args, **kwargs):
  2606. super().__init__(*args, **kwargs)
  2607. assert self.hparams_vision is not None
  2608. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2609. # rename config.json values
  2610. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2611. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2612. if "embed_dim" in self.hparams_vision: # qwen2vl
  2613. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2614. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2615. def set_gguf_parameters(self):
  2616. super().set_gguf_parameters()
  2617. assert self.hparams_vision is not None
  2618. hparams = self.hparams_vision
  2619. model_type = self.global_config['model_type']
  2620. if model_type == 'qwen2_vl':
  2621. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2622. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2623. if model_type == 'qwen2_5_omni':
  2624. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2625. else:
  2626. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2627. self.gguf_writer.add_vision_use_silu(True)
  2628. # find n_wa_pattern (window attention pattern)
  2629. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2630. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2631. n_wa_pattern = fullatt_block_indexes[0] + 1
  2632. # validate n_wa_pattern
  2633. for i in range(1, len(fullatt_block_indexes)):
  2634. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2635. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2636. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2637. else:
  2638. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2639. # default values below are taken from HF tranformers code
  2640. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2641. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2642. del bid, name, n_dims # unused
  2643. if ".patch_embd." in new_name:
  2644. return gguf.GGMLQuantizationType.F16
  2645. if ".position_embd." in new_name:
  2646. return gguf.GGMLQuantizationType.F32
  2647. return False
  2648. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2649. del bid # unused
  2650. if name.startswith("visual."):
  2651. # process visual tensors
  2652. # split QKV tensors if needed
  2653. if ".qkv." in name:
  2654. if data_torch.ndim == 2: # weight
  2655. c3, _ = data_torch.shape
  2656. else: # bias
  2657. c3 = data_torch.shape[0]
  2658. assert c3 % 3 == 0
  2659. c = c3 // 3
  2660. wq = data_torch[:c]
  2661. wk = data_torch[c: c * 2]
  2662. wv = data_torch[c * 2:]
  2663. return [
  2664. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2665. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2666. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2667. ]
  2668. elif 'patch_embed.proj.weight' in name:
  2669. # split Conv3D into Conv2Ds
  2670. c1, c2, kt, kh, kw = data_torch.shape
  2671. del c1, c2, kh, kw # unused
  2672. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2673. return [
  2674. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2675. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2676. ]
  2677. else:
  2678. return [(self.map_tensor_name(name), data_torch)]
  2679. return [] # skip other tensors
  2680. @ModelBase.register("Qwen2_5OmniModel")
  2681. class Qwen25OmniModel(Qwen2VLVisionModel):
  2682. has_vision_encoder = True
  2683. has_audio_encoder = True
  2684. def __init__(self, *args, **kwargs):
  2685. super().__init__(*args, **kwargs)
  2686. assert self.hparams_audio is not None
  2687. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2688. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2689. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2690. def set_gguf_parameters(self):
  2691. super().set_gguf_parameters()
  2692. assert self.hparams_audio is not None
  2693. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2694. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2695. def get_vision_config(self) -> dict[str, Any] | None:
  2696. return self.global_config["thinker_config"].get("vision_config")
  2697. def get_audio_config(self) -> dict[str, Any] | None:
  2698. return self.global_config["thinker_config"].get("audio_config")
  2699. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2700. # SinusoidsPositionEmbedding
  2701. assert self.hparams_audio is not None
  2702. max_timescale = 10000
  2703. length = 1500
  2704. channels = self.hparams_audio["hidden_size"]
  2705. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2706. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2707. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2708. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2709. yield ("audio_tower.embed_positions.weight", pos_embd)
  2710. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2711. del bid, new_name, n_dims # unused
  2712. if ".conv" in name and ".weight" in name:
  2713. return gguf.GGMLQuantizationType.F16
  2714. return False
  2715. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2716. if name.startswith("thinker."):
  2717. name = name.replace("thinker.", "")
  2718. if name.startswith("audio_tower"):
  2719. # process audio tensors
  2720. if "conv1.bias" in name or "conv2.bias" in name:
  2721. # transpose conv1 and conv2 bias
  2722. data_torch = data_torch.unsqueeze(-1)
  2723. if "audio_bos_eos_token" in name:
  2724. # this tensor is left unused in transformers code
  2725. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2726. return []
  2727. return [(self.map_tensor_name(name), data_torch)]
  2728. return super().modify_tensors(data_torch, name, bid)
  2729. @ModelBase.register("InternVisionModel")
  2730. class InternVisionModel(MmprojModel):
  2731. def set_gguf_parameters(self):
  2732. super().set_gguf_parameters()
  2733. hparams = self.hparams
  2734. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2735. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2736. # hidden_act
  2737. if hparams["hidden_act"] == "silu":
  2738. self.gguf_writer.add_vision_use_silu(True)
  2739. elif hparams["hidden_act"] == "gelu":
  2740. self.gguf_writer.add_vision_use_gelu(True)
  2741. else:
  2742. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2743. # downsample_ratio
  2744. downsample_ratio = self.global_config.get("downsample_ratio")
  2745. assert downsample_ratio is not None
  2746. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2747. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2748. del bid, name, n_dims # unused
  2749. if ".patch_embd." in new_name:
  2750. return gguf.GGMLQuantizationType.F16
  2751. if ".position_embd." in new_name:
  2752. return gguf.GGMLQuantizationType.F32
  2753. return False
  2754. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2755. del bid # unused
  2756. if name.startswith("vision_model") or name.startswith("mlp"):
  2757. # process visual tensors
  2758. # correct name
  2759. if name.startswith("vision_model"):
  2760. name = "vision_tower." + name
  2761. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2762. name += ".weight"
  2763. # split QKV tensors if needed
  2764. if ".qkv." in name:
  2765. if data_torch.ndim == 2: # weight
  2766. c3, _ = data_torch.shape
  2767. else: # bias
  2768. c3 = data_torch.shape[0]
  2769. assert c3 % 3 == 0
  2770. c = c3 // 3
  2771. wq = data_torch[:c]
  2772. wk = data_torch[c: c * 2]
  2773. wv = data_torch[c * 2:]
  2774. return [
  2775. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2776. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2777. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2778. ]
  2779. return [(self.map_tensor_name(name), data_torch)]
  2780. return [] # skip other tensors
  2781. @ModelBase.register("WavTokenizerDec")
  2782. class WavTokenizerDecModel(TextModel):
  2783. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2784. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2785. del bid # unused
  2786. if \
  2787. name.endswith("codebook.cluster_size") or \
  2788. name.endswith("codebook.embed_avg") or \
  2789. name.endswith("codebook.inited"):
  2790. logger.debug(f"Skipping {name!r}")
  2791. return []
  2792. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2793. return [(self.map_tensor_name(name), data_torch)]
  2794. def set_vocab(self):
  2795. self._set_vocab_none()
  2796. def set_gguf_parameters(self):
  2797. super().set_gguf_parameters()
  2798. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2799. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2800. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2801. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2802. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2803. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2804. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2805. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2806. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2807. self.gguf_writer.add_causal_attention(False)
  2808. @ModelBase.register("Qwen2MoeForCausalLM")
  2809. class Qwen2MoeModel(TextModel):
  2810. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2811. def set_gguf_parameters(self):
  2812. super().set_gguf_parameters()
  2813. if (n_experts := self.hparams.get("num_experts")) is not None:
  2814. self.gguf_writer.add_expert_count(n_experts)
  2815. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2816. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2817. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2818. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2819. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2820. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2821. # YaRN is not enabled by default
  2822. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2823. rope_scaling = self.hparams.get("rope_scaling") or {}
  2824. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2825. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2826. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2827. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2828. _experts: list[dict[str, Tensor]] | None = None
  2829. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2830. # process the experts separately
  2831. if name.find("experts") != -1:
  2832. n_experts = self.hparams["num_experts"]
  2833. assert bid is not None
  2834. if self._experts is None:
  2835. self._experts = [{} for _ in range(self.block_count)]
  2836. self._experts[bid][name] = data_torch
  2837. if len(self._experts[bid]) >= n_experts * 3:
  2838. tensors: list[tuple[str, Tensor]] = []
  2839. # merge the experts into a single 3d tensor
  2840. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2841. datas: list[Tensor] = []
  2842. for xid in range(n_experts):
  2843. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2844. datas.append(self._experts[bid][ename])
  2845. del self._experts[bid][ename]
  2846. data_torch = torch.stack(datas, dim=0)
  2847. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2848. new_name = self.map_tensor_name(merged_name)
  2849. tensors.append((new_name, data_torch))
  2850. return tensors
  2851. else:
  2852. return []
  2853. return [(self.map_tensor_name(name), data_torch)]
  2854. def prepare_tensors(self):
  2855. super().prepare_tensors()
  2856. if self._experts is not None:
  2857. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2858. experts = [k for d in self._experts for k in d.keys()]
  2859. if len(experts) > 0:
  2860. raise ValueError(f"Unprocessed experts: {experts}")
  2861. @ModelBase.register("Qwen3ForCausalLM")
  2862. class Qwen3Model(Qwen2Model):
  2863. model_arch = gguf.MODEL_ARCH.QWEN3
  2864. @ModelBase.register("Qwen3MoeForCausalLM")
  2865. class Qwen3MoeModel(Qwen2MoeModel):
  2866. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2867. @ModelBase.register("GPT2LMHeadModel")
  2868. class GPT2Model(TextModel):
  2869. model_arch = gguf.MODEL_ARCH.GPT2
  2870. def set_gguf_parameters(self):
  2871. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2872. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2873. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2874. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2875. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2876. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2877. self.gguf_writer.add_file_type(self.ftype)
  2878. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2879. del bid # unused
  2880. tensors: list[tuple[str, Tensor]] = []
  2881. # we don't need these
  2882. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2883. return tensors
  2884. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2885. data_torch = data_torch.transpose(1, 0)
  2886. new_name = self.map_tensor_name(name)
  2887. tensors.append((new_name, data_torch))
  2888. return tensors
  2889. @ModelBase.register("PhiForCausalLM")
  2890. class Phi2Model(TextModel):
  2891. model_arch = gguf.MODEL_ARCH.PHI2
  2892. def set_gguf_parameters(self):
  2893. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2894. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2895. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2896. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2897. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2898. self.gguf_writer.add_embedding_length(n_embd)
  2899. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2900. self.gguf_writer.add_block_count(block_count)
  2901. self.gguf_writer.add_head_count(n_head)
  2902. self.gguf_writer.add_head_count_kv(n_head)
  2903. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2904. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2905. self.gguf_writer.add_file_type(self.ftype)
  2906. self.gguf_writer.add_add_bos_token(False)
  2907. @ModelBase.register("Phi3ForCausalLM")
  2908. class Phi3MiniModel(TextModel):
  2909. model_arch = gguf.MODEL_ARCH.PHI3
  2910. def set_vocab(self):
  2911. # Phi-4 model uses GPT2Tokenizer
  2912. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2913. if tokenizer_config_file.is_file():
  2914. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2915. tokenizer_config_json = json.load(f)
  2916. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2917. if tokenizer_class == 'GPT2Tokenizer':
  2918. return self._set_vocab_gpt2()
  2919. from sentencepiece import SentencePieceProcessor
  2920. tokenizer_path = self.dir_model / 'tokenizer.model'
  2921. if not tokenizer_path.is_file():
  2922. raise ValueError(f'Error: Missing {tokenizer_path}')
  2923. tokenizer = SentencePieceProcessor()
  2924. tokenizer.LoadFromFile(str(tokenizer_path))
  2925. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2926. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2927. scores: list[float] = [-10000.0] * vocab_size
  2928. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2929. for token_id in range(tokenizer.vocab_size()):
  2930. piece = tokenizer.IdToPiece(token_id)
  2931. text = piece.encode("utf-8")
  2932. score = tokenizer.GetScore(token_id)
  2933. toktype = SentencePieceTokenTypes.NORMAL
  2934. if tokenizer.IsUnknown(token_id):
  2935. toktype = SentencePieceTokenTypes.UNKNOWN
  2936. elif tokenizer.IsControl(token_id):
  2937. toktype = SentencePieceTokenTypes.CONTROL
  2938. elif tokenizer.IsUnused(token_id):
  2939. toktype = SentencePieceTokenTypes.UNUSED
  2940. elif tokenizer.IsByte(token_id):
  2941. toktype = SentencePieceTokenTypes.BYTE
  2942. tokens[token_id] = text
  2943. scores[token_id] = score
  2944. toktypes[token_id] = toktype
  2945. added_tokens_file = self.dir_model / 'added_tokens.json'
  2946. if added_tokens_file.is_file():
  2947. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2948. added_tokens_json = json.load(f)
  2949. for key in added_tokens_json:
  2950. token_id = added_tokens_json[key]
  2951. if token_id >= vocab_size:
  2952. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2953. continue
  2954. tokens[token_id] = key.encode("utf-8")
  2955. scores[token_id] = -1000.0
  2956. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2957. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2958. if tokenizer_config_file.is_file():
  2959. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2960. tokenizer_config_json = json.load(f)
  2961. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2962. for token_id, foken_data in added_tokens_decoder.items():
  2963. token_id = int(token_id)
  2964. token = foken_data["content"].encode("utf-8")
  2965. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2966. if tokens[token_id] != token:
  2967. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2968. tokens[token_id] = token
  2969. scores[token_id] = -1000.0
  2970. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2971. if foken_data.get("special"):
  2972. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2973. tokenizer_file = self.dir_model / 'tokenizer.json'
  2974. if tokenizer_file.is_file():
  2975. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2976. tokenizer_json = json.load(f)
  2977. added_tokens = tokenizer_json.get("added_tokens", [])
  2978. for foken_data in added_tokens:
  2979. token_id = int(foken_data["id"])
  2980. token = foken_data["content"].encode("utf-8")
  2981. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2982. if tokens[token_id] != token:
  2983. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2984. tokens[token_id] = token
  2985. scores[token_id] = -1000.0
  2986. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2987. if foken_data.get("special"):
  2988. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2989. self.gguf_writer.add_tokenizer_model("llama")
  2990. self.gguf_writer.add_tokenizer_pre("default")
  2991. self.gguf_writer.add_token_list(tokens)
  2992. self.gguf_writer.add_token_scores(scores)
  2993. self.gguf_writer.add_token_types(toktypes)
  2994. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2995. special_vocab.add_to_gguf(self.gguf_writer)
  2996. def set_gguf_parameters(self):
  2997. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2998. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2999. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3000. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3001. rms_eps = self.find_hparam(["rms_norm_eps"])
  3002. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3003. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3004. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3005. rope_dims = int(rot_pct * n_embd) // n_head
  3006. self.gguf_writer.add_context_length(max_pos_embds)
  3007. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3008. self.gguf_writer.add_embedding_length(n_embd)
  3009. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3010. self.gguf_writer.add_block_count(block_count)
  3011. self.gguf_writer.add_head_count(n_head)
  3012. self.gguf_writer.add_head_count_kv(n_head_kv)
  3013. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3014. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3015. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3016. self.gguf_writer.add_file_type(self.ftype)
  3017. sliding_window = self.hparams.get("sliding_window")
  3018. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3019. if sliding_window is None:
  3020. sliding_window = 0
  3021. self.gguf_writer.add_sliding_window(sliding_window)
  3022. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3023. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3024. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3025. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3026. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3027. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3028. rope_dims = int(rot_pct * n_embd) // n_head
  3029. # write rope scaling for long context (128k) model
  3030. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3031. if rope_scaling is None:
  3032. return
  3033. scale = max_pos_embds / orig_max_pos_embds
  3034. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3035. if len(rope_scaling_type) == 0:
  3036. raise KeyError('Missing the required key rope_scaling.type')
  3037. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3038. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3039. elif rope_scaling_type == 'yarn':
  3040. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3041. else:
  3042. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3043. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3044. long_factors = rope_scaling.get('long_factor', None)
  3045. short_factors = rope_scaling.get('short_factor', None)
  3046. if long_factors is None or short_factors is None:
  3047. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3048. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3049. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3050. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3051. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3052. @ModelBase.register("PhiMoEForCausalLM")
  3053. class PhiMoeModel(Phi3MiniModel):
  3054. model_arch = gguf.MODEL_ARCH.PHIMOE
  3055. _experts: list[dict[str, Tensor]] | None = None
  3056. def set_gguf_parameters(self):
  3057. super().set_gguf_parameters()
  3058. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3059. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3060. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3061. # process the experts separately
  3062. if name.find("block_sparse_moe.experts") != -1:
  3063. n_experts = self.hparams["num_local_experts"]
  3064. assert bid is not None
  3065. if self._experts is None:
  3066. self._experts = [{} for _ in range(self.block_count)]
  3067. self._experts[bid][name] = data_torch
  3068. if len(self._experts[bid]) >= n_experts * 3:
  3069. tensors: list[tuple[str, Tensor]] = []
  3070. # merge the experts into a single 3d tensor
  3071. for w_name in ["w1", "w2", "w3"]:
  3072. datas: list[Tensor] = []
  3073. for xid in range(n_experts):
  3074. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3075. datas.append(self._experts[bid][ename])
  3076. del self._experts[bid][ename]
  3077. data_torch = torch.stack(datas, dim=0)
  3078. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3079. new_name = self.map_tensor_name(merged_name)
  3080. tensors.append((new_name, data_torch))
  3081. return tensors
  3082. else:
  3083. return []
  3084. return [(self.map_tensor_name(name), data_torch)]
  3085. def prepare_tensors(self):
  3086. super().prepare_tensors()
  3087. if self._experts is not None:
  3088. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3089. experts = [k for d in self._experts for k in d.keys()]
  3090. if len(experts) > 0:
  3091. raise ValueError(f"Unprocessed experts: {experts}")
  3092. @ModelBase.register("PlamoForCausalLM")
  3093. class PlamoModel(TextModel):
  3094. model_arch = gguf.MODEL_ARCH.PLAMO
  3095. def set_vocab(self):
  3096. self._set_vocab_sentencepiece()
  3097. def set_gguf_parameters(self):
  3098. hparams = self.hparams
  3099. block_count = hparams["num_hidden_layers"]
  3100. self.gguf_writer.add_context_length(4096) # not in config.json
  3101. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3102. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3103. self.gguf_writer.add_block_count(block_count)
  3104. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3105. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3106. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3107. self.gguf_writer.add_file_type(self.ftype)
  3108. def shuffle_attn_q_weight(self, data_torch):
  3109. assert data_torch.size() == (5120, 5120)
  3110. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3111. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3112. data_torch = torch.reshape(data_torch, (5120, 5120))
  3113. return data_torch
  3114. def shuffle_attn_output_weight(self, data_torch):
  3115. assert data_torch.size() == (5120, 5120)
  3116. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3117. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3118. data_torch = torch.reshape(data_torch, (5120, 5120))
  3119. return data_torch
  3120. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3121. del bid # unused
  3122. new_name = self.map_tensor_name(name)
  3123. # shuffle for broadcasting of gqa in ggml_mul_mat
  3124. if new_name.endswith("attn_q.weight"):
  3125. data_torch = self.shuffle_attn_q_weight(data_torch)
  3126. elif new_name.endswith("attn_output.weight"):
  3127. data_torch = self.shuffle_attn_output_weight(data_torch)
  3128. return [(new_name, data_torch)]
  3129. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3130. class Plamo2Model(TextModel):
  3131. model_arch = gguf.MODEL_ARCH.PLAMO2
  3132. def set_vocab(self):
  3133. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3134. # We need to handle this specially
  3135. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3136. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3137. if not tokenizer_jsonl_path.is_file():
  3138. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3139. # Load tokenizer config
  3140. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3141. tokenizer_config = json.load(f)
  3142. # Load tokens from JSONL file (actually a list format)
  3143. tokens = []
  3144. scores = []
  3145. toktypes = []
  3146. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3147. for line_num, line in enumerate(f):
  3148. if line.strip():
  3149. token_data = json.loads(line)
  3150. # Format: [token, score, type, ?, ?, ?, ?]
  3151. token = token_data[0].encode("utf-8")
  3152. score = float(token_data[1])
  3153. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3154. tokens.append(token)
  3155. scores.append(score)
  3156. # Map token type strings to GGUF token types
  3157. if token_type_str == "UNKNOWN":
  3158. toktypes.append(gguf.TokenType.UNKNOWN)
  3159. elif token_type_str == "CONTROL":
  3160. toktypes.append(gguf.TokenType.CONTROL)
  3161. elif token_type_str == "BYTE":
  3162. toktypes.append(gguf.TokenType.BYTE)
  3163. else:
  3164. # Check for PLaMo-2 special tokens
  3165. token_str = token_data[0]
  3166. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3167. toktypes.append(gguf.TokenType.CONTROL)
  3168. else:
  3169. toktypes.append(gguf.TokenType.NORMAL)
  3170. vocab_size = self.hparams["vocab_size"]
  3171. if vocab_size > len(tokens):
  3172. pad_count = vocab_size - len(tokens)
  3173. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3174. for i in range(1, pad_count + 1):
  3175. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3176. scores.append(-1000.0)
  3177. toktypes.append(gguf.TokenType.UNUSED)
  3178. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3179. self.gguf_writer.add_tokenizer_model("plamo2")
  3180. self.gguf_writer.add_tokenizer_pre("default")
  3181. self.gguf_writer.add_token_list(tokens)
  3182. self.gguf_writer.add_token_scores(scores)
  3183. self.gguf_writer.add_token_types(toktypes)
  3184. # Add special tokens from config
  3185. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3186. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3187. self.gguf_writer.add_bos_token_id(token_id)
  3188. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3189. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3190. self.gguf_writer.add_eos_token_id(token_id)
  3191. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3192. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3193. self.gguf_writer.add_pad_token_id(token_id)
  3194. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3195. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3196. self.gguf_writer.add_sep_token_id(token_id)
  3197. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3198. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3199. self.gguf_writer.add_unk_token_id(token_id)
  3200. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3201. self.gguf_writer.add_eot_token_id(4)
  3202. self.gguf_writer.add_add_space_prefix(False)
  3203. def set_gguf_parameters(self):
  3204. hparams = self.hparams
  3205. block_count = hparams["num_hidden_layers"]
  3206. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3207. # Which layers are Mamba layers
  3208. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3209. # This logic matches modeling_plamo.py's is_mamba function
  3210. mamba_step = hparams.get("mamba_step", 2)
  3211. mamba_enabled = hparams.get("mamba_enabled", True)
  3212. mamba_layers = []
  3213. if mamba_enabled:
  3214. for i in range(block_count):
  3215. if block_count <= (mamba_step // 2):
  3216. # use attention in last layer
  3217. is_mamba = (i != block_count - 1)
  3218. else:
  3219. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3220. if is_mamba:
  3221. mamba_layers.append(0)
  3222. else:
  3223. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3224. if mamba_layers:
  3225. self.gguf_writer.add_head_count_kv(mamba_layers)
  3226. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3227. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3228. self.gguf_writer.add_block_count(block_count)
  3229. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3230. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3231. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3232. # Mamba parameters
  3233. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3234. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3235. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3236. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3237. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3238. self.gguf_writer.add_ssm_group_count(0)
  3239. # MLP feed forward parameters (for attention layers)
  3240. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3241. self.gguf_writer.add_file_type(self.ftype)
  3242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3243. del bid # unused
  3244. if name.endswith(".A_log"):
  3245. data_torch = -torch.exp(data_torch)
  3246. elif name.endswith(".dt_bias"):
  3247. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3248. elif name.endswith(".dt_norm_weight"):
  3249. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3250. elif name.endswith(".B_norm_weight"):
  3251. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3252. elif name.endswith(".C_norm_weight"):
  3253. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3254. elif name.endswith(".k_weight"):
  3255. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3256. elif name.endswith(".q_weight"):
  3257. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3258. elif name.endswith(".conv1d.weight"):
  3259. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3260. assert data_torch.ndim == 2
  3261. elif name.endswith(".pre_mixer_norm.weight"):
  3262. data_torch += 1.0
  3263. elif name.endswith(".post_mixer_norm.weight"):
  3264. data_torch += 1.0 / 5
  3265. elif name.endswith(".pre_mlp_norm.weight"):
  3266. data_torch += 1.0
  3267. elif name.endswith(".post_mlp_norm.weight"):
  3268. data_torch += 1.0 / (5**1.5)
  3269. elif name.endswith(".norm.weight"):
  3270. data_torch += 1.0
  3271. new_name = self.map_tensor_name(name)
  3272. return [(new_name, data_torch)]
  3273. @ModelBase.register("CodeShellForCausalLM")
  3274. class CodeShellModel(TextModel):
  3275. model_arch = gguf.MODEL_ARCH.CODESHELL
  3276. def set_gguf_parameters(self):
  3277. block_count = self.hparams["n_layer"]
  3278. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3279. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3280. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3281. self.gguf_writer.add_block_count(block_count)
  3282. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3283. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3284. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3285. self.gguf_writer.add_file_type(self.ftype)
  3286. self.gguf_writer.add_rope_freq_base(10000.0)
  3287. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3288. self.gguf_writer.add_rope_scaling_factor(1.0)
  3289. _has_tok_embd = False
  3290. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3291. del bid # unused
  3292. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3293. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3294. new_name = self.map_tensor_name(name)
  3295. # assuming token_embd.weight is seen before output.weight
  3296. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3297. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3298. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3299. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3300. self.tensor_names.remove("transformer.wte.weight")
  3301. elif new_name == tok_embd_name:
  3302. self._has_tok_embd = True
  3303. return [(new_name, data_torch)]
  3304. @ModelBase.register("InternLM2ForCausalLM")
  3305. class InternLM2Model(TextModel):
  3306. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3307. def set_vocab(self):
  3308. # (TODO): Is there a better way?
  3309. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3310. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3311. # recognized as an empty string in C++.
  3312. from sentencepiece import SentencePieceProcessor
  3313. from sentencepiece import sentencepiece_model_pb2 as model
  3314. tokenizer_path = self.dir_model / 'tokenizer.model'
  3315. tokens: list[bytes] = []
  3316. scores: list[float] = []
  3317. toktypes: list[int] = []
  3318. if not tokenizer_path.is_file():
  3319. logger.error(f'Error: Missing {tokenizer_path}')
  3320. sys.exit(1)
  3321. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3322. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3323. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3324. tokenizer = SentencePieceProcessor()
  3325. tokenizer.LoadFromFile(str(tokenizer_path))
  3326. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3327. for token_id in range(vocab_size):
  3328. piece = tokenizer.IdToPiece(token_id)
  3329. text = piece.encode("utf-8")
  3330. score = tokenizer.GetScore(token_id)
  3331. if text == b"\x00":
  3332. # (TODO): fixme
  3333. # Hack here and replace the \x00 characters.
  3334. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3335. text = "🐉".encode("utf-8")
  3336. toktype = SentencePieceTokenTypes.NORMAL
  3337. if tokenizer.IsUnknown(token_id):
  3338. toktype = SentencePieceTokenTypes.UNKNOWN
  3339. elif tokenizer.IsControl(token_id):
  3340. toktype = SentencePieceTokenTypes.CONTROL
  3341. elif tokenizer.IsUnused(token_id):
  3342. toktype = SentencePieceTokenTypes.UNUSED
  3343. elif tokenizer.IsByte(token_id):
  3344. toktype = SentencePieceTokenTypes.BYTE
  3345. # take care of ununsed raw token
  3346. if piece.startswith('[UNUSED'):
  3347. toktype = SentencePieceTokenTypes.UNUSED
  3348. tokens.append(text)
  3349. scores.append(score)
  3350. toktypes.append(toktype)
  3351. added_tokens_file = self.dir_model / 'added_tokens.json'
  3352. if added_tokens_file.is_file():
  3353. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3354. added_tokens_json = json.load(f)
  3355. for key in added_tokens_json:
  3356. tokens.append(key.encode("utf-8"))
  3357. scores.append(-1000.0)
  3358. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3359. chat_eos_token = '<|im_end|>'
  3360. chat_eos_token_id = None
  3361. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3362. if tokenizer_config_file.is_file():
  3363. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3364. tokenizer_config_json = json.load(f)
  3365. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3366. for token_id, foken_data in added_tokens_decoder.items():
  3367. token_id = int(token_id)
  3368. token = foken_data["content"]
  3369. if token == chat_eos_token:
  3370. chat_eos_token_id = token_id
  3371. token = token.encode("utf-8")
  3372. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3373. if tokens[token_id] != token:
  3374. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3375. tokens[token_id] = token
  3376. scores[token_id] = -1000.0
  3377. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3378. if foken_data.get("special"):
  3379. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3380. tokenizer_file = self.dir_model / 'tokenizer.json'
  3381. if tokenizer_file.is_file():
  3382. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3383. tokenizer_json = json.load(f)
  3384. added_tokens = tokenizer_json.get("added_tokens", [])
  3385. for foken_data in added_tokens:
  3386. token_id = int(foken_data["id"])
  3387. token = foken_data["content"]
  3388. if token == chat_eos_token:
  3389. chat_eos_token_id = token_id
  3390. token = token.encode("utf-8")
  3391. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3392. if tokens[token_id] != token:
  3393. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3394. tokens[token_id] = token
  3395. scores[token_id] = -1000.0
  3396. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3397. if foken_data.get("special"):
  3398. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3399. self.gguf_writer.add_tokenizer_model("llama")
  3400. self.gguf_writer.add_tokenizer_pre("default")
  3401. self.gguf_writer.add_token_list(tokens)
  3402. self.gguf_writer.add_token_scores(scores)
  3403. self.gguf_writer.add_token_types(toktypes)
  3404. self.gguf_writer.add_add_space_prefix(add_prefix)
  3405. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3406. old_eos = special_vocab.special_token_ids["eos"]
  3407. if chat_eos_token_id is not None:
  3408. # For the chat model, we replace the eos with '<|im_end|>'.
  3409. # TODO: this is a hack, should be fixed
  3410. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3411. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3412. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3413. " in chat mode so that the conversation can end normally.")
  3414. special_vocab.add_to_gguf(self.gguf_writer)
  3415. def set_gguf_parameters(self):
  3416. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3417. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3418. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3419. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3420. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3421. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3422. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3423. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3424. self.gguf_writer.add_file_type(self.ftype)
  3425. rope_scaling = self.hparams.get("rope_scaling") or {}
  3426. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3427. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3428. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3429. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3430. num_heads = self.hparams["num_attention_heads"]
  3431. num_kv_heads = self.hparams["num_key_value_heads"]
  3432. n_embd = self.hparams["hidden_size"]
  3433. q_per_kv = num_heads // num_kv_heads
  3434. head_dim = n_embd // num_heads
  3435. num_groups = num_heads // q_per_kv
  3436. name = name.replace("language_model.", "") # InternVL
  3437. if name.startswith("mlp") or name.startswith("vision_model"):
  3438. # skip visual tensors
  3439. return []
  3440. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3441. qkv = data_torch
  3442. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3443. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3444. # The model weights of q and k equire additional reshape.
  3445. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3446. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3447. v = v.reshape((-1, v.shape[-1]))
  3448. return [
  3449. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3450. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3451. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3452. ]
  3453. else:
  3454. return [(self.map_tensor_name(name), data_torch)]
  3455. @ModelBase.register("InternLM3ForCausalLM")
  3456. class InternLM3Model(TextModel):
  3457. model_arch = gguf.MODEL_ARCH.LLAMA
  3458. def set_vocab(self):
  3459. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3460. self.gguf_writer.add_tokenizer_model("llama")
  3461. self.gguf_writer.add_tokenizer_pre("default")
  3462. self.gguf_writer.add_token_list(tokens)
  3463. self.gguf_writer.add_token_scores(scores)
  3464. self.gguf_writer.add_token_types(toktypes)
  3465. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3466. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3467. if tokenizer_config_file.is_file():
  3468. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3469. tokenizer_config_json = json.load(f)
  3470. if "add_prefix_space" in tokenizer_config_json:
  3471. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3472. if "added_tokens_decoder" in tokenizer_config_json:
  3473. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3474. if token_data.get("special"):
  3475. token_id = int(token_id)
  3476. token = token_data["content"]
  3477. special_vocab._set_special_token(token, token_id)
  3478. # update eos token
  3479. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3480. special_vocab.special_token_ids["eos"] = token_id
  3481. special_vocab.add_to_gguf(self.gguf_writer)
  3482. def set_gguf_parameters(self):
  3483. super().set_gguf_parameters()
  3484. hparams = self.hparams
  3485. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3486. if (rope_dim := hparams.get("head_dim")) is None:
  3487. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3488. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3489. rope_scaling = self.hparams.get("rope_scaling") or {}
  3490. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3491. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3492. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3493. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3494. n_head = self.hparams["num_attention_heads"]
  3495. n_kv_head = self.hparams.get("num_key_value_heads")
  3496. name = name.replace("language_model.", "") # InternVL
  3497. if name.startswith("mlp") or name.startswith("vision_model"):
  3498. # skip visual tensors
  3499. return []
  3500. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3501. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3502. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3503. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3504. return [(self.map_tensor_name(name), data_torch)]
  3505. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3506. class BertModel(TextModel):
  3507. model_arch = gguf.MODEL_ARCH.BERT
  3508. def __init__(self, *args, **kwargs):
  3509. super().__init__(*args, **kwargs)
  3510. self.vocab_size = None
  3511. if cls_out_labels := self.hparams.get("id2label"):
  3512. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3513. # Remove dummy labels added by AutoConfig
  3514. cls_out_labels = None
  3515. self.cls_out_labels = cls_out_labels
  3516. def set_gguf_parameters(self):
  3517. super().set_gguf_parameters()
  3518. self.gguf_writer.add_causal_attention(False)
  3519. self._try_set_pooling_type()
  3520. if self.cls_out_labels:
  3521. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3522. def set_vocab(self):
  3523. tokens, toktypes, tokpre = self.get_vocab_base()
  3524. self.vocab_size = len(tokens)
  3525. # we need this to validate the size of the token_type embeddings
  3526. # though currently we are passing all zeros to the token_type embeddings
  3527. # "Sequence A" or "Sequence B"
  3528. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3529. # convert to phantom space vocab
  3530. def phantom(tok):
  3531. if tok.startswith("[") and tok.endswith("]"):
  3532. return tok
  3533. if tok.startswith("##"):
  3534. return tok[2:]
  3535. return "\u2581" + tok
  3536. tokens = list(map(phantom, tokens))
  3537. # add vocab to gguf
  3538. self.gguf_writer.add_tokenizer_model("bert")
  3539. self.gguf_writer.add_tokenizer_pre(tokpre)
  3540. self.gguf_writer.add_token_list(tokens)
  3541. self.gguf_writer.add_token_types(toktypes)
  3542. # handle special tokens
  3543. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3544. special_vocab.add_to_gguf(self.gguf_writer)
  3545. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3546. del bid # unused
  3547. if name.startswith("bert."):
  3548. name = name[5:]
  3549. if name.endswith(".gamma"):
  3550. name = name[:-6] + ".weight"
  3551. if name.endswith(".beta"):
  3552. name = name[:-5] + ".bias"
  3553. # we are only using BERT for embeddings so we don't need the pooling layer
  3554. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3555. return [] # we don't need these
  3556. if name.startswith("cls.predictions"):
  3557. return []
  3558. if name.startswith("cls.seq_relationship"):
  3559. return []
  3560. if self.cls_out_labels:
  3561. # For BertForSequenceClassification (direct projection layer)
  3562. if name == "classifier.weight":
  3563. name = "classifier.out_proj.weight"
  3564. if name == "classifier.bias":
  3565. name = "classifier.out_proj.bias"
  3566. return [(self.map_tensor_name(name), data_torch)]
  3567. def _xlmroberta_tokenizer_init(self) -> None:
  3568. # we need the pad_token_id to know how to chop down position_embd matrix
  3569. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3570. self._position_offset = 1 + pad_token_id
  3571. if "max_position_embeddings" in self.hparams:
  3572. self.hparams["max_position_embeddings"] -= self._position_offset
  3573. else:
  3574. self._position_offset = None
  3575. def _xlmroberta_set_vocab(self) -> None:
  3576. # to avoid TypeError: Descriptors cannot be created directly
  3577. # exception when importing sentencepiece_model_pb2
  3578. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3579. from sentencepiece import SentencePieceProcessor
  3580. from sentencepiece import sentencepiece_model_pb2 as model
  3581. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3582. tokenizer_json = {}
  3583. tokenizer_config_json = {}
  3584. if not tokenizer_path.is_file():
  3585. tokenizer_path = self.dir_model / 'tokenizer.json'
  3586. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3587. if not tokenizer_path.is_file():
  3588. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3589. from base64 import b64decode
  3590. from transformers import AutoTokenizer
  3591. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3592. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3593. tokenizer_json = json.load(fp)
  3594. if tokenizer_config_path.is_file():
  3595. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3596. tokenizer_config_json = json.load(fp)
  3597. add_prefix = tokenizer.add_prefix_space
  3598. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3599. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3600. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3601. else:
  3602. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3603. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3604. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3605. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3606. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3607. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3608. tokenizer = SentencePieceProcessor()
  3609. tokenizer.LoadFromFile(str(tokenizer_path))
  3610. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3611. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3612. scores: list[float] = [-10000.0] * vocab_size
  3613. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3614. if isinstance(tokenizer, SentencePieceProcessor):
  3615. for token_id in range(tokenizer.vocab_size()):
  3616. piece = tokenizer.IdToPiece(token_id)
  3617. text = piece.encode("utf-8")
  3618. score = tokenizer.GetScore(token_id)
  3619. toktype = SentencePieceTokenTypes.NORMAL
  3620. if tokenizer.IsUnknown(token_id):
  3621. toktype = SentencePieceTokenTypes.UNKNOWN
  3622. elif tokenizer.IsControl(token_id):
  3623. toktype = SentencePieceTokenTypes.CONTROL
  3624. elif tokenizer.IsUnused(token_id):
  3625. toktype = SentencePieceTokenTypes.UNUSED
  3626. elif tokenizer.IsByte(token_id):
  3627. toktype = SentencePieceTokenTypes.BYTE
  3628. tokens[token_id] = text
  3629. scores[token_id] = score
  3630. toktypes[token_id] = toktype
  3631. else:
  3632. added_vocab = tokenizer.get_added_vocab()
  3633. unk_token = tokenizer_config_json.get("unk_token")
  3634. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3635. for token_id in range(tokenizer.vocab_size):
  3636. piece = tokenizer._convert_id_to_token(token_id)
  3637. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3638. text = piece.encode("utf-8")
  3639. score = tokenizer_json["model"]["vocab"][token_id][1]
  3640. toktype = SentencePieceTokenTypes.NORMAL
  3641. if token_id == unk_token_id:
  3642. toktype = SentencePieceTokenTypes.UNKNOWN
  3643. elif token_id in tokenizer.all_special_ids:
  3644. toktype = SentencePieceTokenTypes.CONTROL
  3645. elif token_id in added_vocab.values():
  3646. toktype = SentencePieceTokenTypes.USER_DEFINED
  3647. # No reliable way to detect this, but jina doesn't have any
  3648. # elif tokenizer.IsByte(token_id):
  3649. # toktype = SentencePieceTokenTypes.BYTE
  3650. tokens[token_id] = text
  3651. scores[token_id] = score
  3652. toktypes[token_id] = toktype
  3653. if isinstance(tokenizer, SentencePieceProcessor):
  3654. # realign tokens (see HF tokenizer code)
  3655. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3656. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3657. toktypes = [
  3658. SentencePieceTokenTypes.CONTROL,
  3659. SentencePieceTokenTypes.CONTROL,
  3660. SentencePieceTokenTypes.CONTROL,
  3661. SentencePieceTokenTypes.UNKNOWN,
  3662. ] + toktypes[3:-1]
  3663. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3664. # Add mask token missing from sentencepiece.bpe.model
  3665. tokens[250001] = b'<mask>'
  3666. scores[250001] = 0.0
  3667. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3668. self.gguf_writer.add_tokenizer_model("t5")
  3669. self.gguf_writer.add_tokenizer_pre("default")
  3670. self.gguf_writer.add_token_list(tokens)
  3671. self.gguf_writer.add_token_scores(scores)
  3672. self.gguf_writer.add_token_types(toktypes)
  3673. self.gguf_writer.add_add_space_prefix(add_prefix)
  3674. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3675. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3676. if precompiled_charsmap:
  3677. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3678. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3679. special_vocab.add_to_gguf(self.gguf_writer)
  3680. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3681. class DistilBertModel(BertModel):
  3682. model_arch = gguf.MODEL_ARCH.BERT
  3683. def set_gguf_parameters(self):
  3684. self.gguf_writer.add_layer_norm_eps(1e-12)
  3685. logger.info("gguf: layer norm epsilon = 1e-12")
  3686. super().set_gguf_parameters()
  3687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3688. if name.startswith("distilbert."):
  3689. name = name[11:]
  3690. # These layers act as MLM head, so we don't need them
  3691. if name.startswith("vocab_"):
  3692. return []
  3693. return super().modify_tensors(data_torch, name, bid)
  3694. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3695. class RobertaModel(BertModel):
  3696. model_arch = gguf.MODEL_ARCH.BERT
  3697. def __init__(self, *args, **kwargs):
  3698. super().__init__(*args, **kwargs)
  3699. # we need the pad_token_id to know how to chop down position_embd matrix
  3700. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3701. self._position_offset = 1 + pad_token_id
  3702. if "max_position_embeddings" in self.hparams:
  3703. self.hparams["max_position_embeddings"] -= self._position_offset
  3704. else:
  3705. self._position_offset = None
  3706. def set_vocab(self):
  3707. """Support BPE tokenizers for roberta models"""
  3708. bpe_tok_path = self.dir_model / "tokenizer.json"
  3709. if bpe_tok_path.exists():
  3710. self._set_vocab_gpt2()
  3711. # we need this to validate the size of the token_type embeddings
  3712. # though currently we are passing all zeros to the token_type embeddings
  3713. # "Sequence A" or "Sequence B"
  3714. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3715. else:
  3716. return super().set_vocab()
  3717. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3718. # if name starts with "roberta.", remove the prefix
  3719. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3720. if name.startswith("roberta."):
  3721. name = name[8:]
  3722. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3723. if name == "embeddings.position_embeddings.weight":
  3724. if self._position_offset is not None:
  3725. data_torch = data_torch[self._position_offset:,:]
  3726. return super().modify_tensors(data_torch, name, bid)
  3727. @ModelBase.register("NomicBertModel")
  3728. class NomicBertModel(BertModel):
  3729. model_arch = gguf.MODEL_ARCH.BERT
  3730. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3731. hparams = kwargs.pop("hparams", None)
  3732. if hparams is None:
  3733. hparams = ModelBase.load_hparams(dir_model)
  3734. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3735. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3736. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3737. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3738. if self._tokenizer_is_xlmroberta:
  3739. self._xlmroberta_tokenizer_init()
  3740. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3741. if npos == 8192 and mtp == 2048:
  3742. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3743. elif npos == 2048 and mtp == 2048:
  3744. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3745. else:
  3746. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3747. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3748. # this doesn't do anything in the HF version
  3749. assert self.hparams["causal"] is False
  3750. # no bias tensors unless MoE
  3751. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3752. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3753. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3754. # norm at end of layer
  3755. assert self.hparams["prenorm"] is False
  3756. # standard RoPE
  3757. assert self.hparams["rotary_emb_fraction"] == 1.0
  3758. assert self.hparams["rotary_emb_interleaved"] is False
  3759. assert self.hparams["rotary_emb_scale_base"] is None
  3760. def set_vocab(self) -> None:
  3761. if self._tokenizer_is_xlmroberta:
  3762. return self._xlmroberta_set_vocab()
  3763. return super().set_vocab()
  3764. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3765. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3766. if "mlp.experts.bias" in name:
  3767. return [] # Explicitly return an empty list.
  3768. if "mlp.experts.mlp.w1" in name:
  3769. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3770. name += ".weight"
  3771. if "mlp.experts.mlp.w2" in name:
  3772. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3773. data_torch = data_torch.transpose(1, 2)
  3774. name += ".weight"
  3775. return [(self.map_tensor_name(name), data_torch)]
  3776. def set_gguf_parameters(self):
  3777. super().set_gguf_parameters()
  3778. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3779. if self.is_moe:
  3780. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3781. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3782. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3783. def _is_tokenizer_xlmroberta(self) -> bool:
  3784. with open(self.dir_model / "tokenizer.json") as f:
  3785. tokenizer_json = json.load(f)
  3786. toktyp = tokenizer_json["model"]["type"]
  3787. if toktyp == "Unigram":
  3788. return True
  3789. if toktyp == "WordPiece":
  3790. return False
  3791. raise ValueError(f"unknown tokenizer: {toktyp}")
  3792. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3793. class NeoBert(BertModel):
  3794. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3795. def set_gguf_parameters(self):
  3796. super().set_gguf_parameters()
  3797. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3798. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3799. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3800. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3801. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3802. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3803. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3804. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3805. def modify_tensors(self, data_torch, name, bid):
  3806. if name.startswith("decoder."):
  3807. return []
  3808. if name.startswith("model."):
  3809. name = name[6:]
  3810. return super().modify_tensors(data_torch, name, bid)
  3811. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3812. class XLMRobertaModel(BertModel):
  3813. model_arch = gguf.MODEL_ARCH.BERT
  3814. def __init__(self, *args, **kwargs):
  3815. super().__init__(*args, **kwargs)
  3816. self._xlmroberta_tokenizer_init()
  3817. def set_vocab(self):
  3818. self._xlmroberta_set_vocab()
  3819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3820. # if name starts with "roberta.", remove the prefix
  3821. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3822. if name.startswith("roberta."):
  3823. name = name[8:]
  3824. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3825. if name == "embeddings.position_embeddings.weight":
  3826. if self._position_offset is not None:
  3827. data_torch = data_torch[self._position_offset:,:]
  3828. return super().modify_tensors(data_torch, name, bid)
  3829. @ModelBase.register("GemmaForCausalLM")
  3830. class GemmaModel(TextModel):
  3831. model_arch = gguf.MODEL_ARCH.GEMMA
  3832. def set_vocab(self):
  3833. self._set_vocab_sentencepiece()
  3834. # TODO: these special tokens should be exported only for the CodeGemma family
  3835. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3836. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3837. special_vocab._set_special_token("prefix", 67)
  3838. special_vocab._set_special_token("suffix", 69)
  3839. special_vocab._set_special_token("middle", 68)
  3840. special_vocab._set_special_token("fsep", 70)
  3841. special_vocab._set_special_token("eot", 107)
  3842. special_vocab.chat_template = None # do not add it twice
  3843. special_vocab.add_to_gguf(self.gguf_writer)
  3844. self.gguf_writer.add_add_space_prefix(False)
  3845. def set_gguf_parameters(self):
  3846. hparams = self.hparams
  3847. block_count = hparams["num_hidden_layers"]
  3848. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3849. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3850. self.gguf_writer.add_block_count(block_count)
  3851. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3852. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3853. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3854. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3855. self.gguf_writer.add_key_length(hparams["head_dim"])
  3856. self.gguf_writer.add_value_length(hparams["head_dim"])
  3857. self.gguf_writer.add_file_type(self.ftype)
  3858. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3859. del bid # unused
  3860. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3861. # To prevent errors, skip loading lm_head.weight.
  3862. if name == "lm_head.weight":
  3863. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3864. return []
  3865. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3866. if name.endswith("norm.weight"):
  3867. data_torch = data_torch + 1
  3868. return [(self.map_tensor_name(name), data_torch)]
  3869. @ModelBase.register("Gemma2ForCausalLM")
  3870. class Gemma2Model(TextModel):
  3871. model_arch = gguf.MODEL_ARCH.GEMMA2
  3872. def set_vocab(self):
  3873. self._set_vocab_sentencepiece()
  3874. self.gguf_writer.add_add_space_prefix(False)
  3875. def set_gguf_parameters(self):
  3876. hparams = self.hparams
  3877. block_count = hparams["num_hidden_layers"]
  3878. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3879. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3880. self.gguf_writer.add_block_count(block_count)
  3881. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3882. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3883. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3884. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3885. self.gguf_writer.add_key_length(hparams["head_dim"])
  3886. self.gguf_writer.add_value_length(hparams["head_dim"])
  3887. self.gguf_writer.add_file_type(self.ftype)
  3888. self.gguf_writer.add_attn_logit_softcapping(
  3889. self.hparams["attn_logit_softcapping"]
  3890. )
  3891. self.gguf_writer.add_final_logit_softcapping(
  3892. self.hparams["final_logit_softcapping"]
  3893. )
  3894. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3896. del bid # unused
  3897. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3898. # To prevent errors, skip loading lm_head.weight.
  3899. if name == "lm_head.weight":
  3900. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3901. return []
  3902. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3903. if name.endswith("norm.weight"):
  3904. data_torch = data_torch + 1
  3905. return [(self.map_tensor_name(name), data_torch)]
  3906. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3907. class Gemma3Model(TextModel):
  3908. model_arch = gguf.MODEL_ARCH.GEMMA3
  3909. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3910. def set_vocab(self):
  3911. self._set_vocab_sentencepiece()
  3912. self.gguf_writer.add_add_space_prefix(False)
  3913. def set_gguf_parameters(self):
  3914. hparams = self.hparams
  3915. block_count = hparams["num_hidden_layers"]
  3916. # some default values are not specified in the hparams
  3917. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3918. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3919. self.gguf_writer.add_block_count(block_count)
  3920. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3921. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3922. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3923. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3924. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3925. self.gguf_writer.add_file_type(self.ftype)
  3926. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3927. # attn_logit_softcapping is removed in Gemma3
  3928. assert hparams.get("attn_logit_softcapping") is None
  3929. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3930. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3931. if hparams.get("rope_scaling") is not None:
  3932. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3933. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3934. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3935. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3937. del bid # unused
  3938. if "language_model." in name:
  3939. name = name.replace("language_model.", "")
  3940. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3941. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3942. return [] # skip vision tensors
  3943. # remove OOV (out-of-vocabulary) rows in token_embd
  3944. if "embed_tokens.weight" in name:
  3945. vocab = self._create_vocab_sentencepiece()
  3946. tokens = vocab[0]
  3947. data_torch = data_torch[:len(tokens)]
  3948. # ref code in Gemma3RMSNorm
  3949. # output = output * (1.0 + self.weight.float())
  3950. # note: this is not the case on gemma3n
  3951. if name.endswith("norm.weight"):
  3952. data_torch = data_torch + self.norm_shift
  3953. return [(self.map_tensor_name(name), data_torch)]
  3954. @ModelBase.register("Gemma3ForConditionalGeneration")
  3955. class Gemma3VisionModel(MmprojModel):
  3956. def set_gguf_parameters(self):
  3957. super().set_gguf_parameters()
  3958. hparams = self.hparams
  3959. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3960. # default values below are taken from HF tranformers code
  3961. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3962. self.gguf_writer.add_vision_use_gelu(True)
  3963. # calculate proj_scale_factor (used by tinygemma3 test model)
  3964. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3965. n_per_side = int(image_seq_length ** 0.5)
  3966. image_size = self.hparams["image_size"]
  3967. patch_size = self.hparams["patch_size"]
  3968. proj_scale_factor = (image_size // patch_size) // n_per_side
  3969. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3970. # we only need to write this if it's not the default value
  3971. # in this case, we are converting a test model
  3972. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3973. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3974. del bid, new_name, n_dims # unused
  3975. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3976. if "input_projection" in name:
  3977. return gguf.GGMLQuantizationType.F16
  3978. if ".embeddings." in name:
  3979. return gguf.GGMLQuantizationType.F32
  3980. return False
  3981. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3982. del bid # unused
  3983. if "vision_model.head." in name:
  3984. return [] # skip redundant tensors for tinygemma3
  3985. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3986. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3987. # process vision tensors
  3988. name = name.replace("_weight", ".weight")
  3989. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3990. # the other norm values are part of SigLIP model, and they are already correct
  3991. # ref code: Gemma3RMSNorm
  3992. if "soft_emb_norm.weight" in name:
  3993. logger.info(f"Correcting norm value for '{name}'")
  3994. data_torch = data_torch + 1
  3995. return [(self.map_tensor_name(name), data_torch)]
  3996. return [] # skip other tensors
  3997. @ModelBase.register("Gemma3nForConditionalGeneration")
  3998. class Gemma3NModel(Gemma3Model):
  3999. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4000. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4001. _altup_proj: list[Tensor] = []
  4002. _altup_unembd: list[Tensor] = []
  4003. def __init__(self, *args, **kwargs):
  4004. super().__init__(*args, **kwargs)
  4005. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4006. self._altup_proj = [
  4007. torch.Tensor(), # to be replaced
  4008. torch.Tensor(), # to be replaced
  4009. torch.Tensor(), # to be replaced
  4010. ]
  4011. self._altup_unembd = [
  4012. torch.Tensor(), # to be replaced
  4013. torch.Tensor(), # to be replaced
  4014. torch.Tensor(), # to be replaced
  4015. ]
  4016. def set_vocab(self):
  4017. super().set_vocab()
  4018. def set_gguf_parameters(self):
  4019. super().set_gguf_parameters()
  4020. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4021. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4022. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4023. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4024. activation_sparsity_scale = []
  4025. for s in self.hparams["activation_sparsity_pattern"]:
  4026. normal_dist = torch.distributions.normal.Normal(0, 1)
  4027. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4028. activation_sparsity_scale.append(std_multiplier.item())
  4029. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4030. sliding_window_pattern = []
  4031. for t in self.hparams["layer_types"]:
  4032. sliding_window_pattern.append(t == "sliding_attention")
  4033. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4034. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4035. has_all = all(m.numel() > 0 for m in matrices)
  4036. if not has_all:
  4037. return None
  4038. else:
  4039. return torch.stack(matrices, dim=0)
  4040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4041. if name.endswith("_scale"):
  4042. name = name + ".weight"
  4043. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4044. if "language_model." not in name:
  4045. return [] # skip non-language model tensors
  4046. if "altup_unembed_projections" in name:
  4047. data_torch = data_torch.to(device="cpu")
  4048. if ".0." in name:
  4049. self._altup_unembd[0] = data_torch
  4050. elif ".1." in name:
  4051. self._altup_unembd[1] = data_torch
  4052. elif ".2." in name:
  4053. self._altup_unembd[2] = data_torch
  4054. else:
  4055. raise ValueError(f"Unknown name: {name}")
  4056. out = self._stack_matrices(self._altup_unembd)
  4057. if out is not None:
  4058. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4059. else:
  4060. return []
  4061. if "altup_projections" in name:
  4062. data_torch = data_torch.to(device="cpu")
  4063. if ".0." in name:
  4064. self._altup_proj[0] = data_torch
  4065. elif ".1." in name:
  4066. self._altup_proj[1] = data_torch
  4067. elif ".2." in name:
  4068. self._altup_proj[2] = data_torch
  4069. else:
  4070. raise ValueError(f"Unknown name: {name}")
  4071. out = self._stack_matrices(self._altup_proj)
  4072. if out is not None:
  4073. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4074. else:
  4075. return []
  4076. return super().modify_tensors(data_torch, name, bid)
  4077. @ModelBase.register("Starcoder2ForCausalLM")
  4078. class StarCoder2Model(TextModel):
  4079. model_arch = gguf.MODEL_ARCH.STARCODER2
  4080. @ModelBase.register("Rwkv6ForCausalLM")
  4081. class Rwkv6Model(TextModel):
  4082. model_arch = gguf.MODEL_ARCH.RWKV6
  4083. def set_vocab(self):
  4084. self._set_vocab_rwkv_world()
  4085. def set_gguf_parameters(self):
  4086. block_count = self.hparams["num_hidden_layers"]
  4087. head_size = self.hparams["head_size"]
  4088. hidden_size = self.hparams["hidden_size"]
  4089. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4090. rescale_every_n_layers = self.hparams["rescale_every"]
  4091. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4092. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4093. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4094. # RWKV isn't context limited
  4095. self.gguf_writer.add_context_length(1048576)
  4096. self.gguf_writer.add_embedding_length(hidden_size)
  4097. self.gguf_writer.add_block_count(block_count)
  4098. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4099. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4100. self.gguf_writer.add_wkv_head_size(head_size)
  4101. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4102. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4103. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4104. self.gguf_writer.add_file_type(self.ftype)
  4105. # required by llama.cpp, unused
  4106. self.gguf_writer.add_head_count(0)
  4107. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4109. new_name = self.map_tensor_name(name)
  4110. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4111. new_name += ".weight"
  4112. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4113. data_torch = data_torch.transpose(0, 1)
  4114. if new_name.endswith("time_mix_w2.weight"):
  4115. data_torch = data_torch.permute(0, 2, 1)
  4116. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4117. data_torch = data_torch.squeeze()
  4118. try:
  4119. rescale_every_n_layers = self.hparams["rescale_every"]
  4120. if rescale_every_n_layers > 0:
  4121. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4122. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4123. except KeyError:
  4124. pass
  4125. # concat time_mix_lerp weights to reduce some cpu overhead
  4126. # also reduces the number of tensors in the model
  4127. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4128. try:
  4129. self.lerp_weights[bid][new_name] = data_torch
  4130. except KeyError:
  4131. self.lerp_weights[bid] = {new_name: data_torch}
  4132. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4133. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4134. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4135. yield (new_name, data)
  4136. return
  4137. yield (new_name, data_torch)
  4138. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4139. class RWKV6Qwen2Model(Rwkv6Model):
  4140. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4141. def set_vocab(self):
  4142. try:
  4143. self._set_vocab_sentencepiece()
  4144. except FileNotFoundError:
  4145. self._set_vocab_gpt2()
  4146. def set_gguf_parameters(self):
  4147. block_count = self.hparams["num_hidden_layers"]
  4148. num_attention_heads = self.hparams["num_attention_heads"]
  4149. num_key_value_heads = self.hparams["num_key_value_heads"]
  4150. hidden_size = self.hparams["hidden_size"]
  4151. head_size = hidden_size // num_attention_heads
  4152. rms_norm_eps = self.hparams["rms_norm_eps"]
  4153. intermediate_size = self.hparams["intermediate_size"]
  4154. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4155. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4156. # RWKV isn't context limited
  4157. self.gguf_writer.add_context_length(1048576)
  4158. self.gguf_writer.add_embedding_length(hidden_size)
  4159. self.gguf_writer.add_block_count(block_count)
  4160. self.gguf_writer.add_wkv_head_size(head_size)
  4161. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4162. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4163. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4164. self.gguf_writer.add_file_type(self.ftype)
  4165. # special parameters for time_mixing in RWKV6QWEN2
  4166. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4167. self.gguf_writer.add_token_shift_count(1)
  4168. # RWKV6QWEN2 use grouped key/value like GQA
  4169. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4170. # required by llama.cpp, unused
  4171. self.gguf_writer.add_head_count(0)
  4172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4173. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4174. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4175. data = data.view(5, -1, data.shape[-1])
  4176. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4177. # permute them here to avoid code changes
  4178. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4179. if "w2" in new_name:
  4180. data = data.view(5, -1, data.shape[-1])
  4181. yield (new_name, data)
  4182. continue
  4183. yield (new_name, data)
  4184. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4185. class Rwkv7Model(TextModel):
  4186. model_arch = gguf.MODEL_ARCH.RWKV7
  4187. def set_vocab(self):
  4188. self._set_vocab_rwkv_world()
  4189. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4190. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4191. def set_gguf_parameters(self):
  4192. block_count = self.hparams["num_hidden_layers"]
  4193. try:
  4194. head_size = self.hparams["head_size"]
  4195. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4196. except KeyError:
  4197. head_size = self.hparams["head_dim"]
  4198. layer_norm_eps = self.hparams["norm_eps"]
  4199. hidden_size = self.hparams["hidden_size"]
  4200. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4201. # ICLR: In-Context-Learning-Rate
  4202. try:
  4203. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4204. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4205. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4206. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4207. except KeyError:
  4208. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4209. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4210. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4211. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4212. # RWKV isn't context limited
  4213. self.gguf_writer.add_context_length(1048576)
  4214. self.gguf_writer.add_embedding_length(hidden_size)
  4215. self.gguf_writer.add_block_count(block_count)
  4216. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4217. self.gguf_writer.add_wkv_head_size(head_size)
  4218. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4219. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4220. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4221. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4222. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4223. self.gguf_writer.add_file_type(self.ftype)
  4224. # required by llama.cpp, unused
  4225. self.gguf_writer.add_head_count(0)
  4226. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4227. lora_needs_transpose: bool = True
  4228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4229. # unify tensor names here to make life easier
  4230. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4231. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4232. name = name.replace("time_mixer.", "")
  4233. # lora layer names in fla-hub's impl
  4234. if "_lora.lora" in name:
  4235. self.lora_needs_transpose = False
  4236. name = name.replace("_lora.lora.0.weight", "1.weight")
  4237. name = name.replace("_lora.lora.2.weight", "2.weight")
  4238. name = name.replace("_lora.lora.2.bias", "0.weight")
  4239. name = name.replace("feed_forward_norm", "ln2")
  4240. name = name.replace("g_norm", "ln_x")
  4241. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4242. # some models have dummy v0/v1/v2 on first layer while others don't
  4243. # ignore them all since they are not used
  4244. return
  4245. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4246. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4247. if bid is not None and "attention.x_" in name:
  4248. if "attention.x_x" in name:
  4249. # already concatenated
  4250. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4251. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4252. yield (new_name, data)
  4253. else:
  4254. try:
  4255. self.lerp_weights[bid][name] = data_torch
  4256. except KeyError:
  4257. self.lerp_weights[bid] = {name: data_torch}
  4258. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4259. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4260. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4261. yield (new_name, data)
  4262. return
  4263. else:
  4264. data_torch = data_torch.squeeze()
  4265. new_name = self.map_tensor_name(name)
  4266. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4267. new_name += ".weight"
  4268. if self.lora_needs_transpose and any(
  4269. new_name.endswith(t) for t in [
  4270. "time_mix_w1.weight", "time_mix_w2.weight",
  4271. "time_mix_a1.weight", "time_mix_a2.weight",
  4272. "time_mix_v1.weight", "time_mix_v2.weight",
  4273. "time_mix_g1.weight", "time_mix_g2.weight",
  4274. ]
  4275. ):
  4276. data_torch = data_torch.transpose(0, 1)
  4277. if 'r_k' in new_name:
  4278. data_torch = data_torch.flatten()
  4279. if bid == 0 and "time_mix_a" in new_name:
  4280. # dummy v0/v1/v2 on first layer
  4281. # easist way to make llama happy
  4282. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4283. yield (new_name, data_torch)
  4284. @ModelBase.register("RwkvHybridForCausalLM")
  4285. class ARwkv7Model(Rwkv7Model):
  4286. model_arch = gguf.MODEL_ARCH.ARWKV7
  4287. def set_vocab(self):
  4288. try:
  4289. self._set_vocab_sentencepiece()
  4290. except FileNotFoundError:
  4291. self._set_vocab_gpt2()
  4292. def set_gguf_parameters(self):
  4293. block_count = self.hparams["num_hidden_layers"]
  4294. hidden_size = self.hparams["hidden_size"]
  4295. head_size = self.hparams["head_size"]
  4296. rms_norm_eps = self.hparams["rms_norm_eps"]
  4297. intermediate_size = self.hparams["intermediate_size"]
  4298. wkv_has_gate = self.hparams["wkv_has_gate"]
  4299. assert self.hparams["wkv_version"] == 7
  4300. # ICLR: In-Context-Learning-Rate
  4301. lora_rank_decay = 64
  4302. lora_rank_iclr = 64
  4303. lora_rank_value_residual_mix = 32
  4304. lora_rank_gate = 128 if wkv_has_gate else 0
  4305. # RWKV isn't context limited
  4306. self.gguf_writer.add_context_length(1048576)
  4307. self.gguf_writer.add_embedding_length(hidden_size)
  4308. self.gguf_writer.add_block_count(block_count)
  4309. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4310. self.gguf_writer.add_wkv_head_size(head_size)
  4311. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4312. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4313. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4314. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4315. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4316. self.gguf_writer.add_file_type(self.ftype)
  4317. self.gguf_writer.add_token_shift_count(1)
  4318. # required by llama.cpp, unused
  4319. self.gguf_writer.add_head_count(0)
  4320. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4321. class MambaModel(TextModel):
  4322. model_arch = gguf.MODEL_ARCH.MAMBA
  4323. def __init__(self, dir_model: Path, *args, **kwargs):
  4324. # Avoid using AutoConfig for hparams
  4325. hparams = kwargs.pop("hparams", None)
  4326. if hparams is None:
  4327. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4328. hparams = json.load(f)
  4329. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4330. def set_vocab(self):
  4331. vocab_size = self.hparams["vocab_size"]
  4332. # Round vocab size to next multiple of 8
  4333. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4334. # pad using ceiling division
  4335. # ref: https://stackoverflow.com/a/17511341/22827863
  4336. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4337. self.hparams["vocab_size"] = vocab_size
  4338. if (self.dir_model / "tokenizer.json").is_file():
  4339. self._set_vocab_gpt2()
  4340. elif (self.dir_model / "tokenizer.model").is_file():
  4341. self._set_vocab_sentencepiece()
  4342. else:
  4343. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4344. self._set_vocab_builtin("gpt-neox", vocab_size)
  4345. def set_gguf_parameters(self):
  4346. d_model = self.find_hparam(["hidden_size", "d_model"])
  4347. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4348. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4349. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4350. # ceiling division
  4351. # ref: https://stackoverflow.com/a/17511341/22827863
  4352. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4353. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4354. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4355. use_dt_b_c_norm = False
  4356. # For falconmamba we do apply RMS norm on B / DT and C layers
  4357. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4358. use_dt_b_c_norm = True
  4359. # Fail early for models which don't have a block expansion factor of 2
  4360. assert d_inner == 2 * d_model
  4361. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4362. self.gguf_writer.add_embedding_length(d_model)
  4363. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4364. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4365. self.gguf_writer.add_block_count(self.block_count)
  4366. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4367. self.gguf_writer.add_ssm_inner_size(d_inner)
  4368. self.gguf_writer.add_ssm_state_size(d_state)
  4369. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4370. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4371. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4372. self.gguf_writer.add_file_type(self.ftype)
  4373. _tok_embd = None
  4374. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4375. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4376. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4377. new_name = self.map_tensor_name(name)
  4378. if name.endswith(".A_log"):
  4379. logger.debug("A_log --> A ==> " + new_name)
  4380. data_torch = -torch.exp(data_torch)
  4381. # [4 1 8192 1] -> [4 8192 1 1]
  4382. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4383. data_torch = data_torch.squeeze()
  4384. # assuming token_embd.weight is seen before output.weight
  4385. if self._tok_embd is not None and new_name == output_name:
  4386. if torch.equal(self._tok_embd, data_torch):
  4387. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4388. return []
  4389. elif new_name == tok_embd_name:
  4390. self._tok_embd = data_torch
  4391. return [(new_name, data_torch)]
  4392. @ModelBase.register("Mamba2ForCausalLM")
  4393. class Mamba2Model(TextModel):
  4394. model_arch = gguf.MODEL_ARCH.MAMBA2
  4395. def __init__(self, dir_model: Path, *args, **kwargs):
  4396. # Avoid using AutoConfig for hparams
  4397. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4398. hparams = kwargs.pop("hparams", None)
  4399. if hparams is None:
  4400. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4401. hparams = json.load(f)
  4402. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4403. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4404. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4405. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4406. def set_vocab(self):
  4407. vocab_size = self.hparams["vocab_size"]
  4408. # Round vocab size to next multiple of 16
  4409. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4410. # pad using ceiling division
  4411. # ref: https://stackoverflow.com/a/17511341/22827863
  4412. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4413. self.hparams["vocab_size"] = vocab_size
  4414. if (self.dir_model / "tokenizer.model").is_file():
  4415. self._set_vocab_sentencepiece()
  4416. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4417. # mamba-codestral
  4418. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4419. elif (self.dir_model / "tokenizer.json").is_file():
  4420. self._set_vocab_gpt2()
  4421. else:
  4422. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4423. self._set_vocab_builtin("gpt-neox", vocab_size)
  4424. def set_gguf_parameters(self):
  4425. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4426. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4427. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4428. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4429. # Fail early for models which don't have a block expansion factor of 2
  4430. # TODO: does this really matter?
  4431. # skip the assertion for FalconH1 Model
  4432. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4433. assert self.d_inner == 2 * self.d_model
  4434. assert self.d_inner % head_dim == 0
  4435. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4436. self.gguf_writer.add_embedding_length(self.d_model)
  4437. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4438. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4439. self.gguf_writer.add_block_count(self.block_count)
  4440. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4441. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4442. self.gguf_writer.add_ssm_state_size(d_state)
  4443. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4444. self.gguf_writer.add_ssm_group_count(self.n_group)
  4445. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4446. self.gguf_writer.add_file_type(self.ftype)
  4447. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4448. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4449. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4450. name = name.removeprefix("model.")
  4451. if name.endswith(".dt_bias"):
  4452. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4453. new_name = self.map_tensor_name(name)
  4454. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4455. data_torch = data_torch.squeeze()
  4456. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4457. gguf.MODEL_TENSOR.SSM_A,
  4458. gguf.MODEL_TENSOR.SSM_D,
  4459. ]):
  4460. # unsqueeze A to use similar shape semantics as Mamba-1
  4461. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4462. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4463. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4464. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4465. if name.endswith(".A_log"):
  4466. logger.debug("A_log --> A ==> " + new_name)
  4467. data_torch = -torch.exp(data_torch)
  4468. yield (new_name, data_torch)
  4469. @ModelBase.register("JambaForCausalLM")
  4470. class JambaModel(TextModel):
  4471. model_arch = gguf.MODEL_ARCH.JAMBA
  4472. def get_vocab_base_pre(self, tokenizer) -> str:
  4473. del tokenizer # unused
  4474. return "gpt-2"
  4475. def set_vocab(self):
  4476. if (self.dir_model / "tokenizer.model").is_file():
  4477. # Using Jamba's tokenizer.json causes errors on model load
  4478. # (something about "byte not found in vocab"),
  4479. # but there's a working tokenizer.model
  4480. self._set_vocab_sentencepiece()
  4481. else:
  4482. # Some Jamba models only have a tokenizer.json, which works.
  4483. self._set_vocab_gpt2()
  4484. def set_gguf_parameters(self):
  4485. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4486. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4487. d_inner = self.hparams["mamba_expand"] * d_model
  4488. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4489. # ceiling division
  4490. # ref: https://stackoverflow.com/a/17511341/22827863
  4491. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4492. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4493. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4494. n_kv_head = self.hparams["num_key_value_heads"]
  4495. attn_offset = self.hparams["attn_layer_offset"]
  4496. attn_period = self.hparams["attn_layer_period"]
  4497. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4498. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4499. ]
  4500. self.gguf_writer.add_block_count(self.block_count)
  4501. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4502. self.gguf_writer.add_embedding_length(d_model)
  4503. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4504. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4505. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4506. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4507. self.gguf_writer.add_ssm_inner_size(d_inner)
  4508. self.gguf_writer.add_ssm_state_size(d_state)
  4509. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4510. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4511. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4512. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4513. self.gguf_writer.add_file_type(self.ftype)
  4514. _experts: list[dict[str, Tensor]] | None = None
  4515. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4516. # Mini-Jamba
  4517. name = name.replace(".moe.", ".feed_forward.")
  4518. if bid is not None:
  4519. moe_offset = self.hparams["expert_layer_offset"]
  4520. moe_period = self.hparams["expert_layer_period"]
  4521. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4522. name = name.replace(".experts.0.", ".")
  4523. # process the experts separately
  4524. if ".feed_forward.experts." in name:
  4525. n_experts = self.hparams["num_experts"]
  4526. assert bid is not None
  4527. if self._experts is None:
  4528. self._experts = [{} for _ in range(self.block_count)]
  4529. self._experts[bid][name] = data_torch
  4530. if len(self._experts[bid]) >= n_experts * 3:
  4531. # merge the experts into a single 3d tensor
  4532. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4533. datas: list[Tensor] = []
  4534. for xid in range(n_experts):
  4535. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4536. datas.append(self._experts[bid][ename])
  4537. del self._experts[bid][ename]
  4538. data_torch = torch.stack(datas, dim=0)
  4539. # using the same merged name as qwen2moe
  4540. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4541. new_name = self.map_tensor_name(merged_name)
  4542. yield new_name, data_torch
  4543. return
  4544. new_name = self.map_tensor_name(name)
  4545. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4546. data_torch = data_torch.squeeze()
  4547. if name.endswith(".A_log"):
  4548. logger.debug("A_log --> A ==> " + new_name)
  4549. data_torch = -torch.exp(data_torch)
  4550. yield (new_name, data_torch)
  4551. def prepare_tensors(self):
  4552. super().prepare_tensors()
  4553. if self._experts is not None:
  4554. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4555. experts = [k for d in self._experts for k in d.keys()]
  4556. if len(experts) > 0:
  4557. raise ValueError(f"Unprocessed experts: {experts}")
  4558. @ModelBase.register("CohereForCausalLM")
  4559. class CommandR2Model(TextModel):
  4560. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4561. def __init__(self, *args, **kwargs):
  4562. super().__init__(*args, **kwargs)
  4563. # max_position_embeddings = 8192 in config.json but model was actually
  4564. # trained on 128k context length
  4565. # aya-23 models don't have model_max_length specified
  4566. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4567. def set_gguf_parameters(self):
  4568. super().set_gguf_parameters()
  4569. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4570. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4571. @ModelBase.register("Cohere2ForCausalLM")
  4572. class Cohere2Model(TextModel):
  4573. model_arch = gguf.MODEL_ARCH.COHERE2
  4574. def set_gguf_parameters(self):
  4575. super().set_gguf_parameters()
  4576. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4577. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4578. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4579. rotary_pct = self.hparams["rotary_pct"]
  4580. hidden_size = self.hparams["hidden_size"]
  4581. num_attention_heads = self.hparams["num_attention_heads"]
  4582. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4583. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4584. @ModelBase.register("OlmoForCausalLM")
  4585. @ModelBase.register("OLMoForCausalLM")
  4586. class OlmoModel(TextModel):
  4587. model_arch = gguf.MODEL_ARCH.OLMO
  4588. def set_gguf_parameters(self):
  4589. super().set_gguf_parameters()
  4590. self.gguf_writer.add_layer_norm_eps(1e-5)
  4591. clip_qkv = self.hparams.get("clip_qkv")
  4592. if clip_qkv is not None:
  4593. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4594. # Same as super class, but permuting q_proj, k_proj
  4595. # Copied from: LlamaModel
  4596. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4597. del bid # unused
  4598. n_head = self.hparams["num_attention_heads"]
  4599. n_kv_head = self.hparams.get("num_key_value_heads")
  4600. if name.endswith("q_proj.weight"):
  4601. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4602. if name.endswith("k_proj.weight"):
  4603. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4604. return [(self.map_tensor_name(name), data_torch)]
  4605. @ModelBase.register("Olmo2ForCausalLM")
  4606. class Olmo2Model(TextModel):
  4607. model_arch = gguf.MODEL_ARCH.OLMO2
  4608. @ModelBase.register("OlmoeForCausalLM")
  4609. class OlmoeModel(TextModel):
  4610. model_arch = gguf.MODEL_ARCH.OLMOE
  4611. def set_gguf_parameters(self):
  4612. super().set_gguf_parameters()
  4613. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4614. if (n_experts := self.hparams.get("num_experts")) is not None:
  4615. self.gguf_writer.add_expert_count(n_experts)
  4616. _experts: list[dict[str, Tensor]] | None = None
  4617. # Copied from: Qwen2MoeModel
  4618. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4619. # process the experts separately
  4620. if name.find("experts") != -1:
  4621. n_experts = self.hparams["num_experts"]
  4622. assert bid is not None
  4623. if self._experts is None:
  4624. self._experts = [{} for _ in range(self.block_count)]
  4625. self._experts[bid][name] = data_torch
  4626. if len(self._experts[bid]) >= n_experts * 3:
  4627. tensors: list[tuple[str, Tensor]] = []
  4628. # merge the experts into a single 3d tensor
  4629. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4630. datas: list[Tensor] = []
  4631. for xid in range(n_experts):
  4632. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4633. datas.append(self._experts[bid][ename])
  4634. del self._experts[bid][ename]
  4635. data_torch = torch.stack(datas, dim=0)
  4636. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4637. new_name = self.map_tensor_name(merged_name)
  4638. tensors.append((new_name, data_torch))
  4639. return tensors
  4640. else:
  4641. return []
  4642. return [(self.map_tensor_name(name), data_torch)]
  4643. # Copied from: Qwen2MoeModel
  4644. def prepare_tensors(self):
  4645. super().prepare_tensors()
  4646. if self._experts is not None:
  4647. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4648. experts = [k for d in self._experts for k in d.keys()]
  4649. if len(experts) > 0:
  4650. raise ValueError(f"Unprocessed experts: {experts}")
  4651. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4652. class JinaBertV2Model(BertModel):
  4653. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4654. def set_vocab(self):
  4655. tokenizer_class = 'BertTokenizer'
  4656. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4657. tokenizer_class = json.load(f)['tokenizer_class']
  4658. if tokenizer_class == 'BertTokenizer':
  4659. super().set_vocab()
  4660. elif tokenizer_class == 'RobertaTokenizer':
  4661. self._set_vocab_gpt2()
  4662. self.gguf_writer.add_token_type_count(2)
  4663. else:
  4664. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4665. @ModelBase.register("OpenELMForCausalLM")
  4666. class OpenELMModel(TextModel):
  4667. model_arch = gguf.MODEL_ARCH.OPENELM
  4668. @staticmethod
  4669. def _make_divisible(v: float | int, divisor: int) -> int:
  4670. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4671. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4672. # Make sure that round down does not go down by more than 10%.
  4673. if new_v < 0.9 * v:
  4674. new_v += divisor
  4675. return new_v
  4676. def __init__(self, *args, **kwargs):
  4677. super().__init__(*args, **kwargs)
  4678. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4679. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4680. self._n_embd: int = self.hparams["model_dim"]
  4681. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4682. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4683. self._ffn_dims: list[int] = [
  4684. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4685. for multiplier in ffn_multipliers
  4686. ]
  4687. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4688. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4689. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4690. def set_vocab(self):
  4691. try:
  4692. self._set_vocab_sentencepiece()
  4693. except FileNotFoundError:
  4694. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4695. def set_gguf_parameters(self):
  4696. n_embd = self._n_embd
  4697. head_dim = self.hparams["head_dim"]
  4698. rot_pct = 1.0
  4699. assert self.block_count == len(self._num_kv_heads)
  4700. assert self.block_count == len(self._num_query_heads)
  4701. assert self.block_count == len(self._ffn_dims)
  4702. self.gguf_writer.add_block_count(self.block_count)
  4703. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4704. self.gguf_writer.add_embedding_length(n_embd)
  4705. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4706. self.gguf_writer.add_head_count(self._num_query_heads)
  4707. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4708. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4709. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4710. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4711. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4712. self.gguf_writer.add_key_length(head_dim)
  4713. self.gguf_writer.add_value_length(head_dim)
  4714. self.gguf_writer.add_file_type(self.ftype)
  4715. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4716. if "n_layers" in keys:
  4717. return self.hparams["num_transformer_layers"]
  4718. return super().find_hparam(keys, optional)
  4719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4720. # split ff
  4721. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4722. ff_dim = self._ffn_dims[bid]
  4723. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4724. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4725. return
  4726. yield (self.map_tensor_name(name), data_torch)
  4727. @ModelBase.register("ArcticForCausalLM")
  4728. class ArcticModel(TextModel):
  4729. model_arch = gguf.MODEL_ARCH.ARCTIC
  4730. def set_vocab(self):
  4731. # The reason for using a custom implementation here is that the
  4732. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4733. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4734. from sentencepiece import SentencePieceProcessor
  4735. tokenizer_path = self.dir_model / 'tokenizer.model'
  4736. if not tokenizer_path.is_file():
  4737. logger.error(f'Error: Missing {tokenizer_path}')
  4738. sys.exit(1)
  4739. # Read the whole vocabulary from the tokenizer.model file
  4740. tokenizer = SentencePieceProcessor()
  4741. tokenizer.LoadFromFile(str(tokenizer_path))
  4742. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4743. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4744. scores: list[float] = [-10000.0] * vocab_size
  4745. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4746. for token_id in range(tokenizer.vocab_size()):
  4747. piece = tokenizer.IdToPiece(token_id)
  4748. text = piece.encode("utf-8")
  4749. score = tokenizer.GetScore(token_id)
  4750. toktype = SentencePieceTokenTypes.NORMAL
  4751. if tokenizer.IsUnknown(token_id):
  4752. toktype = SentencePieceTokenTypes.UNKNOWN
  4753. elif tokenizer.IsControl(token_id):
  4754. toktype = SentencePieceTokenTypes.CONTROL
  4755. elif tokenizer.IsUnused(token_id):
  4756. toktype = SentencePieceTokenTypes.UNUSED
  4757. elif tokenizer.IsByte(token_id):
  4758. toktype = SentencePieceTokenTypes.BYTE
  4759. tokens[token_id] = text
  4760. scores[token_id] = score
  4761. toktypes[token_id] = toktype
  4762. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4763. # of information about added/redefined tokens and modify them accordingly.
  4764. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4765. if tokenizer_config_file.is_file():
  4766. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4767. tokenizer_config_json = json.load(f)
  4768. if "added_tokens_decoder" in tokenizer_config_json:
  4769. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4770. for token_id, token_json in added_tokens_decoder.items():
  4771. token_id = int(token_id)
  4772. if token_id >= vocab_size:
  4773. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4774. continue
  4775. token_content = token_json["content"]
  4776. token_type = SentencePieceTokenTypes.USER_DEFINED
  4777. token_score = -10000.0
  4778. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4779. # Set the score to 0.0 as in the original tokenizer.model
  4780. if ("special" in token_json) and token_json["special"]:
  4781. if token_content == tokenizer_config_json["unk_token"]:
  4782. token_type = SentencePieceTokenTypes.UNKNOWN
  4783. else:
  4784. token_type = SentencePieceTokenTypes.CONTROL
  4785. token_score = 0.0
  4786. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4787. tokens[token_id] = token_content.encode("utf-8")
  4788. toktypes[token_id] = token_type
  4789. scores[token_id] = token_score
  4790. self.gguf_writer.add_tokenizer_model("llama")
  4791. self.gguf_writer.add_tokenizer_pre("default")
  4792. self.gguf_writer.add_token_list(tokens)
  4793. self.gguf_writer.add_token_scores(scores)
  4794. self.gguf_writer.add_token_types(toktypes)
  4795. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4796. special_vocab.add_to_gguf(self.gguf_writer)
  4797. def set_gguf_parameters(self):
  4798. super().set_gguf_parameters()
  4799. hparams = self.hparams
  4800. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4801. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4802. _experts: list[dict[str, Tensor]] | None = None
  4803. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4804. n_head = self.hparams["num_attention_heads"]
  4805. n_kv_head = self.hparams.get("num_key_value_heads")
  4806. if name.endswith("q_proj.weight"):
  4807. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4808. if name.endswith("k_proj.weight"):
  4809. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4810. # process the experts separately
  4811. if name.find("block_sparse_moe.experts") != -1:
  4812. n_experts = self.hparams["num_local_experts"]
  4813. assert bid is not None
  4814. if self._experts is None:
  4815. self._experts = [{} for _ in range(self.block_count)]
  4816. self._experts[bid][name] = data_torch
  4817. if len(self._experts[bid]) >= n_experts * 3:
  4818. tensors: list[tuple[str, Tensor]] = []
  4819. # merge the experts into a single 3d tensor
  4820. for wid in ["w1", "w2", "w3"]:
  4821. datas: list[Tensor] = []
  4822. for xid in range(n_experts):
  4823. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4824. datas.append(self._experts[bid][ename])
  4825. del self._experts[bid][ename]
  4826. data_torch = torch.stack(datas, dim=0)
  4827. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4828. new_name = self.map_tensor_name(merged_name)
  4829. tensors.append((new_name, data_torch))
  4830. return tensors
  4831. else:
  4832. return []
  4833. return [(self.map_tensor_name(name), data_torch)]
  4834. def prepare_tensors(self):
  4835. super().prepare_tensors()
  4836. if self._experts is not None:
  4837. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4838. experts = [k for d in self._experts for k in d.keys()]
  4839. if len(experts) > 0:
  4840. raise ValueError(f"Unprocessed experts: {experts}")
  4841. @ModelBase.register("DeepseekForCausalLM")
  4842. class DeepseekModel(TextModel):
  4843. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4844. def set_vocab(self):
  4845. try:
  4846. self._set_vocab_sentencepiece()
  4847. except FileNotFoundError:
  4848. self._set_vocab_gpt2()
  4849. def set_gguf_parameters(self):
  4850. super().set_gguf_parameters()
  4851. hparams = self.hparams
  4852. if (rope_dim := hparams.get("head_dim")) is None:
  4853. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4854. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4855. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4856. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4857. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4858. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4859. self.gguf_writer.add_expert_weights_scale(1.0)
  4860. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4861. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4862. _experts: list[dict[str, Tensor]] | None = None
  4863. @staticmethod
  4864. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4865. if n_head_kv is not None and n_head != n_head_kv:
  4866. n_head = n_head_kv
  4867. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4868. .swapaxes(1, 2)
  4869. .reshape(weights.shape))
  4870. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4871. n_head = self.hparams["num_attention_heads"]
  4872. n_kv_head = self.hparams.get("num_key_value_heads")
  4873. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4874. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4875. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4876. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4877. # process the experts separately
  4878. if name.find("mlp.experts") != -1:
  4879. n_experts = self.hparams["n_routed_experts"]
  4880. assert bid is not None
  4881. if self._experts is None:
  4882. self._experts = [{} for _ in range(self.block_count)]
  4883. self._experts[bid][name] = data_torch
  4884. if len(self._experts[bid]) >= n_experts * 3:
  4885. tensors: list[tuple[str, Tensor]] = []
  4886. # merge the experts into a single 3d tensor
  4887. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4888. datas: list[Tensor] = []
  4889. for xid in range(n_experts):
  4890. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4891. datas.append(self._experts[bid][ename])
  4892. del self._experts[bid][ename]
  4893. data_torch = torch.stack(datas, dim=0)
  4894. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4895. new_name = self.map_tensor_name(merged_name)
  4896. tensors.append((new_name, data_torch))
  4897. return tensors
  4898. else:
  4899. return []
  4900. return [(self.map_tensor_name(name), data_torch)]
  4901. def prepare_tensors(self):
  4902. super().prepare_tensors()
  4903. if self._experts is not None:
  4904. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4905. experts = [k for d in self._experts for k in d.keys()]
  4906. if len(experts) > 0:
  4907. raise ValueError(f"Unprocessed experts: {experts}")
  4908. @ModelBase.register("DeepseekV2ForCausalLM")
  4909. @ModelBase.register("DeepseekV3ForCausalLM")
  4910. class DeepseekV2Model(TextModel):
  4911. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4912. def set_vocab(self):
  4913. try:
  4914. self._set_vocab_gpt2()
  4915. return
  4916. except Exception:
  4917. pass
  4918. from transformers import AutoTokenizer
  4919. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4920. tokpre = self.get_vocab_base_pre(tokenizer)
  4921. if tokpre == "kimi-k2":
  4922. # Build merges list using the approach similar to HunYuanMoE
  4923. merges = []
  4924. vocab = {}
  4925. mergeable_ranks = tokenizer.model._mergeable_ranks
  4926. for token, rank in mergeable_ranks.items():
  4927. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4928. if len(token) == 1:
  4929. continue
  4930. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4931. if len(merged) == 2:
  4932. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4933. # Build token list
  4934. vocab_size = self.hparams["vocab_size"]
  4935. special_tokens = tokenizer.special_tokens
  4936. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4937. tokens: list[str] = []
  4938. toktypes: list[int] = []
  4939. for i in range(vocab_size):
  4940. if i not in reverse_vocab:
  4941. tokens.append(f"[PAD{i}]")
  4942. toktypes.append(gguf.TokenType.UNUSED)
  4943. else:
  4944. token = reverse_vocab[i]
  4945. tokens.append(token)
  4946. if i in special_tokens.values():
  4947. toktypes.append(gguf.TokenType.CONTROL)
  4948. else:
  4949. toktypes.append(gguf.TokenType.NORMAL)
  4950. self.gguf_writer.add_tokenizer_model("gpt2")
  4951. self.gguf_writer.add_tokenizer_pre(tokpre)
  4952. self.gguf_writer.add_token_list(tokens)
  4953. self.gguf_writer.add_token_types(toktypes)
  4954. self.gguf_writer.add_token_merges(merges)
  4955. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4956. special_vocab.add_to_gguf(self.gguf_writer)
  4957. else:
  4958. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4959. def set_gguf_parameters(self):
  4960. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4961. self.hparams["num_key_value_heads"] = 1
  4962. super().set_gguf_parameters()
  4963. hparams = self.hparams
  4964. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4965. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4966. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4967. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4968. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4969. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4970. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4971. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4972. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4973. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4974. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4975. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4976. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4977. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4978. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4979. if hparams["scoring_func"] == "sigmoid":
  4980. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4981. elif hparams["scoring_func"] == "softmax":
  4982. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4983. else:
  4984. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4985. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4986. rope_scaling = self.hparams.get("rope_scaling") or {}
  4987. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4988. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4989. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4990. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4991. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4992. _experts: list[dict[str, Tensor]] | None = None
  4993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4994. # rename e_score_correction_bias tensors
  4995. if name.endswith("e_score_correction_bias"):
  4996. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4997. # skip Multi-Token Prediction (MTP) layers
  4998. block_count = self.hparams["num_hidden_layers"]
  4999. match = re.match(r"model.layers.(\d+)", name)
  5000. if match and int(match.group(1)) >= block_count:
  5001. return []
  5002. # process the experts separately
  5003. if name.find("mlp.experts") != -1:
  5004. n_experts = self.hparams["n_routed_experts"]
  5005. assert bid is not None
  5006. if self._experts is None:
  5007. self._experts = [{} for _ in range(self.block_count)]
  5008. self._experts[bid][name] = data_torch
  5009. if len(self._experts[bid]) >= n_experts * 3:
  5010. tensors: list[tuple[str, Tensor]] = []
  5011. # merge the experts into a single 3d tensor
  5012. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5013. datas: list[Tensor] = []
  5014. for xid in range(n_experts):
  5015. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5016. datas.append(self._experts[bid][ename])
  5017. del self._experts[bid][ename]
  5018. data_torch = torch.stack(datas, dim=0)
  5019. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5020. new_name = self.map_tensor_name(merged_name)
  5021. tensors.append((new_name, data_torch))
  5022. return tensors
  5023. else:
  5024. return []
  5025. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5026. if name.endswith("kv_b_proj.weight"):
  5027. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5028. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5029. n_head_kv = self.hparams["num_key_value_heads"]
  5030. v_head_dim = self.hparams["v_head_dim"]
  5031. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5032. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5033. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5034. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5035. k_b = k_b.transpose(1, 2)
  5036. return [
  5037. (self.map_tensor_name(name_kb), k_b),
  5038. (self.map_tensor_name(name_vb), v_b)
  5039. ]
  5040. return [(self.map_tensor_name(name), data_torch)]
  5041. def prepare_tensors(self):
  5042. super().prepare_tensors()
  5043. if self._experts is not None:
  5044. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5045. experts = [k for d in self._experts for k in d.keys()]
  5046. if len(experts) > 0:
  5047. raise ValueError(f"Unprocessed experts: {experts}")
  5048. @ModelBase.register("Dots1ForCausalLM")
  5049. class Dots1Model(Qwen2MoeModel):
  5050. model_arch = gguf.MODEL_ARCH.DOTS1
  5051. def __init__(self, *args, **kwargs):
  5052. super().__init__(*args, **kwargs)
  5053. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5054. def set_gguf_parameters(self):
  5055. super().set_gguf_parameters()
  5056. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5057. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5058. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5059. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5060. if self.hparams["scoring_func"] == "noaux_tc":
  5061. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5062. else:
  5063. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5065. if name.endswith("e_score_correction_bias"):
  5066. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5067. if "shared_experts" in name:
  5068. return [(self.map_tensor_name(name), data_torch)]
  5069. return super().modify_tensors(data_torch, name, bid)
  5070. @ModelBase.register("PLMForCausalLM")
  5071. class PLMModel(TextModel):
  5072. model_arch = gguf.MODEL_ARCH.PLM
  5073. def set_vocab(self):
  5074. self._set_vocab_gpt2()
  5075. def set_gguf_parameters(self):
  5076. super().set_gguf_parameters()
  5077. hparams = self.hparams
  5078. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5079. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5080. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5081. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5082. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5084. return [(self.map_tensor_name(name), data_torch)]
  5085. def prepare_tensors(self):
  5086. super().prepare_tensors()
  5087. @ModelBase.register("T5WithLMHeadModel")
  5088. @ModelBase.register("T5ForConditionalGeneration")
  5089. @ModelBase.register("MT5ForConditionalGeneration")
  5090. @ModelBase.register("UMT5ForConditionalGeneration")
  5091. class T5Model(TextModel):
  5092. model_arch = gguf.MODEL_ARCH.T5
  5093. def __init__(self, *args, **kwargs):
  5094. super().__init__(*args, **kwargs)
  5095. self.shared_token_embeddings_found = False
  5096. def set_vocab(self):
  5097. # to avoid TypeError: Descriptors cannot be created directly
  5098. # exception when importing sentencepiece_model_pb2
  5099. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5100. from sentencepiece import SentencePieceProcessor
  5101. from sentencepiece import sentencepiece_model_pb2 as model
  5102. tokenizer_path = self.dir_model / 'tokenizer.model'
  5103. # many older models use spiece.model tokenizer model filename
  5104. if not tokenizer_path.is_file():
  5105. tokenizer_path = self.dir_model / 'spiece.model'
  5106. if not tokenizer_path.is_file():
  5107. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5108. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5109. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5110. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5111. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5112. # assure the tokenizer model file name is correct
  5113. assert tokenizer_path.name == 'tokenizer.model'
  5114. return self._set_vocab_sentencepiece()
  5115. else:
  5116. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5117. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5118. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5119. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5120. tokenizer = SentencePieceProcessor()
  5121. tokenizer.LoadFromFile(str(tokenizer_path))
  5122. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5123. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5124. scores: list[float] = [-10000.0] * vocab_size
  5125. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5126. for token_id in range(tokenizer.vocab_size()):
  5127. piece = tokenizer.IdToPiece(token_id)
  5128. text = piece.encode("utf-8")
  5129. score = tokenizer.GetScore(token_id)
  5130. toktype = SentencePieceTokenTypes.NORMAL
  5131. if tokenizer.IsUnknown(token_id):
  5132. toktype = SentencePieceTokenTypes.UNKNOWN
  5133. elif tokenizer.IsControl(token_id):
  5134. toktype = SentencePieceTokenTypes.CONTROL
  5135. elif tokenizer.IsUnused(token_id):
  5136. toktype = SentencePieceTokenTypes.UNUSED
  5137. elif tokenizer.IsByte(token_id):
  5138. toktype = SentencePieceTokenTypes.BYTE
  5139. tokens[token_id] = text
  5140. scores[token_id] = score
  5141. toktypes[token_id] = toktype
  5142. added_tokens_file = self.dir_model / 'added_tokens.json'
  5143. if added_tokens_file.is_file():
  5144. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5145. added_tokens_json = json.load(f)
  5146. for key in added_tokens_json:
  5147. token_id = added_tokens_json[key]
  5148. if token_id >= vocab_size:
  5149. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5150. continue
  5151. tokens[token_id] = key.encode("utf-8")
  5152. scores[token_id] = -1000.0
  5153. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5154. if vocab_size > len(tokens):
  5155. pad_count = vocab_size - len(tokens)
  5156. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5157. for i in range(1, pad_count + 1):
  5158. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5159. scores.append(-1000.0)
  5160. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5161. self.gguf_writer.add_tokenizer_model("t5")
  5162. self.gguf_writer.add_tokenizer_pre("default")
  5163. self.gguf_writer.add_token_list(tokens)
  5164. self.gguf_writer.add_token_scores(scores)
  5165. self.gguf_writer.add_token_types(toktypes)
  5166. self.gguf_writer.add_add_space_prefix(add_prefix)
  5167. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5168. if precompiled_charsmap:
  5169. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5170. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5171. special_vocab.add_to_gguf(self.gguf_writer)
  5172. def set_gguf_parameters(self):
  5173. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5174. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5175. n_ctx = 512
  5176. self.gguf_writer.add_context_length(n_ctx)
  5177. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5178. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5179. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5180. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5181. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5182. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5183. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5184. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5185. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5186. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5187. self.gguf_writer.add_file_type(self.ftype)
  5188. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5189. del bid # unused
  5190. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5191. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5192. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5193. # and decoder and ignore the remaining ones.
  5194. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5195. if not self.shared_token_embeddings_found:
  5196. name = "shared.weight"
  5197. self.shared_token_embeddings_found = True
  5198. else:
  5199. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5200. return []
  5201. return [(self.map_tensor_name(name), data_torch)]
  5202. @ModelBase.register("T5EncoderModel")
  5203. class T5EncoderModel(TextModel):
  5204. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5205. def __init__(self, *args, **kwargs):
  5206. super().__init__(*args, **kwargs)
  5207. self.shared_token_embeddings_found = False
  5208. def set_vocab(self):
  5209. # to avoid TypeError: Descriptors cannot be created directly
  5210. # exception when importing sentencepiece_model_pb2
  5211. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5212. from sentencepiece import SentencePieceProcessor
  5213. from sentencepiece import sentencepiece_model_pb2 as model
  5214. tokenizer_path = self.dir_model / 'tokenizer.model'
  5215. # many older models use spiece.model tokenizer model filename
  5216. if not tokenizer_path.is_file():
  5217. tokenizer_path = self.dir_model / 'spiece.model'
  5218. if not tokenizer_path.is_file():
  5219. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5220. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5221. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5222. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5223. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5224. # assure the tokenizer model file name is correct
  5225. assert tokenizer_path.name == 'tokenizer.model'
  5226. return self._set_vocab_sentencepiece()
  5227. else:
  5228. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5229. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5230. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5231. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5232. tokenizer = SentencePieceProcessor()
  5233. tokenizer.LoadFromFile(str(tokenizer_path))
  5234. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5235. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5236. scores: list[float] = [-10000.0] * vocab_size
  5237. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5238. for token_id in range(tokenizer.vocab_size()):
  5239. piece = tokenizer.IdToPiece(token_id)
  5240. text = piece.encode("utf-8")
  5241. score = tokenizer.GetScore(token_id)
  5242. toktype = SentencePieceTokenTypes.NORMAL
  5243. if tokenizer.IsUnknown(token_id):
  5244. toktype = SentencePieceTokenTypes.UNKNOWN
  5245. elif tokenizer.IsControl(token_id):
  5246. toktype = SentencePieceTokenTypes.CONTROL
  5247. elif tokenizer.IsUnused(token_id):
  5248. toktype = SentencePieceTokenTypes.UNUSED
  5249. elif tokenizer.IsByte(token_id):
  5250. toktype = SentencePieceTokenTypes.BYTE
  5251. tokens[token_id] = text
  5252. scores[token_id] = score
  5253. toktypes[token_id] = toktype
  5254. added_tokens_file = self.dir_model / 'added_tokens.json'
  5255. if added_tokens_file.is_file():
  5256. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5257. added_tokens_json = json.load(f)
  5258. for key in added_tokens_json:
  5259. token_id = added_tokens_json[key]
  5260. if token_id >= vocab_size:
  5261. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5262. continue
  5263. tokens[token_id] = key.encode("utf-8")
  5264. scores[token_id] = -1000.0
  5265. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5266. if vocab_size > len(tokens):
  5267. pad_count = vocab_size - len(tokens)
  5268. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5269. for i in range(1, pad_count + 1):
  5270. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5271. scores.append(-1000.0)
  5272. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5273. self.gguf_writer.add_tokenizer_model("t5")
  5274. self.gguf_writer.add_tokenizer_pre("default")
  5275. self.gguf_writer.add_token_list(tokens)
  5276. self.gguf_writer.add_token_scores(scores)
  5277. self.gguf_writer.add_token_types(toktypes)
  5278. self.gguf_writer.add_add_space_prefix(add_prefix)
  5279. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5280. if precompiled_charsmap:
  5281. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5282. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5283. special_vocab.add_to_gguf(self.gguf_writer)
  5284. def set_gguf_parameters(self):
  5285. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5286. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5287. n_ctx = 512
  5288. self.gguf_writer.add_context_length(n_ctx)
  5289. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5290. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5291. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5292. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5293. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5294. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5295. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5296. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5297. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5298. self.gguf_writer.add_file_type(self.ftype)
  5299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5300. del bid # unused
  5301. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5302. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5303. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5304. # and decoder and ignore the remaining ones.
  5305. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5306. if not self.shared_token_embeddings_found:
  5307. name = "shared.weight"
  5308. self.shared_token_embeddings_found = True
  5309. else:
  5310. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5311. return []
  5312. return [(self.map_tensor_name(name), data_torch)]
  5313. @ModelBase.register("JAISLMHeadModel")
  5314. class JaisModel(TextModel):
  5315. model_arch = gguf.MODEL_ARCH.JAIS
  5316. def __init__(self, *args, **kwargs):
  5317. super().__init__(*args, **kwargs)
  5318. # SwigLU activation
  5319. assert self.hparams["activation_function"] == "swiglu"
  5320. # ALiBi position embedding
  5321. assert self.hparams["position_embedding_type"] == "alibi"
  5322. # Embeddings scale
  5323. self.embeddings_scale = 1.0
  5324. if 'mup_embeddings_scale' in self.hparams:
  5325. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5326. elif 'embeddings_scale' in self.hparams:
  5327. self.embeddings_scale = self.hparams['embeddings_scale']
  5328. else:
  5329. assert False
  5330. self.width_scale = 1.0
  5331. if 'mup_output_alpha' in self.hparams:
  5332. assert 'mup_width_scale' in self.hparams
  5333. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5334. elif 'width_scale' in self.hparams:
  5335. self.width_scale = self.hparams['width_scale']
  5336. else:
  5337. assert False
  5338. self.max_alibi_bias = 8.0
  5339. def set_vocab(self):
  5340. self._set_vocab_gpt2()
  5341. def set_gguf_parameters(self):
  5342. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5343. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5344. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5345. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5346. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5347. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5348. self.gguf_writer.add_file_type(self.ftype)
  5349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5350. del bid # unused
  5351. tensors: list[tuple[str, Tensor]] = []
  5352. # we don't need these
  5353. if name.endswith((".attn.bias")):
  5354. return tensors
  5355. if name.endswith(("relative_pe.slopes")):
  5356. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5357. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5358. # but Jais's PyTorch model simply precalculates the slope values and places them
  5359. # in relative_pes.slopes
  5360. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5361. first_val = float(data_torch[0].item())
  5362. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5363. return tensors
  5364. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5365. data_torch = data_torch.transpose(1, 0)
  5366. new_name = self.map_tensor_name(name)
  5367. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5368. tensors.append((new_name, data_torch * self.embeddings_scale))
  5369. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5370. tensors.append((new_name, data_torch * self.width_scale))
  5371. else:
  5372. tensors.append((new_name, data_torch))
  5373. return tensors
  5374. def prepare_tensors(self):
  5375. super().prepare_tensors()
  5376. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5377. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5378. class Glm4Model(TextModel):
  5379. model_arch = gguf.MODEL_ARCH.GLM4
  5380. def set_vocab(self):
  5381. from transformers import AutoTokenizer
  5382. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5383. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5384. tokens, toktypes, tokpre = self.get_vocab_base()
  5385. self.gguf_writer.add_tokenizer_model("gpt2")
  5386. self.gguf_writer.add_tokenizer_pre(tokpre)
  5387. self.gguf_writer.add_token_list(tokens)
  5388. self.gguf_writer.add_token_types(toktypes)
  5389. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5390. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5391. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5392. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5393. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5394. special_vocab.add_to_gguf(self.gguf_writer)
  5395. def set_gguf_parameters(self):
  5396. super().set_gguf_parameters()
  5397. if (rope_dim := self.hparams.get("head_dim")) is None:
  5398. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5399. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5400. rope_scaling = self.hparams.get("rope_scaling") or {}
  5401. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5402. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5403. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5404. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5406. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5407. return []
  5408. elif name.startswith("model.language_model."):
  5409. name = name.replace("language_model.", "") # for Glm4v
  5410. return super().modify_tensors(data_torch, name, bid)
  5411. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5412. class ChatGLMModel(TextModel):
  5413. model_arch = gguf.MODEL_ARCH.CHATGLM
  5414. def set_vocab_chatglm3(self):
  5415. dir_model = self.dir_model
  5416. hparams = self.hparams
  5417. tokens: list[bytes] = []
  5418. toktypes: list[int] = []
  5419. scores: list[float] = []
  5420. from transformers import AutoTokenizer
  5421. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5422. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5423. assert max(tokenizer.get_vocab().values()) < vocab_size
  5424. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5425. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5426. for token_id in range(vocab_size):
  5427. piece = tokenizer._convert_id_to_token(token_id)
  5428. if token_id == 0:
  5429. piece = "<unk>"
  5430. elif token_id == 1:
  5431. piece = "<bos>"
  5432. elif token_id == 2:
  5433. piece = "<eos>"
  5434. text = piece.encode("utf-8")
  5435. score = 0.0
  5436. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5437. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5438. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5439. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5440. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5441. if piece in special_tokens:
  5442. toktype = SentencePieceTokenTypes.CONTROL
  5443. elif len(piece) == 0:
  5444. text = f"[PAD{token_id}]".encode("utf-8")
  5445. toktype = SentencePieceTokenTypes.UNUSED
  5446. else:
  5447. toktype = SentencePieceTokenTypes.USER_DEFINED
  5448. tokens.append(text)
  5449. scores.append(score)
  5450. toktypes.append(toktype)
  5451. continue
  5452. toktype = SentencePieceTokenTypes.NORMAL
  5453. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5454. toktype = SentencePieceTokenTypes.UNKNOWN
  5455. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5456. toktype = SentencePieceTokenTypes.CONTROL
  5457. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5458. toktype = SentencePieceTokenTypes.UNUSED
  5459. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5460. toktype = SentencePieceTokenTypes.BYTE
  5461. tokens.append(text)
  5462. scores.append(score)
  5463. toktypes.append(toktype)
  5464. self.gguf_writer.add_tokenizer_model("llama")
  5465. # glm3 needs prefix and suffix formatted as:
  5466. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5467. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5468. self.gguf_writer.add_token_list(tokens)
  5469. self.gguf_writer.add_token_scores(scores)
  5470. self.gguf_writer.add_token_types(toktypes)
  5471. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5472. special_vocab.add_to_gguf(self.gguf_writer)
  5473. @staticmethod
  5474. def token_bytes_to_string(b):
  5475. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5476. byte_encoder = bytes_to_unicode()
  5477. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5478. @staticmethod
  5479. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5480. parts = [bytes([b]) for b in token]
  5481. while True:
  5482. min_idx = None
  5483. min_rank = None
  5484. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5485. rank = mergeable_ranks.get(pair[0] + pair[1])
  5486. if rank is not None and (min_rank is None or rank < min_rank):
  5487. min_idx = i
  5488. min_rank = rank
  5489. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5490. break
  5491. assert min_idx is not None
  5492. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5493. return parts
  5494. def set_vocab(self):
  5495. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5496. self.set_vocab_chatglm3()
  5497. return
  5498. dir_model = self.dir_model
  5499. hparams = self.hparams
  5500. tokens: list[str] = []
  5501. toktypes: list[int] = []
  5502. from transformers import AutoTokenizer
  5503. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5504. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5505. assert max(tokenizer.get_vocab().values()) < vocab_size
  5506. tokens, toktypes, tokpre = self.get_vocab_base()
  5507. self.gguf_writer.add_tokenizer_model("gpt2")
  5508. self.gguf_writer.add_tokenizer_pre(tokpre)
  5509. self.gguf_writer.add_token_list(tokens)
  5510. self.gguf_writer.add_token_types(toktypes)
  5511. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5512. # only add special tokens when they were not already loaded from config.json
  5513. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5514. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5515. # this one is usually not in config.json anyway
  5516. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5517. special_vocab.add_to_gguf(self.gguf_writer)
  5518. def set_gguf_parameters(self):
  5519. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5520. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5521. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5522. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5523. self.gguf_writer.add_embedding_length(n_embed)
  5524. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5525. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5526. self.gguf_writer.add_head_count(n_head)
  5527. self.gguf_writer.add_head_count_kv(n_head_kv)
  5528. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5529. self.gguf_writer.add_file_type(self.ftype)
  5530. if "attention_dim" in self.hparams:
  5531. rope_dim = self.hparams["attention_dim"]
  5532. else:
  5533. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5534. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5535. self.gguf_writer.add_add_bos_token(False)
  5536. rope_freq = 10000
  5537. if "rope_ratio" in self.hparams:
  5538. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5539. self.gguf_writer.add_rope_freq_base(rope_freq)
  5540. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5541. del bid # unused
  5542. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5543. return []
  5544. name = name.removeprefix("transformer.")
  5545. return [(self.map_tensor_name(name), data_torch)]
  5546. @ModelBase.register("NemotronForCausalLM")
  5547. class NemotronModel(TextModel):
  5548. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5549. def set_vocab(self):
  5550. self._set_vocab_sentencepiece()
  5551. self.gguf_writer.add_pad_token_id(0)
  5552. self.gguf_writer.add_unk_token_id(1)
  5553. def set_gguf_parameters(self):
  5554. super().set_gguf_parameters()
  5555. hparams = self.hparams
  5556. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5557. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5558. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5559. # * Partial RoPE
  5560. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5561. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5562. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5563. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5564. # * RopeScaling for Nemotron
  5565. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5566. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5567. else:
  5568. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5569. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5571. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5572. # model.layers.{l}.input_layernorm.weight
  5573. # model.layers.{l}.post_attention_layernorm.weight
  5574. # model.norm.weight
  5575. if name.endswith("norm.weight"):
  5576. data_torch = data_torch + 1
  5577. return [(self.map_tensor_name(name), data_torch)]
  5578. @ModelBase.register("ExaoneForCausalLM")
  5579. class ExaoneModel(TextModel):
  5580. model_arch = gguf.MODEL_ARCH.EXAONE
  5581. def set_gguf_parameters(self):
  5582. hparams = self.hparams
  5583. assert (hparams["activation_function"] == "silu")
  5584. max_position_embeddings = hparams["max_position_embeddings"]
  5585. embed_dim = hparams["hidden_size"]
  5586. num_heads = hparams["num_attention_heads"]
  5587. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5588. layer_norm_eps = hparams["layer_norm_epsilon"]
  5589. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5590. num_layers = hparams["num_layers"]
  5591. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5592. # attention_dropout_rate = hparams["attention_dropout"]
  5593. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5594. # embed_dropout_rate = hparams["embed_dropout"]
  5595. self.gguf_writer.add_embedding_length(embed_dim)
  5596. self.gguf_writer.add_head_count(num_heads)
  5597. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5598. self.gguf_writer.add_context_length(max_position_embeddings)
  5599. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5600. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5601. self.gguf_writer.add_block_count(num_layers)
  5602. self.gguf_writer.add_file_type(self.ftype)
  5603. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5604. self.gguf_writer.add_rope_freq_base(rope_theta)
  5605. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5606. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5607. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5608. rope_scaling = self.hparams.get("rope_scaling") or {}
  5609. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5610. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5611. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5612. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5613. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5614. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5615. base = self.hparams.get("rope_theta", 10000.0)
  5616. if (dim := self.hparams.get("head_dim")) is None:
  5617. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5618. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5619. factor = rope_scaling.get("factor", 8.0)
  5620. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5621. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5622. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5623. low_freq_wavelen = old_context_len / low_freq_factor
  5624. high_freq_wavelen = old_context_len / high_freq_factor
  5625. assert low_freq_wavelen != high_freq_wavelen
  5626. rope_factors = []
  5627. for freq in freqs:
  5628. wavelen = 2 * math.pi / freq
  5629. if wavelen < high_freq_wavelen:
  5630. rope_factors.append(1)
  5631. elif wavelen > low_freq_wavelen:
  5632. rope_factors.append(factor)
  5633. else:
  5634. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5635. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5636. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5637. @ModelBase.register("Exaone4ForCausalLM")
  5638. class Exaone4Model(TextModel):
  5639. model_arch = gguf.MODEL_ARCH.EXAONE4
  5640. def set_vocab(self):
  5641. tokens, toktypes, tokpre = self.get_vocab_base()
  5642. self.gguf_writer.add_tokenizer_model("gpt2")
  5643. self.gguf_writer.add_tokenizer_pre(tokpre)
  5644. self.gguf_writer.add_token_list(tokens)
  5645. self.gguf_writer.add_token_types(toktypes)
  5646. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5647. special_vocab.add_to_gguf(self.gguf_writer)
  5648. def set_gguf_parameters(self):
  5649. super().set_gguf_parameters()
  5650. hparams = self.hparams
  5651. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5652. if hparams.get("sliding_window") is not None:
  5653. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5654. if "layer_types" in hparams:
  5655. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5656. elif "sliding_window_pattern" in hparams:
  5657. sliding_window_pattern = []
  5658. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5659. for i in range(hparams["num_hidden_layers"]):
  5660. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5661. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5662. for i in range(hparams["num_hidden_layers"]):
  5663. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5664. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5665. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5666. rope_scaling = self.hparams.get("rope_scaling") or {}
  5667. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5668. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5669. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5670. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5671. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5672. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5673. base = self.hparams.get("rope_theta", 10_000.0)
  5674. if (dim := self.hparams.get("head_dim")) is None:
  5675. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5676. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5677. factor = rope_scaling.get("factor", 16.0)
  5678. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5679. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5680. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5681. low_freq_wavelen = old_context_len / low_freq_factor
  5682. high_freq_wavelen = old_context_len / high_freq_factor
  5683. rope_factors = []
  5684. for freq in freqs:
  5685. wavelen = 2 * math.pi / freq
  5686. if wavelen < high_freq_wavelen:
  5687. rope_factors.append(1)
  5688. elif wavelen > low_freq_wavelen:
  5689. rope_factors.append(factor)
  5690. else:
  5691. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5692. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5693. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5694. @ModelBase.register("GraniteForCausalLM")
  5695. class GraniteModel(LlamaModel):
  5696. """Conversion for IBM's GraniteForCausalLM"""
  5697. model_arch = gguf.MODEL_ARCH.GRANITE
  5698. def set_gguf_parameters(self):
  5699. """Granite uses standard llama parameters with the following differences:
  5700. - No head_dim support
  5701. - New multiplier params:
  5702. - attention_scale
  5703. - embedding_scale
  5704. - residual_scale
  5705. - logits_scaling
  5706. """
  5707. if head_dim := self.hparams.pop("head_dim", None):
  5708. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5709. super().set_gguf_parameters()
  5710. # NOTE: Convert _multiplier params to _scale params for naming
  5711. # consistency
  5712. if attention_scale := self.hparams.get("attention_multiplier"):
  5713. self.gguf_writer.add_attention_scale(attention_scale)
  5714. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5715. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5716. self.gguf_writer.add_embedding_scale(embedding_scale)
  5717. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5718. if residual_scale := self.hparams.get("residual_multiplier"):
  5719. self.gguf_writer.add_residual_scale(residual_scale)
  5720. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5721. if logits_scale := self.hparams.get("logits_scaling"):
  5722. self.gguf_writer.add_logit_scale(logits_scale)
  5723. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5724. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5725. class GraniteMoeModel(GraniteModel):
  5726. """Conversion for IBM's GraniteMoeForCausalLM"""
  5727. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5728. def set_gguf_parameters(self):
  5729. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5730. - shared_intermediate_size
  5731. """
  5732. super().set_gguf_parameters()
  5733. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5734. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5735. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5736. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5737. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5738. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5739. the hidden size that is then split during forward. To keep compatibility
  5740. with existing mixtral support, we pull them apart here.
  5741. """
  5742. if name.endswith("block_sparse_moe.input_linear.weight"):
  5743. ffn_dim = self.hparams["intermediate_size"]
  5744. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5745. gate, up = data_torch.split(ffn_dim, dim=-2)
  5746. return [
  5747. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5748. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5749. ]
  5750. has_experts = bool(self.hparams.get('num_local_experts'))
  5751. if name.endswith("shared_mlp.input_linear.weight"):
  5752. ffn_dim = self.hparams["shared_intermediate_size"]
  5753. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5754. gate, up = data_torch.split(ffn_dim, dim=-2)
  5755. if has_experts:
  5756. return [
  5757. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5758. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5759. ]
  5760. return [
  5761. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5762. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5763. ]
  5764. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5765. return [
  5766. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5767. ]
  5768. return super().modify_tensors(data_torch, name, bid)
  5769. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5770. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5771. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5772. layers and optionally uses MoE w/ a shared expert"""
  5773. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5774. undo_permute = True
  5775. def __init__(self, *args, **kwargs):
  5776. # Hybrid mamba models use a prefix for the mamba-specific params.
  5777. # TODO: Extend this if the prefix(es) need to be configurable
  5778. self.hparam_prefixes = ["mamba"]
  5779. super().__init__(*args, **kwargs)
  5780. # Lists of which layers use ssm vs attention
  5781. self._attn_layers = self.get_attn_layers()
  5782. self._ssm_layers = [
  5783. i for i in range(self.block_count)
  5784. if i not in self._attn_layers
  5785. ]
  5786. # n_group and d_inner are used during reshape_tensors for mamba2
  5787. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5788. self.n_group = self.find_hparam(["n_groups"])
  5789. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5790. def get_attn_layers(self):
  5791. # Explicit list of layer type names
  5792. if layer_types := self.hparams.get("layer_types"):
  5793. return [
  5794. i for i, typ in enumerate(layer_types)
  5795. if typ == "attention"
  5796. ]
  5797. # Layer types indicated by index or period
  5798. attn_layers = self.hparams.get("attn_layer_indices", [])
  5799. if not attn_layers:
  5800. attn_period = self.hparams.get("attn_layer_period")
  5801. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5802. attn_offset = self.hparams.get("attn_layer_offset")
  5803. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5804. attn_layers = [
  5805. i for i in range(self.block_count)
  5806. if i % attn_period == attn_offset
  5807. ]
  5808. return attn_layers
  5809. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5810. prefixed = []
  5811. for pfx in self.hparam_prefixes:
  5812. prefixed.extend(
  5813. "_".join([pfx, k])
  5814. for k in keys
  5815. )
  5816. keys = list(keys) + prefixed
  5817. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5818. def modify_tensors(
  5819. self, data_torch: Tensor, name: str, bid: int | None
  5820. ) -> Iterable[tuple[str, Tensor]]:
  5821. if (
  5822. name.endswith("block_sparse_moe.input_linear.weight")
  5823. or "shared_mlp" in name
  5824. ):
  5825. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5826. # Determine whether this is a mamba layer or an attention layer
  5827. if bid in self._ssm_layers:
  5828. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5829. elif bid in self._attn_layers:
  5830. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5831. return [(self.map_tensor_name(name), data_torch)]
  5832. def set_gguf_parameters(self):
  5833. """This method merges params from both parents and some that are
  5834. specific to this model. The result is some duplication of how the params
  5835. get set. The following warnings are expected during conversion:
  5836. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5837. WARNING:Duplicated key name 'granitehybrid.context_length'
  5838. """
  5839. GraniteMoeModel.set_gguf_parameters(self)
  5840. ## Mamba mixer params ##
  5841. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5842. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5843. self.gguf_writer.add_ssm_group_count(self.n_group)
  5844. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5845. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5846. # in llama.cpp
  5847. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5848. ## Attention params ##
  5849. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5850. head_count_kv_vec = [
  5851. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5852. ]
  5853. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5854. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5855. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5856. ## If Bamba, use rope, otherwise don't
  5857. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5858. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5859. if not use_rope:
  5860. self.gguf_writer.add_context_length(2**20)
  5861. ## Validation ##
  5862. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5863. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5864. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5865. def set_vocab(self):
  5866. self.hparams["pad_vocab_size_multiple"] = 8
  5867. Mamba2Model.set_vocab(self)
  5868. @ModelBase.register("BailingMoeForCausalLM")
  5869. class BailingMoeModel(TextModel):
  5870. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5871. def set_vocab(self):
  5872. self._set_vocab_gpt2()
  5873. def set_gguf_parameters(self):
  5874. super().set_gguf_parameters()
  5875. hparams = self.hparams
  5876. if (rope_dim := hparams.get("head_dim")) is None:
  5877. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5878. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5879. rope_scaling = self.hparams.get("rope_scaling") or {}
  5880. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5881. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5882. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5883. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5884. else:
  5885. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5886. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5887. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5888. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5889. self.gguf_writer.add_expert_weights_scale(1.0)
  5890. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5891. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5892. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5893. _experts: list[dict[str, Tensor]] | None = None
  5894. @staticmethod
  5895. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5896. if n_head_kv is not None and n_head != n_head_kv:
  5897. n_head = n_head_kv
  5898. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5899. .swapaxes(1, 2)
  5900. .reshape(weights.shape))
  5901. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5902. n_head = self.hparams["num_attention_heads"]
  5903. n_kv_head = self.hparams.get("num_key_value_heads")
  5904. n_embd = self.hparams["hidden_size"]
  5905. if (head_dim := self.hparams.get("head_dim")) is None:
  5906. head_dim = n_embd // n_head
  5907. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5908. if name.endswith("attention.dense.weight"):
  5909. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5910. elif name.endswith("query_key_value.weight"):
  5911. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5912. return [
  5913. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5914. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5915. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5916. ]
  5917. elif name.find("mlp.experts") != -1:
  5918. n_experts = self.hparams["num_experts"]
  5919. assert bid is not None
  5920. tensors: list[tuple[str, Tensor]] = []
  5921. if self._experts is None:
  5922. self._experts = [{} for _ in range(self.block_count)]
  5923. self._experts[bid][name] = data_torch
  5924. if len(self._experts[bid]) >= n_experts * 3:
  5925. # merge the experts into a single 3d tensor
  5926. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5927. datas: list[Tensor] = []
  5928. for xid in range(n_experts):
  5929. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5930. datas.append(self._experts[bid][ename])
  5931. del self._experts[bid][ename]
  5932. data_torch = torch.stack(datas, dim=0)
  5933. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5934. new_name = self.map_tensor_name(merged_name)
  5935. tensors.append((new_name, data_torch))
  5936. return tensors
  5937. new_name = self.map_tensor_name(name)
  5938. if new_name == output_name and self.hparams.get("norm_head"):
  5939. data_torch = data_torch.float()
  5940. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5941. return [(new_name, data_torch)]
  5942. def prepare_tensors(self):
  5943. super().prepare_tensors()
  5944. if self._experts is not None:
  5945. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5946. experts = [k for d in self._experts for k in d.keys()]
  5947. if len(experts) > 0:
  5948. raise ValueError(f"Unprocessed experts: {experts}")
  5949. @ModelBase.register("ChameleonForConditionalGeneration")
  5950. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5951. class ChameleonModel(TextModel):
  5952. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5953. def set_gguf_parameters(self):
  5954. super().set_gguf_parameters()
  5955. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5956. def set_vocab(self):
  5957. self._set_vocab_gpt2()
  5958. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5959. # ignore image tokenizer for now
  5960. # TODO: remove this once image support is implemented for Chameleon
  5961. if name.startswith("model.vqmodel"):
  5962. return []
  5963. n_head = self.hparams["num_attention_heads"]
  5964. n_kv_head = self.hparams.get("num_key_value_heads")
  5965. hidden_dim = self.hparams.get("hidden_size")
  5966. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5967. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5968. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5969. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5970. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5971. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5972. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5973. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5974. return [(self.map_tensor_name(name), data_torch)]
  5975. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5976. @staticmethod
  5977. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5978. head_dim = hidden_dim // n_heads
  5979. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5980. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5981. return data_torch
  5982. @ModelBase.register("UltravoxModel")
  5983. class UltravoxModel(TextModel):
  5984. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5985. def __init__(self, *args, **kwargs):
  5986. super().__init__(*args, **kwargs)
  5987. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5988. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5989. class WhisperEncoderModel(MmprojModel):
  5990. has_vision_encoder = False # no vision encoder
  5991. has_audio_encoder = True
  5992. def __init__(self, *args, **kwargs):
  5993. super().__init__(*args, **kwargs)
  5994. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  5995. self.hparams["hidden_size"] = self.hparams["d_model"]
  5996. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5997. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5998. def set_gguf_parameters(self):
  5999. super().set_gguf_parameters()
  6000. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6001. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6002. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6003. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6004. del bid, new_name, n_dims # unused
  6005. if ".conv" in name and ".weight" in name:
  6006. return gguf.GGMLQuantizationType.F16
  6007. return False
  6008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6009. del bid # unused
  6010. if name.startswith("language_model."):
  6011. # skip language model tensors
  6012. return []
  6013. # prevent clash naming with vision tensors
  6014. if name.startswith("multi_modal_projector"):
  6015. name = "audio." + name
  6016. if "conv1.bias" in name or "conv2.bias" in name:
  6017. # transpose conv1 and conv2 bias
  6018. data_torch = data_torch.unsqueeze(-1)
  6019. return [(self.map_tensor_name(name), data_torch)]
  6020. @ModelBase.register("UltravoxModel")
  6021. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6022. has_vision_encoder = False # no vision encoder
  6023. has_audio_encoder = True
  6024. def set_gguf_parameters(self):
  6025. super().set_gguf_parameters()
  6026. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6027. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6028. @ModelBase.register("VoxtralForConditionalGeneration")
  6029. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6030. has_vision_encoder = False # no vision encoder
  6031. has_audio_encoder = True
  6032. def set_gguf_parameters(self):
  6033. super().set_gguf_parameters()
  6034. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6035. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6036. @ModelBase.register("FalconH1ForCausalLM")
  6037. class FalconH1Model(Mamba2Model):
  6038. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6039. def __init__(self, *args, **kwargs):
  6040. # Set the hparam prefixes for Falcon Mamba2
  6041. self.hparam_prefixes = ["mamba"]
  6042. # Initialize the base Mamba2Model
  6043. super().__init__(*args, **kwargs)
  6044. # Use Llama conversion for attention
  6045. self._transformer_model_class = LlamaModel
  6046. # n_group and d_inner are used during reshape_tensors for mamba2
  6047. self.n_group = self.find_hparam(["n_groups"])
  6048. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6049. self.d_head = self.find_hparam(["d_head"])
  6050. # Initialize any Falcon Mamba2 specific attributes
  6051. self.has_attention = True # Falcon Mamba2 has attention components
  6052. # Load Falcon-H1 multipliers from hyperparameters
  6053. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6054. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6055. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6056. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6057. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6058. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6059. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6060. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6061. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6062. prefixed = []
  6063. for pfx in self.hparam_prefixes:
  6064. prefixed.extend(
  6065. "_".join([pfx, k])
  6066. for k in keys
  6067. )
  6068. keys = list(keys) + prefixed
  6069. return super().find_hparam(keys, *args, **kwargs)
  6070. def set_vocab(self):
  6071. self._set_vocab_gpt2()
  6072. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6073. tensors = list(super().modify_tensors(data_torch, name, bid))
  6074. tensor = tensors[0][1]
  6075. if "down_proj" in name:
  6076. tensor = tensor * self.mlp_multipliers[1]
  6077. elif "gate_proj" in name:
  6078. tensor = tensor * self.mlp_multipliers[0]
  6079. elif "k_proj" in name:
  6080. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6081. elif "q_proj" in name:
  6082. tensor = tensor * self.attention_in_multiplier
  6083. elif "v_proj" in name:
  6084. tensor = tensor * self.attention_in_multiplier
  6085. elif "o_proj" in name:
  6086. tensor = tensor * self.attention_out_multiplier
  6087. elif "out_proj" in name:
  6088. tensor = tensor * self.ssm_out_multiplier
  6089. elif "in_proj" in name:
  6090. tensor = tensor * self.ssm_in_multiplier
  6091. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6092. intermediate_size = self.hparams["mamba_d_ssm"]
  6093. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6094. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6095. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6096. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6097. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6098. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6099. elif "lm_head" in name:
  6100. tensor = tensor * self.hparams["lm_head_multiplier"]
  6101. elif "embed_tokens" in name:
  6102. tensor = tensor * self.hparams["embedding_multiplier"]
  6103. elif "mamba.norm" in name:
  6104. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6105. tensors = [(tensors[0][0], tensor)]
  6106. return tensors
  6107. def set_gguf_parameters(self):
  6108. super().set_gguf_parameters()
  6109. ## General Params ##
  6110. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6111. # Override some Mamba2 defaults
  6112. self.gguf_writer.add_block_count(self.block_count)
  6113. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6114. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6115. ## Attention params ##
  6116. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6117. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6118. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6119. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6120. ## Validation ##
  6121. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6122. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6123. # Add any other Falcon Mamba2 specific configuration
  6124. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6125. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6126. class HunYuanMoEModel(TextModel):
  6127. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6128. def __init__(self, *args, **kwargs):
  6129. super().__init__(*args, **kwargs)
  6130. # For handling tied embeddings
  6131. self._tok_embd = None
  6132. def set_vocab(self):
  6133. from transformers import AutoTokenizer
  6134. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6135. # 1. Get the pre-tokenizer identifier hash
  6136. tokpre = self.get_vocab_base_pre(tokenizer)
  6137. # 2. Reverse-engineer the merges list from mergeable_ranks
  6138. merges = []
  6139. vocab = {}
  6140. mergeable_ranks = tokenizer.mergeable_ranks
  6141. for token, rank in mergeable_ranks.items():
  6142. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6143. if len(token) == 1:
  6144. continue
  6145. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6146. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6147. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6148. # 3. Generate the tokens and toktypes lists
  6149. vocab_size = self.hparams["vocab_size"]
  6150. assert tokenizer.vocab_size == vocab_size
  6151. special_tokens = tokenizer.special_tokens
  6152. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6153. tokens: list[str] = []
  6154. toktypes: list[int] = []
  6155. for i in range(vocab_size):
  6156. if i not in reverse_vocab:
  6157. tokens.append(f"[PAD{i}]")
  6158. toktypes.append(gguf.TokenType.UNUSED)
  6159. else:
  6160. token = reverse_vocab[i]
  6161. tokens.append(token)
  6162. if i in special_tokens.values():
  6163. toktypes.append(gguf.TokenType.CONTROL)
  6164. else:
  6165. toktypes.append(gguf.TokenType.NORMAL)
  6166. # 4. Write all vocab-related fields to the GGUF writer
  6167. self.gguf_writer.add_tokenizer_model("gpt2")
  6168. self.gguf_writer.add_tokenizer_pre(tokpre)
  6169. self.gguf_writer.add_token_list(tokens)
  6170. self.gguf_writer.add_token_types(toktypes)
  6171. self.gguf_writer.add_token_merges(merges)
  6172. # 5. Add special tokens and chat templates
  6173. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6174. special_vocab.add_to_gguf(self.gguf_writer)
  6175. # FIX for BOS token: Overwrite incorrect id read from config.json
  6176. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6177. def set_gguf_parameters(self):
  6178. super().set_gguf_parameters()
  6179. hparams = self.hparams
  6180. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6181. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6182. moe_intermediate_size = hparams["moe_intermediate_size"]
  6183. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6184. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6185. moe_topk = hparams["moe_topk"]
  6186. assert all(topk == moe_topk[0] for topk in moe_topk)
  6187. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6188. moe_shared_expert = hparams["num_shared_expert"]
  6189. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6190. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6191. # Rope
  6192. rope_scaling = hparams.get("rope_scaling", {})
  6193. if rope_scaling.get("type") == "dynamic":
  6194. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6195. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6196. alpha = rope_scaling.get("alpha", 1000)
  6197. base = hparams.get("rope_theta", 10000.0)
  6198. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6199. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6200. self.gguf_writer.add_rope_freq_base(scaled_base)
  6201. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6202. self.gguf_writer.add_rope_scaling_factor(1)
  6203. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6204. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6205. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6206. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6207. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6208. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6209. _experts: list[dict[str, Tensor]] | None = None
  6210. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6211. if name == "model.embed_tokens.weight":
  6212. self._tok_embd = data_torch.clone()
  6213. if name == "lm_head.weight":
  6214. if self.hparams.get("tie_word_embeddings", False):
  6215. logger.info("Skipping tied output layer 'lm_head.weight'")
  6216. return []
  6217. if name.find("mlp.experts") != -1:
  6218. n_experts = self.hparams["num_experts"]
  6219. assert bid is not None
  6220. if self._experts is None:
  6221. self._experts = [{} for _ in range(self.block_count)]
  6222. self._experts[bid][name] = data_torch
  6223. if len(self._experts[bid]) >= n_experts * 3:
  6224. # merge the experts into a single 3d tensor
  6225. tensors: list[tuple[str, Tensor]] = []
  6226. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6227. datas: list[Tensor] = []
  6228. for xid in range(n_experts):
  6229. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6230. datas.append(self._experts[bid][ename])
  6231. del self._experts[bid][ename]
  6232. data_torch = torch.stack(datas, dim=0)
  6233. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6234. new_name = self.map_tensor_name(merged_name)
  6235. tensors.append((new_name, data_torch))
  6236. return tensors
  6237. else:
  6238. return []
  6239. return [(self.map_tensor_name(name), data_torch)]
  6240. def prepare_tensors(self):
  6241. super().prepare_tensors()
  6242. if self._experts is not None:
  6243. experts = [k for d in self._experts for k in d.keys()]
  6244. if len(experts) > 0:
  6245. raise ValueError(f"Unprocessed experts: {experts}")
  6246. @ModelBase.register("SmolLM3ForCausalLM")
  6247. class SmolLM3Model(LlamaModel):
  6248. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6249. def set_vocab(self):
  6250. super().set_vocab()
  6251. # remove unsupported array slicing in chat template
  6252. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6253. from transformers import AutoTokenizer
  6254. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6255. if tokenizer.chat_template is not None:
  6256. chat_template = tokenizer.chat_template.replace("[:]", "")
  6257. self.gguf_writer.add_chat_template(chat_template)
  6258. @ModelBase.register("Lfm2ForCausalLM")
  6259. @ModelBase.register("LFM2ForCausalLM")
  6260. class LFM2Model(TextModel):
  6261. model_arch = gguf.MODEL_ARCH.LFM2
  6262. def _add_feed_forward_length(self):
  6263. ff_dim = self.hparams["block_ff_dim"]
  6264. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6265. ff_dim = self.hparams["block_ff_dim"]
  6266. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6267. multiple_of = self.hparams["block_multiple_of"]
  6268. if auto_adjust_ff_dim:
  6269. ff_dim = int(2 * ff_dim / 3)
  6270. # custom dim factor multiplier
  6271. if ffn_dim_multiplier is not None:
  6272. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6273. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6274. self.gguf_writer.add_feed_forward_length(ff_dim)
  6275. def set_gguf_parameters(self):
  6276. # set num_key_value_heads only for attention layers
  6277. self.hparams["num_key_value_heads"] = [
  6278. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6279. for layer_type in self.hparams["layer_types"]
  6280. ]
  6281. super().set_gguf_parameters()
  6282. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6283. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6284. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6285. self._add_feed_forward_length()
  6286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6287. # conv op requires 2d tensor
  6288. if 'conv.conv' in name:
  6289. data_torch = data_torch.squeeze(1)
  6290. return [(self.map_tensor_name(name), data_torch)]
  6291. @ModelBase.register("SmallThinkerForCausalLM")
  6292. class SmallThinkerModel(TextModel):
  6293. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6294. def set_gguf_parameters(self):
  6295. super().set_gguf_parameters()
  6296. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6297. self.gguf_writer.add_expert_count(n_experts)
  6298. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6299. self.gguf_writer.add_expert_used_count(n_experts_used)
  6300. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6301. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6302. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6303. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6304. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6305. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6306. else:
  6307. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6308. # YaRN is not enabled by default
  6309. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6310. rope_scaling = self.hparams.get("rope_scaling") or {}
  6311. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6312. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6313. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6314. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6315. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6316. if sliding_window_layout:
  6317. for i in sliding_window_layout:
  6318. if i != 0:
  6319. sliding_window = self.hparams.get("sliding_window_size")
  6320. if sliding_window:
  6321. self.gguf_writer.add_sliding_window(sliding_window)
  6322. break
  6323. _experts: list[dict[str, Tensor]] | None = None
  6324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6325. # process the experts separately
  6326. if name.find("experts") != -1:
  6327. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6328. assert bid is not None
  6329. if self._experts is None:
  6330. self._experts = [{} for _ in range(self.block_count)]
  6331. self._experts[bid][name] = data_torch
  6332. if len(self._experts[bid]) >= n_experts * 3:
  6333. tensors: list[tuple[str, Tensor]] = []
  6334. # merge the experts into a single 3d tensor
  6335. for w_name in ["down", "gate", "up"]:
  6336. datas: list[Tensor] = []
  6337. for xid in range(n_experts):
  6338. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6339. datas.append(self._experts[bid][ename])
  6340. del self._experts[bid][ename]
  6341. data_torch = torch.stack(datas, dim=0)
  6342. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6343. new_name = self.map_tensor_name(merged_name)
  6344. tensors.append((new_name, data_torch))
  6345. return tensors
  6346. else:
  6347. return []
  6348. return [(self.map_tensor_name(name), data_torch)]
  6349. def prepare_tensors(self):
  6350. super().prepare_tensors()
  6351. if self._experts is not None:
  6352. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6353. experts = [k for d in self._experts for k in d.keys()]
  6354. if len(experts) > 0:
  6355. raise ValueError(f"Unprocessed experts: {experts}")
  6356. ###### CONVERSION LOGIC ######
  6357. # tree of lazy tensors
  6358. class LazyTorchTensor(gguf.LazyBase):
  6359. _tensor_type = torch.Tensor
  6360. # to keep the type-checker happy
  6361. dtype: torch.dtype
  6362. shape: torch.Size
  6363. # only used when converting a torch.Tensor to a np.ndarray
  6364. _dtype_map: dict[torch.dtype, type] = {
  6365. torch.float16: np.float16,
  6366. torch.float32: np.float32,
  6367. }
  6368. # used for safetensors slices
  6369. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6370. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6371. _dtype_str_map: dict[str, torch.dtype] = {
  6372. "F64": torch.float64,
  6373. "F32": torch.float32,
  6374. "BF16": torch.bfloat16,
  6375. "F16": torch.float16,
  6376. # "U64": torch.uint64,
  6377. "I64": torch.int64,
  6378. # "U32": torch.uint32,
  6379. "I32": torch.int32,
  6380. # "U16": torch.uint16,
  6381. "I16": torch.int16,
  6382. "U8": torch.uint8,
  6383. "I8": torch.int8,
  6384. "BOOL": torch.bool,
  6385. "F8_E4M3": torch.float8_e4m3fn,
  6386. "F8_E5M2": torch.float8_e5m2,
  6387. }
  6388. def numpy(self) -> gguf.LazyNumpyTensor:
  6389. dtype = self._dtype_map[self.dtype]
  6390. return gguf.LazyNumpyTensor(
  6391. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6392. args=(self,),
  6393. func=(lambda s: s.numpy())
  6394. )
  6395. @classmethod
  6396. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6397. return torch.empty(size=shape, dtype=dtype, device="meta")
  6398. @classmethod
  6399. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6400. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6401. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6402. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6403. return cast(torch.Tensor, lazy)
  6404. @classmethod
  6405. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6406. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6407. shape = remote_tensor.shape
  6408. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6409. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6410. return cast(torch.Tensor, lazy)
  6411. @classmethod
  6412. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6413. del types # unused
  6414. if kwargs is None:
  6415. kwargs = {}
  6416. if func is torch.Tensor.numpy:
  6417. return args[0].numpy()
  6418. return cls._wrap_fn(func)(*args, **kwargs)
  6419. def parse_args() -> argparse.Namespace:
  6420. parser = argparse.ArgumentParser(
  6421. description="Convert a huggingface model to a GGML compatible file")
  6422. parser.add_argument(
  6423. "--vocab-only", action="store_true",
  6424. help="extract only the vocab",
  6425. )
  6426. parser.add_argument(
  6427. "--outfile", type=Path,
  6428. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6429. )
  6430. parser.add_argument(
  6431. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6432. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6433. )
  6434. parser.add_argument(
  6435. "--bigendian", action="store_true",
  6436. help="model is executed on big endian machine",
  6437. )
  6438. parser.add_argument(
  6439. "model", type=str,
  6440. help="directory containing model file or huggingface repository ID (if --remote)",
  6441. nargs="?",
  6442. )
  6443. parser.add_argument(
  6444. "--use-temp-file", action="store_true",
  6445. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6446. )
  6447. parser.add_argument(
  6448. "--no-lazy", action="store_true",
  6449. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6450. )
  6451. parser.add_argument(
  6452. "--model-name", type=str, default=None,
  6453. help="name of the model",
  6454. )
  6455. parser.add_argument(
  6456. "--verbose", action="store_true",
  6457. help="increase output verbosity",
  6458. )
  6459. parser.add_argument(
  6460. "--split-max-tensors", type=int, default=0,
  6461. help="max tensors in each split",
  6462. )
  6463. parser.add_argument(
  6464. "--split-max-size", type=str, default="0",
  6465. help="max size per split N(M|G)",
  6466. )
  6467. parser.add_argument(
  6468. "--dry-run", action="store_true",
  6469. help="only print out a split plan and exit, without writing any new files",
  6470. )
  6471. parser.add_argument(
  6472. "--no-tensor-first-split", action="store_true",
  6473. help="do not add tensors to the first split (disabled by default)"
  6474. )
  6475. parser.add_argument(
  6476. "--metadata", type=Path,
  6477. help="Specify the path for an authorship metadata override file"
  6478. )
  6479. parser.add_argument(
  6480. "--print-supported-models", action="store_true",
  6481. help="Print the supported models"
  6482. )
  6483. parser.add_argument(
  6484. "--remote", action="store_true",
  6485. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6486. )
  6487. parser.add_argument(
  6488. "--mmproj", action="store_true",
  6489. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6490. )
  6491. args = parser.parse_args()
  6492. if not args.print_supported_models and args.model is None:
  6493. parser.error("the following arguments are required: model")
  6494. return args
  6495. def split_str_to_n_bytes(split_str: str) -> int:
  6496. if split_str.endswith("K"):
  6497. n = int(split_str[:-1]) * 1000
  6498. elif split_str.endswith("M"):
  6499. n = int(split_str[:-1]) * 1000 * 1000
  6500. elif split_str.endswith("G"):
  6501. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6502. elif split_str.isnumeric():
  6503. n = int(split_str)
  6504. else:
  6505. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6506. if n < 0:
  6507. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6508. return n
  6509. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6510. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6511. # maybe we should fallback to text model's arch in that case, since not many models have both
  6512. text_config = hparams.get("text_config", {})
  6513. vision_config = hparams.get("vision_config", {})
  6514. arch = None
  6515. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6516. arch = arches[0]
  6517. elif "ssm_cfg" in hparams:
  6518. # For non-hf Mamba and Mamba2 models
  6519. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6520. # if "architectures" is found in the sub-config, use that instead
  6521. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6522. arch = text_config["architectures"][0]
  6523. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6524. arch = vision_config["architectures"][0]
  6525. if arch is None:
  6526. raise ValueError("Failed to detect model architecture")
  6527. return arch
  6528. def main() -> None:
  6529. args = parse_args()
  6530. if args.print_supported_models:
  6531. logger.error("Supported models:")
  6532. ModelBase.print_registered_models()
  6533. sys.exit(0)
  6534. if args.verbose:
  6535. logging.basicConfig(level=logging.DEBUG)
  6536. else:
  6537. logging.basicConfig(level=logging.INFO)
  6538. if args.remote:
  6539. hf_repo_id = args.model
  6540. from huggingface_hub import snapshot_download
  6541. local_dir = snapshot_download(
  6542. repo_id=hf_repo_id,
  6543. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6544. dir_model = Path(local_dir)
  6545. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6546. else:
  6547. hf_repo_id = None
  6548. dir_model = Path(args.model)
  6549. if not dir_model.is_dir():
  6550. logger.error(f'Error: {dir_model} is not a directory')
  6551. sys.exit(1)
  6552. ftype_map: dict[str, gguf.LlamaFileType] = {
  6553. "f32": gguf.LlamaFileType.ALL_F32,
  6554. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6555. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6556. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6557. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6558. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6559. "auto": gguf.LlamaFileType.GUESSED,
  6560. }
  6561. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6562. if args.use_temp_file and is_split:
  6563. logger.error("Error: Cannot use temp file when splitting")
  6564. sys.exit(1)
  6565. if args.outfile is not None:
  6566. fname_out = args.outfile
  6567. elif hf_repo_id:
  6568. # if remote, use the model ID as the output file name
  6569. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6570. else:
  6571. fname_out = dir_model
  6572. logger.info(f"Loading model: {dir_model.name}")
  6573. if args.mmproj:
  6574. if "mmproj" not in fname_out.name:
  6575. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6576. with torch.inference_mode():
  6577. output_type = ftype_map[args.outtype]
  6578. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6579. hparams = ModelBase.load_hparams(dir_model)
  6580. model_architecture = get_model_architecture(hparams, model_type)
  6581. logger.info(f"Model architecture: {model_architecture}")
  6582. try:
  6583. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6584. except NotImplementedError:
  6585. logger.error(f"Model {model_architecture} is not supported")
  6586. sys.exit(1)
  6587. model_instance = model_class(dir_model, output_type, fname_out,
  6588. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6589. eager=args.no_lazy,
  6590. metadata_override=args.metadata, model_name=args.model_name,
  6591. split_max_tensors=args.split_max_tensors,
  6592. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6593. small_first_shard=args.no_tensor_first_split,
  6594. remote_hf_model_id=hf_repo_id)
  6595. if args.vocab_only:
  6596. logger.info("Exporting model vocab...")
  6597. model_instance.write_vocab()
  6598. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6599. else:
  6600. logger.info("Exporting model...")
  6601. model_instance.write()
  6602. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6603. logger.info(f"Model successfully exported to {out_path}")
  6604. if __name__ == '__main__':
  6605. main()