1
0

server.cpp 175 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. return json {
  113. {"n_predict", n_predict}, // Server configured n_predict
  114. {"seed", sampling.seed},
  115. {"temperature", sampling.temp},
  116. {"dynatemp_range", sampling.dynatemp_range},
  117. {"dynatemp_exponent", sampling.dynatemp_exponent},
  118. {"top_k", sampling.top_k},
  119. {"top_p", sampling.top_p},
  120. {"min_p", sampling.min_p},
  121. {"xtc_probability", sampling.xtc_probability},
  122. {"xtc_threshold", sampling.xtc_threshold},
  123. {"typical_p", sampling.typ_p},
  124. {"repeat_last_n", sampling.penalty_last_n},
  125. {"repeat_penalty", sampling.penalty_repeat},
  126. {"presence_penalty", sampling.penalty_present},
  127. {"frequency_penalty", sampling.penalty_freq},
  128. {"dry_multiplier", sampling.dry_multiplier},
  129. {"dry_base", sampling.dry_base},
  130. {"dry_allowed_length", sampling.dry_allowed_length},
  131. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  132. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  133. {"mirostat", sampling.mirostat},
  134. {"mirostat_tau", sampling.mirostat_tau},
  135. {"mirostat_eta", sampling.mirostat_eta},
  136. {"stop", antiprompt},
  137. {"max_tokens", n_predict}, // User configured n_predict
  138. {"n_keep", n_keep},
  139. {"n_discard", n_discard},
  140. {"ignore_eos", sampling.ignore_eos},
  141. {"stream", stream},
  142. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  143. {"n_probs", sampling.n_probs},
  144. {"min_keep", sampling.min_keep},
  145. {"grammar", sampling.grammar},
  146. // {"grammar_trigger_words", sampling.grammar_trigger_words},
  147. {"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
  148. {"samplers", samplers},
  149. {"speculative.n_max", speculative.n_max},
  150. {"speculative.n_min", speculative.n_min},
  151. {"speculative.p_min", speculative.p_min},
  152. {"timings_per_token", timings_per_token},
  153. {"post_sampling_probs", post_sampling_probs},
  154. {"lora", lora},
  155. };
  156. }
  157. };
  158. struct server_task {
  159. int id = -1; // to be filled by server_queue
  160. int index = -1; // used when there are multiple prompts (batch request)
  161. server_task_type type;
  162. // used by SERVER_TASK_TYPE_CANCEL
  163. int id_target = -1;
  164. // used by SERVER_TASK_TYPE_INFERENCE
  165. slot_params params;
  166. llama_tokens prompt_tokens;
  167. int id_selected_slot = -1;
  168. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  169. struct slot_action {
  170. int slot_id;
  171. std::string filename;
  172. std::string filepath;
  173. };
  174. slot_action slot_action;
  175. // used by SERVER_TASK_TYPE_METRICS
  176. bool metrics_reset_bucket = false;
  177. // used by SERVER_TASK_TYPE_SET_LORA
  178. std::vector<common_adapter_lora_info> set_lora;
  179. server_task(server_task_type type) : type(type) {}
  180. static slot_params params_from_json_cmpl(
  181. const llama_context * ctx,
  182. const common_params & params_base,
  183. const json & data) {
  184. const llama_model * model = llama_get_model(ctx);
  185. const llama_vocab * vocab = llama_model_get_vocab(model);
  186. slot_params params;
  187. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  188. slot_params defaults;
  189. defaults.sampling = params_base.sampling;
  190. defaults.speculative = params_base.speculative;
  191. // enabling this will output extra debug information in the HTTP responses from the server
  192. params.verbose = params_base.verbosity > 9;
  193. params.timings_per_token = json_value(data, "timings_per_token", false);
  194. params.stream = json_value(data, "stream", false);
  195. params.cache_prompt = json_value(data, "cache_prompt", true);
  196. params.return_tokens = json_value(data, "return_tokens", false);
  197. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  198. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  199. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  200. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  201. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  202. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  203. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  204. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  205. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  206. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  207. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  208. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  209. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  210. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  211. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  212. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  213. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  214. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  215. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  216. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  217. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  218. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  219. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  220. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  221. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  222. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  223. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  224. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  225. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  226. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  227. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  228. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  229. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  230. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  231. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  232. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  233. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  234. // Use OpenAI API logprobs only if n_probs wasn't provided
  235. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  236. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  237. }
  238. if (data.contains("lora")) {
  239. if (data.at("lora").is_array()) {
  240. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  241. } else {
  242. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  243. }
  244. } else {
  245. params.lora = params_base.lora_adapters;
  246. }
  247. // TODO: add more sanity checks for the input parameters
  248. if (params.sampling.penalty_last_n < -1) {
  249. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  250. }
  251. if (params.sampling.dry_penalty_last_n < -1) {
  252. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  253. }
  254. if (params.sampling.penalty_last_n == -1) {
  255. // note: should be the slot's context and not the full context, but it's ok
  256. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  257. }
  258. if (params.sampling.dry_penalty_last_n == -1) {
  259. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  260. }
  261. if (params.sampling.dry_base < 1.0f) {
  262. params.sampling.dry_base = defaults.sampling.dry_base;
  263. }
  264. // sequence breakers for DRY
  265. {
  266. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  267. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  268. if (data.contains("dry_sequence_breakers")) {
  269. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  270. if (params.sampling.dry_sequence_breakers.empty()) {
  271. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  272. }
  273. }
  274. }
  275. // process "json_schema" and "grammar"
  276. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  277. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  278. }
  279. if (data.contains("json_schema") && !data.contains("grammar")) {
  280. try {
  281. auto schema = json_value(data, "json_schema", json::object());
  282. LOG_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  283. params.sampling.grammar = json_schema_to_grammar(schema);
  284. LOG_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  285. } catch (const std::exception & e) {
  286. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  287. }
  288. } else {
  289. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  290. LOG_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  291. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  292. LOG_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  293. }
  294. {
  295. auto it = data.find("chat_format");
  296. if (it != data.end()) {
  297. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  298. LOG_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  299. } else {
  300. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  301. }
  302. }
  303. {
  304. const auto grammar_triggers = data.find("grammar_triggers");
  305. if (grammar_triggers != data.end()) {
  306. for (const auto & t : *grammar_triggers) {
  307. common_grammar_trigger trigger;
  308. trigger.word = t.at("word");
  309. trigger.at_start = t.at("at_start");
  310. auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
  311. if (ids.size() == 1) {
  312. LOG_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
  313. params.sampling.grammar_trigger_tokens.push_back(ids[0]);
  314. continue;
  315. }
  316. LOG_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
  317. params.sampling.grammar_trigger_words.push_back(trigger);
  318. }
  319. }
  320. if (params.sampling.grammar_lazy) {
  321. GGML_ASSERT(params.sampling.grammar_trigger_tokens.size() > 0 || params.sampling.grammar_trigger_words.size() > 0);
  322. }
  323. }
  324. {
  325. params.sampling.logit_bias.clear();
  326. params.ignore_eos = json_value(data, "ignore_eos", false);
  327. const auto & logit_bias = data.find("logit_bias");
  328. if (logit_bias != data.end() && logit_bias->is_array()) {
  329. const int n_vocab = llama_vocab_n_tokens(vocab);
  330. for (const auto & el : *logit_bias) {
  331. // TODO: we may want to throw errors here, in case "el" is incorrect
  332. if (el.is_array() && el.size() == 2) {
  333. float bias;
  334. if (el[1].is_number()) {
  335. bias = el[1].get<float>();
  336. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  337. bias = -INFINITY;
  338. } else {
  339. continue;
  340. }
  341. if (el[0].is_number_integer()) {
  342. llama_token tok = el[0].get<llama_token>();
  343. if (tok >= 0 && tok < n_vocab) {
  344. params.sampling.logit_bias.push_back({tok, bias});
  345. }
  346. } else if (el[0].is_string()) {
  347. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  348. for (auto tok : toks) {
  349. params.sampling.logit_bias.push_back({tok, bias});
  350. }
  351. }
  352. }
  353. }
  354. }
  355. }
  356. {
  357. params.antiprompt.clear();
  358. const auto & stop = data.find("stop");
  359. if (stop != data.end() && stop->is_array()) {
  360. for (const auto & word : *stop) {
  361. if (!word.empty()) {
  362. params.antiprompt.push_back(word);
  363. }
  364. }
  365. }
  366. }
  367. {
  368. const auto samplers = data.find("samplers");
  369. if (samplers != data.end()) {
  370. if (samplers->is_array()) {
  371. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  372. } else if (samplers->is_string()){
  373. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  374. }
  375. } else {
  376. params.sampling.samplers = defaults.sampling.samplers;
  377. }
  378. }
  379. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  380. params.oaicompat_model = json_value(data, "model", model_name);
  381. return params;
  382. }
  383. // utility function
  384. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  385. std::unordered_set<int> ids(tasks.size());
  386. for (size_t i = 0; i < tasks.size(); i++) {
  387. ids.insert(tasks[i].id);
  388. }
  389. return ids;
  390. }
  391. };
  392. struct result_timings {
  393. int32_t prompt_n = -1;
  394. double prompt_ms;
  395. double prompt_per_token_ms;
  396. double prompt_per_second;
  397. int32_t predicted_n = -1;
  398. double predicted_ms;
  399. double predicted_per_token_ms;
  400. double predicted_per_second;
  401. json to_json() const {
  402. return {
  403. {"prompt_n", prompt_n},
  404. {"prompt_ms", prompt_ms},
  405. {"prompt_per_token_ms", prompt_per_token_ms},
  406. {"prompt_per_second", prompt_per_second},
  407. {"predicted_n", predicted_n},
  408. {"predicted_ms", predicted_ms},
  409. {"predicted_per_token_ms", predicted_per_token_ms},
  410. {"predicted_per_second", predicted_per_second},
  411. };
  412. }
  413. };
  414. struct server_task_result {
  415. int id = -1;
  416. int id_slot = -1;
  417. virtual bool is_error() {
  418. // only used by server_task_result_error
  419. return false;
  420. }
  421. virtual bool is_stop() {
  422. // only used by server_task_result_cmpl_*
  423. return false;
  424. }
  425. virtual int get_index() {
  426. return -1;
  427. }
  428. virtual json to_json() = 0;
  429. virtual ~server_task_result() = default;
  430. };
  431. // using shared_ptr for polymorphism of server_task_result
  432. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  433. inline std::string stop_type_to_str(stop_type type) {
  434. switch (type) {
  435. case STOP_TYPE_EOS: return "eos";
  436. case STOP_TYPE_WORD: return "word";
  437. case STOP_TYPE_LIMIT: return "limit";
  438. default: return "none";
  439. }
  440. }
  441. struct completion_token_output {
  442. llama_token tok;
  443. float prob;
  444. std::string text_to_send;
  445. struct prob_info {
  446. llama_token tok;
  447. std::string txt;
  448. float prob;
  449. };
  450. std::vector<prob_info> probs;
  451. json to_json(bool post_sampling_probs) const {
  452. json probs_for_token = json::array();
  453. for (const auto & p : probs) {
  454. std::string txt(p.txt);
  455. txt.resize(validate_utf8(txt));
  456. probs_for_token.push_back(json {
  457. {"id", p.tok},
  458. {"token", txt},
  459. {"bytes", str_to_bytes(p.txt)},
  460. {
  461. post_sampling_probs ? "prob" : "logprob",
  462. post_sampling_probs ? p.prob : logarithm(p.prob)
  463. },
  464. });
  465. }
  466. return probs_for_token;
  467. }
  468. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  469. json out = json::array();
  470. for (const auto & p : probs) {
  471. std::string txt(p.text_to_send);
  472. txt.resize(validate_utf8(txt));
  473. out.push_back(json {
  474. {"id", p.tok},
  475. {"token", txt},
  476. {"bytes", str_to_bytes(p.text_to_send)},
  477. {
  478. post_sampling_probs ? "prob" : "logprob",
  479. post_sampling_probs ? p.prob : logarithm(p.prob)
  480. },
  481. {
  482. post_sampling_probs ? "top_probs" : "top_logprobs",
  483. p.to_json(post_sampling_probs)
  484. },
  485. });
  486. }
  487. return out;
  488. }
  489. static float logarithm(float x) {
  490. // nlohmann::json converts -inf to null, so we need to prevent that
  491. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  492. }
  493. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  494. std::vector<unsigned char> bytes;
  495. for (unsigned char c : str) {
  496. bytes.push_back(c);
  497. }
  498. return bytes;
  499. }
  500. };
  501. struct server_task_result_cmpl_final : server_task_result {
  502. int index = 0;
  503. std::string content;
  504. llama_tokens tokens;
  505. bool stream;
  506. result_timings timings;
  507. std::string prompt;
  508. bool truncated;
  509. int32_t n_decoded;
  510. int32_t n_prompt_tokens;
  511. int32_t n_tokens_cached;
  512. bool has_new_line;
  513. std::string stopping_word;
  514. stop_type stop = STOP_TYPE_NONE;
  515. bool post_sampling_probs;
  516. std::vector<completion_token_output> probs_output;
  517. std::vector<std::string> response_fields;
  518. slot_params generation_params;
  519. // OAI-compat fields
  520. bool verbose = false;
  521. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  522. std::string oaicompat_model;
  523. std::string oaicompat_cmpl_id;
  524. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  525. virtual int get_index() override {
  526. return index;
  527. }
  528. virtual bool is_stop() override {
  529. return true; // in stream mode, final responses are considered stop
  530. }
  531. virtual json to_json() override {
  532. switch (oaicompat) {
  533. case OAICOMPAT_TYPE_NONE:
  534. return to_json_non_oaicompat();
  535. case OAICOMPAT_TYPE_COMPLETION:
  536. return to_json_oaicompat();
  537. case OAICOMPAT_TYPE_CHAT:
  538. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  539. default:
  540. GGML_ASSERT(false && "Invalid oaicompat_type");
  541. }
  542. }
  543. json to_json_non_oaicompat() {
  544. json res = json {
  545. {"index", index},
  546. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  547. {"tokens", stream ? llama_tokens {} : tokens},
  548. {"id_slot", id_slot},
  549. {"stop", true},
  550. {"model", oaicompat_model},
  551. {"tokens_predicted", n_decoded},
  552. {"tokens_evaluated", n_prompt_tokens},
  553. {"generation_settings", generation_params.to_json()},
  554. {"prompt", prompt},
  555. {"has_new_line", has_new_line},
  556. {"truncated", truncated},
  557. {"stop_type", stop_type_to_str(stop)},
  558. {"stopping_word", stopping_word},
  559. {"tokens_cached", n_tokens_cached},
  560. {"timings", timings.to_json()},
  561. };
  562. if (!stream && !probs_output.empty()) {
  563. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  564. }
  565. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  566. }
  567. json to_json_oaicompat() {
  568. std::time_t t = std::time(0);
  569. json logprobs = json(nullptr); // OAI default to null
  570. if (!stream && probs_output.size() > 0) {
  571. logprobs = json{
  572. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  573. };
  574. }
  575. json finish_reason = "length";
  576. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  577. finish_reason = "stop";
  578. }
  579. json res = json {
  580. {"choices", json::array({
  581. json{
  582. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  583. {"index", index},
  584. {"logprobs", logprobs},
  585. {"finish_reason", finish_reason},
  586. }
  587. })},
  588. {"created", t},
  589. {"model", oaicompat_model},
  590. {"system_fingerprint", build_info},
  591. {"object", "text_completion"},
  592. {"usage", json {
  593. {"completion_tokens", n_decoded},
  594. {"prompt_tokens", n_prompt_tokens},
  595. {"total_tokens", n_decoded + n_prompt_tokens}
  596. }},
  597. {"id", oaicompat_cmpl_id}
  598. };
  599. // extra fields for debugging purposes
  600. if (verbose) {
  601. res["__verbose"] = to_json_non_oaicompat();
  602. }
  603. if (timings.prompt_n >= 0) {
  604. res.push_back({"timings", timings.to_json()});
  605. }
  606. return res;
  607. }
  608. json to_json_oaicompat_chat() {
  609. std::string finish_reason = "length";
  610. common_chat_msg message;
  611. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  612. LOG_DBG("Parsing chat message: %s\n", content.c_str());
  613. message = common_chat_parse(content, oaicompat_chat_format);
  614. finish_reason = message.tool_calls.empty() ? "stop" : "tool_calls";
  615. } else {
  616. message.content = content;
  617. }
  618. json tool_calls;
  619. if (!message.tool_calls.empty()) {
  620. tool_calls = json::array();
  621. for (const auto & tc : message.tool_calls) {
  622. tool_calls.push_back({
  623. {"type", "function"},
  624. {"function", {
  625. {"name", tc.name},
  626. {"arguments", tc.arguments},
  627. }},
  628. {"id", tc.id},
  629. });
  630. }
  631. }
  632. json choice {
  633. {"finish_reason", finish_reason},
  634. {"index", 0},
  635. {"message", json {
  636. {"content", message.content},
  637. {"tool_calls", tool_calls},
  638. {"role", "assistant"},
  639. }},
  640. };
  641. if (!stream && probs_output.size() > 0) {
  642. choice["logprobs"] = json{
  643. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  644. };
  645. }
  646. std::time_t t = std::time(0);
  647. json res = json {
  648. {"choices", json::array({choice})},
  649. {"created", t},
  650. {"model", oaicompat_model},
  651. {"system_fingerprint", build_info},
  652. {"object", "chat.completion"},
  653. {"usage", json {
  654. {"completion_tokens", n_decoded},
  655. {"prompt_tokens", n_prompt_tokens},
  656. {"total_tokens", n_decoded + n_prompt_tokens}
  657. }},
  658. {"id", oaicompat_cmpl_id}
  659. };
  660. // extra fields for debugging purposes
  661. if (verbose) {
  662. res["__verbose"] = to_json_non_oaicompat();
  663. }
  664. if (timings.prompt_n >= 0) {
  665. res.push_back({"timings", timings.to_json()});
  666. }
  667. return res;
  668. }
  669. json to_json_oaicompat_chat_stream() {
  670. std::time_t t = std::time(0);
  671. std::string finish_reason = "length";
  672. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  673. finish_reason = "stop";
  674. }
  675. json choice = json {
  676. {"finish_reason", finish_reason},
  677. {"index", 0},
  678. {"delta", json::object()}
  679. };
  680. json ret = json {
  681. {"choices", json::array({choice})},
  682. {"created", t},
  683. {"id", oaicompat_cmpl_id},
  684. {"model", oaicompat_model},
  685. {"system_fingerprint", build_info},
  686. {"object", "chat.completion.chunk"},
  687. {"usage", json {
  688. {"completion_tokens", n_decoded},
  689. {"prompt_tokens", n_prompt_tokens},
  690. {"total_tokens", n_decoded + n_prompt_tokens},
  691. }},
  692. };
  693. if (timings.prompt_n >= 0) {
  694. ret.push_back({"timings", timings.to_json()});
  695. }
  696. return ret;
  697. }
  698. };
  699. struct server_task_result_cmpl_partial : server_task_result {
  700. int index = 0;
  701. std::string content;
  702. llama_tokens tokens;
  703. int32_t n_decoded;
  704. int32_t n_prompt_tokens;
  705. bool post_sampling_probs;
  706. completion_token_output prob_output;
  707. result_timings timings;
  708. // OAI-compat fields
  709. bool verbose = false;
  710. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  711. std::string oaicompat_model;
  712. std::string oaicompat_cmpl_id;
  713. virtual int get_index() override {
  714. return index;
  715. }
  716. virtual bool is_stop() override {
  717. return false; // in stream mode, partial responses are not considered stop
  718. }
  719. virtual json to_json() override {
  720. switch (oaicompat) {
  721. case OAICOMPAT_TYPE_NONE:
  722. return to_json_non_oaicompat();
  723. case OAICOMPAT_TYPE_COMPLETION:
  724. return to_json_oaicompat();
  725. case OAICOMPAT_TYPE_CHAT:
  726. return to_json_oaicompat_chat();
  727. default:
  728. GGML_ASSERT(false && "Invalid oaicompat_type");
  729. }
  730. }
  731. json to_json_non_oaicompat() {
  732. // non-OAI-compat JSON
  733. json res = json {
  734. {"index", index},
  735. {"content", content},
  736. {"tokens", tokens},
  737. {"stop", false},
  738. {"id_slot", id_slot},
  739. {"tokens_predicted", n_decoded},
  740. {"tokens_evaluated", n_prompt_tokens},
  741. };
  742. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  743. if (timings.prompt_n > 0) {
  744. res.push_back({"timings", timings.to_json()});
  745. }
  746. if (!prob_output.probs.empty()) {
  747. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  748. }
  749. return res;
  750. }
  751. json to_json_oaicompat() {
  752. std::time_t t = std::time(0);
  753. json logprobs = json(nullptr); // OAI default to null
  754. if (prob_output.probs.size() > 0) {
  755. logprobs = json{
  756. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  757. };
  758. }
  759. json res = json {
  760. {"choices", json::array({
  761. json{
  762. {"text", content},
  763. {"index", index},
  764. {"logprobs", logprobs},
  765. {"finish_reason", nullptr},
  766. }
  767. })},
  768. {"created", t},
  769. {"model", oaicompat_model},
  770. {"system_fingerprint", build_info},
  771. {"object", "text_completion"},
  772. {"id", oaicompat_cmpl_id}
  773. };
  774. // extra fields for debugging purposes
  775. if (verbose) {
  776. res["__verbose"] = to_json_non_oaicompat();
  777. }
  778. if (timings.prompt_n >= 0) {
  779. res.push_back({"timings", timings.to_json()});
  780. }
  781. return res;
  782. }
  783. json to_json_oaicompat_chat() {
  784. bool first = n_decoded == 0;
  785. std::time_t t = std::time(0);
  786. json choices;
  787. if (first) {
  788. if (content.empty()) {
  789. choices = json::array({json{{"finish_reason", nullptr},
  790. {"index", 0},
  791. {"delta", json{{"role", "assistant"}}}}});
  792. } else {
  793. // We have to send this as two updates to conform to openai behavior
  794. json initial_ret = json{{"choices", json::array({json{
  795. {"finish_reason", nullptr},
  796. {"index", 0},
  797. {"delta", json{
  798. {"role", "assistant"}
  799. }}}})},
  800. {"created", t},
  801. {"id", oaicompat_cmpl_id},
  802. {"model", oaicompat_model},
  803. {"object", "chat.completion.chunk"}};
  804. json second_ret = json{
  805. {"choices", json::array({json{{"finish_reason", nullptr},
  806. {"index", 0},
  807. {"delta", json {
  808. {"content", content}}}
  809. }})},
  810. {"created", t},
  811. {"id", oaicompat_cmpl_id},
  812. {"model", oaicompat_model},
  813. {"object", "chat.completion.chunk"}};
  814. return std::vector<json>({initial_ret, second_ret});
  815. }
  816. } else {
  817. choices = json::array({json{
  818. {"finish_reason", nullptr},
  819. {"index", 0},
  820. {"delta",
  821. json {
  822. {"content", content},
  823. }},
  824. }});
  825. }
  826. GGML_ASSERT(choices.size() >= 1);
  827. if (prob_output.probs.size() > 0) {
  828. choices[0]["logprobs"] = json{
  829. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  830. };
  831. }
  832. json ret = json {
  833. {"choices", choices},
  834. {"created", t},
  835. {"id", oaicompat_cmpl_id},
  836. {"model", oaicompat_model},
  837. {"system_fingerprint", build_info},
  838. {"object", "chat.completion.chunk"}
  839. };
  840. if (timings.prompt_n >= 0) {
  841. ret.push_back({"timings", timings.to_json()});
  842. }
  843. return std::vector<json>({ret});
  844. }
  845. };
  846. struct server_task_result_embd : server_task_result {
  847. int index = 0;
  848. std::vector<std::vector<float>> embedding;
  849. int32_t n_tokens;
  850. // OAI-compat fields
  851. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  852. virtual int get_index() override {
  853. return index;
  854. }
  855. virtual json to_json() override {
  856. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  857. ? to_json_oaicompat()
  858. : to_json_non_oaicompat();
  859. }
  860. json to_json_non_oaicompat() {
  861. return json {
  862. {"index", index},
  863. {"embedding", embedding},
  864. };
  865. }
  866. json to_json_oaicompat() {
  867. return json {
  868. {"index", index},
  869. {"embedding", embedding[0]},
  870. {"tokens_evaluated", n_tokens},
  871. };
  872. }
  873. };
  874. struct server_task_result_rerank : server_task_result {
  875. int index = 0;
  876. float score = -1e6;
  877. int32_t n_tokens;
  878. virtual int get_index() override {
  879. return index;
  880. }
  881. virtual json to_json() override {
  882. return json {
  883. {"index", index},
  884. {"score", score},
  885. {"tokens_evaluated", n_tokens},
  886. };
  887. }
  888. };
  889. // this function maybe used outside of server_task_result_error
  890. static json format_error_response(const std::string & message, const enum error_type type) {
  891. std::string type_str;
  892. int code = 500;
  893. switch (type) {
  894. case ERROR_TYPE_INVALID_REQUEST:
  895. type_str = "invalid_request_error";
  896. code = 400;
  897. break;
  898. case ERROR_TYPE_AUTHENTICATION:
  899. type_str = "authentication_error";
  900. code = 401;
  901. break;
  902. case ERROR_TYPE_NOT_FOUND:
  903. type_str = "not_found_error";
  904. code = 404;
  905. break;
  906. case ERROR_TYPE_SERVER:
  907. type_str = "server_error";
  908. code = 500;
  909. break;
  910. case ERROR_TYPE_PERMISSION:
  911. type_str = "permission_error";
  912. code = 403;
  913. break;
  914. case ERROR_TYPE_NOT_SUPPORTED:
  915. type_str = "not_supported_error";
  916. code = 501;
  917. break;
  918. case ERROR_TYPE_UNAVAILABLE:
  919. type_str = "unavailable_error";
  920. code = 503;
  921. break;
  922. }
  923. return json {
  924. {"code", code},
  925. {"message", message},
  926. {"type", type_str},
  927. };
  928. }
  929. struct server_task_result_error : server_task_result {
  930. int index = 0;
  931. error_type err_type = ERROR_TYPE_SERVER;
  932. std::string err_msg;
  933. virtual bool is_error() override {
  934. return true;
  935. }
  936. virtual json to_json() override {
  937. return format_error_response(err_msg, err_type);
  938. }
  939. };
  940. struct server_task_result_metrics : server_task_result {
  941. int n_idle_slots;
  942. int n_processing_slots;
  943. int n_tasks_deferred;
  944. int64_t t_start;
  945. int32_t kv_cache_tokens_count;
  946. int32_t kv_cache_used_cells;
  947. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  948. uint64_t n_prompt_tokens_processed_total = 0;
  949. uint64_t t_prompt_processing_total = 0;
  950. uint64_t n_tokens_predicted_total = 0;
  951. uint64_t t_tokens_generation_total = 0;
  952. uint64_t n_prompt_tokens_processed = 0;
  953. uint64_t t_prompt_processing = 0;
  954. uint64_t n_tokens_predicted = 0;
  955. uint64_t t_tokens_generation = 0;
  956. uint64_t n_decode_total = 0;
  957. uint64_t n_busy_slots_total = 0;
  958. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  959. // therefore, we use json to temporarily store the slot.to_json() result
  960. json slots_data = json::array();
  961. virtual json to_json() override {
  962. return json {
  963. { "idle", n_idle_slots },
  964. { "processing", n_processing_slots },
  965. { "deferred", n_tasks_deferred },
  966. { "t_start", t_start },
  967. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  968. { "t_tokens_generation_total", t_tokens_generation_total },
  969. { "n_tokens_predicted_total", n_tokens_predicted_total },
  970. { "t_prompt_processing_total", t_prompt_processing_total },
  971. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  972. { "t_prompt_processing", t_prompt_processing },
  973. { "n_tokens_predicted", n_tokens_predicted },
  974. { "t_tokens_generation", t_tokens_generation },
  975. { "n_decode_total", n_decode_total },
  976. { "n_busy_slots_total", n_busy_slots_total },
  977. { "kv_cache_tokens_count", kv_cache_tokens_count },
  978. { "kv_cache_used_cells", kv_cache_used_cells },
  979. { "slots", slots_data },
  980. };
  981. }
  982. };
  983. struct server_task_result_slot_save_load : server_task_result {
  984. std::string filename;
  985. bool is_save; // true = save, false = load
  986. size_t n_tokens;
  987. size_t n_bytes;
  988. double t_ms;
  989. virtual json to_json() override {
  990. if (is_save) {
  991. return json {
  992. { "id_slot", id_slot },
  993. { "filename", filename },
  994. { "n_saved", n_tokens },
  995. { "n_written", n_bytes },
  996. { "timings", {
  997. { "save_ms", t_ms }
  998. }},
  999. };
  1000. } else {
  1001. return json {
  1002. { "id_slot", id_slot },
  1003. { "filename", filename },
  1004. { "n_restored", n_tokens },
  1005. { "n_read", n_bytes },
  1006. { "timings", {
  1007. { "restore_ms", t_ms }
  1008. }},
  1009. };
  1010. }
  1011. }
  1012. };
  1013. struct server_task_result_slot_erase : server_task_result {
  1014. size_t n_erased;
  1015. virtual json to_json() override {
  1016. return json {
  1017. { "id_slot", id_slot },
  1018. { "n_erased", n_erased },
  1019. };
  1020. }
  1021. };
  1022. struct server_task_result_apply_lora : server_task_result {
  1023. virtual json to_json() override {
  1024. return json {{ "success", true }};
  1025. }
  1026. };
  1027. struct server_slot {
  1028. int id;
  1029. int id_task = -1;
  1030. // only used for completion/embedding/infill/rerank
  1031. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1032. llama_batch batch_spec = {};
  1033. llama_context * ctx = nullptr;
  1034. llama_context * ctx_dft = nullptr;
  1035. common_speculative * spec = nullptr;
  1036. std::vector<common_adapter_lora_info> lora;
  1037. // the index relative to completion multi-task request
  1038. size_t index = 0;
  1039. struct slot_params params;
  1040. slot_state state = SLOT_STATE_IDLE;
  1041. // used to determine the slot that has been used the longest
  1042. int64_t t_last_used = -1;
  1043. // generation props
  1044. int32_t n_ctx = 0; // context size per slot
  1045. int32_t n_past = 0;
  1046. int32_t n_decoded = 0;
  1047. int32_t n_remaining = -1;
  1048. int32_t i_batch = -1;
  1049. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1050. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1051. int32_t n_prompt_tokens = 0;
  1052. int32_t n_prompt_tokens_processed = 0;
  1053. // input prompt tokens
  1054. llama_tokens prompt_tokens;
  1055. size_t last_nl_pos = 0;
  1056. std::string generated_text;
  1057. llama_tokens generated_tokens;
  1058. llama_tokens cache_tokens;
  1059. std::vector<completion_token_output> generated_token_probs;
  1060. bool has_next_token = true;
  1061. bool has_new_line = false;
  1062. bool truncated = false;
  1063. stop_type stop;
  1064. std::string stopping_word;
  1065. // sampling
  1066. json json_schema;
  1067. struct common_sampler * smpl = nullptr;
  1068. llama_token sampled;
  1069. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1070. // stats
  1071. size_t n_sent_text = 0; // number of sent text character
  1072. int64_t t_start_process_prompt;
  1073. int64_t t_start_generation;
  1074. double t_prompt_processing; // ms
  1075. double t_token_generation; // ms
  1076. std::function<void(int)> callback_on_release;
  1077. void reset() {
  1078. SLT_DBG(*this, "%s", "\n");
  1079. n_prompt_tokens = 0;
  1080. last_nl_pos = 0;
  1081. generated_text = "";
  1082. has_new_line = false;
  1083. truncated = false;
  1084. stop = STOP_TYPE_NONE;
  1085. stopping_word = "";
  1086. n_past = 0;
  1087. n_sent_text = 0;
  1088. task_type = SERVER_TASK_TYPE_COMPLETION;
  1089. generated_tokens.clear();
  1090. generated_token_probs.clear();
  1091. }
  1092. bool is_non_causal() const {
  1093. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1094. }
  1095. bool can_batch_with(server_slot & other_slot) {
  1096. return is_non_causal() == other_slot.is_non_causal()
  1097. && are_lora_equal(lora, other_slot.lora);
  1098. }
  1099. bool has_budget(const common_params & global_params) {
  1100. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1101. return true; // limitless
  1102. }
  1103. n_remaining = -1;
  1104. if (params.n_predict != -1) {
  1105. n_remaining = params.n_predict - n_decoded;
  1106. } else if (global_params.n_predict != -1) {
  1107. n_remaining = global_params.n_predict - n_decoded;
  1108. }
  1109. return n_remaining > 0; // no budget
  1110. }
  1111. bool is_processing() const {
  1112. return state != SLOT_STATE_IDLE;
  1113. }
  1114. bool can_speculate() const {
  1115. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1116. }
  1117. void add_token(const completion_token_output & token) {
  1118. if (!is_processing()) {
  1119. SLT_WRN(*this, "%s", "slot is not processing\n");
  1120. return;
  1121. }
  1122. generated_token_probs.push_back(token);
  1123. }
  1124. void release() {
  1125. if (is_processing()) {
  1126. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1127. t_last_used = ggml_time_us();
  1128. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1129. state = SLOT_STATE_IDLE;
  1130. callback_on_release(id);
  1131. }
  1132. }
  1133. result_timings get_timings() const {
  1134. result_timings timings;
  1135. timings.prompt_n = n_prompt_tokens_processed;
  1136. timings.prompt_ms = t_prompt_processing;
  1137. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1138. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1139. timings.predicted_n = n_decoded;
  1140. timings.predicted_ms = t_token_generation;
  1141. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1142. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1143. return timings;
  1144. }
  1145. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1146. size_t stop_pos = std::string::npos;
  1147. for (const std::string & word : params.antiprompt) {
  1148. size_t pos;
  1149. if (is_full_stop) {
  1150. const size_t tmp = word.size() + last_token_size;
  1151. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1152. pos = text.find(word, from_pos);
  1153. } else {
  1154. // otherwise, partial stop
  1155. pos = find_partial_stop_string(word, text);
  1156. }
  1157. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1158. if (is_full_stop) {
  1159. stop = STOP_TYPE_WORD;
  1160. stopping_word = word;
  1161. has_next_token = false;
  1162. }
  1163. stop_pos = pos;
  1164. }
  1165. }
  1166. return stop_pos;
  1167. }
  1168. void print_timings() const {
  1169. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1170. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1171. const double t_gen = t_token_generation / n_decoded;
  1172. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1173. SLT_INF(*this,
  1174. "\n"
  1175. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1176. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1177. " total time = %10.2f ms / %5d tokens\n",
  1178. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1179. t_token_generation, n_decoded, t_gen, n_gen_second,
  1180. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1181. }
  1182. json to_json() const {
  1183. return json {
  1184. {"id", id},
  1185. {"id_task", id_task},
  1186. {"n_ctx", n_ctx},
  1187. {"speculative", can_speculate()},
  1188. {"is_processing", is_processing()},
  1189. {"non_causal", is_non_causal()},
  1190. {"params", params.to_json()},
  1191. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1192. {"next_token",
  1193. {
  1194. {"has_next_token", has_next_token},
  1195. {"has_new_line", has_new_line},
  1196. {"n_remain", n_remaining},
  1197. {"n_decoded", n_decoded},
  1198. {"stopping_word", stopping_word},
  1199. }
  1200. },
  1201. };
  1202. }
  1203. };
  1204. struct server_metrics {
  1205. int64_t t_start = 0;
  1206. uint64_t n_prompt_tokens_processed_total = 0;
  1207. uint64_t t_prompt_processing_total = 0;
  1208. uint64_t n_tokens_predicted_total = 0;
  1209. uint64_t t_tokens_generation_total = 0;
  1210. uint64_t n_prompt_tokens_processed = 0;
  1211. uint64_t t_prompt_processing = 0;
  1212. uint64_t n_tokens_predicted = 0;
  1213. uint64_t t_tokens_generation = 0;
  1214. uint64_t n_decode_total = 0;
  1215. uint64_t n_busy_slots_total = 0;
  1216. void init() {
  1217. t_start = ggml_time_us();
  1218. }
  1219. void on_prompt_eval(const server_slot & slot) {
  1220. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1221. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1222. t_prompt_processing += slot.t_prompt_processing;
  1223. t_prompt_processing_total += slot.t_prompt_processing;
  1224. }
  1225. void on_prediction(const server_slot & slot) {
  1226. n_tokens_predicted_total += slot.n_decoded;
  1227. n_tokens_predicted += slot.n_decoded;
  1228. t_tokens_generation += slot.t_token_generation;
  1229. t_tokens_generation_total += slot.t_token_generation;
  1230. }
  1231. void on_decoded(const std::vector<server_slot> & slots) {
  1232. n_decode_total++;
  1233. for (const auto & slot : slots) {
  1234. if (slot.is_processing()) {
  1235. n_busy_slots_total++;
  1236. }
  1237. }
  1238. }
  1239. void reset_bucket() {
  1240. n_prompt_tokens_processed = 0;
  1241. t_prompt_processing = 0;
  1242. n_tokens_predicted = 0;
  1243. t_tokens_generation = 0;
  1244. }
  1245. };
  1246. struct server_queue {
  1247. int id = 0;
  1248. bool running;
  1249. // queues
  1250. std::deque<server_task> queue_tasks;
  1251. std::deque<server_task> queue_tasks_deferred;
  1252. std::mutex mutex_tasks;
  1253. std::condition_variable condition_tasks;
  1254. // callback functions
  1255. std::function<void(server_task)> callback_new_task;
  1256. std::function<void(void)> callback_update_slots;
  1257. // Add a new task to the end of the queue
  1258. int post(server_task task, bool front = false) {
  1259. std::unique_lock<std::mutex> lock(mutex_tasks);
  1260. GGML_ASSERT(task.id != -1);
  1261. // if this is cancel task make sure to clean up pending tasks
  1262. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1263. cleanup_pending_task(task.id_target);
  1264. }
  1265. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1266. if (front) {
  1267. queue_tasks.push_front(std::move(task));
  1268. } else {
  1269. queue_tasks.push_back(std::move(task));
  1270. }
  1271. condition_tasks.notify_one();
  1272. return task.id;
  1273. }
  1274. // multi-task version of post()
  1275. int post(std::vector<server_task> & tasks, bool front = false) {
  1276. std::unique_lock<std::mutex> lock(mutex_tasks);
  1277. for (auto & task : tasks) {
  1278. if (task.id == -1) {
  1279. task.id = id++;
  1280. }
  1281. // if this is cancel task make sure to clean up pending tasks
  1282. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1283. cleanup_pending_task(task.id_target);
  1284. }
  1285. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1286. if (front) {
  1287. queue_tasks.push_front(std::move(task));
  1288. } else {
  1289. queue_tasks.push_back(std::move(task));
  1290. }
  1291. }
  1292. condition_tasks.notify_one();
  1293. return 0;
  1294. }
  1295. // Add a new task, but defer until one slot is available
  1296. void defer(server_task task) {
  1297. std::unique_lock<std::mutex> lock(mutex_tasks);
  1298. QUE_DBG("defer task, id = %d\n", task.id);
  1299. queue_tasks_deferred.push_back(std::move(task));
  1300. condition_tasks.notify_one();
  1301. }
  1302. // Get the next id for creating a new task
  1303. int get_new_id() {
  1304. std::unique_lock<std::mutex> lock(mutex_tasks);
  1305. int new_id = id++;
  1306. return new_id;
  1307. }
  1308. // Register function to process a new task
  1309. void on_new_task(std::function<void(server_task)> callback) {
  1310. callback_new_task = std::move(callback);
  1311. }
  1312. // Register the function to be called when all slots data is ready to be processed
  1313. void on_update_slots(std::function<void(void)> callback) {
  1314. callback_update_slots = std::move(callback);
  1315. }
  1316. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1317. void pop_deferred_task() {
  1318. std::unique_lock<std::mutex> lock(mutex_tasks);
  1319. if (!queue_tasks_deferred.empty()) {
  1320. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1321. queue_tasks_deferred.pop_front();
  1322. }
  1323. condition_tasks.notify_one();
  1324. }
  1325. // end the start_loop routine
  1326. void terminate() {
  1327. std::unique_lock<std::mutex> lock(mutex_tasks);
  1328. running = false;
  1329. condition_tasks.notify_all();
  1330. }
  1331. /**
  1332. * Main loop consists of these steps:
  1333. * - Wait until a new task arrives
  1334. * - Process the task (i.e. maybe copy data into slot)
  1335. * - Check if multitask is finished
  1336. * - Update all slots
  1337. */
  1338. void start_loop() {
  1339. running = true;
  1340. while (true) {
  1341. QUE_DBG("%s", "processing new tasks\n");
  1342. while (true) {
  1343. std::unique_lock<std::mutex> lock(mutex_tasks);
  1344. if (queue_tasks.empty()) {
  1345. lock.unlock();
  1346. break;
  1347. }
  1348. server_task task = queue_tasks.front();
  1349. queue_tasks.pop_front();
  1350. lock.unlock();
  1351. QUE_DBG("processing task, id = %d\n", task.id);
  1352. callback_new_task(std::move(task));
  1353. }
  1354. // all tasks in the current loop is processed, slots data is now ready
  1355. QUE_DBG("%s", "update slots\n");
  1356. callback_update_slots();
  1357. QUE_DBG("%s", "waiting for new tasks\n");
  1358. {
  1359. std::unique_lock<std::mutex> lock(mutex_tasks);
  1360. if (queue_tasks.empty()) {
  1361. if (!running) {
  1362. QUE_DBG("%s", "terminate\n");
  1363. return;
  1364. }
  1365. condition_tasks.wait(lock, [&]{
  1366. return (!queue_tasks.empty() || !running);
  1367. });
  1368. }
  1369. }
  1370. }
  1371. }
  1372. private:
  1373. void cleanup_pending_task(int id_target) {
  1374. // no need lock because this is called exclusively by post()
  1375. auto rm_func = [id_target](const server_task & task) {
  1376. return task.id_target == id_target;
  1377. };
  1378. queue_tasks.erase(
  1379. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1380. queue_tasks.end());
  1381. queue_tasks_deferred.erase(
  1382. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1383. queue_tasks_deferred.end());
  1384. }
  1385. };
  1386. struct server_response {
  1387. // for keeping track of all tasks waiting for the result
  1388. std::unordered_set<int> waiting_task_ids;
  1389. // the main result queue (using ptr for polymorphism)
  1390. std::vector<server_task_result_ptr> queue_results;
  1391. std::mutex mutex_results;
  1392. std::condition_variable condition_results;
  1393. // add the id_task to the list of tasks waiting for response
  1394. void add_waiting_task_id(int id_task) {
  1395. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1396. std::unique_lock<std::mutex> lock(mutex_results);
  1397. waiting_task_ids.insert(id_task);
  1398. }
  1399. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1400. std::unique_lock<std::mutex> lock(mutex_results);
  1401. for (const auto & task : tasks) {
  1402. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1403. waiting_task_ids.insert(task.id);
  1404. }
  1405. }
  1406. // when the request is finished, we can remove task associated with it
  1407. void remove_waiting_task_id(int id_task) {
  1408. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1409. std::unique_lock<std::mutex> lock(mutex_results);
  1410. waiting_task_ids.erase(id_task);
  1411. // make sure to clean up all pending results
  1412. queue_results.erase(
  1413. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1414. return res->id == id_task;
  1415. }),
  1416. queue_results.end());
  1417. }
  1418. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1419. std::unique_lock<std::mutex> lock(mutex_results);
  1420. for (const auto & id_task : id_tasks) {
  1421. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1422. waiting_task_ids.erase(id_task);
  1423. }
  1424. }
  1425. // This function blocks the thread until there is a response for one of the id_tasks
  1426. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1427. while (true) {
  1428. std::unique_lock<std::mutex> lock(mutex_results);
  1429. condition_results.wait(lock, [&]{
  1430. return !queue_results.empty();
  1431. });
  1432. for (size_t i = 0; i < queue_results.size(); i++) {
  1433. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1434. server_task_result_ptr res = std::move(queue_results[i]);
  1435. queue_results.erase(queue_results.begin() + i);
  1436. return res;
  1437. }
  1438. }
  1439. }
  1440. // should never reach here
  1441. }
  1442. // same as recv(), but have timeout in seconds
  1443. // if timeout is reached, nullptr is returned
  1444. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1445. while (true) {
  1446. std::unique_lock<std::mutex> lock(mutex_results);
  1447. for (int i = 0; i < (int) queue_results.size(); i++) {
  1448. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1449. server_task_result_ptr res = std::move(queue_results[i]);
  1450. queue_results.erase(queue_results.begin() + i);
  1451. return res;
  1452. }
  1453. }
  1454. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1455. if (cr_res == std::cv_status::timeout) {
  1456. return nullptr;
  1457. }
  1458. }
  1459. // should never reach here
  1460. }
  1461. // single-task version of recv()
  1462. server_task_result_ptr recv(int id_task) {
  1463. std::unordered_set<int> id_tasks = {id_task};
  1464. return recv(id_tasks);
  1465. }
  1466. // Send a new result to a waiting id_task
  1467. void send(server_task_result_ptr && result) {
  1468. SRV_DBG("sending result for task id = %d\n", result->id);
  1469. std::unique_lock<std::mutex> lock(mutex_results);
  1470. for (const auto & id_task : waiting_task_ids) {
  1471. if (result->id == id_task) {
  1472. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1473. queue_results.emplace_back(std::move(result));
  1474. condition_results.notify_all();
  1475. return;
  1476. }
  1477. }
  1478. }
  1479. };
  1480. struct server_context {
  1481. common_params params_base;
  1482. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1483. common_init_result llama_init;
  1484. common_init_result llama_init_dft;
  1485. llama_model * model = nullptr;
  1486. llama_context * ctx = nullptr;
  1487. const llama_vocab * vocab = nullptr;
  1488. llama_model * model_dft = nullptr;
  1489. llama_context_params cparams_dft;
  1490. llama_batch batch = {};
  1491. bool clean_kv_cache = true;
  1492. bool add_bos_token = true;
  1493. bool has_eos_token = false;
  1494. int32_t n_ctx; // total context for all clients / slots
  1495. // slots / clients
  1496. std::vector<server_slot> slots;
  1497. json default_generation_settings_for_props;
  1498. server_queue queue_tasks;
  1499. server_response queue_results;
  1500. server_metrics metrics;
  1501. // Necessary similarity of prompt for slot selection
  1502. float slot_prompt_similarity = 0.0f;
  1503. common_chat_templates chat_templates;
  1504. ~server_context() {
  1505. // Clear any sampling context
  1506. for (server_slot & slot : slots) {
  1507. common_sampler_free(slot.smpl);
  1508. slot.smpl = nullptr;
  1509. llama_free(slot.ctx_dft);
  1510. slot.ctx_dft = nullptr;
  1511. common_speculative_free(slot.spec);
  1512. slot.spec = nullptr;
  1513. llama_batch_free(slot.batch_spec);
  1514. }
  1515. llama_batch_free(batch);
  1516. }
  1517. bool load_model(const common_params & params) {
  1518. SRV_INF("loading model '%s'\n", params.model.c_str());
  1519. params_base = params;
  1520. llama_init = common_init_from_params(params_base);
  1521. model = llama_init.model.get();
  1522. ctx = llama_init.context.get();
  1523. if (model == nullptr) {
  1524. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1525. return false;
  1526. }
  1527. vocab = llama_model_get_vocab(model);
  1528. n_ctx = llama_n_ctx(ctx);
  1529. add_bos_token = llama_vocab_get_add_bos(vocab);
  1530. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1531. if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
  1532. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1533. auto params_dft = params_base;
  1534. params_dft.devices = params_base.speculative.devices;
  1535. params_dft.hf_file = params_base.speculative.hf_file;
  1536. params_dft.hf_repo = params_base.speculative.hf_repo;
  1537. params_dft.model = params_base.speculative.model;
  1538. params_dft.model_url = params_base.speculative.model_url;
  1539. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1540. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1541. params_dft.n_parallel = 1;
  1542. llama_init_dft = common_init_from_params(params_dft);
  1543. model_dft = llama_init_dft.model.get();
  1544. if (model_dft == nullptr) {
  1545. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1546. return false;
  1547. }
  1548. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1549. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1550. return false;
  1551. }
  1552. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1553. cparams_dft = common_context_params_to_llama(params_dft);
  1554. cparams_dft.n_batch = n_ctx_dft;
  1555. // force F16 KV cache for the draft model for extra performance
  1556. cparams_dft.type_k = GGML_TYPE_F16;
  1557. cparams_dft.type_v = GGML_TYPE_F16;
  1558. // the context is not needed - we will create one for each slot
  1559. llama_init_dft.context.reset();
  1560. }
  1561. if (params_base.chat_template.empty() && !validate_builtin_chat_template(params.use_jinja)) {
  1562. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1563. chat_templates = common_chat_templates_from_model(model, "chatml");
  1564. } else {
  1565. chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
  1566. }
  1567. GGML_ASSERT(chat_templates.template_default.get() != nullptr);
  1568. return true;
  1569. }
  1570. bool validate_builtin_chat_template(bool use_jinja) const {
  1571. llama_chat_message chat[] = {{"user", "test"}};
  1572. if (use_jinja) {
  1573. auto templates = common_chat_templates_from_model(model, "");
  1574. common_chat_inputs inputs;
  1575. inputs.messages = json::array({{
  1576. {"role", "user"},
  1577. {"content", "test"},
  1578. }});
  1579. GGML_ASSERT(templates.template_default);
  1580. try {
  1581. common_chat_params_init(*templates.template_default, inputs);
  1582. if (templates.template_tool_use) {
  1583. common_chat_params_init(*templates.template_tool_use, inputs);
  1584. }
  1585. return true;
  1586. } catch (const std::exception & e) {
  1587. SRV_ERR("failed to apply template: %s\n", e.what());
  1588. return false;
  1589. }
  1590. } else {
  1591. const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
  1592. const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
  1593. return chat_res > 0;
  1594. }
  1595. }
  1596. void init() {
  1597. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1598. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1599. for (int i = 0; i < params_base.n_parallel; i++) {
  1600. server_slot slot;
  1601. slot.id = i;
  1602. slot.ctx = ctx;
  1603. slot.n_ctx = n_ctx_slot;
  1604. slot.n_predict = params_base.n_predict;
  1605. if (model_dft) {
  1606. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1607. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1608. if (slot.ctx_dft == nullptr) {
  1609. SRV_ERR("%s", "failed to create draft context\n");
  1610. return;
  1611. }
  1612. slot.spec = common_speculative_init(slot.ctx_dft);
  1613. if (slot.spec == nullptr) {
  1614. SRV_ERR("%s", "failed to create speculator\n");
  1615. return;
  1616. }
  1617. }
  1618. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1619. slot.params.sampling = params_base.sampling;
  1620. slot.callback_on_release = [this](int) {
  1621. queue_tasks.pop_deferred_task();
  1622. };
  1623. slot.reset();
  1624. slots.push_back(slot);
  1625. }
  1626. default_generation_settings_for_props = slots[0].to_json();
  1627. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1628. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1629. {
  1630. const int32_t n_batch = llama_n_batch(ctx);
  1631. // only a single seq_id per token is needed
  1632. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1633. }
  1634. metrics.init();
  1635. }
  1636. server_slot * get_slot_by_id(int id) {
  1637. for (server_slot & slot : slots) {
  1638. if (slot.id == id) {
  1639. return &slot;
  1640. }
  1641. }
  1642. return nullptr;
  1643. }
  1644. server_slot * get_available_slot(const server_task & task) {
  1645. server_slot * ret = nullptr;
  1646. // find the slot that has at least n% prompt similarity
  1647. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1648. int lcs_len = 0;
  1649. float similarity = 0;
  1650. for (server_slot & slot : slots) {
  1651. // skip the slot if it is not available
  1652. if (slot.is_processing()) {
  1653. continue;
  1654. }
  1655. // skip the slot if it does not contains cached tokens
  1656. if (slot.cache_tokens.empty()) {
  1657. continue;
  1658. }
  1659. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1660. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1661. // fraction of the common subsequence length compared to the current slot's prompt length
  1662. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1663. // select the current slot if the criteria match
  1664. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1665. lcs_len = cur_lcs_len;
  1666. similarity = cur_similarity;
  1667. ret = &slot;
  1668. }
  1669. }
  1670. if (ret != nullptr) {
  1671. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1672. }
  1673. }
  1674. // find the slot that has been least recently used
  1675. if (ret == nullptr) {
  1676. int64_t t_last = ggml_time_us();
  1677. for (server_slot & slot : slots) {
  1678. // skip the slot if it is not available
  1679. if (slot.is_processing()) {
  1680. continue;
  1681. }
  1682. // select the current slot if the criteria match
  1683. if (slot.t_last_used < t_last) {
  1684. t_last = slot.t_last_used;
  1685. ret = &slot;
  1686. }
  1687. }
  1688. if (ret != nullptr) {
  1689. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1690. }
  1691. }
  1692. return ret;
  1693. }
  1694. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1695. slot.reset();
  1696. slot.id_task = task.id;
  1697. slot.index = task.index;
  1698. slot.task_type = task.type;
  1699. slot.params = std::move(task.params);
  1700. slot.prompt_tokens = std::move(task.prompt_tokens);
  1701. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1702. // if lora is changed, we cannot reuse cached tokens
  1703. slot.cache_tokens.clear();
  1704. slot.lora = task.params.lora;
  1705. }
  1706. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1707. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1708. // Might be better to reject the request with a 400 ?
  1709. slot.params.n_predict = slot.n_predict;
  1710. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1711. }
  1712. if (slot.params.ignore_eos && has_eos_token) {
  1713. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1714. }
  1715. {
  1716. if (slot.smpl != nullptr) {
  1717. common_sampler_free(slot.smpl);
  1718. }
  1719. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1720. if (slot.smpl == nullptr) {
  1721. // for now, the only error that may happen here is invalid grammar
  1722. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1723. return false;
  1724. }
  1725. }
  1726. if (slot.ctx_dft) {
  1727. llama_batch_free(slot.batch_spec);
  1728. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1729. }
  1730. slot.state = SLOT_STATE_STARTED;
  1731. SLT_INF(slot, "%s", "processing task\n");
  1732. return true;
  1733. }
  1734. void kv_cache_clear() {
  1735. SRV_DBG("%s", "clearing KV cache\n");
  1736. // clear the entire KV cache
  1737. llama_kv_cache_clear(ctx);
  1738. clean_kv_cache = false;
  1739. }
  1740. bool process_token(completion_token_output & result, server_slot & slot) {
  1741. // remember which tokens were sampled - used for repetition penalties during sampling
  1742. const std::string token_str = result.text_to_send;
  1743. slot.sampled = result.tok;
  1744. slot.generated_text += token_str;
  1745. if (slot.params.return_tokens) {
  1746. slot.generated_tokens.push_back(result.tok);
  1747. }
  1748. slot.has_next_token = true;
  1749. // check if there is incomplete UTF-8 character at the end
  1750. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1751. // search stop word and delete it
  1752. if (!incomplete) {
  1753. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1754. const std::string str_test = slot.generated_text.substr(pos);
  1755. bool send_text = true;
  1756. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1757. if (stop_pos != std::string::npos) {
  1758. slot.generated_text.erase(
  1759. slot.generated_text.begin() + pos + stop_pos,
  1760. slot.generated_text.end());
  1761. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1762. } else if (slot.has_next_token) {
  1763. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1764. send_text = stop_pos == std::string::npos;
  1765. }
  1766. // check if there is any token to predict
  1767. if (send_text) {
  1768. // no send the stop word in the response
  1769. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1770. slot.n_sent_text += result.text_to_send.size();
  1771. // add the token to slot queue and cache
  1772. } else {
  1773. result.text_to_send = "";
  1774. }
  1775. slot.add_token(result);
  1776. if (slot.params.stream) {
  1777. send_partial_response(slot, result);
  1778. }
  1779. }
  1780. if (incomplete) {
  1781. slot.has_next_token = true;
  1782. }
  1783. // check the limits
  1784. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1785. slot.stop = STOP_TYPE_LIMIT;
  1786. slot.has_next_token = false;
  1787. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1788. }
  1789. if (slot.has_new_line) {
  1790. // if we have already seen a new line, we stop after a certain time limit
  1791. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1792. slot.stop = STOP_TYPE_LIMIT;
  1793. slot.has_next_token = false;
  1794. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1795. }
  1796. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1797. if (slot.params.n_indent > 0) {
  1798. // check the current indentation
  1799. // TODO: improve by not doing it more than once for each new line
  1800. if (slot.last_nl_pos > 0) {
  1801. size_t pos = slot.last_nl_pos;
  1802. int n_indent = 0;
  1803. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1804. n_indent++;
  1805. pos++;
  1806. }
  1807. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1808. slot.stop = STOP_TYPE_LIMIT;
  1809. slot.has_next_token = false;
  1810. // cut the last line
  1811. slot.generated_text.erase(pos, std::string::npos);
  1812. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1813. }
  1814. }
  1815. // find the next new line
  1816. {
  1817. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1818. if (pos != std::string::npos) {
  1819. slot.last_nl_pos = pos + 1;
  1820. }
  1821. }
  1822. }
  1823. }
  1824. // check if there is a new line in the generated text
  1825. if (result.text_to_send.find('\n') != std::string::npos) {
  1826. slot.has_new_line = true;
  1827. }
  1828. // if context shift is disabled, we stop when it reaches the context limit
  1829. if (slot.n_past >= slot.n_ctx) {
  1830. slot.truncated = true;
  1831. slot.stop = STOP_TYPE_LIMIT;
  1832. slot.has_next_token = false;
  1833. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1834. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1835. }
  1836. if (llama_vocab_is_eog(vocab, result.tok)) {
  1837. slot.stop = STOP_TYPE_EOS;
  1838. slot.has_next_token = false;
  1839. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1840. }
  1841. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1842. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1843. slot.truncated = true;
  1844. slot.stop = STOP_TYPE_LIMIT;
  1845. slot.has_next_token = false; // stop prediction
  1846. SLT_WRN(slot,
  1847. "n_predict (%d) is set for infinite generation. "
  1848. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1849. slot.params.n_predict, n_ctx_train);
  1850. }
  1851. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1852. return slot.has_next_token; // continue
  1853. }
  1854. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1855. size_t n_probs = slot.params.sampling.n_probs;
  1856. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1857. if (post_sampling) {
  1858. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1859. const size_t max_probs = cur_p->size;
  1860. // set probability for sampled token
  1861. for (size_t i = 0; i < max_probs; i++) {
  1862. if (cur_p->data[i].id == result.tok) {
  1863. result.prob = cur_p->data[i].p;
  1864. break;
  1865. }
  1866. }
  1867. // set probability for top n_probs tokens
  1868. result.probs.reserve(max_probs);
  1869. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1870. result.probs.push_back({
  1871. cur_p->data[i].id,
  1872. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1873. cur_p->data[i].p
  1874. });
  1875. }
  1876. } else {
  1877. // TODO: optimize this with min-p optimization
  1878. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1879. // set probability for sampled token
  1880. for (size_t i = 0; i < n_vocab; i++) {
  1881. // set probability for sampled token
  1882. if (cur[i].id == result.tok) {
  1883. result.prob = cur[i].p;
  1884. break;
  1885. }
  1886. }
  1887. // set probability for top n_probs tokens
  1888. result.probs.reserve(n_probs);
  1889. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1890. result.probs.push_back({
  1891. cur[i].id,
  1892. common_detokenize(ctx, {cur[i].id}, special),
  1893. cur[i].p
  1894. });
  1895. }
  1896. }
  1897. }
  1898. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1899. send_error(task.id, error, type);
  1900. }
  1901. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1902. send_error(slot.id_task, error, type);
  1903. }
  1904. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1905. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1906. auto res = std::make_unique<server_task_result_error>();
  1907. res->id = id_task;
  1908. res->err_type = type;
  1909. res->err_msg = error;
  1910. queue_results.send(std::move(res));
  1911. }
  1912. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1913. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1914. res->id = slot.id_task;
  1915. res->index = slot.index;
  1916. res->content = tkn.text_to_send;
  1917. res->tokens = { tkn.tok };
  1918. res->n_decoded = slot.n_decoded;
  1919. res->n_prompt_tokens = slot.n_prompt_tokens;
  1920. res->post_sampling_probs = slot.params.post_sampling_probs;
  1921. res->verbose = slot.params.verbose;
  1922. res->oaicompat = slot.params.oaicompat;
  1923. res->oaicompat_model = slot.params.oaicompat_model;
  1924. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1925. // populate res.probs_output
  1926. if (slot.params.sampling.n_probs > 0) {
  1927. res->prob_output = tkn; // copy the token probs
  1928. }
  1929. // populate timings if this is final response or timings_per_token is enabled
  1930. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1931. res->timings = slot.get_timings();
  1932. }
  1933. queue_results.send(std::move(res));
  1934. }
  1935. void send_final_response(server_slot & slot) {
  1936. auto res = std::make_unique<server_task_result_cmpl_final>();
  1937. res->id = slot.id_task;
  1938. res->id_slot = slot.id;
  1939. res->index = slot.index;
  1940. res->content = std::move(slot.generated_text);
  1941. res->tokens = std::move(slot.generated_tokens);
  1942. res->timings = slot.get_timings();
  1943. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1944. res->response_fields = std::move(slot.params.response_fields);
  1945. res->truncated = slot.truncated;
  1946. res->n_decoded = slot.n_decoded;
  1947. res->n_prompt_tokens = slot.n_prompt_tokens;
  1948. res->n_tokens_cached = slot.n_past;
  1949. res->has_new_line = slot.has_new_line;
  1950. res->stopping_word = slot.stopping_word;
  1951. res->stop = slot.stop;
  1952. res->post_sampling_probs = slot.params.post_sampling_probs;
  1953. res->verbose = slot.params.verbose;
  1954. res->stream = slot.params.stream;
  1955. res->oaicompat = slot.params.oaicompat;
  1956. res->oaicompat_model = slot.params.oaicompat_model;
  1957. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1958. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  1959. // populate res.probs_output
  1960. if (slot.params.sampling.n_probs > 0) {
  1961. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1962. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1963. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1964. res->probs_output = std::vector<completion_token_output>(
  1965. slot.generated_token_probs.begin(),
  1966. slot.generated_token_probs.end() - safe_offset);
  1967. } else {
  1968. res->probs_output = std::vector<completion_token_output>(
  1969. slot.generated_token_probs.begin(),
  1970. slot.generated_token_probs.end());
  1971. }
  1972. }
  1973. res->generation_params = slot.params; // copy the parameters
  1974. queue_results.send(std::move(res));
  1975. }
  1976. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1977. auto res = std::make_unique<server_task_result_embd>();
  1978. res->id = slot.id_task;
  1979. res->index = slot.index;
  1980. res->n_tokens = slot.n_prompt_tokens;
  1981. res->oaicompat = slot.params.oaicompat;
  1982. const int n_embd = llama_model_n_embd(model);
  1983. std::vector<float> embd_res(n_embd, 0.0f);
  1984. for (int i = 0; i < batch.n_tokens; ++i) {
  1985. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1986. continue;
  1987. }
  1988. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1989. if (embd == NULL) {
  1990. embd = llama_get_embeddings_ith(ctx, i);
  1991. }
  1992. if (embd == NULL) {
  1993. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1994. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1995. continue;
  1996. }
  1997. // normalize only when there is pooling
  1998. // TODO: configurable
  1999. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2000. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2001. res->embedding.push_back(embd_res);
  2002. } else {
  2003. res->embedding.push_back({ embd, embd + n_embd });
  2004. }
  2005. }
  2006. SLT_DBG(slot, "%s", "sending embeddings\n");
  2007. queue_results.send(std::move(res));
  2008. }
  2009. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2010. auto res = std::make_unique<server_task_result_rerank>();
  2011. res->id = slot.id_task;
  2012. res->index = slot.index;
  2013. res->n_tokens = slot.n_prompt_tokens;
  2014. for (int i = 0; i < batch.n_tokens; ++i) {
  2015. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2016. continue;
  2017. }
  2018. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2019. if (embd == NULL) {
  2020. embd = llama_get_embeddings_ith(ctx, i);
  2021. }
  2022. if (embd == NULL) {
  2023. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2024. res->score = -1e6;
  2025. continue;
  2026. }
  2027. res->score = embd[0];
  2028. }
  2029. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2030. queue_results.send(std::move(res));
  2031. }
  2032. //
  2033. // Functions to create new task(s) and receive result(s)
  2034. //
  2035. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2036. std::vector<server_task> cancel_tasks;
  2037. cancel_tasks.reserve(id_tasks.size());
  2038. for (const auto & id_task : id_tasks) {
  2039. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2040. server_task task(SERVER_TASK_TYPE_CANCEL);
  2041. task.id_target = id_task;
  2042. queue_results.remove_waiting_task_id(id_task);
  2043. cancel_tasks.push_back(task);
  2044. }
  2045. // push to beginning of the queue, so it has highest priority
  2046. queue_tasks.post(cancel_tasks, true);
  2047. }
  2048. // receive the results from task(s)
  2049. void receive_multi_results(
  2050. const std::unordered_set<int> & id_tasks,
  2051. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2052. const std::function<void(json)> & error_handler,
  2053. const std::function<bool()> & is_connection_closed) {
  2054. std::vector<server_task_result_ptr> results(id_tasks.size());
  2055. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2056. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2057. if (is_connection_closed()) {
  2058. cancel_tasks(id_tasks);
  2059. return;
  2060. }
  2061. if (result == nullptr) {
  2062. i--; // retry
  2063. continue;
  2064. }
  2065. if (result->is_error()) {
  2066. error_handler(result->to_json());
  2067. cancel_tasks(id_tasks);
  2068. return;
  2069. }
  2070. GGML_ASSERT(
  2071. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2072. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2073. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2074. );
  2075. const size_t idx = result->get_index();
  2076. GGML_ASSERT(idx < results.size() && "index out of range");
  2077. results[idx] = std::move(result);
  2078. }
  2079. result_handler(results);
  2080. }
  2081. // receive the results from task(s), in stream mode
  2082. void receive_cmpl_results_stream(
  2083. const std::unordered_set<int> & id_tasks,
  2084. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2085. const std::function<void(json)> & error_handler,
  2086. const std::function<bool()> & is_connection_closed) {
  2087. size_t n_finished = 0;
  2088. while (true) {
  2089. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2090. if (is_connection_closed()) {
  2091. cancel_tasks(id_tasks);
  2092. return;
  2093. }
  2094. if (result == nullptr) {
  2095. continue; // retry
  2096. }
  2097. if (result->is_error()) {
  2098. error_handler(result->to_json());
  2099. cancel_tasks(id_tasks);
  2100. return;
  2101. }
  2102. GGML_ASSERT(
  2103. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2104. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2105. );
  2106. if (!result_handler(result)) {
  2107. cancel_tasks(id_tasks);
  2108. break;
  2109. }
  2110. if (result->is_stop()) {
  2111. if (++n_finished == id_tasks.size()) {
  2112. break;
  2113. }
  2114. }
  2115. }
  2116. }
  2117. //
  2118. // Functions to process the task
  2119. //
  2120. void process_single_task(server_task task) {
  2121. switch (task.type) {
  2122. case SERVER_TASK_TYPE_COMPLETION:
  2123. case SERVER_TASK_TYPE_INFILL:
  2124. case SERVER_TASK_TYPE_EMBEDDING:
  2125. case SERVER_TASK_TYPE_RERANK:
  2126. {
  2127. const int id_slot = task.id_selected_slot;
  2128. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2129. if (slot == nullptr) {
  2130. // if no slot is available, we defer this task for processing later
  2131. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2132. queue_tasks.defer(task);
  2133. break;
  2134. }
  2135. if (slot->is_processing()) {
  2136. // if requested slot is unavailable, we defer this task for processing later
  2137. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2138. queue_tasks.defer(task);
  2139. break;
  2140. }
  2141. if (!launch_slot_with_task(*slot, task)) {
  2142. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2143. break;
  2144. }
  2145. } break;
  2146. case SERVER_TASK_TYPE_CANCEL:
  2147. {
  2148. // release slot linked with the task id
  2149. for (auto & slot : slots) {
  2150. if (slot.id_task == task.id_target) {
  2151. slot.release();
  2152. break;
  2153. }
  2154. }
  2155. } break;
  2156. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2157. {
  2158. // do nothing
  2159. } break;
  2160. case SERVER_TASK_TYPE_METRICS:
  2161. {
  2162. json slots_data = json::array();
  2163. int n_idle_slots = 0;
  2164. int n_processing_slots = 0;
  2165. for (server_slot & slot : slots) {
  2166. json slot_data = slot.to_json();
  2167. if (slot.is_processing()) {
  2168. n_processing_slots++;
  2169. } else {
  2170. n_idle_slots++;
  2171. }
  2172. slots_data.push_back(slot_data);
  2173. }
  2174. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2175. auto res = std::make_unique<server_task_result_metrics>();
  2176. res->id = task.id;
  2177. res->slots_data = std::move(slots_data);
  2178. res->n_idle_slots = n_idle_slots;
  2179. res->n_processing_slots = n_processing_slots;
  2180. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2181. res->t_start = metrics.t_start;
  2182. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2183. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2184. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2185. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2186. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2187. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2188. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2189. res->t_prompt_processing = metrics.t_prompt_processing;
  2190. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2191. res->t_tokens_generation = metrics.t_tokens_generation;
  2192. res->n_decode_total = metrics.n_decode_total;
  2193. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2194. if (task.metrics_reset_bucket) {
  2195. metrics.reset_bucket();
  2196. }
  2197. queue_results.send(std::move(res));
  2198. } break;
  2199. case SERVER_TASK_TYPE_SLOT_SAVE:
  2200. {
  2201. int id_slot = task.slot_action.slot_id;
  2202. server_slot * slot = get_slot_by_id(id_slot);
  2203. if (slot == nullptr) {
  2204. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2205. break;
  2206. }
  2207. if (slot->is_processing()) {
  2208. // if requested slot is unavailable, we defer this task for processing later
  2209. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2210. queue_tasks.defer(task);
  2211. break;
  2212. }
  2213. const size_t token_count = slot->cache_tokens.size();
  2214. const int64_t t_start = ggml_time_us();
  2215. std::string filename = task.slot_action.filename;
  2216. std::string filepath = task.slot_action.filepath;
  2217. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2218. const int64_t t_end = ggml_time_us();
  2219. const double t_save_ms = (t_end - t_start) / 1000.0;
  2220. auto res = std::make_unique<server_task_result_slot_save_load>();
  2221. res->id = task.id;
  2222. res->id_slot = id_slot;
  2223. res->filename = filename;
  2224. res->is_save = true;
  2225. res->n_tokens = token_count;
  2226. res->n_bytes = nwrite;
  2227. res->t_ms = t_save_ms;
  2228. queue_results.send(std::move(res));
  2229. } break;
  2230. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2231. {
  2232. int id_slot = task.slot_action.slot_id;
  2233. server_slot * slot = get_slot_by_id(id_slot);
  2234. if (slot == nullptr) {
  2235. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2236. break;
  2237. }
  2238. if (slot->is_processing()) {
  2239. // if requested slot is unavailable, we defer this task for processing later
  2240. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2241. queue_tasks.defer(task);
  2242. break;
  2243. }
  2244. const int64_t t_start = ggml_time_us();
  2245. std::string filename = task.slot_action.filename;
  2246. std::string filepath = task.slot_action.filepath;
  2247. slot->cache_tokens.resize(slot->n_ctx);
  2248. size_t token_count = 0;
  2249. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2250. if (nread == 0) {
  2251. slot->cache_tokens.resize(0);
  2252. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2253. break;
  2254. }
  2255. slot->cache_tokens.resize(token_count);
  2256. const int64_t t_end = ggml_time_us();
  2257. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2258. auto res = std::make_unique<server_task_result_slot_save_load>();
  2259. res->id = task.id;
  2260. res->id_slot = id_slot;
  2261. res->filename = filename;
  2262. res->is_save = false;
  2263. res->n_tokens = token_count;
  2264. res->n_bytes = nread;
  2265. res->t_ms = t_restore_ms;
  2266. queue_results.send(std::move(res));
  2267. } break;
  2268. case SERVER_TASK_TYPE_SLOT_ERASE:
  2269. {
  2270. int id_slot = task.slot_action.slot_id;
  2271. server_slot * slot = get_slot_by_id(id_slot);
  2272. if (slot == nullptr) {
  2273. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2274. break;
  2275. }
  2276. if (slot->is_processing()) {
  2277. // if requested slot is unavailable, we defer this task for processing later
  2278. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2279. queue_tasks.defer(task);
  2280. break;
  2281. }
  2282. // Erase token cache
  2283. const size_t n_erased = slot->cache_tokens.size();
  2284. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2285. slot->cache_tokens.clear();
  2286. auto res = std::make_unique<server_task_result_slot_erase>();
  2287. res->id = task.id;
  2288. res->id_slot = id_slot;
  2289. res->n_erased = n_erased;
  2290. queue_results.send(std::move(res));
  2291. } break;
  2292. case SERVER_TASK_TYPE_SET_LORA:
  2293. {
  2294. params_base.lora_adapters = std::move(task.set_lora);
  2295. auto res = std::make_unique<server_task_result_apply_lora>();
  2296. res->id = task.id;
  2297. queue_results.send(std::move(res));
  2298. } break;
  2299. }
  2300. }
  2301. void update_slots() {
  2302. // check if all slots are idle
  2303. {
  2304. bool all_idle = true;
  2305. for (auto & slot : slots) {
  2306. if (slot.is_processing()) {
  2307. all_idle = false;
  2308. break;
  2309. }
  2310. }
  2311. if (all_idle) {
  2312. SRV_INF("%s", "all slots are idle\n");
  2313. if (clean_kv_cache) {
  2314. kv_cache_clear();
  2315. }
  2316. return;
  2317. }
  2318. }
  2319. {
  2320. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2321. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2322. task.id = queue_tasks.get_new_id();
  2323. queue_tasks.post(task);
  2324. }
  2325. // apply context-shift if needed
  2326. // TODO: simplify and improve
  2327. for (server_slot & slot : slots) {
  2328. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2329. if (!params_base.ctx_shift) {
  2330. // this check is redundant (for good)
  2331. // we should never get here, because generation should already stopped in process_token()
  2332. slot.release();
  2333. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2334. continue;
  2335. }
  2336. // Shift context
  2337. const int n_keep = slot.params.n_keep + add_bos_token;
  2338. const int n_left = slot.n_past - n_keep;
  2339. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2340. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2341. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2342. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2343. if (slot.params.cache_prompt) {
  2344. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2345. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2346. }
  2347. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2348. }
  2349. slot.n_past -= n_discard;
  2350. slot.truncated = true;
  2351. }
  2352. }
  2353. // start populating the batch for this iteration
  2354. common_batch_clear(batch);
  2355. // track if given slot can be batched with slots already in the batch
  2356. server_slot * slot_batched = nullptr;
  2357. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2358. const auto & trigger_tokens = slot.params.sampling.grammar_trigger_tokens;
  2359. return params_base.special || std::find(trigger_tokens.begin(), trigger_tokens.end(), token) != trigger_tokens.end();
  2360. };
  2361. // frist, add sampled tokens from any ongoing sequences
  2362. for (auto & slot : slots) {
  2363. if (slot.state != SLOT_STATE_GENERATING) {
  2364. continue;
  2365. }
  2366. // check if we can batch this slot with the previous one
  2367. if (!slot_batched) {
  2368. slot_batched = &slot;
  2369. } else if (!slot_batched->can_batch_with(slot)) {
  2370. continue;
  2371. }
  2372. slot.i_batch = batch.n_tokens;
  2373. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2374. slot.n_past += 1;
  2375. if (slot.params.cache_prompt) {
  2376. slot.cache_tokens.push_back(slot.sampled);
  2377. }
  2378. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2379. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2380. }
  2381. // process in chunks of params.n_batch
  2382. int32_t n_batch = llama_n_batch(ctx);
  2383. int32_t n_ubatch = llama_n_ubatch(ctx);
  2384. // next, batch any pending prompts without exceeding n_batch
  2385. if (params_base.cont_batching || batch.n_tokens == 0) {
  2386. for (auto & slot : slots) {
  2387. // check if we can batch this slot with the previous one
  2388. if (slot.is_processing()) {
  2389. if (!slot_batched) {
  2390. slot_batched = &slot;
  2391. } else if (!slot_batched->can_batch_with(slot)) {
  2392. continue;
  2393. }
  2394. }
  2395. // this slot still has a prompt to be processed
  2396. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2397. auto & prompt_tokens = slot.prompt_tokens;
  2398. // TODO: maybe move branch to outside of this loop in the future
  2399. if (slot.state == SLOT_STATE_STARTED) {
  2400. slot.t_start_process_prompt = ggml_time_us();
  2401. slot.t_start_generation = 0;
  2402. slot.n_past = 0;
  2403. slot.n_prompt_tokens = prompt_tokens.size();
  2404. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2405. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2406. // print prompt tokens (for debugging)
  2407. if (1) {
  2408. // first 16 tokens (avoid flooding logs)
  2409. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2410. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2411. }
  2412. } else {
  2413. // all
  2414. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2415. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2416. }
  2417. }
  2418. // empty prompt passed -> release the slot and send empty response
  2419. if (prompt_tokens.empty()) {
  2420. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2421. slot.release();
  2422. slot.print_timings();
  2423. send_final_response(slot);
  2424. continue;
  2425. }
  2426. if (slot.is_non_causal()) {
  2427. if (slot.n_prompt_tokens > n_ubatch) {
  2428. slot.release();
  2429. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2430. continue;
  2431. }
  2432. if (slot.n_prompt_tokens > slot.n_ctx) {
  2433. slot.release();
  2434. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2435. continue;
  2436. }
  2437. } else {
  2438. if (!params_base.ctx_shift) {
  2439. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2440. // TODO: there should be a separate parameter that control prompt truncation
  2441. // context shift should be applied only during the generation phase
  2442. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2443. slot.release();
  2444. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2445. continue;
  2446. }
  2447. }
  2448. if (slot.params.n_keep < 0) {
  2449. slot.params.n_keep = slot.n_prompt_tokens;
  2450. }
  2451. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2452. // if input prompt is too big, truncate it
  2453. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2454. const int n_left = slot.n_ctx - slot.params.n_keep;
  2455. const int n_block_size = n_left / 2;
  2456. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2457. llama_tokens new_tokens(
  2458. prompt_tokens.begin(),
  2459. prompt_tokens.begin() + slot.params.n_keep);
  2460. new_tokens.insert(
  2461. new_tokens.end(),
  2462. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2463. prompt_tokens.end());
  2464. prompt_tokens = std::move(new_tokens);
  2465. slot.truncated = true;
  2466. slot.n_prompt_tokens = prompt_tokens.size();
  2467. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2468. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2469. }
  2470. if (slot.params.cache_prompt) {
  2471. // reuse any previously computed tokens that are common with the new prompt
  2472. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2473. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2474. if (params_base.n_cache_reuse > 0) {
  2475. size_t head_c = slot.n_past; // cache
  2476. size_t head_p = slot.n_past; // current prompt
  2477. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2478. while (head_c < slot.cache_tokens.size() &&
  2479. head_p < prompt_tokens.size()) {
  2480. size_t n_match = 0;
  2481. while (head_c + n_match < slot.cache_tokens.size() &&
  2482. head_p + n_match < prompt_tokens.size() &&
  2483. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2484. n_match++;
  2485. }
  2486. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2487. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2488. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2489. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2490. //}
  2491. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2492. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2493. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2494. for (size_t i = 0; i < n_match; i++) {
  2495. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2496. slot.n_past++;
  2497. }
  2498. head_c += n_match;
  2499. head_p += n_match;
  2500. } else {
  2501. head_c += 1;
  2502. }
  2503. }
  2504. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2505. }
  2506. }
  2507. }
  2508. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2509. // we have to evaluate at least 1 token to generate logits.
  2510. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2511. slot.n_past--;
  2512. }
  2513. slot.n_prompt_tokens_processed = 0;
  2514. }
  2515. // non-causal tasks require to fit the entire prompt in the physical batch
  2516. if (slot.is_non_causal()) {
  2517. // cannot fit the prompt in the current batch - will try next iter
  2518. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2519. continue;
  2520. }
  2521. }
  2522. // keep only the common part
  2523. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2524. // could not partially delete (likely using a non-Transformer model)
  2525. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2526. // there is no common part left
  2527. slot.n_past = 0;
  2528. }
  2529. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2530. // remove the non-common part from the cache
  2531. slot.cache_tokens.resize(slot.n_past);
  2532. // add prompt tokens for processing in the current batch
  2533. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2534. // without pooling, we want to output the embeddings for all the tokens in the batch
  2535. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2536. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2537. if (slot.params.cache_prompt) {
  2538. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2539. }
  2540. slot.n_prompt_tokens_processed++;
  2541. slot.n_past++;
  2542. }
  2543. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2544. // entire prompt has been processed
  2545. if (slot.n_past == slot.n_prompt_tokens) {
  2546. slot.state = SLOT_STATE_DONE_PROMPT;
  2547. GGML_ASSERT(batch.n_tokens > 0);
  2548. common_sampler_reset(slot.smpl);
  2549. // Process all prompt tokens through sampler system
  2550. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2551. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2552. }
  2553. // extract the logits only for the last token
  2554. batch.logits[batch.n_tokens - 1] = true;
  2555. slot.n_decoded = 0;
  2556. slot.i_batch = batch.n_tokens - 1;
  2557. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2558. }
  2559. }
  2560. if (batch.n_tokens >= n_batch) {
  2561. break;
  2562. }
  2563. }
  2564. }
  2565. if (batch.n_tokens == 0) {
  2566. SRV_WRN("%s", "no tokens to decode\n");
  2567. return;
  2568. }
  2569. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2570. if (slot_batched) {
  2571. // make sure we're in the right embedding mode
  2572. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2573. // apply lora, only need to do it once per batch
  2574. common_set_adapter_lora(ctx, slot_batched->lora);
  2575. }
  2576. // process the created batch of tokens
  2577. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2578. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2579. llama_batch batch_view = {
  2580. n_tokens,
  2581. batch.token + i,
  2582. nullptr,
  2583. batch.pos + i,
  2584. batch.n_seq_id + i,
  2585. batch.seq_id + i,
  2586. batch.logits + i,
  2587. };
  2588. const int ret = llama_decode(ctx, batch_view);
  2589. metrics.on_decoded(slots);
  2590. if (ret != 0) {
  2591. if (n_batch == 1 || ret < 0) {
  2592. // if you get here, it means the KV cache is full - try increasing it via the context size
  2593. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2594. for (auto & slot : slots) {
  2595. slot.release();
  2596. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2597. }
  2598. break; // break loop of n_batch
  2599. }
  2600. // retry with half the batch size to try to find a free slot in the KV cache
  2601. n_batch /= 2;
  2602. i -= n_batch;
  2603. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2604. continue; // continue loop of n_batch
  2605. }
  2606. for (auto & slot : slots) {
  2607. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2608. continue; // continue loop of slots
  2609. }
  2610. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2611. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2612. // prompt evaluated for embedding
  2613. send_embedding(slot, batch_view);
  2614. slot.release();
  2615. slot.i_batch = -1;
  2616. continue; // continue loop of slots
  2617. }
  2618. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2619. send_rerank(slot, batch_view);
  2620. slot.release();
  2621. slot.i_batch = -1;
  2622. continue; // continue loop of slots
  2623. }
  2624. // prompt evaluated for next-token prediction
  2625. slot.state = SLOT_STATE_GENERATING;
  2626. } else if (slot.state != SLOT_STATE_GENERATING) {
  2627. continue; // continue loop of slots
  2628. }
  2629. const int tok_idx = slot.i_batch - i;
  2630. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2631. slot.i_batch = -1;
  2632. common_sampler_accept(slot.smpl, id, true);
  2633. slot.n_decoded += 1;
  2634. const int64_t t_current = ggml_time_us();
  2635. if (slot.n_decoded == 1) {
  2636. slot.t_start_generation = t_current;
  2637. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2638. metrics.on_prompt_eval(slot);
  2639. }
  2640. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2641. completion_token_output result;
  2642. result.tok = id;
  2643. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2644. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2645. if (slot.params.sampling.n_probs > 0) {
  2646. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2647. }
  2648. if (!process_token(result, slot)) {
  2649. // release slot because of stop condition
  2650. slot.release();
  2651. slot.print_timings();
  2652. send_final_response(slot);
  2653. metrics.on_prediction(slot);
  2654. continue;
  2655. }
  2656. }
  2657. // do speculative decoding
  2658. for (auto & slot : slots) {
  2659. if (!slot.is_processing() || !slot.can_speculate()) {
  2660. continue;
  2661. }
  2662. if (slot.state != SLOT_STATE_GENERATING) {
  2663. continue;
  2664. }
  2665. // determine the max draft that fits the current slot state
  2666. int n_draft_max = slot.params.speculative.n_max;
  2667. // note: n_past is not yet increased for the `id` token sampled above
  2668. // also, need to leave space for 1 extra token to allow context shifts
  2669. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2670. if (slot.n_remaining > 0) {
  2671. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2672. }
  2673. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2674. if (n_draft_max < slot.params.speculative.n_min) {
  2675. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2676. continue;
  2677. }
  2678. llama_token id = slot.sampled;
  2679. struct common_speculative_params params_spec;
  2680. params_spec.n_draft = n_draft_max;
  2681. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2682. params_spec.p_min = slot.params.speculative.p_min;
  2683. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2684. // ignore small drafts
  2685. if (slot.params.speculative.n_min > (int) draft.size()) {
  2686. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2687. continue;
  2688. }
  2689. // construct the speculation batch
  2690. common_batch_clear(slot.batch_spec);
  2691. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2692. for (size_t i = 0; i < draft.size(); ++i) {
  2693. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2694. }
  2695. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2696. llama_decode(ctx, slot.batch_spec);
  2697. // the accepted tokens from the speculation
  2698. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2699. slot.n_past += ids.size();
  2700. slot.n_decoded += ids.size();
  2701. slot.cache_tokens.push_back(id);
  2702. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2703. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2704. for (size_t i = 0; i < ids.size(); ++i) {
  2705. completion_token_output result;
  2706. result.tok = ids[i];
  2707. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2708. result.prob = 1.0f; // set later
  2709. // TODO: set result.probs
  2710. if (!process_token(result, slot)) {
  2711. // release slot because of stop condition
  2712. slot.release();
  2713. slot.print_timings();
  2714. send_final_response(slot);
  2715. metrics.on_prediction(slot);
  2716. break;
  2717. }
  2718. }
  2719. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2720. }
  2721. }
  2722. SRV_DBG("%s", "run slots completed\n");
  2723. }
  2724. json model_meta() const {
  2725. return json {
  2726. {"vocab_type", llama_vocab_type (vocab)},
  2727. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2728. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2729. {"n_embd", llama_model_n_embd (model)},
  2730. {"n_params", llama_model_n_params (model)},
  2731. {"size", llama_model_size (model)},
  2732. };
  2733. }
  2734. };
  2735. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2736. // skip GH copilot requests when using default port
  2737. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2738. return;
  2739. }
  2740. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2741. LOG_DBG("request: %s\n", req.body.c_str());
  2742. LOG_DBG("response: %s\n", res.body.c_str());
  2743. }
  2744. std::function<void(int)> shutdown_handler;
  2745. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2746. inline void signal_handler(int signal) {
  2747. if (is_terminating.test_and_set()) {
  2748. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2749. // this is for better developer experience, we can remove when the server is stable enough
  2750. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2751. exit(1);
  2752. }
  2753. shutdown_handler(signal);
  2754. }
  2755. int main(int argc, char ** argv) {
  2756. // own arguments required by this example
  2757. common_params params;
  2758. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2759. return 1;
  2760. }
  2761. common_init();
  2762. // struct that contains llama context and inference
  2763. server_context ctx_server;
  2764. llama_backend_init();
  2765. llama_numa_init(params.numa);
  2766. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2767. LOG_INF("\n");
  2768. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2769. LOG_INF("\n");
  2770. std::unique_ptr<httplib::Server> svr;
  2771. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2772. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2773. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2774. svr.reset(
  2775. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2776. );
  2777. } else {
  2778. LOG_INF("Running without SSL\n");
  2779. svr.reset(new httplib::Server());
  2780. }
  2781. #else
  2782. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2783. LOG_ERR("Server is built without SSL support\n");
  2784. return 1;
  2785. }
  2786. svr.reset(new httplib::Server());
  2787. #endif
  2788. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2789. svr->set_default_headers({{"Server", "llama.cpp"}});
  2790. svr->set_logger(log_server_request);
  2791. auto res_error = [](httplib::Response & res, const json & error_data) {
  2792. json final_response {{"error", error_data}};
  2793. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2794. res.status = json_value(error_data, "code", 500);
  2795. };
  2796. auto res_ok = [](httplib::Response & res, const json & data) {
  2797. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2798. res.status = 200;
  2799. };
  2800. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2801. std::string message;
  2802. try {
  2803. std::rethrow_exception(ep);
  2804. } catch (const std::exception & e) {
  2805. message = e.what();
  2806. } catch (...) {
  2807. message = "Unknown Exception";
  2808. }
  2809. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2810. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2811. res_error(res, formatted_error);
  2812. });
  2813. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2814. if (res.status == 404) {
  2815. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2816. }
  2817. // for other error codes, we skip processing here because it's already done by res_error()
  2818. });
  2819. // set timeouts and change hostname and port
  2820. svr->set_read_timeout (params.timeout_read);
  2821. svr->set_write_timeout(params.timeout_write);
  2822. std::unordered_map<std::string, std::string> log_data;
  2823. log_data["hostname"] = params.hostname;
  2824. log_data["port"] = std::to_string(params.port);
  2825. if (params.api_keys.size() == 1) {
  2826. auto key = params.api_keys[0];
  2827. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2828. } else if (params.api_keys.size() > 1) {
  2829. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2830. }
  2831. // Necessary similarity of prompt for slot selection
  2832. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2833. //
  2834. // Middlewares
  2835. //
  2836. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2837. static const std::unordered_set<std::string> public_endpoints = {
  2838. "/health",
  2839. "/models",
  2840. "/v1/models",
  2841. };
  2842. // If API key is not set, skip validation
  2843. if (params.api_keys.empty()) {
  2844. return true;
  2845. }
  2846. // If path is public or is static file, skip validation
  2847. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2848. return true;
  2849. }
  2850. // Check for API key in the header
  2851. auto auth_header = req.get_header_value("Authorization");
  2852. std::string prefix = "Bearer ";
  2853. if (auth_header.substr(0, prefix.size()) == prefix) {
  2854. std::string received_api_key = auth_header.substr(prefix.size());
  2855. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2856. return true; // API key is valid
  2857. }
  2858. }
  2859. // API key is invalid or not provided
  2860. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2861. LOG_WRN("Unauthorized: Invalid API Key\n");
  2862. return false;
  2863. };
  2864. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2865. server_state current_state = state.load();
  2866. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2867. auto tmp = string_split<std::string>(req.path, '.');
  2868. if (req.path == "/" || tmp.back() == "html") {
  2869. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2870. res.status = 503;
  2871. } else {
  2872. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2873. }
  2874. return false;
  2875. }
  2876. return true;
  2877. };
  2878. // register server middlewares
  2879. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2880. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2881. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2882. if (req.method == "OPTIONS") {
  2883. res.set_header("Access-Control-Allow-Credentials", "true");
  2884. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2885. res.set_header("Access-Control-Allow-Headers", "*");
  2886. res.set_content("", "text/html"); // blank response, no data
  2887. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2888. }
  2889. if (!middleware_server_state(req, res)) {
  2890. return httplib::Server::HandlerResponse::Handled;
  2891. }
  2892. if (!middleware_validate_api_key(req, res)) {
  2893. return httplib::Server::HandlerResponse::Handled;
  2894. }
  2895. return httplib::Server::HandlerResponse::Unhandled;
  2896. });
  2897. //
  2898. // Route handlers (or controllers)
  2899. //
  2900. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2901. // error and loading states are handled by middleware
  2902. json health = {{"status", "ok"}};
  2903. res_ok(res, health);
  2904. };
  2905. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2906. if (!params.endpoint_slots) {
  2907. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2908. return;
  2909. }
  2910. // request slots data using task queue
  2911. server_task task(SERVER_TASK_TYPE_METRICS);
  2912. task.id = ctx_server.queue_tasks.get_new_id();
  2913. ctx_server.queue_results.add_waiting_task_id(task.id);
  2914. ctx_server.queue_tasks.post(task, true); // high-priority task
  2915. // get the result
  2916. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2917. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2918. if (result->is_error()) {
  2919. res_error(res, result->to_json());
  2920. return;
  2921. }
  2922. // TODO: get rid of this dynamic_cast
  2923. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2924. GGML_ASSERT(res_metrics != nullptr);
  2925. // optionally return "fail_on_no_slot" error
  2926. if (req.has_param("fail_on_no_slot")) {
  2927. if (res_metrics->n_idle_slots == 0) {
  2928. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2929. return;
  2930. }
  2931. }
  2932. res_ok(res, res_metrics->slots_data);
  2933. };
  2934. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2935. if (!params.endpoint_metrics) {
  2936. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2937. return;
  2938. }
  2939. // request slots data using task queue
  2940. server_task task(SERVER_TASK_TYPE_METRICS);
  2941. task.id = ctx_server.queue_tasks.get_new_id();
  2942. task.metrics_reset_bucket = true;
  2943. ctx_server.queue_results.add_waiting_task_id(task.id);
  2944. ctx_server.queue_tasks.post(task, true); // high-priority task
  2945. // get the result
  2946. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2947. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2948. if (result->is_error()) {
  2949. res_error(res, result->to_json());
  2950. return;
  2951. }
  2952. // TODO: get rid of this dynamic_cast
  2953. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2954. GGML_ASSERT(res_metrics != nullptr);
  2955. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2956. json all_metrics_def = json {
  2957. {"counter", {{
  2958. {"name", "prompt_tokens_total"},
  2959. {"help", "Number of prompt tokens processed."},
  2960. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2961. }, {
  2962. {"name", "prompt_seconds_total"},
  2963. {"help", "Prompt process time"},
  2964. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2965. }, {
  2966. {"name", "tokens_predicted_total"},
  2967. {"help", "Number of generation tokens processed."},
  2968. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2969. }, {
  2970. {"name", "tokens_predicted_seconds_total"},
  2971. {"help", "Predict process time"},
  2972. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2973. }, {
  2974. {"name", "n_decode_total"},
  2975. {"help", "Total number of llama_decode() calls"},
  2976. {"value", res_metrics->n_decode_total}
  2977. }, {
  2978. {"name", "n_busy_slots_per_decode"},
  2979. {"help", "Average number of busy slots per llama_decode() call"},
  2980. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2981. }}},
  2982. {"gauge", {{
  2983. {"name", "prompt_tokens_seconds"},
  2984. {"help", "Average prompt throughput in tokens/s."},
  2985. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2986. },{
  2987. {"name", "predicted_tokens_seconds"},
  2988. {"help", "Average generation throughput in tokens/s."},
  2989. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2990. },{
  2991. {"name", "kv_cache_usage_ratio"},
  2992. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2993. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2994. },{
  2995. {"name", "kv_cache_tokens"},
  2996. {"help", "KV-cache tokens."},
  2997. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2998. },{
  2999. {"name", "requests_processing"},
  3000. {"help", "Number of requests processing."},
  3001. {"value", (uint64_t) res_metrics->n_processing_slots}
  3002. },{
  3003. {"name", "requests_deferred"},
  3004. {"help", "Number of requests deferred."},
  3005. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3006. }}}
  3007. };
  3008. std::stringstream prometheus;
  3009. for (const auto & el : all_metrics_def.items()) {
  3010. const auto & type = el.key();
  3011. const auto & metrics_def = el.value();
  3012. for (const auto & metric_def : metrics_def) {
  3013. const std::string name = metric_def.at("name");
  3014. const std::string help = metric_def.at("help");
  3015. auto value = json_value(metric_def, "value", 0.);
  3016. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3017. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3018. << "llamacpp:" << name << " " << value << "\n";
  3019. }
  3020. }
  3021. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3022. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3023. res.status = 200; // HTTP OK
  3024. };
  3025. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3026. json request_data = json::parse(req.body);
  3027. std::string filename = request_data.at("filename");
  3028. if (!fs_validate_filename(filename)) {
  3029. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3030. return;
  3031. }
  3032. std::string filepath = params.slot_save_path + filename;
  3033. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3034. task.id = ctx_server.queue_tasks.get_new_id();
  3035. task.slot_action.slot_id = id_slot;
  3036. task.slot_action.filename = filename;
  3037. task.slot_action.filepath = filepath;
  3038. ctx_server.queue_results.add_waiting_task_id(task.id);
  3039. ctx_server.queue_tasks.post(task);
  3040. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3041. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3042. if (result->is_error()) {
  3043. res_error(res, result->to_json());
  3044. return;
  3045. }
  3046. res_ok(res, result->to_json());
  3047. };
  3048. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3049. json request_data = json::parse(req.body);
  3050. std::string filename = request_data.at("filename");
  3051. if (!fs_validate_filename(filename)) {
  3052. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3053. return;
  3054. }
  3055. std::string filepath = params.slot_save_path + filename;
  3056. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3057. task.id = ctx_server.queue_tasks.get_new_id();
  3058. task.slot_action.slot_id = id_slot;
  3059. task.slot_action.filename = filename;
  3060. task.slot_action.filepath = filepath;
  3061. ctx_server.queue_results.add_waiting_task_id(task.id);
  3062. ctx_server.queue_tasks.post(task);
  3063. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3064. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3065. if (result->is_error()) {
  3066. res_error(res, result->to_json());
  3067. return;
  3068. }
  3069. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3070. res_ok(res, result->to_json());
  3071. };
  3072. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3073. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3074. task.id = ctx_server.queue_tasks.get_new_id();
  3075. task.slot_action.slot_id = id_slot;
  3076. ctx_server.queue_results.add_waiting_task_id(task.id);
  3077. ctx_server.queue_tasks.post(task);
  3078. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3079. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3080. if (result->is_error()) {
  3081. res_error(res, result->to_json());
  3082. return;
  3083. }
  3084. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3085. res_ok(res, result->to_json());
  3086. };
  3087. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3088. if (params.slot_save_path.empty()) {
  3089. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3090. return;
  3091. }
  3092. std::string id_slot_str = req.path_params.at("id_slot");
  3093. int id_slot;
  3094. try {
  3095. id_slot = std::stoi(id_slot_str);
  3096. } catch (const std::exception &) {
  3097. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3098. return;
  3099. }
  3100. std::string action = req.get_param_value("action");
  3101. if (action == "save") {
  3102. handle_slots_save(req, res, id_slot);
  3103. } else if (action == "restore") {
  3104. handle_slots_restore(req, res, id_slot);
  3105. } else if (action == "erase") {
  3106. handle_slots_erase(req, res, id_slot);
  3107. } else {
  3108. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3109. }
  3110. };
  3111. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3112. // this endpoint is publicly available, please only return what is safe to be exposed
  3113. json data = {
  3114. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3115. { "total_slots", ctx_server.params_base.n_parallel },
  3116. { "model_path", ctx_server.params_base.model },
  3117. { "chat_template", ctx_server.chat_templates.template_default->source() },
  3118. { "bos_token", ctx_server.chat_templates.template_default->bos_token() },
  3119. { "eos_token", ctx_server.chat_templates.template_default->eos_token() },
  3120. { "build_info", build_info },
  3121. };
  3122. if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
  3123. data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
  3124. }
  3125. res_ok(res, data);
  3126. };
  3127. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3128. if (!ctx_server.params_base.endpoint_props) {
  3129. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3130. return;
  3131. }
  3132. json data = json::parse(req.body);
  3133. // update any props here
  3134. res_ok(res, {{ "success", true }});
  3135. };
  3136. // handle completion-like requests (completion, chat, infill)
  3137. // we can optionally provide a custom format for partial results and final results
  3138. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3139. server_task_type type,
  3140. json & data,
  3141. std::function<bool()> is_connection_closed,
  3142. httplib::Response & res,
  3143. oaicompat_type oaicompat) {
  3144. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3145. if (ctx_server.params_base.embedding) {
  3146. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3147. return;
  3148. }
  3149. auto completion_id = gen_chatcmplid();
  3150. std::vector<server_task> tasks;
  3151. try {
  3152. const auto & prompt = data.at("prompt");
  3153. LOG_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3154. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3155. tasks.reserve(tokenized_prompts.size());
  3156. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3157. server_task task = server_task(type);
  3158. task.id = ctx_server.queue_tasks.get_new_id();
  3159. task.index = i;
  3160. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3161. task.params = server_task::params_from_json_cmpl(
  3162. ctx_server.ctx,
  3163. ctx_server.params_base,
  3164. data);
  3165. task.id_selected_slot = json_value(data, "id_slot", -1);
  3166. // OAI-compat
  3167. task.params.oaicompat = oaicompat;
  3168. task.params.oaicompat_cmpl_id = completion_id;
  3169. // oaicompat_model is already populated by params_from_json_cmpl
  3170. tasks.push_back(task);
  3171. }
  3172. } catch (const std::exception & e) {
  3173. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3174. return;
  3175. }
  3176. ctx_server.queue_results.add_waiting_tasks(tasks);
  3177. ctx_server.queue_tasks.post(tasks);
  3178. bool stream = json_value(data, "stream", false);
  3179. const auto task_ids = server_task::get_list_id(tasks);
  3180. if (!stream) {
  3181. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3182. if (results.size() == 1) {
  3183. // single result
  3184. res_ok(res, results[0]->to_json());
  3185. } else {
  3186. // multiple results (multitask)
  3187. json arr = json::array();
  3188. for (auto & res : results) {
  3189. arr.push_back(res->to_json());
  3190. }
  3191. res_ok(res, arr);
  3192. }
  3193. }, [&](const json & error_data) {
  3194. res_error(res, error_data);
  3195. }, is_connection_closed);
  3196. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3197. } else {
  3198. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3199. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3200. json res_json = result->to_json();
  3201. if (res_json.is_array()) {
  3202. for (const auto & res : res_json) {
  3203. if (!server_sent_event(sink, "data", res)) {
  3204. // sending failed (HTTP connection closed), cancel the generation
  3205. return false;
  3206. }
  3207. }
  3208. return true;
  3209. } else {
  3210. return server_sent_event(sink, "data", res_json);
  3211. }
  3212. }, [&](const json & error_data) {
  3213. server_sent_event(sink, "error", error_data);
  3214. }, [&sink]() {
  3215. // note: do not use req.is_connection_closed here because req is already destroyed
  3216. return !sink.is_writable();
  3217. });
  3218. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3219. static const std::string ev_done = "data: [DONE]\n\n";
  3220. sink.write(ev_done.data(), ev_done.size());
  3221. }
  3222. sink.done();
  3223. return false;
  3224. };
  3225. auto on_complete = [task_ids, &ctx_server] (bool) {
  3226. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3227. };
  3228. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3229. }
  3230. };
  3231. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3232. json data = json::parse(req.body);
  3233. return handle_completions_impl(
  3234. SERVER_TASK_TYPE_COMPLETION,
  3235. data,
  3236. req.is_connection_closed,
  3237. res,
  3238. OAICOMPAT_TYPE_NONE);
  3239. };
  3240. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3241. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3242. return handle_completions_impl(
  3243. SERVER_TASK_TYPE_COMPLETION,
  3244. data,
  3245. req.is_connection_closed,
  3246. res,
  3247. OAICOMPAT_TYPE_COMPLETION);
  3248. };
  3249. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3250. // check model compatibility
  3251. std::string err;
  3252. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3253. err += "prefix token is missing. ";
  3254. }
  3255. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3256. err += "suffix token is missing. ";
  3257. }
  3258. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3259. err += "middle token is missing. ";
  3260. }
  3261. if (!err.empty()) {
  3262. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3263. return;
  3264. }
  3265. json data = json::parse(req.body);
  3266. // validate input
  3267. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3268. // prompt is optional
  3269. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3270. }
  3271. if (!data.contains("input_prefix")) {
  3272. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3273. }
  3274. if (!data.contains("input_suffix")) {
  3275. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3276. }
  3277. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3278. // input_extra is optional
  3279. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3280. return;
  3281. }
  3282. json input_extra = json_value(data, "input_extra", json::array());
  3283. for (const auto & chunk : input_extra) {
  3284. // { "text": string, "filename": string }
  3285. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3286. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3287. return;
  3288. }
  3289. // filename is optional
  3290. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3291. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3292. return;
  3293. }
  3294. }
  3295. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3296. std::string prompt = json_value(data, "prompt", std::string());
  3297. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3298. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3299. data["prompt"] = format_infill(
  3300. ctx_server.vocab,
  3301. data.at("input_prefix"),
  3302. data.at("input_suffix"),
  3303. data.at("input_extra"),
  3304. ctx_server.params_base.n_batch,
  3305. ctx_server.params_base.n_predict,
  3306. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3307. ctx_server.params_base.spm_infill,
  3308. tokenized_prompts[0]
  3309. );
  3310. return handle_completions_impl(
  3311. SERVER_TASK_TYPE_INFILL,
  3312. data,
  3313. req.is_connection_closed,
  3314. res,
  3315. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3316. };
  3317. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3318. LOG_DBG("request: %s\n", req.body.c_str());
  3319. if (ctx_server.params_base.embedding) {
  3320. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3321. return;
  3322. }
  3323. auto body = json::parse(req.body);
  3324. json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
  3325. return handle_completions_impl(
  3326. SERVER_TASK_TYPE_COMPLETION,
  3327. data,
  3328. req.is_connection_closed,
  3329. res,
  3330. OAICOMPAT_TYPE_CHAT);
  3331. };
  3332. // same with handle_chat_completions, but without inference part
  3333. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3334. auto body = json::parse(req.body);
  3335. json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
  3336. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3337. };
  3338. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3339. json models = {
  3340. {"object", "list"},
  3341. {"data", {
  3342. {
  3343. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3344. {"object", "model"},
  3345. {"created", std::time(0)},
  3346. {"owned_by", "llamacpp"},
  3347. {"meta", ctx_server.model_meta()}
  3348. },
  3349. }}
  3350. };
  3351. res_ok(res, models);
  3352. };
  3353. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3354. const json body = json::parse(req.body);
  3355. json tokens_response = json::array();
  3356. if (body.count("content") != 0) {
  3357. const bool add_special = json_value(body, "add_special", false);
  3358. const bool with_pieces = json_value(body, "with_pieces", false);
  3359. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3360. if (with_pieces) {
  3361. for (const auto& token : tokens) {
  3362. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3363. json piece_json;
  3364. // Check if the piece is valid UTF-8
  3365. if (is_valid_utf8(piece)) {
  3366. piece_json = piece;
  3367. } else {
  3368. // If not valid UTF-8, store as array of byte values
  3369. piece_json = json::array();
  3370. for (unsigned char c : piece) {
  3371. piece_json.push_back(static_cast<int>(c));
  3372. }
  3373. }
  3374. tokens_response.push_back({
  3375. {"id", token},
  3376. {"piece", piece_json}
  3377. });
  3378. }
  3379. } else {
  3380. tokens_response = tokens;
  3381. }
  3382. }
  3383. const json data = format_tokenizer_response(tokens_response);
  3384. res_ok(res, data);
  3385. };
  3386. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3387. const json body = json::parse(req.body);
  3388. std::string content;
  3389. if (body.count("tokens") != 0) {
  3390. const llama_tokens tokens = body.at("tokens");
  3391. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3392. }
  3393. const json data = format_detokenized_response(content);
  3394. res_ok(res, data);
  3395. };
  3396. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3397. const json body = json::parse(req.body);
  3398. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3399. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3400. return;
  3401. }
  3402. // for the shape of input/content, see tokenize_input_prompts()
  3403. json prompt;
  3404. if (body.count("input") != 0) {
  3405. prompt = body.at("input");
  3406. } else if (body.contains("content")) {
  3407. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3408. prompt = body.at("content");
  3409. } else {
  3410. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3411. return;
  3412. }
  3413. bool use_base64 = false;
  3414. if (body.count("encoding_format") != 0) {
  3415. const std::string& format = body.at("encoding_format");
  3416. if (format == "base64") {
  3417. use_base64 = true;
  3418. } else if (format != "float") {
  3419. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3420. return;
  3421. }
  3422. }
  3423. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3424. for (const auto & tokens : tokenized_prompts) {
  3425. // this check is necessary for models that do not add BOS token to the input
  3426. if (tokens.empty()) {
  3427. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3428. return;
  3429. }
  3430. }
  3431. // create and queue the task
  3432. json responses = json::array();
  3433. bool error = false;
  3434. {
  3435. std::vector<server_task> tasks;
  3436. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3437. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3438. task.id = ctx_server.queue_tasks.get_new_id();
  3439. task.index = i;
  3440. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3441. // OAI-compat
  3442. task.params.oaicompat = oaicompat;
  3443. tasks.push_back(task);
  3444. }
  3445. ctx_server.queue_results.add_waiting_tasks(tasks);
  3446. ctx_server.queue_tasks.post(tasks);
  3447. // get the result
  3448. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3449. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3450. for (auto & res : results) {
  3451. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3452. responses.push_back(res->to_json());
  3453. }
  3454. }, [&](const json & error_data) {
  3455. res_error(res, error_data);
  3456. error = true;
  3457. }, req.is_connection_closed);
  3458. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3459. }
  3460. if (error) {
  3461. return;
  3462. }
  3463. // write JSON response
  3464. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3465. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3466. : json(responses);
  3467. res_ok(res, root);
  3468. };
  3469. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3470. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3471. };
  3472. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3473. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3474. };
  3475. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3476. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3477. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3478. return;
  3479. }
  3480. const json body = json::parse(req.body);
  3481. // TODO: implement
  3482. //int top_n = 1;
  3483. //if (body.count("top_n") != 1) {
  3484. // top_n = body.at("top_n");
  3485. //} else {
  3486. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3487. // return;
  3488. //}
  3489. json query;
  3490. if (body.count("query") == 1) {
  3491. query = body.at("query");
  3492. if (!query.is_string()) {
  3493. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3494. return;
  3495. }
  3496. } else {
  3497. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3498. return;
  3499. }
  3500. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3501. if (documents.empty()) {
  3502. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3503. return;
  3504. }
  3505. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3506. // create and queue the task
  3507. json responses = json::array();
  3508. bool error = false;
  3509. {
  3510. std::vector<server_task> tasks;
  3511. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3512. tasks.reserve(tokenized_docs.size());
  3513. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3514. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3515. task.id = ctx_server.queue_tasks.get_new_id();
  3516. task.index = i;
  3517. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3518. tasks.push_back(task);
  3519. }
  3520. ctx_server.queue_results.add_waiting_tasks(tasks);
  3521. ctx_server.queue_tasks.post(tasks);
  3522. // get the result
  3523. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3524. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3525. for (auto & res : results) {
  3526. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3527. responses.push_back(res->to_json());
  3528. }
  3529. }, [&](const json & error_data) {
  3530. res_error(res, error_data);
  3531. error = true;
  3532. }, req.is_connection_closed);
  3533. }
  3534. if (error) {
  3535. return;
  3536. }
  3537. // write JSON response
  3538. json root = format_response_rerank(body, responses);
  3539. res_ok(res, root);
  3540. };
  3541. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3542. json result = json::array();
  3543. const auto & loras = ctx_server.params_base.lora_adapters;
  3544. for (size_t i = 0; i < loras.size(); ++i) {
  3545. auto & lora = loras[i];
  3546. result.push_back({
  3547. {"id", i},
  3548. {"path", lora.path},
  3549. {"scale", lora.scale},
  3550. });
  3551. }
  3552. res_ok(res, result);
  3553. res.status = 200; // HTTP OK
  3554. };
  3555. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3556. const json body = json::parse(req.body);
  3557. if (!body.is_array()) {
  3558. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3559. return;
  3560. }
  3561. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3562. task.id = ctx_server.queue_tasks.get_new_id();
  3563. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3564. ctx_server.queue_results.add_waiting_task_id(task.id);
  3565. ctx_server.queue_tasks.post(task);
  3566. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3567. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3568. if (result->is_error()) {
  3569. res_error(res, result->to_json());
  3570. return;
  3571. }
  3572. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3573. res_ok(res, result->to_json());
  3574. };
  3575. //
  3576. // Router
  3577. //
  3578. if (!params.webui) {
  3579. LOG_INF("Web UI is disabled\n");
  3580. } else {
  3581. // register static assets routes
  3582. if (!params.public_path.empty()) {
  3583. // Set the base directory for serving static files
  3584. bool is_found = svr->set_mount_point("/", params.public_path);
  3585. if (!is_found) {
  3586. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3587. return 1;
  3588. }
  3589. } else {
  3590. // using embedded static index.html
  3591. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3592. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3593. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3594. } else {
  3595. res.set_header("Content-Encoding", "gzip");
  3596. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3597. }
  3598. return false;
  3599. });
  3600. }
  3601. }
  3602. // register API routes
  3603. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3604. svr->Get ("/metrics", handle_metrics);
  3605. svr->Get ("/props", handle_props);
  3606. svr->Post("/props", handle_props_change);
  3607. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3608. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3609. svr->Post("/completion", handle_completions); // legacy
  3610. svr->Post("/completions", handle_completions);
  3611. svr->Post("/v1/completions", handle_completions_oai);
  3612. svr->Post("/chat/completions", handle_chat_completions);
  3613. svr->Post("/v1/chat/completions", handle_chat_completions);
  3614. svr->Post("/infill", handle_infill);
  3615. svr->Post("/embedding", handle_embeddings); // legacy
  3616. svr->Post("/embeddings", handle_embeddings);
  3617. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3618. svr->Post("/rerank", handle_rerank);
  3619. svr->Post("/reranking", handle_rerank);
  3620. svr->Post("/v1/rerank", handle_rerank);
  3621. svr->Post("/v1/reranking", handle_rerank);
  3622. svr->Post("/tokenize", handle_tokenize);
  3623. svr->Post("/detokenize", handle_detokenize);
  3624. svr->Post("/apply-template", handle_apply_template);
  3625. // LoRA adapters hotswap
  3626. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3627. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3628. // Save & load slots
  3629. svr->Get ("/slots", handle_slots);
  3630. svr->Post("/slots/:id_slot", handle_slots_action);
  3631. //
  3632. // Start the server
  3633. //
  3634. if (params.n_threads_http < 1) {
  3635. // +2 threads for monitoring endpoints
  3636. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3637. }
  3638. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3639. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3640. // clean up function, to be called before exit
  3641. auto clean_up = [&svr]() {
  3642. svr->stop();
  3643. llama_backend_free();
  3644. };
  3645. // bind HTTP listen port
  3646. bool was_bound = false;
  3647. if (params.port == 0) {
  3648. int bound_port = svr->bind_to_any_port(params.hostname);
  3649. if ((was_bound = (bound_port >= 0))) {
  3650. params.port = bound_port;
  3651. }
  3652. } else {
  3653. was_bound = svr->bind_to_port(params.hostname, params.port);
  3654. }
  3655. if (!was_bound) {
  3656. //LOG_ERROR("couldn't bind HTTP server socket", {
  3657. // {"hostname", params.hostname},
  3658. // {"port", params.port},
  3659. //});
  3660. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3661. clean_up();
  3662. return 1;
  3663. }
  3664. // run the HTTP server in a thread
  3665. std::thread t([&]() { svr->listen_after_bind(); });
  3666. svr->wait_until_ready();
  3667. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3668. // load the model
  3669. LOG_INF("%s: loading model\n", __func__);
  3670. if (!ctx_server.load_model(params)) {
  3671. clean_up();
  3672. t.join();
  3673. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3674. return 1;
  3675. }
  3676. ctx_server.init();
  3677. state.store(SERVER_STATE_READY);
  3678. LOG_INF("%s: model loaded\n", __func__);
  3679. // print sample chat example to make it clear which template is used
  3680. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3681. ctx_server.chat_templates.template_default->source().c_str(),
  3682. common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
  3683. ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
  3684. ctx_server.process_single_task(task);
  3685. });
  3686. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3687. ctx_server.update_slots();
  3688. });
  3689. shutdown_handler = [&](int) {
  3690. ctx_server.queue_tasks.terminate();
  3691. };
  3692. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3693. ctx_server.queue_tasks.start_loop();
  3694. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3695. struct sigaction sigint_action;
  3696. sigint_action.sa_handler = signal_handler;
  3697. sigemptyset (&sigint_action.sa_mask);
  3698. sigint_action.sa_flags = 0;
  3699. sigaction(SIGINT, &sigint_action, NULL);
  3700. sigaction(SIGTERM, &sigint_action, NULL);
  3701. #elif defined (_WIN32)
  3702. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3703. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3704. };
  3705. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3706. #endif
  3707. clean_up();
  3708. t.join();
  3709. return 0;
  3710. }