speculative.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "sampling.h"
  4. #include "log.h"
  5. #include "llama.h"
  6. #include <algorithm>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <random>
  10. #include <set>
  11. #include <string>
  12. #include <vector>
  13. #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
  14. #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
  15. struct seq_draft {
  16. bool active = false;
  17. bool drafting = false;
  18. bool skip = false;
  19. int i_batch_dft = 0;
  20. std::vector<int> i_batch_tgt;
  21. std::vector<llama_token> tokens;
  22. std::vector<std::vector<llama_token_data>> dists;
  23. struct gpt_sampler * smpl = nullptr;
  24. };
  25. int main(int argc, char ** argv) {
  26. gpt_params params;
  27. if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
  28. return 1;
  29. }
  30. gpt_init();
  31. if (params.model_draft.empty()) {
  32. LOG_ERR("%s: --model-draft is required\n", __func__);
  33. return 1;
  34. }
  35. // max number of parallel drafting sequences (i.e. tree branches)
  36. const int n_seq_dft = params.n_parallel;
  37. // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
  38. const float p_split = params.p_split;
  39. std::default_random_engine rng(params.sparams.seed);
  40. std::uniform_real_distribution<> u_dist;
  41. // init llama.cpp
  42. llama_backend_init();
  43. llama_numa_init(params.numa);
  44. llama_model * model_tgt = NULL;
  45. llama_model * model_dft = NULL;
  46. llama_context * ctx_tgt = NULL;
  47. llama_context * ctx_dft = NULL;
  48. // load the target model
  49. llama_init_result llama_init_tgt = llama_init_from_gpt_params(params);
  50. model_tgt = llama_init_tgt.model;
  51. ctx_tgt = llama_init_tgt.context;
  52. // load the draft model
  53. params.model = params.model_draft;
  54. params.n_gpu_layers = params.n_gpu_layers_draft;
  55. if (params.draft_cpuparams.n_threads > 0) {
  56. params.cpuparams.n_threads = params.draft_cpuparams.n_threads;
  57. }
  58. params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
  59. llama_init_result llama_init_dft = llama_init_from_gpt_params(params);
  60. model_dft = llama_init_dft.model;
  61. ctx_dft = llama_init_dft.context;
  62. const bool vocab_type_tgt = llama_vocab_type(model_tgt);
  63. LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
  64. const bool vocab_type_dft = llama_vocab_type(model_dft);
  65. LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
  66. if (vocab_type_tgt != vocab_type_dft) {
  67. LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
  68. LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
  69. return 1;
  70. }
  71. if (
  72. llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
  73. llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
  74. llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
  75. llama_token_eos(model_tgt) != llama_token_eos(model_dft)
  76. ) {
  77. LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
  78. return 1;
  79. }
  80. {
  81. const int n_vocab_tgt = llama_n_vocab(model_tgt);
  82. const int n_vocab_dft = llama_n_vocab(model_dft);
  83. const int vocab_diff = n_vocab_tgt > n_vocab_dft
  84. ? n_vocab_tgt - n_vocab_dft
  85. : n_vocab_dft - n_vocab_tgt;
  86. if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
  87. LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
  88. LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
  89. n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
  90. return 1;
  91. }
  92. for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
  93. const char * token_text_tgt = llama_token_get_text(model_tgt, i);
  94. const char * token_text_dft = llama_token_get_text(model_dft, i);
  95. if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
  96. LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
  97. LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
  98. llama_token_to_piece(ctx_tgt, i).c_str(),
  99. llama_token_to_piece(ctx_dft, i).c_str());
  100. return 1;
  101. }
  102. }
  103. }
  104. // Tokenize the prompt
  105. std::vector<llama_token> inp;
  106. inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
  107. const int max_context_size = llama_n_ctx(ctx_tgt);
  108. const int max_tokens_list_size = max_context_size - 4;
  109. if ((int) inp.size() > max_tokens_list_size) {
  110. LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  111. return 1;
  112. }
  113. LOG("\n\n");
  114. for (auto id : inp) {
  115. LOG("%s", llama_token_to_piece(ctx_tgt, id).c_str());
  116. }
  117. const int n_input = inp.size();
  118. const auto t_enc_start = ggml_time_us();
  119. // eval the prompt with both models
  120. llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
  121. llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
  122. llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
  123. const auto t_enc_end = ggml_time_us();
  124. // the 2 models should have the same vocab
  125. //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
  126. // how many tokens to draft each time
  127. int n_draft = params.n_draft;
  128. int n_predict = 0;
  129. int n_drafted = 0;
  130. int n_accept = 0;
  131. int n_past_tgt = inp.size();
  132. int n_past_dft = inp.size();
  133. // used to determine end of generation
  134. bool has_eos = false;
  135. // target model sampling context (reuse the llama_context's sampling instance)
  136. struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
  137. struct llama_sampler * softmax = llama_sampler_init_softmax();
  138. // draft sequence data
  139. std::vector<seq_draft> drafts(n_seq_dft);
  140. for (int s = 0; s < n_seq_dft; ++s) {
  141. // allocate gpt_sampler for each draft sequence
  142. drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
  143. }
  144. llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
  145. llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
  146. const auto t_dec_start = ggml_time_us();
  147. // sample from the last token of the prompt
  148. drafts[0].i_batch_tgt.resize(1);
  149. drafts[0].i_batch_tgt[0] = 0;
  150. while (true) {
  151. std::set<int> active_seqs = {};
  152. // print current draft sequences
  153. for (int s = 0; s < n_seq_dft; ++s) {
  154. if (!drafts[s].active) {
  155. continue;
  156. }
  157. active_seqs.insert(s);
  158. const auto & tokens = drafts[s].tokens;
  159. LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
  160. }
  161. int i_dft = 0;
  162. int s_keep = 0;
  163. llama_token token_id;
  164. std::string token_str;
  165. // loop until we fail to accept a drafted token or we run out of drafted tokens
  166. while (true) {
  167. // check if the target token matches any of the drafts
  168. // for stochastic sampling, attempt to match the token with the drafted tokens
  169. {
  170. bool accept = false;
  171. if (params.sparams.temp > 0) {
  172. // stochastic verification
  173. gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
  174. auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
  175. float p_tgt = 0.0f;
  176. float p_dft = 0.0f;
  177. while (active_seqs.size() > 0) {
  178. // randomly select a sequence to verify from active sequences
  179. std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
  180. int s = *std::next(active_seqs.begin(), u_int_dist(rng));
  181. if (i_dft >= (int) drafts[s].tokens.size()) {
  182. drafts[s].active = false;
  183. active_seqs.erase(s);
  184. continue;
  185. }
  186. if (accept) {
  187. // if we already accepted a token, we can skip the rest
  188. if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
  189. drafts[s].active = false;
  190. active_seqs.erase(s);
  191. }
  192. continue;
  193. }
  194. LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
  195. float r = u_dist(rng);
  196. llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
  197. //GGML_ASSERT(dist_tgt.size <= dist_dft.size);
  198. // acquire the token probabilities assigned by the draft and target models
  199. for (size_t i = 0; i < dist_tgt.size; i++) {
  200. if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
  201. p_tgt = dist_tgt.data[i].p;
  202. }
  203. if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
  204. p_dft = dist_dft.data[i].p;
  205. }
  206. if (p_tgt && p_dft) {
  207. break;
  208. }
  209. }
  210. LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
  211. if (r <= p_tgt / p_dft) {
  212. s_keep = s;
  213. accept = true;
  214. token_id = drafts[s].tokens[i_dft];
  215. token_str = llama_token_to_piece(ctx_tgt, token_id);
  216. gpt_sampler_accept(smpl, token_id, true);
  217. LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
  218. break;
  219. } else {
  220. LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
  221. drafts[s].active = false;
  222. // calculate residual probability
  223. GGML_ASSERT(dist_tgt.sorted);
  224. GGML_ASSERT(dist_dft.sorted);
  225. // sort dist by id
  226. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  227. return a.id < b.id;
  228. });
  229. std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
  230. return a.id < b.id;
  231. });
  232. float sum_probs = 0.0f;
  233. for (size_t i = 0; i < dist_tgt.size; i++) {
  234. if (i < dist_dft.size) {
  235. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
  236. } else {
  237. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
  238. }
  239. sum_probs += dist_tgt.data[i].p;
  240. }
  241. for (size_t i = 0; i < dist_tgt.size; i++) {
  242. dist_tgt.data[i].p /= sum_probs;
  243. }
  244. // sort dist_tgt by p desc
  245. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  246. return a.p > b.p;
  247. });
  248. }
  249. active_seqs.erase(s);
  250. for(int i = 0; i < n_seq_dft; i++) {
  251. if (i == s) {
  252. continue;
  253. }
  254. if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
  255. // synchronize active status for sequences with the same drafted token
  256. drafts[i].active = drafts[i].active && accept;
  257. if (!drafts[i].active) {
  258. active_seqs.erase(s);
  259. }
  260. }
  261. }
  262. }
  263. if (!accept) {
  264. // all drafted tokens were rejected
  265. // sample from the target model
  266. LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
  267. std::vector<float> probs(dist_tgt.size);
  268. for (size_t i = 0; i < dist_tgt.size; ++i) {
  269. probs[i] = dist_tgt.data[i].p;
  270. }
  271. std::discrete_distribution<> dist(probs.begin(), probs.end());
  272. const int idx = dist(rng);
  273. token_id = dist_tgt.data[idx].id;
  274. gpt_sampler_accept(smpl, token_id, true);
  275. token_str = llama_token_to_piece(ctx_tgt, token_id);
  276. }
  277. } else {
  278. // greedy verification
  279. // sample from the target model
  280. LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
  281. token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
  282. gpt_sampler_accept(smpl, token_id, true);
  283. token_str = llama_token_to_piece(ctx_tgt, token_id);
  284. for (int s = 0; s < n_seq_dft; ++s) {
  285. if (!drafts[s].active) {
  286. continue;
  287. }
  288. if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
  289. LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
  290. s_keep = s;
  291. accept = true;
  292. } else {
  293. drafts[s].active = false;
  294. }
  295. }
  296. }
  297. if (llama_token_is_eog(model_tgt, token_id)) {
  298. has_eos = true;
  299. }
  300. ++n_predict;
  301. if (accept) {
  302. ++n_accept;
  303. ++n_past_tgt;
  304. ++n_past_dft;
  305. ++i_dft;
  306. if (params.use_color) {
  307. // Color token according to its origin sequence
  308. LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
  309. } else {
  310. LOG("%s", token_str.c_str());
  311. }
  312. continue;
  313. } else {
  314. LOG("%s", token_str.c_str());
  315. break;
  316. }
  317. }
  318. }
  319. {
  320. LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
  321. // TODO: simplify
  322. {
  323. LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
  324. llama_kv_cache_seq_keep(ctx_dft, s_keep);
  325. llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
  326. llama_kv_cache_seq_keep(ctx_dft, 0);
  327. llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
  328. llama_kv_cache_seq_keep(ctx_tgt, s_keep);
  329. llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
  330. llama_kv_cache_seq_keep(ctx_tgt, 0);
  331. }
  332. for (int s = 0; s < n_seq_dft; ++s) {
  333. drafts[s].active = false;
  334. drafts[s].tokens.clear();
  335. drafts[s].i_batch_tgt.clear();
  336. drafts[s].dists.clear();
  337. }
  338. // note: will be erased after the speculation phase
  339. drafts[0].tokens.push_back(token_id);
  340. drafts[0].dists.push_back(std::vector<llama_token_data>());
  341. drafts[0].i_batch_tgt.push_back(0);
  342. llama_batch_clear(batch_dft);
  343. llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
  344. llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
  345. // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
  346. llama_decode(ctx_dft, batch_dft);
  347. ++n_past_dft;
  348. }
  349. if (n_predict > params.n_predict || has_eos) {
  350. break;
  351. }
  352. if (drafts[0].smpl) {
  353. gpt_sampler_free(drafts[0].smpl);
  354. }
  355. drafts[0].smpl = gpt_sampler_clone(smpl);
  356. int n_seq_cur = 1;
  357. int n_past_cur = n_past_dft;
  358. for (int s = 0; s < n_seq_dft; ++s) {
  359. drafts[s].active = false;
  360. drafts[s].drafting = false;
  361. }
  362. drafts[0].active = true;
  363. drafts[0].drafting = true;
  364. drafts[0].i_batch_dft = 0;
  365. llama_batch_clear(batch_tgt);
  366. llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
  367. // sample n_draft tokens from the draft model using tree-based sampling
  368. for (int i = 0; i < n_draft; ++i) {
  369. batch_dft.n_tokens = 0;
  370. for (int s = 0; s < n_seq_dft; ++s) {
  371. drafts[s].skip = false;
  372. }
  373. for (int s = 0; s < n_seq_dft; ++s) {
  374. if (!drafts[s].drafting || drafts[s].skip) {
  375. continue;
  376. }
  377. gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
  378. const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
  379. for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
  380. LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
  381. k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
  382. }
  383. std::vector<int> sa(1, s);
  384. // attempt to split the branch if the probability is high enough
  385. for (int f = 1; f < 8; ++f) {
  386. if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
  387. LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
  388. llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
  389. llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
  390. // all previous tokens from this branch are now also part of the new branch
  391. for (int t = 0; t < batch_tgt.n_tokens; ++t) {
  392. for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
  393. if (batch_tgt.seq_id[t][p] == s) {
  394. batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
  395. batch_tgt.n_seq_id[t]++;
  396. break;
  397. }
  398. }
  399. }
  400. // copy the draft state
  401. drafts[n_seq_cur].active = true;
  402. drafts[n_seq_cur].drafting = true;
  403. drafts[n_seq_cur].skip = true;
  404. drafts[n_seq_cur].tokens = drafts[s].tokens;
  405. drafts[n_seq_cur].dists = drafts[s].dists;
  406. drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
  407. drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
  408. if (drafts[n_seq_cur].smpl) {
  409. gpt_sampler_free(drafts[n_seq_cur].smpl);
  410. }
  411. drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
  412. sa.push_back(n_seq_cur);
  413. n_seq_cur++;
  414. } else {
  415. break;
  416. }
  417. }
  418. // add drafted token for each sequence
  419. for (int is = 0; is < (int) sa.size(); ++is) {
  420. const llama_token id = cur_p->data[is].id;
  421. const int s = sa[is];
  422. gpt_sampler_accept(drafts[s].smpl, id, true);
  423. drafts[s].tokens.push_back(id);
  424. // save cur_p.data into drafts[s].dists
  425. drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
  426. // add unique drafted tokens to the target batch
  427. drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
  428. llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
  429. // add the token to the batch for batched decoding with the draft model
  430. drafts[s].i_batch_dft = batch_dft.n_tokens;
  431. llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
  432. if (batch_tgt.n_tokens > n_draft) {
  433. drafts[s].drafting = false;
  434. }
  435. }
  436. }
  437. // no sequence is drafting anymore
  438. if (batch_dft.n_tokens == 0) {
  439. break;
  440. }
  441. // evaluate the drafted tokens on the draft model
  442. llama_decode(ctx_dft, batch_dft);
  443. ++n_past_cur;
  444. ++n_drafted;
  445. if (batch_tgt.n_tokens > n_draft) {
  446. break;
  447. }
  448. }
  449. // evaluate the target model on the drafted tokens
  450. {
  451. llama_kv_cache_seq_keep(ctx_tgt, 0);
  452. for (int s = 1; s < n_seq_dft; ++s) {
  453. llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
  454. }
  455. // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
  456. llama_decode(ctx_tgt, batch_tgt);
  457. ++n_past_tgt;
  458. }
  459. // the first token is always proposed by the target model before the speculation loop so we erase it here
  460. for (int s = 0; s < n_seq_dft; ++s) {
  461. if (!drafts[s].active) {
  462. continue;
  463. }
  464. drafts[s].tokens.erase(drafts[s].tokens.begin());
  465. drafts[s].dists.erase(drafts[s].dists.begin());
  466. }
  467. }
  468. auto t_dec_end = ggml_time_us();
  469. LOG("\n\n");
  470. LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  471. LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  472. LOG_INF("\n");
  473. LOG_INF("n_draft = %d\n", n_draft);
  474. LOG_INF("n_predict = %d\n", n_predict);
  475. LOG_INF("n_drafted = %d\n", n_drafted);
  476. LOG_INF("n_accept = %d\n", n_accept);
  477. LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  478. LOG_INF("\n");
  479. LOG_INF("draft:\n\n");
  480. // TODO: print sampling/grammar timings for all drafts
  481. llama_perf_context_print(ctx_dft);
  482. LOG_INF("\n");
  483. LOG_INF("target:\n\n");
  484. gpt_perf_print(ctx_tgt, smpl);
  485. gpt_sampler_free(smpl);
  486. for (int s = 0; s < n_seq_dft; ++s) {
  487. gpt_sampler_free(drafts[s].smpl);
  488. }
  489. llama_sampler_free(softmax);
  490. llama_batch_free(batch_dft);
  491. llama_free(ctx_tgt);
  492. llama_free_model(model_tgt);
  493. llama_free(ctx_dft);
  494. llama_free_model(model_dft);
  495. llama_backend_free();
  496. LOG("\n\n");
  497. return 0;
  498. }