| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990 |
- #include "llama-kv-cache-unified.h"
- #include "llama-impl.h"
- #include "llama-io.h"
- #include "llama-model.h"
- #include "llama-context.h"
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <limits>
- #include <map>
- #include <stdexcept>
- //
- // llama_kv_cache_unified
- //
- llama_kv_cache_unified::llama_kv_cache_unified(
- const llama_model & model,
- layer_filter_cb && filter,
- ggml_type type_k,
- ggml_type type_v,
- bool v_trans,
- bool offload,
- uint32_t kv_size,
- uint32_t n_seq_max,
- uint32_t n_pad,
- uint32_t n_swa,
- llama_swa_type swa_type) :
- model(model), hparams(model.hparams), v_trans(v_trans),
- n_seq_max(n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
- GGML_ASSERT(kv_size % n_pad == 0);
- // TODO: this is temporary until we support passing reuse layer filters [KV_REUSE]
- auto n_layer_cache = hparams.n_layer;
- if (model.arch == LLM_ARCH_GEMMA3N) {
- n_layer_cache = 20;
- }
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ size_t(2u*n_layer_cache*ggml_tensor_overhead()),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- return nullptr;
- }
- ctx_map[buft] = ctx;
- ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- head = 0;
- cells.resize(kv_size);
- for (uint32_t il = 0; il < n_layer_cache; il++) {
- if (filter && !filter(il)) {
- LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
- continue;
- }
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- const char * dev_name = "CPU";
- ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
- if (offload) {
- auto * dev = model.dev_layer(il);
- buft = ggml_backend_dev_buffer_type(dev);
- dev_name = ggml_backend_dev_name(dev);
- }
- LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- throw std::runtime_error("failed to create ggml context for kv cache");
- }
- ggml_tensor * k;
- ggml_tensor * v;
- k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size);
- v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size);
- ggml_format_name(k, "cache_k_l%d", il);
- ggml_format_name(v, "cache_v_l%d", il);
- map_layer_ids[il] = layers.size();
- layers.push_back({ il, k, v });
- }
- // TODO: this is temporary until we support passing reuse layer filters [KV_REUSE]
- if (model.arch == LLM_ARCH_GEMMA3N) {
- LLAMA_LOG_DEBUG("%s: GEMMA3N: reuse layers [%d, %d]\n", __func__, n_layer_cache, hparams.n_layer - 1);
- for (uint32_t il = n_layer_cache; il < hparams.n_layer; il++) {
- if (filter && !filter(il)) {
- LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
- continue;
- }
- const bool is_swa = hparams.is_swa(il);
- const uint32_t il_reuse = n_layer_cache - (is_swa ? 2 : 1);
- GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end());
- map_layer_ids[il] = map_layer_ids[il_reuse];
- LLAMA_LOG_DEBUG("%s: layer %3d: reuse layer %d, isw = %d\n", __func__, il, il_reuse, is_swa);
- }
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- auto * buft = it.first;
- auto * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- throw std::runtime_error("failed to allocate buffer for kv cache");
- }
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- ggml_backend_buffer_clear(buf, 0);
- bufs.emplace_back(buf);
- }
- {
- const size_t memory_size_k = size_k_bytes();
- const size_t memory_size_v = size_v_bytes();
- LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
- (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max,
- ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
- ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
- }
- const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
- debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
- const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS");
- supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) : 0;
- if (!supports_set_rows) {
- LLAMA_LOG_WARN("%s: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility\n", __func__);
- }
- }
- void llama_kv_cache_unified::clear(bool data) {
- cells.reset();
- head = 0;
- if (data) {
- for (auto & buf : bufs) {
- ggml_backend_buffer_clear(buf.get(), 0);
- }
- }
- }
- bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- uint32_t new_head = cells.size();
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- if (seq_id >= 0) {
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
- if (new_head == cells.size()) {
- new_head = i;
- }
- }
- }
- } else {
- // match any sequence
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- cells.rm(i);
- if (new_head == cells.size()) {
- new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cells.size() && new_head < head) {
- head = new_head;
- }
- return true;
- }
- void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id_src)) {
- cells.seq_add(i, seq_id_dst);
- }
- }
- }
- void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
- uint32_t new_head = cells.size();
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (cells.seq_keep(i, seq_id)) {
- if (new_head == cells.size()) {
- new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cells.size() && new_head < head) {
- head = new_head;
- }
- }
- void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
- if (shift == 0) {
- return;
- }
- uint32_t new_head = cells.size();
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over all cells.
- if (p0 == p1) {
- return;
- }
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id)) {
- if (cells.pos_add(i, shift)) {
- if (new_head == cells.size()) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- // Otherwise we just start the next search from the beginning.
- head = new_head != cells.size() ? new_head : 0;
- }
- void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the cache.
- if (p0 == p1) {
- return;
- }
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id)) {
- cells.pos_div(i, d);
- }
- }
- }
- llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const {
- return cells.seq_pos_min(seq_id);
- }
- llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
- return cells.seq_pos_max(seq_id);
- }
- llama_memory_context_ptr llama_kv_cache_unified::init_batch(
- llama_batch_allocr & balloc,
- uint32_t n_ubatch,
- bool embd_all) {
- GGML_UNUSED(embd_all);
- do {
- balloc.split_reset();
- std::vector<llama_ubatch> ubatches;
- while (true) {
- auto ubatch = balloc.split_simple(n_ubatch);
- if (ubatch.n_tokens == 0) {
- break;
- }
- ubatches.push_back(std::move(ubatch)); // NOLINT
- }
- if (balloc.get_n_used() < balloc.get_n_tokens()) {
- // failed to find a suitable split
- break;
- }
- auto sinfos = prepare(ubatches);
- if (sinfos.empty()) {
- break;
- }
- return std::make_unique<llama_kv_cache_unified_context>(
- this, std::move(sinfos), std::move(ubatches));
- } while (false);
- return std::make_unique<llama_kv_cache_unified_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
- }
- llama_memory_context_ptr llama_kv_cache_unified::init_full() {
- return std::make_unique<llama_kv_cache_unified_context>(this);
- }
- llama_memory_context_ptr llama_kv_cache_unified::init_update(llama_context * lctx, bool optimize) {
- bool do_shift = get_has_shift();
- defrag_info dinfo;
- // see if we need to defrag
- {
- bool do_defrag = optimize;
- const auto thold = lctx->get_cparams().defrag_thold;
- if (!do_defrag && thold > 0.0f) {
- const auto n_kv = cells.used_max_p1();
- // - do not defrag small contexts (i.e. < 2048 tokens)
- // - count the padding towards the number of used tokens
- const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f;
- if (fragmentation > thold) {
- LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
- do_defrag = true;
- }
- }
- if (do_defrag) {
- dinfo = defrag_prepare(lctx->graph_max_nodes());
- }
- }
- return std::make_unique<llama_kv_cache_unified_context>(this, lctx, do_shift, std::move(dinfo));
- }
- llama_kv_cache_unified::slot_info_vec_t llama_kv_cache_unified::prepare(const std::vector<llama_ubatch> & ubatches) {
- llama_kv_cache_unified::slot_info_vec_t res;
- struct state {
- uint32_t head_old; // old position of the head, before placing the ubatch
- slot_info sinfo; // slot info for the ubatch
- llama_kv_cells_unified cells; // copy of the old cells, before placing the ubatch
- };
- // remember the old state of the cells so we can restore it in the end
- std::vector<state> states;
- bool success = true;
- for (const auto & ubatch : ubatches) {
- // non-continuous slots require support for ggml_set_rows()
- const bool cont = supports_set_rows ? false : true;
- // only find a suitable slot for the ubatch. don't modify the cells yet
- const auto sinfo_new = find_slot(ubatch, cont);
- if (sinfo_new.empty()) {
- success = false;
- break;
- }
- // remeber the position that we found
- res.push_back(sinfo_new);
- // store the old state of the cells in the recovery stack
- states.push_back({head, sinfo_new, cells.cp(sinfo_new.idxs)});
- // now emplace the ubatch
- apply_ubatch(sinfo_new, ubatch);
- }
- // iterate backwards and restore the cells to their original state
- for (auto it = states.rbegin(); it != states.rend(); ++it) {
- cells.set(it->sinfo.idxs, it->cells);
- head = it->head_old;
- }
- if (!success) {
- return {};
- }
- return res;
- }
- bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo) {
- bool updated = false;
- auto * sched = lctx->get_sched();
- if (do_shift) {
- if (!get_can_shift()) {
- GGML_ABORT("The current KV cache / model configuration does not support K-shift");
- }
- LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
- // apply K-shift if needed
- if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
- ggml_backend_sched_reset(sched);
- auto * gf = lctx->graph_init();
- auto res = build_graph_shift(lctx->get_cparams(), lctx->get_ctx_compute(), gf);
- if (!res) {
- LLAMA_LOG_ERROR("%s: failed to build graph for K-shift\n", __func__);
- return updated;
- }
- if (!ggml_backend_sched_alloc_graph(sched, gf)) {
- LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__);
- return updated;
- }
- res->set_inputs(nullptr);
- if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
- LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__);
- return updated;
- }
- updated = true;
- }
- cells.reset_shift();
- }
- if (!dinfo.empty()) {
- LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
- // apply moves:
- {
- const auto n_kv = dinfo.ids.size();
- for (uint32_t i = 0; i < n_kv; ++i) {
- assert(dinfo.ids[i] <= n_kv);
- if (dinfo.ids[i] == n_kv || dinfo.ids[i] == i) {
- continue;
- }
- cells.mv(i, dinfo.ids[i]);
- }
- // reset the head so we can find the first free slot during the next ubatch
- head = 0;
- }
- ggml_backend_sched_reset(sched);
- auto * gf = lctx->graph_init();
- auto res = build_graph_defrag(lctx->get_cparams(), lctx->get_ctx_compute(), gf, dinfo);
- if (!res) {
- LLAMA_LOG_ERROR("%s: failed to build graph for defrag\n", __func__);
- return updated;
- }
- if (!ggml_backend_sched_alloc_graph(sched, gf)) {
- LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__);
- return updated;
- }
- res->set_inputs(nullptr);
- if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
- LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__);
- return updated;
- }
- updated = true;
- }
- return updated;
- }
- llama_kv_cache_unified::slot_info llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch, bool cont) const {
- const uint32_t n_tokens = ubatch.n_tokens;
- uint32_t head_cur = this->head;
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (head_cur > cells.get_used() + 2*ubatch.n_tokens) {
- head_cur = 0;
- }
- if (n_tokens > cells.size()) {
- LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
- return { };
- }
- if (debug > 0) {
- LLAMA_LOG_DEBUG("%s: n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n", __func__, cells.used_max_p1(), cells.get_used(), head, get_size(), n_swa);
- if ((debug == 2 && n_swa > 0) || debug > 2) {
- std::string ss;
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (cells.is_empty(i)) {
- ss += '.';
- } else {
- assert(cells.seq_count(i) >= 1);
- if (cells.seq_count(i) == 1) {
- ss += std::to_string(cells.seq_get(i));
- } else {
- ss += 'M';
- }
- }
- if (i%256 == 255) {
- ss += " *";
- ss += '\n';
- }
- }
- LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
- }
- if ((debug == 2 && n_swa > 0) || debug > 2) {
- std::string ss;
- for (uint32_t i = 0; i < cells.size(); ++i) {
- std::string cur;
- if (cells.is_empty(i)) {
- cur = '.';
- } else {
- cur = std::to_string(cells.pos_get(i));
- }
- const int n = cur.size();
- for (int j = 0; j < 5 - n; ++j) {
- cur += ' ';
- }
- ss += cur;
- if (i%256 == 255) {
- ss += " *";
- }
- if (i%64 == 63) {
- ss += '\n';
- }
- }
- LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
- }
- for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
- if (cells.seq_pos_min(s) < 0) {
- continue;
- }
- LLAMA_LOG_DEBUG("%s: min[%d] = %5d, max[%d] = %5d\n", __func__, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s));
- }
- }
- uint32_t n_tested = 0;
- // for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
- // for non-continuous slots, we test the tokens one by one
- const uint32_t n_test = cont ? n_tokens : 1;
- slot_info res;
- auto & idxs = res.idxs;
- idxs.reserve(n_tokens);
- while (true) {
- if (head_cur + n_test > cells.size()) {
- n_tested += cells.size() - head_cur;
- head_cur = 0;
- continue;
- }
- for (uint32_t i = 0; i < n_test; i++) {
- const auto idx = head_cur;
- //const llama_pos pos = ubatch.pos[i];
- //const llama_seq_id seq_id = ubatch.seq_id[i][0];
- // can we use this cell? either:
- // - the cell is empty
- // - the cell is occupied only by one sequence:
- // - (disabled) mask causally, if the sequence is the same as the one we are inserting
- // - mask SWA, using current max pos for that sequence in the cache
- // always insert in the cell with minimum pos
- bool can_use = cells.is_empty(idx);
- if (!can_use && cells.seq_count(idx) == 1) {
- const llama_pos pos_cell = cells.pos_get(idx);
- // (disabled) causal mask
- // note: it's better to purge any "future" tokens beforehand
- //if (cells.seq_has(idx, seq_id)) {
- // can_use = pos_cell >= pos;
- //}
- if (!can_use) {
- const llama_seq_id seq_id_cell = cells.seq_get(idx);
- // SWA mask
- if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
- can_use = true;
- }
- }
- }
- head_cur++;
- n_tested++;
- if (can_use) {
- idxs.push_back(idx);
- } else {
- break;
- }
- }
- if (idxs.size() == n_tokens) {
- break;
- }
- if (cont) {
- idxs.clear();
- }
- if (n_tested >= cells.size()) {
- //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
- return { };
- }
- }
- // we didn't find a suitable slot - return empty result
- if (idxs.size() < n_tokens) {
- res.clear();
- }
- return res;
- }
- void llama_kv_cache_unified::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
- // keep track of the max sequence position that we would overwrite with this ubatch
- // for non-SWA cache, this would be always empty
- llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
- for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
- seq_pos_max_rm[s] = -1;
- }
- assert(ubatch.n_tokens == sinfo.idxs.size());
- for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
- const auto idx = sinfo.idxs.at(i);
- if (!cells.is_empty(idx)) {
- assert(cells.seq_count(idx) == 1);
- const llama_seq_id seq_id = cells.seq_get(idx);
- const llama_pos pos = cells.pos_get(idx);
- seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
- cells.rm(idx);
- }
- cells.pos_set(idx, ubatch.pos[i]);
- for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
- cells.seq_add(idx, ubatch.seq_id[i][s]);
- }
- }
- // note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
- // will be present in the cache. so we have to purge any position which is less than those we would overwrite
- // ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
- for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
- if (seq_pos_max_rm[s] == -1) {
- continue;
- }
- if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
- LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
- __func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);
- seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
- }
- }
- // move the head at the end of the slot
- head = sinfo.idxs.back() + 1;
- }
- bool llama_kv_cache_unified::get_can_shift() const {
- return true;
- }
- uint32_t llama_kv_cache_unified::get_size() const {
- return cells.size();
- }
- bool llama_kv_cache_unified::get_has_shift() const {
- return cells.get_has_shift();
- }
- uint32_t llama_kv_cache_unified::get_n_kv() const {
- return std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad)));
- }
- ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * k = layers[ikv].k;
- return ggml_view_3d(ctx, k,
- hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv,
- ggml_row_size(k->type, hparams.n_embd_head_k),
- ggml_row_size(k->type, hparams.n_embd_k_gqa(il)),
- 0);
- }
- ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * v = layers[ikv].v;
- if (!v_trans) {
- // note: v->nb[1] <= v->nb[2]
- return ggml_view_3d(ctx, v,
- hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv,
- ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
- ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2]
- 0);
- }
- // note: v->nb[1] > v->nb[2]
- return ggml_view_3d(ctx, v,
- n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v,
- ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1]
- ggml_row_size(v->type, v->ne[1]), // v->nb[2]
- 0);
- }
- ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * k = layers[ikv].k;
- const int64_t n_embd_k_gqa = k->ne[0];
- const int64_t n_tokens = k_cur->ne[2];
- k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens);
- if (k_idxs && supports_set_rows) {
- return ggml_set_rows(ctx, k, k_cur, k_idxs);
- }
- // TODO: fallback to old ggml_cpy() method for backwards compatibility
- // will be removed when ggml_set_rows() is adopted by all backends
- ggml_tensor * k_view = ggml_view_1d(ctx, k,
- n_tokens*n_embd_k_gqa,
- ggml_row_size(k->type, n_embd_k_gqa)*sinfo.head());
- return ggml_cpy(ctx, k_cur, k_view);
- }
- ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * v = layers[ikv].v;
- const int64_t n_embd_v_gqa = v->ne[0];
- const int64_t n_tokens = v_cur->ne[2];
- v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens);
- if (v_idxs && supports_set_rows) {
- if (!v_trans) {
- return ggml_set_rows(ctx, v, v_cur, v_idxs);
- }
- // the row becomes a single element
- ggml_tensor * v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1], v->ne[0]);
- // note: the V cache is transposed when not using flash attention
- v_cur = ggml_permute(ctx, ggml_reshape_3d(ctx, v_cur, v_cur->ne[0], 1, v_cur->ne[1]), 2, 0, 1, 3);
- // note: we can be more explicit here at the cost of extra cont
- // however, above we take advantage that a row of single element is always continuous regardless of the row stride
- //v_cur = ggml_transpose(ctx, v_cur);
- //v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
- // we broadcast the KV indices n_embd_v_gqa times
- // v [1, n_kv, n_embd_v_gqa]
- // v_cur [1, n_tokens, n_embd_v_gqa]
- // v_idxs [n_tokens, 1, 1]
- return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
- }
- // TODO: fallback to old ggml_cpy() method for backwards compatibility
- // will be removed when ggml_set_rows() is adopted by all backends
- ggml_tensor * v_view = nullptr;
- if (!v_trans) {
- v_view = ggml_view_1d(ctx, v,
- n_tokens*n_embd_v_gqa,
- ggml_row_size(v->type, n_embd_v_gqa)*sinfo.head());
- } else {
- v_cur = ggml_transpose(ctx, v_cur);
- v_view = ggml_view_2d(ctx, v, n_tokens, n_embd_v_gqa,
- (v->ne[1] )*ggml_element_size(v),
- (sinfo.head())*ggml_element_size(v));
- }
- return ggml_cpy(ctx, v_cur, v_view);
- }
- ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
- const uint32_t n_tokens = ubatch.n_tokens;
- ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
- ggml_set_input(k_idxs);
- return k_idxs;
- }
- ggml_tensor * llama_kv_cache_unified::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
- const uint32_t n_tokens = ubatch.n_tokens;
- ggml_tensor * v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
- ggml_set_input(v_idxs);
- return v_idxs;
- }
- void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
- if (!supports_set_rows) {
- return;
- }
- const uint32_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- int64_t * data = (int64_t *) dst->data;
- for (int64_t i = 0; i < n_tokens; ++i) {
- data[i] = sinfo.idxs.at(i);
- }
- }
- void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
- if (!supports_set_rows) {
- return;
- }
- const uint32_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- int64_t * data = (int64_t *) dst->data;
- for (int64_t i = 0; i < n_tokens; ++i) {
- data[i] = sinfo.idxs.at(i);
- }
- }
- void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
- const uint32_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- float * data = (float *) dst->data;
- const int64_t n_kv = dst->ne[0];
- // Use only the previous KV cells of the correct sequence for each token of the ubatch.
- // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
- // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
- // Causal mask:
- // xxx-------
- // xxxx------
- // xxxxx-----
- // Non-causal mask:
- // xxxxx-----
- // xxxxx-----
- // xxxxx-----
- // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
- for (uint32_t h = 0; h < 1; ++h) {
- for (uint32_t i = 0; i < n_tokens; ++i) {
- const llama_seq_id seq_id = ubatch->seq_id[i][0];
- const llama_pos p1 = ubatch->pos[i];
- for (uint32_t j = 0; j < n_kv; ++j) {
- float f = 0.0f;
- bool masked = false;
- if (cells.is_empty(j)) {
- masked = true;
- } else {
- const llama_pos p0 = cells.pos_get(j);
- // mask the token if not the same sequence
- masked = masked || (!cells.seq_has(j, seq_id));
- // mask future tokens
- masked = masked || (causal_attn && p0 > p1);
- // apply SWA if any
- masked = masked || (is_masked_swa(p0, p1));
- if (!masked && hparams.use_alibi) {
- f = -std::abs(p0 - p1);
- }
- }
- if (masked) {
- f = -INFINITY;
- }
- data[h*(n_kv*n_tokens) + i*n_kv + j] = f;
- }
- }
- // mask padded tokens
- if (data) {
- for (uint32_t i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
- for (uint32_t j = 0; j < n_kv; ++j) {
- data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
- }
- }
- }
- }
- }
- void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const {
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- int32_t * data = (int32_t *) dst->data;
- for (uint32_t i = 0; i < cells.size(); ++i) {
- data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
- }
- }
- void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
- int32_t * data = (int32_t *) dst->data;
- const int32_t n_kv = dst->ne[0];
- for (int h = 0; h < 1; ++h) {
- for (int i = 0; i < n_tokens; ++i) {
- for (int j = 0; j < n_kv; ++j) {
- // the position when the cells is empty is irrelevant - it will be masked out later in the attention
- const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);
- data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
- }
- }
- }
- }
- size_t llama_kv_cache_unified::total_size() const {
- size_t size = 0;
- for (const auto & buf : bufs) {
- size += ggml_backend_buffer_get_size(buf.get());
- }
- return size;
- }
- size_t llama_kv_cache_unified::size_k_bytes() const {
- size_t size_k_bytes = 0;
- for (const auto & layer : layers) {
- size_k_bytes += ggml_nbytes(layer.k);
- }
- return size_k_bytes;
- }
- size_t llama_kv_cache_unified::size_v_bytes() const {
- size_t size_v_bytes = 0;
- for (const auto & layer : layers) {
- size_v_bytes += ggml_nbytes(layer.v);
- }
- return size_v_bytes;
- }
- ggml_tensor * llama_kv_cache_unified::build_rope_shift(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_tensor * cur,
- ggml_tensor * shift,
- ggml_tensor * factors,
- float freq_base,
- float freq_scale) const {
- const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
- const auto & yarn_ext_factor = cparams.yarn_ext_factor;
- const auto & yarn_beta_fast = cparams.yarn_beta_fast;
- const auto & yarn_beta_slow = cparams.yarn_beta_slow;
- const auto & n_rot = hparams.n_rot;
- const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE
- // @ngxson : this is a workaround
- // for M-RoPE, we want to rotate the whole vector when doing KV shift
- // a normal RoPE should work, we just need to use the correct ordering
- // ref: https://github.com/ggml-org/llama.cpp/pull/13870
- ? LLAMA_ROPE_TYPE_NEOX
- : hparams.rope_type;
- // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
- // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
- const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2
- ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale))
- : cparams.yarn_attn_factor;
- ggml_tensor * tmp;
- if (ggml_is_quantized(cur->type)) {
- // dequantize to f32 -> RoPE -> quantize back
- tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
- tmp = ggml_rope_ext(ctx, tmp,
- shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
- tmp = ggml_cpy(ctx, tmp, cur);
- } else {
- // we rotate only the first n_rot dimensions
- tmp = ggml_rope_ext_inplace(ctx, cur,
- shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
- }
- return tmp;
- }
- class llm_graph_input_k_shift : public llm_graph_input_i {
- public:
- llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
- virtual ~llm_graph_input_k_shift() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * k_shift; // I32 [kv_size]
- const llama_kv_cache_unified * kv_self;
- };
- void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
- GGML_UNUSED(ubatch);
- if (k_shift) {
- kv_self->set_input_k_shift(k_shift);
- }
- }
- llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_cgraph * gf) const {
- auto res = std::make_unique<llm_graph_result>();
- const auto & n_embd_head_k = hparams.n_embd_head_k;
- //const auto & n_embd_head_v = hparams.n_embd_head_v;
- auto inp = std::make_unique<llm_graph_input_k_shift>(this);
- inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cells.size());
- ggml_set_input(inp->k_shift);
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const int64_t n_head_kv = hparams.n_head_kv(il);
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- const float freq_base_l = model.get_rope_freq_base (cparams, il);
- const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- ggml_tensor * k =
- ggml_view_3d(ctx, layer.k,
- n_embd_head_k, n_head_kv, cells.size(),
- ggml_row_size(layer.k->type, n_embd_head_k),
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- 0);
- ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
- ggml_build_forward_expand(gf, cur);
- }
- res->add_input(std::move(inp));
- return res;
- }
- llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_cgraph * gf,
- const defrag_info & dinfo) const {
- auto res = std::make_unique<llm_graph_result>();
- const auto & ids = dinfo.ids;
- #if 0
- // CPU defrag
- //
- // TODO: optimizations are possible:
- // - multiple threads
- // - avoid copying to the host memory when already there
- //
- // likely not worth the effort, as we have ggml_graph based defrag
- //
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const uint32_t kv_size = size;
- std::vector<uint8_t> buf_k;
- std::vector<uint8_t> buf_v;
- for (uint32_t il = 0; il < n_layer; ++il) {
- const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
- const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
- const size_t v_size_el = ggml_type_size(v_l[il]->type);
- const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
- buf_k.resize(k_size);
- buf_v.resize(v_size);
- ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
- // batch move [i, i+nm) to [id, id+nm)
- // note: cells can move only to a lower index
- for (uint32_t i = 0; i < n_kv; ++i) {
- const uint32_t id = ids[i];
- if (i == id || id == n_kv) {
- continue;
- }
- uint32_t nm = 1;
- while (i + nm < n_kv && ids[i + nm] == id + nm) {
- nm++;
- }
- // move keys
- {
- const int64_t os = i*k_size_row;
- const int64_t od = id*k_size_row;
- memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
- }
- // move values (note: they are transposed)
- {
- const int64_t os = i;
- const int64_t od = id;
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
- }
- }
- i += nm - 1;
- }
- ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
- }
- #else
- for (uint32_t i = 0; i < ids.size(); ++i) {
- const uint32_t id = ids[i];
- if (i == id || id == ids.size()) {
- continue;
- }
- uint32_t nm = 1;
- while (i + nm < ids.size() && ids[i + nm] == id + nm) {
- nm++;
- }
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
- n_embd_k_gqa, nm,
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- ggml_row_size(layer.k->type, n_embd_k_gqa*i));
- ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
- n_embd_k_gqa, nm,
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- ggml_row_size(layer.k->type, n_embd_k_gqa*id));
- ggml_tensor * view_v_src;
- ggml_tensor * view_v_dst;
- if (cparams.flash_attn) {
- // NOTE: the V cache is not transposed when using flash attention
- view_v_src = ggml_view_2d(ctx, layer.v,
- n_embd_v_gqa, nm,
- ggml_row_size(layer.v->type, n_embd_v_gqa),
- ggml_row_size(layer.v->type, n_embd_v_gqa*i));
- view_v_dst = ggml_view_2d(ctx, layer.v,
- n_embd_v_gqa, nm,
- ggml_row_size(layer.v->type, n_embd_v_gqa),
- ggml_row_size(layer.v->type, n_embd_v_gqa*id));
- } else {
- view_v_src = ggml_view_2d(ctx, layer.v,
- nm, n_embd_v_gqa,
- ggml_row_size(layer.v->type, cells.size()),
- ggml_row_size(layer.v->type, i));
- view_v_dst = ggml_view_2d(ctx, layer.v,
- nm, n_embd_v_gqa,
- ggml_row_size(layer.v->type, cells.size()),
- ggml_row_size(layer.v->type, id));
- }
- ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
- ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
- }
- i += nm - 1;
- }
- //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
- #endif
- return res;
- }
- llama_kv_cache_unified::defrag_info llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) const {
- const uint32_t n_layer = layers.size();
- const uint32_t n_kv = cells.used_max_p1();
- const uint32_t n_used = cells.get_used();
- assert(n_used <= n_kv);
- //const int64_t t_start = ggml_time_us();
- // number of cells moved
- uint32_t n_moves = 0;
- // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
- // - source view, destination view, copy operation
- // - x2 for keys and values
- //const uint32_t max_moves = max_nodes()/(6*n_layer);
- // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
- const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
- // determine which KV cells to move where
- defrag_info res;
- auto & ids = res.ids;
- ids.resize(n_kv, n_kv);
- for (uint32_t i0 = 0; i0 < n_used; ++i0) {
- if (!cells.is_empty(i0)) {
- ids[i0] = i0;
- continue;
- }
- // found a hole - fill it with data from the end of the cache
- uint32_t nh = 1;
- // determine the size of the hole
- while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
- nh++;
- }
- uint32_t nf = 0;
- uint32_t is = n_kv - 1;
- // starting from the end, find nh non-empty cells
- for (; is > i0; --is) {
- if (cells.is_empty(is) || ids[is] != n_kv) {
- continue;
- }
- // non-empty cell which is not yet moved
- nf++;
- if (nf == nh) {
- break;
- }
- }
- // this can only happen if `n_used` is not accurate, which would be a bug
- GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
- nf = 0;
- uint32_t i1 = is;
- // are we moving a continuous block of memory?
- bool cont = false;
- // should we stop searching for the next move?
- bool stop = false;
- // go back and move the nf cells to the hole
- for (; i1 < n_kv; ++i1) {
- if (cells.is_empty(i1) || ids[i1] != n_kv) {
- if (n_moves == max_moves) {
- stop = true;
- break;
- }
- cont = false;
- continue;
- }
- // this cell goes to (i0 + nf)
- ids[i1] = i0 + nf;
- if (!cont) {
- n_moves++;
- cont = true;
- }
- nf++;
- if (nf == nh) {
- break;
- }
- }
- if (stop || n_moves == max_moves) {
- break;
- }
- //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
- i0 += nh - 1;
- }
- if (n_moves == 0) {
- return {};
- }
- LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
- LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
- return res;
- }
- bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const {
- assert(p0 >= 0 && p1 >= 0);
- switch (swa_type) {
- case LLAMA_SWA_TYPE_NONE:
- {
- } break;
- case LLAMA_SWA_TYPE_STANDARD:
- {
- if (p1 - p0 >= (int32_t) n_swa) {
- return true;
- }
- } break;
- case LLAMA_SWA_TYPE_CHUNKED:
- {
- const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
- if (p0 < pos_chunk_start) {
- return true;
- }
- } break;
- }
- return false;
- }
- void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
- std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
- uint32_t cell_count = 0;
- // Count the number of cells with the specified seq_id
- // Find all the ranges of cells with this seq id (or all, when -1)
- uint32_t cell_range_begin = cells.size();
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
- ++cell_count;
- if (cell_range_begin == cells.size()) {
- cell_range_begin = i;
- }
- } else {
- if (cell_range_begin != cells.size()) {
- cell_ranges.emplace_back(cell_range_begin, i);
- cell_range_begin = cells.size();
- }
- }
- }
- if (cell_range_begin != cells.size()) {
- cell_ranges.emplace_back(cell_range_begin, cells.size());
- }
- // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
- uint32_t cell_count_check = 0;
- for (const auto & range : cell_ranges) {
- cell_count_check += range.second - range.first;
- }
- GGML_ASSERT(cell_count == cell_count_check);
- io.write(&cell_count, sizeof(cell_count));
- state_write_meta(io, cell_ranges, seq_id);
- state_write_data(io, cell_ranges);
- }
- void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
- uint32_t cell_count;
- io.read_to(&cell_count, sizeof(cell_count));
- bool res = true;
- res = res && state_read_meta(io, cell_count, seq_id);
- res = res && state_read_data(io, cell_count);
- if (!res) {
- if (seq_id == -1) {
- clear(true);
- } else {
- seq_rm(seq_id, -1, -1);
- }
- throw std::runtime_error("failed to restore kv cache");
- }
- }
- void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
- for (const auto & range : cell_ranges) {
- for (uint32_t i = range.first; i < range.second; ++i) {
- std::vector<llama_seq_id> seq_ids;
- for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
- if (cur == seq_id || seq_id == -1) {
- if (cells.seq_has(i, cur)) {
- seq_ids.push_back(cur);
- }
- }
- }
- const llama_pos pos = cells.pos_get(i);
- const uint32_t n_seq_id = seq_ids.size();
- io.write(&pos, sizeof(pos));
- io.write(&n_seq_id, sizeof(n_seq_id));
- for (const auto & seq_id : seq_ids) {
- io.write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
- const uint32_t v_trans = this->v_trans ? 1 : 0;
- const uint32_t n_layer = layers.size();
- io.write(&v_trans, sizeof(v_trans));
- io.write(&n_layer, sizeof(n_layer));
- std::vector<uint8_t> tmp_buf;
- // Iterate and write all the keys first, each row is a cell
- // Get whole range at a time
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- // Write key type
- const int32_t k_type_i = (int32_t)layer.k->type;
- io.write(&k_type_i, sizeof(k_type_i));
- // Write row size of key
- const uint64_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa);
- io.write(&k_size_row, sizeof(k_size_row));
- // Read each range of cells of k_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * k_size_row;
- io.write_tensor(layer.k, range.first * k_size_row, buf_size);
- }
- }
- if (!v_trans) {
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- // Write value type
- const int32_t v_type_i = (int32_t)layer.v->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write row size of value
- const uint64_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa);
- io.write(&v_size_row, sizeof(v_size_row));
- // Read each range of cells of v_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * v_size_row;
- io.write_tensor(layer.v, range.first * v_size_row, buf_size);
- }
- }
- } else {
- // When v is transposed, we also need the element size and get the element ranges from each row
- const uint32_t kv_size = cells.size();
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- // Write value type
- const int32_t v_type_i = (int32_t)layer.v->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write element size
- const uint32_t v_size_el = ggml_type_size(layer.v->type);
- io.write(&v_size_el, sizeof(v_size_el));
- // Write GQA embedding size
- io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
- // For each row, we get the element values of each cell
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- // Read each range of cells of v_size_el length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t src_offset = (range.first + j * kv_size) * v_size_el;
- const size_t buf_size = range_size * v_size_el;
- io.write_tensor(layer.v, src_offset, buf_size);
- }
- }
- }
- }
- }
- bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
- if (dest_seq_id != -1) {
- // single sequence
- seq_rm(dest_seq_id, -1, -1);
- llama_batch_allocr balloc(hparams.n_pos_per_embd());
- llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id != 1) {
- LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
- return false;
- }
- // read the sequence id, but directly discard it - we will use dest_seq_id instead
- {
- llama_seq_id seq_id;
- io.read_to(&seq_id, sizeof(seq_id));
- }
- ubatch.pos[i] = pos;
- ubatch.n_seq_id[i] = n_seq_id;
- ubatch.seq_id[i] = &dest_seq_id;
- }
- const auto sinfo = find_slot(ubatch, true);
- if (sinfo.empty()) {
- LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
- return false;
- }
- apply_ubatch(sinfo, ubatch);
- const auto head_cur = sinfo.head();
- // keep the head at the old position because we will read the KV data into it in state_read_data()
- head = head_cur;
- // DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
- // Assume that this is one contiguous block of cells
- GGML_ASSERT(head_cur + cell_count <= cells.size());
- GGML_ASSERT(cells.pos_get(head_cur) == ubatch.pos[0]);
- GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
- GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id));
- GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
- } else {
- // whole KV cache restore
- if (cell_count > cells.size()) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
- return false;
- }
- clear(true);
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- cells.pos_set(i, pos);
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- llama_seq_id seq_id;
- io.read_to(&seq_id, sizeof(seq_id));
- if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
- LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
- return false;
- }
- cells.seq_add(i, seq_id);
- }
- }
- head = 0;
- }
- return true;
- }
- bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
- uint32_t v_trans;
- uint32_t n_layer;
- io.read_to(&v_trans, sizeof(v_trans));
- io.read_to(&n_layer, sizeof(n_layer));
- if (n_layer != layers.size()) {
- LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
- return false;
- }
- if (cell_count > cells.size()) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
- return false;
- }
- if (this->v_trans != (bool) v_trans) {
- LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
- return false;
- }
- // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- // Read type of key
- int32_t k_type_i_ref;
- io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
- const int32_t k_type_i = (int32_t) layer.k->type;
- if (k_type_i != k_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
- return false;
- }
- // Read row size of key
- uint64_t k_size_row_ref;
- io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
- const size_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa);
- if (k_size_row != k_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the keys for the whole cell range
- ggml_backend_tensor_set(layer.k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
- }
- }
- if (!this->v_trans) {
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)layer.v->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read row size of value
- uint64_t v_size_row_ref;
- io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
- const size_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa);
- if (v_size_row != v_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the values for the whole cell range
- ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
- }
- }
- } else {
- // For each layer, read the values for each cell (transposed)
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)layer.v->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read element size of value
- uint32_t v_size_el_ref;
- io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
- const size_t v_size_el = ggml_type_size(layer.v->type);
- if (v_size_el != v_size_el_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
- return false;
- }
- // Read GQA embedding size
- uint32_t n_embd_v_gqa_ref;
- io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
- if (n_embd_v_gqa != n_embd_v_gqa_ref) {
- LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
- return false;
- }
- if (cell_count) {
- // For each row in the transposed matrix, read the values for the whole cell range
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- const size_t dst_offset = (head + j * cells.size()) * v_size_el;
- ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
- }
- }
- }
- }
- return true;
- }
- //
- // llama_kv_cache_unified_context
- //
- llama_kv_cache_unified_context::llama_kv_cache_unified_context(llama_memory_status status) : status(status) {}
- llama_kv_cache_unified_context::llama_kv_cache_unified_context(
- llama_kv_cache_unified * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
- n_kv = kv->get_size();
- // create a dummy slot info - the actual data is irrelevant. we just need to build the graph
- sinfos.resize(1);
- sinfos[0].idxs.resize(1);
- sinfos[0].idxs[0] = 0;
- }
- llama_kv_cache_unified_context::llama_kv_cache_unified_context(
- llama_kv_cache_unified * kv,
- llama_context * lctx,
- bool do_shift,
- defrag_info dinfo) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)) {
- if (!do_shift && this->dinfo.empty()) {
- status = LLAMA_MEMORY_STATUS_NO_UPDATE;
- }
- }
- llama_kv_cache_unified_context::llama_kv_cache_unified_context(
- llama_kv_cache_unified * kv,
- llama_kv_cache_unified::slot_info_vec_t sinfos,
- std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
- }
- llama_kv_cache_unified_context::~llama_kv_cache_unified_context() = default;
- bool llama_kv_cache_unified_context::next() {
- assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
- if (++i_cur >= ubatches.size()) {
- return false;
- }
- return true;
- }
- bool llama_kv_cache_unified_context::apply() {
- assert(!llama_memory_status_is_fail(status));
- // no ubatches -> this is a KV cache update
- if (ubatches.empty()) {
- kv->update(lctx, do_shift, dinfo);
- return true;
- }
- kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
- n_kv = kv->get_n_kv();
- return true;
- }
- llama_memory_status llama_kv_cache_unified_context::get_status() const {
- return status;
- }
- const llama_ubatch & llama_kv_cache_unified_context::get_ubatch() const {
- assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
- return ubatches[i_cur];
- }
- uint32_t llama_kv_cache_unified_context::get_n_kv() const {
- return n_kv;
- }
- ggml_tensor * llama_kv_cache_unified_context::get_k(ggml_context * ctx, int32_t il) const {
- return kv->get_k(ctx, il, n_kv);
- }
- ggml_tensor * llama_kv_cache_unified_context::get_v(ggml_context * ctx, int32_t il) const {
- return kv->get_v(ctx, il, n_kv);
- }
- ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
- return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
- }
- ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
- return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
- }
- ggml_tensor * llama_kv_cache_unified_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
- return kv->build_input_k_idxs(ctx, ubatch);
- }
- ggml_tensor * llama_kv_cache_unified_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
- return kv->build_input_v_idxs(ctx, ubatch);
- }
- void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const {
- kv->set_input_k_shift(dst);
- }
- void llama_kv_cache_unified_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
- kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
- }
- void llama_kv_cache_unified_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
- kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
- }
- void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
- kv->set_input_kq_mask(dst, ubatch, causal_attn);
- }
- void llama_kv_cache_unified_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
- kv->set_input_pos_bucket(dst, ubatch);
- }
- uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
- // the FA kernels require padding to avoid extra runtime boundary checks
- return cparams.flash_attn ? 256u : 32u;
- }
|