convert-hf-to-gguf.py 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.is_safetensors = self._is_model_safetensors()
  39. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  40. self.part_names = self._get_part_names()
  41. self.hparams = Model.load_hparams(self.dir_model)
  42. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
  43. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  44. @property
  45. @abstractmethod
  46. def model_arch(self) -> gguf.MODEL_ARCH:
  47. pass
  48. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  49. key = next((k for k in keys if k in self.hparams), None)
  50. if key is not None:
  51. return self.hparams[key]
  52. if optional:
  53. return None
  54. raise KeyError(f"could not find any of: {keys}")
  55. def set_vocab(self):
  56. self._set_vocab_gpt2()
  57. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  58. for part_name in self.part_names:
  59. print(f"gguf: loading model part '{part_name}'")
  60. ctx: ContextManager[Any]
  61. if self.is_safetensors:
  62. from safetensors import safe_open
  63. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  64. else:
  65. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  66. with ctx as model_part:
  67. for name in model_part.keys():
  68. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  69. yield name, data
  70. def set_gguf_parameters(self):
  71. self.gguf_writer.add_name(self.dir_model.name)
  72. self.gguf_writer.add_block_count(self.block_count)
  73. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  74. self.gguf_writer.add_context_length(n_ctx)
  75. print(f"gguf: context length = {n_ctx}")
  76. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  77. self.gguf_writer.add_embedding_length(n_embd)
  78. print(f"gguf: embedding length = {n_embd}")
  79. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  80. self.gguf_writer.add_feed_forward_length(n_ff)
  81. print(f"gguf: feed forward length = {n_ff}")
  82. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  83. self.gguf_writer.add_head_count(n_head)
  84. print(f"gguf: head count = {n_head}")
  85. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  86. self.gguf_writer.add_head_count_kv(n_head_kv)
  87. print(f"gguf: key-value head count = {n_head_kv}")
  88. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  89. self.gguf_writer.add_rope_freq_base(rope_theta)
  90. print(f"gguf: rope theta = {rope_theta}")
  91. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  92. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  93. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  94. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  95. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  96. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  97. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  98. self.gguf_writer.add_expert_count(n_experts)
  99. print(f"gguf: expert count = {n_experts}")
  100. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  101. self.gguf_writer.add_expert_used_count(n_experts_used)
  102. print(f"gguf: experts used count = {n_experts_used}")
  103. self.gguf_writer.add_file_type(self.ftype)
  104. print(f"gguf: file type = {self.ftype}")
  105. def write_tensors(self):
  106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  108. for name, data_torch in self.get_tensors():
  109. # we don't need these
  110. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  111. continue
  112. old_dtype = data_torch.dtype
  113. # convert any unsupported data types to float32
  114. if data_torch.dtype not in (torch.float16, torch.float32):
  115. data_torch = data_torch.to(torch.float32)
  116. data = data_torch.squeeze().numpy()
  117. # map tensor names
  118. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  119. if new_name is None:
  120. print(f"Can not map tensor {name!r}")
  121. sys.exit()
  122. n_dims = len(data.shape)
  123. data_dtype = data.dtype
  124. # if f32 desired, convert any float16 to float32
  125. if self.ftype == 0 and data_dtype == np.float16:
  126. data = data.astype(np.float32)
  127. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  128. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  129. data = data.astype(np.float32)
  130. # if f16 desired, convert any float32 2-dim weight tensors to float16
  131. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  132. data = data.astype(np.float16)
  133. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  134. self.gguf_writer.add_tensor(new_name, data)
  135. def write(self):
  136. self.write_tensors()
  137. self.gguf_writer.write_header_to_file()
  138. self.gguf_writer.write_kv_data_to_file()
  139. self.gguf_writer.write_tensors_to_file()
  140. self.gguf_writer.close()
  141. def write_vocab(self):
  142. self.gguf_writer.write_header_to_file()
  143. self.gguf_writer.write_kv_data_to_file()
  144. self.gguf_writer.close()
  145. @staticmethod
  146. def count_model_parts(dir_model: Path, prefix: str) -> int:
  147. num_parts = 0
  148. for filename in os.listdir(dir_model):
  149. if filename.endswith(prefix):
  150. num_parts += 1
  151. return num_parts
  152. @staticmethod
  153. def load_hparams(dir_model):
  154. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  155. return json.load(f)
  156. @classmethod
  157. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  158. assert names
  159. def func(modelcls: type[Model]):
  160. for name in names:
  161. cls._model_classes[name] = modelcls
  162. return modelcls
  163. return func
  164. @classmethod
  165. def from_model_architecture(cls, arch):
  166. try:
  167. return cls._model_classes[arch]
  168. except KeyError:
  169. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  170. def _is_model_safetensors(self) -> bool:
  171. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  172. def _get_part_names(self):
  173. if self.is_safetensors:
  174. if self.num_parts == 1: # there's only one .safetensors file
  175. return ("model.safetensors",)
  176. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  177. if self.num_parts == 1: # there's only one .bin file
  178. return ("pytorch_model.bin",)
  179. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  180. # used for GPT-2 BPE and WordPiece vocabs
  181. def get_basic_vocab(self) -> tuple[list[str], list[int]]:
  182. tokens: list[str] = []
  183. toktypes: list[int] = []
  184. from transformers import AutoTokenizer
  185. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  186. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  187. assert max(tokenizer.vocab.values()) < vocab_size
  188. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  189. added_vocab = tokenizer.get_added_vocab()
  190. for i in range(vocab_size):
  191. if i not in reverse_vocab:
  192. tokens.append(f"[PAD{i}]")
  193. toktypes.append(gguf.TokenType.USER_DEFINED)
  194. elif reverse_vocab[i] in added_vocab:
  195. tokens.append(reverse_vocab[i])
  196. if tokenizer.added_tokens_decoder[i].special:
  197. toktypes.append(gguf.TokenType.CONTROL)
  198. else:
  199. toktypes.append(gguf.TokenType.USER_DEFINED)
  200. else:
  201. tokens.append(reverse_vocab[i])
  202. toktypes.append(gguf.TokenType.NORMAL)
  203. return tokens, toktypes
  204. def _set_vocab_gpt2(self) -> None:
  205. tokens, toktypes = self.get_basic_vocab()
  206. self.gguf_writer.add_tokenizer_model("gpt2")
  207. self.gguf_writer.add_token_list(tokens)
  208. self.gguf_writer.add_token_types(toktypes)
  209. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  210. special_vocab.add_to_gguf(self.gguf_writer)
  211. def _set_vocab_qwen(self):
  212. dir_model = self.dir_model
  213. hparams = self.hparams
  214. tokens: list[str] = []
  215. toktypes: list[int] = []
  216. from transformers import AutoTokenizer
  217. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  218. vocab_size = hparams["vocab_size"]
  219. assert max(tokenizer.get_vocab().values()) < vocab_size
  220. merges = []
  221. vocab = {}
  222. mergeable_ranks = tokenizer.mergeable_ranks
  223. for token, rank in mergeable_ranks.items():
  224. vocab[QwenModel.token_bytes_to_string(token)] = rank
  225. if len(token) == 1:
  226. continue
  227. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  228. assert len(merged) == 2
  229. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  230. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  231. added_vocab = tokenizer.special_tokens
  232. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  233. for i in range(vocab_size):
  234. if i not in reverse_vocab:
  235. tokens.append(f"[PAD{i}]")
  236. toktypes.append(gguf.TokenType.USER_DEFINED)
  237. elif reverse_vocab[i] in added_vocab:
  238. tokens.append(reverse_vocab[i])
  239. toktypes.append(gguf.TokenType.CONTROL)
  240. else:
  241. tokens.append(reverse_vocab[i])
  242. toktypes.append(gguf.TokenType.NORMAL)
  243. self.gguf_writer.add_tokenizer_model("gpt2")
  244. self.gguf_writer.add_token_list(tokens)
  245. self.gguf_writer.add_token_types(toktypes)
  246. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  247. special_vocab.merges = merges
  248. # only add special tokens when they were not already loaded from config.json
  249. if len(special_vocab.special_token_ids) == 0:
  250. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  251. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  252. # this one is usually not in config.json anyway
  253. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  254. special_vocab.add_to_gguf(self.gguf_writer)
  255. def _set_vocab_sentencepiece(self):
  256. from sentencepiece import SentencePieceProcessor
  257. tokenizer_path = self.dir_model / 'tokenizer.model'
  258. tokens: list[bytes] = []
  259. scores: list[float] = []
  260. toktypes: list[int] = []
  261. if not tokenizer_path.is_file():
  262. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  263. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  264. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  265. for token_id in range(tokenizer.vocab_size()):
  266. piece = tokenizer.id_to_piece(token_id)
  267. text = piece.encode("utf-8")
  268. score = tokenizer.get_score(token_id)
  269. toktype = SentencePieceTokenTypes.NORMAL
  270. if tokenizer.is_unknown(token_id):
  271. toktype = SentencePieceTokenTypes.UNKNOWN
  272. elif tokenizer.is_control(token_id):
  273. toktype = SentencePieceTokenTypes.CONTROL
  274. elif tokenizer.is_unused(token_id):
  275. toktype = SentencePieceTokenTypes.UNUSED
  276. elif tokenizer.is_byte(token_id):
  277. toktype = SentencePieceTokenTypes.BYTE
  278. tokens.append(text)
  279. scores.append(score)
  280. toktypes.append(toktype)
  281. added_tokens_file = self.dir_model / 'added_tokens.json'
  282. if added_tokens_file.is_file():
  283. with open(added_tokens_file, "r", encoding="utf-8") as f:
  284. added_tokens_json = json.load(f)
  285. for key in added_tokens_json:
  286. key = key.encode("utf-8")
  287. if key not in tokens:
  288. tokens.append(key)
  289. scores.append(-1000.0)
  290. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  291. assert len(tokens) == vocab_size
  292. self.gguf_writer.add_tokenizer_model("llama")
  293. self.gguf_writer.add_token_list(tokens)
  294. self.gguf_writer.add_token_scores(scores)
  295. self.gguf_writer.add_token_types(toktypes)
  296. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  297. special_vocab.add_to_gguf(self.gguf_writer)
  298. def _set_vocab_llama_hf(self):
  299. vocab = LlamaHfVocab(self.dir_model)
  300. tokens = []
  301. scores = []
  302. toktypes = []
  303. for text, score, toktype in vocab.all_tokens():
  304. tokens.append(text)
  305. scores.append(score)
  306. toktypes.append(toktype)
  307. assert len(tokens) == vocab.vocab_size
  308. self.gguf_writer.add_tokenizer_model("llama")
  309. self.gguf_writer.add_token_list(tokens)
  310. self.gguf_writer.add_token_scores(scores)
  311. self.gguf_writer.add_token_types(toktypes)
  312. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  313. special_vocab.add_to_gguf(self.gguf_writer)
  314. @Model.register("GPTNeoXForCausalLM")
  315. class GPTNeoXModel(Model):
  316. model_arch = gguf.MODEL_ARCH.GPTNEOX
  317. def set_gguf_parameters(self):
  318. block_count = self.hparams["num_hidden_layers"]
  319. self.gguf_writer.add_name(self.dir_model.name)
  320. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  321. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  322. self.gguf_writer.add_block_count(block_count)
  323. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  324. self.gguf_writer.add_rope_dimension_count(
  325. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  326. )
  327. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  328. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  329. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  330. @Model.register("BloomForCausalLM")
  331. class BloomModel(Model):
  332. model_arch = gguf.MODEL_ARCH.BLOOM
  333. def set_gguf_parameters(self):
  334. self.gguf_writer.add_name("Bloom")
  335. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  336. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  337. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  338. self.gguf_writer.add_embedding_length(n_embed)
  339. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  340. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  341. self.gguf_writer.add_head_count(n_head)
  342. self.gguf_writer.add_head_count_kv(n_head)
  343. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  344. self.gguf_writer.add_file_type(self.ftype)
  345. def write_tensors(self):
  346. block_count = self.hparams["n_layer"]
  347. tensors = dict(self.get_tensors())
  348. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  349. has_lm_head = True
  350. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  351. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  352. for name, data_torch in tensors.items():
  353. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  354. has_lm_head = False
  355. name = re.sub(r'transformer\.', '', name)
  356. old_dtype = data_torch.dtype
  357. # convert any unsupported data types to float32
  358. if data_torch.dtype not in (torch.float16, torch.float32):
  359. data_torch = data_torch.to(torch.float32)
  360. data = data_torch.squeeze().numpy()
  361. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  362. # Map bloom-style qkv_linear to gpt-style qkv_linear
  363. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  364. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  365. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  366. data = np.concatenate(
  367. (
  368. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  369. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  370. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  371. ),
  372. axis=0,
  373. )
  374. print("re-format attention.linear_qkv.weight")
  375. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  376. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  377. data = np.concatenate(
  378. (
  379. qkv_bias[:, 0, :].reshape((n_embed,)),
  380. qkv_bias[:, 1, :].reshape((n_embed,)),
  381. qkv_bias[:, 2, :].reshape((n_embed,)),
  382. ),
  383. axis=0,
  384. )
  385. print("re-format attention.linear_qkv.bias")
  386. # map tensor names
  387. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  388. if new_name is None:
  389. print(f"Can not map tensor {name!r}")
  390. sys.exit()
  391. n_dims = len(data.shape)
  392. data_dtype = data.dtype
  393. # if f32 desired, convert any float16 to float32
  394. if self.ftype == 0 and data_dtype == np.float16:
  395. data = data.astype(np.float32)
  396. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  397. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  398. data = data.astype(np.float32)
  399. # if f16 desired, convert any float32 2-dim weight tensors to float16
  400. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  401. data = data.astype(np.float16)
  402. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  403. self.gguf_writer.add_tensor(new_name, data)
  404. if not has_lm_head and name == "word_embeddings.weight":
  405. self.gguf_writer.add_tensor("output.weight", data)
  406. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  407. @Model.register("MPTForCausalLM")
  408. class MPTModel(Model):
  409. model_arch = gguf.MODEL_ARCH.MPT
  410. def set_vocab(self):
  411. try:
  412. self._set_vocab_gpt2()
  413. except Exception:
  414. # Fallback for SEA-LION model
  415. self._set_vocab_sentencepiece()
  416. self.gguf_writer.add_add_bos_token(False)
  417. self.gguf_writer.add_pad_token_id(3)
  418. self.gguf_writer.add_eos_token_id(1)
  419. self.gguf_writer.add_unk_token_id(0)
  420. def set_gguf_parameters(self):
  421. block_count = self.hparams["n_layers"]
  422. self.gguf_writer.add_name(self.dir_model.name)
  423. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  424. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  425. self.gguf_writer.add_block_count(block_count)
  426. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  427. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  428. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  429. self.gguf_writer.add_head_count_kv(kv_n_heads)
  430. self.gguf_writer.add_layer_norm_eps(1e-5)
  431. if self.hparams["attn_config"]["clip_qkv"] is not None:
  432. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  433. if self.hparams["attn_config"]["alibi"]:
  434. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  435. else:
  436. self.gguf_writer.add_max_alibi_bias(0.0)
  437. def write_tensors(self):
  438. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  439. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  440. for name, data_torch in self.get_tensors():
  441. # we don't need these
  442. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  443. continue
  444. old_dtype = data_torch.dtype
  445. # convert any unsupported data types to float32
  446. if data_torch.dtype not in (torch.float16, torch.float32):
  447. data_torch = data_torch.to(torch.float32)
  448. data = data_torch.squeeze().numpy()
  449. # map tensor names
  450. if "scales" in name:
  451. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  452. if new_name is not None:
  453. new_name = new_name.replace("scales", "act.scales")
  454. else:
  455. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  456. if new_name is None:
  457. print(f"Can not map tensor {name!r}")
  458. sys.exit()
  459. n_dims = len(data.shape)
  460. data_dtype = data.dtype
  461. # if f32 desired, convert any float16 to float32
  462. if self.ftype == 0 and data_dtype == np.float16:
  463. data = data.astype(np.float32)
  464. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  465. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  466. data = data.astype(np.float32)
  467. # if f16 desired, convert any float32 2-dim weight tensors to float16
  468. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  469. data = data.astype(np.float16)
  470. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  471. self.gguf_writer.add_tensor(new_name, data)
  472. @Model.register("OrionForCausalLM")
  473. class OrionModel(Model):
  474. model_arch = gguf.MODEL_ARCH.ORION
  475. def set_vocab(self):
  476. self._set_vocab_sentencepiece()
  477. def set_gguf_parameters(self):
  478. block_count = self.hparams["num_hidden_layers"]
  479. head_count = self.hparams["num_attention_heads"]
  480. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  481. hf_repo = self.hparams.get("_name_or_path", "")
  482. ctx_length = 0
  483. if "max_sequence_length" in self.hparams:
  484. ctx_length = self.hparams["max_sequence_length"]
  485. elif "max_position_embeddings" in self.hparams:
  486. ctx_length = self.hparams["max_position_embeddings"]
  487. elif "model_max_length" in self.hparams:
  488. ctx_length = self.hparams["model_max_length"]
  489. else:
  490. print("gguf: can not find ctx length parameter.")
  491. sys.exit()
  492. self.gguf_writer.add_file_type(self.ftype)
  493. self.gguf_writer.add_name(self.dir_model.name)
  494. self.gguf_writer.add_source_hf_repo(hf_repo)
  495. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  496. self.gguf_writer.add_context_length(ctx_length)
  497. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  498. self.gguf_writer.add_block_count(block_count)
  499. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  500. self.gguf_writer.add_head_count(head_count)
  501. self.gguf_writer.add_head_count_kv(head_count_kv)
  502. # note: config provides rms norm but it is actually layer norm
  503. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  504. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  505. def write_tensors(self):
  506. # Collect tensors from generator object
  507. model_kv = dict(self.get_tensors())
  508. block_count = self.hparams["num_hidden_layers"]
  509. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  510. for name, data_torch in model_kv.items():
  511. # we don't need these
  512. if name.endswith(".rotary_emb.inv_freq"):
  513. continue
  514. old_dtype = data_torch.dtype
  515. # convert any unsupported data types to float32
  516. if data_torch.dtype not in (torch.float16, torch.float32):
  517. data_torch = data_torch.to(torch.float32)
  518. data = data_torch.squeeze().numpy()
  519. # map tensor names
  520. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  521. if new_name is None:
  522. print(f"Can not map tensor {name!r}")
  523. sys.exit()
  524. n_dims = len(data.shape)
  525. data_dtype = data.dtype
  526. # if f32 desired, convert any float16 to float32
  527. if self.ftype == 0 and data_dtype == np.float16:
  528. data = data.astype(np.float32)
  529. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  530. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  531. data = data.astype(np.float32)
  532. # if f16 desired, convert any float32 2-dim weight tensors to float16
  533. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  534. data = data.astype(np.float16)
  535. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  536. self.gguf_writer.add_tensor(new_name, data)
  537. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  538. class BaichuanModel(Model):
  539. model_arch = gguf.MODEL_ARCH.BAICHUAN
  540. def set_vocab(self):
  541. self._set_vocab_sentencepiece()
  542. def set_gguf_parameters(self):
  543. block_count = self.hparams["num_hidden_layers"]
  544. head_count = self.hparams["num_attention_heads"]
  545. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  546. hf_repo = self.hparams.get("_name_or_path", "")
  547. ctx_length = 0
  548. if "max_sequence_length" in self.hparams:
  549. ctx_length = self.hparams["max_sequence_length"]
  550. elif "max_position_embeddings" in self.hparams:
  551. ctx_length = self.hparams["max_position_embeddings"]
  552. elif "model_max_length" in self.hparams:
  553. ctx_length = self.hparams["model_max_length"]
  554. else:
  555. print("gguf: can not find ctx length parameter.")
  556. sys.exit()
  557. self.gguf_writer.add_name(self.dir_model.name)
  558. self.gguf_writer.add_source_hf_repo(hf_repo)
  559. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  560. self.gguf_writer.add_context_length(ctx_length)
  561. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  562. self.gguf_writer.add_block_count(block_count)
  563. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  564. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  565. self.gguf_writer.add_head_count(head_count)
  566. self.gguf_writer.add_head_count_kv(head_count_kv)
  567. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  568. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  569. if self.hparams["rope_scaling"].get("type") == "linear":
  570. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  571. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  572. def write_tensors(self):
  573. # Collect tensors from generator object
  574. model_kv = dict(self.get_tensors())
  575. block_count = self.hparams["num_hidden_layers"]
  576. head_count = self.hparams["num_attention_heads"]
  577. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  578. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  579. for i in range(block_count):
  580. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  581. print(f"Unpacking and permuting layer {i}")
  582. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  583. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  584. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  585. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  586. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  587. self._reverse_hf_part(w, 2)
  588. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  589. for name, data_torch in model_kv.items():
  590. # we don't need these
  591. if name.endswith(".rotary_emb.inv_freq"):
  592. continue
  593. old_dtype = data_torch.dtype
  594. # convert any unsupported data types to float32
  595. if data_torch.dtype not in (torch.float16, torch.float32):
  596. data_torch = data_torch.to(torch.float32)
  597. data = data_torch.squeeze().numpy()
  598. # map tensor names
  599. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  600. if new_name is None:
  601. print(f"Can not map tensor {name!r}")
  602. sys.exit()
  603. n_dims = len(data.shape)
  604. data_dtype = data.dtype
  605. # if f32 desired, convert any float16 to float32
  606. if self.ftype == 0 and data_dtype == np.float16:
  607. data = data.astype(np.float32)
  608. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  609. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  610. data = data.astype(np.float32)
  611. # if f16 desired, convert any float32 2-dim weight tensors to float16
  612. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  613. data = data.astype(np.float16)
  614. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  615. self.gguf_writer.add_tensor(new_name, data)
  616. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  617. if n_kv_head is not None and n_head != n_kv_head:
  618. n_head //= n_kv_head
  619. return (
  620. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  621. .swapaxes(1, 2)
  622. .reshape(weights.shape)
  623. )
  624. def _reverse_hf_permute_part(
  625. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  626. ) -> Tensor:
  627. r = weights.shape[0] // 3
  628. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  629. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  630. r = weights.shape[0] // 3
  631. return weights[r * n_part:r * n_part + r, ...]
  632. @Model.register("XverseForCausalLM")
  633. class XverseModel(Model):
  634. model_arch = gguf.MODEL_ARCH.XVERSE
  635. def set_vocab(self):
  636. assert (self.dir_model / "tokenizer.json").is_file()
  637. dir_model = self.dir_model
  638. hparams = self.hparams
  639. tokens: list[bytearray] = []
  640. toktypes: list[int] = []
  641. from transformers import AutoTokenizer
  642. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  643. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  644. assert max(tokenizer.vocab.values()) < vocab_size
  645. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  646. added_vocab = tokenizer.get_added_vocab()
  647. for token_id in range(vocab_size):
  648. token_text = reverse_vocab[token_id].encode('utf-8')
  649. # replace "\x00" to string with length > 0
  650. if token_text == b"\x00":
  651. toktype = gguf.TokenType.BYTE # special
  652. token_text = f"<{token_text}>".encode('utf-8')
  653. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  654. toktype = gguf.TokenType.BYTE # special
  655. elif reverse_vocab[token_id] in added_vocab:
  656. if tokenizer.added_tokens_decoder[token_id].special:
  657. toktype = gguf.TokenType.CONTROL
  658. else:
  659. toktype = gguf.TokenType.USER_DEFINED
  660. else:
  661. toktype = gguf.TokenType.NORMAL
  662. tokens.append(token_text)
  663. toktypes.append(toktype)
  664. self.gguf_writer.add_tokenizer_model("llama")
  665. self.gguf_writer.add_token_list(tokens)
  666. self.gguf_writer.add_token_types(toktypes)
  667. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  668. special_vocab.add_to_gguf(self.gguf_writer)
  669. def set_gguf_parameters(self):
  670. block_count = self.hparams["num_hidden_layers"]
  671. head_count = self.hparams["num_attention_heads"]
  672. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  673. hf_repo = self.hparams.get("_name_or_path", "")
  674. ctx_length = 0
  675. if "max_sequence_length" in self.hparams:
  676. ctx_length = self.hparams["max_sequence_length"]
  677. elif "max_position_embeddings" in self.hparams:
  678. ctx_length = self.hparams["max_position_embeddings"]
  679. elif "model_max_length" in self.hparams:
  680. ctx_length = self.hparams["model_max_length"]
  681. else:
  682. print("gguf: can not find ctx length parameter.")
  683. sys.exit()
  684. self.gguf_writer.add_name(self.dir_model.name)
  685. self.gguf_writer.add_source_hf_repo(hf_repo)
  686. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  687. self.gguf_writer.add_context_length(ctx_length)
  688. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  689. self.gguf_writer.add_block_count(block_count)
  690. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  691. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  692. self.gguf_writer.add_head_count(head_count)
  693. self.gguf_writer.add_head_count_kv(head_count_kv)
  694. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  695. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  696. if self.hparams["rope_scaling"].get("type") == "linear":
  697. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  698. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  699. def write_tensors(self):
  700. # Collect tensors from generator object
  701. model_kv = dict(self.get_tensors())
  702. block_count = self.hparams["num_hidden_layers"]
  703. head_count = self.hparams["num_attention_heads"]
  704. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  705. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  706. for name, data_torch in model_kv.items():
  707. # we don't need these
  708. if name.endswith(".rotary_emb.inv_freq"):
  709. continue
  710. old_dtype = data_torch.dtype
  711. # convert any unsupported data types to float32
  712. if data_torch.dtype not in (torch.float16, torch.float32):
  713. data_torch = data_torch.to(torch.float32)
  714. # HF models permute some of the tensors, so we need to undo that
  715. if name.endswith(("q_proj.weight")):
  716. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  717. if name.endswith(("k_proj.weight")):
  718. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  719. data = data_torch.squeeze().numpy()
  720. # map tensor names
  721. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  722. if new_name is None:
  723. print(f"Can not map tensor {name!r}")
  724. sys.exit()
  725. n_dims = len(data.shape)
  726. data_dtype = data.dtype
  727. # if f32 desired, convert any float16 to float32
  728. if self.ftype == 0 and data_dtype == np.float16:
  729. data = data.astype(np.float32)
  730. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  731. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  732. data = data.astype(np.float32)
  733. # if f16 desired, convert any float32 2-dim weight tensors to float16
  734. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  735. data = data.astype(np.float16)
  736. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  737. self.gguf_writer.add_tensor(new_name, data)
  738. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  739. if n_kv_head is not None and n_head != n_kv_head:
  740. n_head //= n_kv_head
  741. return (
  742. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  743. .swapaxes(1, 2)
  744. .reshape(weights.shape)
  745. )
  746. @Model.register("FalconForCausalLM", "RWForCausalLM")
  747. class FalconModel(Model):
  748. model_arch = gguf.MODEL_ARCH.FALCON
  749. def set_gguf_parameters(self):
  750. block_count = self.hparams.get("num_hidden_layers")
  751. if block_count is None:
  752. block_count = self.hparams["n_layer"] # old name
  753. n_head = self.hparams.get("num_attention_heads")
  754. if n_head is None:
  755. n_head = self.hparams["n_head"] # old name
  756. n_head_kv = self.hparams.get("num_kv_heads")
  757. if n_head_kv is None:
  758. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  759. self.gguf_writer.add_name("Falcon")
  760. self.gguf_writer.add_context_length(2048) # not in config.json
  761. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  762. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  763. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  764. self.gguf_writer.add_block_count(block_count)
  765. self.gguf_writer.add_head_count(n_head)
  766. self.gguf_writer.add_head_count_kv(n_head_kv)
  767. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  768. self.gguf_writer.add_file_type(self.ftype)
  769. def write_tensors(self):
  770. block_count = self.hparams.get("num_hidden_layers")
  771. if block_count is None:
  772. block_count = self.hparams["n_layer"] # old name
  773. n_head = self.hparams.get("num_attention_heads")
  774. if n_head is None:
  775. n_head = self.hparams["n_head"] # old name
  776. n_head_kv = self.hparams.get("num_kv_heads")
  777. if n_head_kv is None:
  778. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  779. head_dim = self.hparams["hidden_size"] // n_head
  780. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  781. for name, data_torch in self.get_tensors():
  782. old_dtype = data_torch.dtype
  783. # convert any unsupported data types to float32
  784. if data_torch.dtype not in (torch.float16, torch.float32):
  785. data_torch = data_torch.to(torch.float32)
  786. # QKV tensor transform
  787. # The original query_key_value tensor contains n_head_kv "kv groups",
  788. # each consisting of n_head/n_head_kv query weights followed by one key
  789. # and one value weight (shared by all query heads in the kv group).
  790. # This layout makes it a big pain to work with in GGML.
  791. # So we rearrange them here,, so that we have n_head query weights
  792. # followed by n_head_kv key weights followed by n_head_kv value weights,
  793. # in contiguous fashion.
  794. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  795. if "query_key_value" in name:
  796. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  797. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  798. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  799. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  800. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  801. data = data_torch.squeeze().numpy()
  802. # map tensor names
  803. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  804. if new_name is None:
  805. print(f"Can not map tensor {name!r}")
  806. sys.exit()
  807. n_dims = len(data.shape)
  808. data_dtype = data.dtype
  809. # if f32 desired, convert any float16 to float32
  810. if self.ftype == 0 and data_dtype == np.float16:
  811. data = data.astype(np.float32)
  812. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  813. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  814. data = data.astype(np.float32)
  815. # if f16 desired, convert any float32 2-dim weight tensors to float16
  816. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  817. data = data.astype(np.float16)
  818. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  819. self.gguf_writer.add_tensor(new_name, data)
  820. @Model.register("GPTBigCodeForCausalLM")
  821. class StarCoderModel(Model):
  822. model_arch = gguf.MODEL_ARCH.STARCODER
  823. def set_gguf_parameters(self):
  824. block_count = self.hparams["n_layer"]
  825. self.gguf_writer.add_name("StarCoder")
  826. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  827. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  828. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  829. self.gguf_writer.add_block_count(block_count)
  830. self.gguf_writer.add_head_count(self.hparams["n_head"])
  831. self.gguf_writer.add_head_count_kv(1)
  832. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  833. self.gguf_writer.add_file_type(self.ftype)
  834. @Model.register("GPTRefactForCausalLM")
  835. class RefactModel(Model):
  836. model_arch = gguf.MODEL_ARCH.REFACT
  837. def set_gguf_parameters(self):
  838. hidden_dim = self.hparams["n_embd"]
  839. inner_dim = 4 * hidden_dim
  840. hidden_dim = int(2 * inner_dim / 3)
  841. multiple_of = 256
  842. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  843. block_count = self.hparams["n_layer"]
  844. self.gguf_writer.add_name("Refact")
  845. # refact uses Alibi. So this is from config.json which might be used by training.
  846. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  847. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  848. self.gguf_writer.add_feed_forward_length(ff_dim)
  849. self.gguf_writer.add_block_count(block_count)
  850. self.gguf_writer.add_head_count(self.hparams["n_head"])
  851. self.gguf_writer.add_head_count_kv(1)
  852. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  853. self.gguf_writer.add_file_type(self.ftype)
  854. def write_tensors(self):
  855. hidden_dim = self.hparams["n_embd"]
  856. inner_dim = 4 * hidden_dim
  857. hidden_dim = int(2 * inner_dim / 3)
  858. multiple_of = 256
  859. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  860. n_head = self.hparams["n_head"]
  861. n_head_kv = 1
  862. head_dim = self.hparams["n_embd"] // n_head
  863. block_count = self.hparams["n_layer"]
  864. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  865. tensors = dict(self.get_tensors())
  866. for i in range(block_count):
  867. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  868. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  869. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  870. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  871. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  872. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  873. del tensors[f"transformer.h.{i}.attn.q.weight"]
  874. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  875. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  876. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  877. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  878. for name, data_torch in tensors.items():
  879. old_dtype = data_torch.dtype
  880. # convert any unsupported data types to float32
  881. if data_torch.dtype not in (torch.float16, torch.float32):
  882. data_torch = data_torch.to(torch.float32)
  883. data = data_torch.squeeze().numpy()
  884. # map tensor names
  885. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  886. if new_name is None:
  887. print(f"Can not map tensor {name!r}")
  888. sys.exit()
  889. n_dims = len(data.shape)
  890. data_dtype = data.dtype
  891. # if f32 desired, convert any float16 to float32
  892. if self.ftype == 0 and data_dtype == np.float16:
  893. data = data.astype(np.float32)
  894. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  895. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  896. data = data.astype(np.float32)
  897. # if f16 desired, convert any float32 2-dim weight tensors to float16
  898. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  899. data = data.astype(np.float16)
  900. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  901. self.gguf_writer.add_tensor(new_name, data)
  902. @Model.register("PersimmonForCausalLM")
  903. class PersimmonModel(Model):
  904. model_arch = gguf.MODEL_ARCH.PERSIMMON
  905. def set_gguf_parameters(self):
  906. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  907. head_count = self.hparams["num_attention_heads"]
  908. head_count_kv = head_count
  909. hidden_size = self.hparams["hidden_size"]
  910. self.gguf_writer.add_name('persimmon-8b-chat')
  911. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  912. self.gguf_writer.add_embedding_length(hidden_size)
  913. self.gguf_writer.add_block_count(block_count)
  914. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  915. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  916. # than the head size?
  917. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  918. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  919. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  920. self.gguf_writer.add_head_count(head_count)
  921. self.gguf_writer.add_head_count_kv(head_count_kv)
  922. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  923. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  924. def set_vocab(self):
  925. self._set_vocab_sentencepiece()
  926. # self.gguf_writer.add_bos_token_id(71013)
  927. # self.gguf_writer.add_eos_token_id(71013)
  928. def write_tensors(self):
  929. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  930. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  931. for name, data_torch in self.get_tensors():
  932. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  933. continue
  934. old_dtype = data_torch.dtype
  935. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  936. data = data_torch.to(torch.float32).squeeze().numpy()
  937. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  938. if new_name is None:
  939. print(f"Can not map tensor {name!r}")
  940. sys.exit()
  941. n_dims = len(data.shape)
  942. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  943. self.gguf_writer.add_tensor(new_name, data)
  944. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  945. class StableLMModel(Model):
  946. model_arch = gguf.MODEL_ARCH.STABLELM
  947. def set_vocab(self):
  948. if (self.dir_model / "tokenizer.json").is_file():
  949. self._set_vocab_gpt2()
  950. else:
  951. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  952. self._set_vocab_qwen()
  953. def set_gguf_parameters(self):
  954. hparams = self.hparams
  955. block_count = hparams["num_hidden_layers"]
  956. self.gguf_writer.add_name(self.dir_model.name)
  957. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  958. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  959. self.gguf_writer.add_block_count(block_count)
  960. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  961. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  962. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  963. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  964. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  965. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  966. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  967. class LlamaModel(Model):
  968. model_arch = gguf.MODEL_ARCH.LLAMA
  969. def set_vocab(self):
  970. try:
  971. self. _set_vocab_sentencepiece()
  972. except FileNotFoundError:
  973. self._set_vocab_llama_hf()
  974. def set_gguf_parameters(self):
  975. super().set_gguf_parameters()
  976. hparams = self.hparams
  977. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  978. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  979. # Same as super class, but permuting q_proj, k_proj
  980. def write_tensors(self):
  981. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  982. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  983. n_head = self.hparams.get("num_attention_heads")
  984. n_kv_head = self.hparams.get("num_key_value_heads")
  985. n_experts = self.hparams.get("num_local_experts")
  986. experts = dict()
  987. for name, data_torch in self.get_tensors():
  988. # we don't need these
  989. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  990. continue
  991. old_dtype = data_torch.dtype
  992. # convert any unsupported data types to float32
  993. if data_torch.dtype not in (torch.float16, torch.float32):
  994. data_torch = data_torch.to(torch.float32)
  995. data = data_torch.numpy()
  996. if name.endswith("q_proj.weight"):
  997. data = permute(data, n_head, n_head)
  998. if name.endswith("k_proj.weight"):
  999. data = permute(data, n_head, n_kv_head)
  1000. data = data.squeeze()
  1001. # process the experts separately
  1002. if name.find("block_sparse_moe.experts") != -1:
  1003. experts[name] = data
  1004. if len(experts) >= n_experts:
  1005. # merge the experts into a single 3d tensor
  1006. for bid in range(block_count):
  1007. for wid in range(1, 4):
  1008. full = True
  1009. for xid in range(n_experts):
  1010. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1011. if ename not in experts:
  1012. full = False
  1013. break
  1014. if not full:
  1015. continue
  1016. datas = []
  1017. for xid in range(n_experts):
  1018. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1019. datas.append(experts[ename])
  1020. del experts[ename]
  1021. data = np.stack(datas, axis=0)
  1022. data_dtype = data.dtype
  1023. if self.ftype == 0 and data_dtype == np.float16:
  1024. data = data.astype(np.float32)
  1025. if self.ftype == 1 and data_dtype == np.float32:
  1026. data = data.astype(np.float16)
  1027. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1028. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1029. if new_name is None:
  1030. print(f"Can not map tensor {name!r}")
  1031. sys.exit()
  1032. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1033. self.gguf_writer.add_tensor(new_name, data)
  1034. continue
  1035. # map tensor names
  1036. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1037. if new_name is None:
  1038. print(f"Can not map tensor {name!r}")
  1039. sys.exit()
  1040. n_dims = len(data.shape)
  1041. data_dtype = data.dtype
  1042. # if f32 desired, convert any float16 to float32
  1043. if self.ftype == 0 and data_dtype == np.float16:
  1044. data = data.astype(np.float32)
  1045. # 1d tensors need to be converted to float32
  1046. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1047. data = data.astype(np.float32)
  1048. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1049. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1050. data = data.astype(np.float16)
  1051. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1052. self.gguf_writer.add_tensor(new_name, data)
  1053. if len(experts) > 0:
  1054. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1055. @Model.register("GrokForCausalLM")
  1056. class GrokModel(Model):
  1057. model_arch = gguf.MODEL_ARCH.GROK
  1058. def set_vocab(self):
  1059. self._set_vocab_sentencepiece()
  1060. def __init__(self, *args, **kwargs):
  1061. super().__init__(*args, **kwargs)
  1062. def set_gguf_parameters(self):
  1063. super().set_gguf_parameters()
  1064. self.gguf_writer.add_name("Grok")
  1065. def write_tensors(self):
  1066. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1067. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1068. n_experts = self.hparams.get("num_local_experts")
  1069. experts = dict()
  1070. for name, data_torch in self.get_tensors():
  1071. # we don't need these
  1072. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1073. continue
  1074. old_dtype = data_torch.dtype
  1075. # convert any unsupported data types to float32
  1076. if data_torch.dtype not in (torch.float16, torch.float32):
  1077. data_torch = data_torch.to(torch.float32)
  1078. data = data_torch.squeeze().numpy()
  1079. # process the experts separately
  1080. if name.find(".moe.") != -1:
  1081. experts[name] = data
  1082. if len(experts) >= n_experts:
  1083. # merge the experts into a single 3d tensor
  1084. for bid in range(block_count):
  1085. for wid in ["linear", "linear_1", "linear_v"]:
  1086. full = True
  1087. for xid in range(n_experts):
  1088. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1089. if ename not in experts:
  1090. full = False
  1091. break
  1092. if not full:
  1093. continue
  1094. datas = []
  1095. for xid in range(n_experts):
  1096. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1097. datas.append(experts[ename])
  1098. del experts[ename]
  1099. data = np.stack(datas, axis=0)
  1100. data_dtype = data.dtype
  1101. if self.ftype == 0 and data_dtype == np.float16:
  1102. data = data.astype(np.float32)
  1103. if self.ftype == 1 and data_dtype == np.float32:
  1104. data = data.astype(np.float16)
  1105. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1106. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1107. if new_name is None:
  1108. print(f"Can not map tensor {name!r}")
  1109. sys.exit()
  1110. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1111. self.gguf_writer.add_tensor(new_name, data)
  1112. continue
  1113. # map tensor names
  1114. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1115. if new_name is None:
  1116. print(f"Can not map tensor {name!r}")
  1117. sys.exit()
  1118. n_dims = len(data.shape)
  1119. data_dtype = data.dtype
  1120. # if f32 desired, convert any float16 to float32
  1121. if self.ftype == 0 and data_dtype == np.float16:
  1122. data = data.astype(np.float32)
  1123. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1124. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1125. data = data.astype(np.float32)
  1126. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1127. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1128. data = data.astype(np.float16)
  1129. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1130. self.gguf_writer.add_tensor(new_name, data)
  1131. @Model.register("MiniCPMForCausalLM")
  1132. class MiniCPMModel(Model):
  1133. model_arch = gguf.MODEL_ARCH.MINICPM
  1134. def set_gguf_parameters(self):
  1135. block_count = self.hparams["num_hidden_layers"]
  1136. self.gguf_writer.add_name("MiniCPM")
  1137. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1138. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1139. self.gguf_writer.add_block_count(block_count)
  1140. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1141. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1142. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1143. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1144. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1145. self.gguf_writer.add_file_type(self.ftype)
  1146. def set_vocab(self):
  1147. self._set_vocab_llama_hf()
  1148. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1149. if n_kv_head is not None and n_head != n_kv_head:
  1150. n_head //= n_kv_head
  1151. return (
  1152. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1153. .swapaxes(1, 2)
  1154. .reshape(weights.shape)
  1155. )
  1156. def write_tensors(self):
  1157. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1158. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1159. n_head = self.hparams.get("num_attention_heads")
  1160. n_kv_head = self.hparams.get("num_key_value_heads")
  1161. for name, data_torch in self.get_tensors():
  1162. # we don't need these
  1163. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1164. continue
  1165. old_dtype = data_torch.dtype
  1166. # convert any unsupported data types to float32
  1167. if data_torch.dtype not in (torch.float16, torch.float32):
  1168. data_torch = data_torch.to(torch.float32)
  1169. # HF models permute some of the tensors, so we need to undo that
  1170. if name.endswith(("q_proj.weight")):
  1171. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1172. if name.endswith(("k_proj.weight")):
  1173. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1174. data = data_torch.squeeze().numpy()
  1175. # map tensor names
  1176. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1177. if new_name is None:
  1178. print(f"Can not map tensor {name!r}")
  1179. sys.exit()
  1180. n_dims = len(data.shape)
  1181. data_dtype = data.dtype
  1182. # if f32 desired, convert any float16 to float32
  1183. if self.ftype == 0 and data_dtype == np.float16:
  1184. data = data.astype(np.float32)
  1185. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1186. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1187. data = data.astype(np.float32)
  1188. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1189. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1190. data = data.astype(np.float16)
  1191. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1192. self.gguf_writer.add_tensor(new_name, data)
  1193. @Model.register("QWenLMHeadModel")
  1194. class QwenModel(Model):
  1195. model_arch = gguf.MODEL_ARCH.QWEN
  1196. @staticmethod
  1197. def token_bytes_to_string(b):
  1198. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1199. byte_encoder = bytes_to_unicode()
  1200. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1201. @staticmethod
  1202. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1203. parts = [bytes([b]) for b in token]
  1204. while True:
  1205. min_idx = None
  1206. min_rank = None
  1207. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1208. rank = mergeable_ranks.get(pair[0] + pair[1])
  1209. if rank is not None and (min_rank is None or rank < min_rank):
  1210. min_idx = i
  1211. min_rank = rank
  1212. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1213. break
  1214. assert min_idx is not None
  1215. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1216. return parts
  1217. def set_vocab(self):
  1218. self._set_vocab_qwen()
  1219. def set_gguf_parameters(self):
  1220. self.gguf_writer.add_name("Qwen")
  1221. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1222. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1223. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1224. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1225. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1226. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1227. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1228. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1229. def write_tensors(self):
  1230. block_count = self.hparams["num_hidden_layers"]
  1231. model_kv = dict(self.get_tensors())
  1232. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1233. for name, data_torch in model_kv.items():
  1234. # we don't need these
  1235. if name.endswith(".rotary_emb.inv_freq"):
  1236. continue
  1237. old_dtype = data_torch.dtype
  1238. # convert any unsupported data types to float32
  1239. if data_torch.dtype not in (torch.float16, torch.float32):
  1240. data_torch = data_torch.to(torch.float32)
  1241. data = data_torch.squeeze().numpy()
  1242. # map tensor names
  1243. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1244. if new_name is None:
  1245. print(f"Can not map tensor {name!r}")
  1246. sys.exit()
  1247. n_dims = len(data.shape)
  1248. data_dtype = data.dtype
  1249. # if f32 desired, convert any float16 to float32
  1250. if self.ftype == 0 and data_dtype == np.float16:
  1251. data = data.astype(np.float32)
  1252. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1253. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1254. data = data.astype(np.float32)
  1255. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1256. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1257. data = data.astype(np.float16)
  1258. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1259. self.gguf_writer.add_tensor(new_name, data)
  1260. @Model.register("Qwen2ForCausalLM")
  1261. class Qwen2Model(Model):
  1262. model_arch = gguf.MODEL_ARCH.QWEN2
  1263. @Model.register("GPT2LMHeadModel")
  1264. class GPT2Model(Model):
  1265. model_arch = gguf.MODEL_ARCH.GPT2
  1266. def set_gguf_parameters(self):
  1267. self.gguf_writer.add_name(self.dir_model.name)
  1268. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1269. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1270. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1271. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1272. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1273. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1274. self.gguf_writer.add_file_type(self.ftype)
  1275. def write_tensors(self):
  1276. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1277. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1278. for name, data_torch in self.get_tensors():
  1279. # we don't need these
  1280. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1281. continue
  1282. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1283. data_torch = data_torch.transpose(1, 0)
  1284. old_dtype = data_torch.dtype
  1285. # convert any unsupported data types to float32
  1286. if data_torch.dtype not in (torch.float16, torch.float32):
  1287. data_torch = data_torch.to(torch.float32)
  1288. data = data_torch.squeeze().numpy()
  1289. # map tensor names
  1290. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1291. if new_name is None:
  1292. print(f"Can not map tensor {name!r}")
  1293. sys.exit()
  1294. n_dims = len(data.shape)
  1295. data_dtype = data.dtype
  1296. # if f32 desired, convert any float16 to float32
  1297. if self.ftype == 0 and data_dtype == np.float16:
  1298. data = data.astype(np.float32)
  1299. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1300. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1301. data = data.astype(np.float32)
  1302. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1303. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1304. data = data.astype(np.float16)
  1305. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1306. self.gguf_writer.add_tensor(new_name, data)
  1307. # note: GPT2 output is tied to (same as) wte in original model
  1308. if new_name == "token_embd.weight":
  1309. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1310. self.gguf_writer.add_tensor("output.weight", data)
  1311. @Model.register("PhiForCausalLM")
  1312. class Phi2Model(Model):
  1313. model_arch = gguf.MODEL_ARCH.PHI2
  1314. def set_gguf_parameters(self):
  1315. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1316. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1317. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1318. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1319. self.gguf_writer.add_name("Phi2")
  1320. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1321. self.gguf_writer.add_embedding_length(n_embd)
  1322. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1323. self.gguf_writer.add_block_count(block_count)
  1324. self.gguf_writer.add_head_count(n_head)
  1325. self.gguf_writer.add_head_count_kv(n_head)
  1326. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1327. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1328. self.gguf_writer.add_file_type(self.ftype)
  1329. self.gguf_writer.add_add_bos_token(False)
  1330. @Model.register("PlamoForCausalLM")
  1331. class PlamoModel(Model):
  1332. model_arch = gguf.MODEL_ARCH.PLAMO
  1333. def set_vocab(self):
  1334. self._set_vocab_sentencepiece()
  1335. def set_gguf_parameters(self):
  1336. hparams = self.hparams
  1337. block_count = hparams["num_hidden_layers"]
  1338. self.gguf_writer.add_name("PLaMo")
  1339. self.gguf_writer.add_context_length(4096) # not in config.json
  1340. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1341. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1342. self.gguf_writer.add_block_count(block_count)
  1343. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1344. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1345. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1346. def shuffle_attn_q_weight(self, data_torch):
  1347. assert data_torch.size() == (5120, 5120)
  1348. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1349. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1350. data_torch = torch.reshape(data_torch, (5120, 5120))
  1351. return data_torch
  1352. def shuffle_attn_output_weight(self, data_torch):
  1353. assert data_torch.size() == (5120, 5120)
  1354. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1355. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1356. data_torch = torch.reshape(data_torch, (5120, 5120))
  1357. return data_torch
  1358. def write_tensors(self):
  1359. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1360. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1361. for name, data_torch in self.get_tensors():
  1362. if "self_attn.rotary_emb.inv_freq" in name:
  1363. continue
  1364. # map tensor names
  1365. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1366. if new_name is None:
  1367. print(f"Can not map tensor {name!r}")
  1368. sys.exit()
  1369. # shuffle for broadcasting of gqa in ggml_mul_mat
  1370. if new_name.endswith("attn_q.weight"):
  1371. data_torch = self.shuffle_attn_q_weight(data_torch)
  1372. elif new_name.endswith("attn_output.weight"):
  1373. data_torch = self.shuffle_attn_output_weight(data_torch)
  1374. old_dtype = data_torch.dtype
  1375. # convert any unsupported data types to float32
  1376. if data_torch.dtype not in (torch.float16, torch.float32):
  1377. data_torch = data_torch.to(torch.float32)
  1378. data = data_torch.squeeze().numpy()
  1379. n_dims = len(data.shape)
  1380. data_dtype = data.dtype
  1381. # if f32 desired, convert any float16 to float32
  1382. if self.ftype == 0 and data_dtype == np.float16:
  1383. data = data.astype(np.float32)
  1384. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1385. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1386. data = data.astype(np.float32)
  1387. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1388. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1389. data = data.astype(np.float16)
  1390. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1391. self.gguf_writer.add_tensor(new_name, data)
  1392. @Model.register("CodeShellForCausalLM")
  1393. class CodeShellModel(Model):
  1394. model_arch = gguf.MODEL_ARCH.CODESHELL
  1395. def set_gguf_parameters(self):
  1396. block_count = self.hparams["n_layer"]
  1397. self.gguf_writer.add_name("CodeShell")
  1398. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1399. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1400. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1401. self.gguf_writer.add_block_count(block_count)
  1402. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1403. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1404. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1405. self.gguf_writer.add_file_type(self.ftype)
  1406. self.gguf_writer.add_rope_freq_base(10000.0)
  1407. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1408. self.gguf_writer.add_rope_scaling_factor(1.0)
  1409. def write_tensors(self):
  1410. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1411. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1412. tensors = dict(self.get_tensors())
  1413. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1414. for name, data_torch in tensors.items():
  1415. # we don't need these
  1416. if name.endswith((".attn.rotary_emb.inv_freq")):
  1417. continue
  1418. old_dtype = data_torch.dtype
  1419. # convert any unsupported data types to float32
  1420. if data_torch.dtype not in (torch.float16, torch.float32):
  1421. data_torch = data_torch.to(torch.float32)
  1422. data = data_torch.squeeze().numpy()
  1423. # map tensor names
  1424. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1425. if new_name is None:
  1426. print(f"Can not map tensor {name!r}")
  1427. sys.exit()
  1428. n_dims = len(data.shape)
  1429. data_dtype = data.dtype
  1430. # if f32 desired, convert any float16 to float32
  1431. if self.ftype == 0 and data_dtype == np.float16:
  1432. data = data.astype(np.float32)
  1433. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1434. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1435. data = data.astype(np.float32)
  1436. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1437. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1438. data = data.astype(np.float16)
  1439. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1440. self.gguf_writer.add_tensor(new_name, data)
  1441. if not has_lm_head and name == "transformer.wte.weight":
  1442. self.gguf_writer.add_tensor("output.weight", data)
  1443. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1444. @Model.register("InternLM2ForCausalLM")
  1445. class InternLM2Model(Model):
  1446. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1447. def set_vocab(self):
  1448. # (TODO): Is there a better way?
  1449. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1450. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1451. # recognized as an empty string in C++.
  1452. from sentencepiece import SentencePieceProcessor
  1453. from sentencepiece import sentencepiece_model_pb2 as model
  1454. tokenizer_path = self.dir_model / 'tokenizer.model'
  1455. tokens: list[bytes] = []
  1456. scores: list[float] = []
  1457. toktypes: list[int] = []
  1458. if not tokenizer_path.is_file():
  1459. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1460. sys.exit(1)
  1461. sentencepiece_model = model.ModelProto()
  1462. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1463. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1464. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1465. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1466. for token_id in range(vocab_size):
  1467. piece = tokenizer.id_to_piece(token_id)
  1468. text = piece.encode("utf-8")
  1469. score = tokenizer.get_score(token_id)
  1470. if text == b"\x00":
  1471. # (TODO): fixme
  1472. # Hack here and replace the \x00 characters.
  1473. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1474. text = "🐉"
  1475. toktype = SentencePieceTokenTypes.NORMAL
  1476. if tokenizer.is_unknown(token_id):
  1477. toktype = SentencePieceTokenTypes.UNKNOWN
  1478. elif tokenizer.is_control(token_id):
  1479. toktype = SentencePieceTokenTypes.CONTROL
  1480. elif tokenizer.is_unused(token_id):
  1481. toktype = SentencePieceTokenTypes.UNUSED
  1482. elif tokenizer.is_byte(token_id):
  1483. toktype = SentencePieceTokenTypes.BYTE
  1484. tokens.append(text)
  1485. scores.append(score)
  1486. toktypes.append(toktype)
  1487. added_tokens_file = self.dir_model / 'added_tokens.json'
  1488. if added_tokens_file.is_file():
  1489. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1490. added_tokens_json = json.load(f)
  1491. for key in added_tokens_json:
  1492. tokens.append(key.encode("utf-8"))
  1493. scores.append(-1000.0)
  1494. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1495. self.gguf_writer.add_tokenizer_model("llama")
  1496. self.gguf_writer.add_token_list(tokens)
  1497. self.gguf_writer.add_token_scores(scores)
  1498. self.gguf_writer.add_token_types(toktypes)
  1499. self.gguf_writer.add_add_space_prefix(add_prefix)
  1500. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1501. old_eos = special_vocab.special_token_ids["eos"]
  1502. if "chat" in os.path.basename(self.dir_model.absolute()):
  1503. # For the chat model, we replace the eos with '<|im_end|>'.
  1504. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1505. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1506. in chat mode so that the conversation can end normally.")
  1507. special_vocab.add_to_gguf(self.gguf_writer)
  1508. def _try_get_sft_eos(self, tokenizer):
  1509. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1510. im_end_list = tokenizer.encode('<|im_end|>')
  1511. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1512. if len(unused_145_list) == 1:
  1513. eos_token = unused_145_list[0]
  1514. if len(im_end_list) == 1:
  1515. eos_token = im_end_list[0]
  1516. return eos_token
  1517. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1518. if n_head_kv is not None and n_head != n_head_kv:
  1519. n_head = n_head_kv
  1520. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1521. .swapaxes(1, 2)
  1522. .reshape(weights.shape))
  1523. def set_gguf_parameters(self):
  1524. self.gguf_writer.add_name("InternLM2")
  1525. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1526. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1527. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1528. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1529. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1530. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1531. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1532. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1533. def post_write_tensors(self, tensor_map, name, data_torch):
  1534. old_dtype = data_torch.dtype
  1535. # convert any unsupported data types to float32
  1536. if data_torch.dtype not in (torch.float16, torch.float32):
  1537. data_torch = data_torch.to(torch.float32)
  1538. data = data_torch.squeeze().numpy()
  1539. # map tensor names
  1540. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1541. if new_name is None:
  1542. print(f"Can not map tensor {name!r}")
  1543. sys.exit()
  1544. n_dims = len(data.shape)
  1545. data_dtype = data.dtype
  1546. # if f32 desired, convert any float16 to float32
  1547. if self.ftype == 0 and data_dtype == np.float16:
  1548. data = data.astype(np.float32)
  1549. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1550. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1551. data = data.astype(np.float32)
  1552. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1553. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1554. data = data.astype(np.float16)
  1555. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1556. self.gguf_writer.add_tensor(new_name, data)
  1557. def write_tensors(self):
  1558. from einops import rearrange
  1559. num_heads = self.hparams.get("num_attention_heads")
  1560. num_kv_heads = self.hparams.get("num_key_value_heads")
  1561. hidden_size = self.hparams.get("hidden_size")
  1562. q_per_kv = num_heads // num_kv_heads
  1563. head_dim = hidden_size // num_heads
  1564. num_groups = num_heads // q_per_kv
  1565. block_count = self.hparams["num_hidden_layers"]
  1566. model_kv = dict(self.get_tensors())
  1567. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1568. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1569. for name, data_torch in model_kv.items():
  1570. # we don't need these
  1571. if name.endswith(".rotary_emb.inv_freq"):
  1572. continue
  1573. if re.match(qkv_pattern, name):
  1574. bid = re.findall(qkv_pattern, name)[0]
  1575. qkv = data_torch
  1576. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1577. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1578. # The model weights of q and k equire additional reshape.
  1579. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1580. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1581. v = rearrange(v, " o g n i -> o (g n i)").T
  1582. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1583. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1584. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1585. else:
  1586. self.post_write_tensors(tensor_map, name, data_torch)
  1587. @Model.register("BertModel", "CamembertModel")
  1588. class BertModel(Model):
  1589. model_arch = gguf.MODEL_ARCH.BERT
  1590. def __init__(self, *args, **kwargs):
  1591. super().__init__(*args, **kwargs)
  1592. self.vocab_size = None
  1593. def set_gguf_parameters(self):
  1594. super().set_gguf_parameters()
  1595. self.gguf_writer.add_causal_attention(False)
  1596. # get pooling path
  1597. pooling_path = None
  1598. module_path = self.dir_model / "modules.json"
  1599. if module_path.is_file():
  1600. with open(module_path, encoding="utf-8") as f:
  1601. modules = json.load(f)
  1602. for mod in modules:
  1603. if mod["type"] == "sentence_transformers.models.Pooling":
  1604. pooling_path = mod["path"]
  1605. break
  1606. # get pooling type
  1607. if pooling_path is not None:
  1608. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1609. pooling = json.load(f)
  1610. if pooling["pooling_mode_mean_tokens"]:
  1611. pooling_type = gguf.PoolingType.MEAN
  1612. elif pooling["pooling_mode_cls_token"]:
  1613. pooling_type = gguf.PoolingType.CLS
  1614. else:
  1615. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1616. self.gguf_writer.add_pooling_type(pooling_type)
  1617. def set_vocab(self):
  1618. tokens, toktypes = self.get_basic_vocab()
  1619. self.vocab_size = len(tokens)
  1620. # we need this to validate the size of the token_type embeddings
  1621. # though currently we are passing all zeros to the token_type embeddings
  1622. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1623. # convert to phantom space vocab
  1624. def phantom(tok):
  1625. if tok.startswith("[") and tok.endswith("]"):
  1626. return tok
  1627. if tok.startswith("##"):
  1628. return tok[2:]
  1629. return "\u2581" + tok
  1630. tokens = list(map(phantom, tokens))
  1631. # add vocab to gguf
  1632. self.gguf_writer.add_tokenizer_model("bert")
  1633. self.gguf_writer.add_token_list(tokens)
  1634. self.gguf_writer.add_token_types(toktypes)
  1635. # handle special tokens
  1636. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1637. special_vocab.add_to_gguf(self.gguf_writer)
  1638. def write_tensors(self):
  1639. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1640. tensors = dict(self.get_tensors())
  1641. for name, data_torch in tensors.items():
  1642. # we are only using BERT for embeddings so we don't need the pooling layer
  1643. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1644. continue # we don't need these
  1645. # map tensor names
  1646. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1647. if new_name is None:
  1648. print(f"Can not map tensor {name!r}")
  1649. sys.exit()
  1650. data = data_torch.squeeze().numpy()
  1651. n_dims = len(data.shape)
  1652. new_dtype: type[np.floating[Any]]
  1653. if (
  1654. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1655. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1656. ):
  1657. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1658. new_dtype = np.float16
  1659. else:
  1660. # if f32 desired, convert any float16 to float32
  1661. new_dtype = np.float32
  1662. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1663. if data.dtype != new_dtype:
  1664. data = data.astype(new_dtype)
  1665. self.gguf_writer.add_tensor(new_name, data)
  1666. @Model.register("NomicBertModel")
  1667. class NomicBertModel(BertModel):
  1668. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1669. def __init__(self, *args, **kwargs):
  1670. super().__init__(*args, **kwargs)
  1671. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1672. self.hparams["n_ctx"] = 2048
  1673. # SwigLU activation
  1674. assert self.hparams["activation_function"] == "swiglu"
  1675. # this doesn't do anything in the HF version
  1676. assert self.hparams["causal"] is False
  1677. # no bias tensors
  1678. assert self.hparams["qkv_proj_bias"] is False
  1679. assert self.hparams["mlp_fc1_bias"] is False
  1680. assert self.hparams["mlp_fc2_bias"] is False
  1681. # norm at end of layer
  1682. assert self.hparams["prenorm"] is False
  1683. # standard RoPE
  1684. assert self.hparams["rotary_emb_fraction"] == 1.0
  1685. assert self.hparams["rotary_emb_interleaved"] is False
  1686. assert self.hparams["rotary_emb_scale_base"] is None
  1687. def set_gguf_parameters(self):
  1688. super().set_gguf_parameters()
  1689. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1690. @Model.register("GemmaForCausalLM")
  1691. class GemmaModel(Model):
  1692. model_arch = gguf.MODEL_ARCH.GEMMA
  1693. def set_vocab(self):
  1694. self._set_vocab_sentencepiece()
  1695. def set_gguf_parameters(self):
  1696. hparams = self.hparams
  1697. block_count = hparams["num_hidden_layers"]
  1698. self.gguf_writer.add_name(self.dir_model.name)
  1699. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1700. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1701. self.gguf_writer.add_block_count(block_count)
  1702. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1703. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1704. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1705. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1706. self.gguf_writer.add_key_length(hparams["head_dim"])
  1707. self.gguf_writer.add_value_length(hparams["head_dim"])
  1708. self.gguf_writer.add_file_type(self.ftype)
  1709. def write_tensors(self):
  1710. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1711. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1712. for name, data_torch in self.get_tensors():
  1713. old_dtype = data_torch.dtype
  1714. # convert any unsupported data types to float32
  1715. if data_torch.dtype not in (torch.float16, torch.float32):
  1716. data_torch = data_torch.to(torch.float32)
  1717. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1718. if name.endswith("norm.weight"):
  1719. data_torch = data_torch + 1
  1720. data = data_torch.squeeze().numpy()
  1721. # map tensor names
  1722. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1723. if new_name is None:
  1724. print(f"Can not map tensor {name!r}")
  1725. sys.exit()
  1726. n_dims = len(data.shape)
  1727. data_dtype = data.dtype
  1728. data = data.astype(np.float32)
  1729. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1730. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1731. data = data.astype(np.float16)
  1732. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1733. self.gguf_writer.add_tensor(new_name, data)
  1734. @Model.register("Starcoder2ForCausalLM")
  1735. class StarCoder2Model(Model):
  1736. model_arch = gguf.MODEL_ARCH.STARCODER2
  1737. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1738. class MambaModel(Model):
  1739. model_arch = gguf.MODEL_ARCH.MAMBA
  1740. def set_vocab(self):
  1741. vocab_size = self.hparams["vocab_size"]
  1742. # Round vocab size to next multiple of 8
  1743. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1744. # pad using ceiling division
  1745. # ref: https://stackoverflow.com/a/17511341/22827863
  1746. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1747. self.hparams["vocab_size"] = vocab_size
  1748. if (self.dir_model / "tokenizer.json").is_file():
  1749. self._set_vocab_gpt2()
  1750. else:
  1751. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1752. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1753. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1754. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1755. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1756. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1757. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1758. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1759. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1760. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1761. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1762. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1763. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1764. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1765. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1766. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1767. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1768. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1769. def set_gguf_parameters(self):
  1770. d_model = self.find_hparam(["hidden_size", "d_model"])
  1771. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1772. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1773. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1774. # ceiling division
  1775. # ref: https://stackoverflow.com/a/17511341/22827863
  1776. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1777. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1778. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1779. # Fail early for models which don't have a block expansion factor of 2
  1780. assert d_inner == 2 * d_model
  1781. self.gguf_writer.add_name(self.dir_model.name)
  1782. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1783. self.gguf_writer.add_embedding_length(d_model)
  1784. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1785. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1786. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1787. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1788. self.gguf_writer.add_ssm_inner_size(d_inner)
  1789. self.gguf_writer.add_ssm_state_size(d_state)
  1790. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1791. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1792. self.gguf_writer.add_file_type(self.ftype)
  1793. def write_tensors(self):
  1794. block_count = self.hparams["n_layer"]
  1795. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1796. tok_embd = None
  1797. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1798. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1799. for name, data_torch in self.get_tensors():
  1800. old_dtype = data_torch.dtype
  1801. # convert any unsupported data types to float32
  1802. if data_torch.dtype not in (torch.float16, torch.float32):
  1803. data_torch = data_torch.to(torch.float32)
  1804. # map tensor names
  1805. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1806. if new_name is None:
  1807. print(f"Can not map tensor {name!r}")
  1808. sys.exit()
  1809. if name.endswith(".A_log"):
  1810. print("A_log --> A ==> " + new_name)
  1811. data_torch = -torch.exp(data_torch)
  1812. # assuming token_embd.weight is seen before output.weight
  1813. if tok_embd is not None and new_name == output_name:
  1814. if torch.equal(tok_embd, data_torch):
  1815. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1816. continue
  1817. if new_name == tok_embd_name:
  1818. tok_embd = data_torch
  1819. data = data_torch.squeeze().numpy()
  1820. n_dims = len(data.shape)
  1821. data_dtype = data.dtype
  1822. # if f32 desired, convert any float16 to float32
  1823. if self.ftype == 0 and data_dtype == np.float16:
  1824. data = data.astype(np.float32)
  1825. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1826. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1827. data = data.astype(np.float32)
  1828. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1829. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  1830. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1831. data = data.astype(np.float16)
  1832. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1833. self.gguf_writer.add_tensor(new_name, data)
  1834. @Model.register("CohereForCausalLM")
  1835. class CommandR2Model(Model):
  1836. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1837. def __init__(self, *args, **kwargs):
  1838. super().__init__(*args, **kwargs)
  1839. # max_position_embeddings = 8192 in config.json but model was actually
  1840. # trained on 128k context length
  1841. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1842. def set_gguf_parameters(self):
  1843. super().set_gguf_parameters()
  1844. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1845. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1846. ###### CONVERSION LOGIC ######
  1847. def parse_args() -> argparse.Namespace:
  1848. parser = argparse.ArgumentParser(
  1849. description="Convert a huggingface model to a GGML compatible file")
  1850. parser.add_argument(
  1851. "--vocab-only", action="store_true",
  1852. help="extract only the vocab",
  1853. )
  1854. parser.add_argument(
  1855. "--awq-path", type=Path, default=None,
  1856. help="Path to scale awq cache file")
  1857. parser.add_argument(
  1858. "--outfile", type=Path,
  1859. help="path to write to; default: based on input",
  1860. )
  1861. parser.add_argument(
  1862. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1863. help="output format - use f32 for float32, f16 for float16",
  1864. )
  1865. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1866. parser.add_argument(
  1867. "model", type=Path,
  1868. help="directory containing model file",
  1869. )
  1870. return parser.parse_args()
  1871. def main() -> None:
  1872. args = parse_args()
  1873. dir_model = args.model
  1874. if args.awq_path:
  1875. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1876. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1877. tmp_model_path = args.model / "weighted_model"
  1878. dir_model = tmp_model_path
  1879. if tmp_model_path.is_dir():
  1880. print(f"{tmp_model_path} exists as a weighted model.")
  1881. else:
  1882. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1883. print("Saving new weighted model ...")
  1884. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1885. print(f"Saved weighted model at {tmp_model_path}.")
  1886. if not dir_model.is_dir():
  1887. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1888. sys.exit(1)
  1889. ftype_map = {
  1890. "f32": gguf.GGMLQuantizationType.F32,
  1891. "f16": gguf.GGMLQuantizationType.F16,
  1892. }
  1893. if args.outfile is not None:
  1894. fname_out = args.outfile
  1895. else:
  1896. # output in the same directory as the model by default
  1897. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1898. print(f"Loading model: {dir_model.name}")
  1899. hparams = Model.load_hparams(dir_model)
  1900. with torch.inference_mode():
  1901. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1902. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  1903. print("Set model parameters")
  1904. model_instance.set_gguf_parameters()
  1905. print("Set model tokenizer")
  1906. model_instance.set_vocab()
  1907. if args.vocab_only:
  1908. print(f"Exporting model vocab to '{fname_out}'")
  1909. model_instance.write_vocab()
  1910. else:
  1911. print(f"Exporting model to '{fname_out}'")
  1912. model_instance.write()
  1913. print(f"Model successfully exported to '{fname_out}'")
  1914. if __name__ == '__main__':
  1915. main()