test-backend-ops.cpp 300 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. // generate an F16 mask where certain blocks are randomly masked with -INF value
  121. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  122. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  123. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  124. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  125. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  126. std::random_device rd;
  127. std::mt19937 gen(rd());
  128. std::uniform_real_distribution<float> dis(min, max);
  129. for (size_t i = 0; i < data_f32.size(); i++) {
  130. data_f32[i] = dis(gen);
  131. }
  132. // block size
  133. const int blck0 = 128;
  134. const int blck1 = 64;
  135. // number of INF blocks
  136. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  137. for (int b = 0; b < n_inf_blocks; b++) {
  138. const int p3 = (rd() % ne3);
  139. const int p2 = (rd() % ne2);
  140. const int p1 = (rd() % ne1);
  141. const int p0 = (rd() % ne0);
  142. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  143. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  144. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  145. data_f32[idx + i0] = -INFINITY;
  146. }
  147. }
  148. }
  149. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  150. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  151. }
  152. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  153. std::vector<float> tv;
  154. tv.reserve(ggml_nelements(t));
  155. std::vector<uint8_t> buf(ggml_nbytes(t));
  156. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  157. const auto * tt = ggml_get_type_traits(t->type);
  158. size_t bs = ggml_blck_size(t->type);
  159. std::vector<float> vq(ggml_blck_size(t->type));
  160. bool quantized = ggml_is_quantized(t->type);
  161. // access elements by index to avoid gaps in views
  162. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  163. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  164. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  165. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  166. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  167. if (t->type == GGML_TYPE_F16) {
  168. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  169. } else if (t->type == GGML_TYPE_BF16) {
  170. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  171. } else if (t->type == GGML_TYPE_F32) {
  172. tv.push_back(*(float *) &buf[i]);
  173. } else if (t->type == GGML_TYPE_I64) {
  174. tv.push_back((float)*(int64_t *) &buf[i]);
  175. } else if (t->type == GGML_TYPE_I32) {
  176. tv.push_back((float)*(int32_t *) &buf[i]);
  177. } else if (t->type == GGML_TYPE_I16) {
  178. tv.push_back((float)*(int16_t *) &buf[i]);
  179. } else if (t->type == GGML_TYPE_I8) {
  180. tv.push_back((float)*(int8_t *) &buf[i]);
  181. } else if (quantized) {
  182. tt->to_float(&buf[i], vq.data(), bs);
  183. tv.insert(tv.end(), vq.begin(), vq.end());
  184. } else {
  185. GGML_ABORT("fatal error");
  186. }
  187. }
  188. }
  189. }
  190. }
  191. return tv;
  192. }
  193. // normalized mean squared error = mse(a, b) / mse(a, 0)
  194. static double nmse(const float * a, const float * b, size_t n) {
  195. double mse_a_b = 0.0;
  196. double mse_a_0 = 0.0;
  197. for (size_t i = 0; i < n; i++) {
  198. float a_i = a[i];
  199. float b_i = b[i];
  200. mse_a_b += (a_i - b_i) * (a_i - b_i);
  201. mse_a_0 += a_i * a_i;
  202. }
  203. return mse_a_b / mse_a_0;
  204. }
  205. // maximum absolute asymmetry between a and b
  206. // asymmetry: (a - b) / (a + b)
  207. // This is more stable than relative error if one of the values fluctuates towards zero.
  208. // n: number of values to compare.
  209. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  210. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  211. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  212. double sum = 0.0f;
  213. size_t nvalid = 0;
  214. for (size_t i = 0; i < n; i++) {
  215. if (!expected_vals.empty()) {
  216. bool matches_any = false;
  217. for (const float & ev : expected_vals) {
  218. if (fabsf(a[i] - ev) < 1e-3f) {
  219. matches_any = true;
  220. break;
  221. }
  222. }
  223. if (!matches_any) {
  224. continue;
  225. }
  226. }
  227. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  228. sum += fabsf(asymm);
  229. nvalid++;
  230. }
  231. return sum/nvalid;
  232. }
  233. // utils for printing the variables of the test cases
  234. template<typename T>
  235. static std::string var_to_str(const T & x) {
  236. return std::to_string(x);
  237. }
  238. template<typename T, size_t N>
  239. static std::string var_to_str(const T (&x)[N]) {
  240. std::string s = "[";
  241. for (size_t i = 0; i < N; i++) {
  242. if (i > 0) {
  243. s += ",";
  244. }
  245. s += var_to_str(x[i]);
  246. }
  247. s += "]";
  248. return s;
  249. }
  250. template<typename T, size_t N>
  251. static std::string var_to_str(const std::array<T, N> & x) {
  252. std::string s = "[";
  253. for (size_t i = 0; i < N; i++) {
  254. if (i > 0) {
  255. s += ",";
  256. }
  257. s += var_to_str(x[i]);
  258. }
  259. s += "]";
  260. return s;
  261. }
  262. static std::string var_to_str(ggml_type type) {
  263. return ggml_type_name(type);
  264. }
  265. static std::string var_to_str(ggml_prec prec) {
  266. return prec == GGML_PREC_F32 ? "f32" : "def";
  267. }
  268. static std::string var_to_str(ggml_op_pool pool) {
  269. switch (pool) {
  270. case GGML_OP_POOL_AVG: return "avg";
  271. case GGML_OP_POOL_MAX: return "max";
  272. default: return std::to_string(pool);
  273. }
  274. }
  275. static std::string var_to_str(ggml_scale_mode mode) {
  276. switch (mode) {
  277. case GGML_SCALE_MODE_NEAREST: return "nearest";
  278. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  279. default: return std::to_string(mode);
  280. }
  281. }
  282. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  283. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  284. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  285. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  286. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  287. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  288. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  289. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  290. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  291. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  292. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  293. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  294. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  295. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  296. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  297. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  298. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  299. #ifdef GGML_USE_SYCL
  300. static bool inline _isinf(float f) {
  301. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  302. }
  303. #else
  304. static bool inline _isinf(float f) { return std::isinf(f); }
  305. #endif
  306. // accept FLT_MAX as infinity
  307. static bool isinf_or_max(float f) {
  308. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  309. }
  310. static bool ggml_is_view_op(enum ggml_op op) {
  311. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  312. }
  313. enum test_mode {
  314. MODE_TEST,
  315. MODE_PERF,
  316. MODE_GRAD,
  317. MODE_SUPPORT,
  318. };
  319. // Output format support similar to llama-bench
  320. enum output_formats { CONSOLE, SQL, CSV };
  321. static const char * output_format_str(output_formats format) {
  322. switch (format) {
  323. case CONSOLE:
  324. return "console";
  325. case SQL:
  326. return "sql";
  327. case CSV:
  328. return "csv";
  329. default:
  330. GGML_ABORT("invalid output format");
  331. }
  332. }
  333. static bool output_format_from_str(const std::string & s, output_formats & format) {
  334. if (s == "console") {
  335. format = CONSOLE;
  336. } else if (s == "sql") {
  337. format = SQL;
  338. } else if (s == "csv") {
  339. format = CSV;
  340. } else {
  341. return false;
  342. }
  343. return true;
  344. }
  345. // Test result structure for SQL output
  346. struct test_result {
  347. std::string test_time;
  348. std::string build_commit;
  349. std::string backend_name;
  350. std::string op_name;
  351. std::string op_params;
  352. std::string test_mode;
  353. bool supported;
  354. bool passed;
  355. std::string error_message;
  356. double time_us;
  357. double flops;
  358. double bandwidth_gb_s;
  359. size_t memory_kb;
  360. int n_runs;
  361. std::string device_description;
  362. std::string backend_reg_name;
  363. test_result() {
  364. // Initialize with default values
  365. time_us = 0.0;
  366. flops = 0.0;
  367. bandwidth_gb_s = 0.0;
  368. memory_kb = 0;
  369. n_runs = 0;
  370. supported = false;
  371. passed = false;
  372. // Set test time
  373. time_t t = time(NULL);
  374. char buf[32];
  375. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  376. test_time = buf;
  377. // Set build info
  378. build_commit = ggml_commit();
  379. }
  380. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  381. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  382. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  383. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  384. backend_name(backend_name),
  385. op_name(op_name),
  386. op_params(op_params),
  387. test_mode(test_mode),
  388. supported(supported),
  389. passed(passed),
  390. error_message(error_message),
  391. time_us(time_us),
  392. flops(flops),
  393. bandwidth_gb_s(bandwidth_gb_s),
  394. memory_kb(memory_kb),
  395. n_runs(n_runs),
  396. device_description(device_description),
  397. backend_reg_name(backend_reg_name) {
  398. // Set test time
  399. time_t t = time(NULL);
  400. char buf[32];
  401. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  402. test_time = buf;
  403. // Set build info
  404. build_commit = ggml_commit();
  405. }
  406. static const std::vector<std::string> & get_fields() {
  407. static const std::vector<std::string> fields = {
  408. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  409. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  410. "device_description", "backend_reg_name"
  411. };
  412. return fields;
  413. }
  414. enum field_type { STRING, BOOL, INT, FLOAT };
  415. static field_type get_field_type(const std::string & field) {
  416. if (field == "supported" || field == "passed") {
  417. return BOOL;
  418. }
  419. if (field == "memory_kb" || field == "n_runs") {
  420. return INT;
  421. }
  422. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  423. return FLOAT;
  424. }
  425. return STRING;
  426. }
  427. std::vector<std::string> get_values() const {
  428. return { test_time,
  429. build_commit,
  430. backend_name,
  431. op_name,
  432. op_params,
  433. test_mode,
  434. std::to_string(supported),
  435. std::to_string(passed),
  436. error_message,
  437. std::to_string(time_us),
  438. std::to_string(flops),
  439. std::to_string(bandwidth_gb_s),
  440. std::to_string(memory_kb),
  441. std::to_string(n_runs),
  442. device_description,
  443. backend_reg_name };
  444. }
  445. };
  446. // Printer classes for different output formats
  447. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  448. struct test_operation_info {
  449. std::string op_name;
  450. std::string op_params;
  451. std::string backend_name;
  452. test_status_t status = test_status_t::OK;
  453. std::string failure_reason;
  454. // Additional information fields that were previously in separate structs
  455. std::string error_component;
  456. std::string error_details;
  457. // Gradient info
  458. int64_t gradient_index = -1;
  459. std::string gradient_param_name;
  460. float gradient_value = 0.0f;
  461. // MAA error info
  462. double maa_error = 0.0;
  463. double maa_threshold = 0.0;
  464. // Flags for different types of information
  465. bool has_error = false;
  466. bool has_gradient_info = false;
  467. bool has_maa_error = false;
  468. bool is_compare_failure = false;
  469. bool is_large_tensor_skip = false;
  470. test_operation_info() = default;
  471. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  472. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  473. op_name(op_name),
  474. op_params(op_params),
  475. backend_name(backend_name),
  476. status(status),
  477. failure_reason(failure_reason) {}
  478. // Set error information
  479. void set_error(const std::string & component, const std::string & details) {
  480. has_error = true;
  481. error_component = component;
  482. error_details = details;
  483. if (status == test_status_t::OK) {
  484. status = test_status_t::FAIL;
  485. }
  486. }
  487. // Set gradient information
  488. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  489. has_gradient_info = true;
  490. gradient_index = index;
  491. gradient_param_name = param_name;
  492. gradient_value = value;
  493. if (status == test_status_t::OK) {
  494. status = test_status_t::FAIL;
  495. }
  496. }
  497. // Set MAA error information
  498. void set_maa_error(double error, double threshold) {
  499. has_maa_error = true;
  500. maa_error = error;
  501. maa_threshold = threshold;
  502. if (status == test_status_t::OK) {
  503. status = test_status_t::FAIL;
  504. }
  505. }
  506. // Set compare failure
  507. void set_compare_failure() {
  508. is_compare_failure = true;
  509. if (status == test_status_t::OK) {
  510. status = test_status_t::FAIL;
  511. }
  512. }
  513. // Set large tensor skip
  514. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  515. };
  516. struct test_summary_info {
  517. size_t tests_passed;
  518. size_t tests_total;
  519. bool is_backend_summary = false; // true for backend summary, false for test summary
  520. test_summary_info() = default;
  521. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  522. tests_passed(tests_passed),
  523. tests_total(tests_total),
  524. is_backend_summary(is_backend_summary) {}
  525. };
  526. struct testing_start_info {
  527. size_t device_count;
  528. testing_start_info() = default;
  529. testing_start_info(size_t device_count) : device_count(device_count) {}
  530. };
  531. struct backend_init_info {
  532. size_t device_index;
  533. size_t total_devices;
  534. std::string device_name;
  535. bool skipped = false;
  536. std::string skip_reason;
  537. std::string description;
  538. size_t memory_total_mb = 0;
  539. size_t memory_free_mb = 0;
  540. bool has_memory_info = false;
  541. backend_init_info() = default;
  542. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  543. const std::string & skip_reason = "", const std::string & description = "",
  544. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  545. device_index(device_index),
  546. total_devices(total_devices),
  547. device_name(device_name),
  548. skipped(skipped),
  549. skip_reason(skip_reason),
  550. description(description),
  551. memory_total_mb(memory_total_mb),
  552. memory_free_mb(memory_free_mb),
  553. has_memory_info(has_memory_info) {}
  554. };
  555. struct backend_status_info {
  556. std::string backend_name;
  557. test_status_t status;
  558. backend_status_info() = default;
  559. backend_status_info(const std::string & backend_name, test_status_t status) :
  560. backend_name(backend_name),
  561. status(status) {}
  562. };
  563. struct overall_summary_info {
  564. size_t backends_passed;
  565. size_t backends_total;
  566. bool all_passed;
  567. overall_summary_info() = default;
  568. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  569. backends_passed(backends_passed),
  570. backends_total(backends_total),
  571. all_passed(all_passed) {}
  572. };
  573. struct printer {
  574. virtual ~printer() {}
  575. FILE * fout = stdout;
  576. virtual void print_header() {}
  577. virtual void print_test_result(const test_result & result) = 0;
  578. virtual void print_footer() {}
  579. virtual void print_operation(const test_operation_info & info) { (void) info; }
  580. virtual void print_summary(const test_summary_info & info) { (void) info; }
  581. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  582. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  583. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  584. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  585. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  586. };
  587. struct console_printer : public printer {
  588. void print_test_result(const test_result & result) override {
  589. if (result.test_mode == "test") {
  590. print_test_console(result);
  591. } else if (result.test_mode == "perf") {
  592. print_perf_console(result);
  593. } else if (result.test_mode == "support") {
  594. print_support_console(result);
  595. }
  596. }
  597. void print_operation(const test_operation_info & info) override {
  598. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  599. fflush(stdout);
  600. // Handle large tensor skip first
  601. if (info.is_large_tensor_skip) {
  602. printf("skipping large tensors for speed \n");
  603. return;
  604. }
  605. // Handle not supported status
  606. if (info.status == test_status_t::NOT_SUPPORTED) {
  607. if (!info.failure_reason.empty()) {
  608. printf("not supported [%s]\n", info.failure_reason.c_str());
  609. } else {
  610. printf("not supported [%s]\n", info.backend_name.c_str());
  611. }
  612. return;
  613. }
  614. // Handle errors and additional information
  615. if (info.has_error) {
  616. if (info.error_component == "allocation") {
  617. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  618. } else if (info.error_component == "backend") {
  619. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  620. } else {
  621. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  622. }
  623. }
  624. // Handle gradient info
  625. if (info.has_gradient_info) {
  626. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  627. info.gradient_param_name.c_str(), info.gradient_value);
  628. }
  629. // Handle MAA error
  630. if (info.has_maa_error) {
  631. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  632. }
  633. // Handle compare failure
  634. if (info.is_compare_failure) {
  635. printf("compare failed ");
  636. }
  637. // Print final status
  638. if (info.status == test_status_t::OK) {
  639. printf("\033[1;32mOK\033[0m\n");
  640. } else {
  641. printf("\033[1;31mFAIL\033[0m\n");
  642. }
  643. }
  644. void print_summary(const test_summary_info & info) override {
  645. if (info.is_backend_summary) {
  646. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  647. } else {
  648. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  649. }
  650. }
  651. void print_backend_status(const backend_status_info & info) override {
  652. printf(" Backend %s: ", info.backend_name.c_str());
  653. if (info.status == test_status_t::OK) {
  654. printf("\033[1;32mOK\033[0m\n");
  655. } else {
  656. printf("\033[1;31mFAIL\033[0m\n");
  657. }
  658. }
  659. void print_testing_start(const testing_start_info & info) override {
  660. printf("Testing %zu devices\n\n", info.device_count);
  661. }
  662. void print_backend_init(const backend_init_info & info) override {
  663. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  664. if (info.skipped) {
  665. printf(" %s\n", info.skip_reason.c_str());
  666. return;
  667. }
  668. if (!info.description.empty()) {
  669. printf(" Device description: %s\n", info.description.c_str());
  670. }
  671. if (info.has_memory_info) {
  672. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  673. }
  674. printf("\n");
  675. }
  676. void print_overall_summary(const overall_summary_info & info) override {
  677. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  678. if (info.all_passed) {
  679. printf("\033[1;32mOK\033[0m\n");
  680. } else {
  681. printf("\033[1;31mFAIL\033[0m\n");
  682. }
  683. }
  684. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  685. if (failed_tests.empty()) {
  686. return;
  687. }
  688. printf("\nFailing tests:\n");
  689. for (const auto & test_name : failed_tests) {
  690. printf(" %s\n", test_name.c_str());
  691. }
  692. }
  693. private:
  694. void print_test_console(const test_result & result) {
  695. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  696. fflush(stdout);
  697. if (!result.supported) {
  698. printf("not supported [%s] ", result.backend_name.c_str());
  699. printf("\n");
  700. return;
  701. }
  702. if (result.passed) {
  703. printf("\033[1;32mOK\033[0m\n");
  704. } else {
  705. printf("\033[1;31mFAIL\033[0m\n");
  706. }
  707. }
  708. void print_perf_console(const test_result & result) {
  709. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  710. fflush(stdout);
  711. if (!result.supported) {
  712. printf("not supported\n");
  713. return;
  714. }
  715. // align while also leaving some margin for variations in parameters
  716. int align = 8;
  717. int last = (len + align - 1) / align * align;
  718. if (last - len < 5) {
  719. last += align;
  720. }
  721. printf("%*s", last - len, "");
  722. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  723. if (result.flops > 0) {
  724. auto format_flops = [](double flops) -> std::string {
  725. char buf[256];
  726. if (flops >= 1e12) {
  727. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  728. } else if (flops >= 1e9) {
  729. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  730. } else if (flops >= 1e6) {
  731. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  732. } else {
  733. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  734. }
  735. return buf;
  736. };
  737. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  738. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  739. format_flops(result.flops).c_str());
  740. } else {
  741. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  742. }
  743. printf("\n");
  744. }
  745. void print_support_console(const test_result & result) {
  746. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  747. fflush(stdout);
  748. if (result.supported) {
  749. printf("\033[1;32mSUPPORTED\033[0m\n");
  750. } else {
  751. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  752. }
  753. }
  754. };
  755. struct sql_printer : public printer {
  756. static std::string get_sql_field_type(const std::string & field) {
  757. switch (test_result::get_field_type(field)) {
  758. case test_result::STRING:
  759. return "TEXT";
  760. case test_result::BOOL:
  761. case test_result::INT:
  762. return "INTEGER";
  763. case test_result::FLOAT:
  764. return "REAL";
  765. default:
  766. GGML_ABORT("invalid field type");
  767. }
  768. }
  769. void print_header() override {
  770. std::vector<std::string> fields = test_result::get_fields();
  771. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  772. for (size_t i = 0; i < fields.size(); i++) {
  773. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  774. i < fields.size() - 1 ? "," : "");
  775. }
  776. fprintf(fout, ");\n\n");
  777. }
  778. void print_test_result(const test_result & result) override {
  779. fprintf(fout, "INSERT INTO test_backend_ops (");
  780. std::vector<std::string> fields = test_result::get_fields();
  781. for (size_t i = 0; i < fields.size(); i++) {
  782. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  783. }
  784. fprintf(fout, ") VALUES (");
  785. std::vector<std::string> values = result.get_values();
  786. for (size_t i = 0; i < values.size(); i++) {
  787. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  788. }
  789. fprintf(fout, ");\n");
  790. }
  791. };
  792. struct csv_printer : public printer {
  793. void print_header() override {
  794. std::vector<std::string> fields = test_result::get_fields();
  795. std::vector<std::string> fields_csv = get_fields_csv();
  796. for (size_t i = 0; i < fields.size(); i++) {
  797. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  798. continue;
  799. }
  800. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  801. }
  802. printf("\n");
  803. }
  804. void print_test_result(const test_result & result) override {
  805. std::vector<std::string> values = result.get_values();
  806. std::vector<std::string> fields = test_result::get_fields();
  807. std::vector<std::string> fields_csv = get_fields_csv();
  808. for (size_t i = 0; i < values.size(); i++) {
  809. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  810. continue;
  811. }
  812. // Escape quotes and wrap in quotes for CSV
  813. std::string escaped_value = values[i];
  814. size_t pos = 0;
  815. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  816. escaped_value.replace(pos, 1, "\"\"");
  817. pos += 2;
  818. }
  819. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  820. }
  821. printf("\n");
  822. }
  823. static std::vector<std::string> get_fields_csv() {
  824. return {
  825. "op_name",
  826. "op_params",
  827. "supported",
  828. "error_message",
  829. "test_mode",
  830. "backend_reg_name",
  831. "backend_name",
  832. };
  833. }
  834. };
  835. static std::unique_ptr<printer> create_printer(output_formats format) {
  836. switch (format) {
  837. case CONSOLE:
  838. return std::make_unique<console_printer>();
  839. case SQL:
  840. return std::make_unique<sql_printer>();
  841. case CSV:
  842. return std::make_unique<csv_printer>();
  843. }
  844. GGML_ABORT("invalid output format");
  845. }
  846. struct test_case {
  847. virtual ~test_case() {}
  848. virtual std::string op_desc(ggml_tensor * t) {
  849. return ggml_op_desc(t);
  850. }
  851. virtual std::string vars() {
  852. return "";
  853. }
  854. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  855. virtual double max_nmse_err() {
  856. return 1e-7;
  857. }
  858. virtual double max_maa_err() {
  859. return 1e-4;
  860. }
  861. virtual float grad_eps() {
  862. return 1e-1f;
  863. }
  864. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  865. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  866. virtual bool grad_precise() {
  867. return false;
  868. }
  869. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  870. virtual int64_t grad_nmax() {
  871. return 10000;
  872. }
  873. // No effect if empty.
  874. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  875. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  876. virtual std::vector<float> grad_expect() {
  877. return {};
  878. }
  879. virtual void initialize_tensors(ggml_context * ctx) {
  880. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  881. init_tensor_uniform(t);
  882. }
  883. }
  884. virtual size_t op_size(ggml_tensor * t) {
  885. size_t size = ggml_nbytes(t);
  886. // add source tensors
  887. for (int i = 0; i < GGML_MAX_SRC; i++) {
  888. if (t->src[i] != NULL) {
  889. size += ggml_nbytes(t->src[i]);
  890. }
  891. }
  892. return size;
  893. }
  894. virtual uint64_t op_flops(ggml_tensor * t) {
  895. GGML_UNUSED(t);
  896. return 0;
  897. }
  898. virtual bool run_whole_graph() { return false; }
  899. ggml_cgraph * gf = nullptr;
  900. ggml_cgraph * gb = nullptr;
  901. static const int sentinel_size = 1024;
  902. test_mode mode;
  903. std::vector<ggml_tensor *> sentinels;
  904. std::string current_op_name;
  905. void add_sentinel(ggml_context * ctx) {
  906. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  907. return;
  908. }
  909. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  910. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  911. sentinels.push_back(sentinel);
  912. }
  913. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  914. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  915. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  916. add_sentinel(ctx);
  917. return t;
  918. }
  919. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  920. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  921. add_sentinel(ctx);
  922. return t;
  923. }
  924. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  925. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  926. add_sentinel(ctx);
  927. return t;
  928. }
  929. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  930. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  931. add_sentinel(ctx);
  932. return t;
  933. }
  934. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  935. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  936. add_sentinel(ctx);
  937. return t;
  938. }
  939. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  940. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  941. if (op_names_filter) {
  942. const auto op_name = op_desc(op);
  943. const auto op_full_name = op_name + "(" + vars() + ")";
  944. std::string_view filter(op_names_filter);
  945. while (!filter.empty()) {
  946. auto comma_pos = filter.find_first_of(',');
  947. const auto lparen_pos = filter.find_first_of('(');
  948. if (lparen_pos < comma_pos) {
  949. auto rparen_pos = filter.find_first_of(')');
  950. comma_pos = filter.find_first_of(',', rparen_pos);
  951. const auto op_filter = filter.substr(0, comma_pos);
  952. if (op_filter == op_full_name) {
  953. return true;
  954. }
  955. } else {
  956. const auto op_filter = filter.substr(0, comma_pos);
  957. if (op_filter == op_name) {
  958. return true;
  959. }
  960. }
  961. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  962. }
  963. return false;
  964. } else {
  965. return true;
  966. }
  967. }
  968. test_status_t eval(ggml_backend_t backend1,
  969. ggml_backend_t backend2,
  970. const char * op_names_filter,
  971. printer * output_printer) {
  972. mode = MODE_TEST;
  973. ggml_init_params params = {
  974. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  975. /* .mem_base = */ NULL,
  976. /* .no_alloc = */ true,
  977. };
  978. ggml_context * ctx = ggml_init(params);
  979. GGML_ASSERT(ctx);
  980. gf = ggml_new_graph(ctx);
  981. // pre-graph sentinel
  982. add_sentinel(ctx);
  983. ggml_tensor * out = build_graph(ctx);
  984. current_op_name = op_desc(out);
  985. if (!matches_filter(out, op_names_filter)) {
  986. //printf(" %s: skipping\n", op_desc(out).c_str());
  987. ggml_free(ctx);
  988. return test_status_t::SKIPPED;
  989. }
  990. // check if the backends support the ops
  991. bool supported = true;
  992. for (ggml_backend_t backend : {backend1, backend2}) {
  993. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  994. if (!ggml_backend_supports_op(backend, t)) {
  995. supported = false;
  996. break;
  997. }
  998. }
  999. }
  1000. if (!supported) {
  1001. // Create test result for unsupported operation
  1002. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1003. false, false, "not supported");
  1004. if (output_printer) {
  1005. output_printer->print_test_result(result);
  1006. }
  1007. ggml_free(ctx);
  1008. return test_status_t::NOT_SUPPORTED;
  1009. }
  1010. // post-graph sentinel
  1011. add_sentinel(ctx);
  1012. // allocate
  1013. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1014. if (buf == NULL) {
  1015. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1016. ggml_free(ctx);
  1017. return test_status_t::FAIL;
  1018. }
  1019. // build graph
  1020. ggml_build_forward_expand(gf, out);
  1021. // add sentinels as graph nodes so that they are checked in the callback
  1022. for (ggml_tensor * sentinel : sentinels) {
  1023. ggml_graph_add_node(gf, sentinel);
  1024. }
  1025. // randomize tensors
  1026. initialize_tensors(ctx);
  1027. // compare
  1028. struct callback_userdata {
  1029. bool ok;
  1030. double max_err;
  1031. ggml_backend_t backend1;
  1032. ggml_backend_t backend2;
  1033. };
  1034. callback_userdata ud {
  1035. true,
  1036. max_nmse_err(),
  1037. backend1,
  1038. backend2
  1039. };
  1040. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1041. callback_userdata * ud = (callback_userdata *) user_data;
  1042. const char * bn1 = ggml_backend_name(ud->backend1);
  1043. const char * bn2 = ggml_backend_name(ud->backend2);
  1044. if (t1->op == GGML_OP_NONE) {
  1045. // sentinels must be unchanged
  1046. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1047. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1048. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1049. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1050. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1051. printf("sentinel mismatch: %s ", t1->name);
  1052. ud->ok = false;
  1053. return true;
  1054. }
  1055. }
  1056. std::vector<float> f1 = tensor_to_float(t1);
  1057. std::vector<float> f2 = tensor_to_float(t2);
  1058. for (size_t i = 0; i < f1.size(); i++) {
  1059. // check for nans
  1060. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1061. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1062. ud->ok = false;
  1063. return true;
  1064. }
  1065. // check for infs: both must be inf of the same sign, or both must be finite
  1066. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1067. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1068. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1069. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1070. ud->ok = false;
  1071. return true;
  1072. }
  1073. } else {
  1074. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1075. ud->ok = false;
  1076. return true;
  1077. }
  1078. }
  1079. }
  1080. double err = nmse(f1.data(), f2.data(), f1.size());
  1081. if (err > ud->max_err) {
  1082. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1083. //for (int i = 0; i < (int) f1.size(); i++) {
  1084. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1085. //}
  1086. //printf("\n");
  1087. //exit(1);
  1088. ud->ok = false;
  1089. }
  1090. return true;
  1091. GGML_UNUSED(index);
  1092. };
  1093. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1094. ggml_backend_buffer_free(buf);
  1095. ggml_free(ctx);
  1096. // Create test result
  1097. bool test_passed = ud.ok && cmp_ok;
  1098. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1099. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1100. error_msg);
  1101. if (output_printer) {
  1102. output_printer->print_test_result(result);
  1103. }
  1104. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1105. }
  1106. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1107. mode = MODE_PERF;
  1108. static const size_t graph_nodes = 8192;
  1109. ggml_init_params params = {
  1110. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1111. /* .mem_base = */ NULL,
  1112. /* .no_alloc = */ true,
  1113. };
  1114. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1115. GGML_ASSERT(ctx);
  1116. ggml_tensor * out = build_graph(ctx.get());
  1117. current_op_name = op_desc(out);
  1118. if (!matches_filter(out, op_names_filter)) {
  1119. //printf(" %s: skipping\n", op_desc(out).c_str());
  1120. return true;
  1121. }
  1122. if (!ggml_backend_supports_op(backend, out)) {
  1123. // Create test result for unsupported performance test
  1124. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1125. "not supported");
  1126. output_printer->print_test_result(result);
  1127. return true;
  1128. }
  1129. // allocate
  1130. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1131. if (buf == NULL) {
  1132. printf("failed to allocate tensors\n");
  1133. return false;
  1134. }
  1135. // randomize tensors
  1136. initialize_tensors(ctx.get());
  1137. // build graph
  1138. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1139. ggml_build_forward_expand(gf, out);
  1140. // warmup run
  1141. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1142. if (status != GGML_STATUS_SUCCESS) {
  1143. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1144. return false;
  1145. }
  1146. // determine number of runs
  1147. int n_runs;
  1148. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1149. if (op_flops(out) > 0) {
  1150. // based on flops
  1151. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1152. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1153. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1154. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1155. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1156. } else {
  1157. // based on memory size
  1158. const size_t GB = 1ULL << 30;
  1159. const size_t target_size_cpu = 8 * GB;
  1160. const size_t target_size_gpu = 32 * GB;
  1161. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1162. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1163. }
  1164. // duplicate the op
  1165. for (int i = 1; i < n_runs; i++) {
  1166. ggml_graph_add_node(gf, out);
  1167. }
  1168. // calculate memory
  1169. size_t mem = n_runs * op_size(out);
  1170. auto tensor_op_size = [](ggml_tensor * t) {
  1171. size_t size = ggml_nbytes(t);
  1172. // add source tensors
  1173. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1174. if (t->src[i] != NULL) {
  1175. size += ggml_nbytes(t->src[i]);
  1176. }
  1177. }
  1178. return size;
  1179. };
  1180. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1181. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1182. continue;
  1183. }
  1184. mem += tensor_op_size(ggml_graph_node(gf, i));
  1185. }
  1186. // run
  1187. int64_t total_time_us = 0;
  1188. int64_t total_mem = 0;
  1189. int total_runs = 0;
  1190. do {
  1191. int64_t start_time = ggml_time_us();
  1192. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1193. if (status != GGML_STATUS_SUCCESS) {
  1194. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1195. return false;
  1196. }
  1197. int64_t end_time = ggml_time_us();
  1198. total_time_us += end_time - start_time;
  1199. total_mem += mem;
  1200. total_runs += n_runs;
  1201. } while (total_time_us < 1000*1000); // run for at least 1 second
  1202. // Create test result
  1203. double avg_time_us = (double) total_time_us / total_runs;
  1204. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1205. double calculated_bandwidth =
  1206. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1207. size_t calculated_memory_kb = op_size(out) / 1024;
  1208. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1209. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1210. if (output_printer) {
  1211. output_printer->print_test_result(result);
  1212. }
  1213. return true;
  1214. }
  1215. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1216. mode = MODE_SUPPORT;
  1217. static const size_t graph_nodes = 8192;
  1218. ggml_init_params params = {
  1219. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1220. /* .mem_base = */ NULL,
  1221. /* .no_alloc = */ true,
  1222. };
  1223. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1224. GGML_ASSERT(ctx);
  1225. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1226. ggml_tensor * out = build_graph(ctx.get());
  1227. current_op_name = op_desc(out);
  1228. if (!matches_filter(out, op_names_filter)) {
  1229. return true;
  1230. }
  1231. bool supported = ggml_backend_supports_op(backend, out);
  1232. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1233. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1234. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1235. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1236. output_printer->print_test_result(result);
  1237. return true;
  1238. }
  1239. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1240. mode = MODE_GRAD;
  1241. const std::vector<float> expect = grad_expect();
  1242. ggml_init_params params = {
  1243. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1244. /* .mem_base = */ NULL,
  1245. /* .no_alloc = */ true,
  1246. };
  1247. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1248. GGML_ASSERT(ctx);
  1249. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1250. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1251. ggml_tensor * out = build_graph(ctx.get());
  1252. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1253. return true;
  1254. }
  1255. if (out->type != GGML_TYPE_F32) {
  1256. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1257. test_status_t::NOT_SUPPORTED,
  1258. out->name + std::string("->type != FP32")));
  1259. return true;
  1260. }
  1261. // Print operation info first
  1262. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1263. // check if the backend supports the ops
  1264. bool supported = true;
  1265. bool any_params = false;
  1266. std::string failure_reason;
  1267. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1268. if (!ggml_backend_supports_op(backend, t)) {
  1269. supported = false;
  1270. failure_reason = ggml_backend_name(backend);
  1271. break;
  1272. }
  1273. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1274. any_params = true;
  1275. if (t->type != GGML_TYPE_F32) {
  1276. supported = false;
  1277. failure_reason = std::string(t->name) + "->type != FP32";
  1278. break;
  1279. }
  1280. }
  1281. }
  1282. if (!any_params) {
  1283. supported = false;
  1284. failure_reason = op_desc(out);
  1285. }
  1286. if (!supported) {
  1287. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1288. test_status_t::NOT_SUPPORTED, failure_reason));
  1289. return true;
  1290. }
  1291. int64_t ngrads = 0;
  1292. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1293. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1294. ngrads += ggml_nelements(t);
  1295. }
  1296. }
  1297. if (ngrads > grad_nmax()) {
  1298. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1299. info.set_large_tensor_skip();
  1300. output_printer->print_operation(info);
  1301. return true;
  1302. }
  1303. if (!ggml_is_scalar(out)) {
  1304. out = ggml_sum(ctx.get(), out);
  1305. ggml_set_name(out, "sum_of_out");
  1306. }
  1307. ggml_set_loss(out);
  1308. ggml_build_forward_expand(gf, out);
  1309. ggml_graph_cpy(gf, gb);
  1310. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1311. if (expect.size() != 1 || expect[0] != 0.0f) {
  1312. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1313. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1314. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1315. }
  1316. }
  1317. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1318. if (!ggml_backend_supports_op(backend, t)) {
  1319. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1320. test_status_t::NOT_SUPPORTED,
  1321. ggml_backend_name(backend)));
  1322. supported = false;
  1323. break;
  1324. }
  1325. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1326. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1327. test_status_t::NOT_SUPPORTED,
  1328. std::string(t->name) + "->type != FP32"));
  1329. supported = false;
  1330. break;
  1331. }
  1332. }
  1333. if (!supported) {
  1334. return true;
  1335. }
  1336. // allocate
  1337. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1338. if (buf == NULL) {
  1339. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1340. info.set_error("allocation", "");
  1341. output_printer->print_operation(info);
  1342. return false;
  1343. }
  1344. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1345. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1346. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1347. if (status != GGML_STATUS_SUCCESS) {
  1348. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1349. return false;
  1350. }
  1351. status = ggml_backend_graph_compute(backend, gb);
  1352. if (status != GGML_STATUS_SUCCESS) {
  1353. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1354. return false;
  1355. }
  1356. bool ok = true;
  1357. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1358. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1359. continue;
  1360. }
  1361. const char * bn = ggml_backend_name(backend);
  1362. const int64_t ne = ggml_nelements(t);
  1363. std::vector<float> ga;
  1364. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1365. if (grad) {
  1366. ga = tensor_to_float(grad);
  1367. } else {
  1368. ga.resize(ne); // default value is 0.0f
  1369. }
  1370. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1371. // check for nans
  1372. if (!std::isfinite(ga[i])) {
  1373. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1374. info.set_gradient_info(i, bn, ga[i]);
  1375. output_printer->print_operation(info);
  1376. ok = false;
  1377. break;
  1378. }
  1379. }
  1380. if (!ok) {
  1381. break;
  1382. }
  1383. std::vector<float> gn(ne); // gradient numeric
  1384. GGML_ASSERT(ga.size() == gn.size());
  1385. std::vector<float> x0 = tensor_to_float(t); // original t data
  1386. GGML_ASSERT(ggml_is_scalar(out));
  1387. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1388. const float eps = grad_eps();
  1389. for (int64_t i = 0; i < ne; ++i) {
  1390. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1391. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1392. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1393. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1394. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1395. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1396. status = ggml_backend_graph_compute(backend, gf);
  1397. if (status != GGML_STATUS_SUCCESS) {
  1398. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1399. return false;
  1400. }
  1401. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1402. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1403. status = ggml_backend_graph_compute(backend, gf);
  1404. if (status != GGML_STATUS_SUCCESS) {
  1405. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1406. return false;
  1407. }
  1408. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1409. if (grad_precise()) {
  1410. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1411. status = ggml_backend_graph_compute(backend, gf);
  1412. if (status != GGML_STATUS_SUCCESS) {
  1413. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1414. return false;
  1415. }
  1416. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1417. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1418. status = ggml_backend_graph_compute(backend, gf);
  1419. if (status != GGML_STATUS_SUCCESS) {
  1420. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1421. return false;
  1422. }
  1423. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1424. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1425. } else {
  1426. gn[i] = (fu - fd) / (2.0f*eps);
  1427. }
  1428. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1429. }
  1430. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1431. if (err > max_maa_err()) {
  1432. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1433. info.set_maa_error(err, max_maa_err());
  1434. output_printer->print_operation(info);
  1435. ok = false;
  1436. break;
  1437. }
  1438. if (!ok) {
  1439. break;
  1440. }
  1441. }
  1442. // Create final test result
  1443. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1444. if (!ok) {
  1445. final_info.set_compare_failure();
  1446. }
  1447. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1448. output_printer->print_operation(final_info);
  1449. if (ok) {
  1450. return true;
  1451. }
  1452. return false;
  1453. }
  1454. };
  1455. // ###################################
  1456. // ## Section 2: GGML Op Defintions ##
  1457. // ###################################
  1458. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1459. // GGML_OP_EXAMPLE
  1460. struct test_example : public test_case {
  1461. // Always define these 2 or variants thereof:
  1462. const ggml_type type; // The type of the input tensors.
  1463. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1464. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1465. // Or they may need additional parameters.
  1466. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1467. // In most cases these are just the properties of the struct that you defined above.
  1468. // This is needed for info prints.
  1469. std::string vars() override {
  1470. return VARS_TO_STR2(type, ne);
  1471. }
  1472. // Define a constructor for the struct.
  1473. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1474. // and just use initializer lists.
  1475. test_example(ggml_type type = GGML_TYPE_F32,
  1476. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1477. : type(type), ne(ne) {}
  1478. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1479. ggml_tensor * build_graph(ggml_context * ctx) override {
  1480. // Step 1: create input tensors that don't depend on any other tensors:
  1481. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1482. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1483. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1484. ggml_set_name(b, "b");
  1485. // Step 2: use the op that you want to test in the GGML compute graph.
  1486. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1487. ggml_set_name(out, "out");
  1488. // Step 3: return the output tensor.
  1489. return out;
  1490. }
  1491. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1492. // immediately after you create the tensors.
  1493. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1494. };
  1495. // GGML_OP_UNARY
  1496. struct test_unary : public test_case {
  1497. const ggml_unary_op op;
  1498. const ggml_type type;
  1499. const std::array<int64_t, 4> ne_a;
  1500. int v; // view (1 : non-contiguous a)
  1501. std::string vars() override {
  1502. return VARS_TO_STR3(type, ne_a, v);
  1503. }
  1504. test_unary(ggml_unary_op op,
  1505. ggml_type type = GGML_TYPE_F32,
  1506. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1507. int v = 0)
  1508. : op(op), type(type), ne_a(ne_a), v(v) {}
  1509. ggml_tensor * build_graph(ggml_context * ctx) override {
  1510. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1511. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1512. ggml_tensor * a;
  1513. if (v & 1) {
  1514. auto ne = ne_a; ne[0] *= 3;
  1515. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1516. if (grad_supported) {
  1517. ggml_set_param(a);
  1518. }
  1519. ggml_set_name(a, "a");
  1520. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1521. ggml_set_name(a, "view_of_a");
  1522. } else {
  1523. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1524. if (grad_supported) {
  1525. ggml_set_param(a);
  1526. }
  1527. ggml_set_name(a, "a");
  1528. }
  1529. ggml_tensor * out = ggml_unary(ctx, a, op);
  1530. ggml_set_name(out, "out");
  1531. return out;
  1532. }
  1533. void initialize_tensors(ggml_context * ctx) override {
  1534. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1535. // test extended range of values to check for NaNs in GELU
  1536. init_tensor_uniform(t, -150.f, 150.f);
  1537. }
  1538. }
  1539. float grad_eps() override {
  1540. return 15.0f;
  1541. }
  1542. std::vector<float> grad_expect() override {
  1543. if (op == GGML_UNARY_OP_ABS) {
  1544. return {-1.0f, 1.0f};
  1545. }
  1546. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1547. return {0.0f};
  1548. }
  1549. if (op == GGML_UNARY_OP_RELU) {
  1550. return {0.0f, 1.0f};
  1551. }
  1552. return {};
  1553. }
  1554. };
  1555. // GGML_OP_GLU
  1556. struct test_glu : public test_case {
  1557. const ggml_glu_op op;
  1558. const ggml_type type;
  1559. const std::array<int64_t, 4> ne_a;
  1560. int v; // view (1 : non-contiguous a)
  1561. bool swapped;
  1562. std::string vars() override {
  1563. return VARS_TO_STR4(type, ne_a, v, swapped);
  1564. }
  1565. test_glu(ggml_glu_op op,
  1566. ggml_type type = GGML_TYPE_F32,
  1567. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1568. int v = 0,
  1569. bool swapped = false)
  1570. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1571. ggml_tensor * build_graph(ggml_context * ctx) override {
  1572. ggml_tensor * a;
  1573. if (v & 1) {
  1574. auto ne = ne_a; ne[0] *= 3;
  1575. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1576. ggml_set_name(a, "a");
  1577. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1578. ggml_set_name(a, "view_of_a");
  1579. } else {
  1580. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1581. ggml_set_name(a, "a");
  1582. }
  1583. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1584. ggml_set_name(out, "out");
  1585. return out;
  1586. }
  1587. void initialize_tensors(ggml_context * ctx) override {
  1588. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1589. // test extended range of values to check for NaNs in GELU
  1590. init_tensor_uniform(t, -150.f, 150.f);
  1591. }
  1592. }
  1593. };
  1594. struct test_glu_split : public test_case {
  1595. const ggml_glu_op op;
  1596. const ggml_type type;
  1597. const std::array<int64_t, 4> ne_a;
  1598. int v; // view (1 : non-contiguous a)
  1599. std::string vars() override {
  1600. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1601. }
  1602. test_glu_split(ggml_glu_op op,
  1603. ggml_type type = GGML_TYPE_F32,
  1604. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1605. int v = 0)
  1606. : op(op), type(type), ne_a(ne_a), v(v) {}
  1607. ggml_tensor * build_graph(ggml_context * ctx) override {
  1608. ggml_tensor * a;
  1609. ggml_tensor * b;
  1610. if (v & 1) {
  1611. auto ne = ne_a; ne[0] *= 3;
  1612. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1613. ggml_set_param(a);
  1614. ggml_set_name(a, "a");
  1615. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1616. ggml_set_name(a, "view_of_a");
  1617. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1618. ggml_set_param(b);
  1619. ggml_set_name(b, "b");
  1620. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1621. ggml_set_name(a, "view_of_b");
  1622. } else {
  1623. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1624. ggml_set_param(a);
  1625. ggml_set_name(a, "a");
  1626. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1627. ggml_set_param(b);
  1628. ggml_set_name(b, "b");
  1629. }
  1630. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1631. ggml_set_name(out, "out");
  1632. return out;
  1633. }
  1634. void initialize_tensors(ggml_context * ctx) override {
  1635. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1636. // test extended range of values to check for NaNs in GELU
  1637. init_tensor_uniform(t, -150.f, 150.f);
  1638. }
  1639. }
  1640. };
  1641. struct test_swiglu_oai : public test_case {
  1642. const ggml_type type;
  1643. const std::array<int64_t, 4> ne_a;
  1644. int v; // view (1 : non-contiguous a)
  1645. float alpha;
  1646. float limit;
  1647. std::string vars() override {
  1648. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1649. }
  1650. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1651. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1652. int v = 0,
  1653. float alpha = 1.702f,
  1654. float limit = 7.0f)
  1655. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1656. ggml_tensor * build_graph(ggml_context * ctx) override {
  1657. ggml_tensor * a;
  1658. ggml_tensor * b;
  1659. if (v & 1) {
  1660. auto ne = ne_a; ne[0] *= 3;
  1661. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1662. ggml_set_param(a);
  1663. ggml_set_name(a, "a");
  1664. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1665. ggml_set_name(a, "view_of_a");
  1666. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1667. ggml_set_param(b);
  1668. ggml_set_name(b, "b");
  1669. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1670. ggml_set_name(a, "view_of_b");
  1671. } else {
  1672. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1673. ggml_set_param(a);
  1674. ggml_set_name(a, "a");
  1675. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1676. ggml_set_param(b);
  1677. ggml_set_name(b, "b");
  1678. }
  1679. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1680. ggml_set_name(out, "out");
  1681. return out;
  1682. }
  1683. void initialize_tensors(ggml_context * ctx) override {
  1684. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1685. // test extended range of values to check for NaNs in GELU
  1686. init_tensor_uniform(t, -150.f, 150.f);
  1687. }
  1688. }
  1689. };
  1690. // GGML_OP_GET_ROWS
  1691. struct test_get_rows : public test_case {
  1692. const ggml_type type;
  1693. const int n; // cols
  1694. const int m; // rows
  1695. const int r; // rows to get
  1696. const int be1; // batch size
  1697. const int be2; // batch size
  1698. const bool v; // view (non-contiguous src1)
  1699. std::string vars() override {
  1700. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1701. }
  1702. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1703. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1704. ggml_tensor * build_graph(ggml_context * ctx) override {
  1705. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1706. ggml_set_name(in, "in");
  1707. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1708. ggml_set_name(rows, "rows");
  1709. if (v) {
  1710. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1711. ggml_set_name(rows, "view_of_rows");
  1712. }
  1713. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1714. if (grad_supported) {
  1715. ggml_set_param(in);
  1716. // rows is a constant input -> no gradients
  1717. }
  1718. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1719. ggml_set_name(out, "out");
  1720. return out;
  1721. }
  1722. void initialize_tensors(ggml_context * ctx) override {
  1723. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1724. if (t->type == GGML_TYPE_I32) {
  1725. if (ggml_is_view_op(t->op)) { continue; }
  1726. // rows
  1727. std::vector<int> data(r*be1*be2);
  1728. for (int i = 0; i < r*be1*be2; i++) {
  1729. data[i] = rand() % m;
  1730. }
  1731. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1732. } else {
  1733. init_tensor_uniform(t);
  1734. }
  1735. }
  1736. }
  1737. };
  1738. // GGML_OP_GET_ROWS_BACK
  1739. struct test_get_rows_back : public test_case {
  1740. const ggml_type type;
  1741. const int n; // cols
  1742. const int m; // rows
  1743. const int r; // rows to get
  1744. const int b; // batch size
  1745. const bool v; // view (non-contiguous src1)
  1746. std::string vars() override {
  1747. return VARS_TO_STR6(type, n, m, r, b, v);
  1748. }
  1749. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1750. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1751. ggml_tensor * build_graph(ggml_context * ctx) override {
  1752. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1753. ggml_set_name(in_forward, "in_forward");
  1754. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1755. ggml_set_name(rows, "rows");
  1756. if (v) {
  1757. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1758. ggml_set_name(rows, "view_of_rows");
  1759. }
  1760. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1761. ggml_set_name(grad, "grad");
  1762. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1763. ggml_set_name(out, "out");
  1764. return out;
  1765. }
  1766. void initialize_tensors(ggml_context * ctx) override {
  1767. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1768. if (t->type == GGML_TYPE_I32) {
  1769. if (ggml_is_view_op(t->op)) { continue; }
  1770. // rows
  1771. std::vector<int> data(r*b);
  1772. for (int i = 0; i < r*b; i++) {
  1773. data[i] = rand() % m;
  1774. }
  1775. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1776. } else {
  1777. init_tensor_uniform(t);
  1778. }
  1779. }
  1780. }
  1781. };
  1782. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1783. std::random_device rd;
  1784. std::default_random_engine rng(rd());
  1785. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1786. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1787. // generate a shuffled subset of row indices
  1788. std::vector<int64_t> data(num_rows);
  1789. for (int i = 0; i < num_rows; i++) {
  1790. data[i] = i;
  1791. }
  1792. std::shuffle(data.begin(), data.end(), rng);
  1793. data.resize(t->ne[0]);
  1794. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1795. if (t->type == GGML_TYPE_I32) {
  1796. // TODO: Make a template or something
  1797. std::vector<int32_t> data_i32(t->ne[0]);
  1798. for (int i = 0; i < t->ne[0]; i++) {
  1799. data_i32[i] = static_cast<int32_t>(data[i]);
  1800. }
  1801. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1802. } else {
  1803. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1804. }
  1805. }
  1806. }
  1807. }
  1808. // GGML_OP_SET_ROWS
  1809. struct test_set_rows : public test_case {
  1810. const ggml_type type;
  1811. const ggml_type type_idx;
  1812. const std::array<int64_t, 4> ne;
  1813. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1814. const int r; // rows to set
  1815. const bool v; // view (non-contiguous src1)
  1816. std::string vars() override {
  1817. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1818. }
  1819. test_set_rows(ggml_type type,
  1820. ggml_type type_idx,
  1821. std::array<int64_t, 4> ne,
  1822. std::array<int, 2> nr23,
  1823. int r, bool v = false)
  1824. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1825. ggml_tensor * build_graph(ggml_context * ctx) override {
  1826. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1827. ggml_set_name(dst, "dst");
  1828. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1829. ggml_set_name(src, "src");
  1830. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1831. ggml_set_name(row_idxs, "row_idxs");
  1832. if (v) {
  1833. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1834. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1835. ggml_set_name(row_idxs, "view_of_rows");
  1836. }
  1837. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1838. ggml_set_name(out, "out");
  1839. return out;
  1840. }
  1841. void initialize_tensors(ggml_context * ctx) override {
  1842. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1843. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1844. if (ggml_is_view_op(t->op)) {
  1845. continue;
  1846. }
  1847. init_set_rows_row_ids(t, ne[1]);
  1848. } else {
  1849. init_tensor_uniform(t);
  1850. }
  1851. }
  1852. }
  1853. double max_nmse_err() override {
  1854. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1855. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1856. // estimate what the max nmse error would be if one quantized value is
  1857. // off by one. The test values are distributed in [-1,1], so it'll be
  1858. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1859. // which is roughly 0.25 times the number of elements.
  1860. double err_estimate = 1.0f/8.0f;
  1861. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1862. err_estimate /= 2.0f;
  1863. }
  1864. if (type == GGML_TYPE_Q8_0) {
  1865. err_estimate /= 8.0f;
  1866. }
  1867. err_estimate *= err_estimate;
  1868. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1869. return err_estimate;
  1870. }
  1871. return 1e-7;
  1872. }
  1873. };
  1874. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1875. struct test_rope_set_rows : public test_case {
  1876. const ggml_type type;
  1877. const ggml_type type_idx;
  1878. const std::array<int64_t, 4> ne;
  1879. int mode;
  1880. std::string vars() override {
  1881. return VARS_TO_STR4(type, type_idx, ne, mode);
  1882. }
  1883. std::string op_desc(ggml_tensor * t) override {
  1884. GGML_UNUSED(t);
  1885. return "ROPE_SET_ROWS";
  1886. }
  1887. bool run_whole_graph() override { return true; }
  1888. test_rope_set_rows(ggml_type type,
  1889. ggml_type type_idx,
  1890. std::array<int64_t, 4> ne,
  1891. int mode)
  1892. : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
  1893. ggml_tensor * build_graph(ggml_context * ctx) override {
  1894. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1895. ggml_set_name(src, "src");
  1896. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1897. ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
  1898. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1899. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1900. ggml_set_name(dst, "dst");
  1901. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
  1902. ggml_set_name(row_idxs, "row_idxs");
  1903. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  1904. ggml_set_name(out, "out");
  1905. return out;
  1906. }
  1907. void initialize_tensors(ggml_context * ctx) override {
  1908. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1909. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1910. if (ggml_is_view_op(t->op)) {
  1911. continue;
  1912. }
  1913. init_set_rows_row_ids(t, ne[2]);
  1914. } else {
  1915. init_tensor_uniform(t);
  1916. }
  1917. }
  1918. }
  1919. };
  1920. // GGML_OP_ARGMAX
  1921. struct test_argmax : public test_case {
  1922. const ggml_type type;
  1923. const std::array<int64_t, 4> ne;
  1924. std::string vars() override {
  1925. return VARS_TO_STR2(type, ne);
  1926. }
  1927. test_argmax(ggml_type type = GGML_TYPE_F32,
  1928. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1929. : type(type), ne(ne) {}
  1930. ggml_tensor * build_graph(ggml_context * ctx) override {
  1931. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1932. ggml_set_name(a, "a");
  1933. ggml_tensor * out = ggml_argmax(ctx, a);
  1934. ggml_set_name(out, "out");
  1935. return out;
  1936. }
  1937. void initialize_tensors(ggml_context * ctx) override {
  1938. std::random_device rd;
  1939. std::default_random_engine rng(rd());
  1940. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1941. if (t->type == GGML_TYPE_F32) {
  1942. // initialize with unique values to avoid ties
  1943. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1944. std::vector<float> data(t->ne[0]);
  1945. for (int i = 0; i < t->ne[0]; i++) {
  1946. data[i] = i;
  1947. }
  1948. std::shuffle(data.begin(), data.end(), rng);
  1949. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1950. }
  1951. } else {
  1952. init_tensor_uniform(t);
  1953. }
  1954. }
  1955. }
  1956. double max_nmse_err() override {
  1957. return 0.0;
  1958. }
  1959. };
  1960. // GGML_OP_COUNT_EQUAL
  1961. struct test_count_equal : public test_case {
  1962. const ggml_type type;
  1963. const std::array<int64_t, 4> ne;
  1964. std::string vars() override {
  1965. return VARS_TO_STR2(type, ne);
  1966. }
  1967. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1968. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1969. : type(type), ne(ne) {}
  1970. ggml_tensor * build_graph(ggml_context * ctx) override {
  1971. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1972. ggml_set_name(a, "a");
  1973. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1974. ggml_set_name(a_argmax, "a_argmax");
  1975. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1976. ggml_set_name(b, "b");
  1977. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1978. ggml_set_name(b_argmax, "b_argmax");
  1979. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1980. ggml_set_name(out, "out");
  1981. return out;
  1982. }
  1983. double max_nmse_err() override {
  1984. return 0.0;
  1985. }
  1986. void initialize_tensors(ggml_context * ctx) override {
  1987. std::random_device rd;
  1988. std::default_random_engine rng(rd());
  1989. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1990. if (t->type == GGML_TYPE_F32) {
  1991. // initialize with unique values to avoid ties
  1992. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1993. std::vector<float> data(t->ne[0]);
  1994. for (int i = 0; i < t->ne[0]; i++) {
  1995. data[i] = i;
  1996. }
  1997. std::shuffle(data.begin(), data.end(), rng);
  1998. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1999. }
  2000. } else {
  2001. init_tensor_uniform(t);
  2002. }
  2003. }
  2004. }
  2005. };
  2006. // GGML_OP_REPEAT
  2007. struct test_repeat : public test_case {
  2008. const ggml_type type;
  2009. const std::array<int64_t, 4> ne;
  2010. const std::array<int, 4> nr;
  2011. std::string vars() override {
  2012. return VARS_TO_STR3(type, ne, nr);
  2013. }
  2014. size_t op_size(ggml_tensor * t) override {
  2015. return ggml_nbytes(t) * 2;
  2016. }
  2017. test_repeat(ggml_type type = GGML_TYPE_F32,
  2018. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2019. std::array<int, 4> nr = {2, 2, 2, 2})
  2020. : type(type), ne(ne), nr(nr) {}
  2021. ggml_tensor * build_graph(ggml_context * ctx) override {
  2022. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2023. ggml_set_name(target, "target");
  2024. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2025. ggml_set_param(src);
  2026. ggml_set_name(src, "src");
  2027. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2028. ggml_set_name(out, "out");
  2029. return out;
  2030. }
  2031. };
  2032. // GGML_OP_REPEAT_BACK
  2033. struct test_repeat_back : public test_case {
  2034. const ggml_type type;
  2035. const std::array<int64_t, 4> ne;
  2036. const std::array<int, 4> nr;
  2037. const bool v; // whether src is a noncontiguous view
  2038. std::string vars() override {
  2039. return VARS_TO_STR4(type, ne, nr, v);
  2040. }
  2041. size_t op_size(ggml_tensor * t) override {
  2042. return ggml_nbytes(t) * 2;
  2043. }
  2044. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2045. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2046. std::array<int, 4> nr = {2, 2, 2, 2},
  2047. bool v = false)
  2048. : type(type), ne(ne), nr(nr), v(v) {}
  2049. ggml_tensor * build_graph(ggml_context * ctx) override {
  2050. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2051. ggml_set_name(src, "src");
  2052. if (v) {
  2053. GGML_ASSERT(ne[0] % 2 == 0);
  2054. GGML_ASSERT(ne[1] % 2 == 0);
  2055. GGML_ASSERT(ne[2] % 2 == 0);
  2056. GGML_ASSERT(ne[3] % 2 == 0);
  2057. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2058. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2059. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2060. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2061. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2062. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2063. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2064. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2065. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2066. }
  2067. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2068. ggml_set_name(target, "target");
  2069. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2070. ggml_set_name(out, "out");
  2071. return out;
  2072. }
  2073. };
  2074. // GGML_OP_DUP
  2075. struct test_dup : public test_case {
  2076. const ggml_type type;
  2077. const std::array<int64_t, 4> ne;
  2078. const std::array<int64_t, 4> permute;
  2079. bool _use_permute;
  2080. std::string vars() override {
  2081. std::string v = VARS_TO_STR2(type, ne);
  2082. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2083. return v;
  2084. }
  2085. test_dup(ggml_type type = GGML_TYPE_F32,
  2086. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2087. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2088. : type(type), ne(ne), permute(permute),
  2089. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2090. ggml_tensor * build_graph(ggml_context * ctx) override {
  2091. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2092. ggml_set_param(src);
  2093. ggml_set_name(src, "src");
  2094. if (_use_permute) {
  2095. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2096. ggml_set_name(src, "src_permuted");
  2097. }
  2098. ggml_tensor * out = ggml_dup(ctx, src);
  2099. ggml_set_name(out, "out");
  2100. return out;
  2101. }
  2102. };
  2103. // GGML_OP_SET
  2104. struct test_set : public test_case {
  2105. const ggml_type type_src;
  2106. const ggml_type type_dst;
  2107. const std::array<int64_t, 4> ne;
  2108. const int dim;
  2109. std::string vars() override {
  2110. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2111. }
  2112. size_t op_size(ggml_tensor * t) override {
  2113. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2114. }
  2115. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2116. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2117. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2118. ggml_tensor * build_graph(ggml_context * ctx) override {
  2119. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2120. ggml_set_param(src);
  2121. ggml_set_name(src, "src");
  2122. auto ne_dst = ne;
  2123. for (int i = 0; i < dim; ++i) {
  2124. ne_dst[i] *= 2;
  2125. }
  2126. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2127. ggml_set_param(dst);
  2128. ggml_set_name(dst, "dst");
  2129. size_t offset = 0;
  2130. for (int i = 0; i < dim; ++i) {
  2131. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2132. }
  2133. ggml_tensor * out = ggml_set(ctx, dst, src,
  2134. // The backward pass requires setting a contiguous region:
  2135. src->nb[1], src->nb[2], src->nb[3], offset);
  2136. ggml_set_name(out, "out");
  2137. return out;
  2138. }
  2139. };
  2140. // GGML_OP_CPY
  2141. struct test_cpy : public test_case {
  2142. const ggml_type type_src;
  2143. const ggml_type type_dst;
  2144. const std::array<int64_t, 4> ne;
  2145. const std::array<int64_t, 4> permute_src;
  2146. const std::array<int64_t, 4> permute_dst;
  2147. bool _src_use_permute;
  2148. bool _dst_use_permute;
  2149. bool _src_transpose;
  2150. std::string vars() override {
  2151. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2152. }
  2153. double max_nmse_err() override {
  2154. if (type_src == type_dst) {
  2155. return 0.0;
  2156. }
  2157. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2158. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2159. // estimate what the max nmse error would be if one quantized value is
  2160. // off by one. The test values are distributed in [-150,150], so it'll be
  2161. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2162. // which is roughly 0.25*150^2 times the number of elements.
  2163. double err_estimate = 1.0f/8.0f * 150.0f;
  2164. if (type_dst == GGML_TYPE_IQ4_NL) {
  2165. // iq4_nl values are a bit more spread out
  2166. err_estimate *= 2.0f;
  2167. }
  2168. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2169. err_estimate /= 2.0f;
  2170. }
  2171. if (type_dst == GGML_TYPE_Q8_0) {
  2172. err_estimate /= 8.0f;
  2173. }
  2174. err_estimate *= err_estimate;
  2175. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2176. return err_estimate;
  2177. }
  2178. return 1e-6;
  2179. }
  2180. size_t op_size(ggml_tensor * t) override {
  2181. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2182. }
  2183. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2184. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2185. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2186. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2187. bool transpose_src = false)
  2188. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2189. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2190. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2191. _src_transpose(transpose_src){}
  2192. ggml_tensor * build_graph(ggml_context * ctx) override {
  2193. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2194. ggml_set_param(src);
  2195. ggml_set_name(src, "src");
  2196. if (_src_use_permute) {
  2197. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2198. ggml_set_name(src, "src_permuted");
  2199. }
  2200. if (_src_transpose) {
  2201. src = ggml_transpose(ctx, src);
  2202. ggml_set_name(src, "src_transposed");
  2203. }
  2204. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2205. ggml_set_name(dst, "dst");
  2206. if (_dst_use_permute) {
  2207. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2208. ggml_set_name(dst, "dst_permuted");
  2209. }
  2210. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2211. ggml_set_name(out, "out");
  2212. return out;
  2213. }
  2214. void initialize_tensors(ggml_context * ctx) override {
  2215. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2216. // test extended range of values to check if casting between f32 and i32 is consistent
  2217. init_tensor_uniform(t, -150.f, 150.f);
  2218. }
  2219. }
  2220. };
  2221. // GGML_OP_CONT
  2222. struct test_cont : public test_case {
  2223. const ggml_type type;
  2224. const std::array<int64_t, 4> ne;
  2225. std::string vars() override {
  2226. return VARS_TO_STR2(type, ne);
  2227. }
  2228. test_cont(ggml_type type = GGML_TYPE_F32,
  2229. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2230. : type(type), ne(ne) {}
  2231. ggml_tensor * build_graph(ggml_context * ctx) override {
  2232. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2233. ggml_set_param(src);
  2234. ggml_set_name(src, "src");
  2235. src = ggml_transpose(ctx, src);
  2236. ggml_set_name(src, "src_transposed");
  2237. ggml_tensor * out = ggml_cont(ctx, src);
  2238. ggml_set_name(out, "out");
  2239. return out;
  2240. }
  2241. };
  2242. // GGML_OP_ADD
  2243. // GGML_OP_SUB
  2244. // GGML_OP_MUL
  2245. // GGML_OP_DIV
  2246. struct test_bin_bcast : public test_case {
  2247. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2248. op_t op;
  2249. const ggml_type type;
  2250. const std::array<int64_t, 4> ne;
  2251. const std::array<int, 4> nr;
  2252. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2253. bool run_whole_graph() override { return true; }
  2254. std::string vars() override {
  2255. return VARS_TO_STR4(type, ne, nr, nf);
  2256. }
  2257. size_t op_size(ggml_tensor * t) override {
  2258. return ggml_nbytes(t) * 3;
  2259. }
  2260. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2261. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2262. std::array<int, 4> nr = {1, 2, 1, 1},
  2263. int nf = 1)
  2264. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2265. ggml_tensor * build_graph(ggml_context * ctx) override {
  2266. GGML_ASSERT(nf <= 16);
  2267. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2268. ggml_set_name(a, "a");
  2269. ggml_tensor * b[16];
  2270. for (int i = 0; i < nf; ++i) {
  2271. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2272. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2273. }
  2274. // The backward pass supports broadcasting only for GGML_ADD:
  2275. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2276. if (grad_supported) {
  2277. ggml_set_param(a);
  2278. ggml_set_param(b[0]);
  2279. }
  2280. ggml_tensor * out = a;
  2281. for (int i = 0; i < nf; ++i) {
  2282. out = op(ctx, out, b[i]);
  2283. }
  2284. ggml_set_name(out, "out");
  2285. return out;
  2286. }
  2287. void initialize_tensors(ggml_context * ctx) override {
  2288. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2289. if (op == ggml_mul || op == ggml_div) {
  2290. // MUL and DIV have numerical issues around zero:
  2291. init_tensor_uniform(t, 0.9f, 1.1f);
  2292. } else {
  2293. init_tensor_uniform(t);
  2294. }
  2295. }
  2296. }
  2297. float grad_eps() override {
  2298. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2299. }
  2300. bool grad_precise() override {
  2301. return op == ggml_div;
  2302. }
  2303. double max_maa_err() override {
  2304. return op == ggml_add ? 1e-4 : 1e-3;
  2305. }
  2306. };
  2307. // GGML_OP_ADD_ID
  2308. struct test_add_id : public test_case {
  2309. const ggml_type type_a;
  2310. const ggml_type type_b;
  2311. const int64_t n_embd;
  2312. const int64_t n_experts;
  2313. const int64_t n_experts_used;
  2314. const int64_t n_token;
  2315. std::string vars() override {
  2316. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2317. }
  2318. size_t op_size(ggml_tensor * t) override {
  2319. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2320. }
  2321. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2322. ggml_type type_b = GGML_TYPE_F32,
  2323. int64_t n_embd = 128,
  2324. int64_t n_experts = 16,
  2325. int64_t n_experts_used = 8,
  2326. int64_t n_token = 10)
  2327. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2328. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2329. ggml_tensor * build_graph(ggml_context * ctx) override {
  2330. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2331. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2332. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2333. if (n_experts_used != n_experts) {
  2334. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2335. ggml_set_name(ids, "view_of_ids");
  2336. }
  2337. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2338. ggml_set_name(out, "out");
  2339. return out;
  2340. }
  2341. void initialize_tensors(ggml_context * ctx) override {
  2342. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2343. if (t->type == GGML_TYPE_I32) {
  2344. if (ggml_is_view_op(t->op)) { continue; }
  2345. std::random_device rd;
  2346. std::default_random_engine rng(rd());
  2347. // ids
  2348. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2349. std::vector<int32_t> data(t->ne[0]);
  2350. for (int i = 0; i < t->ne[0]; i++) {
  2351. data[i] = i % n_experts;
  2352. }
  2353. std::shuffle(data.begin(), data.end(), rng);
  2354. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2355. }
  2356. } else {
  2357. init_tensor_uniform(t);
  2358. }
  2359. }
  2360. }
  2361. };
  2362. // GGML_OP_ADD1
  2363. struct test_add1 : public test_case {
  2364. const ggml_type type;
  2365. const std::array<int64_t, 4> ne;
  2366. std::string vars() override {
  2367. return VARS_TO_STR2(type, ne);
  2368. }
  2369. test_add1(ggml_type type = GGML_TYPE_F32,
  2370. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2371. : type(type), ne(ne) {}
  2372. ggml_tensor * build_graph(ggml_context * ctx) override {
  2373. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2374. ggml_set_param(a);
  2375. ggml_set_name(a, "a");
  2376. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2377. // ggml_set_param(b); // TODO: implement
  2378. ggml_set_name(b, "b");
  2379. ggml_tensor * out = ggml_add1(ctx, a, b);
  2380. ggml_set_name(out, "out");
  2381. return out;
  2382. }
  2383. float grad_eps() override {
  2384. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2385. }
  2386. };
  2387. // GGML_OP_SCALE
  2388. struct test_scale : public test_case {
  2389. const ggml_type type;
  2390. const std::array<int64_t, 4> ne;
  2391. float scale;
  2392. float bias;
  2393. bool inplace;
  2394. std::string vars() override {
  2395. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2396. }
  2397. test_scale(ggml_type type = GGML_TYPE_F32,
  2398. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2399. float scale = 2.0f,
  2400. float bias = 0.0f,
  2401. bool inplace = false)
  2402. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2403. ggml_tensor * build_graph(ggml_context * ctx) override {
  2404. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2405. ggml_set_param(a);
  2406. ggml_set_name(a, "a");
  2407. ggml_tensor * out;
  2408. if (inplace) {
  2409. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2410. } else {
  2411. out = ggml_scale_bias(ctx, a, scale, bias);
  2412. }
  2413. ggml_set_name(out, "out");
  2414. return out;
  2415. }
  2416. };
  2417. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2418. struct test_softcap : public test_case {
  2419. const ggml_type type;
  2420. const std::array<int64_t, 4> ne;
  2421. float softcap;
  2422. std::string op_desc(ggml_tensor * t) override {
  2423. GGML_UNUSED(t);
  2424. return "SOFTCAP";
  2425. }
  2426. bool run_whole_graph() override { return true; }
  2427. std::string vars() override {
  2428. return VARS_TO_STR3(type, ne, softcap);
  2429. }
  2430. test_softcap(ggml_type type = GGML_TYPE_F32,
  2431. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2432. float softcap = 30.0f)
  2433. : type(type), ne(ne), softcap(softcap) {}
  2434. ggml_tensor * build_graph(ggml_context * ctx) override {
  2435. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2436. ggml_set_param(a);
  2437. ggml_set_name(a, "a");
  2438. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2439. ggml_set_name(out, "out");
  2440. return out;
  2441. }
  2442. };
  2443. // GGML_OP_SILU_BACK
  2444. struct test_silu_back : public test_case {
  2445. const ggml_type type;
  2446. const std::array<int64_t, 4> ne;
  2447. float eps;
  2448. std::string vars() override {
  2449. return VARS_TO_STR3(type, ne, eps);
  2450. }
  2451. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2452. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2453. float eps = 1e-6f)
  2454. : type(type), ne(ne), eps(eps) {}
  2455. ggml_tensor * build_graph(ggml_context * ctx) override {
  2456. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2457. ggml_set_name(a, "a");
  2458. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2459. ggml_set_name(grad, "grad");
  2460. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2461. ggml_set_name(out, "out");
  2462. return out;
  2463. }
  2464. bool grad_precise() override {
  2465. return true;
  2466. }
  2467. };
  2468. // GGML_OP_NORM
  2469. struct test_norm : public test_case {
  2470. const ggml_type type;
  2471. const std::array<int64_t, 4> ne;
  2472. const bool v; // whether a is a non-contiguous view
  2473. const float eps;
  2474. std::string vars() override {
  2475. return VARS_TO_STR4(type, ne, v, eps);
  2476. }
  2477. test_norm(ggml_type type = GGML_TYPE_F32,
  2478. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2479. bool v = false,
  2480. float eps = 1e-6f)
  2481. : type(type), ne(ne), v(v), eps(eps) {}
  2482. ggml_tensor * build_graph(ggml_context * ctx) override {
  2483. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2484. ggml_set_name(a, "a");
  2485. if (v) {
  2486. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2487. ggml_set_name(a, "view of a");
  2488. }
  2489. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2490. ggml_set_name(out, "out");
  2491. return out;
  2492. }
  2493. };
  2494. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2495. struct test_norm_mul_add : public test_case {
  2496. const ggml_type type;
  2497. const std::array<int64_t, 4> ne;
  2498. float eps;
  2499. const bool broadcast;
  2500. std::string op_desc(ggml_tensor * t) override {
  2501. GGML_UNUSED(t);
  2502. return "NORM_MUL_ADD";
  2503. }
  2504. bool run_whole_graph() override { return true; }
  2505. std::string vars() override {
  2506. return VARS_TO_STR4(type, ne, eps, broadcast);
  2507. }
  2508. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2509. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2510. float eps = 1e-5f,
  2511. bool broadcast = false)
  2512. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2513. ggml_tensor * build_graph(ggml_context * ctx) override {
  2514. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2515. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2516. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2517. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2518. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2519. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2520. // Use a, w and b early to avoid OP_NONE in graph
  2521. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2522. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2523. ggml_tensor * m = ggml_mul(ctx, n, w);
  2524. ggml_tensor * out = ggml_add(ctx, m, b);
  2525. ggml_set_name(out, "out");
  2526. return out;
  2527. }
  2528. };
  2529. // GGML_OP_RMS_NORM
  2530. struct test_rms_norm : public test_case {
  2531. const ggml_type type;
  2532. const std::array<int64_t, 4> ne;
  2533. const bool v; // whether a is a non-contiguous view
  2534. const float eps;
  2535. const bool inplace; // whether to do the operation inplace
  2536. std::string vars() override {
  2537. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2538. }
  2539. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2540. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2541. bool v = false,
  2542. float eps = 1e-6f,
  2543. bool inplace = false)
  2544. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2545. ggml_tensor * build_graph(ggml_context * ctx) override {
  2546. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2547. ggml_set_param(a);
  2548. ggml_set_name(a, "a");
  2549. if (v) {
  2550. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2551. ggml_set_name(a, "view of a");
  2552. }
  2553. ggml_tensor * out;
  2554. if (inplace) {
  2555. out = ggml_rms_norm_inplace(ctx, a, eps);
  2556. } else {
  2557. out = ggml_rms_norm(ctx, a, eps);
  2558. }
  2559. ggml_set_name(out, "out");
  2560. return out;
  2561. }
  2562. void initialize_tensors(ggml_context * ctx) override {
  2563. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2564. init_tensor_uniform(t, -10.f, 10.f);
  2565. }
  2566. }
  2567. float grad_eps() override {
  2568. return 1.0f;
  2569. }
  2570. bool grad_precise() override {
  2571. return true;
  2572. }
  2573. };
  2574. // GGML_OP_RMS_NORM_BACK
  2575. struct test_rms_norm_back : public test_case {
  2576. const ggml_type type;
  2577. const std::array<int64_t, 4> ne;
  2578. const float eps;
  2579. std::string vars() override {
  2580. return VARS_TO_STR3(type, ne, eps);
  2581. }
  2582. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2583. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2584. float eps = 1e-6f)
  2585. : type(type), ne(ne), eps(eps) {}
  2586. ggml_tensor * build_graph(ggml_context * ctx) override {
  2587. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2588. ggml_set_name(a, "a");
  2589. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2590. ggml_set_name(b, "b");
  2591. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2592. ggml_set_name(out, "out");
  2593. return out;
  2594. }
  2595. void initialize_tensors(ggml_context * ctx) override {
  2596. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2597. init_tensor_uniform(t, -10.f, 10.f);
  2598. }
  2599. }
  2600. };
  2601. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2602. struct test_rms_norm_mul_add : public test_case {
  2603. const ggml_type type;
  2604. const std::array<int64_t, 4> ne;
  2605. const float eps;
  2606. const bool broadcast;
  2607. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2608. std::string op_desc(ggml_tensor * t) override {
  2609. GGML_UNUSED(t);
  2610. return "RMS_NORM_MUL_ADD";
  2611. }
  2612. bool run_whole_graph() override { return true; }
  2613. std::string vars() override {
  2614. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2615. }
  2616. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2617. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2618. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2619. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2620. ggml_tensor * build_graph(ggml_context * ctx) override {
  2621. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2622. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2623. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2624. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2625. ggml_set_param(a);
  2626. ggml_set_name(a, "a");
  2627. ggml_set_param(b);
  2628. ggml_set_name(b, "b");
  2629. ggml_set_param(c);
  2630. ggml_set_name(c, "c");
  2631. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2632. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2633. if (multi_add) {
  2634. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2635. }
  2636. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2637. ggml_set_name(out, "out");
  2638. return out;
  2639. }
  2640. void initialize_tensors(ggml_context * ctx) override {
  2641. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2642. init_tensor_uniform(t, -10.f, 10.f);
  2643. }
  2644. }
  2645. float grad_eps() override {
  2646. return 1.0f;
  2647. }
  2648. bool grad_precise() override {
  2649. return true;
  2650. }
  2651. };
  2652. // GGML_OP_SSM_CONV
  2653. struct test_ssm_conv : public test_case {
  2654. const ggml_type type;
  2655. const std::array<int64_t, 4> ne_a;
  2656. const std::array<int64_t, 4> ne_b;
  2657. std::string vars() override {
  2658. return VARS_TO_STR3(type, ne_a, ne_b);
  2659. }
  2660. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2661. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2662. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2663. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2664. ggml_tensor * build_graph(ggml_context * ctx) override {
  2665. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2666. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2667. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2668. return out;
  2669. }
  2670. };
  2671. // GGML_OP_SSM_SCAN
  2672. struct test_ssm_scan : public test_case {
  2673. const ggml_type type;
  2674. const int64_t d_state;
  2675. const int64_t head_dim;
  2676. const int64_t n_head;
  2677. const int64_t n_group;
  2678. const int64_t n_seq_tokens;
  2679. const int64_t n_seqs;
  2680. std::string vars() override {
  2681. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2682. }
  2683. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2684. int64_t d_state = 32,
  2685. int64_t head_dim = 1, // non-zero for Mamba-2
  2686. int64_t n_head = 32,
  2687. int64_t n_group = 1,
  2688. int64_t n_seq_tokens = 32,
  2689. int64_t n_seqs = 32)
  2690. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2691. ggml_tensor * build_graph(ggml_context * ctx) override {
  2692. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2693. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2694. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2695. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2696. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2697. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2698. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2699. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2700. return out;
  2701. }
  2702. // similar to test_mul_mat_id
  2703. void initialize_tensors(ggml_context * ctx) override {
  2704. std::random_device rd;
  2705. std::default_random_engine rng(rd());
  2706. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2707. if (t->type == GGML_TYPE_I32) {
  2708. if (ggml_is_view_op(t->op)) { continue; }
  2709. // ids
  2710. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2711. std::vector<int32_t> data(t->ne[0]);
  2712. for (int i = 0; i < t->ne[0]; i++) {
  2713. data[i] = i;
  2714. }
  2715. std::shuffle(data.begin(), data.end(), rng);
  2716. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2717. }
  2718. } else {
  2719. init_tensor_uniform(t);
  2720. }
  2721. }
  2722. }
  2723. };
  2724. // GGML_OP_RWKV_WKV6
  2725. struct test_rwkv_wkv6 : public test_case {
  2726. const ggml_type type;
  2727. const int64_t head_count;
  2728. const int64_t head_size;
  2729. const int64_t n_seq_tokens;
  2730. const int64_t n_seqs;
  2731. std::string vars() override {
  2732. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2733. }
  2734. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2735. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2736. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2737. ggml_tensor * build_graph(ggml_context * ctx) override {
  2738. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2739. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2740. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2741. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2742. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2743. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2744. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2745. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2746. return out;
  2747. }
  2748. };
  2749. // GGML_OP_GATED_LINEAR_ATTN
  2750. struct test_gla : public test_case {
  2751. const ggml_type type;
  2752. const int64_t head_count;
  2753. const int64_t head_size;
  2754. const int64_t n_seq_tokens;
  2755. const int64_t n_seqs;
  2756. std::string vars() override {
  2757. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2758. }
  2759. test_gla(ggml_type type = GGML_TYPE_F32,
  2760. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2761. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2762. ggml_tensor * build_graph(ggml_context * ctx) override {
  2763. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2764. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2765. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2766. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2767. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2768. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2769. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2770. return out;
  2771. }
  2772. };
  2773. // GGML_OP_RWKV_WKV7
  2774. struct test_rwkv_wkv7 : public test_case {
  2775. const ggml_type type;
  2776. const int64_t head_count;
  2777. const int64_t head_size;
  2778. const int64_t n_seq_tokens;
  2779. const int64_t n_seqs;
  2780. std::string vars() override {
  2781. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2782. }
  2783. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2784. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2785. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2786. ggml_tensor * build_graph(ggml_context * ctx) override {
  2787. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2788. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2789. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2790. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2791. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2792. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2793. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2794. // Outputs may become NaN with long seqlen without these normalization
  2795. a = ggml_l2_norm(ctx, a, 1e-7F);
  2796. b = ggml_l2_norm(ctx, b, 1e-7F);
  2797. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2798. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2799. return out;
  2800. }
  2801. };
  2802. // GGML_OP_MUL_MAT
  2803. struct test_mul_mat : public test_case {
  2804. const ggml_type type_a;
  2805. const ggml_type type_b;
  2806. const int64_t m;
  2807. const int64_t n;
  2808. const int64_t k;
  2809. const std::array<int64_t, 2> bs; // dims 3 and 4
  2810. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2811. const std::array<int64_t, 4> per; // permutation of dimensions
  2812. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  2813. const uint32_t o; // number of outputs
  2814. std::string vars() override {
  2815. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  2816. }
  2817. double max_nmse_err() override {
  2818. return 5e-4;
  2819. }
  2820. int64_t grad_nmax() override {
  2821. return 20000;
  2822. }
  2823. uint64_t op_flops(ggml_tensor * t) override {
  2824. GGML_UNUSED(t);
  2825. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2826. }
  2827. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2828. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2829. std::array<int64_t, 2> bs = {10, 10},
  2830. std::array<int64_t, 2> nr = {2, 2},
  2831. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2832. int64_t k_v = 0, uint32_t o = 1)
  2833. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  2834. ggml_tensor * build_graph(ggml_context * ctx) override {
  2835. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2836. ggml_tensor * a;
  2837. ggml_tensor * b;
  2838. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2839. if (npermuted > 0) {
  2840. GGML_ASSERT(npermuted == 2);
  2841. GGML_ASSERT(k_v == 0); // not handled
  2842. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2843. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2844. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2845. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2846. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2847. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2848. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2849. if (!ggml_is_quantized(type_a)) {
  2850. if (bs[1] == 1 && nr[1] == 1) {
  2851. ggml_set_param(a);
  2852. }
  2853. ggml_set_param(b);
  2854. }
  2855. ggml_set_name(a, "a");
  2856. ggml_set_name(b, "b");
  2857. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2858. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2859. ggml_set_name(a, "a_permuted");
  2860. ggml_set_name(b, "b_permuted");
  2861. } else {
  2862. const int64_t k_physical = k_v == 0 ? k : k_v;
  2863. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  2864. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  2865. if (!ggml_is_quantized(type_a)) {
  2866. if (bs[1] == 1 && nr[1] == 1) {
  2867. ggml_set_param(a);
  2868. }
  2869. ggml_set_param(b);
  2870. }
  2871. if (k_v != 0) {
  2872. GGML_ASSERT(k_v > k);
  2873. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2874. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2875. }
  2876. ggml_set_name(a, "a");
  2877. ggml_set_name(b, "b");
  2878. }
  2879. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2880. ggml_set_name(out, "out");
  2881. for (uint32_t i = 1; i < o; ++i) {
  2882. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2883. ggml_set_name(out2, "out2");
  2884. out = ggml_add(ctx, out, out2);
  2885. }
  2886. return out;
  2887. }
  2888. bool run_whole_graph() override { return o > 1; }
  2889. std::string op_desc(ggml_tensor * t) override {
  2890. GGML_UNUSED(t);
  2891. return ggml_op_name(GGML_OP_MUL_MAT);
  2892. }
  2893. };
  2894. // GGML_OP_MUL_MAT_ID
  2895. struct test_mul_mat_id : public test_case {
  2896. const ggml_type type_a;
  2897. const ggml_type type_b;
  2898. const int n_mats;
  2899. const int n_used;
  2900. const bool b; // broadcast b matrix
  2901. const int64_t m;
  2902. const int64_t n;
  2903. const int64_t k;
  2904. const uint32_t o; // number of outputs
  2905. std::string vars() override {
  2906. return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o);
  2907. }
  2908. double max_nmse_err() override {
  2909. return 5e-4;
  2910. }
  2911. uint64_t op_flops(ggml_tensor * t) override {
  2912. GGML_UNUSED(t);
  2913. return 2 * m * k * n * n_used;
  2914. }
  2915. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2916. int n_mats = 8, int n_used = 2, bool b = false,
  2917. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1)
  2918. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2919. m(m), n(n), k(k), o(o) {
  2920. GGML_ASSERT(n_used <= n_mats);
  2921. }
  2922. ggml_tensor * build_graph(ggml_context * ctx) override {
  2923. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2924. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2925. ggml_set_name(as, "as");
  2926. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2927. ggml_set_name(ids, "ids");
  2928. if (n_used != n_mats) {
  2929. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2930. ggml_set_name(ids, "view_of_ids");
  2931. }
  2932. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2933. ggml_set_name(b, "b");
  2934. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2935. ggml_set_name(out, "out");
  2936. for (uint32_t i = 1; i < o; ++i) {
  2937. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2938. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  2939. ggml_set_name(out2, "out2");
  2940. out = ggml_add(ctx, out, out2);
  2941. }
  2942. return out;
  2943. }
  2944. void initialize_tensors(ggml_context * ctx) override {
  2945. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2946. if (t->type == GGML_TYPE_I32) {
  2947. if (ggml_is_view_op(t->op)) { continue; }
  2948. std::random_device rd;
  2949. std::default_random_engine rng(rd());
  2950. // ids
  2951. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2952. std::vector<int32_t> data(t->ne[0]);
  2953. for (int i = 0; i < t->ne[0]; i++) {
  2954. data[i] = i % n_mats;
  2955. }
  2956. std::shuffle(data.begin(), data.end(), rng);
  2957. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2958. }
  2959. } else {
  2960. init_tensor_uniform(t);
  2961. }
  2962. }
  2963. }
  2964. bool run_whole_graph() override { return o > 1; }
  2965. std::string op_desc(ggml_tensor * t) override {
  2966. GGML_UNUSED(t);
  2967. return ggml_op_name(GGML_OP_MUL_MAT_ID);
  2968. }
  2969. };
  2970. // GGML_OP_OUT_PROD
  2971. struct test_out_prod : public test_case {
  2972. const ggml_type type_a;
  2973. const ggml_type type_b;
  2974. const int64_t m;
  2975. const int64_t n;
  2976. const int64_t k;
  2977. const std::array<int64_t, 2> bs; // dims 3 and 4
  2978. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2979. const bool trans_b;
  2980. std::string vars() override {
  2981. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2982. }
  2983. double max_nmse_err() override {
  2984. return 5e-4;
  2985. }
  2986. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2987. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2988. std::array<int64_t, 2> bs = {10, 10},
  2989. std::array<int64_t, 2> nr = {2, 2},
  2990. bool trans_b = false)
  2991. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2992. ggml_tensor * build_graph(ggml_context * ctx) override {
  2993. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2994. ggml_set_name(a, "a");
  2995. ggml_tensor * b;
  2996. if (trans_b) {
  2997. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2998. b = ggml_transpose(ctx, b);
  2999. } else {
  3000. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3001. }
  3002. ggml_set_name(b, "b");
  3003. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3004. ggml_set_name(out, "out");
  3005. return out;
  3006. }
  3007. };
  3008. // GGML_OP_SQR
  3009. struct test_sqr : public test_case {
  3010. const ggml_type type;
  3011. const std::array<int64_t, 4> ne;
  3012. std::string vars() override {
  3013. return VARS_TO_STR2(type, ne);
  3014. }
  3015. test_sqr(ggml_type type = GGML_TYPE_F32,
  3016. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3017. : type(type), ne(ne) {}
  3018. ggml_tensor * build_graph(ggml_context * ctx) override {
  3019. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3020. ggml_set_param(a);
  3021. ggml_set_name(a, "a");
  3022. ggml_tensor * out = ggml_sqr(ctx, a);
  3023. ggml_set_name(out, "out");
  3024. return out;
  3025. }
  3026. float grad_eps() override {
  3027. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3028. }
  3029. };
  3030. // GGML_OP_SQRT
  3031. struct test_sqrt : public test_case {
  3032. const ggml_type type;
  3033. const std::array<int64_t, 4> ne;
  3034. std::string vars() override {
  3035. return VARS_TO_STR2(type, ne);
  3036. }
  3037. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3038. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3039. : type(type), ne(ne) {}
  3040. ggml_tensor * build_graph(ggml_context * ctx) override {
  3041. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3042. ggml_set_param(a);
  3043. ggml_set_name(a, "a");
  3044. ggml_tensor * out = ggml_sqrt(ctx, a);
  3045. ggml_set_name(out, "out");
  3046. return out;
  3047. }
  3048. void initialize_tensors(ggml_context * ctx) override {
  3049. // fill with positive values
  3050. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3051. init_tensor_uniform(t, 50.0f, 100.0f);
  3052. }
  3053. }
  3054. float grad_eps() override {
  3055. return 20.0f;
  3056. }
  3057. bool grad_precise() override {
  3058. return true;
  3059. }
  3060. };
  3061. // GGML_OP_LOG
  3062. struct test_log : public test_case {
  3063. const ggml_type type;
  3064. const std::array<int64_t, 4> ne;
  3065. std::string vars() override {
  3066. return VARS_TO_STR2(type, ne);
  3067. }
  3068. test_log(ggml_type type = GGML_TYPE_F32,
  3069. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3070. : type(type), ne(ne) {}
  3071. ggml_tensor * build_graph(ggml_context * ctx) override {
  3072. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3073. ggml_set_param(a);
  3074. ggml_set_name(a, "a");
  3075. ggml_tensor * out = ggml_log(ctx, a);
  3076. ggml_set_name(out, "out");
  3077. return out;
  3078. }
  3079. void initialize_tensors(ggml_context * ctx) override {
  3080. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3081. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3082. init_tensor_uniform(t, 0.9f, 1.1f);
  3083. }
  3084. }
  3085. bool grad_precise() override {
  3086. return true;
  3087. }
  3088. };
  3089. // GGML_OP_SIN
  3090. struct test_sin : public test_case {
  3091. const ggml_type type;
  3092. const std::array<int64_t, 4> ne;
  3093. std::string vars() override {
  3094. return VARS_TO_STR2(type, ne);
  3095. }
  3096. test_sin(ggml_type type = GGML_TYPE_F32,
  3097. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3098. : type(type), ne(ne) {}
  3099. ggml_tensor * build_graph(ggml_context * ctx) override {
  3100. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3101. ggml_set_param(a);
  3102. ggml_set_name(a, "a");
  3103. ggml_tensor * out = ggml_sin(ctx, a);
  3104. ggml_set_name(out, "out");
  3105. return out;
  3106. }
  3107. void initialize_tensors(ggml_context * ctx) override {
  3108. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3109. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3110. }
  3111. }
  3112. double max_maa_err() override {
  3113. return 1e-3;
  3114. }
  3115. float grad_eps() override {
  3116. return 0.2f;
  3117. }
  3118. bool grad_precise() override {
  3119. return true;
  3120. }
  3121. };
  3122. // GGML_OP_COS
  3123. struct test_cos : public test_case {
  3124. const ggml_type type;
  3125. const std::array<int64_t, 4> ne;
  3126. std::string vars() override {
  3127. return VARS_TO_STR2(type, ne);
  3128. }
  3129. test_cos(ggml_type type = GGML_TYPE_F32,
  3130. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3131. : type(type), ne(ne) {}
  3132. ggml_tensor * build_graph(ggml_context * ctx) override {
  3133. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3134. ggml_set_param(a);
  3135. ggml_set_name(a, "a");
  3136. ggml_tensor * out = ggml_cos(ctx, a);
  3137. ggml_set_name(out, "out");
  3138. return out;
  3139. }
  3140. void initialize_tensors(ggml_context * ctx) override {
  3141. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3142. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3143. }
  3144. }
  3145. double max_maa_err() override {
  3146. return 1e-3;
  3147. }
  3148. float grad_eps() override {
  3149. return 0.2f;
  3150. }
  3151. bool grad_precise() override {
  3152. return true;
  3153. }
  3154. };
  3155. // GGML_OP_CLAMP
  3156. struct test_clamp : public test_case {
  3157. const ggml_type type;
  3158. const std::array<int64_t, 4> ne;
  3159. float min;
  3160. float max;
  3161. std::string vars() override {
  3162. return VARS_TO_STR4(type, ne, min, max);
  3163. }
  3164. test_clamp(ggml_type type = GGML_TYPE_F32,
  3165. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3166. float min = -0.5f, float max = 0.5f)
  3167. : type(type), ne(ne), min(min), max(max) {}
  3168. ggml_tensor * build_graph(ggml_context * ctx) override {
  3169. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3170. ggml_set_name(a, "a");
  3171. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3172. ggml_set_name(out, "out");
  3173. return out;
  3174. }
  3175. float grad_eps() override {
  3176. return 1e-2f;
  3177. }
  3178. std::vector<float> grad_expect() override {
  3179. return {0.0f, 1.0f};
  3180. }
  3181. };
  3182. // GGML_OP_FLOOR
  3183. struct test_floor : public test_case {
  3184. const ggml_type type;
  3185. const std::array<int64_t, 4> ne;
  3186. std::string vars() override {
  3187. return VARS_TO_STR2(type, ne);
  3188. }
  3189. test_floor(ggml_type type = GGML_TYPE_F32,
  3190. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3191. : type(type), ne(ne) {}
  3192. ggml_tensor * build_graph(ggml_context * ctx) override {
  3193. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3194. ggml_set_param(a);
  3195. ggml_set_name(a, "a");
  3196. ggml_tensor * out = ggml_floor(ctx, a);
  3197. ggml_set_name(out, "out");
  3198. return out;
  3199. }
  3200. void initialize_tensors(ggml_context * ctx) override {
  3201. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3202. init_tensor_uniform(t, -10.0f, 10.0f);
  3203. }
  3204. }
  3205. };
  3206. // GGML_OP_CEIL
  3207. struct test_ceil : public test_case {
  3208. const ggml_type type;
  3209. const std::array<int64_t, 4> ne;
  3210. std::string vars() override {
  3211. return VARS_TO_STR2(type, ne);
  3212. }
  3213. test_ceil(ggml_type type = GGML_TYPE_F32,
  3214. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3215. : type(type), ne(ne) {}
  3216. ggml_tensor * build_graph(ggml_context * ctx) override {
  3217. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3218. ggml_set_param(a);
  3219. ggml_set_name(a, "a");
  3220. ggml_tensor * out = ggml_ceil(ctx, a);
  3221. ggml_set_name(out, "out");
  3222. return out;
  3223. }
  3224. void initialize_tensors(ggml_context * ctx) override {
  3225. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3226. init_tensor_uniform(t, -10.0f, 10.0f);
  3227. }
  3228. }
  3229. };
  3230. // GGML_OP_ROUND
  3231. struct test_round : public test_case {
  3232. const ggml_type type;
  3233. const std::array<int64_t, 4> ne;
  3234. std::string vars() override {
  3235. return VARS_TO_STR2(type, ne);
  3236. }
  3237. test_round(ggml_type type = GGML_TYPE_F32,
  3238. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3239. : type(type), ne(ne) {}
  3240. ggml_tensor * build_graph(ggml_context * ctx) override {
  3241. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3242. ggml_set_param(a);
  3243. ggml_set_name(a, "a");
  3244. ggml_tensor * out = ggml_round(ctx, a);
  3245. ggml_set_name(out, "out");
  3246. return out;
  3247. }
  3248. void initialize_tensors(ggml_context * ctx) override {
  3249. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3250. init_tensor_uniform(t, -10.0f, 10.0f);
  3251. }
  3252. }
  3253. };
  3254. // GGML_OP_TRUNC
  3255. struct test_trunc : public test_case {
  3256. const ggml_type type;
  3257. const std::array<int64_t, 4> ne;
  3258. std::string vars() override {
  3259. return VARS_TO_STR2(type, ne);
  3260. }
  3261. test_trunc(ggml_type type = GGML_TYPE_F32,
  3262. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3263. : type(type), ne(ne) {}
  3264. ggml_tensor * build_graph(ggml_context * ctx) override {
  3265. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3266. ggml_set_param(a);
  3267. ggml_set_name(a, "a");
  3268. ggml_tensor * out = ggml_trunc(ctx, a);
  3269. ggml_set_name(out, "out");
  3270. return out;
  3271. }
  3272. void initialize_tensors(ggml_context * ctx) override {
  3273. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3274. init_tensor_uniform(t, -10.0f, 10.0f);
  3275. }
  3276. }
  3277. };
  3278. // GGML_OP_DIAG_MASK_INF
  3279. struct test_diag_mask_inf : public test_case {
  3280. const ggml_type type;
  3281. const std::array<int64_t, 4> ne;
  3282. const int n_past;
  3283. std::string vars() override {
  3284. return VARS_TO_STR3(type, ne, n_past);
  3285. }
  3286. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3287. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3288. int n_past = 5)
  3289. : type(type), ne(ne), n_past(n_past) {}
  3290. ggml_tensor * build_graph(ggml_context * ctx) override {
  3291. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3292. ggml_set_param(a);
  3293. ggml_set_name(a, "a");
  3294. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3295. ggml_set_name(out, "out");
  3296. return out;
  3297. }
  3298. };
  3299. // GGML_OP_SOFT_MAX
  3300. struct test_soft_max : public test_case {
  3301. const ggml_type type;
  3302. const std::array<int64_t, 4> ne;
  3303. const bool mask;
  3304. const bool sinks;
  3305. const ggml_type m_prec;
  3306. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3307. const float scale;
  3308. const float max_bias;
  3309. const bool inplace;
  3310. std::string vars() override {
  3311. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3312. }
  3313. // the 1024 test with bias occasionally fails:
  3314. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3315. virtual double max_nmse_err() override {
  3316. return 1e-6;
  3317. }
  3318. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3319. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3320. bool mask = false,
  3321. bool sinks = false,
  3322. ggml_type m_prec = GGML_TYPE_F32,
  3323. std::array<int64_t, 2> nr23 = {1, 1},
  3324. float scale = 1.0f,
  3325. float max_bias = 0.0f,
  3326. bool inplace = false)
  3327. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3328. ggml_tensor * build_graph(ggml_context * ctx) override {
  3329. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3330. ggml_set_param(a);
  3331. ggml_set_name(a, "a");
  3332. ggml_tensor * mask = nullptr;
  3333. if (this->mask) {
  3334. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3335. ggml_set_name(mask, "mask");
  3336. }
  3337. ggml_tensor * sinks = nullptr;
  3338. if (this->sinks) {
  3339. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3340. ggml_set_name(sinks, "sinks");
  3341. }
  3342. ggml_tensor * out;
  3343. if (inplace) {
  3344. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3345. } else {
  3346. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3347. }
  3348. ggml_soft_max_add_sinks(out, sinks);
  3349. ggml_set_name(out, "out");
  3350. return out;
  3351. }
  3352. bool grad_precise() override {
  3353. return true;
  3354. }
  3355. };
  3356. // GGML_OP_SOFT_MAX_BACK
  3357. struct test_soft_max_back : public test_case {
  3358. const ggml_type type;
  3359. const std::array<int64_t, 4> ne;
  3360. const float scale;
  3361. const float max_bias;
  3362. std::string vars() override {
  3363. return VARS_TO_STR4(type, ne, scale, max_bias);
  3364. }
  3365. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3366. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3367. float scale = 1.0f,
  3368. float max_bias = 0.0f)
  3369. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3370. ggml_tensor * build_graph(ggml_context * ctx) override {
  3371. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3372. ggml_set_name(a, "a");
  3373. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3374. ggml_set_name(a, "a");
  3375. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3376. ggml_set_name(out, "out");
  3377. return out;
  3378. }
  3379. };
  3380. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3381. struct test_rope : public test_case {
  3382. const ggml_type type;
  3383. const std::array<int64_t, 4> ne_a;
  3384. int n_dims;
  3385. int mode;
  3386. int n_ctx; // used to generate positions
  3387. float fs; // freq_scale
  3388. float ef; // ext_factor
  3389. float af; // attn_factor
  3390. bool ff;
  3391. int v; // view (1 : non-contiguous a)
  3392. bool forward;
  3393. bool inplace;
  3394. std::string vars() override {
  3395. // forward can be inferred from the op, does not need to be printed
  3396. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3397. }
  3398. test_rope(ggml_type type = GGML_TYPE_F32,
  3399. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3400. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3401. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3402. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3403. ggml_tensor * build_graph(ggml_context * ctx) override {
  3404. ggml_tensor * a;
  3405. if (v & 1) {
  3406. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3407. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3408. if (forward) {
  3409. ggml_set_param(a);
  3410. }
  3411. ggml_set_name(a, "a");
  3412. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3413. ggml_set_name(a, "view_of_a");
  3414. } else {
  3415. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3416. if (forward) {
  3417. ggml_set_param(a);
  3418. }
  3419. ggml_set_name(a, "a");
  3420. }
  3421. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3422. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3423. ggml_tensor * pos;
  3424. if (is_mrope || is_vision) {
  3425. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3426. } else {
  3427. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3428. }
  3429. ggml_set_name(pos, "pos");
  3430. ggml_tensor * freq = nullptr;
  3431. if (ff) {
  3432. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3433. ggml_set_name(freq, "freq");
  3434. }
  3435. ggml_tensor * out;
  3436. if (is_mrope) {
  3437. if (is_vision) {
  3438. GGML_ASSERT(n_dims/4 > 0);
  3439. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3440. if (forward) {
  3441. if (inplace) {
  3442. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3443. } else {
  3444. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3445. }
  3446. } else {
  3447. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3448. }
  3449. } else {
  3450. GGML_ASSERT(n_dims/3 > 0);
  3451. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3452. if (forward) {
  3453. if (inplace) {
  3454. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3455. } else {
  3456. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3457. }
  3458. } else {
  3459. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3460. }
  3461. }
  3462. } else {
  3463. if (forward) {
  3464. if (inplace) {
  3465. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3466. } else {
  3467. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3468. }
  3469. } else {
  3470. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3471. }
  3472. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3473. }
  3474. ggml_set_name(out, "out");
  3475. return out;
  3476. }
  3477. void initialize_tensors(ggml_context * ctx) override {
  3478. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3479. if (t->type == GGML_TYPE_I32) {
  3480. // pos
  3481. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3482. std::vector<int> data(num_pos_ids);
  3483. for (int i = 0; i < num_pos_ids; i++) {
  3484. data[i] = rand() % n_ctx;
  3485. }
  3486. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3487. } else {
  3488. if (t->ne[0] == n_dims/2) {
  3489. // frequency factors in the range [0.9f, 1.1f]
  3490. init_tensor_uniform(t, 0.9f, 1.1f);
  3491. } else {
  3492. init_tensor_uniform(t);
  3493. }
  3494. }
  3495. }
  3496. }
  3497. double max_maa_err() override {
  3498. return 1e-3;
  3499. }
  3500. bool grad_precise() override {
  3501. return true;
  3502. }
  3503. };
  3504. // GGML_OP_POOL2D
  3505. struct test_pool2d : public test_case {
  3506. enum ggml_op_pool pool_type;
  3507. const ggml_type type_input;
  3508. const std::array<int64_t, 4> ne_input;
  3509. // kernel size
  3510. const int k0;
  3511. const int k1;
  3512. // stride
  3513. const int s0;
  3514. const int s1;
  3515. // padding
  3516. const int p0;
  3517. const int p1;
  3518. std::string vars() override {
  3519. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3520. }
  3521. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3522. ggml_type type_input = GGML_TYPE_F32,
  3523. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3524. int k0 = 3, int k1 = 3,
  3525. int s0 = 1, int s1 = 1,
  3526. int p0 = 1, int p1 = 1)
  3527. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3528. ggml_tensor * build_graph(ggml_context * ctx) override {
  3529. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3530. ggml_set_param(input);
  3531. ggml_set_name(input, "input");
  3532. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3533. ggml_set_name(out, "out");
  3534. return out;
  3535. }
  3536. };
  3537. // GGML_OP_CONV_TRANSPOSE_1D
  3538. struct test_conv_transpose_1d : public test_case {
  3539. const std::array<int64_t, 4> ne_input;
  3540. const std::array<int64_t, 4> ne_kernel;
  3541. const int s0; // stride
  3542. const int p0; // padding
  3543. const int d0; // dilation
  3544. std::string vars() override {
  3545. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3546. }
  3547. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3548. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3549. int s0 = 1, int p0 = 0, int d0 = 1)
  3550. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3551. ggml_tensor * build_graph(ggml_context * ctx) override {
  3552. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3553. ggml_set_name(input, "input");
  3554. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3555. ggml_set_name(kernel, "kernel");
  3556. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3557. ggml_set_name(out, "out");
  3558. return out;
  3559. }
  3560. };
  3561. // GGML_OP_CONV_TRANSPOSE_2D
  3562. struct test_conv_transpose_2d : public test_case {
  3563. const std::array<int64_t, 4> ne_input;
  3564. const std::array<int64_t, 4> ne_kernel;
  3565. const int stride;
  3566. std::string vars() override {
  3567. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3568. }
  3569. double max_nmse_err() override {
  3570. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3571. }
  3572. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3573. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3574. int stride = 1)
  3575. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3576. ggml_tensor * build_graph(ggml_context * ctx) override {
  3577. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3578. ggml_set_name(input, "input");
  3579. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3580. ggml_set_name(kernel, "kernel");
  3581. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3582. ggml_set_name(out, "out");
  3583. return out;
  3584. }
  3585. };
  3586. // GGML_OP_IM2COL
  3587. struct test_im2col : public test_case {
  3588. const ggml_type type_input;
  3589. const ggml_type type_kernel;
  3590. const ggml_type dst_type;
  3591. const std::array<int64_t, 4> ne_input;
  3592. const std::array<int64_t, 4> ne_kernel;
  3593. // stride
  3594. const int s0;
  3595. const int s1;
  3596. // padding
  3597. const int p0;
  3598. const int p1;
  3599. // dilation
  3600. const int d0;
  3601. const int d1;
  3602. // mode
  3603. const bool is_2D;
  3604. std::string vars() override {
  3605. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3606. }
  3607. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3608. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3609. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3610. int s0 = 1, int s1 = 1,
  3611. int p0 = 1, int p1 = 1,
  3612. int d0 = 1, int d1 = 1,
  3613. bool is_2D = true)
  3614. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3615. ggml_tensor * build_graph(ggml_context * ctx) override {
  3616. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3617. ggml_set_param(input);
  3618. ggml_set_name(input, "input");
  3619. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3620. ggml_set_name(kernel, "kernel");
  3621. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3622. ggml_set_name(out, "out");
  3623. return out;
  3624. }
  3625. };
  3626. // GGML_OP_IM2COL_3D
  3627. struct test_im2col_3d : public test_case {
  3628. const ggml_type type_input;
  3629. const ggml_type type_kernel;
  3630. const ggml_type dst_type;
  3631. const std::array<int64_t, 4> ne_input;
  3632. const std::array<int64_t, 4> ne_kernel;
  3633. // stride
  3634. const int s0;
  3635. const int s1;
  3636. const int s2;
  3637. // padding
  3638. const int p0;
  3639. const int p1;
  3640. const int p2;
  3641. // dilation
  3642. const int d0;
  3643. const int d1;
  3644. const int d2;
  3645. const int64_t IC;
  3646. const bool v;
  3647. std::string vars() override {
  3648. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3649. }
  3650. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3651. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3652. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3653. int64_t IC = 3,
  3654. int s0 = 1, int s1 = 1, int s2 = 1,
  3655. int p0 = 1, int p1 = 1, int p2 = 1,
  3656. int d0 = 1, int d1 = 1, int d2 = 1,
  3657. bool v = false)
  3658. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3659. ggml_tensor * build_graph(ggml_context * ctx) override {
  3660. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3661. ggml_set_param(input);
  3662. ggml_set_name(input, "input");
  3663. if (v) {
  3664. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3665. ggml_set_name(input, "view_of_input");
  3666. }
  3667. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3668. ggml_set_name(kernel, "kernel");
  3669. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3670. ggml_set_name(out, "out");
  3671. return out;
  3672. }
  3673. };
  3674. // CONV_2D
  3675. struct test_conv_2d : public test_case {
  3676. const std::array<int64_t, 4> ne_input;
  3677. const std::array<int64_t, 4> ne_kernel;
  3678. const ggml_type type_kernel;
  3679. const int stride0;
  3680. const int stride1;
  3681. const int padding0;
  3682. const int padding1;
  3683. const int dilation0;
  3684. const int dilation1;
  3685. // Whether the inputs are contiguous in the channel dim or the width dim
  3686. const bool cwhn;
  3687. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3688. // uses ggml_conv_2d:
  3689. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3690. // CONV_2D graph will be built, while
  3691. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3692. // IM2COL -> MUL_MM graph will be built.
  3693. std::string vars() override {
  3694. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3695. }
  3696. double max_nmse_err() override {
  3697. return 5e-4;
  3698. }
  3699. uint64_t op_flops(ggml_tensor * t) override {
  3700. GGML_UNUSED(t);
  3701. // Just counting matmul costs:
  3702. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3703. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3704. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3705. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3706. };
  3707. int64_t W = ne_input[0];
  3708. int64_t H = ne_input[1];
  3709. int64_t KW = ne_kernel[0];
  3710. int64_t KH = ne_kernel[1];
  3711. int64_t Cin = ne_kernel[2];
  3712. int64_t Cout = ne_kernel[3];
  3713. int64_t N = ne_input[3];
  3714. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3715. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3716. int64_t K = Cout;
  3717. int64_t CRS = Cin * KH * KW;
  3718. int64_t NPQ = N * OH * OW;
  3719. return K * NPQ * (2 * CRS - 1);
  3720. }
  3721. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3722. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3723. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3724. ne_input(ne_input),
  3725. ne_kernel(ne_kernel),
  3726. type_kernel(type_kernel),
  3727. stride0(stride0),
  3728. stride1(stride1),
  3729. padding0(padding0),
  3730. padding1(padding1),
  3731. dilation0(dilation0),
  3732. dilation1(dilation1),
  3733. cwhn(cwhn) {}
  3734. ggml_tensor * build_graph(ggml_context * ctx) override {
  3735. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3736. ggml_set_name(input, "input");
  3737. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3738. ggml_set_name(kernel, "kernel");
  3739. if (cwhn) {
  3740. // change memory layout to channel-most-contiguous (CWHN),
  3741. // then permute it back so NE matches the original input
  3742. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3743. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3744. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3745. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3746. }
  3747. ggml_tensor * out =
  3748. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3749. ggml_set_name(out, "out");
  3750. return out;
  3751. }
  3752. };
  3753. // GGML_OP_CONV_2D_DW
  3754. struct test_conv_2d_dw : public test_case {
  3755. const std::array<int64_t, 4> ne_input;
  3756. const std::array<int64_t, 4> ne_kernel;
  3757. const int stride;
  3758. const int padding;
  3759. const int dilation;
  3760. const bool cwhn;
  3761. std::string vars() override {
  3762. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3763. }
  3764. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3765. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3766. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3767. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3768. ggml_tensor * build_graph(ggml_context * ctx) override {
  3769. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3770. ggml_set_name(input, "input");
  3771. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3772. ggml_set_name(kernel, "kernel");
  3773. if (cwhn) {
  3774. // change memory layout to channel-most-contiguous (CWHN),
  3775. // then permute it back so NE matches the original input
  3776. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3777. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3778. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3779. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3780. }
  3781. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3782. ctx, kernel, input,
  3783. stride, stride, padding, padding, dilation, dilation);
  3784. ggml_set_name(out, "out");
  3785. return out;
  3786. }
  3787. };
  3788. // GGML_OP_CONV_3D
  3789. struct test_conv_3d : public test_case {
  3790. // Logical 5D dimensions
  3791. const int64_t N, IC, ID, IH, IW;
  3792. const int64_t OC, KD, KH, KW;
  3793. // Conv params
  3794. const int s0, s1, s2;
  3795. const int p0, p1, p2;
  3796. const int d0, d1, d2;
  3797. // Types
  3798. const ggml_type type_kernel;
  3799. std::string op_desc(ggml_tensor * t) override {
  3800. GGML_UNUSED(t);
  3801. return "CONV_3D";
  3802. }
  3803. std::string vars() override {
  3804. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3805. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3806. }
  3807. double max_nmse_err() override {
  3808. return 5e-4;
  3809. }
  3810. uint64_t op_flops(ggml_tensor * t) override {
  3811. GGML_UNUSED(t);
  3812. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3813. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3814. };
  3815. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3816. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3817. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3818. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3819. }
  3820. test_conv_3d(
  3821. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3822. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3823. int s0, int s1, int s2,
  3824. int p0, int p1, int p2,
  3825. int d0, int d1, int d2,
  3826. ggml_type type_kernel
  3827. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3828. OC(OC), KD(KD), KH(KH), KW(KW),
  3829. s0(s0), s1(s1), s2(s2),
  3830. p0(p0), p1(p1), p2(p2),
  3831. d0(d0), d1(d1), d2(d2),
  3832. type_kernel(type_kernel) {}
  3833. ggml_tensor * build_graph(ggml_context * ctx) override {
  3834. // GGML input tensor is packed as [W, H, D, C*N]
  3835. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3836. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3837. ggml_set_name(input, "input");
  3838. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3839. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3840. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3841. ggml_set_name(kernel, "kernel");
  3842. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3843. ggml_set_name(out, "out");
  3844. return out;
  3845. }
  3846. };
  3847. // GGML_OP_CONCAT
  3848. struct test_concat : public test_case {
  3849. const ggml_type type;
  3850. const std::array<int64_t, 4> ne_a;
  3851. const int64_t ne_b_d;
  3852. const int dim;
  3853. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3854. std::string vars() override {
  3855. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3856. }
  3857. test_concat(ggml_type type = GGML_TYPE_F32,
  3858. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3859. int64_t ne_b_d = 5,
  3860. int dim = 2, int v = 0)
  3861. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3862. ggml_tensor * build_graph(ggml_context * ctx) override {
  3863. auto ne_b = ne_a;
  3864. ne_b[dim] = ne_b_d;
  3865. ggml_tensor * a;
  3866. if (v & 1) {
  3867. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3868. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3869. ggml_set_name(a, "a");
  3870. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3871. ggml_set_name(a, "view_of_a");
  3872. } else {
  3873. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3874. ggml_set_name(a, "a");
  3875. }
  3876. ggml_tensor * b;
  3877. if (v & 2) {
  3878. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3879. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3880. ggml_set_name(b, "b");
  3881. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3882. ggml_set_name(b, "view_of_b");
  3883. } else {
  3884. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3885. ggml_set_name(b, "b");
  3886. }
  3887. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3888. ggml_set_name(out, "out");
  3889. return out;
  3890. }
  3891. };
  3892. // GGML_OP_ARGSORT
  3893. struct test_argsort : public test_case {
  3894. const ggml_type type;
  3895. const std::array<int64_t, 4> ne;
  3896. ggml_sort_order order;
  3897. std::string vars() override {
  3898. return VARS_TO_STR3(type, ne, order);
  3899. }
  3900. test_argsort(ggml_type type = GGML_TYPE_F32,
  3901. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3902. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3903. : type(type), ne(ne), order(order) {}
  3904. ggml_tensor * build_graph(ggml_context * ctx) override {
  3905. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3906. ggml_set_name(a, "a");
  3907. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3908. ggml_set_name(out, "out");
  3909. return out;
  3910. }
  3911. void initialize_tensors(ggml_context * ctx) override {
  3912. std::random_device rd;
  3913. std::default_random_engine rng(rd());
  3914. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3915. if (t->type == GGML_TYPE_I32) {
  3916. // indices
  3917. std::vector<int> data(ggml_nelements(t));
  3918. for (int i = 0; i < ggml_nelements(t); i++) {
  3919. data[i] = rand();
  3920. }
  3921. std::shuffle(data.begin(), data.end(), rng);
  3922. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3923. } else if (t->type == GGML_TYPE_F32) {
  3924. // initialize with unique values to avoid ties
  3925. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3926. std::vector<float> data(t->ne[0]);
  3927. for (int i = 0; i < t->ne[0]; i++) {
  3928. data[i] = i;
  3929. }
  3930. std::shuffle(data.begin(), data.end(), rng);
  3931. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3932. }
  3933. } else {
  3934. GGML_ABORT("fatal error");
  3935. }
  3936. }
  3937. }
  3938. };
  3939. struct test_topk_moe: public test_case {
  3940. const std::array<int64_t, 4> ne;
  3941. const int n_expert_used;
  3942. const bool with_norm;
  3943. const bool delayed_softmax;
  3944. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  3945. int n_expert_used = 1,
  3946. bool with_norm = false,
  3947. bool delayed_softmax = false) :
  3948. ne(ne),
  3949. n_expert_used(n_expert_used),
  3950. with_norm(with_norm),
  3951. delayed_softmax(delayed_softmax) {
  3952. GGML_ASSERT(n_expert_used <= ne[0]);
  3953. GGML_ASSERT(!(with_norm && delayed_softmax));
  3954. }
  3955. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  3956. std::string op_desc(ggml_tensor * t) override {
  3957. GGML_UNUSED(t);
  3958. return "TOPK_MOE";
  3959. }
  3960. bool run_whole_graph() override { return true; }
  3961. ggml_tensor * build_graph(ggml_context * ctx) override {
  3962. const int n_expert = ne[0];
  3963. const int n_tokens = ne[1];
  3964. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  3965. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  3966. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  3967. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  3968. if (delayed_softmax) {
  3969. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  3970. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  3971. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  3972. }
  3973. if (with_norm) {
  3974. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  3975. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  3976. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  3977. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  3978. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  3979. }
  3980. ggml_set_name(out, "out");
  3981. return out;
  3982. }
  3983. };
  3984. struct test_moe_expert_reduce : public test_case {
  3985. const int64_t n_embd;
  3986. const int64_t n_tokens;
  3987. const int64_t n_expert_used;
  3988. test_moe_expert_reduce(int64_t n_embd = 64, int64_t n_tokens = 5, int64_t n_expert_used = 4)
  3989. : n_embd(n_embd), n_tokens(n_tokens), n_expert_used(n_expert_used) {
  3990. GGML_ASSERT(n_expert_used > 1);
  3991. }
  3992. std::string vars() override {
  3993. return VARS_TO_STR3(n_embd, n_tokens, n_expert_used);
  3994. }
  3995. std::string op_desc(ggml_tensor * t) override {
  3996. GGML_UNUSED(t);
  3997. return "MOE_EXPERT_REDUCE";
  3998. }
  3999. bool run_whole_graph() override { return true; }
  4000. ggml_tensor * build_graph(ggml_context * ctx) override {
  4001. ggml_tensor * experts = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, n_expert_used, n_tokens);
  4002. ggml_set_name(experts, "experts");
  4003. ggml_tensor * weights = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 1, n_expert_used, n_tokens);
  4004. ggml_set_name(weights, "weights");
  4005. ggml_tensor * weighted = ggml_mul(ctx, experts, weights);
  4006. ggml_set_name(weighted, "weighted_experts");
  4007. std::vector<ggml_tensor *> expert_views(n_expert_used);
  4008. for (int64_t i = 0; i < n_expert_used; ++i) {
  4009. expert_views[i] = ggml_view_2d(ctx, weighted, n_embd, n_tokens, weighted->nb[2], i * weighted->nb[1]);
  4010. std::string name = "expert_view_" + std::to_string(i);
  4011. ggml_set_name(expert_views[i], name.c_str());
  4012. ggml_build_forward_expand(gf, expert_views[i]);
  4013. }
  4014. ggml_tensor * moe_out = expert_views[0];
  4015. for (int64_t i = 1; i < n_expert_used; ++i) {
  4016. moe_out = ggml_add(ctx, moe_out, expert_views[i]);
  4017. std::string name = "expert_add_" + std::to_string(i - 1);
  4018. ggml_set_name(moe_out, name.c_str());
  4019. }
  4020. ggml_set_name(moe_out, "moe_out");
  4021. return moe_out;
  4022. }
  4023. };
  4024. struct test_mul_mat_vec_fusion : public test_case {
  4025. const ggml_type type;
  4026. const ggml_glu_op glu_op;
  4027. const int64_t m;
  4028. const int64_t n;
  4029. const int64_t k;
  4030. const bool use_id;
  4031. const int n_mats;
  4032. const int n_used;
  4033. const bool b; // broadcast b matrix (only for use_id)
  4034. const bool with_bias;
  4035. const bool with_gate;
  4036. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4037. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true)
  4038. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) {
  4039. if (use_id) {
  4040. GGML_ASSERT(n_used <= n_mats);
  4041. }
  4042. }
  4043. std::string vars() override {
  4044. return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate);
  4045. }
  4046. std::string op_desc(ggml_tensor * t) override {
  4047. GGML_UNUSED(t);
  4048. return "MUL_MAT_VEC_FUSION";
  4049. }
  4050. bool run_whole_graph() override { return true; }
  4051. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4052. ggml_tensor * out = nullptr;
  4053. if (with_gate) {
  4054. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4055. constexpr float alpha = 1.702f;
  4056. constexpr float limit = 7.0f;
  4057. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4058. } else {
  4059. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4060. }
  4061. }
  4062. return out;
  4063. }
  4064. ggml_tensor * build_graph(ggml_context * ctx) override {
  4065. if (!use_id) {
  4066. std::array<int64_t, 4> ne = {k, m, 1, 1};
  4067. std::array<int64_t, 4> ne0 = {k, n, 1, 1};
  4068. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4069. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4070. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4071. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4072. if (with_bias) {
  4073. std::array<int64_t, 4> bias_ne = {ffn_up->ne[0], 1, 1, 1};
  4074. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4075. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4076. }
  4077. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4078. if (with_bias && with_gate) {
  4079. std::array<int64_t, 4> bias_ne = {ffn_gate->ne[0], 1, 1, 1};
  4080. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4081. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4082. }
  4083. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4084. ggml_set_name(out, "out");
  4085. return out;
  4086. } else {
  4087. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4088. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4089. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4090. if (n_used != n_mats) {
  4091. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4092. }
  4093. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4094. ggml_set_name(cur, "cur");
  4095. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4096. if (with_bias) {
  4097. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4098. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4099. }
  4100. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4101. if (with_bias && with_gate) {
  4102. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4103. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4104. }
  4105. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4106. ggml_set_name(out, "out");
  4107. return out;
  4108. }
  4109. }
  4110. void initialize_tensors(ggml_context * ctx) override {
  4111. if (!use_id) {
  4112. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4113. init_tensor_uniform(t);
  4114. }
  4115. } else {
  4116. std::random_device rd;
  4117. std::default_random_engine rng(rd());
  4118. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4119. if (t->type == GGML_TYPE_I32) {
  4120. if (ggml_is_view_op(t->op)) { continue; }
  4121. // ids
  4122. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4123. std::vector<int32_t> data(t->ne[0]);
  4124. for (int i = 0; i < t->ne[0]; i++) {
  4125. data[i] = i % n_mats;
  4126. }
  4127. std::shuffle(data.begin(), data.end(), rng);
  4128. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  4129. }
  4130. } else {
  4131. init_tensor_uniform(t);
  4132. }
  4133. }
  4134. }
  4135. }
  4136. double max_nmse_err() override {
  4137. return 5e-3;
  4138. }
  4139. };
  4140. // GGML_OP_SUM
  4141. struct test_sum : public test_case {
  4142. const ggml_type type;
  4143. const std::array<int64_t, 4> ne;
  4144. const std::array<int64_t, 4> permute;
  4145. bool _use_permute;
  4146. std::string vars() override {
  4147. std::string v = VARS_TO_STR2(type, ne);
  4148. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4149. return v;
  4150. }
  4151. test_sum(ggml_type type = GGML_TYPE_F32,
  4152. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4153. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4154. : type(type), ne(ne), permute(permute),
  4155. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4156. ggml_tensor * build_graph(ggml_context * ctx) override {
  4157. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4158. ggml_set_param(a);
  4159. ggml_set_name(a, "a");
  4160. if (_use_permute) {
  4161. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4162. ggml_set_name(a, "a_permuted");
  4163. }
  4164. ggml_tensor * out = ggml_sum(ctx, a);
  4165. ggml_set_name(out, "out");
  4166. return out;
  4167. }
  4168. float grad_eps() override {
  4169. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4170. }
  4171. };
  4172. // GGML_OP_SUM_ROWS
  4173. struct test_sum_rows : public test_case {
  4174. const ggml_type type;
  4175. const std::array<int64_t, 4> ne;
  4176. const bool permute;
  4177. const bool slice;
  4178. std::string vars() override {
  4179. return VARS_TO_STR4(type, ne, permute, slice);
  4180. }
  4181. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4182. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4183. bool permute = false, bool slice = false)
  4184. : type(type), ne(ne), permute(permute), slice(slice) {}
  4185. ggml_tensor * build_graph(ggml_context * ctx) override {
  4186. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4187. ggml_set_param(a);
  4188. ggml_set_name(a, "a");
  4189. if (slice) {
  4190. a = ggml_view_4d(ctx, a,
  4191. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4192. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4193. }
  4194. if (permute) {
  4195. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4196. }
  4197. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4198. ggml_set_name(out, "out");
  4199. return out;
  4200. }
  4201. };
  4202. // GGML_OP_MEAN
  4203. struct test_mean : public test_case {
  4204. const ggml_type type;
  4205. const std::array<int64_t, 4> ne;
  4206. std::string vars() override {
  4207. return VARS_TO_STR2(type, ne);
  4208. }
  4209. test_mean(ggml_type type = GGML_TYPE_F32,
  4210. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4211. : type(type), ne(ne) {}
  4212. ggml_tensor * build_graph(ggml_context * ctx) override {
  4213. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4214. ggml_set_param(a);
  4215. ggml_set_name(a, "a");
  4216. ggml_tensor * out = ggml_mean(ctx, a);
  4217. ggml_set_name(out, "out");
  4218. return out;
  4219. }
  4220. float grad_eps() override {
  4221. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4222. }
  4223. };
  4224. // GGML_OP_UPSCALE
  4225. struct test_upscale : public test_case {
  4226. const ggml_type type;
  4227. const std::array<int64_t, 4> ne;
  4228. const int32_t scale_factor;
  4229. const bool transpose;
  4230. const ggml_scale_mode mode;
  4231. std::string vars() override {
  4232. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4233. }
  4234. test_upscale(ggml_type type = GGML_TYPE_F32,
  4235. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4236. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4237. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4238. ggml_tensor * build_graph(ggml_context * ctx) override {
  4239. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4240. ggml_set_name(a, "a");
  4241. if (transpose) {
  4242. a = ggml_transpose(ctx, a);
  4243. ggml_set_name(a, "a_transposed");
  4244. }
  4245. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4246. ggml_set_name(out, "out");
  4247. return out;
  4248. }
  4249. };
  4250. // GGML_OP_UPSCALE (via ggml_interpolate)
  4251. struct test_interpolate : public test_case {
  4252. const ggml_type type;
  4253. const std::array<int64_t, 4> ne;
  4254. const std::array<int64_t, 4> ne_tgt;
  4255. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4256. std::string vars() override {
  4257. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  4258. }
  4259. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4260. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4261. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4262. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4263. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4264. ggml_tensor * build_graph(ggml_context * ctx) override {
  4265. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4266. ggml_set_name(a, "a");
  4267. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4268. ggml_set_name(out, "out");
  4269. return out;
  4270. }
  4271. };
  4272. // GGML_OP_GROUP_NORM
  4273. struct test_group_norm : public test_case {
  4274. const ggml_type type;
  4275. const std::array<int64_t, 4> ne;
  4276. const int32_t num_groups;
  4277. const float eps;
  4278. std::string vars() override {
  4279. return VARS_TO_STR4(type, ne, num_groups, eps);
  4280. }
  4281. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4282. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4283. int32_t num_groups = 32,
  4284. float eps = 1e-6f)
  4285. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4286. ggml_tensor * build_graph(ggml_context * ctx) override {
  4287. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4288. ggml_set_name(a, "a");
  4289. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4290. ggml_set_name(out, "out");
  4291. return out;
  4292. }
  4293. };
  4294. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4295. struct test_group_norm_mul_add : public test_case {
  4296. const ggml_type type;
  4297. const std::array<int64_t, 4> ne;
  4298. int num_groups;
  4299. float eps;
  4300. std::string op_desc(ggml_tensor * t) override {
  4301. GGML_UNUSED(t);
  4302. return "GROUP_NORM_MUL_ADD";
  4303. }
  4304. bool run_whole_graph() override { return true; }
  4305. std::string vars() override {
  4306. return VARS_TO_STR4(type, ne, num_groups, eps);
  4307. }
  4308. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4309. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4310. int num_groups = 4,
  4311. float eps = 1e-5f)
  4312. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4313. ggml_tensor * build_graph(ggml_context * ctx) override {
  4314. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4315. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4316. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4317. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4318. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4319. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4320. ggml_tensor * m = ggml_mul(ctx, n, w);
  4321. ggml_tensor * out = ggml_add(ctx, m, b);
  4322. ggml_set_name(out, "out");
  4323. return out;
  4324. }
  4325. };
  4326. // GGML_OP_L2_NORM
  4327. struct test_l2_norm : public test_case {
  4328. const ggml_type type;
  4329. const std::array<int64_t, 4> ne;
  4330. const float eps;
  4331. std::string vars() override {
  4332. return VARS_TO_STR2(type, ne);
  4333. }
  4334. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4335. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4336. float eps = 1e-12f)
  4337. : type(type), ne(ne), eps(eps) {}
  4338. ggml_tensor * build_graph(ggml_context * ctx) override {
  4339. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4340. ggml_set_name(a, "a");
  4341. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4342. ggml_set_name(out, "out");
  4343. return out;
  4344. }
  4345. };
  4346. // GGML_OP_ACC
  4347. struct test_acc : public test_case {
  4348. const ggml_type type;
  4349. const std::array<int64_t, 4> ne_a;
  4350. const std::array<int64_t, 4> ne_b;
  4351. std::string vars() override {
  4352. return VARS_TO_STR3(type, ne_a, ne_b);
  4353. }
  4354. test_acc(ggml_type type = GGML_TYPE_F32,
  4355. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4356. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4357. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4358. ggml_tensor * build_graph(ggml_context * ctx) override {
  4359. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4360. ggml_set_param(a);
  4361. ggml_set_name(a, "a");
  4362. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4363. ggml_set_param(b);
  4364. ggml_set_name(b, "b");
  4365. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4366. ggml_set_name(out, "out");
  4367. return out;
  4368. }
  4369. };
  4370. // GGML_OP_PAD
  4371. struct test_pad : public test_case {
  4372. const ggml_type type;
  4373. const std::array<int64_t, 4> ne_a;
  4374. const int pad_0;
  4375. const int pad_1;
  4376. std::string vars() override {
  4377. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4378. }
  4379. test_pad(ggml_type type = GGML_TYPE_F32,
  4380. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4381. int pad_0 = 1, int pad_1 = 1)
  4382. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4383. ggml_tensor * build_graph(ggml_context * ctx) override {
  4384. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4385. ggml_set_name(a, "a");
  4386. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4387. ggml_set_name(out, "out");
  4388. return out;
  4389. }
  4390. };
  4391. struct test_pad_ext : public test_case {
  4392. const ggml_type type;
  4393. const std::array<int64_t, 4> ne_a;
  4394. const int lp0;
  4395. const int rp0;
  4396. const int lp1;
  4397. const int rp1;
  4398. const int lp2;
  4399. const int rp2;
  4400. const int lp3;
  4401. const int rp3;
  4402. const bool v;
  4403. std::string vars() override {
  4404. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4405. }
  4406. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4407. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4408. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4409. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4410. bool v = false)
  4411. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4412. ggml_tensor * build_graph(ggml_context * ctx) override {
  4413. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4414. ggml_set_name(a, "a");
  4415. if (v) {
  4416. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4417. ggml_set_name(a, "view of a");
  4418. }
  4419. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4420. ggml_set_name(out, "out");
  4421. return out;
  4422. }
  4423. };
  4424. // GGML_OP_PAD_REFLECT_1D
  4425. struct test_pad_reflect_1d : public test_case {
  4426. const ggml_type type;
  4427. const std::array<int64_t, 4> ne_a;
  4428. const int pad_0;
  4429. const int pad_1;
  4430. std::string vars() override {
  4431. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4432. }
  4433. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4434. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4435. int pad_0 = 10, int pad_1 = 9)
  4436. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4437. ggml_tensor * build_graph(ggml_context * ctx) override {
  4438. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4439. ggml_set_name(a, "a");
  4440. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4441. ggml_set_name(out, "out");
  4442. return out;
  4443. }
  4444. };
  4445. // GGML_OP_ROLL
  4446. struct test_roll : public test_case {
  4447. const int shift0;
  4448. const int shift1;
  4449. const int shift3;
  4450. const int shift4;
  4451. std::string vars() override {
  4452. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4453. }
  4454. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4455. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4456. ggml_tensor * build_graph(ggml_context * ctx) override {
  4457. int64_t ne[4] = {10, 5, 4, 3};
  4458. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4459. ggml_set_name(a, "a");
  4460. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4461. ggml_set_name(out, "out");
  4462. return out;
  4463. }
  4464. };
  4465. // GGML_OP_ARANGE
  4466. struct test_arange : public test_case {
  4467. const ggml_type type;
  4468. const float start;
  4469. const float stop;
  4470. const float step;
  4471. std::string vars() override {
  4472. return VARS_TO_STR4(type, start, stop, step);
  4473. }
  4474. test_arange(ggml_type type = GGML_TYPE_F32,
  4475. float start = 0.f, float stop = 10.f, float step = 1.f)
  4476. : type(type), start(start), stop(stop), step(step) {}
  4477. ggml_tensor * build_graph(ggml_context * ctx) override {
  4478. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4479. ggml_set_name(out, "out");
  4480. return out;
  4481. }
  4482. };
  4483. // GGML_OP_TIMESTEP_EMBEDDING
  4484. struct test_timestep_embedding : public test_case {
  4485. const ggml_type type;
  4486. const std::array<int64_t, 4> ne_a;
  4487. const int dim;
  4488. const int max_period;
  4489. std::string vars() override {
  4490. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4491. }
  4492. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4493. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4494. int dim = 320, int max_period=10000)
  4495. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4496. ggml_tensor * build_graph(ggml_context * ctx) override {
  4497. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4498. ggml_set_name(a, "a");
  4499. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4500. ggml_set_name(out, "out");
  4501. return out;
  4502. }
  4503. };
  4504. // GGML_OP_LEAKY_RELU
  4505. struct test_leaky_relu : public test_case {
  4506. const ggml_type type;
  4507. const std::array<int64_t, 4> ne_a;
  4508. const float negative_slope;
  4509. std::string vars() override {
  4510. return VARS_TO_STR3(type, ne_a, negative_slope);
  4511. }
  4512. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4513. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4514. float negative_slope = 0.1f)
  4515. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4516. ggml_tensor * build_graph(ggml_context * ctx) override {
  4517. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4518. ggml_set_name(a, "a");
  4519. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4520. ggml_set_name(out, "out");
  4521. return out;
  4522. }
  4523. };
  4524. // GGML_OP_FLASH_ATTN_EXT
  4525. struct test_flash_attn_ext : public test_case {
  4526. const int64_t hsk; // K head size
  4527. const int64_t hsv; // V head size
  4528. const int64_t nh; // num heads
  4529. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4530. const int64_t kv; // kv size
  4531. const int64_t nb; // batch size
  4532. const bool mask; // use mask
  4533. const bool sinks; // use sinks
  4534. const float max_bias; // ALiBi
  4535. const float logit_softcap; // Gemma 2
  4536. const ggml_prec prec;
  4537. const ggml_type type_KV;
  4538. std::array<int32_t, 4> permute;
  4539. std::string vars() override {
  4540. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4541. }
  4542. double max_nmse_err() override {
  4543. return 5e-4;
  4544. }
  4545. uint64_t op_flops(ggml_tensor * t) override {
  4546. GGML_UNUSED(t);
  4547. // Just counting matmul costs:
  4548. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4549. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4550. }
  4551. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4552. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4553. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4554. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4555. ggml_tensor * build_graph(ggml_context * ctx) override {
  4556. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4557. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4558. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4559. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4560. int64_t ne_perm[4];
  4561. for (int i = 0; i < 4; ++i) {
  4562. ne_perm[permute[i]] = ne[i];
  4563. }
  4564. ggml_tensor * t;
  4565. if (is_view) {
  4566. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4567. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4568. } else {
  4569. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4570. }
  4571. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4572. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4573. }
  4574. return t;
  4575. };
  4576. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4577. ggml_set_name(q, "q");
  4578. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4579. ggml_set_name(k, "k");
  4580. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4581. ggml_set_name(v, "v");
  4582. ggml_tensor * m = nullptr;
  4583. if (mask) {
  4584. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4585. ggml_set_name(m, "m");
  4586. }
  4587. ggml_tensor * s = nullptr;
  4588. if (sinks) {
  4589. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4590. ggml_set_name(s, "s");
  4591. }
  4592. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4593. ggml_flash_attn_ext_add_sinks(out, s);
  4594. ggml_flash_attn_ext_set_prec (out, prec);
  4595. ggml_set_name(out, "out");
  4596. return out;
  4597. }
  4598. void initialize_tensors(ggml_context * ctx) override {
  4599. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4600. if (strcmp(t->name, "s") == 0) {
  4601. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4602. init_tensor_uniform(t, -10.0f, 10.0f);
  4603. } else if (strcmp(t->name, "m") == 0) {
  4604. init_tensor_kq_mask(t);
  4605. } else {
  4606. init_tensor_uniform(t);
  4607. }
  4608. }
  4609. }
  4610. bool grad_precise() override {
  4611. return true;
  4612. }
  4613. };
  4614. // GGML_OP_CROSS_ENTROPY_LOSS
  4615. struct test_cross_entropy_loss : public test_case {
  4616. const ggml_type type;
  4617. const std::array<int64_t, 4> ne;
  4618. std::string vars() override {
  4619. return VARS_TO_STR2(type, ne);
  4620. }
  4621. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4622. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4623. : type(type), ne(ne) {}
  4624. ggml_tensor * build_graph(ggml_context * ctx) override {
  4625. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4626. ggml_set_param(logits);
  4627. ggml_set_name(logits, "logits");
  4628. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4629. // The labels are assumed to be constant -> no gradients.
  4630. ggml_set_name(labels, "labels");
  4631. // Ensure labels add up to 1:
  4632. labels = ggml_soft_max(ctx, labels);
  4633. ggml_set_name(labels, "labels_normalized");
  4634. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4635. ggml_set_name(out, "out");
  4636. return out;
  4637. }
  4638. void initialize_tensors(ggml_context * ctx) override {
  4639. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4640. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4641. init_tensor_uniform(t, -100.0f, 100.0f);
  4642. }
  4643. }
  4644. float grad_eps() override {
  4645. return 1.0f;
  4646. }
  4647. bool grad_precise() override {
  4648. return true;
  4649. }
  4650. };
  4651. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4652. struct test_cross_entropy_loss_back : public test_case {
  4653. const ggml_type type;
  4654. const std::array<int64_t, 4> ne;
  4655. std::string vars() override {
  4656. return VARS_TO_STR2(type, ne);
  4657. }
  4658. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4659. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4660. : type(type), ne(ne) {}
  4661. ggml_tensor * build_graph(ggml_context * ctx) override {
  4662. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4663. ggml_set_name(grad, "grad");
  4664. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4665. ggml_set_name(logits, "logits");
  4666. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4667. ggml_set_name(labels, "labels");
  4668. // Ensure labels add up to 1:
  4669. labels = ggml_soft_max(ctx, labels);
  4670. ggml_set_name(labels, "labels_normalized");
  4671. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4672. ggml_set_name(out, "out");
  4673. return out;
  4674. }
  4675. };
  4676. // GGML_OP_OPT_STEP_ADAMW
  4677. struct test_opt_step_adamw : public test_case {
  4678. const ggml_type type;
  4679. const std::array<int64_t, 4> ne;
  4680. std::string vars() override {
  4681. return VARS_TO_STR2(type, ne);
  4682. }
  4683. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4684. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4685. : type(type), ne(ne) {}
  4686. ggml_tensor * build_graph(ggml_context * ctx) override {
  4687. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4688. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4689. ggml_set_name(a, "a");
  4690. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4691. ggml_set_name(grad, "grad");
  4692. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4693. ggml_set_name(grad_m, "grad_m");
  4694. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4695. ggml_set_name(grad_v, "grad_v");
  4696. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4697. ggml_set_name(adamw_params, "adamw_params");
  4698. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4699. ggml_set_name(out, "out");
  4700. return out;
  4701. }
  4702. void initialize_tensors(ggml_context * ctx) override {
  4703. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4704. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4705. }
  4706. }
  4707. bool grad_precise() override {
  4708. return true;
  4709. }
  4710. };
  4711. struct test_opt_step_sgd : public test_case {
  4712. const ggml_type type;
  4713. const std::array<int64_t, 4> ne;
  4714. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4715. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4716. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4717. : type(type), ne(ne) {}
  4718. ggml_tensor * build_graph(ggml_context * ctx) override {
  4719. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4720. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4721. ggml_set_name(a, "a");
  4722. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4723. ggml_set_name(grad, "grad");
  4724. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4725. ggml_set_name(sgd_params, "sgd_params");
  4726. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4727. ggml_set_name(out, "out");
  4728. return out;
  4729. }
  4730. void initialize_tensors(ggml_context * ctx) override {
  4731. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4732. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4733. }
  4734. }
  4735. bool grad_precise() override {
  4736. return true;
  4737. }
  4738. };
  4739. enum llm_norm_type {
  4740. LLM_NORM,
  4741. LLM_NORM_RMS,
  4742. };
  4743. struct llama_hparams {
  4744. uint32_t n_vocab;
  4745. uint32_t n_embd;
  4746. uint32_t n_head;
  4747. uint32_t n_head_kv;
  4748. static constexpr uint32_t n_layer = 1;
  4749. uint32_t n_rot;
  4750. uint32_t n_embd_head; // dimension of values (d_v)
  4751. uint32_t n_ff;
  4752. float f_norm_eps;
  4753. float f_norm_rms_eps;
  4754. // cparams
  4755. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4756. static constexpr uint32_t n_ctx_orig = n_ctx;
  4757. // batch
  4758. int32_t n_tokens;
  4759. // llm_build_context
  4760. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4761. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4762. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4763. return n_embd_head * n_head_kv;
  4764. }
  4765. };
  4766. // LLM base class
  4767. struct test_llm : public test_case {
  4768. llama_hparams hp;
  4769. protected:
  4770. test_llm(llama_hparams hp)
  4771. : hp(std::move(hp)) {
  4772. }
  4773. public:
  4774. struct ggml_tensor * llm_build_norm(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * cur,
  4777. struct ggml_tensor * mw,
  4778. struct ggml_tensor * mb,
  4779. llm_norm_type type) {
  4780. switch (type) {
  4781. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4782. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4783. }
  4784. cur = ggml_mul(ctx, cur, mw);
  4785. if (mb) {
  4786. cur = ggml_add(ctx, cur, mb);
  4787. }
  4788. return cur;
  4789. }
  4790. void llm_build_kv_store(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * k_l,
  4793. struct ggml_tensor * v_l,
  4794. struct ggml_tensor * k_cur,
  4795. struct ggml_tensor * v_cur) {
  4796. // compute the transposed [n_tokens, n_embd] V matrix
  4797. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4798. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4799. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4800. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4801. ( hp.n_ctx)*ggml_element_size(v_l),
  4802. (hp.kv_head)*ggml_element_size(v_l));
  4803. // important: storing RoPE-ed version of K in the KV cache!
  4804. ggml_cpy(ctx, k_cur, k_cache_view);
  4805. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4806. }
  4807. struct ggml_tensor * llm_build_kqv(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * k_l,
  4810. struct ggml_tensor * v_l,
  4811. struct ggml_tensor * q_cur,
  4812. struct ggml_tensor * kq_mask,
  4813. float kq_scale) {
  4814. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4815. struct ggml_tensor * k =
  4816. ggml_view_3d(ctx, k_l,
  4817. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4818. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4819. ggml_row_size(k_l->type, hp.n_embd_head),
  4820. 0);
  4821. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4822. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4823. // split cached v into n_head heads
  4824. struct ggml_tensor * v =
  4825. ggml_view_3d(ctx, v_l,
  4826. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4827. ggml_element_size(v_l)*hp.n_ctx,
  4828. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4829. 0);
  4830. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4831. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4832. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4833. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4834. cur = ggml_mul_mat(ctx, wo, cur);
  4835. return cur;
  4836. }
  4837. void initialize_tensors(ggml_context * ctx) override {
  4838. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4839. if (t->type == GGML_TYPE_I32) {
  4840. // pos
  4841. std::vector<int> data(hp.n_tokens);
  4842. for (int i = 0; i < hp.n_tokens; i++) {
  4843. data[i] = rand() % hp.n_ctx;
  4844. }
  4845. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4846. } else {
  4847. init_tensor_uniform(t);
  4848. }
  4849. }
  4850. }
  4851. };
  4852. // Llama
  4853. struct test_llama : public test_llm {
  4854. static constexpr float freq_base = 10000.0f;
  4855. static constexpr float freq_scale = 1.0f;
  4856. static constexpr float ext_factor = 0.0f;
  4857. static constexpr float attn_factor = 1.0f;
  4858. static constexpr float beta_fast = 32.0f;
  4859. static constexpr float beta_slow = 1.0f;
  4860. bool fused;
  4861. std::string op_desc(ggml_tensor * t) override {
  4862. GGML_UNUSED(t);
  4863. return "LLAMA";
  4864. }
  4865. std::string vars() override {
  4866. auto n_tokens = hp.n_tokens;
  4867. return VARS_TO_STR1(n_tokens);
  4868. }
  4869. double max_nmse_err() override {
  4870. return 2e-3;
  4871. }
  4872. bool run_whole_graph() override { return fused; }
  4873. test_llama(int n_tokens = 1, bool fused = false)
  4874. : test_llm({
  4875. /*n_vocab =*/ 32000,
  4876. /*n_embd =*/ 3200,
  4877. /*n_head =*/ 32,
  4878. /*n_head_kv =*/ 32,
  4879. /*n_rot =*/ 100,
  4880. /*n_embd_head =*/ 100,
  4881. /*n_ff =*/ 8640,
  4882. /*f_norm_eps =*/ 0.f,
  4883. /*f_norm_rms_eps =*/ 1e-5f,
  4884. /*n_tokens =*/ n_tokens,
  4885. })
  4886. , fused(fused)
  4887. {
  4888. }
  4889. ggml_tensor * build_graph(ggml_context * ctx) override {
  4890. struct ggml_tensor * cur;
  4891. struct ggml_tensor * inpL;
  4892. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4893. // inp_pos - contains the positions
  4894. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4895. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4896. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4897. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4898. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4899. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4900. struct ggml_tensor * inpSA = inpL;
  4901. // norm
  4902. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4903. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4904. // self-attention
  4905. {
  4906. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4907. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4908. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4909. // compute Q and K and RoPE them
  4910. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4911. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4912. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4913. Qcur = ggml_rope_ext(
  4914. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4915. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4916. ext_factor, attn_factor, beta_fast, beta_slow
  4917. );
  4918. Kcur = ggml_rope_ext(
  4919. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4920. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4921. ext_factor, attn_factor, beta_fast, beta_slow
  4922. );
  4923. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4924. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4925. }
  4926. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4927. // feed-forward network
  4928. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4929. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4930. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4931. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4932. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4933. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4934. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4935. cur = ggml_silu(ctx, cur);
  4936. cur = ggml_mul(ctx, cur, tmp);
  4937. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4938. cur = ggml_add(ctx, cur, ffn_inp);
  4939. // input for next layer
  4940. inpL = cur;
  4941. }
  4942. cur = inpL;
  4943. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4944. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4945. // lm_head
  4946. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4947. cur = ggml_mul_mat(ctx, output, cur);
  4948. return cur;
  4949. }
  4950. };
  4951. // Falcon
  4952. struct test_falcon : public test_llm {
  4953. static constexpr float freq_base = 10000.0f;
  4954. static constexpr float freq_scale = 1.0f;
  4955. static constexpr float ext_factor = 0.0f;
  4956. static constexpr float attn_factor = 1.0f;
  4957. static constexpr float beta_fast = 32.0f;
  4958. static constexpr float beta_slow = 1.0f;
  4959. std::string op_desc(ggml_tensor * t) override {
  4960. GGML_UNUSED(t);
  4961. return "FALCON";
  4962. }
  4963. std::string vars() override {
  4964. auto n_tokens = hp.n_tokens;
  4965. return VARS_TO_STR1(n_tokens);
  4966. }
  4967. double max_nmse_err() override {
  4968. return 2e-3;
  4969. }
  4970. test_falcon(int n_tokens = 1)
  4971. : test_llm({
  4972. /*n_vocab =*/ 32000,
  4973. /*n_embd =*/ 3200,
  4974. /*n_head =*/ 50,
  4975. /*n_head_kv =*/ 1,
  4976. /*n_rot =*/ 64,
  4977. /*n_embd_head =*/ 64,
  4978. /*n_ff =*/ 8640,
  4979. /*f_norm_eps =*/ 1e-5f,
  4980. /*f_norm_rms_eps =*/ 0.f,
  4981. /*n_tokens =*/ n_tokens,
  4982. }) {
  4983. }
  4984. ggml_tensor * build_graph(ggml_context * ctx) override {
  4985. struct ggml_tensor * cur;
  4986. struct ggml_tensor * inpL;
  4987. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4988. // inp_pos - contains the positions
  4989. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4990. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4991. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4992. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4993. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4994. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4995. // norm
  4996. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4997. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4998. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4999. // self-attention
  5000. {
  5001. cur = attn_norm;
  5002. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5003. cur = ggml_mul_mat(ctx, wqkv, cur);
  5004. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5005. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5006. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5007. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5008. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5009. // using mode = 2 for neox mode
  5010. Qcur = ggml_rope_ext(
  5011. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5012. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5013. );
  5014. Kcur = ggml_rope_ext(
  5015. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5016. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5017. );
  5018. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5019. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5020. }
  5021. struct ggml_tensor * ffn_inp = cur;
  5022. // feed forward
  5023. {
  5024. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5025. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5026. cur = attn_norm;
  5027. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5028. cur = ggml_gelu(ctx, cur);
  5029. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5030. }
  5031. cur = ggml_add(ctx, cur, ffn_inp);
  5032. cur = ggml_add(ctx, cur, inpL);
  5033. // input for next layer
  5034. inpL = cur;
  5035. }
  5036. cur = inpL;
  5037. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5038. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5039. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5040. // lm_head
  5041. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5042. cur = ggml_mul_mat(ctx, output, cur);
  5043. return cur;
  5044. }
  5045. };
  5046. // ###########################################
  5047. // ## Section 3: GGML Op Test Instantiation ##
  5048. // ###########################################
  5049. static const ggml_type all_types[] = {
  5050. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5051. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5052. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5053. GGML_TYPE_Q8_0,
  5054. GGML_TYPE_MXFP4,
  5055. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5056. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5057. GGML_TYPE_Q6_K,
  5058. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5059. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5060. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5061. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5062. };
  5063. static const ggml_type base_types[] = {
  5064. GGML_TYPE_F32, GGML_TYPE_F16,
  5065. GGML_TYPE_Q8_0, // for I8MM tests
  5066. GGML_TYPE_Q4_0,
  5067. GGML_TYPE_Q4_1, // for I8MM tests
  5068. GGML_TYPE_Q4_K,
  5069. GGML_TYPE_MXFP4, // TODO: or "other"
  5070. GGML_TYPE_IQ2_XXS
  5071. };
  5072. static const ggml_type other_types[] = {
  5073. GGML_TYPE_Q4_1,
  5074. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5075. GGML_TYPE_Q8_0,
  5076. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5077. GGML_TYPE_Q5_K,
  5078. GGML_TYPE_Q6_K,
  5079. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5080. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5081. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5082. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5083. GGML_TYPE_BF16,
  5084. };
  5085. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5086. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5087. std::vector<std::unique_ptr<test_case>> test_cases;
  5088. std::default_random_engine rng(0);
  5089. // unary ops
  5090. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5091. for (int v : {0, 1}) {
  5092. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5093. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5094. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5095. }
  5096. }
  5097. }
  5098. // glu ops
  5099. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5100. for (int v : {0, 1}) {
  5101. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5102. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5103. // SWIGLU_OAI is handled separately
  5104. continue;
  5105. }
  5106. for (bool swapped : {false, true}) {
  5107. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5108. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5109. }
  5110. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5111. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5112. }
  5113. }
  5114. }
  5115. for (int v : {0, 1}) {
  5116. for (float alpha : {.5f, 1.702f}) {
  5117. for (float limit : {2.0f, 7.0f}) {
  5118. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5119. }
  5120. }
  5121. }
  5122. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5123. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5124. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5125. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5126. }
  5127. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5128. for (ggml_type type : all_types) {
  5129. for (int b : {1, 7}) {
  5130. for (bool v : {false, true}) {
  5131. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5132. }
  5133. }
  5134. }
  5135. for (int b : {1, 7}) {
  5136. for (bool v : {false, true}) {
  5137. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5138. }
  5139. }
  5140. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5141. for (ggml_type type : all_types) {
  5142. for (bool v : {false, true}) {
  5143. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5144. }
  5145. }
  5146. for (bool v : {false, true}) {
  5147. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5148. }
  5149. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5150. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5151. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5152. for (ggml_type type : all_types) {
  5153. for (int b : {1, 7}) {
  5154. for (bool v : {false, true}) {
  5155. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5156. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5157. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5158. if (ggml_blck_size(type) == 1) {
  5159. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5160. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5161. }
  5162. }
  5163. }
  5164. }
  5165. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
  5166. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5167. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
  5168. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
  5169. }
  5170. }
  5171. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5172. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5173. for (int k0 : {1, 3}) {
  5174. for (int k1 : {1, 3}) {
  5175. for (int s0 : {1, 2}) {
  5176. for (int s1 : {1, 2}) {
  5177. for (int p0 : {0, 1}) {
  5178. for (int p1 : {0, 1}) {
  5179. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5180. }
  5181. }
  5182. }
  5183. }
  5184. }
  5185. }
  5186. }
  5187. }
  5188. #if 0
  5189. // >4GB im2col destination. Too slow to run by default.
  5190. // Test cases taken from Wan2.1 T2V 1.3B.
  5191. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5192. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5193. #endif
  5194. // im2col 1D
  5195. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5196. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5197. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5198. for (int s0 : {1, 3}) {
  5199. for (int p0 : {0, 3}) {
  5200. for (int d0 : {1, 3}) {
  5201. test_cases.emplace_back(new test_im2col(
  5202. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5203. s0, 0, p0, 0, d0, 0, false));
  5204. }
  5205. }
  5206. }
  5207. // im2col 2D
  5208. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5209. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5210. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5211. for (int s0 : {1, 3}) {
  5212. for (int s1 : {1, 3}) {
  5213. for (int p0 : {0, 3}) {
  5214. for (int p1 : {0, 3}) {
  5215. for (int d0 : {1, 3}) {
  5216. for (int d1 : {1, 3}) {
  5217. test_cases.emplace_back(new test_im2col(
  5218. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5219. s0, s1, p0, p1, d0, d1, true));
  5220. }
  5221. }
  5222. }
  5223. }
  5224. }
  5225. }
  5226. // extra tests for im2col 2D
  5227. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5228. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5229. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5230. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5231. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5232. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5233. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5234. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5235. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5236. // im2col 3D
  5237. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5238. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5239. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5240. for (int s0 : {1, 3}) {
  5241. for (int s1 : {1, 3}) {
  5242. for (int s2 : {1, 3}) {
  5243. for (int p0 : {0, 3}) {
  5244. for (int p1 : {0, 3}) {
  5245. for (int p2 : {0, 3}) {
  5246. for (int d0 : {1, 3}) {
  5247. for (int d1 : {1, 3}) {
  5248. for (int d2 : {1, 3}) {
  5249. for (int IC : {1, 3}) {
  5250. for (bool v : {false, true}) {
  5251. test_cases.emplace_back(new test_im2col_3d(
  5252. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5253. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5254. }
  5255. }
  5256. }
  5257. }
  5258. }
  5259. }
  5260. }
  5261. }
  5262. }
  5263. }
  5264. }
  5265. // Conv_2D test cases
  5266. #ifdef DETAILED_TESTS
  5267. // Probably we do not have enough time to execute these in the pipeline.
  5268. uint32_t iwh_idx = 0;
  5269. uint32_t kwh_idx = 1;
  5270. uint32_t Cout_idx = 2;
  5271. uint32_t Cin_idx = 3;
  5272. uint32_t B_idx = 4;
  5273. std::vector<std::array<int, 5>> cases = {
  5274. //{IWH, KWH, Cout, Cin, B}
  5275. // K=CRS=NPQ=4096 conv_2d matmul performance
  5276. {19, 4, 4096, 256, 16},
  5277. // K=128, CRS=128, NPQ=4096
  5278. { 19, 4, 128, 8, 16},
  5279. // K=130, CRS=128, NPQ=4096
  5280. { 19, 4, 130, 8, 16},
  5281. // Edge case: K x CRS is small
  5282. { 19, 2, 4, 4, 16},
  5283. // A ConvNet's first layer
  5284. { 224, 3, 8, 3, 1 },
  5285. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5286. { 224, 2, 8, 1, 1 },
  5287. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5288. { 224, 2, 8, 1, 8 },
  5289. // A middle layer of a ConvNet
  5290. { 58, 3, 64, 32, 1 },
  5291. // A middle layer of a ConvNet, several images in the batch
  5292. { 58, 3, 64, 32, 8 },
  5293. // A deep layer of a ConvNet, several images in the batch
  5294. { 16, 3, 256, 128, 8 }
  5295. };
  5296. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5297. for (auto act_case : cases) {
  5298. test_cases.emplace_back(new test_conv_2d(
  5299. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5300. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5301. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5302. }
  5303. }
  5304. #endif
  5305. // CONV_2D:
  5306. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5307. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5308. };
  5309. //uint32_t s0 = 3;
  5310. uint32_t s1 = 5;
  5311. uint32_t p0 = 5;
  5312. //uint32_t p1 = 2;
  5313. uint32_t d0 = 2;
  5314. uint32_t d1 = 4;
  5315. for (uint32_t s0 : { 1, 3 }) {
  5316. for (uint32_t p1 : { 2, 5 }) {
  5317. for (uint32_t Cin : { 1, 25 }) {
  5318. for (uint32_t Cout : { 1, 12 }) {
  5319. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5320. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5321. for (uint32_t H : { 1, 133 }) {
  5322. for (uint32_t W : { 1, 141 }) {
  5323. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5324. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5325. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5326. test_cases.emplace_back(new test_conv_2d(
  5327. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5328. }
  5329. }
  5330. }
  5331. }
  5332. }
  5333. }
  5334. }
  5335. }
  5336. }
  5337. }
  5338. // sycl backend will limit task global_range < MAX_INT
  5339. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5340. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5341. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5342. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5343. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5344. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5345. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5346. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5347. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5348. // CONV_3D
  5349. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5350. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5351. };
  5352. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5353. for (int N : {1, 2}) {
  5354. for (int IC : {1, 3}) {
  5355. for (int OC : {1, 4}) {
  5356. for (int s0 : {1, 2}) {
  5357. for (int p1 : {0, 1}) {
  5358. for (int d2 : {1, 2}) {
  5359. int64_t IW = 20, IH = 22, ID = 18;
  5360. int64_t KW = 3, KH = 3, KD = 3;
  5361. int s1 = s0, s2 = s0;
  5362. int p0 = p1, p2 = p1;
  5363. int d0 = d2, d1 = d2;
  5364. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5365. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5366. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5367. continue;
  5368. }
  5369. test_cases.emplace_back(new test_conv_3d(
  5370. N, IC, ID, IH, IW,
  5371. OC, KD, KH, KW,
  5372. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5373. kernel_type));
  5374. // Asymmetric kernel and params
  5375. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5376. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5377. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5378. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5379. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5380. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5381. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5382. continue;
  5383. }
  5384. test_cases.emplace_back(new test_conv_3d(
  5385. N, IC, ID, IH, IW,
  5386. OC, asym_KD, asym_KH, asym_KW,
  5387. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5388. kernel_type));
  5389. }
  5390. }
  5391. }
  5392. }
  5393. }
  5394. }
  5395. // Case with kernel size 1
  5396. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5397. }
  5398. for(uint32_t Cout : {1, 9}){
  5399. for(uint32_t Cin : {1, 7}){
  5400. for(uint32_t K : {1, 3, 1337}){
  5401. for(uint32_t L : {1, 2, 13}){
  5402. for(uint32_t s0: {1, 2, 3}){
  5403. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5404. }
  5405. }
  5406. }
  5407. }
  5408. }
  5409. test_cases.emplace_back(new test_conv_transpose_1d());
  5410. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5411. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5412. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5413. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5414. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5415. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5416. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5417. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5418. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5419. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5420. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5421. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5422. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5423. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5424. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5425. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5426. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5427. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5428. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5429. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5430. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5431. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5432. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5433. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5434. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5435. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5436. }
  5437. for (bool view : {false, true}) {
  5438. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5439. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5440. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5441. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5442. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5443. }
  5444. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5445. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5446. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5447. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5448. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5449. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5450. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5451. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5452. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5453. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5454. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5455. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5456. }
  5457. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5458. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5459. }
  5460. // same-type copy
  5461. for (ggml_type type : all_types) {
  5462. const auto nk = ggml_blck_size(type);
  5463. for (int k = 1; k < 4; ++k) {
  5464. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5465. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5466. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5467. }
  5468. }
  5469. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5470. for (ggml_type type_dst : all_types) {
  5471. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5472. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5473. }
  5474. }
  5475. for (ggml_type type_src : all_types) {
  5476. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5477. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5478. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5479. }
  5480. }
  5481. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5482. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5483. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5484. }
  5485. }
  5486. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5487. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5488. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5489. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5490. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5491. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5492. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5493. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5494. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5495. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5496. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5497. test_cases.emplace_back(new test_cont());
  5498. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  5499. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  5500. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  5501. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  5502. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  5503. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  5504. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  5505. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  5506. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  5507. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5508. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5509. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5510. }
  5511. };
  5512. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5513. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5514. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5515. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5516. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5517. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5518. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5519. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5520. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5521. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5522. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5523. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5524. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5525. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5526. // test case for k_bin_bcast_unravel in CUDA backend
  5527. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5528. // stable diffusion
  5529. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5530. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5531. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5532. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5533. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5534. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5535. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5536. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5537. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5538. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5539. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5540. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5541. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5542. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5543. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5544. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5545. }
  5546. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5547. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5548. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5549. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5550. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5551. // fusion
  5552. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5553. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5554. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5555. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5556. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5557. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5558. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5559. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5560. test_cases.emplace_back(new test_add1());
  5561. test_cases.emplace_back(new test_scale());
  5562. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5563. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5564. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5565. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5566. test_cases.emplace_back(new test_silu_back());
  5567. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5568. for (bool v : {false, true}) {
  5569. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5570. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5571. }
  5572. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5573. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5574. }
  5575. // in-place tests
  5576. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5577. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5578. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5579. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5580. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5581. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5582. }
  5583. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5584. for (bool multi_add : {false, true}) {
  5585. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5586. }
  5587. }
  5588. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5589. for (int64_t d_conv : {3, 4}) {
  5590. for (int64_t d_inner: {1024, 1536, 2048}) {
  5591. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5592. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5593. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5594. }
  5595. }
  5596. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5597. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5598. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5599. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5600. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5601. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5602. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5603. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5604. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5605. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5606. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5607. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5608. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5609. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5610. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5611. #if 0
  5612. // > 4GB A matrix. Too slow to be enabled by default.
  5613. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5614. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5615. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5616. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5617. #endif
  5618. for (ggml_type type_a : all_types) {
  5619. for (int i = 1; i < 10; ++i) {
  5620. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5621. }
  5622. }
  5623. #if 0
  5624. {
  5625. // Test paths in OpenCL
  5626. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5627. std::vector<int> ks = {896, 1536, 4096};
  5628. for (auto n : ns) {
  5629. for (auto k : ks) {
  5630. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5631. }
  5632. }
  5633. }
  5634. #endif
  5635. #if 1
  5636. for (ggml_type type_a : base_types) {
  5637. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5638. std::vector<int> ks = { 256 };
  5639. if (ggml_blck_size(type_a) == 1) {
  5640. ks.push_back(4);
  5641. }
  5642. for (auto k : ks) {
  5643. // test cases without permutation
  5644. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5645. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5646. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5647. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5648. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5649. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5650. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5651. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5652. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5653. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5654. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5655. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5656. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5657. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5658. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5659. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5660. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5661. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5662. // test cases with permutation
  5663. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5664. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5665. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5666. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5667. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5668. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5669. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5670. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5671. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5672. }
  5673. // test cases with large ne00/ne10 to cover stream-k fixup
  5674. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5675. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5676. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5677. // test cases with large batch size
  5678. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  5679. }
  5680. }
  5681. for (ggml_type type_a : other_types) {
  5682. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5683. if (ggml_blck_size(type_a) != 256) {
  5684. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5685. }
  5686. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5687. }
  5688. }
  5689. #else
  5690. // m = a rows
  5691. // n = b rows
  5692. // k = cols
  5693. std::uniform_int_distribution<> dist_m(1, 128);
  5694. std::uniform_int_distribution<> dist_n(16, 128);
  5695. std::uniform_int_distribution<> dist_k(1, 16);
  5696. for (int i = 0; i < 1000; i++) {
  5697. for (ggml_type type_a : all_types) {
  5698. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5699. int m = dist_m(rng);
  5700. int n = dist_n(rng);
  5701. int k = dist_k(rng) * ggml_blck_size(type_a);
  5702. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5703. }
  5704. }
  5705. }
  5706. #endif
  5707. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5708. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5709. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5710. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5711. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5712. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5713. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5714. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5715. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  5716. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  5717. #if 0
  5718. // test the mat-mat path for Metal
  5719. for (int k = 1; k < 512; ++k) {
  5720. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5721. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5722. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5723. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5724. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5725. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5726. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5727. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5728. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5729. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5730. }
  5731. #endif
  5732. for (auto bs2 : {1,3}) {
  5733. for (auto bs : {1,2,4,8}) {
  5734. for (auto nr : {1,4}) {
  5735. for (uint32_t m = 0; m < 2; ++m) {
  5736. for (uint32_t k = 0; k < 2; ++k) {
  5737. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5738. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5739. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  5740. }
  5741. }
  5742. }
  5743. }
  5744. }
  5745. }
  5746. // sycl backend will limit task global_range < MAX_INT
  5747. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5748. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5749. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5750. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5751. // test large experts*tokens
  5752. for (bool b : {false, true}) {
  5753. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5754. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5755. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  5756. }
  5757. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  5758. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  5759. // gpt-oss issue with Vulkan mmq_id
  5760. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  5761. for (ggml_type type_a : base_types) {
  5762. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5763. for (int n_mats : {4, 8}) {
  5764. for (int n_used : {1, 2, 4}) {
  5765. for (bool b : {false, true}) {
  5766. for (int n : {1, 4, 5, 17, 32, 129}) {
  5767. int m = 512;
  5768. int k = 256;
  5769. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5770. }
  5771. }
  5772. }
  5773. }
  5774. }
  5775. }
  5776. for (ggml_type type_a : other_types) {
  5777. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5778. for (int n_mats : {4}) {
  5779. for (int n_used : {2}) {
  5780. for (bool b : {false}) {
  5781. for (int n : {1, 32}) {
  5782. int m = 512;
  5783. int k = 256;
  5784. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5785. }
  5786. }
  5787. }
  5788. }
  5789. }
  5790. }
  5791. for (ggml_type type_a : base_types) {
  5792. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5793. for (int n : {1, 16}) {
  5794. for (int k : {1, 16}) {
  5795. for (int bs2 : {1, 3}) {
  5796. for (int bs3 : {1, 3}) {
  5797. for (int nr2 : {1, 2}) {
  5798. for (int nr3 : {1, 2}) {
  5799. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  5800. }
  5801. }
  5802. }
  5803. }
  5804. }
  5805. }
  5806. }
  5807. }
  5808. // add_id
  5809. for (ggml_type type_a : {GGML_TYPE_F32}) {
  5810. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5811. for (int n_mats : {4, 8}) {
  5812. for (int n_used : {1, 2, 4}) {
  5813. for (int n_embd : {32, 129}) {
  5814. for (int n_token : {1, 32, 129}) {
  5815. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  5816. }
  5817. }
  5818. }
  5819. }
  5820. }
  5821. }
  5822. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5823. test_cases.emplace_back(new test_sqr (type));
  5824. test_cases.emplace_back(new test_sqrt (type));
  5825. test_cases.emplace_back(new test_log (type));
  5826. test_cases.emplace_back(new test_sin (type));
  5827. test_cases.emplace_back(new test_cos (type));
  5828. test_cases.emplace_back(new test_clamp (type));
  5829. test_cases.emplace_back(new test_leaky_relu(type));
  5830. test_cases.emplace_back(new test_floor (type));
  5831. test_cases.emplace_back(new test_ceil (type));
  5832. test_cases.emplace_back(new test_round (type));
  5833. test_cases.emplace_back(new test_trunc (type));
  5834. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  5835. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  5836. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  5837. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  5838. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  5839. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  5840. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  5841. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  5842. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  5843. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  5844. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  5845. }
  5846. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  5847. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  5848. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  5849. #if 0
  5850. std::uniform_int_distribution<> dist_ne1(1, 50);
  5851. int exponent = 1;
  5852. while (exponent < (1 << 17)) {
  5853. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  5854. for (int n = 0; n < 10; ++n) {
  5855. int64_t ne0 = dist_ne0(rng);
  5856. int64_t ne1 = dist_ne1(rng);
  5857. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  5858. }
  5859. exponent <<= 1;
  5860. }
  5861. #endif
  5862. for (bool mask : {false, true}) {
  5863. for (bool sinks : {false, true}) {
  5864. for (float max_bias : {0.0f, 8.0f}) {
  5865. if (!mask && max_bias > 0.0f) continue;
  5866. for (float scale : {1.0f, 0.1f}) {
  5867. for (int64_t ne0 : {16, 1024}) {
  5868. for (int64_t ne1 : {16, 1024}) {
  5869. if (mask) {
  5870. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5871. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5872. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5873. if (ne0 <= 32 && ne1 <= 32) {
  5874. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  5875. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  5876. }
  5877. }
  5878. } else {
  5879. /* The precision of mask here doesn't matter as boolean mask is false */
  5880. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5881. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5882. }
  5883. }
  5884. }
  5885. }
  5886. }
  5887. // inplace tests
  5888. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  5889. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  5890. }
  5891. }
  5892. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5893. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5894. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5895. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5896. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5897. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  5898. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  5899. for (float max_bias : {0.0f, 8.0f}) {
  5900. for (float scale : {1.0f, 0.1f}) {
  5901. for (int64_t ne0 : {16, 1024}) {
  5902. for (int64_t ne1 : {16, 1024}) {
  5903. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  5904. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  5905. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  5906. }
  5907. }
  5908. }
  5909. }
  5910. for (bool fw : {true, false}) { // fw == forward
  5911. bool all = true;
  5912. for (float fs : { 1.0f, 1.4245f }) {
  5913. for (float ef : { 0.0f, 0.7465f }) {
  5914. for (float af : { 1.0f, 1.4245f }) {
  5915. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5916. for (bool ff : {false, true}) { // freq_factors
  5917. for (float v : { 0, 1 }) {
  5918. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  5919. if (all) {
  5920. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  5921. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  5922. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  5923. }
  5924. if (all) {
  5925. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5926. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5927. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5928. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5929. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5930. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5931. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  5932. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5933. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5934. }
  5935. if (all) {
  5936. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  5937. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  5938. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5939. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5940. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  5941. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  5942. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  5943. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  5944. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  5945. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  5946. }
  5947. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5948. }
  5949. }
  5950. all = false;
  5951. }
  5952. }
  5953. }
  5954. }
  5955. }
  5956. // single inplace test per type/mode/ff
  5957. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5958. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  5959. for (bool ff : {false, true}) {
  5960. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  5961. }
  5962. }
  5963. }
  5964. for (int v : { 0, 1, 2, 3 }) {
  5965. for (int dim : { 0, 1, 2, 3, }) {
  5966. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  5967. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  5968. }
  5969. }
  5970. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  5971. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  5972. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  5973. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  5974. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order));
  5975. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16384, 1, 1, 1}, order)); // many backends only handle up to 1024
  5976. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  5977. }
  5978. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  5979. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  5980. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  5981. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  5982. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  5983. }
  5984. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5985. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5986. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5987. test_cases.emplace_back(new test_sum());
  5988. test_cases.emplace_back(new test_sum_rows());
  5989. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  5990. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  5991. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  5992. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  5993. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  5994. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  5995. test_cases.emplace_back(new test_mean());
  5996. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5997. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5998. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5999. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6000. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6001. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6002. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6003. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6004. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6005. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6006. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6007. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6008. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6009. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6010. test_cases.emplace_back(new test_acc());
  6011. test_cases.emplace_back(new test_pad());
  6012. test_cases.emplace_back(new test_pad_ext());
  6013. test_cases.emplace_back(new test_pad_reflect_1d());
  6014. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6015. test_cases.emplace_back(new test_roll());
  6016. test_cases.emplace_back(new test_arange());
  6017. test_cases.emplace_back(new test_timestep_embedding());
  6018. test_cases.emplace_back(new test_leaky_relu());
  6019. for (bool v : {false, true}) {
  6020. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  6021. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  6022. }
  6023. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6024. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6025. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6026. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6027. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6028. for (bool mask : { true, false } ) {
  6029. for (bool sinks : { true, false } ) {
  6030. for (float max_bias : { 0.0f, 8.0f }) {
  6031. if (!mask && max_bias > 0.0f) continue;
  6032. for (float logit_softcap : {0.0f, 10.0f}) {
  6033. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6034. for (int nh : { 4, }) {
  6035. for (int nr3 : { 1, 3, }) {
  6036. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6037. for (int nr2 : { 1, 4, 16 }) {
  6038. if (nr2 == 16 && hsk != 128) continue;
  6039. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6040. for (int kv : { 113, 512, 1024, }) {
  6041. if (nr2 != 1 && kv != 512) continue;
  6042. for (int nb : { 1, 3, 32, 35, }) {
  6043. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6044. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6045. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6046. test_cases.emplace_back(new test_flash_attn_ext(
  6047. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6048. // run fewer test cases permuted
  6049. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6050. test_cases.emplace_back(new test_flash_attn_ext(
  6051. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6052. }
  6053. }
  6054. }
  6055. }
  6056. }
  6057. }
  6058. }
  6059. }
  6060. }
  6061. }
  6062. }
  6063. }
  6064. }
  6065. }
  6066. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6067. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6068. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6069. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6070. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6071. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6072. for (ggml_type type : base_types) {
  6073. for (bool with_gate : {false, true}) {
  6074. for (bool use_id : {false, true}) {
  6075. for (bool b : {false, true}) {
  6076. if (!use_id && b) {
  6077. continue;
  6078. }
  6079. for (bool with_bias : {false, true}) {
  6080. if (!with_gate && !with_bias) {
  6081. continue;
  6082. }
  6083. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6084. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6085. continue;
  6086. }
  6087. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6088. continue;
  6089. }
  6090. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6091. use_id, 16, 8, b, with_bias, with_gate));
  6092. }
  6093. }
  6094. }
  6095. }
  6096. }
  6097. }
  6098. for (bool with_norm : {false, true}) {
  6099. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  6100. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  6101. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  6102. }
  6103. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  6104. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  6105. test_cases.emplace_back(new test_moe_expert_reduce(1024, 5, 4));
  6106. test_cases.emplace_back(new test_moe_expert_reduce(80, 3, 6));
  6107. test_cases.emplace_back(new test_moe_expert_reduce(80, 3, 7));
  6108. #if 0
  6109. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6110. test_cases.emplace_back(new test_llama(2, true));
  6111. test_cases.emplace_back(new test_llama(1));
  6112. test_cases.emplace_back(new test_llama(2));
  6113. test_cases.emplace_back(new test_falcon(1));
  6114. test_cases.emplace_back(new test_falcon(2));
  6115. #endif
  6116. return test_cases;
  6117. }
  6118. // Test cases for performance evaluation: should be representative of real-world use cases
  6119. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6120. std::vector<std::unique_ptr<test_case>> test_cases;
  6121. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6122. uint32_t iwh_idx = 0;
  6123. uint32_t kwh_idx = 1;
  6124. uint32_t Cout_idx = 2;
  6125. uint32_t Cin_idx = 3;
  6126. uint32_t B_idx = 4;
  6127. std::vector<std::array<int, 5>> cases = {
  6128. //{IWH, KWH, Cout, Cin, B}
  6129. // K=CRS=NPQ=4096 conv2d matmul performance
  6130. {19, 4, 4096, 256, 16},
  6131. // K=128, CRS=128, NPQ=4096
  6132. { 19, 4, 128, 8, 16},
  6133. // K=130, CRS=128, NPQ=4096
  6134. { 19, 4, 130, 8, 16},
  6135. // Edge case: K x CRS is small
  6136. { 19, 2, 4, 4, 16},
  6137. // A ConvNet's first layer
  6138. { 224, 3, 8, 3, 1 },
  6139. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6140. { 224, 2, 8, 1, 1 },
  6141. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6142. { 224, 2, 8, 1, 8 },
  6143. // A middle layer of a ConvNet
  6144. { 58, 3, 64, 32, 1 },
  6145. // A middle layer of a ConvNet, several images in the batch
  6146. { 58, 3, 64, 32, 8 },
  6147. // A deep layer of a ConvNet, several images in the batch
  6148. { 16, 3, 512, 128, 8 },
  6149. };
  6150. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6151. for (auto act_case : cases) {
  6152. // Direct CONV_2D
  6153. test_cases.emplace_back(new test_conv_2d(
  6154. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6155. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6156. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6157. }
  6158. }
  6159. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6160. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6161. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6162. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6163. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6164. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6165. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6166. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6167. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6168. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6169. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6170. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6171. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6172. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6173. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6174. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6175. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6176. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6177. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6178. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6179. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6180. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6181. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6182. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6183. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6184. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6185. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6186. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6187. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6188. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6189. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6190. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6191. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6192. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6193. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6194. for (ggml_type type_a : all_types) {
  6195. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6196. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6197. }
  6198. }
  6199. }
  6200. // qwen3-30b-a3b
  6201. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6202. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6203. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6204. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6205. }
  6206. }
  6207. }
  6208. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6209. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6210. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6211. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6212. }
  6213. }
  6214. }
  6215. // gpt-oss-20b
  6216. for (int bs : {1, 4, 8, 512}) {
  6217. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6218. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6219. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6220. }
  6221. }
  6222. }
  6223. for (int K : {3, 5}) {
  6224. for (int IC : {256, 2560}) {
  6225. for (int IW_IH : {32, 64, 256}) {
  6226. if (IC == 2560 && IW_IH == 256) {
  6227. // too big
  6228. continue;
  6229. }
  6230. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6231. }
  6232. }
  6233. }
  6234. for (int kv : { 4096, 8192, 16384, }) {
  6235. for (int hs : { 64, 128, }) {
  6236. for (int nr : { 1, 4, }) {
  6237. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6238. }
  6239. }
  6240. }
  6241. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6242. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6243. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6244. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6245. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6246. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6247. for (int n_token : {1, 512}) {
  6248. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6249. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6250. }
  6251. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6252. { 8192, 1, 1, 1 },
  6253. { 8192, 8192, 1, 1 },
  6254. { 128, 8192, 1, 1 },
  6255. };
  6256. for (auto it: reduce_rows_cases){
  6257. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6258. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6259. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6260. }
  6261. return test_cases;
  6262. }
  6263. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6264. printer * output_printer) {
  6265. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6266. if (params_filter == nullptr) {
  6267. return;
  6268. }
  6269. std::regex params_filter_regex(params_filter);
  6270. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6271. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6272. it = test_cases.erase(it);
  6273. continue;
  6274. }
  6275. it++;
  6276. }
  6277. };
  6278. if (mode == MODE_TEST) {
  6279. auto test_cases = make_test_cases_eval();
  6280. filter_test_cases(test_cases, params_filter);
  6281. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6282. if (backend_cpu == NULL) {
  6283. test_operation_info info("", "", "CPU");
  6284. info.set_error("backend", "Failed to initialize CPU backend");
  6285. output_printer->print_operation(info);
  6286. return false;
  6287. }
  6288. size_t n_ok = 0;
  6289. size_t tests_run = 0;
  6290. std::vector<std::string> failed_tests;
  6291. for (auto & test : test_cases) {
  6292. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6293. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6294. continue;
  6295. }
  6296. tests_run++;
  6297. if (status == test_status_t::OK) {
  6298. n_ok++;
  6299. } else if (status == test_status_t::FAIL) {
  6300. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6301. }
  6302. }
  6303. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6304. output_printer->print_failed_tests(failed_tests);
  6305. ggml_backend_free(backend_cpu);
  6306. return n_ok == tests_run;
  6307. }
  6308. if (mode == MODE_GRAD) {
  6309. auto test_cases = make_test_cases_eval();
  6310. filter_test_cases(test_cases, params_filter);
  6311. size_t n_ok = 0;
  6312. for (auto & test : test_cases) {
  6313. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6314. n_ok++;
  6315. }
  6316. }
  6317. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6318. return n_ok == test_cases.size();
  6319. }
  6320. if (mode == MODE_PERF) {
  6321. auto test_cases = make_test_cases_perf();
  6322. filter_test_cases(test_cases, params_filter);
  6323. for (auto & test : test_cases) {
  6324. test->eval_perf(backend, op_names_filter, output_printer);
  6325. }
  6326. return true;
  6327. }
  6328. if (mode == MODE_SUPPORT) {
  6329. auto test_cases = make_test_cases_eval();
  6330. filter_test_cases(test_cases, params_filter);
  6331. // Filter out fusion cases
  6332. test_cases.erase(
  6333. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6334. return tc->run_whole_graph();
  6335. }),
  6336. test_cases.end()
  6337. );
  6338. for (auto & test : test_cases) {
  6339. test->eval_support(backend, op_names_filter, output_printer);
  6340. }
  6341. return true;
  6342. }
  6343. GGML_ABORT("fatal error");
  6344. }
  6345. static void list_all_ops() {
  6346. printf("GGML operations:\n");
  6347. std::set<std::string> all_ops;
  6348. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6349. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6350. }
  6351. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6352. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6353. }
  6354. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6355. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6356. }
  6357. for (const auto & op : all_ops) {
  6358. printf(" %s\n", op.c_str());
  6359. }
  6360. printf("\nTotal: %zu operations\n", all_ops.size());
  6361. }
  6362. static void show_test_coverage() {
  6363. std::set<std::string> all_ops;
  6364. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6365. auto op = (enum ggml_op)i;
  6366. if (op == GGML_OP_VIEW ||
  6367. op == GGML_OP_RESHAPE ||
  6368. op == GGML_OP_PERMUTE ||
  6369. op == GGML_OP_TRANSPOSE ||
  6370. op == GGML_OP_CONT ||
  6371. op == GGML_OP_GLU ||
  6372. op == GGML_OP_UNARY) {
  6373. continue;
  6374. }
  6375. all_ops.insert(ggml_op_name(op));
  6376. }
  6377. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6378. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6379. }
  6380. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6381. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6382. }
  6383. auto test_cases = make_test_cases_eval();
  6384. // Filter out fusion cases
  6385. test_cases.erase(
  6386. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6387. return tc->run_whole_graph();
  6388. }),
  6389. test_cases.end()
  6390. );
  6391. std::set<std::string> tested_ops;
  6392. ggml_init_params params = {
  6393. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6394. /* .mem_base = */ NULL,
  6395. /* .no_alloc = */ true,
  6396. };
  6397. for (auto & test_case : test_cases) {
  6398. ggml_context * ctx = ggml_init(params);
  6399. if (ctx) {
  6400. test_case->mode = MODE_TEST;
  6401. ggml_tensor * out = test_case->build_graph(ctx);
  6402. if (out && out->op != GGML_OP_NONE) {
  6403. if (out->op == GGML_OP_UNARY) {
  6404. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6405. } else if (out->op == GGML_OP_GLU) {
  6406. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6407. } else {
  6408. tested_ops.insert(ggml_op_name(out->op));
  6409. }
  6410. }
  6411. ggml_free(ctx);
  6412. }
  6413. }
  6414. std::set<std::string> covered_ops;
  6415. std::set<std::string> uncovered_ops;
  6416. for (const auto & op : all_ops) {
  6417. if (tested_ops.count(op) > 0) {
  6418. covered_ops.insert(op);
  6419. } else {
  6420. uncovered_ops.insert(op);
  6421. }
  6422. }
  6423. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6424. for (const auto & op : covered_ops) {
  6425. printf(" ✓ %s\n", op.c_str());
  6426. }
  6427. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6428. for (const auto & op : uncovered_ops) {
  6429. printf(" ✗ %s\n", op.c_str());
  6430. }
  6431. printf("\nCoverage Summary:\n");
  6432. printf(" Total operations: %zu\n", all_ops.size());
  6433. printf(" Tested operations: %zu\n", covered_ops.size());
  6434. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6435. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6436. }
  6437. static void usage(char ** argv) {
  6438. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6439. printf(" valid modes:\n");
  6440. printf(" - test (default, compare with CPU backend for correctness)\n");
  6441. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6442. printf(" - perf (performance evaluation)\n");
  6443. printf(" - support (probe backend operation support)\n");
  6444. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6445. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6446. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6447. printf(" --list-ops lists all available GGML operations\n");
  6448. printf(" --show-coverage shows test coverage\n");
  6449. }
  6450. int main(int argc, char ** argv) {
  6451. test_mode mode = MODE_TEST;
  6452. output_formats output_format = CONSOLE;
  6453. const char * op_names_filter = nullptr;
  6454. const char * backend_filter = nullptr;
  6455. const char * params_filter = nullptr;
  6456. for (int i = 1; i < argc; i++) {
  6457. if (strcmp(argv[i], "test") == 0) {
  6458. mode = MODE_TEST;
  6459. } else if (strcmp(argv[i], "perf") == 0) {
  6460. mode = MODE_PERF;
  6461. } else if (strcmp(argv[i], "grad") == 0) {
  6462. mode = MODE_GRAD;
  6463. } else if (strcmp(argv[i], "support") == 0) {
  6464. mode = MODE_SUPPORT;
  6465. } else if (strcmp(argv[i], "-o") == 0) {
  6466. if (i + 1 < argc) {
  6467. op_names_filter = argv[++i];
  6468. } else {
  6469. usage(argv);
  6470. return 1;
  6471. }
  6472. } else if (strcmp(argv[i], "-b") == 0) {
  6473. if (i + 1 < argc) {
  6474. backend_filter = argv[++i];
  6475. } else {
  6476. usage(argv);
  6477. return 1;
  6478. }
  6479. } else if (strcmp(argv[i], "-p") == 0) {
  6480. if (i + 1 < argc) {
  6481. params_filter = argv[++i];
  6482. } else {
  6483. usage(argv);
  6484. return 1;
  6485. }
  6486. } else if (strcmp(argv[i], "--output") == 0) {
  6487. if (i + 1 < argc) {
  6488. if (!output_format_from_str(argv[++i], output_format)) {
  6489. usage(argv);
  6490. return 1;
  6491. }
  6492. } else {
  6493. usage(argv);
  6494. return 1;
  6495. }
  6496. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6497. list_all_ops();
  6498. return 0;
  6499. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6500. show_test_coverage();
  6501. return 0;
  6502. } else {
  6503. usage(argv);
  6504. return 1;
  6505. }
  6506. }
  6507. // load and enumerate backends
  6508. ggml_backend_load_all();
  6509. // Create printer for output format
  6510. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6511. if (output_printer) {
  6512. output_printer->print_header();
  6513. }
  6514. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6515. size_t n_ok = 0;
  6516. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6517. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6518. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6519. output_printer->print_backend_init(
  6520. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6521. n_ok++;
  6522. continue;
  6523. }
  6524. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6525. output_printer->print_backend_init(backend_init_info(
  6526. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6527. n_ok++;
  6528. continue;
  6529. }
  6530. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6531. GGML_ASSERT(backend != NULL);
  6532. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6533. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6534. if (ggml_backend_set_n_threads_fn) {
  6535. // TODO: better value for n_threads
  6536. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6537. }
  6538. size_t free, total; // NOLINT
  6539. ggml_backend_dev_memory(dev, &free, &total);
  6540. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6541. false, "", ggml_backend_dev_description(dev),
  6542. total / 1024 / 1024, free / 1024 / 1024, true));
  6543. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6544. if (ok) {
  6545. n_ok++;
  6546. }
  6547. output_printer->print_backend_status(
  6548. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6549. ggml_backend_free(backend);
  6550. }
  6551. ggml_quantize_free();
  6552. if (output_printer) {
  6553. output_printer->print_footer();
  6554. }
  6555. output_printer->print_overall_summary(
  6556. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6557. if (n_ok != ggml_backend_dev_count()) {
  6558. return 1;
  6559. }
  6560. return 0;
  6561. }