tensor_mapping.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. ),
  24. # Token type embeddings
  25. MODEL_TENSOR.TOKEN_TYPES: (
  26. "embeddings.token_type_embeddings", # bert nomic-bert
  27. ),
  28. # Normalization of token embeddings
  29. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  30. "word_embeddings_layernorm", # bloom
  31. "embeddings.LayerNorm", # bert
  32. "emb_ln", # nomic-bert
  33. ),
  34. # Position embeddings
  35. MODEL_TENSOR.POS_EMBD: (
  36. "transformer.wpe", # gpt2
  37. "embeddings.position_embeddings", # bert
  38. "wpe", # gpt2
  39. ),
  40. # Output
  41. MODEL_TENSOR.OUTPUT: (
  42. "embed_out", # gptneox
  43. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba
  44. "output", # llama-pth bloom internlm2
  45. "word_embeddings_for_head", # persimmon
  46. "lm_head.linear", # phi2
  47. ),
  48. # Output norm
  49. MODEL_TENSOR.OUTPUT_NORM: (
  50. "gpt_neox.final_layer_norm", # gptneox
  51. "transformer.ln_f", # gpt2 gpt-j falcon
  52. "model.norm", # llama-hf baichuan internlm2
  53. "norm", # llama-pth
  54. "transformer.norm_f", # mpt
  55. "ln_f", # refact bloom qwen gpt2
  56. "language_model.encoder.final_layernorm", # persimmon
  57. "model.final_layernorm", # persimmon
  58. "lm_head.ln", # phi2
  59. "model.norm_f", # mamba-qbert
  60. "backbone.norm_f", # mamba
  61. "transformer.rms_norm", # Grok
  62. ),
  63. # Rope frequencies
  64. MODEL_TENSOR.ROPE_FREQS: (
  65. "rope.freqs", # llama-pth
  66. ),
  67. }
  68. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  69. # Attention norm
  70. MODEL_TENSOR.ATTN_NORM: (
  71. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  72. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  73. "transformer.blocks.{bid}.norm_1", # mpt
  74. "transformer.h.{bid}.input_layernorm", # falcon7b
  75. "h.{bid}.input_layernorm", # bloom
  76. "transformer.h.{bid}.ln_mlp", # falcon40b
  77. "model.layers.{bid}.input_layernorm", # llama-hf
  78. "layers.{bid}.attention_norm", # llama-pth
  79. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  80. "model.layers.{bid}.ln1", # yi
  81. "h.{bid}.ln_1", # gpt2
  82. "transformer.h.{bid}.ln", # phi2
  83. "model.layers.layers.{bid}.norm", # plamo
  84. "model.layers.{bid}.attention_norm", # internlm2
  85. "model.layers.{bid}.norm", # mamba-qbert
  86. "backbone.layers.{bid}.norm", # mamba
  87. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  88. ),
  89. # Attention norm 2
  90. MODEL_TENSOR.ATTN_NORM_2: (
  91. "transformer.h.{bid}.ln_attn", # falcon40b
  92. ),
  93. # Attention query-key-value
  94. MODEL_TENSOR.ATTN_QKV: (
  95. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  96. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  97. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  98. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  99. "h.{bid}.self_attention.query_key_value", # bloom
  100. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  101. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  102. "h.{bid}.attn.c_attn", # gpt2
  103. "transformer.h.{bid}.mixer.Wqkv", # phi2
  104. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  105. ),
  106. # Attention query
  107. MODEL_TENSOR.ATTN_Q: (
  108. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  109. "layers.{bid}.attention.wq", # llama-pth
  110. "encoder.layer.{bid}.attention.self.query", # bert
  111. "transformer.h.{bid}.attn.q_proj", # gpt-j
  112. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  113. "model.layers.{bid}.attention.wq", # internlm2
  114. "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
  115. ),
  116. # Attention key
  117. MODEL_TENSOR.ATTN_K: (
  118. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  119. "layers.{bid}.attention.wk", # llama-pth
  120. "encoder.layer.{bid}.attention.self.key", # bert
  121. "transformer.h.{bid}.attn.k_proj", # gpt-j
  122. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  123. "model.layers.{bid}.attention.wk", # internlm2
  124. "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
  125. ),
  126. # Attention value
  127. MODEL_TENSOR.ATTN_V: (
  128. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  129. "layers.{bid}.attention.wv", # llama-pth
  130. "encoder.layer.{bid}.attention.self.value", # bert
  131. "transformer.h.{bid}.attn.v_proj", # gpt-j
  132. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  133. "model.layers.{bid}.attention.wv", # internlm2
  134. "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
  135. ),
  136. # Attention output
  137. MODEL_TENSOR.ATTN_OUT: (
  138. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  139. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  140. "transformer.blocks.{bid}.attn.out_proj", # mpt
  141. "transformer.h.{bid}.self_attention.dense", # falcon
  142. "h.{bid}.self_attention.dense", # bloom
  143. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  144. "layers.{bid}.attention.wo", # llama-pth
  145. "encoder.layer.{bid}.attention.output.dense", # bert
  146. "transformer.h.{bid}.attn.out_proj", # gpt-j
  147. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  148. "model.layers.{bid}.self_attn.dense", # persimmon
  149. "h.{bid}.attn.c_proj", # gpt2
  150. "transformer.h.{bid}.mixer.out_proj", # phi2
  151. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  152. "model.layers.{bid}.attention.wo", # internlm2
  153. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  154. "transformer.decoder_layer.{bid}.multi_head_attention.linear"# Grok
  155. ),
  156. # Attention output norm
  157. MODEL_TENSOR.ATTN_OUT_NORM: (
  158. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  159. "encoder.layers.{bid}.norm1", # nomic-bert
  160. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  161. ),
  162. # Rotary embeddings
  163. MODEL_TENSOR.ATTN_ROT_EMBD: (
  164. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  165. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  166. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  167. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  168. ),
  169. # Feed-forward norm
  170. MODEL_TENSOR.FFN_NORM: (
  171. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  172. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  173. "h.{bid}.post_attention_layernorm", # bloom
  174. "transformer.blocks.{bid}.norm_2", # mpt
  175. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  176. "layers.{bid}.ffn_norm", # llama-pth
  177. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  178. "model.layers.{bid}.ln2", # yi
  179. "h.{bid}.ln_2", # gpt2
  180. "model.layers.{bid}.ffn_norm", # internlm2
  181. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  182. ),
  183. MODEL_TENSOR.FFN_GATE_INP: (
  184. "layers.{bid}.feed_forward.gate", # mixtral
  185. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  186. "transformer.decoder_layer.{bid}.router" # Grok
  187. ),
  188. # Feed-forward up
  189. MODEL_TENSOR.FFN_UP: (
  190. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  191. "transformer.h.{bid}.mlp.c_fc", # gpt2
  192. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  193. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  194. "h.{bid}.mlp.dense_h_to_4h", # bloom
  195. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  196. "layers.{bid}.feed_forward.w3", # llama-pth
  197. "encoder.layer.{bid}.intermediate.dense", # bert
  198. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  199. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  200. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  201. "transformer.h.{bid}.mlp.w1", # qwen
  202. "h.{bid}.mlp.c_fc", # gpt2
  203. "transformer.h.{bid}.mlp.fc1", # phi2
  204. "model.layers.{bid}.mlp.fc1", # phi2
  205. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  206. "model.layers.{bid}.feed_forward.w3", # internlm2
  207. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  208. "model.layers.{bid}.mlp.c_fc", # starcoder2
  209. ),
  210. MODEL_TENSOR.FFN_UP_EXP: (
  211. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  212. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  213. ),
  214. # AWQ-activation gate
  215. MODEL_TENSOR.FFN_ACT: (
  216. "transformer.blocks.{bid}.ffn.act", # mpt
  217. ),
  218. # Feed-forward gate
  219. MODEL_TENSOR.FFN_GATE: (
  220. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  221. "layers.{bid}.feed_forward.w1", # llama-pth
  222. "transformer.h.{bid}.mlp.w2", # qwen
  223. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  224. "model.layers.{bid}.feed_forward.w1", # internlm2
  225. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  226. ),
  227. MODEL_TENSOR.FFN_GATE_EXP: (
  228. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  229. "transformer.decoder_layer.{bid}.moe.linear" # Grok (merged)
  230. ),
  231. # Feed-forward down
  232. MODEL_TENSOR.FFN_DOWN: (
  233. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  234. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  235. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  236. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  237. "h.{bid}.mlp.dense_4h_to_h", # bloom
  238. "model.layers.{bid}.mlp.down_proj", # llama-hf
  239. "layers.{bid}.feed_forward.w2", # llama-pth
  240. "encoder.layer.{bid}.output.dense", # bert
  241. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  242. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  243. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  244. "h.{bid}.mlp.c_proj", # gpt2
  245. "transformer.h.{bid}.mlp.fc2", # phi2
  246. "model.layers.{bid}.mlp.fc2", # phi2
  247. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  248. "model.layers.{bid}.feed_forward.w2", # internlm2
  249. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  250. "model.layers.{bid}.mlp.c_proj", # starcoder2
  251. ),
  252. MODEL_TENSOR.FFN_DOWN_EXP: (
  253. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  254. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  255. ),
  256. MODEL_TENSOR.ATTN_Q_NORM: (
  257. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  258. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  259. "model.layers.{bid}.self_attn.q_norm", # cohere
  260. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  261. ),
  262. MODEL_TENSOR.ATTN_K_NORM: (
  263. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  264. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  265. "model.layers.{bid}.self_attn.k_norm", # cohere
  266. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  267. ),
  268. MODEL_TENSOR.ROPE_FREQS: (
  269. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  270. ),
  271. MODEL_TENSOR.LAYER_OUT_NORM: (
  272. "encoder.layer.{bid}.output.LayerNorm", # bert
  273. "encoder.layers.{bid}.norm2", # nomic-bert
  274. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  275. ),
  276. MODEL_TENSOR.SSM_IN: (
  277. "model.layers.{bid}.in_proj",
  278. "backbone.layers.{bid}.mixer.in_proj",
  279. ),
  280. MODEL_TENSOR.SSM_CONV1D: (
  281. "model.layers.{bid}.conv1d",
  282. "backbone.layers.{bid}.mixer.conv1d",
  283. ),
  284. MODEL_TENSOR.SSM_X: (
  285. "model.layers.{bid}.x_proj",
  286. "backbone.layers.{bid}.mixer.x_proj",
  287. ),
  288. MODEL_TENSOR.SSM_DT: (
  289. "model.layers.{bid}.dt_proj",
  290. "backbone.layers.{bid}.mixer.dt_proj",
  291. ),
  292. MODEL_TENSOR.SSM_A: (
  293. "model.layers.{bid}.A_log",
  294. "backbone.layers.{bid}.mixer.A_log",
  295. ),
  296. MODEL_TENSOR.SSM_D: (
  297. "model.layers.{bid}.D",
  298. "backbone.layers.{bid}.mixer.D",
  299. ),
  300. MODEL_TENSOR.SSM_OUT: (
  301. "model.layers.{bid}.out_proj",
  302. "backbone.layers.{bid}.mixer.out_proj",
  303. ),
  304. }
  305. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  306. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  307. self.mapping = {}
  308. for tensor, keys in self.mappings_cfg.items():
  309. if tensor not in MODEL_TENSORS[arch]:
  310. continue
  311. tensor_name = TENSOR_NAMES[tensor]
  312. self.mapping[tensor_name] = (tensor, tensor_name)
  313. for key in keys:
  314. self.mapping[key] = (tensor, tensor_name)
  315. for bid in range(n_blocks):
  316. for tensor, keys in self.block_mappings_cfg.items():
  317. if tensor not in MODEL_TENSORS[arch]:
  318. continue
  319. # TODO: make this configurable
  320. n_experts = 8
  321. for xid in range(n_experts):
  322. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  323. self.mapping[tensor_name] = (tensor, tensor_name)
  324. for key in keys:
  325. key = key.format(bid = bid, xid = xid)
  326. self.mapping[key] = (tensor, tensor_name)
  327. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  328. result = self.mapping.get(key)
  329. if result is not None:
  330. return result
  331. for suffix in try_suffixes:
  332. if key.endswith(suffix):
  333. result = self.mapping.get(key[:-len(suffix)])
  334. if result is not None:
  335. return result[0], result[1] + suffix
  336. return None
  337. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  338. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  339. if result is None:
  340. return None
  341. return result[1]
  342. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  343. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  344. if result is None:
  345. return None
  346. return result[0]
  347. def __getitem__(self, key: str) -> str:
  348. try:
  349. return self.mapping[key][1]
  350. except KeyError:
  351. raise KeyError(key)
  352. def __contains__(self, key: str) -> bool:
  353. return key in self.mapping
  354. def __repr__(self) -> str:
  355. return repr(self.mapping)
  356. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  357. return TensorNameMap(arch, n_blocks)