ggml.c 344 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #ifdef GGML_USE_ACCELERATE
  122. #include <Accelerate/Accelerate.h>
  123. #elif GGML_USE_OPENBLAS
  124. #include <cblas.h>
  125. #endif
  126. #undef MIN
  127. #undef MAX
  128. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  129. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  130. // floating point type used to accumulate sums
  131. typedef double ggml_float;
  132. // 16-bit float
  133. // on Arm, we use __fp16
  134. // on x86, we use uint16_t
  135. #ifdef __ARM_NEON
  136. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  137. //
  138. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  139. //
  140. #include <arm_neon.h>
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  143. #define GGML_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_FP32_TO_FP16(x) (x)
  145. #else
  146. #ifdef __wasm_simd128__
  147. #include <wasm_simd128.h>
  148. #else
  149. #ifdef __POWER9_VECTOR__
  150. #include <altivec.h>
  151. #undef bool
  152. #define bool _Bool
  153. #else
  154. #include <immintrin.h>
  155. #endif
  156. #endif
  157. #ifdef __F16C__
  158. #ifdef _MSC_VER
  159. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  160. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  161. #else
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  164. #endif
  165. #elif defined(__POWER9_VECTOR__)
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  168. /* the inline asm below is about 12% faster than the lookup method */
  169. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  170. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  171. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  172. register float f;
  173. register double d;
  174. __asm__(
  175. "mtfprd %0,%2\n"
  176. "xscvhpdp %0,%0\n"
  177. "frsp %1,%0\n" :
  178. /* temp */ "=d"(d),
  179. /* out */ "=f"(f):
  180. /* in */ "r"(h));
  181. return f;
  182. }
  183. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  184. register double d;
  185. register ggml_fp16_t r;
  186. __asm__( /* xscvdphp can work on double or single precision */
  187. "xscvdphp %0,%2\n"
  188. "mffprd %1,%0\n" :
  189. /* temp */ "=d"(d),
  190. /* out */ "=r"(r):
  191. /* in */ "f"(f));
  192. return r;
  193. }
  194. #else
  195. // FP16 <-> FP32
  196. // ref: https://github.com/Maratyszcza/FP16
  197. static inline float fp32_from_bits(uint32_t w) {
  198. union {
  199. uint32_t as_bits;
  200. float as_value;
  201. } fp32;
  202. fp32.as_bits = w;
  203. return fp32.as_value;
  204. }
  205. static inline uint32_t fp32_to_bits(float f) {
  206. union {
  207. float as_value;
  208. uint32_t as_bits;
  209. } fp32;
  210. fp32.as_value = f;
  211. return fp32.as_bits;
  212. }
  213. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  214. const uint32_t w = (uint32_t) h << 16;
  215. const uint32_t sign = w & UINT32_C(0x80000000);
  216. const uint32_t two_w = w + w;
  217. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  218. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  219. const float exp_scale = 0x1.0p-112f;
  220. #else
  221. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  222. #endif
  223. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  224. const uint32_t magic_mask = UINT32_C(126) << 23;
  225. const float magic_bias = 0.5f;
  226. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  227. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  228. const uint32_t result = sign |
  229. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  230. return fp32_from_bits(result);
  231. }
  232. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float scale_to_inf = 0x1.0p+112f;
  235. const float scale_to_zero = 0x1.0p-110f;
  236. #else
  237. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  238. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  239. #endif
  240. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  241. const uint32_t w = fp32_to_bits(f);
  242. const uint32_t shl1_w = w + w;
  243. const uint32_t sign = w & UINT32_C(0x80000000);
  244. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  245. if (bias < UINT32_C(0x71000000)) {
  246. bias = UINT32_C(0x71000000);
  247. }
  248. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  249. const uint32_t bits = fp32_to_bits(base);
  250. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  251. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  252. const uint32_t nonsign = exp_bits + mantissa_bits;
  253. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  254. }
  255. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  256. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  257. #endif // __F16C__
  258. #endif // __ARM_NEON
  259. //
  260. // global data
  261. //
  262. // precomputed gelu table for f16 (128 KB)
  263. static ggml_fp16_t table_gelu_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB)
  269. static float table_f32_f16[1 << 16];
  270. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  271. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  272. // This is also true for POWER9.
  273. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  274. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  275. uint16_t s;
  276. memcpy(&s, &f, sizeof(uint16_t));
  277. return table_f32_f16[s];
  278. }
  279. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  280. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  281. #endif
  282. // note: do not use these inside ggml.c
  283. // these are meant to be used via the ggml.h API
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. return (float) GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. //
  291. // timing
  292. //
  293. #if defined(_MSC_VER) || defined(__MINGW32__)
  294. static int64_t timer_freq;
  295. void ggml_time_init(void) {
  296. LARGE_INTEGER frequency;
  297. QueryPerformanceFrequency(&frequency);
  298. timer_freq = frequency.QuadPart;
  299. }
  300. int64_t ggml_time_ms(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000) / timer_freq;
  304. }
  305. int64_t ggml_time_us(void) {
  306. LARGE_INTEGER t;
  307. QueryPerformanceCounter(&t);
  308. return (t.QuadPart * 1000000) / timer_freq;
  309. }
  310. #else
  311. void ggml_time_init(void) {}
  312. int64_t ggml_time_ms(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  316. }
  317. int64_t ggml_time_us(void) {
  318. struct timespec ts;
  319. clock_gettime(CLOCK_MONOTONIC, &ts);
  320. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  321. }
  322. #endif
  323. int64_t ggml_cycles(void) {
  324. return clock();
  325. }
  326. int64_t ggml_cycles_per_ms(void) {
  327. return CLOCKS_PER_SEC/1000;
  328. }
  329. #ifdef GGML_PERF
  330. #define ggml_perf_time_ms() ggml_time_ms()
  331. #define ggml_perf_time_us() ggml_time_us()
  332. #define ggml_perf_cycles() ggml_cycles()
  333. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  334. #else
  335. #define ggml_perf_time_ms() 0
  336. #define ggml_perf_time_us() 0
  337. #define ggml_perf_cycles() 0
  338. #define ggml_perf_cycles_per_ms() 0
  339. #endif
  340. //
  341. // cache line
  342. //
  343. #if defined(__cpp_lib_hardware_interference_size)
  344. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  345. #else
  346. #if defined(__POWER9_VECTOR__)
  347. #define CACHE_LINE_SIZE 128
  348. #else
  349. #define CACHE_LINE_SIZE 64
  350. #endif
  351. #endif
  352. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  353. //
  354. // quantization
  355. //
  356. #define QK 32
  357. // AVX routines provided by GH user Const-me
  358. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  359. #if __AVX2__ || __AVX512F__
  360. // Unpack 32 4-bit fields into 32 bytes
  361. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  363. {
  364. // Load 16 bytes from memory
  365. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  370. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  371. __m256i low = _mm256_and_si256( lowMask, bytes );
  372. high = _mm256_slli_epi16( high, 4 );
  373. bytes = _mm256_or_si256( low, high );
  374. return bytes;
  375. }
  376. static inline __m128i packNibbles( __m256i bytes )
  377. {
  378. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  379. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  380. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  381. __m256i low = _mm256_and_si256( lowByte, bytes );
  382. high = _mm256_srli_epi16( high, 4 );
  383. bytes = _mm256_or_si256( low, high );
  384. // Compress uint16_t lanes into bytes
  385. __m128i r0 = _mm256_castsi256_si128( bytes );
  386. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  387. return _mm_packus_epi16( r0, r1 );
  388. }
  389. #elif __AVX__
  390. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  391. {
  392. // Load 8 bytes from memory
  393. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  394. // Expand bytes into uint16_t values
  395. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  396. // Unpack values into individual bytes
  397. const __m128i lowMask = _mm_set1_epi8( 0xF );
  398. __m128i high = _mm_andnot_si128( lowMask, bytes );
  399. __m128i low = _mm_and_si128( lowMask, bytes );
  400. high = _mm_slli_epi16( high, 4 );
  401. bytes = _mm_or_si128( low, high );
  402. return bytes;
  403. }
  404. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  405. {
  406. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  407. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  408. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  409. __m128i low = _mm_and_si128( lowByte, bytes1 );
  410. high = _mm_srli_epi16( high, 4 );
  411. bytes1 = _mm_or_si128( low, high );
  412. high = _mm_andnot_si128( lowByte, bytes2 );
  413. low = _mm_and_si128( lowByte, bytes2 );
  414. high = _mm_srli_epi16( high, 4 );
  415. bytes2 = _mm_or_si128( low, high );
  416. return _mm_packus_epi16( bytes1, bytes2);
  417. }
  418. #endif
  419. #if __ARM_NEON
  420. #if !defined(__aarch64__)
  421. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  422. return
  423. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  424. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  425. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  426. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  427. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  428. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  429. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  430. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  431. }
  432. inline static int32_t vaddvq_s16(int16x8_t v) {
  433. return
  434. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  435. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  436. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  437. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  438. }
  439. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  440. return
  441. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  442. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  443. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  444. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  445. }
  446. inline static int32_t vaddvq_s32(int32x4_t v) {
  447. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  448. }
  449. inline static float vaddvq_f32(float32x4_t v) {
  450. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  451. }
  452. float vminvq_f32(float32x4_t v) {
  453. return
  454. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  455. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  456. }
  457. float vmaxvq_f32(float32x4_t v) {
  458. return
  459. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  460. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  461. }
  462. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  463. return vget_low_s8(vcombine_s8(a, b));
  464. }
  465. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  466. return vget_high_s8(vcombine_s8(a, b));
  467. }
  468. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  469. return vget_low_u8(vcombine_u8(a, b));
  470. }
  471. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  472. return vget_high_u8(vcombine_u8(a, b));
  473. }
  474. #endif
  475. #endif
  476. // method 5
  477. // blocks of QK elements
  478. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  479. typedef struct {
  480. float d; // delta
  481. uint8_t qs[QK / 2]; // nibbles / quants
  482. } block_q4_0;
  483. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  484. // method 4
  485. // blocks of QK elements
  486. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  487. typedef struct {
  488. float d;
  489. float m;
  490. uint8_t qs[QK / 2]; // nibbles / quants
  491. } block_q4_1;
  492. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  493. // reference implementation for deterministic creation of model files
  494. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  495. assert(k % QK == 0);
  496. const int nb = k / QK;
  497. uint8_t pp[QK/2];
  498. for (int i = 0; i < nb; i++) {
  499. float amax = 0.0f; // absolute max
  500. for (int l = 0; l < QK; l++) {
  501. const float v = x[i*QK + l];
  502. amax = MAX(amax, fabsf(v));
  503. }
  504. const float d = amax / ((1 << 3) - 1);
  505. const float id = d ? 1.0f/d : 0.0f;
  506. y[i].d = d;
  507. for (int l = 0; l < QK; l += 2) {
  508. const float v0 = x[i*QK + l + 0]*id;
  509. const float v1 = x[i*QK + l + 1]*id;
  510. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  511. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  512. assert(vi0 < 16);
  513. assert(vi1 < 16);
  514. pp[l/2] = vi0 | (vi1 << 4);
  515. }
  516. memcpy(y[i].qs, pp, sizeof(pp));
  517. }
  518. }
  519. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  520. assert(k % QK == 0);
  521. const int nb = k / QK;
  522. block_q4_0 * restrict y = vy;
  523. #if defined(__POWER9_VECTOR__)
  524. const vector float v85 = vec_splats(8.5f);
  525. for (int i = 0; i < nb; i++) {
  526. float amax = 0.0f; // absolute max
  527. vector float srcv [8];
  528. vector float asrcv[8];
  529. vector float amaxv[8];
  530. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  531. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  532. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  533. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  534. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  535. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  536. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  537. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  538. amax = MAX(
  539. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  540. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. y[i].d = d;
  544. const vector float vid = vec_splats(id);
  545. uint8_t * restrict pb = y[i].qs;
  546. for (int l = 0; l < 8; l++) {
  547. const vector float vf = vec_madd(srcv[l], vid, v85);
  548. const vector signed int vi = vec_signed(vf);
  549. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  550. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  551. }
  552. }
  553. #elif __ARM_NEON
  554. for (int i = 0; i < nb; i++) {
  555. float32x4_t srcv [8];
  556. float32x4_t asrcv[8];
  557. float32x4_t amaxv[8];
  558. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  559. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  560. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  561. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  562. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  563. const float amax = vmaxvq_f32(amaxv[0]);
  564. const float d = amax / ((1 << 3) - 1);
  565. const float id = d ? 1.0f/d : 0.0f;
  566. y[i].d = d;
  567. for (int l = 0; l < 8; l++) {
  568. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  569. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  570. const int32x4_t vi = vcvtq_s32_f32(vf);
  571. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  572. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  573. }
  574. }
  575. #elif defined(__AVX2__)
  576. for (int i = 0; i < nb; i++) {
  577. // Load elements into 4 AVX vectors
  578. __m256 v0 = _mm256_loadu_ps( x );
  579. __m256 v1 = _mm256_loadu_ps( x + 8 );
  580. __m256 v2 = _mm256_loadu_ps( x + 16 );
  581. __m256 v3 = _mm256_loadu_ps( x + 24 );
  582. x += 32;
  583. // Compute max(abs(e)) for the block
  584. const __m256 signBit = _mm256_set1_ps( -0.0f );
  585. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  586. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  587. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  588. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  589. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  590. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  591. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  592. const float maxScalar = _mm_cvtss_f32( max4 );
  593. // Quantize these floats
  594. const float d = maxScalar / 7.0f;
  595. y[i].d = d;
  596. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  597. const __m256 mul = _mm256_set1_ps( id );
  598. // Apply the multiplier
  599. v0 = _mm256_mul_ps( v0, mul );
  600. v1 = _mm256_mul_ps( v1, mul );
  601. v2 = _mm256_mul_ps( v2, mul );
  602. v3 = _mm256_mul_ps( v3, mul );
  603. // Round to nearest integer
  604. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  605. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  606. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  607. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  608. // Convert floats to integers
  609. __m256i i0 = _mm256_cvtps_epi32( v0 );
  610. __m256i i1 = _mm256_cvtps_epi32( v1 );
  611. __m256i i2 = _mm256_cvtps_epi32( v2 );
  612. __m256i i3 = _mm256_cvtps_epi32( v3 );
  613. // Convert int32 to int16
  614. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  615. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  616. // Convert int16 to int8
  617. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  618. // We got our precious signed bytes, but the order is now wrong
  619. // These AVX2 pack instructions process 16-byte pieces independently
  620. // The following instruction is fixing the order
  621. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  622. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  623. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  624. const __m256i off = _mm256_set1_epi8( 8 );
  625. i0 = _mm256_add_epi8( i0, off );
  626. // Compress the vector into 4 bit/value, and store
  627. __m128i res = packNibbles( i0 );
  628. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  629. }
  630. #elif defined(__AVX__)
  631. for (int i = 0; i < nb; i++) {
  632. // Load elements into 4 AVX vectors
  633. __m256 v0 = _mm256_loadu_ps( x );
  634. __m256 v1 = _mm256_loadu_ps( x + 8 );
  635. __m256 v2 = _mm256_loadu_ps( x + 16 );
  636. __m256 v3 = _mm256_loadu_ps( x + 24 );
  637. x += 32;
  638. // Compute max(abs(e)) for the block
  639. const __m256 signBit = _mm256_set1_ps( -0.0f );
  640. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  641. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  642. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  643. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  644. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  645. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  646. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  647. const float maxScalar = _mm_cvtss_f32( max4 );
  648. // Quantize these floats
  649. const float d = maxScalar / 7.0f;
  650. y[i].d = d;
  651. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  652. const __m256 mul = _mm256_set1_ps( id );
  653. // Apply the multiplier
  654. v0 = _mm256_mul_ps( v0, mul );
  655. v1 = _mm256_mul_ps( v1, mul );
  656. v2 = _mm256_mul_ps( v2, mul );
  657. v3 = _mm256_mul_ps( v3, mul );
  658. // Round to nearest integer
  659. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  660. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  661. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  662. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  663. // Convert floats to integers
  664. __m256i i0 = _mm256_cvtps_epi32( v0 );
  665. __m256i i1 = _mm256_cvtps_epi32( v1 );
  666. __m256i i2 = _mm256_cvtps_epi32( v2 );
  667. __m256i i3 = _mm256_cvtps_epi32( v3 );
  668. // Since we don't have in AVX some necessary functions,
  669. // we split the registers in half and call AVX2 analogs from SSE
  670. __m128i ni0 = _mm256_castsi256_si128( i0 );
  671. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  672. __m128i ni2 = _mm256_castsi256_si128( i1 );
  673. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  674. __m128i ni4 = _mm256_castsi256_si128( i2 );
  675. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  676. __m128i ni6 = _mm256_castsi256_si128( i3 );
  677. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  678. // Convert int32 to int16
  679. ni0 = _mm_packs_epi32( ni0, ni1 );
  680. ni2 = _mm_packs_epi32( ni2, ni3 );
  681. ni4 = _mm_packs_epi32( ni4, ni5 );
  682. ni6 = _mm_packs_epi32( ni6, ni7 );
  683. // Convert int16 to int8
  684. ni0 = _mm_packs_epi16( ni0, ni2 );
  685. ni4 = _mm_packs_epi16( ni4, ni6 );
  686. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  687. const __m128i off = _mm_set1_epi8( 8);
  688. ni0 = _mm_add_epi8( ni0, off );
  689. ni4 = _mm_add_epi8( ni4, off );
  690. // Compress the vector into 4 bit/value, and store
  691. __m128i res = packNibbles( ni0, ni4 );
  692. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  693. }
  694. #elif defined(__wasm_simd128__)
  695. for (int i = 0; i < nb; i++) {
  696. float amax = 0.0f; // absolute max
  697. v128_t srcv [8];
  698. v128_t asrcv[8];
  699. v128_t amaxv[8];
  700. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  701. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  702. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  703. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  704. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  705. amax = MAX(
  706. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  707. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  708. const float d = amax / ((1 << 3) - 1);
  709. const float id = d ? 1.0/d : 0.0;
  710. y[i].d = d;
  711. for (int l = 0; l < 8; l++) {
  712. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  713. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  714. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  715. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  716. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  717. }
  718. }
  719. #else
  720. // scalar
  721. quantize_row_q4_0_reference(x, y, k);
  722. #endif
  723. }
  724. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  725. assert(k % QK == 0);
  726. const int nb = k / QK;
  727. block_q4_1 * restrict y = vy;
  728. uint8_t pp[QK/2];
  729. for (int i = 0; i < nb; i++) {
  730. float min = FLT_MAX;
  731. float max = -FLT_MAX;
  732. for (int l = 0; l < QK; l++) {
  733. const float v = x[i*QK + l];
  734. if (v < min) min = v;
  735. if (v > max) max = v;
  736. }
  737. const float d = (max - min) / ((1 << 4) - 1);
  738. const float id = d ? 1.0f/d : 0.0f;
  739. y[i].d = d;
  740. y[i].m = min;
  741. for (int l = 0; l < QK; l += 2) {
  742. const float v0 = (x[i*QK + l + 0] - min)*id;
  743. const float v1 = (x[i*QK + l + 1] - min)*id;
  744. const uint8_t vi0 = roundf(v0);
  745. const uint8_t vi1 = roundf(v1);
  746. assert(vi0 < 16);
  747. assert(vi1 < 16);
  748. pp[l/2] = vi0 | (vi1 << 4);
  749. }
  750. memcpy(y[i].qs, pp, sizeof(pp));
  751. }
  752. }
  753. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  754. assert(k % QK == 0);
  755. const int nb = k / QK;
  756. block_q4_1 * restrict y = vy;
  757. #if defined(__AVX2__)
  758. for (int i = 0; i < nb; i++) {
  759. // Load elements into 4 AVX vectors
  760. __m256 v0 = _mm256_loadu_ps( x );
  761. __m256 v1 = _mm256_loadu_ps( x + 8 );
  762. __m256 v2 = _mm256_loadu_ps( x + 16 );
  763. __m256 v3 = _mm256_loadu_ps( x + 24 );
  764. x += 32;
  765. // Compute max for the block
  766. __m256 vmax;
  767. vmax = _mm256_max_ps( v0, v1 );
  768. vmax = _mm256_max_ps( vmax, v2 );
  769. vmax = _mm256_max_ps( vmax, v3 );
  770. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  771. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  772. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  773. const float maxScalar = _mm_cvtss_f32( max4 );
  774. // Compute min for the block
  775. __m256 vmin;
  776. vmin = _mm256_min_ps( v0, v1 );
  777. vmin = _mm256_min_ps( vmin, v2 );
  778. vmin = _mm256_min_ps( vmin, v3 );
  779. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  780. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  781. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  782. const float minScalar = _mm_cvtss_f32( min4 );
  783. // Quantize these floats
  784. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  785. const float id = d ? 1.0f/d : 0.0f;
  786. y[i].m = minScalar;
  787. y[i].d = d;
  788. // x = (x-min)*id
  789. const __m256 mul = _mm256_set1_ps( id );
  790. const __m256 off = _mm256_set1_ps( minScalar );
  791. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  792. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  793. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  794. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  795. // Round to nearest integer
  796. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  797. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  798. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  799. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  800. // Convert floats to integers
  801. __m256i i0 = _mm256_cvtps_epi32( v0 );
  802. __m256i i1 = _mm256_cvtps_epi32( v1 );
  803. __m256i i2 = _mm256_cvtps_epi32( v2 );
  804. __m256i i3 = _mm256_cvtps_epi32( v3 );
  805. // Convert int32 to int16
  806. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  807. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  808. // Convert int16 to int8
  809. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  810. // We got our precious signed bytes, but the order is now wrong
  811. // These AVX2 pack instructions process 16-byte pieces independently
  812. // The following instruction is fixing the order
  813. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  814. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  815. // Compress the vector into 4 bit/value, and store
  816. __m128i res = packNibbles( i0 );
  817. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  818. }
  819. #elif __ARM_NEON
  820. for (int i = 0; i < nb; i++) {
  821. float32x4_t srcv[8];
  822. float32x4_t minv[8];
  823. float32x4_t maxv[8];
  824. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  825. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  826. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  827. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  828. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  829. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  830. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  831. const float min = vminvq_f32(minv[0]);
  832. const float max = vmaxvq_f32(maxv[0]);
  833. const float d = (max - min) / ((1 << 4) - 1);
  834. const float id = d ? 1.0f/d : 0.0f;
  835. y[i].d = d;
  836. y[i].m = min;
  837. const float32x4_t minv0 = vdupq_n_f32(min);
  838. for (int l = 0; l < 8; l++) {
  839. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  840. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  841. const int32x4_t vi = vcvtq_s32_f32(vf);
  842. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  843. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  844. }
  845. }
  846. #else
  847. // scalar
  848. quantize_row_q4_1_reference(x, vy, k);
  849. #endif
  850. }
  851. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  852. assert(k % QK == 0);
  853. const int nb = k / QK;
  854. const block_q4_0 * restrict x = vx;
  855. #if defined(__AVX2__)
  856. for (int i = 0; i < nb; i++) {
  857. // scale factor
  858. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  859. const uint8_t * restrict pp = x[i].qs;
  860. for (int l = 0; l < QK; l += 32) {
  861. // Load 32x4-bit integers into 32x8-bit integers
  862. __m256i vx8 = bytesFromNibbles(pp+l/2);
  863. // Subtract 8 from the integers
  864. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  865. // Convert to 16-bit int
  866. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  867. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  868. // Convert to 32-bit int -> float 32
  869. const __m256 vf[4] = {
  870. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  871. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  872. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  873. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  874. };
  875. // Scale and store
  876. for (int j = 0; j < 4; j++) {
  877. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  878. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  879. }
  880. }
  881. }
  882. #elif defined(__ARM_NEON)
  883. for (int i = 0; i < nb; i++) {
  884. const float32x4_t vd = vdupq_n_f32(x[i].d);
  885. const uint8_t * restrict pp = x[i].qs;
  886. for (int l = 0; l < QK; l += 16) {
  887. // Load 16x4-bit integers into 8x8-bit integers
  888. const uint8x8_t v8 = vld1_u8(pp + l/2);
  889. // Expand 4-bit qs to 8-bit bytes
  890. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  891. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  892. // Convert to signed 8-bit integers
  893. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  894. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  895. // Subtract 8 from each byte
  896. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  897. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  898. // Interleave and combine
  899. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  900. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  901. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  902. // convert to 2x int16x8_t
  903. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  904. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  905. // convert to 4x float32x4_t
  906. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  907. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  908. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  909. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  910. // Multiply by d
  911. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  912. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  913. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  914. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  915. // Store
  916. vst1q_f32(y + i*QK + l + 0, r0);
  917. vst1q_f32(y + i*QK + l + 4, r1);
  918. vst1q_f32(y + i*QK + l + 8, r2);
  919. vst1q_f32(y + i*QK + l + 12, r3);
  920. }
  921. }
  922. #else
  923. // scalar
  924. for (int i = 0; i < nb; i++) {
  925. const float d = x[i].d;
  926. const uint8_t * restrict pp = x[i].qs;
  927. for (int l = 0; l < QK; l += 2) {
  928. const uint8_t vi = pp[l/2];
  929. const int8_t vi0 = vi & 0xf;
  930. const int8_t vi1 = vi >> 4;
  931. const float v0 = (vi0 - 8)*d;
  932. const float v1 = (vi1 - 8)*d;
  933. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  934. y[i*QK + l + 0] = v0;
  935. y[i*QK + l + 1] = v1;
  936. assert(!isnan(y[i*QK + l + 0]));
  937. assert(!isnan(y[i*QK + l + 1]));
  938. }
  939. }
  940. #endif
  941. }
  942. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  943. assert(k % QK == 0);
  944. const int nb = k / QK;
  945. const block_q4_1 * restrict x = vx;
  946. #if defined(__AVX2__)
  947. for (int i = 0; i < nb; i++) {
  948. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  949. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  950. const uint8_t * restrict pp = x[i].qs;
  951. for (int l = 0; l < QK; l += 32) {
  952. // Load 32x4-bit integers into 32x8-bit integers
  953. __m256i vx8 = bytesFromNibbles(pp+l/2);
  954. // Convert to 16-bit int
  955. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  956. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  957. // Convert to 32-bit int -> float 32
  958. const __m256 vf[4] = {
  959. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  960. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  961. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  962. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  963. };
  964. // Scale, add m and store
  965. for (int j = 0; j < 4; j++) {
  966. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  967. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  968. }
  969. }
  970. }
  971. #elif defined(__ARM_NEON)
  972. for (int i = 0; i < nb; i++) {
  973. const float32x4_t vd = vdupq_n_f32(x[i].d);
  974. const float32x4_t vm = vdupq_n_f32(x[i].m);
  975. const uint8_t * restrict pp = x[i].qs;
  976. for (int l = 0; l < QK; l += 16) {
  977. // Load 16x4-bit integers into 8x8-bit integers
  978. const uint8x8_t v8 = vld1_u8(pp + l/2);
  979. // Expand 4-bit qs to 8-bit bytes
  980. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  981. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  982. // Interleave and combine
  983. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  984. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  985. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  986. // convert to 2x uint16x8_t
  987. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  988. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  989. // convert to 4x float32x4_t
  990. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  991. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  992. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  993. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  994. // multiply by d and add m
  995. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  996. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  997. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  998. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  999. // Store
  1000. vst1q_f32(y + i*QK + l + 0, r0);
  1001. vst1q_f32(y + i*QK + l + 4, r1);
  1002. vst1q_f32(y + i*QK + l + 8, r2);
  1003. vst1q_f32(y + i*QK + l + 12, r3);
  1004. }
  1005. }
  1006. #else
  1007. for (int i = 0; i < nb; i++) {
  1008. const float d = x[i].d;
  1009. const float m = x[i].m;
  1010. const uint8_t * restrict pp = x[i].qs;
  1011. for (int l = 0; l < QK; l += 2) {
  1012. const uint8_t vi = pp[l/2];
  1013. const int8_t vi0 = vi & 0xf;
  1014. const int8_t vi1 = vi >> 4;
  1015. const float v0 = vi0*d + m;
  1016. const float v1 = vi1*d + m;
  1017. y[i*QK + l + 0] = v0;
  1018. y[i*QK + l + 1] = v1;
  1019. assert(!isnan(y[i*QK + l + 0]));
  1020. assert(!isnan(y[i*QK + l + 1]));
  1021. }
  1022. }
  1023. #endif
  1024. }
  1025. //
  1026. // simd mappings
  1027. //
  1028. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1029. // we then implement the fundamental computation operations below using only these macros
  1030. // adding support for new architectures requires to define the corresponding SIMD macros
  1031. //
  1032. // GGML_F32_STEP / GGML_F16_STEP
  1033. // number of elements to process in a single step
  1034. //
  1035. // GGML_F32_EPR / GGML_F16_EPR
  1036. // number of elements to fit in a single register
  1037. //
  1038. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1039. #define GGML_SIMD
  1040. // F32 NEON
  1041. #define GGML_F32_STEP 16
  1042. #define GGML_F32_EPR 4
  1043. #define GGML_F32x4 float32x4_t
  1044. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1045. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1046. #define GGML_F32x4_LOAD vld1q_f32
  1047. #define GGML_F32x4_STORE vst1q_f32
  1048. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1049. #define GGML_F32x4_ADD vaddq_f32
  1050. #define GGML_F32x4_MUL vmulq_f32
  1051. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1052. #define GGML_F32x4_REDUCE(res, x) \
  1053. { \
  1054. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1055. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1056. } \
  1057. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1058. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1059. } \
  1060. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1061. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1062. } \
  1063. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1064. }
  1065. #define GGML_F32_VEC GGML_F32x4
  1066. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1067. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1068. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1069. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1070. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1071. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1072. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1073. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1074. // F16 NEON
  1075. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1076. #define GGML_F16_STEP 32
  1077. #define GGML_F16_EPR 8
  1078. #define GGML_F16x8 float16x8_t
  1079. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1080. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1081. #define GGML_F16x8_LOAD vld1q_f16
  1082. #define GGML_F16x8_STORE vst1q_f16
  1083. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1084. #define GGML_F16x8_ADD vaddq_f16
  1085. #define GGML_F16x8_MUL vmulq_f16
  1086. #define GGML_F16x8_REDUCE(res, x) \
  1087. { \
  1088. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1089. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1090. } \
  1091. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1092. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1093. } \
  1094. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1095. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1096. } \
  1097. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1098. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1099. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1100. }
  1101. #define GGML_F16_VEC GGML_F16x8
  1102. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1103. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1104. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1105. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1106. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1107. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1108. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1109. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1110. #else
  1111. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1112. // and take advantage of the vcvt_ functions to convert to/from FP16
  1113. #define GGML_F16_STEP 16
  1114. #define GGML_F16_EPR 4
  1115. #define GGML_F32Cx4 float32x4_t
  1116. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1117. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1118. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1119. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1120. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1121. #define GGML_F32Cx4_ADD vaddq_f32
  1122. #define GGML_F32Cx4_MUL vmulq_f32
  1123. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1124. #define GGML_F16_VEC GGML_F32Cx4
  1125. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1126. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1127. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1128. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1129. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1130. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1131. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1132. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1133. #endif
  1134. #elif defined(__AVX__)
  1135. #define GGML_SIMD
  1136. // F32 AVX
  1137. #define GGML_F32_STEP 32
  1138. #define GGML_F32_EPR 8
  1139. #define GGML_F32x8 __m256
  1140. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1141. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1142. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1143. #define GGML_F32x8_STORE _mm256_storeu_ps
  1144. #if defined(__FMA__)
  1145. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1146. #else
  1147. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1148. #endif
  1149. #define GGML_F32x8_ADD _mm256_add_ps
  1150. #define GGML_F32x8_MUL _mm256_mul_ps
  1151. #define GGML_F32x8_REDUCE(res, x) \
  1152. { \
  1153. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1154. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1155. } \
  1156. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1157. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1158. } \
  1159. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1160. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1161. } \
  1162. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1163. _mm256_extractf128_ps(x[0], 1)); \
  1164. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1165. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1166. }
  1167. // TODO: is this optimal ?
  1168. #define GGML_F32_VEC GGML_F32x8
  1169. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1170. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1171. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1172. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1173. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1174. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1175. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1176. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1177. // F16 AVX
  1178. #define GGML_F16_STEP 32
  1179. #define GGML_F16_EPR 8
  1180. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1181. #define GGML_F32Cx8 __m256
  1182. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1183. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1184. #if defined(__F16C__)
  1185. // the _mm256_cvt intrinsics require F16C
  1186. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1187. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1188. #else
  1189. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1190. float tmp[8];
  1191. for (int i = 0; i < 8; i++)
  1192. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1193. return _mm256_loadu_ps(tmp);
  1194. }
  1195. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1196. float arr[8];
  1197. _mm256_storeu_ps(arr, y);
  1198. for (int i = 0; i < 8; i++)
  1199. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1200. }
  1201. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1202. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1203. #endif
  1204. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1205. #define GGML_F32Cx8_ADD _mm256_add_ps
  1206. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1207. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1208. #define GGML_F16_VEC GGML_F32Cx8
  1209. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1210. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1211. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1212. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1213. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1214. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1215. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1216. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1217. #elif defined(__POWER9_VECTOR__)
  1218. #define GGML_SIMD
  1219. // F32 POWER9
  1220. #define GGML_F32_STEP 32
  1221. #define GGML_F32_EPR 4
  1222. #define GGML_F32x4 vector float
  1223. #define GGML_F32x4_ZERO 0.0f
  1224. #define GGML_F32x4_SET1 vec_splats
  1225. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1226. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1227. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1228. #define GGML_F32x4_ADD vec_add
  1229. #define GGML_F32x4_MUL vec_mul
  1230. #define GGML_F32x4_REDUCE(res, x) \
  1231. { \
  1232. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1233. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1234. } \
  1235. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1236. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1237. } \
  1238. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1239. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1240. } \
  1241. res = vec_extract(x[0], 0) + \
  1242. vec_extract(x[0], 1) + \
  1243. vec_extract(x[0], 2) + \
  1244. vec_extract(x[0], 3); \
  1245. }
  1246. #define GGML_F32_VEC GGML_F32x4
  1247. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1248. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1249. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1250. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1251. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1252. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1253. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1254. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1255. // F16 POWER9
  1256. #define GGML_F16_STEP GGML_F32_STEP
  1257. #define GGML_F16_EPR GGML_F32_EPR
  1258. #define GGML_F16_VEC GGML_F32x4
  1259. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1260. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1261. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1262. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1263. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1264. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1265. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1266. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1267. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1268. #define GGML_F16_VEC_STORE(p, r, i) \
  1269. if (i & 0x1) \
  1270. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1271. r[i - GGML_ENDIAN_BYTE(0)]), \
  1272. 0, p - GGML_F16_EPR)
  1273. #elif defined(__wasm_simd128__)
  1274. #define GGML_SIMD
  1275. // F32 WASM
  1276. #define GGML_F32_STEP 16
  1277. #define GGML_F32_EPR 4
  1278. #define GGML_F32x4 v128_t
  1279. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1280. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1281. #define GGML_F32x4_LOAD wasm_v128_load
  1282. #define GGML_F32x4_STORE wasm_v128_store
  1283. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1284. #define GGML_F32x4_ADD wasm_f32x4_add
  1285. #define GGML_F32x4_MUL wasm_f32x4_mul
  1286. #define GGML_F32x4_REDUCE(res, x) \
  1287. { \
  1288. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1289. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1290. } \
  1291. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1292. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1293. } \
  1294. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1295. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1296. } \
  1297. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1298. wasm_f32x4_extract_lane(x[0], 1) + \
  1299. wasm_f32x4_extract_lane(x[0], 2) + \
  1300. wasm_f32x4_extract_lane(x[0], 3); \
  1301. }
  1302. #define GGML_F32_VEC GGML_F32x4
  1303. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1304. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1305. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1306. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1307. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1308. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1309. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1310. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1311. // F16 WASM
  1312. #define GGML_F16_STEP 16
  1313. #define GGML_F16_EPR 4
  1314. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1315. float tmp[4];
  1316. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1317. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1318. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1319. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1320. return wasm_v128_load(tmp);
  1321. }
  1322. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1323. float tmp[4];
  1324. wasm_v128_store(tmp, x);
  1325. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1326. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1327. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1328. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1329. }
  1330. #define GGML_F16x4 v128_t
  1331. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1332. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1333. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1334. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1335. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1336. #define GGML_F16x4_ADD wasm_f32x4_add
  1337. #define GGML_F16x4_MUL wasm_f32x4_mul
  1338. #define GGML_F16x4_REDUCE(res, x) \
  1339. { \
  1340. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1341. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1342. } \
  1343. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1344. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1345. } \
  1346. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1347. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1348. } \
  1349. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1350. wasm_f32x4_extract_lane(x[0], 1) + \
  1351. wasm_f32x4_extract_lane(x[0], 2) + \
  1352. wasm_f32x4_extract_lane(x[0], 3); \
  1353. }
  1354. #define GGML_F16_VEC GGML_F16x4
  1355. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1356. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1357. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1358. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1359. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1360. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1361. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1362. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1363. #elif defined(__SSE3__)
  1364. #define GGML_SIMD
  1365. // F32 SSE
  1366. #define GGML_F32_STEP 32
  1367. #define GGML_F32_EPR 4
  1368. #define GGML_F32x4 __m128
  1369. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1370. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1371. #define GGML_F32x4_LOAD _mm_loadu_ps
  1372. #define GGML_F32x4_STORE _mm_storeu_ps
  1373. #if defined(__FMA__)
  1374. // TODO: Does this work?
  1375. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1376. #else
  1377. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1378. #endif
  1379. #define GGML_F32x4_ADD _mm_add_ps
  1380. #define GGML_F32x4_MUL _mm_mul_ps
  1381. #define GGML_F32x4_REDUCE(res, x) \
  1382. { \
  1383. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1384. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1385. } \
  1386. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1387. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1388. } \
  1389. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1390. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1391. } \
  1392. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1393. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1394. }
  1395. // TODO: is this optimal ?
  1396. #define GGML_F32_VEC GGML_F32x4
  1397. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1398. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1399. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1400. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1401. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1402. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1403. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1404. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1405. // F16 SSE
  1406. #define GGML_F16_STEP 32
  1407. #define GGML_F16_EPR 4
  1408. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1409. float tmp[4];
  1410. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1411. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1412. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1413. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1414. return _mm_loadu_ps(tmp);
  1415. }
  1416. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1417. float arr[4];
  1418. _mm_storeu_ps(arr, y);
  1419. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1420. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1421. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1422. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1423. }
  1424. #define GGML_F32Cx4 __m128
  1425. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1426. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1427. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1428. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1429. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1430. #define GGML_F32Cx4_ADD _mm_add_ps
  1431. #define GGML_F32Cx4_MUL _mm_mul_ps
  1432. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1433. #define GGML_F16_VEC GGML_F32Cx4
  1434. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1435. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1436. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1437. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1438. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1439. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1440. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1441. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1442. #endif
  1443. // GGML_F32_ARR / GGML_F16_ARR
  1444. // number of registers to use per step
  1445. #ifdef GGML_SIMD
  1446. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1447. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1448. #endif
  1449. //
  1450. // fundamental operations
  1451. //
  1452. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1453. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1454. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1455. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1456. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1457. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1458. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1459. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1460. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1461. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1462. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1463. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1464. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1465. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1466. #ifdef GGML_SIMD
  1467. float sumf = 0.0f;
  1468. const int np = (n & ~(GGML_F32_STEP - 1));
  1469. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1470. GGML_F32_VEC ax[GGML_F32_ARR];
  1471. GGML_F32_VEC ay[GGML_F32_ARR];
  1472. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1473. for (int j = 0; j < GGML_F32_ARR; j++) {
  1474. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1475. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1476. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1477. }
  1478. }
  1479. // reduce sum0..sum3 to sum0
  1480. GGML_F32_VEC_REDUCE(sumf, sum);
  1481. // leftovers
  1482. for (int i = np; i < n; ++i) {
  1483. sumf += x[i]*y[i];
  1484. }
  1485. #else
  1486. // scalar
  1487. ggml_float sumf = 0.0;
  1488. for (int i = 0; i < n; ++i) {
  1489. sumf += (ggml_float)(x[i]*y[i]);
  1490. }
  1491. #endif
  1492. *s = sumf;
  1493. }
  1494. #if __AVX512F__ && QK == 32
  1495. static inline __m512 dot_q4_0_oneblock_avx512(
  1496. __m512 acc,
  1497. const block_q4_0 * restrict x,
  1498. const block_q4_0 * restrict y,
  1499. int i
  1500. ) {
  1501. // Compute combined scale for the block
  1502. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1503. __m256i bx = bytesFromNibbles( x[i].qs );
  1504. __m256i by = bytesFromNibbles( y[i].qs );
  1505. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1506. const __m256i off = _mm256_set1_epi8( 8 );
  1507. bx = _mm256_sub_epi8( bx, off );
  1508. by = _mm256_sub_epi8( by, off );
  1509. // Sign-extend 16 signed bytes into int16_t
  1510. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1511. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1512. // Compute products of int16_t integers, add pairwise
  1513. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1514. // Convert int32_t to float
  1515. __m512 p = _mm512_cvtepi32_ps( i64 );
  1516. // Apply the scale, and accumulate
  1517. return _mm512_fmadd_ps( d, p, acc );
  1518. }
  1519. #endif
  1520. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1521. ggml_float sumf = 0.0;
  1522. #if defined(GGML_SIMD)
  1523. const int np = (n & ~(GGML_F16_STEP - 1));
  1524. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1525. GGML_F16_VEC ax[GGML_F16_ARR];
  1526. GGML_F16_VEC ay[GGML_F16_ARR];
  1527. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1528. for (int j = 0; j < GGML_F16_ARR; j++) {
  1529. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1530. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1531. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1532. }
  1533. }
  1534. // reduce sum0..sum3 to sum0
  1535. GGML_F16_VEC_REDUCE(sumf, sum);
  1536. // leftovers
  1537. for (int i = np; i < n; ++i) {
  1538. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1539. }
  1540. #else
  1541. for (int i = 0; i < n; ++i) {
  1542. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1543. }
  1544. #endif
  1545. *s = sumf;
  1546. }
  1547. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1548. const int nb = n / QK;
  1549. assert(n % QK == 0);
  1550. assert(nb % 2 == 0);
  1551. const block_q4_0 * restrict x = vx;
  1552. const block_q4_0 * restrict y = vy;
  1553. float sumf = 0.0;
  1554. #if defined(__ARM_NEON)
  1555. float sum0 = 0.0f;
  1556. float sum1 = 0.0f;
  1557. for (int i = 0; i < nb; i += 2) {
  1558. const block_q4_0 * restrict x0 = &x[i + 0];
  1559. const block_q4_0 * restrict y0 = &y[i + 0];
  1560. const block_q4_0 * restrict x1 = &x[i + 1];
  1561. const block_q4_0 * restrict y1 = &y[i + 1];
  1562. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1563. const int8x16_t s8b = vdupq_n_s8(0x8);
  1564. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1565. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1566. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1567. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1568. // 4-bit -> 8-bit
  1569. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1570. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1571. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1572. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1573. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1574. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1575. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1576. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1577. // sub 8
  1578. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1579. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1580. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1581. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1582. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1583. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1584. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1585. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1586. #if defined(__ARM_FEATURE_DOTPROD)
  1587. // dot product into int32x4_t
  1588. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1589. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1590. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1591. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1592. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1593. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1594. #else
  1595. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1596. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1597. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1598. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1599. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1600. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1601. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1602. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1603. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1604. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1605. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1606. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1607. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1608. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1609. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1610. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1611. #endif
  1612. }
  1613. sumf = sum0 + sum1;
  1614. #elif defined(__AVX512F__)
  1615. // Initialize accumulator with zeros
  1616. __m512 acc0 = _mm512_setzero_ps();
  1617. __m512 acc1 = _mm512_setzero_ps();
  1618. const int superblock_size = 8;
  1619. const int superblock_count = nb / superblock_size;
  1620. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1621. int i = superblock_ix * superblock_size;
  1622. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1623. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1624. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1625. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1626. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1627. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1628. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1629. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1630. }
  1631. // Remainders
  1632. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1633. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1634. }
  1635. // Horizontal sum of all lanes of the accumulator
  1636. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1637. #elif defined(__AVX2__)
  1638. // Initialize accumulator with zeros
  1639. __m256 acc = _mm256_setzero_ps();
  1640. /* Prepare the constants we will need during execution */
  1641. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1642. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1643. #define UNROLL_COUNT 8
  1644. // make sure we only unroll multiples of the block count
  1645. assert(nb % UNROLL_COUNT == 0);
  1646. // Main loop
  1647. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1648. // This loop will be unrolled by the compiler
  1649. for (int u=0;u<UNROLL_COUNT;u++) {
  1650. /* Compute combined scale for the block */
  1651. const __m256 scale = _mm256_mul_ps(
  1652. _mm256_broadcast_ss( &x[i+u].d ),
  1653. _mm256_broadcast_ss( &y[i+u].d ) );
  1654. /* get input from x
  1655. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1656. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1657. /* Load 16 bytes from memory */
  1658. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1659. /* Expand bytes into uint16_t values */
  1660. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1661. /* Unpack values into individual bytes */
  1662. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1663. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1664. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1665. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1666. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1667. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1668. /* get input from y
  1669. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1670. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1671. /* Load 16 bytes from memory */
  1672. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1673. /* Expand bytes into uint16_t values */
  1674. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1675. /* Unpack values into individual bytes */
  1676. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1677. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1678. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1679. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1680. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1681. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1682. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1683. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1684. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1685. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1686. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1687. /* Convert to vectore of 8 int32_t to 8 floats */
  1688. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1689. /* Multiply q with scale and accumulate */
  1690. acc = _mm256_fmadd_ps( scale, q, acc );
  1691. }
  1692. }
  1693. // Return horizontal sum of the acc vector
  1694. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1695. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1696. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1697. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1698. sumf = _mm_cvtss_f32( res );
  1699. #elif defined(__AVX__)
  1700. // Initialize accumulator with zeros
  1701. __m256 acc = _mm256_setzero_ps();
  1702. // Main loop
  1703. for (int i = 0; i < nb; ++i) {
  1704. // Compute combined scale for the block
  1705. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1706. __m128i i32[2];
  1707. for (int j = 0; j < 2; ++j) {
  1708. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1709. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1710. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1711. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1712. const __m128i off = _mm_set1_epi8( 8 );
  1713. bx = _mm_sub_epi8( bx, off );
  1714. by = _mm_sub_epi8( by, off );
  1715. // Get absolute values of x vectors
  1716. const __m128i ax = _mm_sign_epi8(bx, bx);
  1717. // Sign the values of the y vectors
  1718. const __m128i sy = _mm_sign_epi8(by, bx);
  1719. // Perform multiplication and create 16-bit values
  1720. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1721. const __m128i ones = _mm_set1_epi16(1);
  1722. i32[j] = _mm_madd_epi16(ones, dot);
  1723. }
  1724. // Convert int32_t to float
  1725. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1726. // Apply the scale, and accumulate
  1727. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1728. }
  1729. // Return horizontal sum of the acc vector
  1730. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1731. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1732. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1733. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1734. sumf = _mm_cvtss_f32( res );
  1735. #elif defined(__wasm_simd128__)
  1736. // wasm simd
  1737. float sum0 = 0.0f;
  1738. float sum1 = 0.0f;
  1739. for (int i = 0; i < nb; i += 2) {
  1740. const block_q4_0 * restrict x0 = &x[i + 0];
  1741. const block_q4_0 * restrict y0 = &y[i + 0];
  1742. const block_q4_0 * restrict x1 = &x[i + 1];
  1743. const block_q4_0 * restrict y1 = &y[i + 1];
  1744. const v128_t m4b = wasm_u8x16_splat(0xf);
  1745. const v128_t s8b = wasm_i8x16_splat(0x8);
  1746. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1747. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1748. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1749. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1750. // 4-bit -> 8-bit
  1751. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1752. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1753. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1754. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1755. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1756. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1757. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1758. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1759. // sub 8
  1760. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1761. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1762. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1763. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1764. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1765. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1766. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1767. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1768. // dot product into int16x8_t
  1769. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1770. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1771. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1772. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1773. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1774. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1775. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1776. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1777. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1778. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1779. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1780. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1781. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1782. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1783. sum0 += x0->d * y0->d * (
  1784. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1785. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1786. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1787. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1788. sum1 += x1->d * y1->d * (
  1789. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1790. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1791. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1792. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1793. }
  1794. sumf = sum0 + sum1;
  1795. #else
  1796. // scalar
  1797. for (int i = 0; i < nb; i++) {
  1798. const float d0 = x[i].d;
  1799. const float d1 = y[i].d;
  1800. const uint8_t * restrict p0 = x[i].qs;
  1801. const uint8_t * restrict p1 = y[i].qs;
  1802. int sumi = 0;
  1803. for (int j = 0; j < QK/2; j++) {
  1804. const uint8_t v0 = p0[j];
  1805. const uint8_t v1 = p1[j];
  1806. const int8_t i0 = (int8_t) (v0 & 0xf) - 8;
  1807. const int8_t i1 = (int8_t) (v0 >> 4) - 8;
  1808. const int8_t i2 = (int8_t) (v1 & 0xf) - 8;
  1809. const int8_t i3 = (int8_t) (v1 >> 4) - 8;
  1810. sumi += i0*i2 + i1*i3;
  1811. }
  1812. sumf += d0 * d1 * sumi;
  1813. }
  1814. #endif
  1815. *s = sumf;
  1816. }
  1817. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1818. const int nb = n / QK;
  1819. const block_q4_1 * restrict x = vx;
  1820. const block_q4_1 * restrict y = vy;
  1821. float sumf = 0.0;
  1822. #if defined(__AVX2__)
  1823. // Initialize accumulator with zeros
  1824. __m256 acc = _mm256_setzero_ps();
  1825. // Accumulator for constant offsets
  1826. float acc_offset = 0.0f;
  1827. // Main loop
  1828. for (int i = 0; i < nb; ++i) {
  1829. const float * d0 = &x[i].d;
  1830. const float * d1 = &y[i].d;
  1831. const float * m0 = &x[i].m;
  1832. const float * m1 = &y[i].m;
  1833. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1834. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1835. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1836. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1837. // Compute combined scale for the block
  1838. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1839. // Compute cross scales for the block
  1840. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1841. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1842. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1843. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1844. __m256i bx = bytesFromNibbles( x[i].qs );
  1845. __m256i by = bytesFromNibbles( y[i].qs );
  1846. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1847. // Sign-extend first 16 signed bytes into int16_t
  1848. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1849. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1850. // Compute products of int16_t integers, add pairwise
  1851. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1852. // Sign-extend last 16 signed bytes into int16_t vectors
  1853. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1854. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1855. // Accumulate products of int16_t integers
  1856. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1857. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1858. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1859. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1860. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1861. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1862. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1863. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1864. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1865. // Convert int32_t to float
  1866. __m256 p = _mm256_cvtepi32_ps( i32 );
  1867. // Apply the scale, and accumulate
  1868. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1869. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1870. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1871. // acc_offset += m0*m1 (for each entry in the block)
  1872. acc_offset += (*m0)*(*m1);
  1873. }
  1874. // Return horizontal sum of the acc vector
  1875. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1876. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1877. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1878. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1879. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1880. #elif defined(__ARM_NEON)
  1881. float sum00 = 0.0f;
  1882. float sum01 = 0.0f;
  1883. float sum10 = 0.0f;
  1884. float sum11 = 0.0f;
  1885. for (int i = 0; i < nb; i += 2) {
  1886. const block_q4_1 * restrict x0 = &x[i + 0];
  1887. const block_q4_1 * restrict y0 = &y[i + 0];
  1888. const block_q4_1 * restrict x1 = &x[i + 1];
  1889. const block_q4_1 * restrict y1 = &y[i + 1];
  1890. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1891. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1892. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1893. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1894. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1895. // 4-bit -> 8-bit
  1896. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1897. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1898. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1899. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1900. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  1901. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  1902. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  1903. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  1904. sum00 += x0->m*y0->m;
  1905. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1906. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1907. sum00 += x1->m*y1->m;
  1908. sum01 += y1->m*x1->d*(vaddvq_u8(v0_1l) + vaddvq_u8(v0_1h));
  1909. sum10 += x1->m*y1->d*(vaddvq_u8(v1_1l) + vaddvq_u8(v1_1h));
  1910. #if defined(__ARM_FEATURE_DOTPROD)
  1911. // dot product into int32x4_t
  1912. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  1913. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  1914. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  1915. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  1916. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  1917. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  1918. #else
  1919. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1920. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1921. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1922. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1923. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  1924. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  1925. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  1926. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  1927. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  1928. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  1929. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  1930. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  1931. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  1932. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  1933. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  1934. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  1935. #endif
  1936. }
  1937. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1938. #else
  1939. // scalar
  1940. for (int i = 0; i < nb; i++) {
  1941. const float d0 = x[i].d;
  1942. const float d1 = y[i].d;
  1943. const float m0 = x[i].m;
  1944. const float m1 = y[i].m;
  1945. const uint8_t * restrict p0 = x[i].qs;
  1946. const uint8_t * restrict p1 = y[i].qs;
  1947. for (int j = 0; j < QK/2; j++) {
  1948. const uint8_t v0 = p0[j];
  1949. const uint8_t v1 = p1[j];
  1950. const float f0 = d0*(v0 & 0xf) + m0;
  1951. const float f1 = d0*(v0 >> 4) + m0;
  1952. const float f2 = d1*(v1 & 0xf) + m1;
  1953. const float f3 = d1*(v1 >> 4) + m1;
  1954. sumf += f0*f2 + f1*f3;
  1955. }
  1956. }
  1957. #endif
  1958. *s = sumf;
  1959. }
  1960. // compute GGML_VEC_DOT_UNROLL dot products at once
  1961. // xs - x row stride in bytes
  1962. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1963. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1964. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1965. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1966. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1967. }
  1968. #if defined(GGML_SIMD)
  1969. const int np = (n & ~(GGML_F16_STEP - 1));
  1970. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1971. GGML_F16_VEC ax[GGML_F16_ARR];
  1972. GGML_F16_VEC ay[GGML_F16_ARR];
  1973. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1974. for (int j = 0; j < GGML_F16_ARR; j++) {
  1975. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1976. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1977. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1978. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1979. }
  1980. }
  1981. }
  1982. // reduce sum0..sum3 to sum0
  1983. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1984. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1985. }
  1986. // leftovers
  1987. for (int i = np; i < n; ++i) {
  1988. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1989. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1990. }
  1991. }
  1992. #else
  1993. for (int i = 0; i < n; ++i) {
  1994. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1995. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1996. }
  1997. }
  1998. #endif
  1999. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2000. s[i] = sumf[i];
  2001. }
  2002. }
  2003. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2004. #if defined(GGML_SIMD)
  2005. const int np = (n & ~(GGML_F32_STEP - 1));
  2006. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2007. GGML_F32_VEC ax[GGML_F32_ARR];
  2008. GGML_F32_VEC ay[GGML_F32_ARR];
  2009. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2010. for (int j = 0; j < GGML_F32_ARR; j++) {
  2011. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2012. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2013. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2014. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2015. }
  2016. }
  2017. // leftovers
  2018. for (int i = np; i < n; ++i) {
  2019. y[i] += x[i]*v;
  2020. }
  2021. #else
  2022. // scalar
  2023. for (int i = 0; i < n; ++i) {
  2024. y[i] += x[i]*v;
  2025. }
  2026. #endif
  2027. }
  2028. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2029. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2030. #if defined(GGML_SIMD)
  2031. const int np = (n & ~(GGML_F32_STEP - 1));
  2032. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2033. GGML_F32_VEC ay[GGML_F32_ARR];
  2034. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2035. for (int j = 0; j < GGML_F32_ARR; j++) {
  2036. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2037. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2038. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2039. }
  2040. }
  2041. // leftovers
  2042. for (int i = np; i < n; ++i) {
  2043. y[i] *= v;
  2044. }
  2045. #else
  2046. // scalar
  2047. for (int i = 0; i < n; ++i) {
  2048. y[i] *= v;
  2049. }
  2050. #endif
  2051. }
  2052. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2053. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2054. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2055. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2056. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2057. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2058. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2059. static const float GELU_COEF_A = 0.044715f;
  2060. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2061. inline static float ggml_gelu_f32(float x) {
  2062. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2063. }
  2064. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2065. const uint16_t * i16 = (const uint16_t *) x;
  2066. for (int i = 0; i < n; ++i) {
  2067. y[i] = table_gelu_f16[i16[i]];
  2068. }
  2069. }
  2070. #ifdef GGML_GELU_FP16
  2071. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2072. uint16_t t;
  2073. for (int i = 0; i < n; ++i) {
  2074. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2075. memcpy(&t, &fp16, sizeof(uint16_t));
  2076. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2077. }
  2078. }
  2079. #else
  2080. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2081. for (int i = 0; i < n; ++i) {
  2082. y[i] = ggml_gelu_f32(x[i]);
  2083. }
  2084. }
  2085. #endif
  2086. // Sigmoid Linear Unit (SiLU) function
  2087. inline static float ggml_silu_f32(float x) {
  2088. return x/(1.0f + expf(-x));
  2089. }
  2090. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2091. const uint16_t * i16 = (const uint16_t *) x;
  2092. for (int i = 0; i < n; ++i) {
  2093. y[i] = table_silu_f16[i16[i]];
  2094. }
  2095. }
  2096. #ifdef GGML_SILU_FP16
  2097. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2098. uint16_t t;
  2099. for (int i = 0; i < n; ++i) {
  2100. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2101. memcpy(&t, &fp16, sizeof(uint16_t));
  2102. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2103. }
  2104. }
  2105. #else
  2106. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2107. for (int i = 0; i < n; ++i) {
  2108. y[i] = ggml_silu_f32(x[i]);
  2109. }
  2110. }
  2111. #endif
  2112. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2113. #ifndef GGML_USE_ACCELERATE
  2114. ggml_float sum = 0.0;
  2115. for (int i = 0; i < n; ++i) {
  2116. sum += (ggml_float)x[i];
  2117. }
  2118. *s = sum;
  2119. #else
  2120. vDSP_sve(x, 1, s, n);
  2121. #endif
  2122. }
  2123. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2124. #ifndef GGML_USE_ACCELERATE
  2125. float max = -INFINITY;
  2126. for (int i = 0; i < n; ++i) {
  2127. max = MAX(max, x[i]);
  2128. }
  2129. *s = max;
  2130. #else
  2131. vDSP_maxv(x, 1, s, n);
  2132. #endif
  2133. }
  2134. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2135. ggml_vec_norm_f32(n, s, x);
  2136. *s = 1.f/(*s);
  2137. }
  2138. //
  2139. // logging
  2140. //
  2141. #if (GGML_DEBUG >= 1)
  2142. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2143. #else
  2144. #define GGML_PRINT_DEBUG(...)
  2145. #endif
  2146. #if (GGML_DEBUG >= 5)
  2147. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2148. #else
  2149. #define GGML_PRINT_DEBUG_5(...)
  2150. #endif
  2151. #if (GGML_DEBUG >= 10)
  2152. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2153. #else
  2154. #define GGML_PRINT_DEBUG_10(...)
  2155. #endif
  2156. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2157. //
  2158. // data types
  2159. //
  2160. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2161. [GGML_TYPE_F32] = 1,
  2162. [GGML_TYPE_F16] = 1,
  2163. [GGML_TYPE_Q4_0] = QK,
  2164. [GGML_TYPE_Q4_1] = QK,
  2165. [GGML_TYPE_I8] = 1,
  2166. [GGML_TYPE_I16] = 1,
  2167. [GGML_TYPE_I32] = 1,
  2168. };
  2169. static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
  2170. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2171. [GGML_TYPE_F32] = sizeof(float),
  2172. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2173. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2174. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2175. [GGML_TYPE_I8] = sizeof(int8_t),
  2176. [GGML_TYPE_I16] = sizeof(int16_t),
  2177. [GGML_TYPE_I32] = sizeof(int32_t),
  2178. };
  2179. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
  2180. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2181. [GGML_TYPE_F32] = "f32",
  2182. [GGML_TYPE_F16] = "f16",
  2183. [GGML_TYPE_Q4_0] = "q4_0",
  2184. [GGML_TYPE_Q4_1] = "q4_1",
  2185. [GGML_TYPE_I8] = "i8",
  2186. [GGML_TYPE_I16] = "i16",
  2187. [GGML_TYPE_I32] = "i32",
  2188. };
  2189. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_NAME is outdated");
  2190. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2191. "NONE",
  2192. "DUP",
  2193. "ADD",
  2194. "SUB",
  2195. "MUL",
  2196. "DIV",
  2197. "SQR",
  2198. "SQRT",
  2199. "SUM",
  2200. "MEAN",
  2201. "REPEAT",
  2202. "ABS",
  2203. "SGN",
  2204. "NEG",
  2205. "STEP",
  2206. "RELU",
  2207. "GELU",
  2208. "SILU",
  2209. "NORM",
  2210. "RMS_NORM",
  2211. "MUL_MAT",
  2212. "SCALE",
  2213. "CPY",
  2214. "CONT",
  2215. "RESHAPE",
  2216. "VIEW",
  2217. "PERMUTE",
  2218. "TRANSPOSE",
  2219. "GET_ROWS",
  2220. "DIAG_MASK_INF",
  2221. "SOFT_MAX",
  2222. "ROPE",
  2223. "CONV_1D_1S",
  2224. "CONV_1D_2S",
  2225. "FLASH_ATTN",
  2226. "FLASH_FF",
  2227. "MAP_UNARY",
  2228. "MAP_BINARY",
  2229. };
  2230. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2231. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2232. "none",
  2233. "x",
  2234. "x+y",
  2235. "x-y",
  2236. "x*y",
  2237. "x/y",
  2238. "x^2",
  2239. "√x",
  2240. "Σx",
  2241. "Σx/n",
  2242. "repeat(x)",
  2243. "abs(x)",
  2244. "sgn(x)",
  2245. "-x",
  2246. "step(x)",
  2247. "relu(x)",
  2248. "gelu(x)",
  2249. "silu(x)",
  2250. "norm(x)",
  2251. "rms_norm(x)",
  2252. "X*Y",
  2253. "x*v",
  2254. "x-\\>y",
  2255. "cont(x)",
  2256. "reshape(x)",
  2257. "view(x)",
  2258. "permute(x)",
  2259. "transpose(x)",
  2260. "get_rows(x)",
  2261. "diag_mask_inf(x)",
  2262. "soft_max(x)",
  2263. "rope(x)",
  2264. "conv_1d_1s(x)",
  2265. "conv_1d_2s(x)",
  2266. "flash_attn(x)",
  2267. "flash_ff(x)",
  2268. "f(x)",
  2269. "f(x,y)",
  2270. };
  2271. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2272. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2273. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2274. //
  2275. // ggml context
  2276. //
  2277. struct ggml_context {
  2278. size_t mem_size;
  2279. void * mem_buffer;
  2280. bool mem_buffer_owned;
  2281. bool no_alloc;
  2282. int n_objects;
  2283. struct ggml_object * objects_begin;
  2284. struct ggml_object * objects_end;
  2285. struct ggml_scratch scratch;
  2286. struct ggml_scratch scratch_save;
  2287. };
  2288. struct ggml_context_container {
  2289. bool used;
  2290. struct ggml_context context;
  2291. };
  2292. //
  2293. // compute types
  2294. //
  2295. enum ggml_task_type {
  2296. GGML_TASK_INIT = 0,
  2297. GGML_TASK_COMPUTE,
  2298. GGML_TASK_FINALIZE,
  2299. };
  2300. struct ggml_compute_params {
  2301. enum ggml_task_type type;
  2302. int ith, nth;
  2303. // work buffer for all threads
  2304. size_t wsize;
  2305. void * wdata;
  2306. };
  2307. //
  2308. // ggml state
  2309. //
  2310. struct ggml_state {
  2311. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2312. };
  2313. // global state
  2314. static struct ggml_state g_state;
  2315. static atomic_int g_state_barrier = 0;
  2316. // barrier via spin lock
  2317. inline static void ggml_critical_section_start(void) {
  2318. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2319. while (processing > 0) {
  2320. // wait for other threads to finish
  2321. atomic_fetch_sub(&g_state_barrier, 1);
  2322. sched_yield(); // TODO: reconsider this
  2323. processing = atomic_fetch_add(&g_state_barrier, 1);
  2324. }
  2325. }
  2326. // TODO: make this somehow automatically executed
  2327. // some sort of "sentry" mechanism
  2328. inline static void ggml_critical_section_end(void) {
  2329. atomic_fetch_sub(&g_state_barrier, 1);
  2330. }
  2331. ////////////////////////////////////////////////////////////////////////////////
  2332. void ggml_print_object(const struct ggml_object * obj) {
  2333. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2334. obj->offs, obj->size, (const void *) obj->next);
  2335. }
  2336. void ggml_print_objects(const struct ggml_context * ctx) {
  2337. struct ggml_object * obj = ctx->objects_begin;
  2338. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2339. while (obj != NULL) {
  2340. ggml_print_object(obj);
  2341. obj = obj->next;
  2342. }
  2343. GGML_PRINT("%s: --- end ---\n", __func__);
  2344. }
  2345. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2346. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2347. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2348. }
  2349. int ggml_nrows(const struct ggml_tensor * tensor) {
  2350. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2351. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2352. }
  2353. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2354. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2355. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2356. }
  2357. int ggml_blck_size(enum ggml_type type) {
  2358. return GGML_BLCK_SIZE[type];
  2359. }
  2360. size_t ggml_type_size(enum ggml_type type) {
  2361. return GGML_TYPE_SIZE[type];
  2362. }
  2363. float ggml_type_sizef(enum ggml_type type) {
  2364. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2365. }
  2366. const char * ggml_type_name(enum ggml_type type) {
  2367. return GGML_TYPE_NAME[type];
  2368. }
  2369. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2370. return GGML_TYPE_SIZE[tensor->type];
  2371. }
  2372. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2373. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2374. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2375. }
  2376. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2377. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2378. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2379. }
  2380. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2381. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2382. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2383. }
  2384. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2385. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2386. return
  2387. (t0->ne[0] == t1->ne[0]) &&
  2388. (t0->ne[2] == t1->ne[2]) &&
  2389. (t0->ne[3] == t1->ne[3]);
  2390. }
  2391. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2392. return tensor->nb[0] > tensor->nb[1];
  2393. }
  2394. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2395. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2396. return
  2397. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2398. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2399. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2400. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2401. }
  2402. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2403. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2404. return
  2405. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2406. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2407. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2408. }
  2409. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2410. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2411. return
  2412. (t0->ne[0] == t1->ne[0] ) &&
  2413. (t0->ne[1] == t1->ne[1] ) &&
  2414. (t0->ne[2] == t1->ne[2] ) &&
  2415. (t0->ne[3] == t1->ne[3] );
  2416. }
  2417. // check if t1 can be represented as a repeatition of t0
  2418. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2420. return
  2421. (t1->ne[0]%t0->ne[0] == 0) &&
  2422. (t1->ne[1]%t0->ne[1] == 0) &&
  2423. (t1->ne[2]%t0->ne[2] == 0) &&
  2424. (t1->ne[3]%t0->ne[3] == 0);
  2425. }
  2426. static inline int ggml_up32(int n) {
  2427. return (n + 31) & ~31;
  2428. }
  2429. static inline int ggml_up64(int n) {
  2430. return (n + 63) & ~63;
  2431. }
  2432. static inline int ggml_up(int n, int m) {
  2433. // assert m is a power of 2
  2434. GGML_ASSERT((m & (m - 1)) == 0);
  2435. return (n + m - 1) & ~(m - 1);
  2436. }
  2437. // assert that pointer is aligned to GGML_MEM_ALIGN
  2438. #define ggml_assert_aligned(ptr) \
  2439. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2440. ////////////////////////////////////////////////////////////////////////////////
  2441. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2442. // make this function thread safe
  2443. ggml_critical_section_start();
  2444. static bool is_first_call = true;
  2445. if (is_first_call) {
  2446. // initialize time system (required on Windows)
  2447. ggml_time_init();
  2448. // initialize GELU, SILU and EXP F32 tables
  2449. {
  2450. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2451. ggml_fp16_t ii;
  2452. for (int i = 0; i < (1 << 16); ++i) {
  2453. uint16_t ui = i;
  2454. memcpy(&ii, &ui, sizeof(ii));
  2455. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2456. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2457. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2458. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2459. }
  2460. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2461. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2462. }
  2463. // initialize g_state
  2464. {
  2465. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2466. g_state = (struct ggml_state) {
  2467. /*.contexts =*/ { { 0 } },
  2468. };
  2469. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2470. g_state.contexts[i].used = false;
  2471. }
  2472. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2473. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2474. }
  2475. is_first_call = false;
  2476. }
  2477. // find non-used context in g_state
  2478. struct ggml_context * ctx = NULL;
  2479. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2480. if (!g_state.contexts[i].used) {
  2481. g_state.contexts[i].used = true;
  2482. ctx = &g_state.contexts[i].context;
  2483. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2484. break;
  2485. }
  2486. }
  2487. if (ctx == NULL) {
  2488. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2489. ggml_critical_section_end();
  2490. return NULL;
  2491. }
  2492. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2493. *ctx = (struct ggml_context) {
  2494. /*.mem_size =*/ mem_size,
  2495. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2496. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2497. /*.no_alloc =*/ params.no_alloc,
  2498. /*.n_objects =*/ 0,
  2499. /*.objects_begin =*/ NULL,
  2500. /*.objects_end =*/ NULL,
  2501. /*.scratch =*/ { 0, 0, NULL, },
  2502. /*.scratch_save =*/ { 0, 0, NULL, },
  2503. };
  2504. GGML_ASSERT(ctx->mem_buffer != NULL);
  2505. ggml_assert_aligned(ctx->mem_buffer);
  2506. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2507. ggml_critical_section_end();
  2508. return ctx;
  2509. }
  2510. void ggml_free(struct ggml_context * ctx) {
  2511. // make this function thread safe
  2512. ggml_critical_section_start();
  2513. bool found = false;
  2514. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2515. if (&g_state.contexts[i].context == ctx) {
  2516. g_state.contexts[i].used = false;
  2517. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2518. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2519. if (ctx->mem_buffer_owned) {
  2520. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2521. }
  2522. found = true;
  2523. break;
  2524. }
  2525. }
  2526. if (!found) {
  2527. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2528. }
  2529. ggml_critical_section_end();
  2530. }
  2531. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2532. return ctx->objects_end->offs + ctx->objects_end->size;
  2533. }
  2534. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2535. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2536. ctx->scratch = scratch;
  2537. return result;
  2538. }
  2539. ////////////////////////////////////////////////////////////////////////////////
  2540. struct ggml_tensor * ggml_new_tensor_impl(
  2541. struct ggml_context * ctx,
  2542. enum ggml_type type,
  2543. int n_dims,
  2544. const int64_t* ne,
  2545. void* data) {
  2546. // always insert objects at the end of the context's memory pool
  2547. struct ggml_object * obj_cur = ctx->objects_end;
  2548. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2549. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2550. const size_t cur_end = cur_offs + cur_size;
  2551. size_t size_needed = 0;
  2552. if (data == NULL && !ctx->no_alloc) {
  2553. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2554. for (int i = 1; i < n_dims; i++) {
  2555. size_needed *= ne[i];
  2556. }
  2557. // align to GGML_MEM_ALIGN
  2558. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2559. }
  2560. char * const mem_buffer = ctx->mem_buffer;
  2561. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2562. if (ctx->scratch.data == NULL || data != NULL) {
  2563. size_needed += sizeof(struct ggml_tensor);
  2564. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2565. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2566. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2567. assert(false);
  2568. return NULL;
  2569. }
  2570. *obj_new = (struct ggml_object) {
  2571. .offs = cur_end + GGML_OBJECT_SIZE,
  2572. .size = size_needed,
  2573. .next = NULL,
  2574. };
  2575. } else {
  2576. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2577. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2578. assert(false);
  2579. return NULL;
  2580. }
  2581. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2582. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2583. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2584. assert(false);
  2585. return NULL;
  2586. }
  2587. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2588. *obj_new = (struct ggml_object) {
  2589. .offs = cur_end + GGML_OBJECT_SIZE,
  2590. .size = sizeof(struct ggml_tensor),
  2591. .next = NULL,
  2592. };
  2593. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2594. ctx->scratch.offs += size_needed;
  2595. }
  2596. if (obj_cur != NULL) {
  2597. obj_cur->next = obj_new;
  2598. } else {
  2599. // this is the first object in this context
  2600. ctx->objects_begin = obj_new;
  2601. }
  2602. ctx->objects_end = obj_new;
  2603. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2604. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2605. ggml_assert_aligned(result);
  2606. *result = (struct ggml_tensor) {
  2607. /*.type =*/ type,
  2608. /*.n_dims =*/ n_dims,
  2609. /*.ne =*/ { 1, 1, 1, 1 },
  2610. /*.nb =*/ { 0, 0, 0, 0 },
  2611. /*.op =*/ GGML_OP_NONE,
  2612. /*.is_param =*/ false,
  2613. /*.grad =*/ NULL,
  2614. /*.src0 =*/ NULL,
  2615. /*.src1 =*/ NULL,
  2616. /*.opt =*/ { NULL },
  2617. /*.n_tasks =*/ 0,
  2618. /*.perf_runs =*/ 0,
  2619. /*.perf_cycles =*/ 0,
  2620. /*.perf_time_us =*/ 0,
  2621. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2622. /*.pad =*/ { 0 },
  2623. };
  2624. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2625. //ggml_assert_aligned(result->data);
  2626. for (int i = 0; i < n_dims; i++) {
  2627. result->ne[i] = ne[i];
  2628. }
  2629. result->nb[0] = GGML_TYPE_SIZE[type];
  2630. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2631. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2632. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2633. }
  2634. ctx->n_objects++;
  2635. return result;
  2636. }
  2637. struct ggml_tensor * ggml_new_tensor(
  2638. struct ggml_context * ctx,
  2639. enum ggml_type type,
  2640. int n_dims,
  2641. const int64_t * ne) {
  2642. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2643. }
  2644. struct ggml_tensor * ggml_new_tensor_1d(
  2645. struct ggml_context * ctx,
  2646. enum ggml_type type,
  2647. int64_t ne0) {
  2648. return ggml_new_tensor(ctx, type, 1, &ne0);
  2649. }
  2650. struct ggml_tensor * ggml_new_tensor_2d(
  2651. struct ggml_context * ctx,
  2652. enum ggml_type type,
  2653. int64_t ne0,
  2654. int64_t ne1) {
  2655. const int64_t ne[2] = { ne0, ne1 };
  2656. return ggml_new_tensor(ctx, type, 2, ne);
  2657. }
  2658. struct ggml_tensor * ggml_new_tensor_3d(
  2659. struct ggml_context * ctx,
  2660. enum ggml_type type,
  2661. int64_t ne0,
  2662. int64_t ne1,
  2663. int64_t ne2) {
  2664. const int64_t ne[3] = { ne0, ne1, ne2 };
  2665. return ggml_new_tensor(ctx, type, 3, ne);
  2666. }
  2667. struct ggml_tensor * ggml_new_tensor_4d(
  2668. struct ggml_context * ctx,
  2669. enum ggml_type type,
  2670. int64_t ne0,
  2671. int64_t ne1,
  2672. int64_t ne2,
  2673. int64_t ne3) {
  2674. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2675. return ggml_new_tensor(ctx, type, 4, ne);
  2676. }
  2677. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2678. ctx->scratch_save = ctx->scratch;
  2679. ctx->scratch.data = NULL;
  2680. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2681. ctx->scratch = ctx->scratch_save;
  2682. ggml_set_i32(result, value);
  2683. return result;
  2684. }
  2685. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2686. ctx->scratch_save = ctx->scratch;
  2687. ctx->scratch.data = NULL;
  2688. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2689. ctx->scratch = ctx->scratch_save;
  2690. ggml_set_f32(result, value);
  2691. return result;
  2692. }
  2693. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2694. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2695. }
  2696. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2697. memset(tensor->data, 0, ggml_nbytes(tensor));
  2698. return tensor;
  2699. }
  2700. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2701. const int n = ggml_nrows(tensor);
  2702. const int nc = tensor->ne[0];
  2703. const size_t n1 = tensor->nb[1];
  2704. char * const data = tensor->data;
  2705. switch (tensor->type) {
  2706. case GGML_TYPE_Q4_0:
  2707. {
  2708. GGML_ASSERT(false);
  2709. } break;
  2710. case GGML_TYPE_Q4_1:
  2711. {
  2712. GGML_ASSERT(false);
  2713. } break;
  2714. case GGML_TYPE_I8:
  2715. {
  2716. assert(tensor->nb[0] == sizeof(int8_t));
  2717. for (int i = 0; i < n; i++) {
  2718. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2719. }
  2720. } break;
  2721. case GGML_TYPE_I16:
  2722. {
  2723. assert(tensor->nb[0] == sizeof(int16_t));
  2724. for (int i = 0; i < n; i++) {
  2725. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2726. }
  2727. } break;
  2728. case GGML_TYPE_I32:
  2729. {
  2730. assert(tensor->nb[0] == sizeof(int32_t));
  2731. for (int i = 0; i < n; i++) {
  2732. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2733. }
  2734. } break;
  2735. case GGML_TYPE_F16:
  2736. {
  2737. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2738. for (int i = 0; i < n; i++) {
  2739. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2740. }
  2741. } break;
  2742. case GGML_TYPE_F32:
  2743. {
  2744. assert(tensor->nb[0] == sizeof(float));
  2745. for (int i = 0; i < n; i++) {
  2746. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2747. }
  2748. } break;
  2749. case GGML_TYPE_COUNT:
  2750. {
  2751. GGML_ASSERT(false);
  2752. } break;
  2753. }
  2754. return tensor;
  2755. }
  2756. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2757. const int n = ggml_nrows(tensor);
  2758. const int nc = tensor->ne[0];
  2759. const size_t n1 = tensor->nb[1];
  2760. char * const data = tensor->data;
  2761. switch (tensor->type) {
  2762. case GGML_TYPE_Q4_0:
  2763. {
  2764. GGML_ASSERT(false);
  2765. } break;
  2766. case GGML_TYPE_Q4_1:
  2767. {
  2768. GGML_ASSERT(false);
  2769. } break;
  2770. case GGML_TYPE_I8:
  2771. {
  2772. assert(tensor->nb[0] == sizeof(int8_t));
  2773. for (int i = 0; i < n; i++) {
  2774. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2775. }
  2776. } break;
  2777. case GGML_TYPE_I16:
  2778. {
  2779. assert(tensor->nb[0] == sizeof(int16_t));
  2780. for (int i = 0; i < n; i++) {
  2781. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2782. }
  2783. } break;
  2784. case GGML_TYPE_I32:
  2785. {
  2786. assert(tensor->nb[0] == sizeof(int32_t));
  2787. for (int i = 0; i < n; i++) {
  2788. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2789. }
  2790. } break;
  2791. case GGML_TYPE_F16:
  2792. {
  2793. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2794. for (int i = 0; i < n; i++) {
  2795. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2796. }
  2797. } break;
  2798. case GGML_TYPE_F32:
  2799. {
  2800. assert(tensor->nb[0] == sizeof(float));
  2801. for (int i = 0; i < n; i++) {
  2802. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2803. }
  2804. } break;
  2805. case GGML_TYPE_COUNT:
  2806. {
  2807. GGML_ASSERT(false);
  2808. } break;
  2809. }
  2810. return tensor;
  2811. }
  2812. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2813. switch (tensor->type) {
  2814. case GGML_TYPE_Q4_0:
  2815. {
  2816. GGML_ASSERT(false);
  2817. } break;
  2818. case GGML_TYPE_Q4_1:
  2819. {
  2820. GGML_ASSERT(false);
  2821. } break;
  2822. case GGML_TYPE_I8:
  2823. {
  2824. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2825. return ((int8_t *)(tensor->data))[i];
  2826. } break;
  2827. case GGML_TYPE_I16:
  2828. {
  2829. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2830. return ((int16_t *)(tensor->data))[i];
  2831. } break;
  2832. case GGML_TYPE_I32:
  2833. {
  2834. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2835. return ((int32_t *)(tensor->data))[i];
  2836. } break;
  2837. case GGML_TYPE_F16:
  2838. {
  2839. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2840. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2841. } break;
  2842. case GGML_TYPE_F32:
  2843. {
  2844. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2845. return ((float *)(tensor->data))[i];
  2846. } break;
  2847. case GGML_TYPE_COUNT:
  2848. {
  2849. GGML_ASSERT(false);
  2850. } break;
  2851. }
  2852. return 0.0f;
  2853. }
  2854. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2855. switch (tensor->type) {
  2856. case GGML_TYPE_Q4_0:
  2857. {
  2858. GGML_ASSERT(false);
  2859. } break;
  2860. case GGML_TYPE_Q4_1:
  2861. {
  2862. GGML_ASSERT(false);
  2863. } break;
  2864. case GGML_TYPE_I8:
  2865. {
  2866. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2867. ((int8_t *)(tensor->data))[i] = value;
  2868. } break;
  2869. case GGML_TYPE_I16:
  2870. {
  2871. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2872. ((int16_t *)(tensor->data))[i] = value;
  2873. } break;
  2874. case GGML_TYPE_I32:
  2875. {
  2876. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2877. ((int32_t *)(tensor->data))[i] = value;
  2878. } break;
  2879. case GGML_TYPE_F16:
  2880. {
  2881. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2882. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2883. } break;
  2884. case GGML_TYPE_F32:
  2885. {
  2886. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2887. ((float *)(tensor->data))[i] = value;
  2888. } break;
  2889. case GGML_TYPE_COUNT:
  2890. {
  2891. GGML_ASSERT(false);
  2892. } break;
  2893. }
  2894. }
  2895. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2896. switch (tensor->type) {
  2897. case GGML_TYPE_Q4_0:
  2898. {
  2899. GGML_ASSERT(false);
  2900. } break;
  2901. case GGML_TYPE_Q4_1:
  2902. {
  2903. GGML_ASSERT(false);
  2904. } break;
  2905. case GGML_TYPE_I8:
  2906. {
  2907. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2908. return ((int8_t *)(tensor->data))[i];
  2909. } break;
  2910. case GGML_TYPE_I16:
  2911. {
  2912. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2913. return ((int16_t *)(tensor->data))[i];
  2914. } break;
  2915. case GGML_TYPE_I32:
  2916. {
  2917. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2918. return ((int32_t *)(tensor->data))[i];
  2919. } break;
  2920. case GGML_TYPE_F16:
  2921. {
  2922. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2923. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2924. } break;
  2925. case GGML_TYPE_F32:
  2926. {
  2927. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2928. return ((float *)(tensor->data))[i];
  2929. } break;
  2930. case GGML_TYPE_COUNT:
  2931. {
  2932. GGML_ASSERT(false);
  2933. } break;
  2934. }
  2935. return 0.0f;
  2936. }
  2937. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2938. switch (tensor->type) {
  2939. case GGML_TYPE_Q4_0:
  2940. {
  2941. GGML_ASSERT(false);
  2942. } break;
  2943. case GGML_TYPE_Q4_1:
  2944. {
  2945. GGML_ASSERT(false);
  2946. } break;
  2947. case GGML_TYPE_I8:
  2948. {
  2949. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2950. ((int8_t *)(tensor->data))[i] = value;
  2951. } break;
  2952. case GGML_TYPE_I16:
  2953. {
  2954. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2955. ((int16_t *)(tensor->data))[i] = value;
  2956. } break;
  2957. case GGML_TYPE_I32:
  2958. {
  2959. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2960. ((int32_t *)(tensor->data))[i] = value;
  2961. } break;
  2962. case GGML_TYPE_F16:
  2963. {
  2964. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2965. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2966. } break;
  2967. case GGML_TYPE_F32:
  2968. {
  2969. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2970. ((float *)(tensor->data))[i] = value;
  2971. } break;
  2972. case GGML_TYPE_COUNT:
  2973. {
  2974. GGML_ASSERT(false);
  2975. } break;
  2976. }
  2977. }
  2978. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2979. return tensor->data;
  2980. }
  2981. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2982. assert(tensor->type == GGML_TYPE_F32);
  2983. return (float *)(tensor->data);
  2984. }
  2985. struct ggml_tensor * ggml_view_tensor(
  2986. struct ggml_context * ctx,
  2987. const struct ggml_tensor * src) {
  2988. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2989. result->nb[0] = src->nb[0];
  2990. result->nb[1] = src->nb[1];
  2991. result->nb[2] = src->nb[2];
  2992. result->nb[3] = src->nb[3];
  2993. return result;
  2994. }
  2995. ////////////////////////////////////////////////////////////////////////////////
  2996. // ggml_dup
  2997. struct ggml_tensor * ggml_dup_impl(
  2998. struct ggml_context * ctx,
  2999. struct ggml_tensor * a,
  3000. bool inplace) {
  3001. bool is_node = false;
  3002. if (!inplace && (a->grad)) {
  3003. is_node = true;
  3004. }
  3005. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3006. result->op = GGML_OP_DUP;
  3007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3008. result->src0 = a;
  3009. result->src1 = NULL;
  3010. return result;
  3011. }
  3012. struct ggml_tensor * ggml_dup(
  3013. struct ggml_context * ctx,
  3014. struct ggml_tensor * a) {
  3015. return ggml_dup_impl(ctx, a, false);
  3016. }
  3017. struct ggml_tensor * ggml_dup_inplace(
  3018. struct ggml_context * ctx,
  3019. struct ggml_tensor * a) {
  3020. return ggml_dup_impl(ctx, a, true);
  3021. }
  3022. // ggml_add
  3023. struct ggml_tensor * ggml_add_impl(
  3024. struct ggml_context * ctx,
  3025. struct ggml_tensor * a,
  3026. struct ggml_tensor * b,
  3027. bool inplace) {
  3028. GGML_ASSERT(ggml_are_same_shape(a, b));
  3029. bool is_node = false;
  3030. if (!inplace && (a->grad || b->grad)) {
  3031. is_node = true;
  3032. }
  3033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3034. result->op = GGML_OP_ADD;
  3035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3036. result->src0 = a;
  3037. result->src1 = b;
  3038. return result;
  3039. }
  3040. struct ggml_tensor * ggml_add(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a,
  3043. struct ggml_tensor * b) {
  3044. return ggml_add_impl(ctx, a, b, false);
  3045. }
  3046. struct ggml_tensor * ggml_add_inplace(
  3047. struct ggml_context * ctx,
  3048. struct ggml_tensor * a,
  3049. struct ggml_tensor * b) {
  3050. return ggml_add_impl(ctx, a, b, true);
  3051. }
  3052. // ggml_sub
  3053. struct ggml_tensor * ggml_sub_impl(
  3054. struct ggml_context * ctx,
  3055. struct ggml_tensor * a,
  3056. struct ggml_tensor * b,
  3057. bool inplace) {
  3058. GGML_ASSERT(ggml_are_same_shape(a, b));
  3059. bool is_node = false;
  3060. if (!inplace && (a->grad || b->grad)) {
  3061. is_node = true;
  3062. }
  3063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3064. result->op = GGML_OP_SUB;
  3065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3066. result->src0 = a;
  3067. result->src1 = b;
  3068. return result;
  3069. }
  3070. struct ggml_tensor * ggml_sub(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a,
  3073. struct ggml_tensor * b) {
  3074. return ggml_sub_impl(ctx, a, b, false);
  3075. }
  3076. struct ggml_tensor * ggml_sub_inplace(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. return ggml_sub_impl(ctx, a, b, true);
  3081. }
  3082. // ggml_mul
  3083. struct ggml_tensor * ggml_mul_impl(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a,
  3086. struct ggml_tensor * b,
  3087. bool inplace) {
  3088. GGML_ASSERT(ggml_are_same_shape(a, b));
  3089. bool is_node = false;
  3090. if (!inplace && (a->grad || b->grad)) {
  3091. is_node = true;
  3092. }
  3093. if (inplace) {
  3094. GGML_ASSERT(is_node == false);
  3095. }
  3096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3097. result->op = GGML_OP_MUL;
  3098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3099. result->src0 = a;
  3100. result->src1 = b;
  3101. return result;
  3102. }
  3103. struct ggml_tensor * ggml_mul(
  3104. struct ggml_context * ctx,
  3105. struct ggml_tensor * a,
  3106. struct ggml_tensor * b) {
  3107. return ggml_mul_impl(ctx, a, b, false);
  3108. }
  3109. struct ggml_tensor * ggml_mul_inplace(
  3110. struct ggml_context * ctx,
  3111. struct ggml_tensor * a,
  3112. struct ggml_tensor * b) {
  3113. return ggml_mul_impl(ctx, a, b, true);
  3114. }
  3115. // ggml_div
  3116. struct ggml_tensor * ggml_div_impl(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a,
  3119. struct ggml_tensor * b,
  3120. bool inplace) {
  3121. GGML_ASSERT(ggml_are_same_shape(a, b));
  3122. bool is_node = false;
  3123. if (!inplace && (a->grad || b->grad)) {
  3124. is_node = true;
  3125. }
  3126. if (inplace) {
  3127. GGML_ASSERT(is_node == false);
  3128. }
  3129. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3130. result->op = GGML_OP_DIV;
  3131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3132. result->src0 = a;
  3133. result->src1 = b;
  3134. return result;
  3135. }
  3136. struct ggml_tensor * ggml_div(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a,
  3139. struct ggml_tensor * b) {
  3140. return ggml_div_impl(ctx, a, b, false);
  3141. }
  3142. struct ggml_tensor * ggml_div_inplace(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a,
  3145. struct ggml_tensor * b) {
  3146. return ggml_div_impl(ctx, a, b, true);
  3147. }
  3148. // ggml_sqr
  3149. struct ggml_tensor * ggml_sqr_impl(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a,
  3152. bool inplace) {
  3153. bool is_node = false;
  3154. if (!inplace && (a->grad)) {
  3155. is_node = true;
  3156. }
  3157. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3158. result->op = GGML_OP_SQR;
  3159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3160. result->src0 = a;
  3161. result->src1 = NULL;
  3162. return result;
  3163. }
  3164. struct ggml_tensor * ggml_sqr(
  3165. struct ggml_context * ctx,
  3166. struct ggml_tensor * a) {
  3167. return ggml_sqr_impl(ctx, a, false);
  3168. }
  3169. struct ggml_tensor * ggml_sqr_inplace(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a) {
  3172. return ggml_sqr_impl(ctx, a, true);
  3173. }
  3174. // ggml_sqrt
  3175. struct ggml_tensor * ggml_sqrt_impl(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a,
  3178. bool inplace) {
  3179. bool is_node = false;
  3180. if (!inplace && (a->grad)) {
  3181. is_node = true;
  3182. }
  3183. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3184. result->op = GGML_OP_SQRT;
  3185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3186. result->src0 = a;
  3187. result->src1 = NULL;
  3188. return result;
  3189. }
  3190. struct ggml_tensor * ggml_sqrt(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a) {
  3193. return ggml_sqrt_impl(ctx, a, false);
  3194. }
  3195. struct ggml_tensor * ggml_sqrt_inplace(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a) {
  3198. return ggml_sqrt_impl(ctx, a, true);
  3199. }
  3200. // ggml_sum
  3201. struct ggml_tensor * ggml_sum(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. bool is_node = false;
  3205. if (a->grad) {
  3206. is_node = true;
  3207. }
  3208. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3209. result->op = GGML_OP_SUM;
  3210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3211. result->src0 = a;
  3212. result->src1 = NULL;
  3213. return result;
  3214. }
  3215. // ggml_mean
  3216. struct ggml_tensor * ggml_mean(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a) {
  3219. bool is_node = false;
  3220. if (a->grad) {
  3221. GGML_ASSERT(false); // TODO: implement
  3222. is_node = true;
  3223. }
  3224. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3225. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3226. result->op = GGML_OP_MEAN;
  3227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3228. result->src0 = a;
  3229. result->src1 = NULL;
  3230. return result;
  3231. }
  3232. // ggml_repeat
  3233. struct ggml_tensor * ggml_repeat(
  3234. struct ggml_context * ctx,
  3235. struct ggml_tensor * a,
  3236. struct ggml_tensor * b) {
  3237. GGML_ASSERT(ggml_can_repeat(a, b));
  3238. bool is_node = false;
  3239. if (a->grad) {
  3240. is_node = true;
  3241. }
  3242. if (ggml_are_same_shape(a, b) && !is_node) {
  3243. return a;
  3244. }
  3245. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3246. result->op = GGML_OP_REPEAT;
  3247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3248. result->src0 = a;
  3249. result->src1 = b;
  3250. return result;
  3251. }
  3252. // ggml_abs
  3253. struct ggml_tensor * ggml_abs_impl(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a,
  3256. bool inplace) {
  3257. bool is_node = false;
  3258. if (!inplace && (a->grad)) {
  3259. is_node = true;
  3260. }
  3261. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3262. result->op = GGML_OP_ABS;
  3263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3264. result->src0 = a;
  3265. result->src1 = NULL;
  3266. return result;
  3267. }
  3268. struct ggml_tensor * ggml_abs(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a) {
  3271. return ggml_abs_impl(ctx, a, false);
  3272. }
  3273. struct ggml_tensor * ggml_abs_inplace(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a) {
  3276. return ggml_abs_impl(ctx, a, true);
  3277. }
  3278. // ggml_sgn
  3279. struct ggml_tensor * ggml_sgn_impl(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a,
  3282. bool inplace) {
  3283. bool is_node = false;
  3284. if (!inplace && (a->grad)) {
  3285. is_node = true;
  3286. }
  3287. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3288. result->op = GGML_OP_SGN;
  3289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3290. result->src0 = a;
  3291. result->src1 = NULL;
  3292. return result;
  3293. }
  3294. struct ggml_tensor * ggml_sgn(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a) {
  3297. return ggml_sgn_impl(ctx, a, false);
  3298. }
  3299. struct ggml_tensor * ggml_sgn_inplace(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a) {
  3302. return ggml_sgn_impl(ctx, a, true);
  3303. }
  3304. // ggml_neg
  3305. struct ggml_tensor * ggml_neg_impl(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a,
  3308. bool inplace) {
  3309. bool is_node = false;
  3310. if (!inplace && (a->grad)) {
  3311. is_node = true;
  3312. }
  3313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3314. result->op = GGML_OP_NEG;
  3315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3316. result->src0 = a;
  3317. result->src1 = NULL;
  3318. return result;
  3319. }
  3320. struct ggml_tensor * ggml_neg(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a) {
  3323. return ggml_neg_impl(ctx, a, false);
  3324. }
  3325. struct ggml_tensor * ggml_neg_inplace(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a) {
  3328. return ggml_neg_impl(ctx, a, true);
  3329. }
  3330. // ggml_step
  3331. struct ggml_tensor * ggml_step_impl(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a,
  3334. bool inplace) {
  3335. bool is_node = false;
  3336. if (!inplace && (a->grad)) {
  3337. is_node = true;
  3338. }
  3339. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3340. result->op = GGML_OP_STEP;
  3341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3342. result->src0 = a;
  3343. result->src1 = NULL;
  3344. return result;
  3345. }
  3346. struct ggml_tensor * ggml_step(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a) {
  3349. return ggml_step_impl(ctx, a, false);
  3350. }
  3351. struct ggml_tensor * ggml_step_inplace(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a) {
  3354. return ggml_step_impl(ctx, a, true);
  3355. }
  3356. // ggml_relu
  3357. struct ggml_tensor * ggml_relu_impl(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a,
  3360. bool inplace) {
  3361. bool is_node = false;
  3362. if (!inplace && (a->grad)) {
  3363. is_node = true;
  3364. }
  3365. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3366. result->op = GGML_OP_RELU;
  3367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3368. result->src0 = a;
  3369. result->src1 = NULL;
  3370. return result;
  3371. }
  3372. struct ggml_tensor * ggml_relu(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a) {
  3375. return ggml_relu_impl(ctx, a, false);
  3376. }
  3377. struct ggml_tensor * ggml_relu_inplace(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_relu_impl(ctx, a, true);
  3381. }
  3382. // ggml_gelu
  3383. struct ggml_tensor * ggml_gelu_impl(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. bool inplace) {
  3387. bool is_node = false;
  3388. if (!inplace && (a->grad)) {
  3389. is_node = true;
  3390. }
  3391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3392. result->op = GGML_OP_GELU;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src0 = a;
  3395. result->src1 = NULL;
  3396. return result;
  3397. }
  3398. struct ggml_tensor * ggml_gelu(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. return ggml_gelu_impl(ctx, a, false);
  3402. }
  3403. struct ggml_tensor * ggml_gelu_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a) {
  3406. return ggml_gelu_impl(ctx, a, true);
  3407. }
  3408. // ggml_silu
  3409. struct ggml_tensor * ggml_silu_impl(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a,
  3412. bool inplace) {
  3413. bool is_node = false;
  3414. if (!inplace && (a->grad)) {
  3415. is_node = true;
  3416. }
  3417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3418. result->op = GGML_OP_SILU;
  3419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3420. result->src0 = a;
  3421. result->src1 = NULL;
  3422. return result;
  3423. }
  3424. struct ggml_tensor * ggml_silu(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a) {
  3427. return ggml_silu_impl(ctx, a, false);
  3428. }
  3429. struct ggml_tensor * ggml_silu_inplace(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a) {
  3432. return ggml_silu_impl(ctx, a, true);
  3433. }
  3434. // ggml_norm
  3435. struct ggml_tensor * ggml_norm_impl(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a,
  3438. bool inplace) {
  3439. bool is_node = false;
  3440. if (!inplace && (a->grad)) {
  3441. GGML_ASSERT(false); // TODO: implement backward
  3442. is_node = true;
  3443. }
  3444. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3445. result->op = GGML_OP_NORM;
  3446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3447. result->src0 = a;
  3448. result->src1 = NULL; // TODO: maybe store epsilon here?
  3449. return result;
  3450. }
  3451. struct ggml_tensor * ggml_norm(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a) {
  3454. return ggml_norm_impl(ctx, a, false);
  3455. }
  3456. struct ggml_tensor * ggml_norm_inplace(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a) {
  3459. return ggml_norm_impl(ctx, a, true);
  3460. }
  3461. struct ggml_tensor * ggml_rms_norm_impl(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. bool inplace) {
  3465. bool is_node = false;
  3466. if (!inplace && (a->grad)) {
  3467. GGML_ASSERT(false); // TODO: implement backward
  3468. is_node = true;
  3469. }
  3470. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3471. result->op = GGML_OP_RMS_NORM;
  3472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3473. result->src0 = a;
  3474. result->src1 = NULL; // TODO: maybe store epsilon here?
  3475. return result;
  3476. }
  3477. struct ggml_tensor * ggml_rms_norm(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a) {
  3480. return ggml_rms_norm_impl(ctx, a, false);
  3481. }
  3482. struct ggml_tensor * ggml_rms_norm_inplace(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a) {
  3485. return ggml_rms_norm_impl(ctx, a, true);
  3486. }
  3487. // ggml_mul_mat
  3488. struct ggml_tensor * ggml_mul_mat(
  3489. struct ggml_context * ctx,
  3490. struct ggml_tensor * a,
  3491. struct ggml_tensor * b) {
  3492. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3493. GGML_ASSERT(!ggml_is_transposed(a));
  3494. bool is_node = false;
  3495. if (a->grad || b->grad) {
  3496. is_node = true;
  3497. }
  3498. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3499. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3500. result->op = GGML_OP_MUL_MAT;
  3501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3502. result->src0 = a;
  3503. result->src1 = b;
  3504. return result;
  3505. }
  3506. // ggml_scale
  3507. struct ggml_tensor * ggml_scale_impl(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. struct ggml_tensor * b,
  3511. bool inplace) {
  3512. GGML_ASSERT(ggml_is_scalar(b));
  3513. GGML_ASSERT(ggml_is_padded_1d(a));
  3514. bool is_node = false;
  3515. if (!inplace && (a->grad || b->grad)) {
  3516. GGML_ASSERT(false); // TODO: implement backward
  3517. is_node = true;
  3518. }
  3519. // TODO: when implement backward, fix this:
  3520. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3521. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3522. result->op = GGML_OP_SCALE;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src0 = a;
  3525. result->src1 = b;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_scale(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b) {
  3532. return ggml_scale_impl(ctx, a, b, false);
  3533. }
  3534. struct ggml_tensor * ggml_scale_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. struct ggml_tensor * b) {
  3538. return ggml_scale_impl(ctx, a, b, true);
  3539. }
  3540. // ggml_cpy
  3541. struct ggml_tensor * ggml_cpy_impl(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a,
  3544. struct ggml_tensor * b,
  3545. bool inplace) {
  3546. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3547. bool is_node = false;
  3548. if (!inplace && (a->grad || b->grad)) {
  3549. GGML_ASSERT(false); // TODO: implement backward
  3550. is_node = true;
  3551. }
  3552. // make a view of the destination
  3553. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3554. result->op = GGML_OP_CPY;
  3555. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3556. result->src0 = a;
  3557. result->src1 = b;
  3558. return result;
  3559. }
  3560. struct ggml_tensor * ggml_cpy(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a,
  3563. struct ggml_tensor * b) {
  3564. return ggml_cpy_impl(ctx, a, b, false);
  3565. }
  3566. struct ggml_tensor * ggml_cpy_inplace(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. struct ggml_tensor * b) {
  3570. return ggml_cpy_impl(ctx, a, b, true);
  3571. }
  3572. // ggml_cont
  3573. struct ggml_tensor * ggml_cont_impl(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. bool inplace) {
  3577. bool is_node = false;
  3578. if (!inplace && a->grad) {
  3579. GGML_ASSERT(false); // TODO: implement backward
  3580. is_node = true;
  3581. }
  3582. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3583. result->op = GGML_OP_CONT;
  3584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3585. result->src0 = a;
  3586. result->src1 = NULL;
  3587. return result;
  3588. }
  3589. struct ggml_tensor * ggml_cont(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a) {
  3592. return ggml_cont_impl(ctx, a, false);
  3593. }
  3594. struct ggml_tensor * ggml_cont_inplace(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a) {
  3597. return ggml_cont_impl(ctx, a, true);
  3598. }
  3599. // ggml_reshape
  3600. struct ggml_tensor * ggml_reshape(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a,
  3603. struct ggml_tensor * b) {
  3604. GGML_ASSERT(ggml_is_contiguous(a));
  3605. GGML_ASSERT(ggml_is_contiguous(b));
  3606. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3607. bool is_node = false;
  3608. if (a->grad || b->grad) {
  3609. GGML_ASSERT(false); // TODO: implement backward
  3610. is_node = true;
  3611. }
  3612. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3613. result->op = GGML_OP_RESHAPE;
  3614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3615. result->src0 = a;
  3616. result->src1 = NULL;
  3617. return result;
  3618. }
  3619. struct ggml_tensor * ggml_reshape_2d(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a,
  3622. int64_t ne0,
  3623. int64_t ne1) {
  3624. GGML_ASSERT(ggml_is_contiguous(a));
  3625. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3626. bool is_node = false;
  3627. if (a->grad) {
  3628. GGML_ASSERT(false); // TODO: implement backward
  3629. is_node = true;
  3630. }
  3631. const int64_t ne[2] = { ne0, ne1 };
  3632. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3633. result->op = GGML_OP_RESHAPE;
  3634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3635. result->src0 = a;
  3636. result->src1 = NULL;
  3637. return result;
  3638. }
  3639. struct ggml_tensor * ggml_reshape_3d(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a,
  3642. int64_t ne0,
  3643. int64_t ne1,
  3644. int64_t ne2) {
  3645. GGML_ASSERT(ggml_is_contiguous(a));
  3646. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3647. bool is_node = false;
  3648. if (a->grad) {
  3649. GGML_ASSERT(false); // TODO: implement backward
  3650. is_node = true;
  3651. }
  3652. const int64_t ne[3] = { ne0, ne1, ne2 };
  3653. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3654. result->op = GGML_OP_RESHAPE;
  3655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3656. result->src0 = a;
  3657. result->src1 = NULL;
  3658. return result;
  3659. }
  3660. // ggml_view_1d
  3661. struct ggml_tensor * ggml_view_1d(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. int64_t ne0,
  3665. size_t offset) {
  3666. if (a->grad) {
  3667. GGML_ASSERT(false); // gradient propagation is not supported
  3668. }
  3669. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3670. result->op = GGML_OP_VIEW;
  3671. result->grad = NULL;
  3672. result->src0 = a;
  3673. result->src1 = NULL; // TODO: maybe store the offset here?
  3674. return result;
  3675. }
  3676. // ggml_view_2d
  3677. struct ggml_tensor * ggml_view_2d(
  3678. struct ggml_context * ctx,
  3679. struct ggml_tensor * a,
  3680. int64_t ne0,
  3681. int64_t ne1,
  3682. size_t nb1,
  3683. size_t offset) {
  3684. if (a->grad) {
  3685. GGML_ASSERT(false); // gradient propagation is not supported
  3686. }
  3687. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3688. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3689. result->nb[1] = nb1;
  3690. result->nb[2] = result->nb[1]*ne1;
  3691. result->nb[3] = result->nb[2];
  3692. result->op = GGML_OP_VIEW;
  3693. result->grad = NULL;
  3694. result->src0 = a;
  3695. result->src1 = NULL; // TODO: maybe store the offset here?
  3696. return result;
  3697. }
  3698. // ggml_view_3d
  3699. struct ggml_tensor * ggml_view_3d(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. int64_t ne0,
  3703. int64_t ne1,
  3704. int64_t ne2,
  3705. size_t nb1,
  3706. size_t nb2,
  3707. size_t offset) {
  3708. if (a->grad) {
  3709. GGML_ASSERT(false); // gradient propagation is not supported
  3710. }
  3711. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3712. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3713. result->nb[1] = nb1;
  3714. result->nb[2] = nb2;
  3715. result->nb[3] = result->nb[2]*ne2;
  3716. result->op = GGML_OP_VIEW;
  3717. result->grad = NULL;
  3718. result->src0 = a;
  3719. result->src1 = NULL; // TODO: maybe store the offset here?
  3720. return result;
  3721. }
  3722. // ggml_permute
  3723. struct ggml_tensor * ggml_permute(
  3724. struct ggml_context * ctx,
  3725. struct ggml_tensor * a,
  3726. int axis0,
  3727. int axis1,
  3728. int axis2,
  3729. int axis3) {
  3730. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3731. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3732. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3733. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3734. GGML_ASSERT(axis0 != axis1);
  3735. GGML_ASSERT(axis0 != axis2);
  3736. GGML_ASSERT(axis0 != axis3);
  3737. GGML_ASSERT(axis1 != axis2);
  3738. GGML_ASSERT(axis1 != axis3);
  3739. GGML_ASSERT(axis2 != axis3);
  3740. bool is_node = false;
  3741. if (a->grad) {
  3742. GGML_ASSERT(false); // TODO: implement backward
  3743. is_node = true;
  3744. }
  3745. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3746. int ne[GGML_MAX_DIMS];
  3747. int nb[GGML_MAX_DIMS];
  3748. ne[axis0] = a->ne[0];
  3749. ne[axis1] = a->ne[1];
  3750. ne[axis2] = a->ne[2];
  3751. ne[axis3] = a->ne[3];
  3752. nb[axis0] = a->nb[0];
  3753. nb[axis1] = a->nb[1];
  3754. nb[axis2] = a->nb[2];
  3755. nb[axis3] = a->nb[3];
  3756. result->ne[0] = ne[0];
  3757. result->ne[1] = ne[1];
  3758. result->ne[2] = ne[2];
  3759. result->ne[3] = ne[3];
  3760. result->nb[0] = nb[0];
  3761. result->nb[1] = nb[1];
  3762. result->nb[2] = nb[2];
  3763. result->nb[3] = nb[3];
  3764. result->op = GGML_OP_PERMUTE;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src0 = a;
  3767. result->src1 = NULL; // TODO: maybe store the permutation here?
  3768. return result;
  3769. }
  3770. // ggml_transpose
  3771. struct ggml_tensor * ggml_transpose(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a) {
  3774. bool is_node = false;
  3775. if (a->grad) {
  3776. GGML_ASSERT(false); // TODO: implement backward
  3777. is_node = true;
  3778. }
  3779. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3780. result->ne[0] = a->ne[1];
  3781. result->ne[1] = a->ne[0];
  3782. result->nb[0] = a->nb[1];
  3783. result->nb[1] = a->nb[0];
  3784. result->op = GGML_OP_TRANSPOSE;
  3785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3786. result->src0 = a;
  3787. result->src1 = NULL;
  3788. return result;
  3789. }
  3790. // ggml_get_rows
  3791. struct ggml_tensor * ggml_get_rows(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. struct ggml_tensor * b) {
  3795. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3796. bool is_node = false;
  3797. if (a->grad || b->grad) {
  3798. GGML_ASSERT(false); // TODO: implement backward
  3799. is_node = true;
  3800. }
  3801. // TODO: implement non F32 return
  3802. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3803. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3804. result->op = GGML_OP_GET_ROWS;
  3805. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3806. result->src0 = a;
  3807. result->src1 = b;
  3808. return result;
  3809. }
  3810. // ggml_diag_mask_inf
  3811. struct ggml_tensor * ggml_diag_mask_inf(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. int n_past) {
  3815. bool is_node = false;
  3816. if (a->grad) {
  3817. GGML_ASSERT(false); // TODO: implement backward
  3818. is_node = true;
  3819. }
  3820. // TODO: when implement backward, fix this:
  3821. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3822. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3823. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3824. result->op = GGML_OP_DIAG_MASK_INF;
  3825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3826. result->src0 = a;
  3827. result->src1 = b;
  3828. return result;
  3829. }
  3830. // ggml_soft_max
  3831. struct ggml_tensor * ggml_soft_max(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a) {
  3834. bool is_node = false;
  3835. if (a->grad) {
  3836. GGML_ASSERT(false); // TODO: implement backward
  3837. is_node = true;
  3838. }
  3839. // TODO: when implement backward, fix this:
  3840. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3841. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3842. result->op = GGML_OP_SOFT_MAX;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src0 = a;
  3845. result->src1 = NULL;
  3846. return result;
  3847. }
  3848. // ggml_rope
  3849. struct ggml_tensor * ggml_rope(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. int n_past,
  3853. int n_dims,
  3854. int mode) {
  3855. GGML_ASSERT(n_past >= 0);
  3856. bool is_node = false;
  3857. if (a->grad) {
  3858. GGML_ASSERT(false); // TODO: implement backward
  3859. is_node = true;
  3860. }
  3861. // TODO: when implement backward, fix this:
  3862. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3863. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3864. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3865. ((int32_t *) b->data)[0] = n_past;
  3866. ((int32_t *) b->data)[1] = n_dims;
  3867. ((int32_t *) b->data)[2] = mode;
  3868. result->op = GGML_OP_ROPE;
  3869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3870. result->src0 = a;
  3871. result->src1 = b;
  3872. return result;
  3873. }
  3874. // ggml_conv_1d_1s
  3875. struct ggml_tensor * ggml_conv_1d_1s(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a,
  3878. struct ggml_tensor * b) {
  3879. GGML_ASSERT(ggml_is_matrix(b));
  3880. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3881. GGML_ASSERT(a->ne[3] == 1);
  3882. bool is_node = false;
  3883. if (a->grad || b->grad) {
  3884. GGML_ASSERT(false); // TODO: implement backward
  3885. is_node = true;
  3886. }
  3887. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3888. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3889. result->op = GGML_OP_CONV_1D_1S;
  3890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3891. result->src0 = a;
  3892. result->src1 = b;
  3893. return result;
  3894. }
  3895. // ggml_conv_1d_2s
  3896. struct ggml_tensor * ggml_conv_1d_2s(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. struct ggml_tensor * b) {
  3900. GGML_ASSERT(ggml_is_matrix(b));
  3901. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3902. GGML_ASSERT(a->ne[3] == 1);
  3903. bool is_node = false;
  3904. if (a->grad || b->grad) {
  3905. GGML_ASSERT(false); // TODO: implement backward
  3906. is_node = true;
  3907. }
  3908. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3909. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3910. result->op = GGML_OP_CONV_1D_2S;
  3911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3912. result->src0 = a;
  3913. result->src1 = b;
  3914. return result;
  3915. }
  3916. // ggml_flash_attn
  3917. struct ggml_tensor * ggml_flash_attn(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * q,
  3920. struct ggml_tensor * k,
  3921. struct ggml_tensor * v,
  3922. bool masked) {
  3923. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3924. // TODO: check if vT can be multiplied by (k*qT)
  3925. bool is_node = false;
  3926. if (q->grad || k->grad || v->grad) {
  3927. GGML_ASSERT(false); // TODO: implement backward
  3928. is_node = true;
  3929. }
  3930. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3931. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3932. result->op = GGML_OP_FLASH_ATTN;
  3933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3934. result->src0 = q;
  3935. result->src1 = k;
  3936. result->opt[0] = v;
  3937. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3938. return result;
  3939. }
  3940. // ggml_flash_ff
  3941. struct ggml_tensor * ggml_flash_ff(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b0,
  3945. struct ggml_tensor * b1,
  3946. struct ggml_tensor * c0,
  3947. struct ggml_tensor * c1) {
  3948. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3949. // TODO: more checks
  3950. bool is_node = false;
  3951. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3952. GGML_ASSERT(false); // TODO: implement backward
  3953. is_node = true;
  3954. }
  3955. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3956. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3957. result->op = GGML_OP_FLASH_FF;
  3958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3959. result->src0 = a;
  3960. result->src1 = b0;
  3961. result->opt[0] = b1;
  3962. result->opt[1] = c0;
  3963. result->opt[2] = c1;
  3964. return result;
  3965. }
  3966. // ggml_map_unary
  3967. struct ggml_tensor * ggml_map_unary_impl_f32(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a,
  3970. const ggml_unary_op_f32_t fun,
  3971. bool inplace) {
  3972. bool is_node = false;
  3973. if (!inplace && a->grad) {
  3974. is_node = true;
  3975. }
  3976. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  3977. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  3978. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3979. result->op = GGML_OP_MAP_UNARY;
  3980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3981. result->src0 = a;
  3982. result->opt[0] = addr_tensor;
  3983. return result;
  3984. }
  3985. struct ggml_tensor * ggml_map_unary_f32(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. const ggml_unary_op_f32_t fun) {
  3989. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  3990. }
  3991. struct ggml_tensor * ggml_map_unary_inplace_f32(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. const ggml_unary_op_f32_t fun) {
  3995. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  3996. }
  3997. // ggml_map_binary
  3998. struct ggml_tensor * ggml_map_binary_impl_f32(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a,
  4001. struct ggml_tensor * b,
  4002. const ggml_binary_op_f32_t fun,
  4003. bool inplace) {
  4004. GGML_ASSERT(ggml_are_same_shape(a, b));
  4005. bool is_node = false;
  4006. if (!inplace && (a->grad || b->grad)) {
  4007. is_node = true;
  4008. }
  4009. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4010. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4011. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4012. result->op = GGML_OP_MAP_BINARY;
  4013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4014. result->src0 = a;
  4015. result->src1 = b;
  4016. result->opt[0] = addr_tensor;
  4017. return result;
  4018. }
  4019. struct ggml_tensor * ggml_map_binary_f32(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. struct ggml_tensor * b,
  4023. const ggml_binary_op_f32_t fun) {
  4024. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4025. }
  4026. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a,
  4029. struct ggml_tensor * b,
  4030. const ggml_binary_op_f32_t fun) {
  4031. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4032. }
  4033. ////////////////////////////////////////////////////////////////////////////////
  4034. void ggml_set_param(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * tensor) {
  4037. tensor->is_param = true;
  4038. GGML_ASSERT(tensor->grad == NULL);
  4039. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4040. }
  4041. // ggml_compute_forward_dup
  4042. static void ggml_compute_forward_dup_f16(
  4043. const struct ggml_compute_params * params,
  4044. const struct ggml_tensor * src0,
  4045. struct ggml_tensor * dst) {
  4046. GGML_ASSERT(params->ith == 0);
  4047. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4048. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4049. return;
  4050. }
  4051. const int64_t ne00 = src0->ne[0];
  4052. const int64_t ne01 = src0->ne[1];
  4053. const int64_t ne02 = src0->ne[2];
  4054. const int64_t ne03 = src0->ne[3];
  4055. const size_t nb00 = src0->nb[0];
  4056. const size_t nb01 = src0->nb[1];
  4057. const size_t nb02 = src0->nb[2];
  4058. const size_t nb03 = src0->nb[3];
  4059. const size_t nb0 = dst->nb[0];
  4060. const size_t nb1 = dst->nb[1];
  4061. const size_t nb2 = dst->nb[2];
  4062. const size_t nb3 = dst->nb[3];
  4063. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4064. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4065. return;
  4066. }
  4067. if (src0->type == dst->type &&
  4068. src0->ne[0] == dst->ne[0] &&
  4069. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4070. // copy by rows
  4071. const size_t rs = ne00*nb00;
  4072. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4073. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4074. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4075. memcpy(
  4076. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4077. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4078. rs);
  4079. }
  4080. }
  4081. }
  4082. return;
  4083. }
  4084. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4085. if (ggml_is_contiguous(dst)) {
  4086. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  4087. if (dst->type == GGML_TYPE_F16) {
  4088. size_t id = 0;
  4089. const size_t rs = ne00*nb00;
  4090. for (int i03 = 0; i03 < ne03; i03++) {
  4091. for (int i02 = 0; i02 < ne02; i02++) {
  4092. for (int i01 = 0; i01 < ne01; i01++) {
  4093. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4094. char * dst_ptr = (char *) dst->data + id*rs;
  4095. memcpy(dst_ptr, src0_ptr, rs);
  4096. id++;
  4097. }
  4098. }
  4099. }
  4100. } else if (dst->type == GGML_TYPE_F32) {
  4101. size_t id = 0;
  4102. float * dst_ptr = (float *) dst->data;
  4103. for (int i03 = 0; i03 < ne03; i03++) {
  4104. for (int i02 = 0; i02 < ne02; i02++) {
  4105. for (int i01 = 0; i01 < ne01; i01++) {
  4106. for (int i00 = 0; i00 < ne00; i00++) {
  4107. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4108. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4109. id++;
  4110. }
  4111. }
  4112. }
  4113. }
  4114. } else {
  4115. GGML_ASSERT(false); // TODO: implement
  4116. }
  4117. } else {
  4118. //printf("%s: this is not optimal - fix me\n", __func__);
  4119. if (dst->type == GGML_TYPE_F32) {
  4120. size_t id = 0;
  4121. float * dst_ptr = (float *) dst->data;
  4122. for (int i03 = 0; i03 < ne03; i03++) {
  4123. for (int i02 = 0; i02 < ne02; i02++) {
  4124. for (int i01 = 0; i01 < ne01; i01++) {
  4125. for (int i00 = 0; i00 < ne00; i00++) {
  4126. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4127. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4128. id++;
  4129. }
  4130. }
  4131. }
  4132. }
  4133. } else if (dst->type == GGML_TYPE_F16) {
  4134. size_t id = 0;
  4135. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4136. for (int i03 = 0; i03 < ne03; i03++) {
  4137. for (int i02 = 0; i02 < ne02; i02++) {
  4138. for (int i01 = 0; i01 < ne01; i01++) {
  4139. for (int i00 = 0; i00 < ne00; i00++) {
  4140. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4141. dst_ptr[id] = *src0_ptr;
  4142. id++;
  4143. }
  4144. }
  4145. }
  4146. }
  4147. } else {
  4148. GGML_ASSERT(false); // TODO: implement
  4149. }
  4150. }
  4151. return;
  4152. }
  4153. // dst counters
  4154. int64_t i10 = 0;
  4155. int64_t i11 = 0;
  4156. int64_t i12 = 0;
  4157. int64_t i13 = 0;
  4158. if (dst->type == GGML_TYPE_F16) {
  4159. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4160. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4161. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4162. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4163. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4164. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4165. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4166. if (++i10 == ne00) {
  4167. i10 = 0;
  4168. if (++i11 == ne01) {
  4169. i11 = 0;
  4170. if (++i12 == ne02) {
  4171. i12 = 0;
  4172. if (++i13 == ne03) {
  4173. i13 = 0;
  4174. }
  4175. }
  4176. }
  4177. }
  4178. }
  4179. }
  4180. }
  4181. }
  4182. } else if (dst->type == GGML_TYPE_F32) {
  4183. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4184. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4185. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4186. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4187. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4188. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4189. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4190. if (++i10 == ne00) {
  4191. i10 = 0;
  4192. if (++i11 == ne01) {
  4193. i11 = 0;
  4194. if (++i12 == ne02) {
  4195. i12 = 0;
  4196. if (++i13 == ne03) {
  4197. i13 = 0;
  4198. }
  4199. }
  4200. }
  4201. }
  4202. }
  4203. }
  4204. }
  4205. }
  4206. } else {
  4207. GGML_ASSERT(false); // TODO: implement
  4208. }
  4209. }
  4210. static void ggml_compute_forward_dup_f32(
  4211. const struct ggml_compute_params * params,
  4212. const struct ggml_tensor * src0,
  4213. struct ggml_tensor * dst) {
  4214. GGML_ASSERT(params->ith == 0);
  4215. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4216. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4217. return;
  4218. }
  4219. const int64_t ne00 = src0->ne[0];
  4220. const int64_t ne01 = src0->ne[1];
  4221. const int64_t ne02 = src0->ne[2];
  4222. const int64_t ne03 = src0->ne[3];
  4223. const size_t nb00 = src0->nb[0];
  4224. const size_t nb01 = src0->nb[1];
  4225. const size_t nb02 = src0->nb[2];
  4226. const size_t nb03 = src0->nb[3];
  4227. const size_t nb0 = dst->nb[0];
  4228. const size_t nb1 = dst->nb[1];
  4229. const size_t nb2 = dst->nb[2];
  4230. const size_t nb3 = dst->nb[3];
  4231. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4232. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4233. return;
  4234. }
  4235. if (src0->type == dst->type &&
  4236. src0->ne[0] == dst->ne[0] &&
  4237. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4238. // copy by rows
  4239. const size_t rs = ne00*nb00;
  4240. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4241. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4242. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4243. memcpy(
  4244. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4245. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4246. rs);
  4247. }
  4248. }
  4249. }
  4250. return;
  4251. }
  4252. if (ggml_is_contiguous(dst)) {
  4253. // TODO: simplify
  4254. if (src0->nb[0] == sizeof(float)) {
  4255. if (dst->type == GGML_TYPE_F32) {
  4256. size_t id = 0;
  4257. const size_t rs = ne00*nb00;
  4258. for (int i03 = 0; i03 < ne03; i03++) {
  4259. for (int i02 = 0; i02 < ne02; i02++) {
  4260. for (int i01 = 0; i01 < ne01; i01++) {
  4261. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4262. char * dst_ptr = (char *) dst->data + id*rs;
  4263. memcpy(dst_ptr, src0_ptr, rs);
  4264. id++;
  4265. }
  4266. }
  4267. }
  4268. } else if (dst->type == GGML_TYPE_F16) {
  4269. size_t id = 0;
  4270. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4271. for (int i03 = 0; i03 < ne03; i03++) {
  4272. for (int i02 = 0; i02 < ne02; i02++) {
  4273. for (int i01 = 0; i01 < ne01; i01++) {
  4274. for (int i00 = 0; i00 < ne00; i00++) {
  4275. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4276. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4277. id++;
  4278. }
  4279. }
  4280. }
  4281. }
  4282. } else {
  4283. GGML_ASSERT(false); // TODO: implement
  4284. }
  4285. } else {
  4286. //printf("%s: this is not optimal - fix me\n", __func__);
  4287. if (dst->type == GGML_TYPE_F32) {
  4288. size_t id = 0;
  4289. float * dst_ptr = (float *) dst->data;
  4290. for (int i03 = 0; i03 < ne03; i03++) {
  4291. for (int i02 = 0; i02 < ne02; i02++) {
  4292. for (int i01 = 0; i01 < ne01; i01++) {
  4293. for (int i00 = 0; i00 < ne00; i00++) {
  4294. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4295. dst_ptr[id] = *src0_ptr;
  4296. id++;
  4297. }
  4298. }
  4299. }
  4300. }
  4301. } else if (dst->type == GGML_TYPE_F16) {
  4302. size_t id = 0;
  4303. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4304. for (int i03 = 0; i03 < ne03; i03++) {
  4305. for (int i02 = 0; i02 < ne02; i02++) {
  4306. for (int i01 = 0; i01 < ne01; i01++) {
  4307. for (int i00 = 0; i00 < ne00; i00++) {
  4308. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4309. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4310. id++;
  4311. }
  4312. }
  4313. }
  4314. }
  4315. } else {
  4316. GGML_ASSERT(false); // TODO: implement
  4317. }
  4318. }
  4319. return;
  4320. }
  4321. // dst counters
  4322. int64_t i10 = 0;
  4323. int64_t i11 = 0;
  4324. int64_t i12 = 0;
  4325. int64_t i13 = 0;
  4326. if (dst->type == GGML_TYPE_F32) {
  4327. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4328. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4329. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4330. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4331. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4332. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4333. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4334. if (++i10 == dst->ne[0]) {
  4335. i10 = 0;
  4336. if (++i11 == dst->ne[1]) {
  4337. i11 = 0;
  4338. if (++i12 == dst->ne[2]) {
  4339. i12 = 0;
  4340. if (++i13 == dst->ne[3]) {
  4341. i13 = 0;
  4342. }
  4343. }
  4344. }
  4345. }
  4346. }
  4347. }
  4348. }
  4349. }
  4350. } else if (dst->type == GGML_TYPE_F16) {
  4351. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4352. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4353. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4354. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4355. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4356. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4357. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4358. if (++i10 == dst->ne[0]) {
  4359. i10 = 0;
  4360. if (++i11 == dst->ne[1]) {
  4361. i11 = 0;
  4362. if (++i12 == dst->ne[2]) {
  4363. i12 = 0;
  4364. if (++i13 == dst->ne[3]) {
  4365. i13 = 0;
  4366. }
  4367. }
  4368. }
  4369. }
  4370. }
  4371. }
  4372. }
  4373. }
  4374. } else {
  4375. GGML_ASSERT(false); // TODO: implement
  4376. }
  4377. }
  4378. static void ggml_compute_forward_dup(
  4379. const struct ggml_compute_params * params,
  4380. const struct ggml_tensor * src0,
  4381. struct ggml_tensor * dst) {
  4382. switch (src0->type) {
  4383. case GGML_TYPE_F16:
  4384. {
  4385. ggml_compute_forward_dup_f16(params, src0, dst);
  4386. } break;
  4387. case GGML_TYPE_F32:
  4388. {
  4389. ggml_compute_forward_dup_f32(params, src0, dst);
  4390. } break;
  4391. case GGML_TYPE_Q4_0:
  4392. case GGML_TYPE_Q4_1:
  4393. case GGML_TYPE_I8:
  4394. case GGML_TYPE_I16:
  4395. case GGML_TYPE_I32:
  4396. case GGML_TYPE_COUNT:
  4397. {
  4398. GGML_ASSERT(false);
  4399. } break;
  4400. }
  4401. }
  4402. // ggml_compute_forward_add
  4403. static void ggml_compute_forward_add_f32(
  4404. const struct ggml_compute_params * params,
  4405. const struct ggml_tensor * src0,
  4406. const struct ggml_tensor * src1,
  4407. struct ggml_tensor * dst) {
  4408. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4410. return;
  4411. }
  4412. const int ith = params->ith;
  4413. const int nth = params->nth;
  4414. const int n = ggml_nrows(src0);
  4415. const int nc = src0->ne[0];
  4416. const size_t nb00 = src0->nb[0];
  4417. const size_t nb01 = src0->nb[1];
  4418. const size_t nb10 = src1->nb[0];
  4419. const size_t nb11 = src1->nb[1];
  4420. const size_t nb0 = dst->nb[0];
  4421. const size_t nb1 = dst->nb[1];
  4422. GGML_ASSERT( nb0 == sizeof(float));
  4423. GGML_ASSERT(nb00 == sizeof(float));
  4424. if (nb10 == sizeof(float)) {
  4425. for (int j = ith; j < n; j += nth) {
  4426. #ifdef GGML_USE_ACCELERATE
  4427. vDSP_vadd(
  4428. (float *) ((char *) src0->data + j*nb01), 1,
  4429. (float *) ((char *) src1->data + j*nb11), 1,
  4430. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4431. #else
  4432. ggml_vec_add_f32(nc,
  4433. (float *) ((char *) dst->data + j*nb1),
  4434. (float *) ((char *) src0->data + j*nb01),
  4435. (float *) ((char *) src1->data + j*nb11));
  4436. #endif
  4437. }
  4438. } else {
  4439. // src1 is not contiguous
  4440. for (int j = ith; j < n; j += nth) {
  4441. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4442. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4443. for (int i = 0; i < nc; i++) {
  4444. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4445. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4446. }
  4447. }
  4448. }
  4449. }
  4450. static void ggml_compute_forward_add(
  4451. const struct ggml_compute_params * params,
  4452. const struct ggml_tensor * src0,
  4453. const struct ggml_tensor * src1,
  4454. struct ggml_tensor * dst) {
  4455. switch (src0->type) {
  4456. case GGML_TYPE_F32:
  4457. {
  4458. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4459. } break;
  4460. case GGML_TYPE_Q4_0:
  4461. case GGML_TYPE_Q4_1:
  4462. case GGML_TYPE_I8:
  4463. case GGML_TYPE_I16:
  4464. case GGML_TYPE_I32:
  4465. case GGML_TYPE_F16:
  4466. case GGML_TYPE_COUNT:
  4467. {
  4468. GGML_ASSERT(false);
  4469. } break;
  4470. }
  4471. }
  4472. // ggml_compute_forward_sub
  4473. static void ggml_compute_forward_sub_f32(
  4474. const struct ggml_compute_params * params,
  4475. const struct ggml_tensor * src0,
  4476. const struct ggml_tensor * src1,
  4477. struct ggml_tensor * dst) {
  4478. assert(params->ith == 0);
  4479. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4481. return;
  4482. }
  4483. const int n = ggml_nrows(src0);
  4484. const int nc = src0->ne[0];
  4485. assert( dst->nb[0] == sizeof(float));
  4486. assert(src0->nb[0] == sizeof(float));
  4487. assert(src1->nb[0] == sizeof(float));
  4488. for (int i = 0; i < n; i++) {
  4489. ggml_vec_sub_f32(nc,
  4490. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4491. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4492. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4493. }
  4494. }
  4495. static void ggml_compute_forward_sub(
  4496. const struct ggml_compute_params * params,
  4497. const struct ggml_tensor * src0,
  4498. const struct ggml_tensor * src1,
  4499. struct ggml_tensor * dst) {
  4500. switch (src0->type) {
  4501. case GGML_TYPE_F32:
  4502. {
  4503. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4504. } break;
  4505. case GGML_TYPE_Q4_0:
  4506. case GGML_TYPE_Q4_1:
  4507. case GGML_TYPE_I8:
  4508. case GGML_TYPE_I16:
  4509. case GGML_TYPE_I32:
  4510. case GGML_TYPE_F16:
  4511. case GGML_TYPE_COUNT:
  4512. {
  4513. GGML_ASSERT(false);
  4514. } break;
  4515. }
  4516. }
  4517. // ggml_compute_forward_mul
  4518. static void ggml_compute_forward_mul_f32(
  4519. const struct ggml_compute_params * params,
  4520. const struct ggml_tensor * src0,
  4521. const struct ggml_tensor * src1,
  4522. struct ggml_tensor * dst) {
  4523. assert(params->ith == 0);
  4524. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4526. return;
  4527. }
  4528. const int n = ggml_nrows(src0);
  4529. const int nc = src0->ne[0];
  4530. assert( dst->nb[0] == sizeof(float));
  4531. assert(src0->nb[0] == sizeof(float));
  4532. assert(src1->nb[0] == sizeof(float));
  4533. for (int i = 0; i < n; i++) {
  4534. ggml_vec_mul_f32(nc,
  4535. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4536. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4537. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4538. }
  4539. }
  4540. static void ggml_compute_forward_mul(
  4541. const struct ggml_compute_params * params,
  4542. const struct ggml_tensor * src0,
  4543. const struct ggml_tensor * src1,
  4544. struct ggml_tensor * dst) {
  4545. switch (src0->type) {
  4546. case GGML_TYPE_F32:
  4547. {
  4548. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4549. } break;
  4550. case GGML_TYPE_Q4_0:
  4551. case GGML_TYPE_Q4_1:
  4552. case GGML_TYPE_I8:
  4553. case GGML_TYPE_I16:
  4554. case GGML_TYPE_I32:
  4555. case GGML_TYPE_F16:
  4556. case GGML_TYPE_COUNT:
  4557. {
  4558. GGML_ASSERT(false);
  4559. } break;
  4560. }
  4561. }
  4562. // ggml_compute_forward_div
  4563. static void ggml_compute_forward_div_f32(
  4564. const struct ggml_compute_params * params,
  4565. const struct ggml_tensor * src0,
  4566. const struct ggml_tensor * src1,
  4567. struct ggml_tensor * dst) {
  4568. assert(params->ith == 0);
  4569. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4571. return;
  4572. }
  4573. const int n = ggml_nrows(src0);
  4574. const int nc = src0->ne[0];
  4575. assert( dst->nb[0] == sizeof(float));
  4576. assert(src0->nb[0] == sizeof(float));
  4577. assert(src1->nb[0] == sizeof(float));
  4578. for (int i = 0; i < n; i++) {
  4579. ggml_vec_div_f32(nc,
  4580. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4581. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4582. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4583. }
  4584. }
  4585. static void ggml_compute_forward_div(
  4586. const struct ggml_compute_params * params,
  4587. const struct ggml_tensor * src0,
  4588. const struct ggml_tensor * src1,
  4589. struct ggml_tensor * dst) {
  4590. switch (src0->type) {
  4591. case GGML_TYPE_F32:
  4592. {
  4593. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4594. } break;
  4595. case GGML_TYPE_Q4_0:
  4596. case GGML_TYPE_Q4_1:
  4597. case GGML_TYPE_I8:
  4598. case GGML_TYPE_I16:
  4599. case GGML_TYPE_I32:
  4600. case GGML_TYPE_F16:
  4601. case GGML_TYPE_COUNT:
  4602. {
  4603. GGML_ASSERT(false);
  4604. } break;
  4605. }
  4606. }
  4607. // ggml_compute_forward_sqr
  4608. static void ggml_compute_forward_sqr_f32(
  4609. const struct ggml_compute_params * params,
  4610. const struct ggml_tensor * src0,
  4611. struct ggml_tensor * dst) {
  4612. assert(params->ith == 0);
  4613. assert(ggml_are_same_shape(src0, dst));
  4614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4615. return;
  4616. }
  4617. const int n = ggml_nrows(src0);
  4618. const int nc = src0->ne[0];
  4619. assert( dst->nb[0] == sizeof(float));
  4620. assert(src0->nb[0] == sizeof(float));
  4621. for (int i = 0; i < n; i++) {
  4622. ggml_vec_sqr_f32(nc,
  4623. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4624. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4625. }
  4626. }
  4627. static void ggml_compute_forward_sqr(
  4628. const struct ggml_compute_params * params,
  4629. const struct ggml_tensor * src0,
  4630. struct ggml_tensor * dst) {
  4631. switch (src0->type) {
  4632. case GGML_TYPE_F32:
  4633. {
  4634. ggml_compute_forward_sqr_f32(params, src0, dst);
  4635. } break;
  4636. case GGML_TYPE_Q4_0:
  4637. case GGML_TYPE_Q4_1:
  4638. case GGML_TYPE_I8:
  4639. case GGML_TYPE_I16:
  4640. case GGML_TYPE_I32:
  4641. case GGML_TYPE_F16:
  4642. case GGML_TYPE_COUNT:
  4643. {
  4644. GGML_ASSERT(false);
  4645. } break;
  4646. }
  4647. }
  4648. // ggml_compute_forward_sqrt
  4649. static void ggml_compute_forward_sqrt_f32(
  4650. const struct ggml_compute_params * params,
  4651. const struct ggml_tensor * src0,
  4652. struct ggml_tensor * dst) {
  4653. assert(params->ith == 0);
  4654. assert(ggml_are_same_shape(src0, dst));
  4655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4656. return;
  4657. }
  4658. const int n = ggml_nrows(src0);
  4659. const int nc = src0->ne[0];
  4660. assert( dst->nb[0] == sizeof(float));
  4661. assert(src0->nb[0] == sizeof(float));
  4662. for (int i = 0; i < n; i++) {
  4663. ggml_vec_sqrt_f32(nc,
  4664. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4665. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4666. }
  4667. }
  4668. static void ggml_compute_forward_sqrt(
  4669. const struct ggml_compute_params * params,
  4670. const struct ggml_tensor * src0,
  4671. struct ggml_tensor * dst) {
  4672. switch (src0->type) {
  4673. case GGML_TYPE_F32:
  4674. {
  4675. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4676. } break;
  4677. case GGML_TYPE_Q4_0:
  4678. case GGML_TYPE_Q4_1:
  4679. case GGML_TYPE_I8:
  4680. case GGML_TYPE_I16:
  4681. case GGML_TYPE_I32:
  4682. case GGML_TYPE_F16:
  4683. case GGML_TYPE_COUNT:
  4684. {
  4685. GGML_ASSERT(false);
  4686. } break;
  4687. }
  4688. }
  4689. // ggml_compute_forward_sum
  4690. static void ggml_compute_forward_sum_f32(
  4691. const struct ggml_compute_params * params,
  4692. const struct ggml_tensor * src0,
  4693. struct ggml_tensor * dst) {
  4694. assert(params->ith == 0);
  4695. assert(ggml_is_scalar(dst));
  4696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4697. return;
  4698. }
  4699. assert(ggml_is_scalar(dst));
  4700. assert(src0->nb[0] == sizeof(float));
  4701. const int64_t ne00 = src0->ne[0];
  4702. const int64_t ne01 = src0->ne[1];
  4703. const int64_t ne02 = src0->ne[2];
  4704. const int64_t ne03 = src0->ne[3];
  4705. const size_t nb01 = src0->nb[1];
  4706. const size_t nb02 = src0->nb[2];
  4707. const size_t nb03 = src0->nb[3];
  4708. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4709. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4710. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4711. ggml_vec_sum_f32(ne00,
  4712. (float *) (dst->data),
  4713. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4714. }
  4715. }
  4716. }
  4717. }
  4718. static void ggml_compute_forward_sum(
  4719. const struct ggml_compute_params * params,
  4720. const struct ggml_tensor * src0,
  4721. struct ggml_tensor * dst) {
  4722. switch (src0->type) {
  4723. case GGML_TYPE_F32:
  4724. {
  4725. ggml_compute_forward_sum_f32(params, src0, dst);
  4726. } break;
  4727. case GGML_TYPE_Q4_0:
  4728. case GGML_TYPE_Q4_1:
  4729. case GGML_TYPE_I8:
  4730. case GGML_TYPE_I16:
  4731. case GGML_TYPE_I32:
  4732. case GGML_TYPE_F16:
  4733. case GGML_TYPE_COUNT:
  4734. {
  4735. GGML_ASSERT(false);
  4736. } break;
  4737. }
  4738. }
  4739. // ggml_compute_forward_mean
  4740. static void ggml_compute_forward_mean_f32(
  4741. const struct ggml_compute_params * params,
  4742. const struct ggml_tensor * src0,
  4743. struct ggml_tensor * dst) {
  4744. assert(params->ith == 0);
  4745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4746. return;
  4747. }
  4748. assert(src0->nb[0] == sizeof(float));
  4749. const int64_t ne00 = src0->ne[0];
  4750. const int64_t ne01 = src0->ne[1];
  4751. const int64_t ne02 = src0->ne[2];
  4752. const int64_t ne03 = src0->ne[3];
  4753. const size_t nb01 = src0->nb[1];
  4754. const size_t nb02 = src0->nb[2];
  4755. const size_t nb03 = src0->nb[3];
  4756. const int64_t ne0 = dst->ne[0];
  4757. const int64_t ne1 = dst->ne[1];
  4758. const int64_t ne2 = dst->ne[2];
  4759. const int64_t ne3 = dst->ne[3];
  4760. assert(ne0 == 1);
  4761. assert(ne1 == ne01);
  4762. assert(ne2 == ne02);
  4763. assert(ne3 == ne03);
  4764. UNUSED(ne0);
  4765. UNUSED(ne1);
  4766. UNUSED(ne2);
  4767. UNUSED(ne3);
  4768. const size_t nb1 = dst->nb[1];
  4769. const size_t nb2 = dst->nb[2];
  4770. const size_t nb3 = dst->nb[3];
  4771. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4772. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4773. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4774. ggml_vec_sum_f32(ne00,
  4775. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4776. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4777. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4778. }
  4779. }
  4780. }
  4781. }
  4782. static void ggml_compute_forward_mean(
  4783. const struct ggml_compute_params * params,
  4784. const struct ggml_tensor * src0,
  4785. struct ggml_tensor * dst) {
  4786. switch (src0->type) {
  4787. case GGML_TYPE_F32:
  4788. {
  4789. ggml_compute_forward_mean_f32(params, src0, dst);
  4790. } break;
  4791. case GGML_TYPE_Q4_0:
  4792. case GGML_TYPE_Q4_1:
  4793. case GGML_TYPE_I8:
  4794. case GGML_TYPE_I16:
  4795. case GGML_TYPE_I32:
  4796. case GGML_TYPE_F16:
  4797. case GGML_TYPE_COUNT:
  4798. {
  4799. GGML_ASSERT(false);
  4800. } break;
  4801. }
  4802. }
  4803. // ggml_compute_forward_repeat
  4804. static void ggml_compute_forward_repeat_f32(
  4805. const struct ggml_compute_params * params,
  4806. const struct ggml_tensor * src0,
  4807. struct ggml_tensor * dst) {
  4808. assert(params->ith == 0);
  4809. assert(ggml_can_repeat(src0, dst));
  4810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4811. return;
  4812. }
  4813. // TODO: implement support for rank > 2 tensors
  4814. assert(src0->ne[2] == 1);
  4815. assert(src0->ne[3] == 1);
  4816. assert( dst->ne[2] == 1);
  4817. assert( dst->ne[3] == 1);
  4818. const int nc = dst->ne[0];
  4819. const int nr = dst->ne[1];
  4820. const int nc0 = src0->ne[0];
  4821. const int nr0 = src0->ne[1];
  4822. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4823. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4824. // TODO: support for transposed / permuted tensors
  4825. assert( dst->nb[0] == sizeof(float));
  4826. assert(src0->nb[0] == sizeof(float));
  4827. // TODO: maybe this is not optimal?
  4828. for (int i = 0; i < nrr; i++) {
  4829. for (int j = 0; j < ncr; j++) {
  4830. for (int k = 0; k < nr0; k++) {
  4831. ggml_vec_cpy_f32(nc0,
  4832. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4833. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4834. }
  4835. }
  4836. }
  4837. }
  4838. static void ggml_compute_forward_repeat(
  4839. const struct ggml_compute_params * params,
  4840. const struct ggml_tensor * src0,
  4841. struct ggml_tensor * dst) {
  4842. switch (src0->type) {
  4843. case GGML_TYPE_F32:
  4844. {
  4845. ggml_compute_forward_repeat_f32(params, src0, dst);
  4846. } break;
  4847. case GGML_TYPE_Q4_0:
  4848. case GGML_TYPE_Q4_1:
  4849. case GGML_TYPE_I8:
  4850. case GGML_TYPE_I16:
  4851. case GGML_TYPE_I32:
  4852. case GGML_TYPE_F16:
  4853. case GGML_TYPE_COUNT:
  4854. {
  4855. GGML_ASSERT(false);
  4856. } break;
  4857. }
  4858. }
  4859. // ggml_compute_forward_abs
  4860. static void ggml_compute_forward_abs_f32(
  4861. const struct ggml_compute_params * params,
  4862. const struct ggml_tensor * src0,
  4863. struct ggml_tensor * dst) {
  4864. assert(params->ith == 0);
  4865. assert(ggml_are_same_shape(src0, dst));
  4866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4867. return;
  4868. }
  4869. const int n = ggml_nrows(src0);
  4870. const int nc = src0->ne[0];
  4871. assert(dst->nb[0] == sizeof(float));
  4872. assert(src0->nb[0] == sizeof(float));
  4873. for (int i = 0; i < n; i++) {
  4874. ggml_vec_abs_f32(nc,
  4875. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4876. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4877. }
  4878. }
  4879. static void ggml_compute_forward_abs(
  4880. const struct ggml_compute_params * params,
  4881. const struct ggml_tensor * src0,
  4882. struct ggml_tensor * dst) {
  4883. switch (src0->type) {
  4884. case GGML_TYPE_F32:
  4885. {
  4886. ggml_compute_forward_abs_f32(params, src0, dst);
  4887. } break;
  4888. case GGML_TYPE_Q4_0:
  4889. case GGML_TYPE_Q4_1:
  4890. case GGML_TYPE_I8:
  4891. case GGML_TYPE_I16:
  4892. case GGML_TYPE_I32:
  4893. case GGML_TYPE_F16:
  4894. case GGML_TYPE_COUNT:
  4895. {
  4896. GGML_ASSERT(false);
  4897. } break;
  4898. }
  4899. }
  4900. // ggml_compute_forward_sgn
  4901. static void ggml_compute_forward_sgn_f32(
  4902. const struct ggml_compute_params * params,
  4903. const struct ggml_tensor * src0,
  4904. struct ggml_tensor * dst) {
  4905. assert(params->ith == 0);
  4906. assert(ggml_are_same_shape(src0, dst));
  4907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4908. return;
  4909. }
  4910. const int n = ggml_nrows(src0);
  4911. const int nc = src0->ne[0];
  4912. assert(dst->nb[0] == sizeof(float));
  4913. assert(src0->nb[0] == sizeof(float));
  4914. for (int i = 0; i < n; i++) {
  4915. ggml_vec_sgn_f32(nc,
  4916. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4917. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4918. }
  4919. }
  4920. static void ggml_compute_forward_sgn(
  4921. const struct ggml_compute_params * params,
  4922. const struct ggml_tensor * src0,
  4923. struct ggml_tensor * dst) {
  4924. switch (src0->type) {
  4925. case GGML_TYPE_F32:
  4926. {
  4927. ggml_compute_forward_sgn_f32(params, src0, dst);
  4928. } break;
  4929. case GGML_TYPE_Q4_0:
  4930. case GGML_TYPE_Q4_1:
  4931. case GGML_TYPE_I8:
  4932. case GGML_TYPE_I16:
  4933. case GGML_TYPE_I32:
  4934. case GGML_TYPE_F16:
  4935. case GGML_TYPE_COUNT:
  4936. {
  4937. GGML_ASSERT(false);
  4938. } break;
  4939. }
  4940. }
  4941. // ggml_compute_forward_neg
  4942. static void ggml_compute_forward_neg_f32(
  4943. const struct ggml_compute_params * params,
  4944. const struct ggml_tensor * src0,
  4945. struct ggml_tensor * dst) {
  4946. assert(params->ith == 0);
  4947. assert(ggml_are_same_shape(src0, dst));
  4948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4949. return;
  4950. }
  4951. const int n = ggml_nrows(src0);
  4952. const int nc = src0->ne[0];
  4953. assert(dst->nb[0] == sizeof(float));
  4954. assert(src0->nb[0] == sizeof(float));
  4955. for (int i = 0; i < n; i++) {
  4956. ggml_vec_neg_f32(nc,
  4957. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4958. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4959. }
  4960. }
  4961. static void ggml_compute_forward_neg(
  4962. const struct ggml_compute_params * params,
  4963. const struct ggml_tensor * src0,
  4964. struct ggml_tensor * dst) {
  4965. switch (src0->type) {
  4966. case GGML_TYPE_F32:
  4967. {
  4968. ggml_compute_forward_neg_f32(params, src0, dst);
  4969. } break;
  4970. case GGML_TYPE_Q4_0:
  4971. case GGML_TYPE_Q4_1:
  4972. case GGML_TYPE_I8:
  4973. case GGML_TYPE_I16:
  4974. case GGML_TYPE_I32:
  4975. case GGML_TYPE_F16:
  4976. case GGML_TYPE_COUNT:
  4977. {
  4978. GGML_ASSERT(false);
  4979. } break;
  4980. }
  4981. }
  4982. // ggml_compute_forward_step
  4983. static void ggml_compute_forward_step_f32(
  4984. const struct ggml_compute_params * params,
  4985. const struct ggml_tensor * src0,
  4986. struct ggml_tensor * dst) {
  4987. assert(params->ith == 0);
  4988. assert(ggml_are_same_shape(src0, dst));
  4989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4990. return;
  4991. }
  4992. const int n = ggml_nrows(src0);
  4993. const int nc = src0->ne[0];
  4994. assert(dst->nb[0] == sizeof(float));
  4995. assert(src0->nb[0] == sizeof(float));
  4996. for (int i = 0; i < n; i++) {
  4997. ggml_vec_step_f32(nc,
  4998. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4999. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5000. }
  5001. }
  5002. static void ggml_compute_forward_step(
  5003. const struct ggml_compute_params * params,
  5004. const struct ggml_tensor * src0,
  5005. struct ggml_tensor * dst) {
  5006. switch (src0->type) {
  5007. case GGML_TYPE_F32:
  5008. {
  5009. ggml_compute_forward_step_f32(params, src0, dst);
  5010. } break;
  5011. case GGML_TYPE_Q4_0:
  5012. case GGML_TYPE_Q4_1:
  5013. case GGML_TYPE_I8:
  5014. case GGML_TYPE_I16:
  5015. case GGML_TYPE_I32:
  5016. case GGML_TYPE_F16:
  5017. case GGML_TYPE_COUNT:
  5018. {
  5019. GGML_ASSERT(false);
  5020. } break;
  5021. }
  5022. }
  5023. // ggml_compute_forward_relu
  5024. static void ggml_compute_forward_relu_f32(
  5025. const struct ggml_compute_params * params,
  5026. const struct ggml_tensor * src0,
  5027. struct ggml_tensor * dst) {
  5028. assert(params->ith == 0);
  5029. assert(ggml_are_same_shape(src0, dst));
  5030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5031. return;
  5032. }
  5033. const int n = ggml_nrows(src0);
  5034. const int nc = src0->ne[0];
  5035. assert(dst->nb[0] == sizeof(float));
  5036. assert(src0->nb[0] == sizeof(float));
  5037. for (int i = 0; i < n; i++) {
  5038. ggml_vec_relu_f32(nc,
  5039. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5040. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5041. }
  5042. }
  5043. static void ggml_compute_forward_relu(
  5044. const struct ggml_compute_params * params,
  5045. const struct ggml_tensor * src0,
  5046. struct ggml_tensor * dst) {
  5047. switch (src0->type) {
  5048. case GGML_TYPE_F32:
  5049. {
  5050. ggml_compute_forward_relu_f32(params, src0, dst);
  5051. } break;
  5052. case GGML_TYPE_Q4_0:
  5053. case GGML_TYPE_Q4_1:
  5054. case GGML_TYPE_I8:
  5055. case GGML_TYPE_I16:
  5056. case GGML_TYPE_I32:
  5057. case GGML_TYPE_F16:
  5058. case GGML_TYPE_COUNT:
  5059. {
  5060. GGML_ASSERT(false);
  5061. } break;
  5062. }
  5063. }
  5064. // ggml_compute_forward_gelu
  5065. static void ggml_compute_forward_gelu_f32(
  5066. const struct ggml_compute_params * params,
  5067. const struct ggml_tensor * src0,
  5068. struct ggml_tensor * dst) {
  5069. GGML_ASSERT(ggml_is_contiguous(src0));
  5070. GGML_ASSERT(ggml_is_contiguous(dst));
  5071. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5073. return;
  5074. }
  5075. const int ith = params->ith;
  5076. const int nth = params->nth;
  5077. const int nc = src0->ne[0];
  5078. const int nr = ggml_nrows(src0);
  5079. // rows per thread
  5080. const int dr = (nr + nth - 1)/nth;
  5081. // row range for this thread
  5082. const int ir0 = dr*ith;
  5083. const int ir1 = MIN(ir0 + dr, nr);
  5084. for (int i1 = ir0; i1 < ir1; i1++) {
  5085. ggml_vec_gelu_f32(nc,
  5086. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5087. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5088. #ifndef NDEBUG
  5089. for (int k = 0; k < nc; k++) {
  5090. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5091. UNUSED(x);
  5092. assert(!isnan(x));
  5093. assert(!isinf(x));
  5094. }
  5095. #endif
  5096. }
  5097. }
  5098. static void ggml_compute_forward_gelu(
  5099. const struct ggml_compute_params * params,
  5100. const struct ggml_tensor * src0,
  5101. struct ggml_tensor * dst) {
  5102. switch (src0->type) {
  5103. case GGML_TYPE_F32:
  5104. {
  5105. ggml_compute_forward_gelu_f32(params, src0, dst);
  5106. } break;
  5107. case GGML_TYPE_Q4_0:
  5108. case GGML_TYPE_Q4_1:
  5109. case GGML_TYPE_I8:
  5110. case GGML_TYPE_I16:
  5111. case GGML_TYPE_I32:
  5112. case GGML_TYPE_F16:
  5113. case GGML_TYPE_COUNT:
  5114. {
  5115. GGML_ASSERT(false);
  5116. } break;
  5117. }
  5118. //printf("XXXXXXXX gelu\n");
  5119. }
  5120. // ggml_compute_forward_silu
  5121. static void ggml_compute_forward_silu_f32(
  5122. const struct ggml_compute_params * params,
  5123. const struct ggml_tensor * src0,
  5124. struct ggml_tensor * dst) {
  5125. GGML_ASSERT(ggml_is_contiguous(src0));
  5126. GGML_ASSERT(ggml_is_contiguous(dst));
  5127. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5129. return;
  5130. }
  5131. const int ith = params->ith;
  5132. const int nth = params->nth;
  5133. const int nc = src0->ne[0];
  5134. const int nr = ggml_nrows(src0);
  5135. // rows per thread
  5136. const int dr = (nr + nth - 1)/nth;
  5137. // row range for this thread
  5138. const int ir0 = dr*ith;
  5139. const int ir1 = MIN(ir0 + dr, nr);
  5140. for (int i1 = ir0; i1 < ir1; i1++) {
  5141. ggml_vec_silu_f32(nc,
  5142. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5143. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5144. #ifndef NDEBUG
  5145. for (int k = 0; k < nc; k++) {
  5146. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5147. UNUSED(x);
  5148. assert(!isnan(x));
  5149. assert(!isinf(x));
  5150. }
  5151. #endif
  5152. }
  5153. }
  5154. static void ggml_compute_forward_silu(
  5155. const struct ggml_compute_params * params,
  5156. const struct ggml_tensor * src0,
  5157. struct ggml_tensor * dst) {
  5158. switch (src0->type) {
  5159. case GGML_TYPE_F32:
  5160. {
  5161. ggml_compute_forward_silu_f32(params, src0, dst);
  5162. } break;
  5163. case GGML_TYPE_Q4_0:
  5164. case GGML_TYPE_Q4_1:
  5165. case GGML_TYPE_I8:
  5166. case GGML_TYPE_I16:
  5167. case GGML_TYPE_I32:
  5168. case GGML_TYPE_F16:
  5169. case GGML_TYPE_COUNT:
  5170. {
  5171. GGML_ASSERT(false);
  5172. } break;
  5173. }
  5174. }
  5175. // ggml_compute_forward_norm
  5176. static void ggml_compute_forward_norm_f32(
  5177. const struct ggml_compute_params * params,
  5178. const struct ggml_tensor * src0,
  5179. struct ggml_tensor * dst) {
  5180. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5182. return;
  5183. }
  5184. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5185. const int ith = params->ith;
  5186. const int nth = params->nth;
  5187. const int64_t ne00 = src0->ne[0];
  5188. const int64_t ne01 = src0->ne[1];
  5189. const int64_t ne02 = src0->ne[2];
  5190. const int64_t ne03 = src0->ne[3];
  5191. const size_t nb01 = src0->nb[1];
  5192. const size_t nb02 = src0->nb[2];
  5193. const size_t nb03 = src0->nb[3];
  5194. const size_t nb1 = dst->nb[1];
  5195. const size_t nb2 = dst->nb[2];
  5196. const size_t nb3 = dst->nb[3];
  5197. const float eps = 1e-5f; // TODO: make this a parameter
  5198. // TODO: optimize
  5199. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5200. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5201. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5202. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5203. ggml_float sum = 0.0;
  5204. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5205. sum += (ggml_float)x[i00];
  5206. }
  5207. float mean = sum/ne00;
  5208. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5209. ggml_float sum2 = 0.0;
  5210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5211. float v = x[i00] - mean;
  5212. y[i00] = v;
  5213. sum2 += (ggml_float)(v*v);
  5214. }
  5215. float variance = sum2/ne00;
  5216. const float scale = 1.0f/sqrtf(variance + eps);
  5217. ggml_vec_scale_f32(ne00, y, scale);
  5218. }
  5219. }
  5220. }
  5221. }
  5222. static void ggml_compute_forward_norm(
  5223. const struct ggml_compute_params * params,
  5224. const struct ggml_tensor * src0,
  5225. struct ggml_tensor * dst) {
  5226. switch (src0->type) {
  5227. case GGML_TYPE_F32:
  5228. {
  5229. ggml_compute_forward_norm_f32(params, src0, dst);
  5230. } break;
  5231. case GGML_TYPE_Q4_0:
  5232. case GGML_TYPE_Q4_1:
  5233. case GGML_TYPE_I8:
  5234. case GGML_TYPE_I16:
  5235. case GGML_TYPE_I32:
  5236. case GGML_TYPE_F16:
  5237. case GGML_TYPE_COUNT:
  5238. {
  5239. GGML_ASSERT(false);
  5240. } break;
  5241. }
  5242. }
  5243. static void ggml_compute_forward_rms_norm_f32(
  5244. const struct ggml_compute_params * params,
  5245. const struct ggml_tensor * src0,
  5246. struct ggml_tensor * dst) {
  5247. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5249. return;
  5250. }
  5251. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5252. const int ith = params->ith;
  5253. const int nth = params->nth;
  5254. const int64_t ne00 = src0->ne[0];
  5255. const int64_t ne01 = src0->ne[1];
  5256. const int64_t ne02 = src0->ne[2];
  5257. const int64_t ne03 = src0->ne[3];
  5258. const size_t nb01 = src0->nb[1];
  5259. const size_t nb02 = src0->nb[2];
  5260. const size_t nb03 = src0->nb[3];
  5261. const size_t nb1 = dst->nb[1];
  5262. const size_t nb2 = dst->nb[2];
  5263. const size_t nb3 = dst->nb[3];
  5264. const float eps = 1e-6f; // TODO: make this a parameter
  5265. // TODO: optimize
  5266. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5267. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5268. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5269. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5270. ggml_float sum = 0.0;
  5271. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5272. sum += (ggml_float)(x[i00] * x[i00]);
  5273. }
  5274. float mean = sum/ne00;
  5275. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5276. memcpy(y, x, ne00 * sizeof(float));
  5277. // for (int i00 = 0; i00 < ne00; i00++) {
  5278. // y[i00] = x[i00];
  5279. // }
  5280. const float scale = 1.0f/sqrtf(mean + eps);
  5281. ggml_vec_scale_f32(ne00, y, scale);
  5282. }
  5283. }
  5284. }
  5285. }
  5286. static void ggml_compute_forward_rms_norm(
  5287. const struct ggml_compute_params * params,
  5288. const struct ggml_tensor * src0,
  5289. struct ggml_tensor * dst) {
  5290. switch (src0->type) {
  5291. case GGML_TYPE_F32:
  5292. {
  5293. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5294. } break;
  5295. case GGML_TYPE_Q4_0:
  5296. case GGML_TYPE_Q4_1:
  5297. case GGML_TYPE_I8:
  5298. case GGML_TYPE_I16:
  5299. case GGML_TYPE_I32:
  5300. case GGML_TYPE_F16:
  5301. case GGML_TYPE_COUNT:
  5302. {
  5303. GGML_ASSERT(false);
  5304. } break;
  5305. }
  5306. }
  5307. // ggml_compute_forward_mul_mat
  5308. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5309. // helper function to determine if it is better to use BLAS or not
  5310. // for large matrices, BLAS is faster
  5311. static bool ggml_compute_forward_mul_mat_use_blas(
  5312. const struct ggml_tensor * src0,
  5313. const struct ggml_tensor * src1,
  5314. struct ggml_tensor * dst) {
  5315. //const int64_t ne00 = src0->ne[0];
  5316. //const int64_t ne01 = src0->ne[1];
  5317. const int64_t ne10 = src1->ne[0];
  5318. const int64_t ne0 = dst->ne[0];
  5319. const int64_t ne1 = dst->ne[1];
  5320. // TODO: find the optimal values for these
  5321. if (ggml_is_contiguous(src0) &&
  5322. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5323. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5324. return true;
  5325. }
  5326. return false;
  5327. }
  5328. #endif
  5329. static void ggml_compute_forward_mul_mat_f32(
  5330. const struct ggml_compute_params * params,
  5331. const struct ggml_tensor * src0,
  5332. const struct ggml_tensor * src1,
  5333. struct ggml_tensor * dst) {
  5334. int64_t t0 = ggml_perf_time_us();
  5335. UNUSED(t0);
  5336. const int64_t ne00 = src0->ne[0];
  5337. const int64_t ne01 = src0->ne[1];
  5338. const int64_t ne02 = src0->ne[2];
  5339. const int64_t ne03 = src0->ne[3];
  5340. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5341. const int64_t ne10 = src1->ne[0];
  5342. #endif
  5343. const int64_t ne11 = src1->ne[1];
  5344. #ifndef NDEBUG
  5345. const int64_t ne12 = src1->ne[2];
  5346. const int64_t ne13 = src1->ne[3];
  5347. const int64_t ne0 = dst->ne[0];
  5348. const int64_t ne1 = dst->ne[1];
  5349. const int64_t ne2 = dst->ne[2];
  5350. const int64_t ne3 = dst->ne[3];
  5351. const int nb00 = src0->nb[0];
  5352. #endif
  5353. const int nb01 = src0->nb[1];
  5354. const int nb02 = src0->nb[2];
  5355. const int nb03 = src0->nb[3];
  5356. #ifndef NDEBUG
  5357. const int nb10 = src1->nb[0];
  5358. #endif
  5359. const int nb11 = src1->nb[1];
  5360. const int nb12 = src1->nb[2];
  5361. const int nb13 = src1->nb[3];
  5362. const int nb0 = dst->nb[0];
  5363. const int nb1 = dst->nb[1];
  5364. const int nb2 = dst->nb[2];
  5365. const int nb3 = dst->nb[3];
  5366. const int ith = params->ith;
  5367. const int nth = params->nth;
  5368. assert(ne02 == ne12);
  5369. assert(ne03 == ne13);
  5370. assert(ne2 == ne12);
  5371. assert(ne3 == ne13);
  5372. // we don't support permuted src0 or src1
  5373. assert(nb00 == sizeof(float));
  5374. assert(nb10 == sizeof(float));
  5375. // dst cannot be transposed or permuted
  5376. assert(nb0 == sizeof(float));
  5377. assert(nb0 <= nb1);
  5378. assert(nb1 <= nb2);
  5379. assert(nb2 <= nb3);
  5380. assert(ne0 == ne01);
  5381. assert(ne1 == ne11);
  5382. assert(ne2 == ne02);
  5383. assert(ne3 == ne03);
  5384. // nb01 >= nb00 - src0 is not transposed
  5385. // compute by src0 rows
  5386. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5387. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5388. if (params->ith != 0) {
  5389. return;
  5390. }
  5391. if (params->type == GGML_TASK_INIT) {
  5392. return;
  5393. }
  5394. if (params->type == GGML_TASK_FINALIZE) {
  5395. return;
  5396. }
  5397. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5398. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5399. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5400. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5401. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5402. // zT = y * xT
  5403. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5404. ne11, ne01, ne10,
  5405. 1.0f, y, ne10,
  5406. x, ne00,
  5407. 0.0f, d, ne01);
  5408. }
  5409. }
  5410. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5411. return;
  5412. }
  5413. #endif
  5414. if (params->type == GGML_TASK_INIT) {
  5415. return;
  5416. }
  5417. if (params->type == GGML_TASK_FINALIZE) {
  5418. return;
  5419. }
  5420. // parallelize by src0 rows using ggml_vec_dot_f32
  5421. // total rows in src0
  5422. const int nr = ne01*ne02*ne03;
  5423. // rows per thread
  5424. const int dr = (nr + nth - 1)/nth;
  5425. // row range for this thread
  5426. const int ir0 = dr*ith;
  5427. const int ir1 = MIN(ir0 + dr, nr);
  5428. for (int ir = ir0; ir < ir1; ++ir) {
  5429. // src0 indices
  5430. const int i03 = ir/(ne02*ne01);
  5431. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5432. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5433. for (int64_t ic = 0; ic < ne11; ++ic) {
  5434. // src1 indices
  5435. const int i13 = i03;
  5436. const int i12 = i02;
  5437. const int i11 = ic;
  5438. // dst indices
  5439. const int i0 = i01;
  5440. const int i1 = i11;
  5441. const int i2 = i02;
  5442. const int i3 = i03;
  5443. ggml_vec_dot_f32(ne00,
  5444. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5445. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5446. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5447. }
  5448. }
  5449. //int64_t t1 = ggml_perf_time_us();
  5450. //static int64_t acc = 0;
  5451. //acc += t1 - t0;
  5452. //if (t1 - t0 > 10) {
  5453. // printf("\n");
  5454. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5455. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5456. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5457. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5458. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5459. //}
  5460. }
  5461. static void ggml_compute_forward_mul_mat_f16_f32(
  5462. const struct ggml_compute_params * params,
  5463. const struct ggml_tensor * src0,
  5464. const struct ggml_tensor * src1,
  5465. struct ggml_tensor * dst) {
  5466. int64_t t0 = ggml_perf_time_us();
  5467. UNUSED(t0);
  5468. const int64_t ne00 = src0->ne[0];
  5469. const int64_t ne01 = src0->ne[1];
  5470. const int64_t ne02 = src0->ne[2];
  5471. const int64_t ne03 = src0->ne[3];
  5472. const int64_t ne10 = src1->ne[0];
  5473. const int64_t ne11 = src1->ne[1];
  5474. const int64_t ne12 = src1->ne[2];
  5475. const int64_t ne13 = src1->ne[3];
  5476. const int64_t ne0 = dst->ne[0];
  5477. const int64_t ne1 = dst->ne[1];
  5478. const int64_t ne2 = dst->ne[2];
  5479. const int64_t ne3 = dst->ne[3];
  5480. //const int64_t ne = ne0*ne1*ne2*ne3;
  5481. const int nb00 = src0->nb[0];
  5482. const int nb01 = src0->nb[1];
  5483. const int nb02 = src0->nb[2];
  5484. const int nb03 = src0->nb[3];
  5485. const int nb10 = src1->nb[0];
  5486. const int nb11 = src1->nb[1];
  5487. const int nb12 = src1->nb[2];
  5488. const int nb13 = src1->nb[3];
  5489. const int nb0 = dst->nb[0];
  5490. const int nb1 = dst->nb[1];
  5491. const int nb2 = dst->nb[2];
  5492. const int nb3 = dst->nb[3];
  5493. const int ith = params->ith;
  5494. const int nth = params->nth;
  5495. GGML_ASSERT(ne02 == ne12);
  5496. GGML_ASSERT(ne03 == ne13);
  5497. GGML_ASSERT(ne2 == ne12);
  5498. GGML_ASSERT(ne3 == ne13);
  5499. // TODO: we don't support permuted src0
  5500. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5501. // dst cannot be transposed or permuted
  5502. GGML_ASSERT(nb0 == sizeof(float));
  5503. GGML_ASSERT(nb0 <= nb1);
  5504. GGML_ASSERT(nb1 <= nb2);
  5505. GGML_ASSERT(nb2 <= nb3);
  5506. GGML_ASSERT(ne0 == ne01);
  5507. GGML_ASSERT(ne1 == ne11);
  5508. GGML_ASSERT(ne2 == ne02);
  5509. GGML_ASSERT(ne3 == ne03);
  5510. // nb01 >= nb00 - src0 is not transposed
  5511. // compute by src0 rows
  5512. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5513. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5514. GGML_ASSERT(nb10 == sizeof(float));
  5515. if (params->ith != 0) {
  5516. return;
  5517. }
  5518. if (params->type == GGML_TASK_INIT) {
  5519. return;
  5520. }
  5521. if (params->type == GGML_TASK_FINALIZE) {
  5522. return;
  5523. }
  5524. float * const wdata = params->wdata;
  5525. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5526. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5527. {
  5528. size_t id = 0;
  5529. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5530. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5531. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5532. }
  5533. }
  5534. }
  5535. const float * x = wdata;
  5536. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5537. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5538. // zT = y * xT
  5539. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5540. ne11, ne01, ne10,
  5541. 1.0f, y, ne10,
  5542. x, ne00,
  5543. 0.0f, d, ne01);
  5544. }
  5545. }
  5546. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5547. return;
  5548. }
  5549. #endif
  5550. if (params->type == GGML_TASK_INIT) {
  5551. ggml_fp16_t * const wdata = params->wdata;
  5552. size_t id = 0;
  5553. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5554. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5555. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5556. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5557. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5558. }
  5559. }
  5560. }
  5561. }
  5562. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5563. return;
  5564. }
  5565. if (params->type == GGML_TASK_FINALIZE) {
  5566. return;
  5567. }
  5568. // fp16 -> half the size, so divide by 2
  5569. // TODO: do not support transposed src1
  5570. assert(nb10/2 == sizeof(ggml_fp16_t));
  5571. // parallelize by src0 rows using ggml_vec_dot_f16
  5572. // total rows in src0
  5573. const int nr = ne01*ne02*ne03;
  5574. // rows per thread
  5575. const int dr = (nr + nth - 1)/nth;
  5576. // row range for this thread
  5577. const int ir0 = dr*ith;
  5578. const int ir1 = MIN(ir0 + dr, nr);
  5579. ggml_fp16_t * wdata = params->wdata;
  5580. for (int ir = ir0; ir < ir1; ++ir) {
  5581. // src0 indices
  5582. const int i03 = ir/(ne02*ne01);
  5583. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5584. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5585. const int i13 = i03;
  5586. const int i12 = i02;
  5587. const int i0 = i01;
  5588. const int i2 = i02;
  5589. const int i3 = i03;
  5590. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5591. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5592. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5593. for (int64_t ic = 0; ic < ne11; ++ic) {
  5594. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5595. }
  5596. }
  5597. //int64_t t1 = ggml_time_us();
  5598. //static int64_t acc = 0;
  5599. //acc += t1 - t0;
  5600. //if (t1 - t0 > 10) {
  5601. // printf("\n");
  5602. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5603. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5604. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5605. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5606. //}
  5607. }
  5608. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5609. [GGML_TYPE_Q4_0] = {
  5610. .dequantize_row_q = dequantize_row_q4_0,
  5611. .quantize_row_q = quantize_row_q4_0,
  5612. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5613. .vec_dot_q = ggml_vec_dot_q4_0,
  5614. },
  5615. [GGML_TYPE_Q4_1] = {
  5616. .dequantize_row_q = dequantize_row_q4_1,
  5617. .quantize_row_q = quantize_row_q4_1,
  5618. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5619. .vec_dot_q = ggml_vec_dot_q4_1,
  5620. },
  5621. };
  5622. // For internal test use
  5623. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5624. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5625. return quantize_fns[i];
  5626. }
  5627. static void ggml_compute_forward_mul_mat_q_f32(
  5628. const struct ggml_compute_params * params,
  5629. const struct ggml_tensor * src0,
  5630. const struct ggml_tensor * src1,
  5631. struct ggml_tensor * dst) {
  5632. int64_t t0 = ggml_perf_time_us();
  5633. UNUSED(t0);
  5634. const int64_t ne00 = src0->ne[0];
  5635. const int64_t ne01 = src0->ne[1];
  5636. const int64_t ne02 = src0->ne[2];
  5637. const int64_t ne03 = src0->ne[3];
  5638. const int64_t ne10 = src1->ne[0];
  5639. const int64_t ne11 = src1->ne[1];
  5640. const int64_t ne12 = src1->ne[2];
  5641. const int64_t ne13 = src1->ne[3];
  5642. const int64_t ne0 = dst->ne[0];
  5643. const int64_t ne1 = dst->ne[1];
  5644. const int64_t ne2 = dst->ne[2];
  5645. const int64_t ne3 = dst->ne[3];
  5646. const int nb00 = src0->nb[0];
  5647. const int nb01 = src0->nb[1];
  5648. const int nb02 = src0->nb[2];
  5649. const int nb03 = src0->nb[3];
  5650. const int nb10 = src1->nb[0];
  5651. const int nb11 = src1->nb[1];
  5652. const int nb12 = src1->nb[2];
  5653. const int nb13 = src1->nb[3];
  5654. const int nb0 = dst->nb[0];
  5655. const int nb1 = dst->nb[1];
  5656. const int nb2 = dst->nb[2];
  5657. const int nb3 = dst->nb[3];
  5658. const int ith = params->ith;
  5659. const int nth = params->nth;
  5660. GGML_ASSERT(ne02 == ne12);
  5661. GGML_ASSERT(ne03 == ne13);
  5662. GGML_ASSERT(ne2 == ne12);
  5663. GGML_ASSERT(ne3 == ne13);
  5664. const enum ggml_type type = src0->type;
  5665. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5666. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5667. // we don't support permuted src0 or src1
  5668. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5669. GGML_ASSERT(nb10 == sizeof(float));
  5670. // dst cannot be transposed or permuted
  5671. GGML_ASSERT(nb0 == sizeof(float));
  5672. GGML_ASSERT(nb0 <= nb1);
  5673. GGML_ASSERT(nb1 <= nb2);
  5674. GGML_ASSERT(nb2 <= nb3);
  5675. GGML_ASSERT(ne0 == ne01);
  5676. GGML_ASSERT(ne1 == ne11);
  5677. GGML_ASSERT(ne2 == ne02);
  5678. GGML_ASSERT(ne3 == ne03);
  5679. // nb01 >= nb00 - src0 is not transposed
  5680. // compute by src0 rows
  5681. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5682. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5683. if (params->ith != 0) {
  5684. return;
  5685. }
  5686. if (params->type == GGML_TASK_INIT) {
  5687. return;
  5688. }
  5689. if (params->type == GGML_TASK_FINALIZE) {
  5690. return;
  5691. }
  5692. float * const wdata = params->wdata;
  5693. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5694. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5695. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5696. {
  5697. size_t id = 0;
  5698. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5699. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5700. id += ne00;
  5701. }
  5702. }
  5703. const float * x = wdata;
  5704. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5705. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5706. // zT = y * xT
  5707. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5708. ne11, ne01, ne10,
  5709. 1.0f, y, ne10,
  5710. x, ne00,
  5711. 0.0f, d, ne01);
  5712. }
  5713. }
  5714. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5715. return;
  5716. }
  5717. #endif
  5718. if (params->type == GGML_TASK_INIT) {
  5719. char * wdata = params->wdata;
  5720. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5721. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5722. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5723. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5724. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5725. wdata += row_size;
  5726. }
  5727. }
  5728. }
  5729. return;
  5730. }
  5731. if (params->type == GGML_TASK_FINALIZE) {
  5732. return;
  5733. }
  5734. // parallelize by src0 rows using ggml_vec_dot_q
  5735. // total rows in src0
  5736. const int nr = ne01*ne02*ne03;
  5737. // rows per thread
  5738. const int dr = (nr + nth - 1)/nth;
  5739. // row range for this thread
  5740. const int ir0 = dr*ith;
  5741. const int ir1 = MIN(ir0 + dr, nr);
  5742. void * wdata = params->wdata;
  5743. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5744. for (int ir = ir0; ir < ir1; ++ir) {
  5745. // src0 indices
  5746. const int i03 = ir/(ne02*ne01);
  5747. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5748. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5749. const int i13 = i03;
  5750. const int i12 = i02;
  5751. const int i0 = i01;
  5752. const int i2 = i02;
  5753. const int i3 = i03;
  5754. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5755. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5756. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5757. assert(ne00 % 32 == 0);
  5758. for (int64_t ic = 0; ic < ne11; ++ic) {
  5759. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5760. }
  5761. }
  5762. //int64_t t1 = ggml_time_us();
  5763. //static int64_t acc = 0;
  5764. //acc += t1 - t0;
  5765. //if (t1 - t0 > 10) {
  5766. // printf("\n");
  5767. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5768. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5769. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5770. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5771. //}
  5772. }
  5773. static void ggml_compute_forward_mul_mat(
  5774. const struct ggml_compute_params * params,
  5775. const struct ggml_tensor * src0,
  5776. const struct ggml_tensor * src1,
  5777. struct ggml_tensor * dst) {
  5778. switch (src0->type) {
  5779. case GGML_TYPE_Q4_0:
  5780. case GGML_TYPE_Q4_1:
  5781. {
  5782. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5783. } break;
  5784. case GGML_TYPE_F16:
  5785. {
  5786. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5787. } break;
  5788. case GGML_TYPE_F32:
  5789. {
  5790. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5791. } break;
  5792. case GGML_TYPE_I8:
  5793. case GGML_TYPE_I16:
  5794. case GGML_TYPE_I32:
  5795. case GGML_TYPE_COUNT:
  5796. {
  5797. GGML_ASSERT(false);
  5798. } break;
  5799. }
  5800. #if 0
  5801. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5802. static int first = 8;
  5803. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5804. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5805. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5806. if (first) {
  5807. --first;
  5808. } else {
  5809. for (int k = 0; k < dst->ne[1]; ++k) {
  5810. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5811. for (int i = 0; i < 16; ++i) {
  5812. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5813. }
  5814. printf("\n");
  5815. }
  5816. printf("\n");
  5817. }
  5818. printf("\n");
  5819. exit(0);
  5820. }
  5821. } else {
  5822. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5823. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5824. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5825. }
  5826. #endif
  5827. }
  5828. // ggml_compute_forward_scale
  5829. static void ggml_compute_forward_scale_f32(
  5830. const struct ggml_compute_params * params,
  5831. const struct ggml_tensor * src0,
  5832. const struct ggml_tensor * src1,
  5833. struct ggml_tensor * dst) {
  5834. GGML_ASSERT(ggml_is_contiguous(src0));
  5835. GGML_ASSERT(ggml_is_contiguous(dst));
  5836. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5837. GGML_ASSERT(ggml_is_scalar(src1));
  5838. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5839. return;
  5840. }
  5841. // scale factor
  5842. const float v = *(float *) src1->data;
  5843. const int ith = params->ith;
  5844. const int nth = params->nth;
  5845. const int nc = src0->ne[0];
  5846. const int nr = ggml_nrows(src0);
  5847. // rows per thread
  5848. const int dr = (nr + nth - 1)/nth;
  5849. // row range for this thread
  5850. const int ir0 = dr*ith;
  5851. const int ir1 = MIN(ir0 + dr, nr);
  5852. for (int i1 = ir0; i1 < ir1; i1++) {
  5853. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5854. }
  5855. }
  5856. static void ggml_compute_forward_scale(
  5857. const struct ggml_compute_params * params,
  5858. const struct ggml_tensor * src0,
  5859. const struct ggml_tensor * src1,
  5860. struct ggml_tensor * dst) {
  5861. switch (src0->type) {
  5862. case GGML_TYPE_F32:
  5863. {
  5864. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5865. } break;
  5866. case GGML_TYPE_Q4_0:
  5867. case GGML_TYPE_Q4_1:
  5868. case GGML_TYPE_I8:
  5869. case GGML_TYPE_I16:
  5870. case GGML_TYPE_I32:
  5871. case GGML_TYPE_F16:
  5872. case GGML_TYPE_COUNT:
  5873. {
  5874. GGML_ASSERT(false);
  5875. } break;
  5876. }
  5877. }
  5878. // ggml_compute_forward_cpy
  5879. static void ggml_compute_forward_cpy(
  5880. const struct ggml_compute_params * params,
  5881. const struct ggml_tensor * src0,
  5882. struct ggml_tensor * dst) {
  5883. ggml_compute_forward_dup(params, src0, dst);
  5884. }
  5885. // ggml_compute_forward_cont
  5886. static void ggml_compute_forward_cont(
  5887. const struct ggml_compute_params * params,
  5888. const struct ggml_tensor * src0,
  5889. struct ggml_tensor * dst) {
  5890. ggml_compute_forward_dup(params, src0, dst);
  5891. }
  5892. // ggml_compute_forward_reshape
  5893. static void ggml_compute_forward_reshape(
  5894. const struct ggml_compute_params * params,
  5895. const struct ggml_tensor * src0,
  5896. struct ggml_tensor * dst) {
  5897. // NOP
  5898. UNUSED(params);
  5899. UNUSED(src0);
  5900. UNUSED(dst);
  5901. }
  5902. // ggml_compute_forward_view
  5903. static void ggml_compute_forward_view(
  5904. const struct ggml_compute_params * params,
  5905. const struct ggml_tensor * src0) {
  5906. // NOP
  5907. UNUSED(params);
  5908. UNUSED(src0);
  5909. }
  5910. // ggml_compute_forward_permute
  5911. static void ggml_compute_forward_permute(
  5912. const struct ggml_compute_params * params,
  5913. const struct ggml_tensor * src0) {
  5914. // NOP
  5915. UNUSED(params);
  5916. UNUSED(src0);
  5917. }
  5918. // ggml_compute_forward_transpose
  5919. static void ggml_compute_forward_transpose(
  5920. const struct ggml_compute_params * params,
  5921. const struct ggml_tensor * src0) {
  5922. // NOP
  5923. UNUSED(params);
  5924. UNUSED(src0);
  5925. }
  5926. // ggml_compute_forward_get_rows
  5927. static void ggml_compute_forward_get_rows_q(
  5928. const struct ggml_compute_params * params,
  5929. const struct ggml_tensor * src0,
  5930. const struct ggml_tensor * src1,
  5931. struct ggml_tensor * dst) {
  5932. assert(params->ith == 0);
  5933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5934. return;
  5935. }
  5936. const int nc = src0->ne[0];
  5937. const int nr = ggml_nelements(src1);
  5938. const enum ggml_type type = src0->type;
  5939. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5940. assert( dst->ne[0] == nc);
  5941. assert( dst->ne[1] == nr);
  5942. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5943. for (int i = 0; i < nr; ++i) {
  5944. const int r = ((int32_t *) src1->data)[i];
  5945. dequantize_row_q(
  5946. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5947. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5948. }
  5949. }
  5950. static void ggml_compute_forward_get_rows_f16(
  5951. const struct ggml_compute_params * params,
  5952. const struct ggml_tensor * src0,
  5953. const struct ggml_tensor * src1,
  5954. struct ggml_tensor * dst) {
  5955. assert(params->ith == 0);
  5956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5957. return;
  5958. }
  5959. const int nc = src0->ne[0];
  5960. const int nr = ggml_nelements(src1);
  5961. assert( dst->ne[0] == nc);
  5962. assert( dst->ne[1] == nr);
  5963. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5964. for (int i = 0; i < nr; ++i) {
  5965. const int r = ((int32_t *) src1->data)[i];
  5966. for (int j = 0; j < nc; ++j) {
  5967. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5968. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5969. }
  5970. }
  5971. }
  5972. static void ggml_compute_forward_get_rows_f32(
  5973. const struct ggml_compute_params * params,
  5974. const struct ggml_tensor * src0,
  5975. const struct ggml_tensor * src1,
  5976. struct ggml_tensor * dst) {
  5977. assert(params->ith == 0);
  5978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5979. return;
  5980. }
  5981. const int nc = src0->ne[0];
  5982. const int nr = ggml_nelements(src1);
  5983. assert( dst->ne[0] == nc);
  5984. assert( dst->ne[1] == nr);
  5985. assert(src0->nb[0] == sizeof(float));
  5986. for (int i = 0; i < nr; ++i) {
  5987. const int r = ((int32_t *) src1->data)[i];
  5988. ggml_vec_cpy_f32(nc,
  5989. (float *) ((char *) dst->data + i*dst->nb[1]),
  5990. (float *) ((char *) src0->data + r*src0->nb[1]));
  5991. }
  5992. }
  5993. static void ggml_compute_forward_get_rows(
  5994. const struct ggml_compute_params * params,
  5995. const struct ggml_tensor * src0,
  5996. const struct ggml_tensor * src1,
  5997. struct ggml_tensor * dst) {
  5998. switch (src0->type) {
  5999. case GGML_TYPE_Q4_0:
  6000. case GGML_TYPE_Q4_1:
  6001. {
  6002. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6003. } break;
  6004. case GGML_TYPE_F16:
  6005. {
  6006. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6007. } break;
  6008. case GGML_TYPE_F32:
  6009. {
  6010. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6011. } break;
  6012. case GGML_TYPE_I8:
  6013. case GGML_TYPE_I16:
  6014. case GGML_TYPE_I32:
  6015. case GGML_TYPE_COUNT:
  6016. {
  6017. GGML_ASSERT(false);
  6018. } break;
  6019. }
  6020. //static bool first = true;
  6021. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6022. //if (first) {
  6023. // first = false;
  6024. //} else {
  6025. // for (int k = 0; k < dst->ne[1]; ++k) {
  6026. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6027. // for (int i = 0; i < 16; ++i) {
  6028. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6029. // }
  6030. // printf("\n");
  6031. // }
  6032. // printf("\n");
  6033. // }
  6034. // printf("\n");
  6035. // exit(0);
  6036. //}
  6037. }
  6038. // ggml_compute_forward_diag_mask_inf
  6039. static void ggml_compute_forward_diag_mask_inf_f32(
  6040. const struct ggml_compute_params * params,
  6041. const struct ggml_tensor * src0,
  6042. const struct ggml_tensor * src1,
  6043. struct ggml_tensor * dst) {
  6044. assert(params->ith == 0);
  6045. assert(src1->type == GGML_TYPE_I32);
  6046. assert(ggml_nelements(src1) == 1);
  6047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6048. return;
  6049. }
  6050. const int n_past = ((int32_t *) src1->data)[0];
  6051. // TODO: handle transposed/permuted matrices
  6052. const int n = ggml_nrows(src0);
  6053. const int nc = src0->ne[0];
  6054. const int nr = src0->ne[1];
  6055. const int nz = n/nr;
  6056. assert( dst->nb[0] == sizeof(float));
  6057. assert(src0->nb[0] == sizeof(float));
  6058. for (int k = 0; k < nz; k++) {
  6059. for (int j = 0; j < nr; j++) {
  6060. for (int i = n_past; i < nc; i++) {
  6061. if (i > n_past + j) {
  6062. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6063. }
  6064. }
  6065. }
  6066. }
  6067. }
  6068. static void ggml_compute_forward_diag_mask_inf(
  6069. const struct ggml_compute_params * params,
  6070. const struct ggml_tensor * src0,
  6071. const struct ggml_tensor * src1,
  6072. struct ggml_tensor * dst) {
  6073. switch (src0->type) {
  6074. case GGML_TYPE_F32:
  6075. {
  6076. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6077. } break;
  6078. case GGML_TYPE_Q4_0:
  6079. case GGML_TYPE_Q4_1:
  6080. case GGML_TYPE_I8:
  6081. case GGML_TYPE_I16:
  6082. case GGML_TYPE_I32:
  6083. case GGML_TYPE_F16:
  6084. case GGML_TYPE_COUNT:
  6085. {
  6086. GGML_ASSERT(false);
  6087. } break;
  6088. }
  6089. }
  6090. // ggml_compute_forward_soft_max
  6091. static void ggml_compute_forward_soft_max_f32(
  6092. const struct ggml_compute_params * params,
  6093. const struct ggml_tensor * src0,
  6094. struct ggml_tensor * dst) {
  6095. GGML_ASSERT(ggml_is_contiguous(src0));
  6096. GGML_ASSERT(ggml_is_contiguous(dst));
  6097. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6099. return;
  6100. }
  6101. // TODO: handle transposed/permuted matrices
  6102. const int ith = params->ith;
  6103. const int nth = params->nth;
  6104. const int nc = src0->ne[0];
  6105. const int nr = ggml_nrows(src0);
  6106. // rows per thread
  6107. const int dr = (nr + nth - 1)/nth;
  6108. // row range for this thread
  6109. const int ir0 = dr*ith;
  6110. const int ir1 = MIN(ir0 + dr, nr);
  6111. for (int i1 = ir0; i1 < ir1; i1++) {
  6112. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6113. #ifndef NDEBUG
  6114. for (int i = 0; i < nc; ++i) {
  6115. //printf("p[%d] = %f\n", i, p[i]);
  6116. assert(!isnan(p[i]));
  6117. }
  6118. #endif
  6119. float max = -INFINITY;
  6120. ggml_vec_max_f32(nc, &max, p);
  6121. ggml_float sum = 0.0;
  6122. uint16_t scvt;
  6123. for (int i = 0; i < nc; i++) {
  6124. if (p[i] == -INFINITY) {
  6125. p[i] = 0.0f;
  6126. } else {
  6127. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6128. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6129. memcpy(&scvt, &s, sizeof(scvt));
  6130. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6131. sum += (ggml_float)val;
  6132. p[i] = val;
  6133. }
  6134. }
  6135. assert(sum > 0.0);
  6136. sum = 1.0/sum;
  6137. ggml_vec_scale_f32(nc, p, sum);
  6138. #ifndef NDEBUG
  6139. for (int i = 0; i < nc; ++i) {
  6140. assert(!isnan(p[i]));
  6141. assert(!isinf(p[i]));
  6142. }
  6143. #endif
  6144. }
  6145. }
  6146. static void ggml_compute_forward_soft_max(
  6147. const struct ggml_compute_params * params,
  6148. const struct ggml_tensor * src0,
  6149. struct ggml_tensor * dst) {
  6150. switch (src0->type) {
  6151. case GGML_TYPE_F32:
  6152. {
  6153. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6154. } break;
  6155. case GGML_TYPE_Q4_0:
  6156. case GGML_TYPE_Q4_1:
  6157. case GGML_TYPE_I8:
  6158. case GGML_TYPE_I16:
  6159. case GGML_TYPE_I32:
  6160. case GGML_TYPE_F16:
  6161. case GGML_TYPE_COUNT:
  6162. {
  6163. GGML_ASSERT(false);
  6164. } break;
  6165. }
  6166. }
  6167. // ggml_compute_forward_rope
  6168. static void ggml_compute_forward_rope_f32(
  6169. const struct ggml_compute_params * params,
  6170. const struct ggml_tensor * src0,
  6171. const struct ggml_tensor * src1,
  6172. struct ggml_tensor * dst) {
  6173. assert(src1->type == GGML_TYPE_I32);
  6174. assert(ggml_nelements(src1) == 3);
  6175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6176. return;
  6177. }
  6178. const int n_past = ((int32_t *) src1->data)[0];
  6179. const int n_dims = ((int32_t *) src1->data)[1];
  6180. const int mode = ((int32_t *) src1->data)[2];
  6181. //const int64_t ne0 = src0->ne[0];
  6182. const int64_t ne1 = src0->ne[1];
  6183. const int64_t ne2 = src0->ne[2];
  6184. const int64_t ne3 = src0->ne[3];
  6185. const int nb0 = src0->nb[0];
  6186. const int nb1 = src0->nb[1];
  6187. const int nb2 = src0->nb[2];
  6188. const int nb3 = src0->nb[3];
  6189. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6190. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6191. assert(nb0 == sizeof(float));
  6192. const int ith = params->ith;
  6193. const int nth = params->nth;
  6194. const int nr = ggml_nrows(src0);
  6195. // rows per thread
  6196. const int dr = (nr + nth - 1)/nth;
  6197. // row range for this thread
  6198. const int ir0 = dr*ith;
  6199. const int ir1 = MIN(ir0 + dr, nr);
  6200. // row index used to determine which thread to use
  6201. int ir = 0;
  6202. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6203. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6204. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6205. const int p = (mode == 0 ? n_past + i2 : i2);
  6206. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6207. if (ir++ < ir0) continue;
  6208. if (ir > ir1) break;
  6209. float theta = (float)p;
  6210. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6211. const float cos_theta = cosf(theta);
  6212. const float sin_theta = sinf(theta);
  6213. theta *= theta_scale;
  6214. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6215. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6216. const float x0 = src[0];
  6217. const float x1 = src[1];
  6218. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6219. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6220. }
  6221. }
  6222. }
  6223. }
  6224. }
  6225. static void ggml_compute_forward_rope_f16(
  6226. const struct ggml_compute_params * params,
  6227. const struct ggml_tensor * src0,
  6228. const struct ggml_tensor * src1,
  6229. struct ggml_tensor * dst) {
  6230. assert(src1->type == GGML_TYPE_I32);
  6231. assert(ggml_nelements(src1) == 3);
  6232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6233. return;
  6234. }
  6235. const int n_past = ((int32_t *) src1->data)[0];
  6236. const int n_dims = ((int32_t *) src1->data)[1];
  6237. const int mode = ((int32_t *) src1->data)[2];
  6238. //const int64_t ne0 = src0->ne[0];
  6239. const int64_t ne1 = src0->ne[1];
  6240. const int64_t ne2 = src0->ne[2];
  6241. const int64_t ne3 = src0->ne[3];
  6242. const int nb0 = src0->nb[0];
  6243. const int nb1 = src0->nb[1];
  6244. const int nb2 = src0->nb[2];
  6245. const int nb3 = src0->nb[3];
  6246. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6247. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6248. assert(nb0 == sizeof(ggml_fp16_t));
  6249. const int ith = params->ith;
  6250. const int nth = params->nth;
  6251. const int nr = ggml_nrows(src0);
  6252. // rows per thread
  6253. const int dr = (nr + nth - 1)/nth;
  6254. // row range for this thread
  6255. const int ir0 = dr*ith;
  6256. const int ir1 = MIN(ir0 + dr, nr);
  6257. // row index used to determine which thread to use
  6258. int ir = 0;
  6259. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6260. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6261. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6262. const int p = (mode == 0 ? n_past + i2 : i2);
  6263. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6264. if (ir++ < ir0) continue;
  6265. if (ir > ir1) break;
  6266. float theta = (float)p;
  6267. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6268. const float cos_theta = cosf(theta);
  6269. const float sin_theta = sinf(theta);
  6270. theta *= theta_scale;
  6271. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6272. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6273. const float x0 = ggml_fp16_to_fp32(src[0]);
  6274. const float x1 = ggml_fp16_to_fp32(src[1]);
  6275. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6276. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6277. }
  6278. }
  6279. }
  6280. }
  6281. }
  6282. static void ggml_compute_forward_rope(
  6283. const struct ggml_compute_params * params,
  6284. const struct ggml_tensor * src0,
  6285. const struct ggml_tensor * src1,
  6286. struct ggml_tensor * dst) {
  6287. switch (src0->type) {
  6288. case GGML_TYPE_F16:
  6289. {
  6290. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6291. } break;
  6292. case GGML_TYPE_F32:
  6293. {
  6294. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6295. } break;
  6296. case GGML_TYPE_Q4_0:
  6297. case GGML_TYPE_Q4_1:
  6298. case GGML_TYPE_I8:
  6299. case GGML_TYPE_I16:
  6300. case GGML_TYPE_I32:
  6301. case GGML_TYPE_COUNT:
  6302. {
  6303. GGML_ASSERT(false);
  6304. } break;
  6305. }
  6306. }
  6307. // ggml_compute_forward_conv_1d_1s
  6308. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6309. const struct ggml_compute_params * params,
  6310. const struct ggml_tensor * src0,
  6311. const struct ggml_tensor * src1,
  6312. struct ggml_tensor * dst) {
  6313. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6314. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6315. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6316. int64_t t0 = ggml_perf_time_us();
  6317. UNUSED(t0);
  6318. const int64_t ne00 = src0->ne[0];
  6319. const int64_t ne01 = src0->ne[1];
  6320. const int64_t ne02 = src0->ne[2];
  6321. //const int64_t ne03 = src0->ne[3];
  6322. const int64_t ne10 = src1->ne[0];
  6323. const int64_t ne11 = src1->ne[1];
  6324. //const int64_t ne12 = src1->ne[2];
  6325. //const int64_t ne13 = src1->ne[3];
  6326. //const int64_t ne0 = dst->ne[0];
  6327. //const int64_t ne1 = dst->ne[1];
  6328. //const int64_t ne2 = dst->ne[2];
  6329. //const int64_t ne3 = dst->ne[3];
  6330. //const int64_t ne = ne0*ne1*ne2*ne3;
  6331. const int nb00 = src0->nb[0];
  6332. const int nb01 = src0->nb[1];
  6333. const int nb02 = src0->nb[2];
  6334. //const int nb03 = src0->nb[3];
  6335. const int nb10 = src1->nb[0];
  6336. const int nb11 = src1->nb[1];
  6337. //const int nb12 = src1->nb[2];
  6338. //const int nb13 = src1->nb[3];
  6339. //const int nb0 = dst->nb[0];
  6340. const int nb1 = dst->nb[1];
  6341. //const int nb2 = dst->nb[2];
  6342. //const int nb3 = dst->nb[3];
  6343. const int ith = params->ith;
  6344. const int nth = params->nth;
  6345. const int nk = ne00;
  6346. const int nh = nk/2;
  6347. const int ew0 = ggml_up32(ne01);
  6348. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6349. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6350. GGML_ASSERT(nb10 == sizeof(float));
  6351. if (params->type == GGML_TASK_INIT) {
  6352. // TODO: fix this memset (wsize is overestimated)
  6353. memset(params->wdata, 0, params->wsize);
  6354. // prepare kernel data (src0)
  6355. {
  6356. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6357. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6358. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6359. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6360. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6361. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6362. dst_data[i00*ew0 + i01] = src[i00];
  6363. }
  6364. }
  6365. }
  6366. }
  6367. // prepare source data (src1)
  6368. {
  6369. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6370. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6371. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6372. ggml_fp16_t * dst_data = wdata;
  6373. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6374. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6375. }
  6376. }
  6377. }
  6378. return;
  6379. }
  6380. if (params->type == GGML_TASK_FINALIZE) {
  6381. return;
  6382. }
  6383. // total rows in dst
  6384. const int nr = ne02;
  6385. // rows per thread
  6386. const int dr = (nr + nth - 1)/nth;
  6387. // row range for this thread
  6388. const int ir0 = dr*ith;
  6389. const int ir1 = MIN(ir0 + dr, nr);
  6390. for (int i1 = ir0; i1 < ir1; i1++) {
  6391. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6392. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6393. dst_data[i0] = 0;
  6394. for (int k = -nh; k <= nh; k++) {
  6395. float v = 0.0f;
  6396. ggml_vec_dot_f16(ew0, &v,
  6397. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6398. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6399. dst_data[i0] += v;
  6400. }
  6401. }
  6402. }
  6403. }
  6404. static void ggml_compute_forward_conv_1d_1s_f32(
  6405. const struct ggml_compute_params * params,
  6406. const struct ggml_tensor * src0,
  6407. const struct ggml_tensor * src1,
  6408. struct ggml_tensor * dst) {
  6409. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6410. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6411. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6412. int64_t t0 = ggml_perf_time_us();
  6413. UNUSED(t0);
  6414. const int64_t ne00 = src0->ne[0];
  6415. const int64_t ne01 = src0->ne[1];
  6416. const int64_t ne02 = src0->ne[2];
  6417. //const int64_t ne03 = src0->ne[3];
  6418. const int64_t ne10 = src1->ne[0];
  6419. const int64_t ne11 = src1->ne[1];
  6420. //const int64_t ne12 = src1->ne[2];
  6421. //const int64_t ne13 = src1->ne[3];
  6422. //const int64_t ne0 = dst->ne[0];
  6423. //const int64_t ne1 = dst->ne[1];
  6424. //const int64_t ne2 = dst->ne[2];
  6425. //const int64_t ne3 = dst->ne[3];
  6426. //const int64_t ne = ne0*ne1*ne2*ne3;
  6427. const int nb00 = src0->nb[0];
  6428. const int nb01 = src0->nb[1];
  6429. const int nb02 = src0->nb[2];
  6430. //const int nb03 = src0->nb[3];
  6431. const int nb10 = src1->nb[0];
  6432. const int nb11 = src1->nb[1];
  6433. //const int nb12 = src1->nb[2];
  6434. //const int nb13 = src1->nb[3];
  6435. //const int nb0 = dst->nb[0];
  6436. const int nb1 = dst->nb[1];
  6437. //const int nb2 = dst->nb[2];
  6438. //const int nb3 = dst->nb[3];
  6439. const int ith = params->ith;
  6440. const int nth = params->nth;
  6441. const int nk = ne00;
  6442. const int nh = nk/2;
  6443. const int ew0 = ggml_up32(ne01);
  6444. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6445. GGML_ASSERT(nb00 == sizeof(float));
  6446. GGML_ASSERT(nb10 == sizeof(float));
  6447. if (params->type == GGML_TASK_INIT) {
  6448. // TODO: fix this memset (wsize is overestimated)
  6449. memset(params->wdata, 0, params->wsize);
  6450. // prepare kernel data (src0)
  6451. {
  6452. float * const wdata = (float *) params->wdata + 0;
  6453. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6454. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6455. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6456. float * dst_data = wdata + i02*ew0*ne00;
  6457. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6458. dst_data[i00*ew0 + i01] = src[i00];
  6459. }
  6460. }
  6461. }
  6462. }
  6463. // prepare source data (src1)
  6464. {
  6465. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6466. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6467. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6468. float * dst_data = wdata;
  6469. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6470. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6471. }
  6472. }
  6473. }
  6474. return;
  6475. }
  6476. if (params->type == GGML_TASK_FINALIZE) {
  6477. return;
  6478. }
  6479. // total rows in dst
  6480. const int nr = ne02;
  6481. // rows per thread
  6482. const int dr = (nr + nth - 1)/nth;
  6483. // row range for this thread
  6484. const int ir0 = dr*ith;
  6485. const int ir1 = MIN(ir0 + dr, nr);
  6486. for (int i1 = ir0; i1 < ir1; i1++) {
  6487. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6488. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6489. dst_data[i0] = 0;
  6490. for (int k = -nh; k <= nh; k++) {
  6491. float v = 0.0f;
  6492. ggml_vec_dot_f32(ew0, &v,
  6493. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6494. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6495. dst_data[i0] += v;
  6496. }
  6497. }
  6498. }
  6499. }
  6500. static void ggml_compute_forward_conv_1d_1s(
  6501. const struct ggml_compute_params * params,
  6502. const struct ggml_tensor * src0,
  6503. const struct ggml_tensor * src1,
  6504. struct ggml_tensor * dst) {
  6505. switch (src0->type) {
  6506. case GGML_TYPE_F16:
  6507. {
  6508. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6509. } break;
  6510. case GGML_TYPE_F32:
  6511. {
  6512. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6513. } break;
  6514. case GGML_TYPE_Q4_0:
  6515. case GGML_TYPE_Q4_1:
  6516. case GGML_TYPE_I8:
  6517. case GGML_TYPE_I16:
  6518. case GGML_TYPE_I32:
  6519. case GGML_TYPE_COUNT:
  6520. {
  6521. GGML_ASSERT(false);
  6522. } break;
  6523. }
  6524. }
  6525. // ggml_compute_forward_conv_1d_2s
  6526. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6527. const struct ggml_compute_params * params,
  6528. const struct ggml_tensor * src0,
  6529. const struct ggml_tensor * src1,
  6530. struct ggml_tensor * dst) {
  6531. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6532. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6533. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6534. int64_t t0 = ggml_perf_time_us();
  6535. UNUSED(t0);
  6536. const int64_t ne00 = src0->ne[0];
  6537. const int64_t ne01 = src0->ne[1];
  6538. const int64_t ne02 = src0->ne[2];
  6539. //const int64_t ne03 = src0->ne[3];
  6540. const int64_t ne10 = src1->ne[0];
  6541. const int64_t ne11 = src1->ne[1];
  6542. //const int64_t ne12 = src1->ne[2];
  6543. //const int64_t ne13 = src1->ne[3];
  6544. //const int64_t ne0 = dst->ne[0];
  6545. //const int64_t ne1 = dst->ne[1];
  6546. //const int64_t ne2 = dst->ne[2];
  6547. //const int64_t ne3 = dst->ne[3];
  6548. //const int64_t ne = ne0*ne1*ne2*ne3;
  6549. const int nb00 = src0->nb[0];
  6550. const int nb01 = src0->nb[1];
  6551. const int nb02 = src0->nb[2];
  6552. //const int nb03 = src0->nb[3];
  6553. const int nb10 = src1->nb[0];
  6554. const int nb11 = src1->nb[1];
  6555. //const int nb12 = src1->nb[2];
  6556. //const int nb13 = src1->nb[3];
  6557. //const int nb0 = dst->nb[0];
  6558. const int nb1 = dst->nb[1];
  6559. //const int nb2 = dst->nb[2];
  6560. //const int nb3 = dst->nb[3];
  6561. const int ith = params->ith;
  6562. const int nth = params->nth;
  6563. const int nk = ne00;
  6564. const int nh = nk/2;
  6565. const int ew0 = ggml_up32(ne01);
  6566. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6567. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6568. GGML_ASSERT(nb10 == sizeof(float));
  6569. if (params->type == GGML_TASK_INIT) {
  6570. // TODO: fix this memset (wsize is overestimated)
  6571. memset(params->wdata, 0, params->wsize);
  6572. // prepare kernel data (src0)
  6573. {
  6574. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6575. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6576. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6577. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6578. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6579. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6580. dst_data[i00*ew0 + i01] = src[i00];
  6581. }
  6582. }
  6583. }
  6584. }
  6585. // prepare source data (src1)
  6586. {
  6587. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6588. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6589. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6590. ggml_fp16_t * dst_data = wdata;
  6591. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6592. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6593. }
  6594. }
  6595. }
  6596. return;
  6597. }
  6598. if (params->type == GGML_TASK_FINALIZE) {
  6599. return;
  6600. }
  6601. // total rows in dst
  6602. const int nr = ne02;
  6603. // rows per thread
  6604. const int dr = (nr + nth - 1)/nth;
  6605. // row range for this thread
  6606. const int ir0 = dr*ith;
  6607. const int ir1 = MIN(ir0 + dr, nr);
  6608. for (int i1 = ir0; i1 < ir1; i1++) {
  6609. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6610. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6611. dst_data[i0/2] = 0;
  6612. for (int k = -nh; k <= nh; k++) {
  6613. float v = 0.0f;
  6614. ggml_vec_dot_f16(ew0, &v,
  6615. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6616. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6617. dst_data[i0/2] += v;
  6618. }
  6619. }
  6620. }
  6621. }
  6622. static void ggml_compute_forward_conv_1d_2s_f32(
  6623. const struct ggml_compute_params * params,
  6624. const struct ggml_tensor * src0,
  6625. const struct ggml_tensor * src1,
  6626. struct ggml_tensor * dst) {
  6627. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6628. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6629. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6630. int64_t t0 = ggml_perf_time_us();
  6631. UNUSED(t0);
  6632. const int64_t ne00 = src0->ne[0];
  6633. const int64_t ne01 = src0->ne[1];
  6634. const int64_t ne02 = src0->ne[2];
  6635. //const int64_t ne03 = src0->ne[3];
  6636. const int64_t ne10 = src1->ne[0];
  6637. const int64_t ne11 = src1->ne[1];
  6638. //const int64_t ne12 = src1->ne[2];
  6639. //const int64_t ne13 = src1->ne[3];
  6640. //const int64_t ne0 = dst->ne[0];
  6641. //const int64_t ne1 = dst->ne[1];
  6642. //const int64_t ne2 = dst->ne[2];
  6643. //const int64_t ne3 = dst->ne[3];
  6644. //const int64_t ne = ne0*ne1*ne2*ne3;
  6645. const int nb00 = src0->nb[0];
  6646. const int nb01 = src0->nb[1];
  6647. const int nb02 = src0->nb[2];
  6648. //const int nb03 = src0->nb[3];
  6649. const int nb10 = src1->nb[0];
  6650. const int nb11 = src1->nb[1];
  6651. //const int nb12 = src1->nb[2];
  6652. //const int nb13 = src1->nb[3];
  6653. //const int nb0 = dst->nb[0];
  6654. const int nb1 = dst->nb[1];
  6655. //const int nb2 = dst->nb[2];
  6656. //const int nb3 = dst->nb[3];
  6657. const int ith = params->ith;
  6658. const int nth = params->nth;
  6659. const int nk = ne00;
  6660. const int nh = nk/2;
  6661. const int ew0 = ggml_up32(ne01);
  6662. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6663. GGML_ASSERT(nb00 == sizeof(float));
  6664. GGML_ASSERT(nb10 == sizeof(float));
  6665. if (params->type == GGML_TASK_INIT) {
  6666. // TODO: fix this memset (wsize is overestimated)
  6667. memset(params->wdata, 0, params->wsize);
  6668. // prepare kernel data (src0)
  6669. {
  6670. float * const wdata = (float *) params->wdata + 0;
  6671. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6672. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6673. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6674. float * dst_data = wdata + i02*ew0*ne00;
  6675. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6676. dst_data[i00*ew0 + i01] = src[i00];
  6677. }
  6678. }
  6679. }
  6680. }
  6681. // prepare source data (src1)
  6682. {
  6683. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6684. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6685. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6686. float * dst_data = wdata;
  6687. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6688. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6689. }
  6690. }
  6691. }
  6692. return;
  6693. }
  6694. if (params->type == GGML_TASK_FINALIZE) {
  6695. return;
  6696. }
  6697. // total rows in dst
  6698. const int nr = ne02;
  6699. // rows per thread
  6700. const int dr = (nr + nth - 1)/nth;
  6701. // row range for this thread
  6702. const int ir0 = dr*ith;
  6703. const int ir1 = MIN(ir0 + dr, nr);
  6704. for (int i1 = ir0; i1 < ir1; i1++) {
  6705. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6706. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6707. dst_data[i0/2] = 0;
  6708. for (int k = -nh; k <= nh; k++) {
  6709. float v = 0.0f;
  6710. ggml_vec_dot_f32(ew0, &v,
  6711. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6712. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6713. dst_data[i0/2] += v;
  6714. }
  6715. }
  6716. }
  6717. }
  6718. static void ggml_compute_forward_conv_1d_2s(
  6719. const struct ggml_compute_params * params,
  6720. const struct ggml_tensor * src0,
  6721. const struct ggml_tensor * src1,
  6722. struct ggml_tensor * dst) {
  6723. switch (src0->type) {
  6724. case GGML_TYPE_F16:
  6725. {
  6726. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6727. } break;
  6728. case GGML_TYPE_F32:
  6729. {
  6730. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6731. } break;
  6732. case GGML_TYPE_Q4_0:
  6733. case GGML_TYPE_Q4_1:
  6734. case GGML_TYPE_I8:
  6735. case GGML_TYPE_I16:
  6736. case GGML_TYPE_I32:
  6737. case GGML_TYPE_COUNT:
  6738. {
  6739. GGML_ASSERT(false);
  6740. } break;
  6741. }
  6742. }
  6743. // ggml_compute_forward_flash_attn
  6744. static void ggml_compute_forward_flash_attn_f32(
  6745. const struct ggml_compute_params * params,
  6746. const struct ggml_tensor * q,
  6747. const struct ggml_tensor * k,
  6748. const struct ggml_tensor * v,
  6749. const bool masked,
  6750. struct ggml_tensor * dst) {
  6751. int64_t t0 = ggml_perf_time_us();
  6752. UNUSED(t0);
  6753. const int64_t neq0 = q->ne[0];
  6754. const int64_t neq1 = q->ne[1];
  6755. const int64_t neq2 = q->ne[2];
  6756. const int64_t neq3 = q->ne[3];
  6757. const int64_t nek0 = k->ne[0];
  6758. const int64_t nek1 = k->ne[1];
  6759. //const int64_t nek2 = k->ne[2];
  6760. //const int64_t nek3 = k->ne[3];
  6761. //const int64_t nev0 = v->ne[0];
  6762. const int64_t nev1 = v->ne[1];
  6763. //const int64_t nev2 = v->ne[2];
  6764. //const int64_t nev3 = v->ne[3];
  6765. const int64_t ne0 = dst->ne[0];
  6766. const int64_t ne1 = dst->ne[1];
  6767. //const int64_t ne2 = dst->ne[2];
  6768. //const int64_t ne3 = dst->ne[3];
  6769. const int nbk0 = k->nb[0];
  6770. const int nbk1 = k->nb[1];
  6771. const int nbk2 = k->nb[2];
  6772. const int nbk3 = k->nb[3];
  6773. const int nbq0 = q->nb[0];
  6774. const int nbq1 = q->nb[1];
  6775. const int nbq2 = q->nb[2];
  6776. const int nbq3 = q->nb[3];
  6777. const int nbv0 = v->nb[0];
  6778. const int nbv1 = v->nb[1];
  6779. const int nbv2 = v->nb[2];
  6780. const int nbv3 = v->nb[3];
  6781. const int nb0 = dst->nb[0];
  6782. const int nb1 = dst->nb[1];
  6783. const int nb2 = dst->nb[2];
  6784. const int nb3 = dst->nb[3];
  6785. const int ith = params->ith;
  6786. const int nth = params->nth;
  6787. const int64_t D = neq0;
  6788. const int64_t N = neq1;
  6789. const int64_t P = nek1 - N;
  6790. const int64_t M = P + N;
  6791. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6792. GGML_ASSERT(ne0 == D);
  6793. GGML_ASSERT(ne1 == N);
  6794. GGML_ASSERT(P >= 0);
  6795. GGML_ASSERT(nbq0 == sizeof(float));
  6796. GGML_ASSERT(nbk0 == sizeof(float));
  6797. GGML_ASSERT(nbv0 == sizeof(float));
  6798. GGML_ASSERT(neq0 == D);
  6799. GGML_ASSERT(nek0 == D);
  6800. GGML_ASSERT(nev1 == D);
  6801. GGML_ASSERT(neq1 == N);
  6802. GGML_ASSERT(nek1 == N + P);
  6803. GGML_ASSERT(nev1 == D);
  6804. // dst cannot be transposed or permuted
  6805. GGML_ASSERT(nb0 == sizeof(float));
  6806. GGML_ASSERT(nb0 <= nb1);
  6807. GGML_ASSERT(nb1 <= nb2);
  6808. GGML_ASSERT(nb2 <= nb3);
  6809. if (params->type == GGML_TASK_INIT) {
  6810. return;
  6811. }
  6812. if (params->type == GGML_TASK_FINALIZE) {
  6813. return;
  6814. }
  6815. // parallelize by q rows using ggml_vec_dot_f32
  6816. // total rows in q
  6817. const int nr = neq1*neq2*neq3;
  6818. // rows per thread
  6819. const int dr = (nr + nth - 1)/nth;
  6820. // row range for this thread
  6821. const int ir0 = dr*ith;
  6822. const int ir1 = MIN(ir0 + dr, nr);
  6823. const float scale = 1.0f/sqrtf(D);
  6824. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6825. for (int ir = ir0; ir < ir1; ++ir) {
  6826. // q indices
  6827. const int iq3 = ir/(neq2*neq1);
  6828. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6829. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6830. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6831. for (int i = M; i < Mup; ++i) {
  6832. S[i] = -INFINITY;
  6833. }
  6834. for (int64_t ic = 0; ic < nek1; ++ic) {
  6835. // k indices
  6836. const int ik3 = iq3;
  6837. const int ik2 = iq2;
  6838. const int ik1 = ic;
  6839. // S indices
  6840. const int i1 = ik1;
  6841. ggml_vec_dot_f32(neq0,
  6842. S + i1,
  6843. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6844. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6845. }
  6846. // scale
  6847. ggml_vec_scale_f32(nek1, S, scale);
  6848. if (masked) {
  6849. for (int64_t i = P; i < M; i++) {
  6850. if (i > P + iq1) {
  6851. S[i] = -INFINITY;
  6852. }
  6853. }
  6854. }
  6855. // softmax
  6856. {
  6857. float max = -INFINITY;
  6858. ggml_vec_max_f32(M, &max, S);
  6859. ggml_float sum = 0.0;
  6860. {
  6861. #ifdef GGML_SOFT_MAX_ACCELERATE
  6862. max = -max;
  6863. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6864. vvexpf(S, S, &Mup);
  6865. ggml_vec_sum_f32(Mup, &sum, S);
  6866. #else
  6867. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6868. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6869. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6870. float * SS = S + i;
  6871. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6872. if (SS[j] == -INFINITY) {
  6873. SS[j] = 0.0f;
  6874. } else {
  6875. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6876. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6877. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6878. sump[j] += (ggml_float)val;
  6879. SS[j] = val;
  6880. }
  6881. }
  6882. }
  6883. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6884. sum += sump[i];
  6885. }
  6886. #endif
  6887. }
  6888. assert(sum > 0.0);
  6889. sum = 1.0/sum;
  6890. ggml_vec_scale_f32(M, S, sum);
  6891. #ifndef NDEBUG
  6892. for (int i = 0; i < M; ++i) {
  6893. assert(!isnan(S[i]));
  6894. assert(!isinf(S[i]));
  6895. }
  6896. #endif
  6897. }
  6898. for (int64_t ic = 0; ic < nev1; ++ic) {
  6899. // dst indices
  6900. const int i1 = iq1;
  6901. const int i2 = iq2;
  6902. const int i3 = iq3;
  6903. ggml_vec_dot_f32(nek1,
  6904. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6905. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6906. S);
  6907. }
  6908. }
  6909. }
  6910. static void ggml_compute_forward_flash_attn_f16(
  6911. const struct ggml_compute_params * params,
  6912. const struct ggml_tensor * q,
  6913. const struct ggml_tensor * k,
  6914. const struct ggml_tensor * v,
  6915. const bool masked,
  6916. struct ggml_tensor * dst) {
  6917. int64_t t0 = ggml_perf_time_us();
  6918. UNUSED(t0);
  6919. const int64_t neq0 = q->ne[0];
  6920. const int64_t neq1 = q->ne[1];
  6921. const int64_t neq2 = q->ne[2];
  6922. const int64_t neq3 = q->ne[3];
  6923. const int64_t nek0 = k->ne[0];
  6924. const int64_t nek1 = k->ne[1];
  6925. //const int64_t nek2 = k->ne[2];
  6926. //const int64_t nek3 = k->ne[3];
  6927. //const int64_t nev0 = v->ne[0];
  6928. const int64_t nev1 = v->ne[1];
  6929. //const int64_t nev2 = v->ne[2];
  6930. //const int64_t nev3 = v->ne[3];
  6931. const int64_t ne0 = dst->ne[0];
  6932. const int64_t ne1 = dst->ne[1];
  6933. //const int64_t ne2 = dst->ne[2];
  6934. //const int64_t ne3 = dst->ne[3];
  6935. const int nbk0 = k->nb[0];
  6936. const int nbk1 = k->nb[1];
  6937. const int nbk2 = k->nb[2];
  6938. const int nbk3 = k->nb[3];
  6939. const int nbq0 = q->nb[0];
  6940. const int nbq1 = q->nb[1];
  6941. const int nbq2 = q->nb[2];
  6942. const int nbq3 = q->nb[3];
  6943. const int nbv0 = v->nb[0];
  6944. const int nbv1 = v->nb[1];
  6945. const int nbv2 = v->nb[2];
  6946. const int nbv3 = v->nb[3];
  6947. const int nb0 = dst->nb[0];
  6948. const int nb1 = dst->nb[1];
  6949. const int nb2 = dst->nb[2];
  6950. const int nb3 = dst->nb[3];
  6951. const int ith = params->ith;
  6952. const int nth = params->nth;
  6953. const int64_t D = neq0;
  6954. const int64_t N = neq1;
  6955. const int64_t P = nek1 - N;
  6956. const int64_t M = P + N;
  6957. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6958. GGML_ASSERT(ne0 == D);
  6959. GGML_ASSERT(ne1 == N);
  6960. GGML_ASSERT(P >= 0);
  6961. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6962. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6963. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6964. GGML_ASSERT(neq0 == D);
  6965. GGML_ASSERT(nek0 == D);
  6966. GGML_ASSERT(nev1 == D);
  6967. GGML_ASSERT(neq1 == N);
  6968. GGML_ASSERT(nek1 == N + P);
  6969. GGML_ASSERT(nev1 == D);
  6970. // dst cannot be transposed or permuted
  6971. GGML_ASSERT(nb0 == sizeof(float));
  6972. GGML_ASSERT(nb0 <= nb1);
  6973. GGML_ASSERT(nb1 <= nb2);
  6974. GGML_ASSERT(nb2 <= nb3);
  6975. if (params->type == GGML_TASK_INIT) {
  6976. return;
  6977. }
  6978. if (params->type == GGML_TASK_FINALIZE) {
  6979. return;
  6980. }
  6981. // parallelize by q rows using ggml_vec_dot_f32
  6982. // total rows in q
  6983. const int nr = neq1*neq2*neq3;
  6984. // rows per thread
  6985. const int dr = (nr + nth - 1)/nth;
  6986. // row range for this thread
  6987. const int ir0 = dr*ith;
  6988. const int ir1 = MIN(ir0 + dr, nr);
  6989. const float scale = 1.0f/sqrtf(D);
  6990. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6991. for (int ir = ir0; ir < ir1; ++ir) {
  6992. // q indices
  6993. const int iq3 = ir/(neq2*neq1);
  6994. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6995. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6996. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6997. for (int i = M; i < Mup; ++i) {
  6998. S[i] = -INFINITY;
  6999. }
  7000. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7001. for (int64_t ic = 0; ic < nek1; ++ic) {
  7002. // k indices
  7003. const int ik3 = iq3;
  7004. const int ik2 = iq2;
  7005. const int ik1 = ic;
  7006. // S indices
  7007. const int i1 = ik1;
  7008. ggml_vec_dot_f16(neq0,
  7009. S + i1,
  7010. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7011. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7012. }
  7013. } else {
  7014. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7015. // k indices
  7016. const int ik3 = iq3;
  7017. const int ik2 = iq2;
  7018. const int ik1 = ic;
  7019. // S indices
  7020. const int i1 = ik1;
  7021. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7022. S + i1,
  7023. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7024. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7025. }
  7026. }
  7027. // scale
  7028. ggml_vec_scale_f32(nek1, S, scale);
  7029. if (masked) {
  7030. for (int64_t i = P; i < M; i++) {
  7031. if (i > P + iq1) {
  7032. S[i] = -INFINITY;
  7033. }
  7034. }
  7035. }
  7036. // softmax
  7037. {
  7038. float max = -INFINITY;
  7039. ggml_vec_max_f32(M, &max, S);
  7040. ggml_float sum = 0.0;
  7041. {
  7042. #ifdef GGML_SOFT_MAX_ACCELERATE
  7043. max = -max;
  7044. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7045. vvexpf(S, S, &Mup);
  7046. ggml_vec_sum_f32(Mup, &sum, S);
  7047. #else
  7048. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7049. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7050. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7051. float * SS = S + i;
  7052. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7053. if (SS[j] == -INFINITY) {
  7054. SS[j] = 0.0f;
  7055. } else {
  7056. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7057. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7058. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7059. sump[j] += (ggml_float)val;
  7060. SS[j] = val;
  7061. }
  7062. }
  7063. }
  7064. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7065. sum += sump[i];
  7066. }
  7067. #endif
  7068. }
  7069. assert(sum > 0.0);
  7070. sum = 1.0/sum;
  7071. ggml_vec_scale_f32(M, S, sum);
  7072. #ifndef NDEBUG
  7073. for (int i = 0; i < M; ++i) {
  7074. assert(!isnan(S[i]));
  7075. assert(!isinf(S[i]));
  7076. }
  7077. #endif
  7078. }
  7079. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7080. for (int64_t i = 0; i < M; i++) {
  7081. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7082. }
  7083. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7084. for (int64_t ic = 0; ic < nev1; ++ic) {
  7085. // dst indices
  7086. const int i1 = iq1;
  7087. const int i2 = iq2;
  7088. const int i3 = iq3;
  7089. ggml_vec_dot_f16(nek1,
  7090. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7091. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7092. S16);
  7093. }
  7094. } else {
  7095. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7096. // dst indices
  7097. const int i1 = iq1;
  7098. const int i2 = iq2;
  7099. const int i3 = iq3;
  7100. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7101. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7102. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7103. S16);
  7104. }
  7105. }
  7106. }
  7107. }
  7108. static void ggml_compute_forward_flash_attn(
  7109. const struct ggml_compute_params * params,
  7110. const struct ggml_tensor * q,
  7111. const struct ggml_tensor * k,
  7112. const struct ggml_tensor * v,
  7113. const bool masked,
  7114. struct ggml_tensor * dst) {
  7115. switch (q->type) {
  7116. case GGML_TYPE_F16:
  7117. {
  7118. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7119. } break;
  7120. case GGML_TYPE_F32:
  7121. {
  7122. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7123. } break;
  7124. case GGML_TYPE_Q4_0:
  7125. case GGML_TYPE_Q4_1:
  7126. case GGML_TYPE_I8:
  7127. case GGML_TYPE_I16:
  7128. case GGML_TYPE_I32:
  7129. case GGML_TYPE_COUNT:
  7130. {
  7131. GGML_ASSERT(false);
  7132. } break;
  7133. }
  7134. }
  7135. // ggml_compute_forward_flash_ff
  7136. static void ggml_compute_forward_flash_ff_f16(
  7137. const struct ggml_compute_params * params,
  7138. const struct ggml_tensor * a, // F16
  7139. const struct ggml_tensor * b0, // F16 fc_w
  7140. const struct ggml_tensor * b1, // F32 fc_b
  7141. const struct ggml_tensor * c0, // F16 proj_w
  7142. const struct ggml_tensor * c1, // F32 proj_b
  7143. struct ggml_tensor * dst) {
  7144. int64_t t0 = ggml_perf_time_us();
  7145. UNUSED(t0);
  7146. const int64_t nea0 = a->ne[0];
  7147. const int64_t nea1 = a->ne[1];
  7148. const int64_t nea2 = a->ne[2];
  7149. const int64_t nea3 = a->ne[3];
  7150. const int64_t neb00 = b0->ne[0];
  7151. const int64_t neb01 = b0->ne[1];
  7152. //const int64_t neb02 = b0->ne[2];
  7153. //const int64_t neb03 = b0->ne[3];
  7154. const int64_t neb10 = b1->ne[0];
  7155. const int64_t neb11 = b1->ne[1];
  7156. //const int64_t neb12 = b1->ne[2];
  7157. //const int64_t neb13 = b1->ne[3];
  7158. const int64_t nec00 = c0->ne[0];
  7159. const int64_t nec01 = c0->ne[1];
  7160. //const int64_t nec02 = c0->ne[2];
  7161. //const int64_t nec03 = c0->ne[3];
  7162. const int64_t nec10 = c1->ne[0];
  7163. const int64_t nec11 = c1->ne[1];
  7164. //const int64_t nec12 = c1->ne[2];
  7165. //const int64_t nec13 = c1->ne[3];
  7166. const int64_t ne0 = dst->ne[0];
  7167. const int64_t ne1 = dst->ne[1];
  7168. const int64_t ne2 = dst->ne[2];
  7169. //const int64_t ne3 = dst->ne[3];
  7170. const int nba0 = a->nb[0];
  7171. const int nba1 = a->nb[1];
  7172. const int nba2 = a->nb[2];
  7173. const int nba3 = a->nb[3];
  7174. const int nbb00 = b0->nb[0];
  7175. const int nbb01 = b0->nb[1];
  7176. const int nbb02 = b0->nb[2];
  7177. const int nbb03 = b0->nb[3];
  7178. const int nbb10 = b1->nb[0];
  7179. //const int nbb11 = b1->nb[1];
  7180. //const int nbb12 = b1->nb[2];
  7181. //const int nbb13 = b1->nb[3];
  7182. const int nbc00 = c0->nb[0];
  7183. const int nbc01 = c0->nb[1];
  7184. const int nbc02 = c0->nb[2];
  7185. const int nbc03 = c0->nb[3];
  7186. const int nbc10 = c1->nb[0];
  7187. //const int nbc11 = c1->nb[1];
  7188. //const int nbc12 = c1->nb[2];
  7189. //const int nbc13 = c1->nb[3];
  7190. const int nb0 = dst->nb[0];
  7191. const int nb1 = dst->nb[1];
  7192. const int nb2 = dst->nb[2];
  7193. const int nb3 = dst->nb[3];
  7194. const int ith = params->ith;
  7195. const int nth = params->nth;
  7196. const int64_t D = nea0;
  7197. //const int64_t N = nea1;
  7198. const int64_t M = neb01;
  7199. GGML_ASSERT(ne0 == nea0);
  7200. GGML_ASSERT(ne1 == nea1);
  7201. GGML_ASSERT(ne2 == nea2);
  7202. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7203. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7204. GGML_ASSERT(nbb10 == sizeof(float));
  7205. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7206. GGML_ASSERT(nbc10 == sizeof(float));
  7207. GGML_ASSERT(neb00 == D);
  7208. GGML_ASSERT(neb01 == M);
  7209. GGML_ASSERT(neb10 == M);
  7210. GGML_ASSERT(neb11 == 1);
  7211. GGML_ASSERT(nec00 == M);
  7212. GGML_ASSERT(nec01 == D);
  7213. GGML_ASSERT(nec10 == D);
  7214. GGML_ASSERT(nec11 == 1);
  7215. // dst cannot be transposed or permuted
  7216. GGML_ASSERT(nb0 == sizeof(float));
  7217. GGML_ASSERT(nb0 <= nb1);
  7218. GGML_ASSERT(nb1 <= nb2);
  7219. GGML_ASSERT(nb2 <= nb3);
  7220. if (params->type == GGML_TASK_INIT) {
  7221. return;
  7222. }
  7223. if (params->type == GGML_TASK_FINALIZE) {
  7224. return;
  7225. }
  7226. // parallelize by a rows using ggml_vec_dot_f32
  7227. // total rows in a
  7228. const int nr = nea1*nea2*nea3;
  7229. // rows per thread
  7230. const int dr = (nr + nth - 1)/nth;
  7231. // row range for this thread
  7232. const int ir0 = dr*ith;
  7233. const int ir1 = MIN(ir0 + dr, nr);
  7234. for (int ir = ir0; ir < ir1; ++ir) {
  7235. // a indices
  7236. const int ia3 = ir/(nea2*nea1);
  7237. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7238. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7239. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7240. for (int64_t ic = 0; ic < neb01; ++ic) {
  7241. // b0 indices
  7242. const int ib03 = ia3;
  7243. const int ib02 = ia2;
  7244. const int ib01 = ic;
  7245. // S indices
  7246. const int i1 = ib01;
  7247. ggml_vec_dot_f16(nea0,
  7248. S + i1,
  7249. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7250. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7251. }
  7252. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7253. //ggml_vec_gelu_f32(neb01, S, S);
  7254. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7255. for (int64_t i = 0; i < M; i++) {
  7256. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7257. }
  7258. ggml_vec_gelu_f16(neb01, S16, S16);
  7259. {
  7260. // dst indices
  7261. const int i1 = ia1;
  7262. const int i2 = ia2;
  7263. const int i3 = ia3;
  7264. for (int64_t ic = 0; ic < nec01; ++ic) {
  7265. ggml_vec_dot_f16(neb01,
  7266. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7267. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7268. S16);
  7269. }
  7270. ggml_vec_add_f32(nec01,
  7271. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7272. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7273. (float *) c1->data);
  7274. }
  7275. }
  7276. }
  7277. static void ggml_compute_forward_flash_ff(
  7278. const struct ggml_compute_params * params,
  7279. const struct ggml_tensor * a,
  7280. const struct ggml_tensor * b0,
  7281. const struct ggml_tensor * b1,
  7282. const struct ggml_tensor * c0,
  7283. const struct ggml_tensor * c1,
  7284. struct ggml_tensor * dst) {
  7285. switch (b0->type) {
  7286. case GGML_TYPE_F16:
  7287. {
  7288. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7289. } break;
  7290. case GGML_TYPE_F32:
  7291. {
  7292. GGML_ASSERT(false); // TODO
  7293. } break;
  7294. case GGML_TYPE_Q4_0:
  7295. case GGML_TYPE_Q4_1:
  7296. case GGML_TYPE_I8:
  7297. case GGML_TYPE_I16:
  7298. case GGML_TYPE_I32:
  7299. case GGML_TYPE_COUNT:
  7300. {
  7301. GGML_ASSERT(false);
  7302. } break;
  7303. }
  7304. }
  7305. // ggml_compute_forward_map_unary
  7306. static void ggml_compute_forward_map_unary_f32(
  7307. const struct ggml_compute_params * params,
  7308. const struct ggml_tensor * src0,
  7309. struct ggml_tensor * dst,
  7310. const ggml_unary_op_f32_t fun) {
  7311. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7313. return;
  7314. }
  7315. const int n = ggml_nrows(src0);
  7316. const int nc = src0->ne[0];
  7317. assert( dst->nb[0] == sizeof(float));
  7318. assert(src0->nb[0] == sizeof(float));
  7319. for (int i = 0; i < n; i++) {
  7320. fun(nc,
  7321. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7322. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7323. }
  7324. }
  7325. static void ggml_compute_forward_map_unary(
  7326. const struct ggml_compute_params * params,
  7327. const struct ggml_tensor * src0,
  7328. struct ggml_tensor * dst,
  7329. const ggml_unary_op_f32_t fun) {
  7330. switch (src0->type) {
  7331. case GGML_TYPE_F32:
  7332. {
  7333. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7334. } break;
  7335. case GGML_TYPE_Q4_0:
  7336. case GGML_TYPE_Q4_1:
  7337. case GGML_TYPE_I8:
  7338. case GGML_TYPE_I16:
  7339. case GGML_TYPE_I32:
  7340. case GGML_TYPE_F16:
  7341. case GGML_TYPE_COUNT:
  7342. {
  7343. GGML_ASSERT(false);
  7344. } break;
  7345. }
  7346. }
  7347. // ggml_compute_forward_map_binary
  7348. static void ggml_compute_forward_map_binary_f32(
  7349. const struct ggml_compute_params * params,
  7350. const struct ggml_tensor * src0,
  7351. const struct ggml_tensor * src1,
  7352. struct ggml_tensor * dst,
  7353. const ggml_binary_op_f32_t fun) {
  7354. assert(params->ith == 0);
  7355. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7357. return;
  7358. }
  7359. const int n = ggml_nrows(src0);
  7360. const int nc = src0->ne[0];
  7361. assert( dst->nb[0] == sizeof(float));
  7362. assert(src0->nb[0] == sizeof(float));
  7363. assert(src1->nb[0] == sizeof(float));
  7364. for (int i = 0; i < n; i++) {
  7365. fun(nc,
  7366. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7367. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7368. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7369. }
  7370. }
  7371. static void ggml_compute_forward_map_binary(
  7372. const struct ggml_compute_params * params,
  7373. const struct ggml_tensor * src0,
  7374. const struct ggml_tensor * src1,
  7375. struct ggml_tensor * dst,
  7376. const ggml_binary_op_f32_t fun) {
  7377. switch (src0->type) {
  7378. case GGML_TYPE_F32:
  7379. {
  7380. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7381. } break;
  7382. case GGML_TYPE_Q4_0:
  7383. case GGML_TYPE_Q4_1:
  7384. case GGML_TYPE_I8:
  7385. case GGML_TYPE_I16:
  7386. case GGML_TYPE_I32:
  7387. case GGML_TYPE_F16:
  7388. case GGML_TYPE_COUNT:
  7389. {
  7390. GGML_ASSERT(false);
  7391. } break;
  7392. }
  7393. }
  7394. /////////////////////////////////
  7395. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7396. GGML_ASSERT(params);
  7397. switch (tensor->op) {
  7398. case GGML_OP_DUP:
  7399. {
  7400. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7401. } break;
  7402. case GGML_OP_ADD:
  7403. {
  7404. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7405. } break;
  7406. case GGML_OP_SUB:
  7407. {
  7408. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7409. } break;
  7410. case GGML_OP_MUL:
  7411. {
  7412. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7413. } break;
  7414. case GGML_OP_DIV:
  7415. {
  7416. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7417. } break;
  7418. case GGML_OP_SQR:
  7419. {
  7420. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7421. } break;
  7422. case GGML_OP_SQRT:
  7423. {
  7424. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7425. } break;
  7426. case GGML_OP_SUM:
  7427. {
  7428. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7429. } break;
  7430. case GGML_OP_MEAN:
  7431. {
  7432. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7433. } break;
  7434. case GGML_OP_REPEAT:
  7435. {
  7436. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7437. } break;
  7438. case GGML_OP_ABS:
  7439. {
  7440. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7441. } break;
  7442. case GGML_OP_SGN:
  7443. {
  7444. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7445. } break;
  7446. case GGML_OP_NEG:
  7447. {
  7448. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7449. } break;
  7450. case GGML_OP_STEP:
  7451. {
  7452. ggml_compute_forward_step(params, tensor->src0, tensor);
  7453. } break;
  7454. case GGML_OP_RELU:
  7455. {
  7456. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7457. } break;
  7458. case GGML_OP_GELU:
  7459. {
  7460. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7461. } break;
  7462. case GGML_OP_SILU:
  7463. {
  7464. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7465. } break;
  7466. case GGML_OP_NORM:
  7467. {
  7468. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7469. } break;
  7470. case GGML_OP_RMS_NORM:
  7471. {
  7472. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7473. } break;
  7474. case GGML_OP_MUL_MAT:
  7475. {
  7476. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7477. } break;
  7478. case GGML_OP_SCALE:
  7479. {
  7480. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7481. } break;
  7482. case GGML_OP_CPY:
  7483. {
  7484. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7485. } break;
  7486. case GGML_OP_CONT:
  7487. {
  7488. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7489. } break;
  7490. case GGML_OP_RESHAPE:
  7491. {
  7492. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7493. } break;
  7494. case GGML_OP_VIEW:
  7495. {
  7496. ggml_compute_forward_view(params, tensor->src0);
  7497. } break;
  7498. case GGML_OP_PERMUTE:
  7499. {
  7500. ggml_compute_forward_permute(params, tensor->src0);
  7501. } break;
  7502. case GGML_OP_TRANSPOSE:
  7503. {
  7504. ggml_compute_forward_transpose(params, tensor->src0);
  7505. } break;
  7506. case GGML_OP_GET_ROWS:
  7507. {
  7508. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7509. } break;
  7510. case GGML_OP_DIAG_MASK_INF:
  7511. {
  7512. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7513. } break;
  7514. case GGML_OP_SOFT_MAX:
  7515. {
  7516. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7517. } break;
  7518. case GGML_OP_ROPE:
  7519. {
  7520. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7521. } break;
  7522. case GGML_OP_CONV_1D_1S:
  7523. {
  7524. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7525. } break;
  7526. case GGML_OP_CONV_1D_2S:
  7527. {
  7528. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7529. } break;
  7530. case GGML_OP_FLASH_ATTN:
  7531. {
  7532. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7533. GGML_ASSERT(t == 0 || t == 1);
  7534. bool masked = t != 0;
  7535. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7536. } break;
  7537. case GGML_OP_FLASH_FF:
  7538. {
  7539. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7540. } break;
  7541. case GGML_OP_MAP_UNARY:
  7542. {
  7543. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  7544. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  7545. }
  7546. break;
  7547. case GGML_OP_MAP_BINARY:
  7548. {
  7549. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  7550. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  7551. }
  7552. break;
  7553. case GGML_OP_NONE:
  7554. {
  7555. // nop
  7556. } break;
  7557. case GGML_OP_COUNT:
  7558. {
  7559. GGML_ASSERT(false);
  7560. } break;
  7561. }
  7562. }
  7563. ////////////////////////////////////////////////////////////////////////////////
  7564. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7565. struct ggml_tensor * src0 = tensor->src0;
  7566. struct ggml_tensor * src1 = tensor->src1;
  7567. switch (tensor->op) {
  7568. case GGML_OP_DUP:
  7569. {
  7570. if (src0->grad) {
  7571. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7572. }
  7573. } break;
  7574. case GGML_OP_ADD:
  7575. {
  7576. if (src0->grad) {
  7577. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7578. }
  7579. if (src1->grad) {
  7580. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7581. }
  7582. } break;
  7583. case GGML_OP_SUB:
  7584. {
  7585. if (src0->grad) {
  7586. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7587. }
  7588. if (src1->grad) {
  7589. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7590. }
  7591. } break;
  7592. case GGML_OP_MUL:
  7593. {
  7594. if (src0->grad) {
  7595. src0->grad =
  7596. ggml_add_impl(ctx,
  7597. src0->grad,
  7598. ggml_mul(ctx, src1, tensor->grad),
  7599. inplace);
  7600. }
  7601. if (src1->grad) {
  7602. src1->grad =
  7603. ggml_add_impl(ctx,
  7604. src1->grad,
  7605. ggml_mul(ctx, src0, tensor->grad),
  7606. inplace);
  7607. }
  7608. } break;
  7609. case GGML_OP_DIV:
  7610. {
  7611. if (src0->grad) {
  7612. src0->grad =
  7613. ggml_add_impl(ctx,
  7614. src0->grad,
  7615. ggml_div(ctx, tensor->grad, src1),
  7616. inplace);
  7617. }
  7618. if (src1->grad) {
  7619. src1->grad =
  7620. ggml_sub_impl(ctx,
  7621. src1->grad,
  7622. ggml_mul(ctx,
  7623. tensor->grad,
  7624. ggml_div(ctx, tensor, src1)),
  7625. inplace);
  7626. }
  7627. } break;
  7628. case GGML_OP_SQR:
  7629. {
  7630. if (src0->grad) {
  7631. src0->grad =
  7632. ggml_add_impl(ctx,
  7633. src0->grad,
  7634. ggml_mul(ctx,
  7635. ggml_mul(ctx, src0, tensor->grad),
  7636. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7637. inplace);
  7638. }
  7639. } break;
  7640. case GGML_OP_SQRT:
  7641. {
  7642. if (src0->grad) {
  7643. src0->grad =
  7644. ggml_add_impl(ctx,
  7645. src0->grad,
  7646. ggml_div(ctx,
  7647. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7648. tensor),
  7649. inplace);
  7650. }
  7651. } break;
  7652. case GGML_OP_SUM:
  7653. {
  7654. if (src0->grad) {
  7655. src0->grad =
  7656. ggml_add_impl(ctx,
  7657. src0->grad,
  7658. ggml_repeat(ctx, tensor->grad, src0->grad),
  7659. inplace);
  7660. }
  7661. } break;
  7662. case GGML_OP_MEAN:
  7663. {
  7664. GGML_ASSERT(false); // TODO: implement
  7665. } break;
  7666. case GGML_OP_REPEAT:
  7667. {
  7668. if (src0->grad) {
  7669. src0->grad =
  7670. ggml_add_impl(ctx,
  7671. src0->grad,
  7672. ggml_sum(ctx, tensor->grad),
  7673. inplace);
  7674. }
  7675. } break;
  7676. case GGML_OP_ABS:
  7677. {
  7678. if (src0->grad) {
  7679. src0->grad =
  7680. ggml_add_impl(ctx,
  7681. src0->grad,
  7682. ggml_mul(ctx,
  7683. ggml_sgn(ctx, src0),
  7684. tensor->grad),
  7685. inplace);
  7686. }
  7687. } break;
  7688. case GGML_OP_SGN:
  7689. {
  7690. if (src0->grad) {
  7691. // noop
  7692. }
  7693. } break;
  7694. case GGML_OP_NEG:
  7695. {
  7696. if (src0->grad) {
  7697. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7698. }
  7699. } break;
  7700. case GGML_OP_STEP:
  7701. {
  7702. if (src0->grad) {
  7703. // noop
  7704. }
  7705. } break;
  7706. case GGML_OP_RELU:
  7707. {
  7708. if (src0->grad) {
  7709. src0->grad = ggml_sub_impl(ctx,
  7710. src0->grad,
  7711. ggml_mul(ctx,
  7712. ggml_step(ctx, src0),
  7713. tensor->grad),
  7714. inplace);
  7715. }
  7716. } break;
  7717. case GGML_OP_GELU:
  7718. {
  7719. GGML_ASSERT(false); // TODO: not implemented
  7720. } break;
  7721. case GGML_OP_SILU:
  7722. {
  7723. GGML_ASSERT(false); // TODO: not implemented
  7724. } break;
  7725. case GGML_OP_NORM:
  7726. {
  7727. GGML_ASSERT(false); // TODO: not implemented
  7728. } break;
  7729. case GGML_OP_RMS_NORM:
  7730. {
  7731. GGML_ASSERT(false); // TODO: not implemented
  7732. } break;
  7733. case GGML_OP_MUL_MAT:
  7734. {
  7735. if (src0->grad) {
  7736. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7737. GGML_ASSERT(false);
  7738. }
  7739. if (src1->grad) {
  7740. src1->grad =
  7741. ggml_add_impl(ctx,
  7742. src1->grad,
  7743. ggml_mul_mat(ctx,
  7744. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7745. tensor->grad),
  7746. inplace);
  7747. }
  7748. } break;
  7749. case GGML_OP_SCALE:
  7750. {
  7751. GGML_ASSERT(false); // TODO: not implemented
  7752. } break;
  7753. case GGML_OP_CPY:
  7754. {
  7755. GGML_ASSERT(false); // TODO: not implemented
  7756. } break;
  7757. case GGML_OP_CONT:
  7758. {
  7759. GGML_ASSERT(false); // TODO: not implemented
  7760. } break;
  7761. case GGML_OP_RESHAPE:
  7762. {
  7763. GGML_ASSERT(false); // TODO: not implemented
  7764. } break;
  7765. case GGML_OP_VIEW:
  7766. {
  7767. GGML_ASSERT(false); // not supported
  7768. } break;
  7769. case GGML_OP_PERMUTE:
  7770. {
  7771. GGML_ASSERT(false); // TODO: not implemented
  7772. } break;
  7773. case GGML_OP_TRANSPOSE:
  7774. {
  7775. GGML_ASSERT(false); // TODO: not implemented
  7776. } break;
  7777. case GGML_OP_GET_ROWS:
  7778. {
  7779. GGML_ASSERT(false); // TODO: not implemented
  7780. } break;
  7781. case GGML_OP_DIAG_MASK_INF:
  7782. {
  7783. GGML_ASSERT(false); // TODO: not implemented
  7784. } break;
  7785. case GGML_OP_SOFT_MAX:
  7786. {
  7787. GGML_ASSERT(false); // TODO: not implemented
  7788. } break;
  7789. case GGML_OP_ROPE:
  7790. {
  7791. GGML_ASSERT(false); // TODO: not implemented
  7792. } break;
  7793. case GGML_OP_CONV_1D_1S:
  7794. {
  7795. GGML_ASSERT(false); // TODO: not implemented
  7796. } break;
  7797. case GGML_OP_CONV_1D_2S:
  7798. {
  7799. GGML_ASSERT(false); // TODO: not implemented
  7800. } break;
  7801. case GGML_OP_FLASH_ATTN:
  7802. {
  7803. GGML_ASSERT(false); // not supported
  7804. } break;
  7805. case GGML_OP_FLASH_FF:
  7806. {
  7807. GGML_ASSERT(false); // not supported
  7808. } break;
  7809. case GGML_OP_MAP_UNARY:
  7810. case GGML_OP_MAP_BINARY:
  7811. {
  7812. GGML_ASSERT(false); // not supported
  7813. } break;
  7814. case GGML_OP_NONE:
  7815. {
  7816. // nop
  7817. } break;
  7818. case GGML_OP_COUNT:
  7819. {
  7820. GGML_ASSERT(false);
  7821. } break;
  7822. }
  7823. }
  7824. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7825. if (node->grad == NULL) {
  7826. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7827. // it can also happen during forward pass, if the user performs computations with constants
  7828. if (node->op != GGML_OP_NONE) {
  7829. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7830. }
  7831. }
  7832. // check if already visited
  7833. for (int i = 0; i < cgraph->n_nodes; i++) {
  7834. if (cgraph->nodes[i] == node) {
  7835. return;
  7836. }
  7837. }
  7838. for (int i = 0; i < cgraph->n_leafs; i++) {
  7839. if (cgraph->leafs[i] == node) {
  7840. return;
  7841. }
  7842. }
  7843. if (node->src0) {
  7844. ggml_visit_parents(cgraph, node->src0);
  7845. }
  7846. if (node->src1) {
  7847. ggml_visit_parents(cgraph, node->src1);
  7848. }
  7849. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7850. if (node->opt[i]) {
  7851. ggml_visit_parents(cgraph, node->opt[i]);
  7852. }
  7853. }
  7854. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7855. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7856. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7857. cgraph->leafs[cgraph->n_leafs] = node;
  7858. cgraph->n_leafs++;
  7859. } else {
  7860. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7861. cgraph->nodes[cgraph->n_nodes] = node;
  7862. cgraph->grads[cgraph->n_nodes] = node->grad;
  7863. cgraph->n_nodes++;
  7864. }
  7865. }
  7866. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7867. if (!expand) {
  7868. cgraph->n_nodes = 0;
  7869. cgraph->n_leafs = 0;
  7870. }
  7871. const int n0 = cgraph->n_nodes;
  7872. UNUSED(n0);
  7873. ggml_visit_parents(cgraph, tensor);
  7874. const int n_new = cgraph->n_nodes - n0;
  7875. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7876. if (n_new > 0) {
  7877. // the last added node should always be starting point
  7878. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7879. }
  7880. }
  7881. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7882. ggml_build_forward_impl(cgraph, tensor, true);
  7883. }
  7884. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7885. struct ggml_cgraph result = {
  7886. /*.n_nodes =*/ 0,
  7887. /*.n_leafs =*/ 0,
  7888. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  7889. /*.work_size =*/ 0,
  7890. /*.work =*/ NULL,
  7891. /*.nodes =*/ { NULL },
  7892. /*.grads =*/ { NULL },
  7893. /*.leafs =*/ { NULL },
  7894. /*.perf_runs =*/ 0,
  7895. /*.perf_cycles =*/ 0,
  7896. /*.perf_time_us =*/ 0,
  7897. };
  7898. ggml_build_forward_impl(&result, tensor, false);
  7899. return result;
  7900. }
  7901. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7902. struct ggml_cgraph result = *gf;
  7903. GGML_ASSERT(gf->n_nodes > 0);
  7904. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7905. if (keep) {
  7906. for (int i = 0; i < gf->n_nodes; i++) {
  7907. struct ggml_tensor * node = gf->nodes[i];
  7908. if (node->grad) {
  7909. node->grad = ggml_dup_tensor(ctx, node);
  7910. gf->grads[i] = node->grad;
  7911. }
  7912. }
  7913. }
  7914. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7915. struct ggml_tensor * node = gf->nodes[i];
  7916. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7917. if (node->grad) {
  7918. ggml_compute_backward(ctx, node, keep);
  7919. }
  7920. }
  7921. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7922. struct ggml_tensor * node = gf->nodes[i];
  7923. if (node->is_param) {
  7924. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7925. ggml_build_forward_impl(&result, node->grad, true);
  7926. }
  7927. }
  7928. return result;
  7929. }
  7930. //
  7931. // thread data
  7932. //
  7933. // synchronization is done via busy loops
  7934. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7935. //
  7936. #ifdef __APPLE__
  7937. //#include <os/lock.h>
  7938. //
  7939. //typedef os_unfair_lock ggml_lock_t;
  7940. //
  7941. //#define ggml_lock_init(x) UNUSED(x)
  7942. //#define ggml_lock_destroy(x) UNUSED(x)
  7943. //#define ggml_lock_lock os_unfair_lock_lock
  7944. //#define ggml_lock_unlock os_unfair_lock_unlock
  7945. //
  7946. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7947. typedef int ggml_lock_t;
  7948. #define ggml_lock_init(x) UNUSED(x)
  7949. #define ggml_lock_destroy(x) UNUSED(x)
  7950. #define ggml_lock_lock(x) UNUSED(x)
  7951. #define ggml_lock_unlock(x) UNUSED(x)
  7952. #define GGML_LOCK_INITIALIZER 0
  7953. typedef pthread_t ggml_thread_t;
  7954. #define ggml_thread_create pthread_create
  7955. #define ggml_thread_join pthread_join
  7956. #else
  7957. //typedef pthread_spinlock_t ggml_lock_t;
  7958. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7959. //#define ggml_lock_destroy pthread_spin_destroy
  7960. //#define ggml_lock_lock pthread_spin_lock
  7961. //#define ggml_lock_unlock pthread_spin_unlock
  7962. typedef int ggml_lock_t;
  7963. #define ggml_lock_init(x) UNUSED(x)
  7964. #define ggml_lock_destroy(x) UNUSED(x)
  7965. #define ggml_lock_lock(x) UNUSED(x)
  7966. #define ggml_lock_unlock(x) UNUSED(x)
  7967. #define GGML_LOCK_INITIALIZER 0
  7968. typedef pthread_t ggml_thread_t;
  7969. #define ggml_thread_create pthread_create
  7970. #define ggml_thread_join pthread_join
  7971. #endif
  7972. struct ggml_compute_state_shared {
  7973. ggml_lock_t spin;
  7974. int n_threads;
  7975. // synchronization primitives
  7976. atomic_int n_ready;
  7977. atomic_bool has_work;
  7978. atomic_bool stop; // stop all threads
  7979. };
  7980. struct ggml_compute_state {
  7981. ggml_thread_t thrd;
  7982. struct ggml_compute_params params;
  7983. struct ggml_tensor * node;
  7984. struct ggml_compute_state_shared * shared;
  7985. };
  7986. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7987. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7988. const int n_threads = state->shared->n_threads;
  7989. while (true) {
  7990. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7991. atomic_store(&state->shared->has_work, false);
  7992. } else {
  7993. while (atomic_load(&state->shared->has_work)) {
  7994. if (atomic_load(&state->shared->stop)) {
  7995. return 0;
  7996. }
  7997. ggml_lock_lock (&state->shared->spin);
  7998. ggml_lock_unlock(&state->shared->spin);
  7999. }
  8000. }
  8001. atomic_fetch_sub(&state->shared->n_ready, 1);
  8002. // wait for work
  8003. while (!atomic_load(&state->shared->has_work)) {
  8004. if (atomic_load(&state->shared->stop)) {
  8005. return 0;
  8006. }
  8007. ggml_lock_lock (&state->shared->spin);
  8008. ggml_lock_unlock(&state->shared->spin);
  8009. }
  8010. // check if we should stop
  8011. if (atomic_load(&state->shared->stop)) {
  8012. break;
  8013. }
  8014. if (state->node) {
  8015. if (state->params.ith < state->params.nth) {
  8016. ggml_compute_forward(&state->params, state->node);
  8017. }
  8018. state->node = NULL;
  8019. } else {
  8020. break;
  8021. }
  8022. }
  8023. return 0;
  8024. }
  8025. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8026. const int n_threads = cgraph->n_threads;
  8027. struct ggml_compute_state_shared state_shared = {
  8028. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8029. /*.n_threads =*/ n_threads,
  8030. /*.n_ready =*/ 0,
  8031. /*.has_work =*/ false,
  8032. /*.stop =*/ false,
  8033. };
  8034. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8035. // create thread pool
  8036. if (n_threads > 1) {
  8037. ggml_lock_init(&state_shared.spin);
  8038. atomic_store(&state_shared.has_work, true);
  8039. for (int j = 0; j < n_threads - 1; j++) {
  8040. workers[j] = (struct ggml_compute_state) {
  8041. .thrd = 0,
  8042. .params = {
  8043. .type = GGML_TASK_COMPUTE,
  8044. .ith = j + 1,
  8045. .nth = n_threads,
  8046. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8047. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8048. },
  8049. .node = NULL,
  8050. .shared = &state_shared,
  8051. };
  8052. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8053. GGML_ASSERT(rc == 0);
  8054. UNUSED(rc);
  8055. }
  8056. }
  8057. // initialize tasks + work buffer
  8058. {
  8059. size_t work_size = 0;
  8060. // thread scheduling for the different operations
  8061. for (int i = 0; i < cgraph->n_nodes; i++) {
  8062. struct ggml_tensor * node = cgraph->nodes[i];
  8063. switch (node->op) {
  8064. case GGML_OP_DUP:
  8065. {
  8066. node->n_tasks = 1;
  8067. } break;
  8068. case GGML_OP_ADD:
  8069. {
  8070. node->n_tasks = n_threads;
  8071. } break;
  8072. case GGML_OP_SUB:
  8073. case GGML_OP_MUL:
  8074. case GGML_OP_DIV:
  8075. case GGML_OP_SQR:
  8076. case GGML_OP_SQRT:
  8077. case GGML_OP_SUM:
  8078. case GGML_OP_MEAN:
  8079. case GGML_OP_REPEAT:
  8080. case GGML_OP_ABS:
  8081. case GGML_OP_SGN:
  8082. case GGML_OP_NEG:
  8083. case GGML_OP_STEP:
  8084. case GGML_OP_RELU:
  8085. {
  8086. node->n_tasks = 1;
  8087. } break;
  8088. case GGML_OP_GELU:
  8089. {
  8090. node->n_tasks = n_threads;
  8091. } break;
  8092. case GGML_OP_SILU:
  8093. {
  8094. node->n_tasks = n_threads;
  8095. } break;
  8096. case GGML_OP_NORM:
  8097. case GGML_OP_RMS_NORM:
  8098. {
  8099. node->n_tasks = n_threads;
  8100. } break;
  8101. case GGML_OP_MUL_MAT:
  8102. {
  8103. node->n_tasks = n_threads;
  8104. // TODO: use different scheduling for different matrix sizes
  8105. //const int nr0 = ggml_nrows(node->src0);
  8106. //const int nr1 = ggml_nrows(node->src1);
  8107. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8108. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8109. size_t cur = 0;
  8110. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8111. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8112. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8113. node->n_tasks = 1; // TODO: this actually is doing nothing
  8114. // the threads are still spinning
  8115. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8116. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8117. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8118. //printf("cur = %zu\n", cur);
  8119. } else {
  8120. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8121. }
  8122. #else
  8123. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8124. #endif
  8125. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8126. cur = 0;
  8127. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  8128. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8129. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8130. node->n_tasks = 1;
  8131. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8132. } else
  8133. #endif
  8134. {
  8135. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  8136. }
  8137. } else {
  8138. GGML_ASSERT(false);
  8139. }
  8140. work_size = MAX(work_size, cur);
  8141. } break;
  8142. case GGML_OP_SCALE:
  8143. {
  8144. node->n_tasks = n_threads;
  8145. } break;
  8146. case GGML_OP_CPY:
  8147. case GGML_OP_CONT:
  8148. case GGML_OP_RESHAPE:
  8149. case GGML_OP_VIEW:
  8150. case GGML_OP_PERMUTE:
  8151. case GGML_OP_TRANSPOSE:
  8152. case GGML_OP_GET_ROWS:
  8153. case GGML_OP_DIAG_MASK_INF:
  8154. {
  8155. node->n_tasks = 1;
  8156. } break;
  8157. case GGML_OP_SOFT_MAX:
  8158. {
  8159. node->n_tasks = n_threads;
  8160. } break;
  8161. case GGML_OP_ROPE:
  8162. {
  8163. node->n_tasks = n_threads;
  8164. } break;
  8165. case GGML_OP_CONV_1D_1S:
  8166. case GGML_OP_CONV_1D_2S:
  8167. {
  8168. node->n_tasks = n_threads;
  8169. GGML_ASSERT(node->src0->ne[3] == 1);
  8170. GGML_ASSERT(node->src1->ne[2] == 1);
  8171. GGML_ASSERT(node->src1->ne[3] == 1);
  8172. size_t cur = 0;
  8173. const int nk = node->src0->ne[0];
  8174. if (node->src0->type == GGML_TYPE_F16 &&
  8175. node->src1->type == GGML_TYPE_F32) {
  8176. cur = sizeof(ggml_fp16_t)*(
  8177. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8178. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8179. );
  8180. } else if (node->src0->type == GGML_TYPE_F32 &&
  8181. node->src1->type == GGML_TYPE_F32) {
  8182. cur = sizeof(float)*(
  8183. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8184. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8185. );
  8186. } else {
  8187. GGML_ASSERT(false);
  8188. }
  8189. work_size = MAX(work_size, cur);
  8190. } break;
  8191. case GGML_OP_FLASH_ATTN:
  8192. {
  8193. node->n_tasks = n_threads;
  8194. size_t cur = 0;
  8195. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8196. if (node->src1->type == GGML_TYPE_F32) {
  8197. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8198. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8199. }
  8200. if (node->src1->type == GGML_TYPE_F16) {
  8201. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8202. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8203. }
  8204. work_size = MAX(work_size, cur);
  8205. } break;
  8206. case GGML_OP_FLASH_FF:
  8207. {
  8208. node->n_tasks = n_threads;
  8209. size_t cur = 0;
  8210. if (node->src1->type == GGML_TYPE_F32) {
  8211. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8212. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8213. }
  8214. if (node->src1->type == GGML_TYPE_F16) {
  8215. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8216. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8217. }
  8218. work_size = MAX(work_size, cur);
  8219. } break;
  8220. case GGML_OP_MAP_UNARY:
  8221. case GGML_OP_MAP_BINARY:
  8222. {
  8223. node->n_tasks = 1;
  8224. } break;
  8225. case GGML_OP_NONE:
  8226. {
  8227. node->n_tasks = 1;
  8228. } break;
  8229. case GGML_OP_COUNT:
  8230. {
  8231. GGML_ASSERT(false);
  8232. } break;
  8233. }
  8234. }
  8235. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8236. GGML_ASSERT(false); // TODO: better handling
  8237. }
  8238. if (work_size > 0 && cgraph->work == NULL) {
  8239. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8240. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8241. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8242. }
  8243. }
  8244. const int64_t perf_start_cycles = ggml_perf_cycles();
  8245. const int64_t perf_start_time_us = ggml_perf_time_us();
  8246. for (int i = 0; i < cgraph->n_nodes; i++) {
  8247. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8248. struct ggml_tensor * node = cgraph->nodes[i];
  8249. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8250. //if (node->grad == NULL && node->perf_runs > 0) {
  8251. // continue;
  8252. //}
  8253. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8254. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8255. // INIT
  8256. struct ggml_compute_params params = {
  8257. /*.type =*/ GGML_TASK_INIT,
  8258. /*.ith =*/ 0,
  8259. /*.nth =*/ node->n_tasks,
  8260. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8261. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8262. };
  8263. ggml_compute_forward(&params, node);
  8264. // COMPUTE
  8265. if (node->n_tasks > 1) {
  8266. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8267. atomic_store(&state_shared.has_work, false);
  8268. }
  8269. while (atomic_load(&state_shared.has_work)) {
  8270. ggml_lock_lock (&state_shared.spin);
  8271. ggml_lock_unlock(&state_shared.spin);
  8272. }
  8273. // launch thread pool
  8274. for (int j = 0; j < n_threads - 1; j++) {
  8275. workers[j].params = (struct ggml_compute_params) {
  8276. .type = GGML_TASK_COMPUTE,
  8277. .ith = j + 1,
  8278. .nth = node->n_tasks,
  8279. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8280. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8281. };
  8282. workers[j].node = node;
  8283. }
  8284. atomic_fetch_sub(&state_shared.n_ready, 1);
  8285. while (atomic_load(&state_shared.n_ready) > 0) {
  8286. ggml_lock_lock (&state_shared.spin);
  8287. ggml_lock_unlock(&state_shared.spin);
  8288. }
  8289. atomic_store(&state_shared.has_work, true);
  8290. }
  8291. params.type = GGML_TASK_COMPUTE;
  8292. ggml_compute_forward(&params, node);
  8293. // wait for thread pool
  8294. if (node->n_tasks > 1) {
  8295. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8296. atomic_store(&state_shared.has_work, false);
  8297. }
  8298. while (atomic_load(&state_shared.has_work)) {
  8299. ggml_lock_lock (&state_shared.spin);
  8300. ggml_lock_unlock(&state_shared.spin);
  8301. }
  8302. atomic_fetch_sub(&state_shared.n_ready, 1);
  8303. while (atomic_load(&state_shared.n_ready) != 0) {
  8304. ggml_lock_lock (&state_shared.spin);
  8305. ggml_lock_unlock(&state_shared.spin);
  8306. }
  8307. }
  8308. // FINALIZE
  8309. if (node->n_tasks > 1) {
  8310. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8311. atomic_store(&state_shared.has_work, false);
  8312. }
  8313. while (atomic_load(&state_shared.has_work)) {
  8314. ggml_lock_lock (&state_shared.spin);
  8315. ggml_lock_unlock(&state_shared.spin);
  8316. }
  8317. // launch thread pool
  8318. for (int j = 0; j < n_threads - 1; j++) {
  8319. workers[j].params = (struct ggml_compute_params) {
  8320. .type = GGML_TASK_FINALIZE,
  8321. .ith = j + 1,
  8322. .nth = node->n_tasks,
  8323. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8324. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8325. };
  8326. workers[j].node = node;
  8327. }
  8328. atomic_fetch_sub(&state_shared.n_ready, 1);
  8329. while (atomic_load(&state_shared.n_ready) > 0) {
  8330. ggml_lock_lock (&state_shared.spin);
  8331. ggml_lock_unlock(&state_shared.spin);
  8332. }
  8333. atomic_store(&state_shared.has_work, true);
  8334. }
  8335. params.type = GGML_TASK_FINALIZE;
  8336. ggml_compute_forward(&params, node);
  8337. // wait for thread pool
  8338. if (node->n_tasks > 1) {
  8339. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8340. atomic_store(&state_shared.has_work, false);
  8341. }
  8342. while (atomic_load(&state_shared.has_work)) {
  8343. ggml_lock_lock (&state_shared.spin);
  8344. ggml_lock_unlock(&state_shared.spin);
  8345. }
  8346. atomic_fetch_sub(&state_shared.n_ready, 1);
  8347. while (atomic_load(&state_shared.n_ready) != 0) {
  8348. ggml_lock_lock (&state_shared.spin);
  8349. ggml_lock_unlock(&state_shared.spin);
  8350. }
  8351. }
  8352. // performance stats (node)
  8353. {
  8354. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8355. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8356. node->perf_runs++;
  8357. node->perf_cycles += perf_cycles_cur;
  8358. node->perf_time_us += perf_time_us_cur;
  8359. }
  8360. }
  8361. // join thread pool
  8362. if (n_threads > 1) {
  8363. atomic_store(&state_shared.stop, true);
  8364. atomic_store(&state_shared.has_work, true);
  8365. for (int j = 0; j < n_threads - 1; j++) {
  8366. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8367. GGML_ASSERT(rc == 0);
  8368. UNUSED(rc);
  8369. }
  8370. ggml_lock_destroy(&state_shared.spin);
  8371. }
  8372. // performance stats (graph)
  8373. {
  8374. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8375. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8376. cgraph->perf_runs++;
  8377. cgraph->perf_cycles += perf_cycles_cur;
  8378. cgraph->perf_time_us += perf_time_us_cur;
  8379. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8380. __func__, cgraph->perf_runs,
  8381. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8382. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8383. (double) perf_time_us_cur / 1000.0,
  8384. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8385. }
  8386. }
  8387. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8388. for (int i = 0; i < cgraph->n_nodes; i++) {
  8389. struct ggml_tensor * grad = cgraph->grads[i];
  8390. if (grad) {
  8391. ggml_set_zero(grad);
  8392. }
  8393. }
  8394. }
  8395. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8396. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8397. GGML_PRINT("=== GRAPH ===\n");
  8398. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8399. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8400. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8401. for (int i = 0; i < cgraph->n_nodes; i++) {
  8402. struct ggml_tensor * node = cgraph->nodes[i];
  8403. perf_total_per_op_us[node->op] += node->perf_time_us;
  8404. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8405. i,
  8406. node->ne[0], node->ne[1], node->ne[2],
  8407. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8408. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8409. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8410. (double) node->perf_time_us / 1000.0,
  8411. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8412. }
  8413. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8414. for (int i = 0; i < cgraph->n_leafs; i++) {
  8415. struct ggml_tensor * node = cgraph->leafs[i];
  8416. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8417. i,
  8418. node->ne[0], node->ne[1],
  8419. GGML_OP_LABEL[node->op]);
  8420. }
  8421. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8422. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8423. }
  8424. GGML_PRINT("========================================\n");
  8425. }
  8426. // check if node is part of the graph
  8427. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8428. if (cgraph == NULL) {
  8429. return true;
  8430. }
  8431. for (int i = 0; i < cgraph->n_nodes; i++) {
  8432. if (cgraph->nodes[i] == node) {
  8433. return true;
  8434. }
  8435. }
  8436. return false;
  8437. }
  8438. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8439. for (int i = 0; i < cgraph->n_nodes; i++) {
  8440. struct ggml_tensor * parent = cgraph->nodes[i];
  8441. if (parent->grad == node) {
  8442. return parent;
  8443. }
  8444. }
  8445. return NULL;
  8446. }
  8447. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8448. char color[16];
  8449. FILE * fp = fopen(filename, "w");
  8450. GGML_ASSERT(fp);
  8451. fprintf(fp, "digraph G {\n");
  8452. fprintf(fp, " newrank = true;\n");
  8453. fprintf(fp, " rankdir = LR;\n");
  8454. for (int i = 0; i < gb->n_nodes; i++) {
  8455. struct ggml_tensor * node = gb->nodes[i];
  8456. if (ggml_graph_get_parent(gb, node) != NULL) {
  8457. continue;
  8458. }
  8459. if (node->is_param) {
  8460. snprintf(color, sizeof(color), "yellow");
  8461. } else if (node->grad) {
  8462. if (ggml_graph_find(gf, node)) {
  8463. snprintf(color, sizeof(color), "green");
  8464. } else {
  8465. snprintf(color, sizeof(color), "lightblue");
  8466. }
  8467. } else {
  8468. snprintf(color, sizeof(color), "white");
  8469. }
  8470. fprintf(fp, " \"%p\" [ \
  8471. style = filled; fillcolor = %s; shape = record; \
  8472. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8473. (void *) node, color,
  8474. i, node->ne[0], node->ne[1],
  8475. GGML_OP_SYMBOL[node->op]);
  8476. if (node->grad) {
  8477. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8478. } else {
  8479. fprintf(fp, "\"; ]\n");
  8480. }
  8481. }
  8482. for (int i = 0; i < gb->n_leafs; i++) {
  8483. struct ggml_tensor * node = gb->leafs[i];
  8484. snprintf(color, sizeof(color), "pink");
  8485. if (ggml_nelements(node) == 1) {
  8486. fprintf(fp, " \"%p\" [ \
  8487. style = filled; fillcolor = %s; shape = record; \
  8488. label=\"<x>%.1e\"; ]\n",
  8489. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8490. } else {
  8491. fprintf(fp, " \"%p\" [ \
  8492. style = filled; fillcolor = %s; shape = record; \
  8493. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8494. (void *) node, color,
  8495. i, node->ne[0], node->ne[1]);
  8496. }
  8497. }
  8498. for (int i = 0; i < gb->n_nodes; i++) {
  8499. struct ggml_tensor * node = gb->nodes[i];
  8500. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8501. if (node->src0) {
  8502. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8503. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8504. parent0 ? (void *) parent0 : (void *) node->src0,
  8505. parent0 ? "g" : "x",
  8506. parent ? (void *) parent : (void *) node,
  8507. parent ? "g" : "x",
  8508. parent ? "empty" : "vee",
  8509. parent ? "dashed" : "solid");
  8510. }
  8511. if (node->src1) {
  8512. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8513. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8514. parent1 ? (void *) parent1 : (void *) node->src1,
  8515. parent1 ? "g" : "x",
  8516. parent ? (void *) parent : (void *) node,
  8517. parent ? "g" : "x",
  8518. parent ? "empty" : "vee",
  8519. parent ? "dashed" : "solid");
  8520. }
  8521. }
  8522. for (int i = 0; i < gb->n_leafs; i++) {
  8523. struct ggml_tensor * node = gb->leafs[i];
  8524. if (node->src0) {
  8525. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8526. (void *) node->src0, "x",
  8527. (void *) node, "x");
  8528. }
  8529. if (node->src1) {
  8530. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8531. (void *) node->src1, "x",
  8532. (void *) node, "x");
  8533. }
  8534. }
  8535. fprintf(fp, "}\n");
  8536. fclose(fp);
  8537. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8538. }
  8539. ////////////////////////////////////////////////////////////////////////////////
  8540. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8541. int i = 0;
  8542. for (int p = 0; p < np; ++p) {
  8543. const int64_t ne = ggml_nelements(ps[p]) ;
  8544. // TODO: add function to set tensor from array
  8545. for (int64_t j = 0; j < ne; ++j) {
  8546. ggml_set_f32_1d(ps[p], j, x[i++]);
  8547. }
  8548. }
  8549. }
  8550. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8551. int i = 0;
  8552. for (int p = 0; p < np; ++p) {
  8553. const int64_t ne = ggml_nelements(ps[p]) ;
  8554. // TODO: add function to get all elements at once
  8555. for (int64_t j = 0; j < ne; ++j) {
  8556. x[i++] = ggml_get_f32_1d(ps[p], j);
  8557. }
  8558. }
  8559. }
  8560. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8561. int i = 0;
  8562. for (int p = 0; p < np; ++p) {
  8563. const int64_t ne = ggml_nelements(ps[p]) ;
  8564. // TODO: add function to get all elements at once
  8565. for (int64_t j = 0; j < ne; ++j) {
  8566. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8567. }
  8568. }
  8569. }
  8570. //
  8571. // ADAM
  8572. //
  8573. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8574. //
  8575. static enum ggml_opt_result ggml_opt_adam(
  8576. struct ggml_context * ctx,
  8577. struct ggml_opt_params params,
  8578. struct ggml_tensor * f,
  8579. struct ggml_cgraph * gf,
  8580. struct ggml_cgraph * gb) {
  8581. GGML_ASSERT(ggml_is_scalar(f));
  8582. gf->n_threads = params.n_threads;
  8583. gb->n_threads = params.n_threads;
  8584. // these will store the parameters we want to optimize
  8585. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8586. int np = 0;
  8587. int nx = 0;
  8588. for (int i = 0; i < gf->n_nodes; ++i) {
  8589. if (gf->nodes[i]->is_param) {
  8590. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8591. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8592. ps[np++] = gf->nodes[i];
  8593. nx += ggml_nelements(gf->nodes[i]);
  8594. }
  8595. }
  8596. // constants
  8597. const float alpha = params.adam.alpha;
  8598. const float beta1 = params.adam.beta1;
  8599. const float beta2 = params.adam.beta2;
  8600. const float eps = params.adam.eps;
  8601. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8602. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8603. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8604. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8605. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8606. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8607. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8608. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8609. // initialize
  8610. ggml_vec_set_f32(nx, m, 0.0f);
  8611. ggml_vec_set_f32(nx, v, 0.0f);
  8612. // update view
  8613. ggml_opt_get_params(np, ps, x);
  8614. // compute the function value
  8615. ggml_graph_reset (gf);
  8616. ggml_set_f32 (f->grad, 1.0f);
  8617. ggml_graph_compute(ctx, gb);
  8618. float fx_prev = ggml_get_f32_1d(f, 0);
  8619. if (pf) {
  8620. pf[0] = fx_prev;
  8621. }
  8622. int n_no_improvement = 0;
  8623. float fx_best = fx_prev;
  8624. // run the optimizer
  8625. for (int t = 0; t < params.adam.n_iter; ++t) {
  8626. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8627. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8628. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8629. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8630. for (int i = 0; i < np; ++i) {
  8631. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8632. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8633. }
  8634. const int64_t t_start_wall = ggml_time_us();
  8635. const int64_t t_start_cpu = ggml_cycles();
  8636. UNUSED(t_start_wall);
  8637. UNUSED(t_start_cpu);
  8638. {
  8639. // update the gradient
  8640. ggml_opt_get_grad(np, ps, g1);
  8641. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8642. ggml_vec_scale_f32(nx, m, beta1);
  8643. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8644. // g2 = g1^2
  8645. ggml_vec_sqr_f32 (nx, g2, g1);
  8646. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8647. ggml_vec_scale_f32(nx, v, beta2);
  8648. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8649. // m^hat = m_t / (1 - beta1^t)
  8650. // v^hat = v_t / (1 - beta2^t)
  8651. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8652. ggml_vec_cpy_f32 (nx, mh, m);
  8653. ggml_vec_cpy_f32 (nx, vh, v);
  8654. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8655. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8656. ggml_vec_sqrt_f32 (nx, vh, vh);
  8657. ggml_vec_acc1_f32 (nx, vh, eps);
  8658. ggml_vec_div_f32 (nx, mh, mh, vh);
  8659. ggml_vec_sub_f32 (nx, x, x, mh);
  8660. // update the parameters
  8661. ggml_opt_set_params(np, ps, x);
  8662. }
  8663. ggml_graph_reset (gf);
  8664. ggml_set_f32 (f->grad, 1.0f);
  8665. ggml_graph_compute(ctx, gb);
  8666. const float fx = ggml_get_f32_1d(f, 0);
  8667. // check convergence
  8668. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8669. GGML_PRINT_DEBUG("converged\n");
  8670. return GGML_OPT_OK;
  8671. }
  8672. // delta-based convergence test
  8673. if (pf != NULL) {
  8674. // need at least params.past iterations to start checking for convergence
  8675. if (params.past <= t) {
  8676. const float rate = (pf[t%params.past] - fx)/fx;
  8677. if (fabsf(rate) < params.delta) {
  8678. return GGML_OPT_OK;
  8679. }
  8680. }
  8681. pf[t%params.past] = fx;
  8682. }
  8683. // check for improvement
  8684. if (params.max_no_improvement > 0) {
  8685. if (fx_best > fx) {
  8686. fx_best = fx;
  8687. n_no_improvement = 0;
  8688. } else {
  8689. ++n_no_improvement;
  8690. if (n_no_improvement >= params.max_no_improvement) {
  8691. return GGML_OPT_OK;
  8692. }
  8693. }
  8694. }
  8695. fx_prev = fx;
  8696. {
  8697. const int64_t t_end_cpu = ggml_cycles();
  8698. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8699. UNUSED(t_end_cpu);
  8700. const int64_t t_end_wall = ggml_time_us();
  8701. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8702. UNUSED(t_end_wall);
  8703. }
  8704. }
  8705. return GGML_OPT_DID_NOT_CONVERGE;
  8706. }
  8707. //
  8708. // L-BFGS
  8709. //
  8710. // the L-BFGS implementation below is based on the following implementation:
  8711. //
  8712. // https://github.com/chokkan/liblbfgs
  8713. //
  8714. struct ggml_lbfgs_iteration_data {
  8715. float alpha;
  8716. float ys;
  8717. float * s;
  8718. float * y;
  8719. };
  8720. static enum ggml_opt_result linesearch_backtracking(
  8721. struct ggml_context * ctx,
  8722. const struct ggml_opt_params * params,
  8723. int nx,
  8724. float * x,
  8725. float * fx,
  8726. float * g,
  8727. float * d,
  8728. float * step,
  8729. const float * xp,
  8730. struct ggml_tensor * f,
  8731. struct ggml_cgraph * gf,
  8732. struct ggml_cgraph * gb,
  8733. const int np,
  8734. struct ggml_tensor * ps[]) {
  8735. int count = 0;
  8736. float width = 0.0f;
  8737. float dg = 0.0f;
  8738. float finit = 0.0f;
  8739. float dginit = 0.0f;
  8740. float dgtest = 0.0f;
  8741. const float dec = 0.5f;
  8742. const float inc = 2.1f;
  8743. if (*step <= 0.f) {
  8744. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8745. }
  8746. // compute the initial gradient in the search direction
  8747. ggml_vec_dot_f32(nx, &dginit, g, d);
  8748. // make sure that d points to a descent direction
  8749. if (0 < dginit) {
  8750. return GGML_LINESEARCH_FAIL;
  8751. }
  8752. // initialize local variables
  8753. finit = *fx;
  8754. dgtest = params->lbfgs.ftol*dginit;
  8755. while (true) {
  8756. ggml_vec_cpy_f32(nx, x, xp);
  8757. ggml_vec_mad_f32(nx, x, d, *step);
  8758. // evaluate the function and gradient values
  8759. {
  8760. ggml_opt_set_params(np, ps, x);
  8761. ggml_graph_reset (gf);
  8762. ggml_set_f32 (f->grad, 1.0f);
  8763. ggml_graph_compute(ctx, gb);
  8764. ggml_opt_get_grad(np, ps, g);
  8765. *fx = ggml_get_f32_1d(f, 0);
  8766. }
  8767. ++count;
  8768. if (*fx > finit + (*step)*dgtest) {
  8769. width = dec;
  8770. } else {
  8771. // Armijo condition is satisfied
  8772. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8773. return count;
  8774. }
  8775. ggml_vec_dot_f32(nx, &dg, g, d);
  8776. // check the Wolfe condition
  8777. if (dg < params->lbfgs.wolfe * dginit) {
  8778. width = inc;
  8779. } else {
  8780. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8781. // regular Wolfe conditions
  8782. return count;
  8783. }
  8784. if(dg > -params->lbfgs.wolfe*dginit) {
  8785. width = dec;
  8786. } else {
  8787. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8788. return count;
  8789. }
  8790. return count;
  8791. }
  8792. }
  8793. if (*step < params->lbfgs.min_step) {
  8794. return GGML_LINESEARCH_MINIMUM_STEP;
  8795. }
  8796. if (*step > params->lbfgs.max_step) {
  8797. return GGML_LINESEARCH_MAXIMUM_STEP;
  8798. }
  8799. if (params->lbfgs.max_linesearch <= count) {
  8800. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8801. }
  8802. (*step) *= width;
  8803. }
  8804. return GGML_LINESEARCH_FAIL;
  8805. }
  8806. static enum ggml_opt_result ggml_opt_lbfgs(
  8807. struct ggml_context * ctx,
  8808. struct ggml_opt_params params,
  8809. struct ggml_tensor * f,
  8810. struct ggml_cgraph * gf,
  8811. struct ggml_cgraph * gb) {
  8812. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8813. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8814. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8815. return GGML_OPT_INVALID_WOLFE;
  8816. }
  8817. }
  8818. gf->n_threads = params.n_threads;
  8819. gb->n_threads = params.n_threads;
  8820. const int m = params.lbfgs.m;
  8821. // these will store the parameters we want to optimize
  8822. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8823. int np = 0;
  8824. int nx = 0;
  8825. for (int i = 0; i < gf->n_nodes; ++i) {
  8826. if (gf->nodes[i]->is_param) {
  8827. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8828. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8829. ps[np++] = gf->nodes[i];
  8830. nx += ggml_nelements(gf->nodes[i]);
  8831. }
  8832. }
  8833. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8834. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8835. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8836. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8837. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8838. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8839. float fx = 0.0f; // cost function value
  8840. float xnorm = 0.0f; // ||x||
  8841. float gnorm = 0.0f; // ||g||
  8842. float step = 0.0f;
  8843. // initialize x from the graph nodes
  8844. ggml_opt_get_params(np, ps, x);
  8845. // the L-BFGS memory
  8846. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8847. for (int i = 0; i < m; ++i) {
  8848. lm[i].alpha = 0.0f;
  8849. lm[i].ys = 0.0f;
  8850. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8851. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8852. }
  8853. // evaluate the function value and its gradient
  8854. {
  8855. ggml_opt_set_params(np, ps, x);
  8856. ggml_graph_reset (gf);
  8857. ggml_set_f32 (f->grad, 1.0f);
  8858. ggml_graph_compute(ctx, gb);
  8859. ggml_opt_get_grad(np, ps, g);
  8860. fx = ggml_get_f32_1d(f, 0);
  8861. }
  8862. if (pf) {
  8863. pf[0] = fx;
  8864. }
  8865. float fx_best = fx;
  8866. // search direction = -gradient
  8867. ggml_vec_neg_f32(nx, d, g);
  8868. // ||x||, ||g||
  8869. ggml_vec_norm_f32(nx, &xnorm, x);
  8870. ggml_vec_norm_f32(nx, &gnorm, g);
  8871. if (xnorm < 1.0f) {
  8872. xnorm = 1.0f;
  8873. }
  8874. // already optimized
  8875. if (gnorm/xnorm <= params.lbfgs.eps) {
  8876. return GGML_OPT_OK;
  8877. }
  8878. // initial step
  8879. ggml_vec_norm_inv_f32(nx, &step, d);
  8880. int j = 0;
  8881. int k = 1;
  8882. int ls = 0;
  8883. int end = 0;
  8884. int bound = 0;
  8885. int n_no_improvement = 0;
  8886. float ys = 0.0f;
  8887. float yy = 0.0f;
  8888. float beta = 0.0f;
  8889. while (true) {
  8890. // store the current position and gradient vectors
  8891. ggml_vec_cpy_f32(nx, xp, x);
  8892. ggml_vec_cpy_f32(nx, gp, g);
  8893. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8894. if (ls < 0) {
  8895. // linesearch failed - go back to the previous point and return
  8896. ggml_vec_cpy_f32(nx, x, xp);
  8897. ggml_vec_cpy_f32(nx, g, gp);
  8898. return ls;
  8899. }
  8900. ggml_vec_norm_f32(nx, &xnorm, x);
  8901. ggml_vec_norm_f32(nx, &gnorm, g);
  8902. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8903. if (xnorm < 1.0f) {
  8904. xnorm = 1.0f;
  8905. }
  8906. if (gnorm/xnorm <= params.lbfgs.eps) {
  8907. // converged
  8908. return GGML_OPT_OK;
  8909. }
  8910. // delta-based convergence test
  8911. if (pf != NULL) {
  8912. // need at least params.past iterations to start checking for convergence
  8913. if (params.past <= k) {
  8914. const float rate = (pf[k%params.past] - fx)/fx;
  8915. if (fabsf(rate) < params.delta) {
  8916. return GGML_OPT_OK;
  8917. }
  8918. }
  8919. pf[k%params.past] = fx;
  8920. }
  8921. // check for improvement
  8922. if (params.max_no_improvement > 0) {
  8923. if (fx < fx_best) {
  8924. fx_best = fx;
  8925. n_no_improvement = 0;
  8926. } else {
  8927. n_no_improvement++;
  8928. if (n_no_improvement >= params.max_no_improvement) {
  8929. return GGML_OPT_OK;
  8930. }
  8931. }
  8932. }
  8933. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8934. // reached the maximum number of iterations
  8935. return GGML_OPT_DID_NOT_CONVERGE;
  8936. }
  8937. // update vectors s and y:
  8938. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8939. // y_{k+1} = g_{k+1} - g_{k}.
  8940. //
  8941. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8942. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8943. // compute scalars ys and yy:
  8944. // ys = y^t \cdot s -> 1 / \rho.
  8945. // yy = y^t \cdot y.
  8946. //
  8947. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8948. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8949. lm[end].ys = ys;
  8950. // find new search direction
  8951. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8952. bound = (m <= k) ? m : k;
  8953. k++;
  8954. end = (end + 1)%m;
  8955. // initialize search direction with -g
  8956. ggml_vec_neg_f32(nx, d, g);
  8957. j = end;
  8958. for (int i = 0; i < bound; ++i) {
  8959. j = (j + m - 1) % m;
  8960. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8961. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8962. lm[j].alpha /= lm[j].ys;
  8963. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8964. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8965. }
  8966. ggml_vec_scale_f32(nx, d, ys/yy);
  8967. for (int i = 0; i < bound; ++i) {
  8968. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8969. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8970. beta /= lm[j].ys;
  8971. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8972. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8973. j = (j + 1)%m;
  8974. }
  8975. step = 1.0;
  8976. }
  8977. return GGML_OPT_DID_NOT_CONVERGE;
  8978. }
  8979. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8980. struct ggml_opt_params result;
  8981. switch (type) {
  8982. case GGML_OPT_ADAM:
  8983. {
  8984. result = (struct ggml_opt_params) {
  8985. .type = GGML_OPT_ADAM,
  8986. .n_threads = 1,
  8987. .past = 0,
  8988. .delta = 1e-5f,
  8989. .max_no_improvement = 100,
  8990. .print_forward_graph = true,
  8991. .print_backward_graph = true,
  8992. .adam = {
  8993. .n_iter = 10000,
  8994. .alpha = 0.001f,
  8995. .beta1 = 0.9f,
  8996. .beta2 = 0.999f,
  8997. .eps = 1e-8f,
  8998. .eps_f = 1e-5f,
  8999. .eps_g = 1e-3f,
  9000. },
  9001. };
  9002. } break;
  9003. case GGML_OPT_LBFGS:
  9004. {
  9005. result = (struct ggml_opt_params) {
  9006. .type = GGML_OPT_LBFGS,
  9007. .n_threads = 1,
  9008. .past = 0,
  9009. .delta = 1e-5f,
  9010. .max_no_improvement = 0,
  9011. .print_forward_graph = true,
  9012. .print_backward_graph = true,
  9013. .lbfgs = {
  9014. .m = 6,
  9015. .n_iter = 100,
  9016. .max_linesearch = 20,
  9017. .eps = 1e-5f,
  9018. .ftol = 1e-4f,
  9019. .wolfe = 0.9f,
  9020. .min_step = 1e-20f,
  9021. .max_step = 1e+20f,
  9022. .linesearch = GGML_LINESEARCH_DEFAULT,
  9023. },
  9024. };
  9025. } break;
  9026. }
  9027. return result;
  9028. }
  9029. enum ggml_opt_result ggml_opt(
  9030. struct ggml_context * ctx,
  9031. struct ggml_opt_params params,
  9032. struct ggml_tensor * f) {
  9033. bool free_ctx = false;
  9034. if (ctx == NULL) {
  9035. struct ggml_init_params params_ctx = {
  9036. .mem_size = 16*1024*1024,
  9037. .mem_buffer = NULL,
  9038. .no_alloc = false,
  9039. };
  9040. ctx = ggml_init(params_ctx);
  9041. if (ctx == NULL) {
  9042. return GGML_OPT_NO_CONTEXT;
  9043. }
  9044. free_ctx = true;
  9045. }
  9046. enum ggml_opt_result result = GGML_OPT_OK;
  9047. // build forward + backward compute graphs
  9048. struct ggml_cgraph gf = ggml_build_forward (f);
  9049. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9050. switch (params.type) {
  9051. case GGML_OPT_ADAM:
  9052. {
  9053. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9054. } break;
  9055. case GGML_OPT_LBFGS:
  9056. {
  9057. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9058. } break;
  9059. }
  9060. if (params.print_forward_graph) {
  9061. ggml_graph_print (&gf);
  9062. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9063. }
  9064. if (params.print_backward_graph) {
  9065. ggml_graph_print (&gb);
  9066. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9067. }
  9068. if (free_ctx) {
  9069. ggml_free(ctx);
  9070. }
  9071. return result;
  9072. }
  9073. ////////////////////////////////////////////////////////////////////////////////
  9074. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9075. assert(k % QK == 0);
  9076. const int nb = k / QK;
  9077. for (int j = 0; j < n; j += k) {
  9078. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  9079. quantize_row_q4_0_reference(src + j, y, k);
  9080. for (int i = 0; i < nb; i++) {
  9081. for (int l = 0; l < QK; l += 2) {
  9082. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9083. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9084. hist[vi0]++;
  9085. hist[vi1]++;
  9086. }
  9087. }
  9088. }
  9089. return (n/QK*sizeof(block_q4_0));
  9090. }
  9091. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9092. assert(k % QK == 0);
  9093. const int nb = k / QK;
  9094. for (int j = 0; j < n; j += k) {
  9095. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  9096. quantize_row_q4_1_reference(src + j, y, k);
  9097. for (int i = 0; i < nb; i++) {
  9098. for (int l = 0; l < QK; l += 2) {
  9099. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9100. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9101. hist[vi0]++;
  9102. hist[vi1]++;
  9103. }
  9104. }
  9105. }
  9106. return (n/QK*sizeof(block_q4_1));
  9107. }
  9108. ////////////////////////////////////////////////////////////////////////////////
  9109. int ggml_cpu_has_avx(void) {
  9110. #if defined(__AVX__)
  9111. return 1;
  9112. #else
  9113. return 0;
  9114. #endif
  9115. }
  9116. int ggml_cpu_has_avx2(void) {
  9117. #if defined(__AVX2__)
  9118. return 1;
  9119. #else
  9120. return 0;
  9121. #endif
  9122. }
  9123. int ggml_cpu_has_avx512(void) {
  9124. #if defined(__AVX512F__)
  9125. return 1;
  9126. #else
  9127. return 0;
  9128. #endif
  9129. }
  9130. int ggml_cpu_has_fma(void) {
  9131. #if defined(__FMA__)
  9132. return 1;
  9133. #else
  9134. return 0;
  9135. #endif
  9136. }
  9137. int ggml_cpu_has_neon(void) {
  9138. #if defined(__ARM_NEON)
  9139. return 1;
  9140. #else
  9141. return 0;
  9142. #endif
  9143. }
  9144. int ggml_cpu_has_arm_fma(void) {
  9145. #if defined(__ARM_FEATURE_FMA)
  9146. return 1;
  9147. #else
  9148. return 0;
  9149. #endif
  9150. }
  9151. int ggml_cpu_has_f16c(void) {
  9152. #if defined(__F16C__)
  9153. return 1;
  9154. #else
  9155. return 0;
  9156. #endif
  9157. }
  9158. int ggml_cpu_has_fp16_va(void) {
  9159. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9160. return 1;
  9161. #else
  9162. return 0;
  9163. #endif
  9164. }
  9165. int ggml_cpu_has_wasm_simd(void) {
  9166. #if defined(__wasm_simd128__)
  9167. return 1;
  9168. #else
  9169. return 0;
  9170. #endif
  9171. }
  9172. int ggml_cpu_has_blas(void) {
  9173. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9174. return 1;
  9175. #else
  9176. return 0;
  9177. #endif
  9178. }
  9179. int ggml_cpu_has_sse3(void) {
  9180. #if defined(__SSE3__)
  9181. return 1;
  9182. #else
  9183. return 0;
  9184. #endif
  9185. }
  9186. int ggml_cpu_has_vsx(void) {
  9187. #if defined(__POWER9_VECTOR__)
  9188. return 1;
  9189. #else
  9190. return 0;
  9191. #endif
  9192. }
  9193. ////////////////////////////////////////////////////////////////////////////////