convert-hf-to-gguf.py 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from abc import ABC, abstractmethod
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  15. import numpy as np
  16. import torch
  17. if TYPE_CHECKING:
  18. from torch import Tensor
  19. if 'NO_LOCAL_GGUF' not in os.environ:
  20. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  21. import gguf
  22. from convert import LlamaHfVocab, permute
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model(ABC):
  34. _model_classes: dict[str, type[Model]] = {}
  35. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  36. self.dir_model = dir_model
  37. self.ftype = ftype
  38. self.fname_out = fname_out
  39. self.is_big_endian = is_big_endian
  40. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  41. self.use_temp_file = use_temp_file
  42. self.is_safetensors = self._is_model_safetensors()
  43. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  44. self.part_names = self._get_part_names()
  45. self.hparams = Model.load_hparams(self.dir_model)
  46. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  47. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  48. @property
  49. @abstractmethod
  50. def model_arch(self) -> gguf.MODEL_ARCH:
  51. pass
  52. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  53. key = next((k for k in keys if k in self.hparams), None)
  54. if key is not None:
  55. return self.hparams[key]
  56. if optional:
  57. return None
  58. raise KeyError(f"could not find any of: {keys}")
  59. def set_vocab(self):
  60. self._set_vocab_gpt2()
  61. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  62. for part_name in self.part_names:
  63. logger.info(f"gguf: loading model part '{part_name}'")
  64. ctx: ContextManager[Any]
  65. if self.is_safetensors:
  66. from safetensors import safe_open
  67. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  68. else:
  69. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  70. with ctx as model_part:
  71. for name in model_part.keys():
  72. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  73. yield name, data
  74. def set_gguf_parameters(self):
  75. self.gguf_writer.add_name(self.dir_model.name)
  76. self.gguf_writer.add_block_count(self.block_count)
  77. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  78. self.gguf_writer.add_context_length(n_ctx)
  79. logger.info(f"gguf: context length = {n_ctx}")
  80. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  81. self.gguf_writer.add_embedding_length(n_embd)
  82. logger.info(f"gguf: embedding length = {n_embd}")
  83. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  84. self.gguf_writer.add_feed_forward_length(n_ff)
  85. logger.info(f"gguf: feed forward length = {n_ff}")
  86. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  87. self.gguf_writer.add_head_count(n_head)
  88. logger.info(f"gguf: head count = {n_head}")
  89. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  90. self.gguf_writer.add_head_count_kv(n_head_kv)
  91. logger.info(f"gguf: key-value head count = {n_head_kv}")
  92. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  93. self.gguf_writer.add_rope_freq_base(rope_theta)
  94. logger.info(f"gguf: rope theta = {rope_theta}")
  95. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  96. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  97. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  98. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  99. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  100. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  101. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  102. self.gguf_writer.add_expert_count(n_experts)
  103. logger.info(f"gguf: expert count = {n_experts}")
  104. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  105. self.gguf_writer.add_expert_used_count(n_experts_used)
  106. logger.info(f"gguf: experts used count = {n_experts_used}")
  107. self.gguf_writer.add_file_type(self.ftype)
  108. logger.info(f"gguf: file type = {self.ftype}")
  109. def write_tensors(self):
  110. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  111. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  112. for name, data_torch in self.get_tensors():
  113. # we don't need these
  114. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  115. continue
  116. old_dtype = data_torch.dtype
  117. # convert any unsupported data types to float32
  118. if data_torch.dtype not in (torch.float16, torch.float32):
  119. data_torch = data_torch.to(torch.float32)
  120. data = data_torch.squeeze().numpy()
  121. # map tensor names
  122. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  123. if new_name is None:
  124. raise ValueError(f"Can not map tensor {name!r}")
  125. n_dims = len(data.shape)
  126. data_dtype = data.dtype
  127. # if f32 desired, convert any float16 to float32
  128. if self.ftype == 0 and data_dtype == np.float16:
  129. data = data.astype(np.float32)
  130. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  131. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  132. data = data.astype(np.float32)
  133. # if f16 desired, convert any float32 2-dim weight tensors to float16
  134. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  135. data = data.astype(np.float16)
  136. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  137. self.gguf_writer.add_tensor(new_name, data)
  138. def write(self):
  139. self.write_tensors()
  140. self.gguf_writer.write_header_to_file()
  141. self.gguf_writer.write_kv_data_to_file()
  142. self.gguf_writer.write_tensors_to_file()
  143. self.gguf_writer.close()
  144. def write_vocab(self):
  145. self.gguf_writer.write_header_to_file()
  146. self.gguf_writer.write_kv_data_to_file()
  147. self.gguf_writer.close()
  148. @staticmethod
  149. def count_model_parts(dir_model: Path, prefix: str) -> int:
  150. num_parts = 0
  151. for filename in os.listdir(dir_model):
  152. if filename.endswith(prefix):
  153. num_parts += 1
  154. return num_parts
  155. @staticmethod
  156. def load_hparams(dir_model):
  157. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  158. return json.load(f)
  159. @classmethod
  160. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  161. assert names
  162. def func(modelcls: type[Model]):
  163. for name in names:
  164. cls._model_classes[name] = modelcls
  165. return modelcls
  166. return func
  167. @classmethod
  168. def from_model_architecture(cls, arch):
  169. try:
  170. return cls._model_classes[arch]
  171. except KeyError:
  172. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  173. def _is_model_safetensors(self) -> bool:
  174. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  175. def _get_part_names(self):
  176. if self.is_safetensors:
  177. if self.num_parts == 1: # there's only one .safetensors file
  178. return ("model.safetensors",)
  179. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  180. if self.num_parts == 1: # there's only one .bin file
  181. return ("pytorch_model.bin",)
  182. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  183. # used for GPT-2 BPE and WordPiece vocabs
  184. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  185. tokens: list[str] = []
  186. toktypes: list[int] = []
  187. from transformers import AutoTokenizer
  188. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  189. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  190. assert max(tokenizer.vocab.values()) < vocab_size
  191. tokpre = self.get_vocab_base_pre(tokenizer)
  192. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  193. added_vocab = tokenizer.get_added_vocab()
  194. for i in range(vocab_size):
  195. if i not in reverse_vocab:
  196. tokens.append(f"[PAD{i}]")
  197. toktypes.append(gguf.TokenType.USER_DEFINED)
  198. elif reverse_vocab[i] in added_vocab:
  199. tokens.append(reverse_vocab[i])
  200. if tokenizer.added_tokens_decoder[i].special:
  201. toktypes.append(gguf.TokenType.CONTROL)
  202. else:
  203. toktypes.append(gguf.TokenType.USER_DEFINED)
  204. else:
  205. tokens.append(reverse_vocab[i])
  206. toktypes.append(gguf.TokenType.NORMAL)
  207. return tokens, toktypes, tokpre
  208. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  209. # do not modify it manually!
  210. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  211. def get_vocab_base_pre(self, tokenizer) -> str:
  212. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  213. # is specific for the BPE pre-tokenizer used by the model
  214. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  215. # use in llama.cpp to implement the same pre-tokenizer
  216. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  217. chktok = tokenizer.encode(chktxt)
  218. chkhsh = sha256(str(chktok).encode()).hexdigest()
  219. logger.debug(f"chktok: {chktok}")
  220. logger.debug(f"chkhsh: {chkhsh}")
  221. res = None
  222. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  223. # or pull the latest version of the model from Huggingface
  224. # don't edit the hashes manually!
  225. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  226. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  227. res = "llama-bpe"
  228. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  229. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  230. res = "deepseek-llm"
  231. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  232. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  233. res = "deepseek-coder"
  234. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  235. # ref: https://huggingface.co/tiiuae/falcon-7b
  236. res = "falcon"
  237. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  238. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  239. res = "bert-bge"
  240. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  241. # ref: https://huggingface.co/mosaicml/mpt-7b
  242. res = "mpt"
  243. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  244. # ref: https://huggingface.co/bigcode/starcoder2-3b
  245. res = "starcoder"
  246. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  247. # ref: https://huggingface.co/openai-community/gpt2
  248. res = "gpt-2"
  249. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  250. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  251. res = "refact"
  252. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  253. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  254. res = "command-r"
  255. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  256. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  257. res = "qwen2"
  258. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  259. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  260. res = "olmo"
  261. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  262. # ref: https://huggingface.co/databricks/dbrx-instruct
  263. res = "dbrx"
  264. if res is None:
  265. logger.warning("\n")
  266. logger.warning("**************************************************************************************")
  267. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  268. logger.warning("** There are 2 possible reasons for this:")
  269. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  270. logger.warning("** - the pre-tokenization config has changed upstream")
  271. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  272. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  273. logger.warning("**")
  274. logger.warning(f"** chkhsh: {chkhsh}")
  275. logger.warning("**************************************************************************************")
  276. logger.warning("\n")
  277. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  278. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  279. logger.debug(f"chkhsh: {chkhsh}")
  280. return res
  281. def _set_vocab_gpt2(self) -> None:
  282. tokens, toktypes, tokpre = self.get_vocab_base()
  283. self.gguf_writer.add_tokenizer_model("gpt2")
  284. self.gguf_writer.add_tokenizer_pre(tokpre)
  285. self.gguf_writer.add_token_list(tokens)
  286. self.gguf_writer.add_token_types(toktypes)
  287. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  288. special_vocab.add_to_gguf(self.gguf_writer)
  289. def _set_vocab_qwen(self):
  290. dir_model = self.dir_model
  291. hparams = self.hparams
  292. tokens: list[str] = []
  293. toktypes: list[int] = []
  294. from transformers import AutoTokenizer
  295. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  296. vocab_size = hparams["vocab_size"]
  297. assert max(tokenizer.get_vocab().values()) < vocab_size
  298. tokpre = self.get_vocab_base_pre(tokenizer)
  299. merges = []
  300. vocab = {}
  301. mergeable_ranks = tokenizer.mergeable_ranks
  302. for token, rank in mergeable_ranks.items():
  303. vocab[QwenModel.token_bytes_to_string(token)] = rank
  304. if len(token) == 1:
  305. continue
  306. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  307. assert len(merged) == 2
  308. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  309. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  310. added_vocab = tokenizer.special_tokens
  311. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  312. for i in range(vocab_size):
  313. if i not in reverse_vocab:
  314. tokens.append(f"[PAD{i}]")
  315. toktypes.append(gguf.TokenType.USER_DEFINED)
  316. elif reverse_vocab[i] in added_vocab:
  317. tokens.append(reverse_vocab[i])
  318. toktypes.append(gguf.TokenType.CONTROL)
  319. else:
  320. tokens.append(reverse_vocab[i])
  321. toktypes.append(gguf.TokenType.NORMAL)
  322. self.gguf_writer.add_tokenizer_model("gpt2")
  323. self.gguf_writer.add_tokenizer_pre(tokpre)
  324. self.gguf_writer.add_token_list(tokens)
  325. self.gguf_writer.add_token_types(toktypes)
  326. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  327. special_vocab.merges = merges
  328. # only add special tokens when they were not already loaded from config.json
  329. if len(special_vocab.special_token_ids) == 0:
  330. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  331. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  332. # this one is usually not in config.json anyway
  333. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  334. special_vocab.add_to_gguf(self.gguf_writer)
  335. def _set_vocab_sentencepiece(self):
  336. from sentencepiece import SentencePieceProcessor
  337. tokenizer_path = self.dir_model / 'tokenizer.model'
  338. tokens: list[bytes] = []
  339. scores: list[float] = []
  340. toktypes: list[int] = []
  341. if not tokenizer_path.is_file():
  342. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  343. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  344. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  345. for token_id in range(tokenizer.vocab_size()):
  346. piece = tokenizer.id_to_piece(token_id)
  347. text = piece.encode("utf-8")
  348. score = tokenizer.get_score(token_id)
  349. toktype = SentencePieceTokenTypes.NORMAL
  350. if tokenizer.is_unknown(token_id):
  351. toktype = SentencePieceTokenTypes.UNKNOWN
  352. elif tokenizer.is_control(token_id):
  353. toktype = SentencePieceTokenTypes.CONTROL
  354. elif tokenizer.is_unused(token_id):
  355. toktype = SentencePieceTokenTypes.UNUSED
  356. elif tokenizer.is_byte(token_id):
  357. toktype = SentencePieceTokenTypes.BYTE
  358. tokens.append(text)
  359. scores.append(score)
  360. toktypes.append(toktype)
  361. added_tokens_file = self.dir_model / 'added_tokens.json'
  362. if added_tokens_file.is_file():
  363. with open(added_tokens_file, "r", encoding="utf-8") as f:
  364. added_tokens_json = json.load(f)
  365. for key in added_tokens_json:
  366. key = key.encode("utf-8")
  367. if key not in tokens:
  368. tokens.append(key)
  369. scores.append(-1000.0)
  370. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  371. if vocab_size > len(tokens):
  372. pad_count = vocab_size - len(tokens)
  373. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  374. for i in range(1, pad_count + 1):
  375. tokens.append(f"[PAD{i}]")
  376. scores.append(-1000.0)
  377. toktypes.append(SentencePieceTokenTypes.UNUSED)
  378. assert len(tokens) == vocab_size
  379. self.gguf_writer.add_tokenizer_model("llama")
  380. self.gguf_writer.add_tokenizer_pre("default")
  381. self.gguf_writer.add_token_list(tokens)
  382. self.gguf_writer.add_token_scores(scores)
  383. self.gguf_writer.add_token_types(toktypes)
  384. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  385. special_vocab.add_to_gguf(self.gguf_writer)
  386. def _set_vocab_llama_hf(self):
  387. vocab = LlamaHfVocab(self.dir_model)
  388. tokens = []
  389. scores = []
  390. toktypes = []
  391. for text, score, toktype in vocab.all_tokens():
  392. tokens.append(text)
  393. scores.append(score)
  394. toktypes.append(toktype)
  395. assert len(tokens) == vocab.vocab_size
  396. self.gguf_writer.add_tokenizer_model("llama")
  397. self.gguf_writer.add_tokenizer_pre("default")
  398. self.gguf_writer.add_token_list(tokens)
  399. self.gguf_writer.add_token_scores(scores)
  400. self.gguf_writer.add_token_types(toktypes)
  401. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  402. special_vocab.add_to_gguf(self.gguf_writer)
  403. @Model.register("GPTNeoXForCausalLM")
  404. class GPTNeoXModel(Model):
  405. model_arch = gguf.MODEL_ARCH.GPTNEOX
  406. def set_gguf_parameters(self):
  407. block_count = self.hparams["num_hidden_layers"]
  408. self.gguf_writer.add_name(self.dir_model.name)
  409. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  410. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  411. self.gguf_writer.add_block_count(block_count)
  412. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  413. self.gguf_writer.add_rope_dimension_count(
  414. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  415. )
  416. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  417. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  418. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  419. @Model.register("BloomForCausalLM")
  420. class BloomModel(Model):
  421. model_arch = gguf.MODEL_ARCH.BLOOM
  422. def set_gguf_parameters(self):
  423. self.gguf_writer.add_name("Bloom")
  424. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  425. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  426. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  427. self.gguf_writer.add_embedding_length(n_embed)
  428. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  429. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  430. self.gguf_writer.add_head_count(n_head)
  431. self.gguf_writer.add_head_count_kv(n_head)
  432. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  433. self.gguf_writer.add_file_type(self.ftype)
  434. def write_tensors(self):
  435. block_count = self.hparams["n_layer"]
  436. tensors = dict(self.get_tensors())
  437. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  438. has_lm_head = True
  439. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  440. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  441. for name, data_torch in tensors.items():
  442. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  443. has_lm_head = False
  444. name = re.sub(r'transformer\.', '', name)
  445. old_dtype = data_torch.dtype
  446. # convert any unsupported data types to float32
  447. if data_torch.dtype not in (torch.float16, torch.float32):
  448. data_torch = data_torch.to(torch.float32)
  449. data = data_torch.squeeze().numpy()
  450. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  451. # Map bloom-style qkv_linear to gpt-style qkv_linear
  452. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  453. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  454. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  455. data = np.concatenate(
  456. (
  457. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  458. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  459. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  460. ),
  461. axis=0,
  462. )
  463. logger.info("re-format attention.linear_qkv.weight")
  464. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  465. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  466. data = np.concatenate(
  467. (
  468. qkv_bias[:, 0, :].reshape((n_embed,)),
  469. qkv_bias[:, 1, :].reshape((n_embed,)),
  470. qkv_bias[:, 2, :].reshape((n_embed,)),
  471. ),
  472. axis=0,
  473. )
  474. logger.info("re-format attention.linear_qkv.bias")
  475. # map tensor names
  476. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  477. if new_name is None:
  478. raise ValueError(f"Can not map tensor {name!r}")
  479. n_dims = len(data.shape)
  480. data_dtype = data.dtype
  481. # if f32 desired, convert any float16 to float32
  482. if self.ftype == 0 and data_dtype == np.float16:
  483. data = data.astype(np.float32)
  484. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  485. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  486. data = data.astype(np.float32)
  487. # if f16 desired, convert any float32 2-dim weight tensors to float16
  488. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  489. data = data.astype(np.float16)
  490. logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  491. self.gguf_writer.add_tensor(new_name, data)
  492. if not has_lm_head and name == "word_embeddings.weight":
  493. self.gguf_writer.add_tensor("output.weight", data)
  494. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  495. @Model.register("MPTForCausalLM")
  496. class MPTModel(Model):
  497. model_arch = gguf.MODEL_ARCH.MPT
  498. def set_vocab(self):
  499. try:
  500. self._set_vocab_gpt2()
  501. except Exception:
  502. # Fallback for SEA-LION model
  503. self._set_vocab_sentencepiece()
  504. self.gguf_writer.add_add_bos_token(False)
  505. self.gguf_writer.add_pad_token_id(3)
  506. self.gguf_writer.add_eos_token_id(1)
  507. self.gguf_writer.add_unk_token_id(0)
  508. def set_gguf_parameters(self):
  509. block_count = self.hparams["n_layers"]
  510. self.gguf_writer.add_name(self.dir_model.name)
  511. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  512. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  513. self.gguf_writer.add_block_count(block_count)
  514. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  515. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  516. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  517. self.gguf_writer.add_head_count_kv(kv_n_heads)
  518. self.gguf_writer.add_layer_norm_eps(1e-5)
  519. if self.hparams["attn_config"]["clip_qkv"] is not None:
  520. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  521. if self.hparams["attn_config"]["alibi"]:
  522. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  523. else:
  524. self.gguf_writer.add_max_alibi_bias(0.0)
  525. def write_tensors(self):
  526. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  527. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  528. for name, data_torch in self.get_tensors():
  529. # we don't need these
  530. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  531. continue
  532. old_dtype = data_torch.dtype
  533. # convert any unsupported data types to float32
  534. if data_torch.dtype not in (torch.float16, torch.float32):
  535. data_torch = data_torch.to(torch.float32)
  536. data = data_torch.squeeze().numpy()
  537. # map tensor names
  538. if "scales" in name:
  539. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  540. if new_name is not None:
  541. new_name = new_name.replace("scales", "act.scales")
  542. else:
  543. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  544. if new_name is None:
  545. raise ValueError(f"Can not map tensor {name!r}")
  546. n_dims = len(data.shape)
  547. data_dtype = data.dtype
  548. # if f32 desired, convert any float16 to float32
  549. if self.ftype == 0 and data_dtype == np.float16:
  550. data = data.astype(np.float32)
  551. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  552. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  553. data = data.astype(np.float32)
  554. # if f16 desired, convert any float32 2-dim weight tensors to float16
  555. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  556. data = data.astype(np.float16)
  557. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  558. self.gguf_writer.add_tensor(new_name, data)
  559. @Model.register("OrionForCausalLM")
  560. class OrionModel(Model):
  561. model_arch = gguf.MODEL_ARCH.ORION
  562. def set_vocab(self):
  563. self._set_vocab_sentencepiece()
  564. def set_gguf_parameters(self):
  565. block_count = self.hparams["num_hidden_layers"]
  566. head_count = self.hparams["num_attention_heads"]
  567. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  568. hf_repo = self.hparams.get("_name_or_path", "")
  569. ctx_length = 0
  570. if "max_sequence_length" in self.hparams:
  571. ctx_length = self.hparams["max_sequence_length"]
  572. elif "max_position_embeddings" in self.hparams:
  573. ctx_length = self.hparams["max_position_embeddings"]
  574. elif "model_max_length" in self.hparams:
  575. ctx_length = self.hparams["model_max_length"]
  576. else:
  577. raise ValueError("gguf: can not find ctx length parameter.")
  578. self.gguf_writer.add_file_type(self.ftype)
  579. self.gguf_writer.add_name(self.dir_model.name)
  580. self.gguf_writer.add_source_hf_repo(hf_repo)
  581. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  582. self.gguf_writer.add_context_length(ctx_length)
  583. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  584. self.gguf_writer.add_block_count(block_count)
  585. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  586. self.gguf_writer.add_head_count(head_count)
  587. self.gguf_writer.add_head_count_kv(head_count_kv)
  588. # note: config provides rms norm but it is actually layer norm
  589. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  590. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  591. def write_tensors(self):
  592. # Collect tensors from generator object
  593. model_kv = dict(self.get_tensors())
  594. block_count = self.hparams["num_hidden_layers"]
  595. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  596. for name, data_torch in model_kv.items():
  597. # we don't need these
  598. if name.endswith(".rotary_emb.inv_freq"):
  599. continue
  600. old_dtype = data_torch.dtype
  601. # convert any unsupported data types to float32
  602. if data_torch.dtype not in (torch.float16, torch.float32):
  603. data_torch = data_torch.to(torch.float32)
  604. data = data_torch.squeeze().numpy()
  605. # map tensor names
  606. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  607. if new_name is None:
  608. raise ValueError(f"Can not map tensor {name!r}")
  609. n_dims = len(data.shape)
  610. data_dtype = data.dtype
  611. # if f32 desired, convert any float16 to float32
  612. if self.ftype == 0 and data_dtype == np.float16:
  613. data = data.astype(np.float32)
  614. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  615. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  616. data = data.astype(np.float32)
  617. # if f16 desired, convert any float32 2-dim weight tensors to float16
  618. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  619. data = data.astype(np.float16)
  620. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  621. self.gguf_writer.add_tensor(new_name, data)
  622. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  623. class BaichuanModel(Model):
  624. model_arch = gguf.MODEL_ARCH.BAICHUAN
  625. def set_vocab(self):
  626. self._set_vocab_sentencepiece()
  627. def set_gguf_parameters(self):
  628. block_count = self.hparams["num_hidden_layers"]
  629. head_count = self.hparams["num_attention_heads"]
  630. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  631. hf_repo = self.hparams.get("_name_or_path", "")
  632. ctx_length = 0
  633. if "max_sequence_length" in self.hparams:
  634. ctx_length = self.hparams["max_sequence_length"]
  635. elif "max_position_embeddings" in self.hparams:
  636. ctx_length = self.hparams["max_position_embeddings"]
  637. elif "model_max_length" in self.hparams:
  638. ctx_length = self.hparams["model_max_length"]
  639. else:
  640. raise ValueError("gguf: can not find ctx length parameter.")
  641. self.gguf_writer.add_name(self.dir_model.name)
  642. self.gguf_writer.add_source_hf_repo(hf_repo)
  643. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  644. self.gguf_writer.add_context_length(ctx_length)
  645. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  646. self.gguf_writer.add_block_count(block_count)
  647. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  648. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  649. self.gguf_writer.add_head_count(head_count)
  650. self.gguf_writer.add_head_count_kv(head_count_kv)
  651. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  652. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  653. if self.hparams["rope_scaling"].get("type") == "linear":
  654. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  655. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  656. def write_tensors(self):
  657. # Collect tensors from generator object
  658. model_kv = dict(self.get_tensors())
  659. block_count = self.hparams["num_hidden_layers"]
  660. head_count = self.hparams["num_attention_heads"]
  661. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  662. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  663. for i in range(block_count):
  664. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  665. logger.info(f"Unpacking and permuting layer {i}")
  666. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  667. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  668. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  669. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  670. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  671. self._reverse_hf_part(w, 2)
  672. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  673. for name, data_torch in model_kv.items():
  674. # we don't need these
  675. if name.endswith(".rotary_emb.inv_freq"):
  676. continue
  677. old_dtype = data_torch.dtype
  678. # convert any unsupported data types to float32
  679. if data_torch.dtype not in (torch.float16, torch.float32):
  680. data_torch = data_torch.to(torch.float32)
  681. data = data_torch.squeeze().numpy()
  682. # map tensor names
  683. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  684. if new_name is None:
  685. raise ValueError(f"Can not map tensor {name!r}")
  686. n_dims = len(data.shape)
  687. data_dtype = data.dtype
  688. # if f32 desired, convert any float16 to float32
  689. if self.ftype == 0 and data_dtype == np.float16:
  690. data = data.astype(np.float32)
  691. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  692. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  693. data = data.astype(np.float32)
  694. # if f16 desired, convert any float32 2-dim weight tensors to float16
  695. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  696. data = data.astype(np.float16)
  697. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  698. self.gguf_writer.add_tensor(new_name, data)
  699. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  700. if n_kv_head is not None and n_head != n_kv_head:
  701. n_head //= n_kv_head
  702. return (
  703. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  704. .swapaxes(1, 2)
  705. .reshape(weights.shape)
  706. )
  707. def _reverse_hf_permute_part(
  708. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  709. ) -> Tensor:
  710. r = weights.shape[0] // 3
  711. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  712. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  713. r = weights.shape[0] // 3
  714. return weights[r * n_part:r * n_part + r, ...]
  715. @Model.register("XverseForCausalLM")
  716. class XverseModel(Model):
  717. model_arch = gguf.MODEL_ARCH.XVERSE
  718. def set_vocab(self):
  719. assert (self.dir_model / "tokenizer.json").is_file()
  720. dir_model = self.dir_model
  721. hparams = self.hparams
  722. tokens: list[bytearray] = []
  723. toktypes: list[int] = []
  724. from transformers import AutoTokenizer
  725. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  726. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  727. assert max(tokenizer.vocab.values()) < vocab_size
  728. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  729. added_vocab = tokenizer.get_added_vocab()
  730. for token_id in range(vocab_size):
  731. token_text = reverse_vocab[token_id].encode('utf-8')
  732. # replace "\x00" to string with length > 0
  733. if token_text == b"\x00":
  734. toktype = gguf.TokenType.BYTE # special
  735. token_text = f"<{token_text}>".encode('utf-8')
  736. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  737. toktype = gguf.TokenType.BYTE # special
  738. elif reverse_vocab[token_id] in added_vocab:
  739. if tokenizer.added_tokens_decoder[token_id].special:
  740. toktype = gguf.TokenType.CONTROL
  741. else:
  742. toktype = gguf.TokenType.USER_DEFINED
  743. else:
  744. toktype = gguf.TokenType.NORMAL
  745. tokens.append(token_text)
  746. toktypes.append(toktype)
  747. self.gguf_writer.add_tokenizer_model("llama")
  748. self.gguf_writer.add_tokenizer_pre("default")
  749. self.gguf_writer.add_token_list(tokens)
  750. self.gguf_writer.add_token_types(toktypes)
  751. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  752. special_vocab.add_to_gguf(self.gguf_writer)
  753. def set_gguf_parameters(self):
  754. block_count = self.hparams["num_hidden_layers"]
  755. head_count = self.hparams["num_attention_heads"]
  756. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  757. hf_repo = self.hparams.get("_name_or_path", "")
  758. ctx_length = 0
  759. if "max_sequence_length" in self.hparams:
  760. ctx_length = self.hparams["max_sequence_length"]
  761. elif "max_position_embeddings" in self.hparams:
  762. ctx_length = self.hparams["max_position_embeddings"]
  763. elif "model_max_length" in self.hparams:
  764. ctx_length = self.hparams["model_max_length"]
  765. else:
  766. raise ValueError("gguf: can not find ctx length parameter.")
  767. self.gguf_writer.add_name(self.dir_model.name)
  768. self.gguf_writer.add_source_hf_repo(hf_repo)
  769. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  770. self.gguf_writer.add_context_length(ctx_length)
  771. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  772. self.gguf_writer.add_block_count(block_count)
  773. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  774. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  775. self.gguf_writer.add_head_count(head_count)
  776. self.gguf_writer.add_head_count_kv(head_count_kv)
  777. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  778. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  779. if self.hparams["rope_scaling"].get("type") == "linear":
  780. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  781. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  782. def write_tensors(self):
  783. # Collect tensors from generator object
  784. model_kv = dict(self.get_tensors())
  785. block_count = self.hparams["num_hidden_layers"]
  786. head_count = self.hparams["num_attention_heads"]
  787. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  788. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  789. for name, data_torch in model_kv.items():
  790. # we don't need these
  791. if name.endswith(".rotary_emb.inv_freq"):
  792. continue
  793. old_dtype = data_torch.dtype
  794. # convert any unsupported data types to float32
  795. if data_torch.dtype not in (torch.float16, torch.float32):
  796. data_torch = data_torch.to(torch.float32)
  797. # HF models permute some of the tensors, so we need to undo that
  798. if name.endswith(("q_proj.weight")):
  799. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  800. if name.endswith(("k_proj.weight")):
  801. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  802. data = data_torch.squeeze().numpy()
  803. # map tensor names
  804. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  805. if new_name is None:
  806. raise ValueError(f"Can not map tensor {name!r}")
  807. n_dims = len(data.shape)
  808. data_dtype = data.dtype
  809. # if f32 desired, convert any float16 to float32
  810. if self.ftype == 0 and data_dtype == np.float16:
  811. data = data.astype(np.float32)
  812. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  813. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  814. data = data.astype(np.float32)
  815. # if f16 desired, convert any float32 2-dim weight tensors to float16
  816. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  817. data = data.astype(np.float16)
  818. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  819. self.gguf_writer.add_tensor(new_name, data)
  820. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  821. if n_kv_head is not None and n_head != n_kv_head:
  822. n_head //= n_kv_head
  823. return (
  824. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  825. .swapaxes(1, 2)
  826. .reshape(weights.shape)
  827. )
  828. @Model.register("FalconForCausalLM", "RWForCausalLM")
  829. class FalconModel(Model):
  830. model_arch = gguf.MODEL_ARCH.FALCON
  831. def set_gguf_parameters(self):
  832. block_count = self.hparams.get("num_hidden_layers")
  833. if block_count is None:
  834. block_count = self.hparams["n_layer"] # old name
  835. n_head = self.hparams.get("num_attention_heads")
  836. if n_head is None:
  837. n_head = self.hparams["n_head"] # old name
  838. n_head_kv = self.hparams.get("num_kv_heads")
  839. if n_head_kv is None:
  840. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  841. self.gguf_writer.add_name("Falcon")
  842. self.gguf_writer.add_context_length(2048) # not in config.json
  843. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  844. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  845. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  846. self.gguf_writer.add_block_count(block_count)
  847. self.gguf_writer.add_head_count(n_head)
  848. self.gguf_writer.add_head_count_kv(n_head_kv)
  849. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  850. self.gguf_writer.add_file_type(self.ftype)
  851. def write_tensors(self):
  852. block_count = self.hparams.get("num_hidden_layers")
  853. if block_count is None:
  854. block_count = self.hparams["n_layer"] # old name
  855. n_head = self.hparams.get("num_attention_heads")
  856. if n_head is None:
  857. n_head = self.hparams["n_head"] # old name
  858. n_head_kv = self.hparams.get("num_kv_heads")
  859. if n_head_kv is None:
  860. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  861. head_dim = self.hparams["hidden_size"] // n_head
  862. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  863. for name, data_torch in self.get_tensors():
  864. old_dtype = data_torch.dtype
  865. # convert any unsupported data types to float32
  866. if data_torch.dtype not in (torch.float16, torch.float32):
  867. data_torch = data_torch.to(torch.float32)
  868. # QKV tensor transform
  869. # The original query_key_value tensor contains n_head_kv "kv groups",
  870. # each consisting of n_head/n_head_kv query weights followed by one key
  871. # and one value weight (shared by all query heads in the kv group).
  872. # This layout makes it a big pain to work with in GGML.
  873. # So we rearrange them here,, so that we have n_head query weights
  874. # followed by n_head_kv key weights followed by n_head_kv value weights,
  875. # in contiguous fashion.
  876. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  877. if "query_key_value" in name:
  878. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  879. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  880. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  881. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  882. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  883. data = data_torch.squeeze().numpy()
  884. # map tensor names
  885. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  886. if new_name is None:
  887. raise ValueError(f"Can not map tensor {name!r}")
  888. n_dims = len(data.shape)
  889. data_dtype = data.dtype
  890. # if f32 desired, convert any float16 to float32
  891. if self.ftype == 0 and data_dtype == np.float16:
  892. data = data.astype(np.float32)
  893. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  894. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  895. data = data.astype(np.float32)
  896. # if f16 desired, convert any float32 2-dim weight tensors to float16
  897. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  898. data = data.astype(np.float16)
  899. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  900. self.gguf_writer.add_tensor(new_name, data)
  901. @Model.register("GPTBigCodeForCausalLM")
  902. class StarCoderModel(Model):
  903. model_arch = gguf.MODEL_ARCH.STARCODER
  904. def set_gguf_parameters(self):
  905. block_count = self.hparams["n_layer"]
  906. self.gguf_writer.add_name("StarCoder")
  907. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  908. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  909. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  910. self.gguf_writer.add_block_count(block_count)
  911. self.gguf_writer.add_head_count(self.hparams["n_head"])
  912. self.gguf_writer.add_head_count_kv(1)
  913. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  914. self.gguf_writer.add_file_type(self.ftype)
  915. @Model.register("GPTRefactForCausalLM")
  916. class RefactModel(Model):
  917. model_arch = gguf.MODEL_ARCH.REFACT
  918. def set_gguf_parameters(self):
  919. hidden_dim = self.hparams["n_embd"]
  920. inner_dim = 4 * hidden_dim
  921. hidden_dim = int(2 * inner_dim / 3)
  922. multiple_of = 256
  923. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  924. block_count = self.hparams["n_layer"]
  925. self.gguf_writer.add_name("Refact")
  926. # refact uses Alibi. So this is from config.json which might be used by training.
  927. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  928. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  929. self.gguf_writer.add_feed_forward_length(ff_dim)
  930. self.gguf_writer.add_block_count(block_count)
  931. self.gguf_writer.add_head_count(self.hparams["n_head"])
  932. self.gguf_writer.add_head_count_kv(1)
  933. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  934. self.gguf_writer.add_file_type(self.ftype)
  935. def write_tensors(self):
  936. hidden_dim = self.hparams["n_embd"]
  937. inner_dim = 4 * hidden_dim
  938. hidden_dim = int(2 * inner_dim / 3)
  939. multiple_of = 256
  940. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  941. n_head = self.hparams["n_head"]
  942. n_head_kv = 1
  943. head_dim = self.hparams["n_embd"] // n_head
  944. block_count = self.hparams["n_layer"]
  945. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  946. tensors = dict(self.get_tensors())
  947. for i in range(block_count):
  948. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  949. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  950. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  951. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  952. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  953. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  954. del tensors[f"transformer.h.{i}.attn.q.weight"]
  955. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  956. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  957. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  958. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  959. for name, data_torch in tensors.items():
  960. old_dtype = data_torch.dtype
  961. # convert any unsupported data types to float32
  962. if data_torch.dtype not in (torch.float16, torch.float32):
  963. data_torch = data_torch.to(torch.float32)
  964. data = data_torch.squeeze().numpy()
  965. # map tensor names
  966. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  967. if new_name is None:
  968. raise ValueError(f"Can not map tensor {name!r}")
  969. n_dims = len(data.shape)
  970. data_dtype = data.dtype
  971. # if f32 desired, convert any float16 to float32
  972. if self.ftype == 0 and data_dtype == np.float16:
  973. data = data.astype(np.float32)
  974. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  975. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  976. data = data.astype(np.float32)
  977. # if f16 desired, convert any float32 2-dim weight tensors to float16
  978. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  979. data = data.astype(np.float16)
  980. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  981. self.gguf_writer.add_tensor(new_name, data)
  982. @Model.register("PersimmonForCausalLM")
  983. class PersimmonModel(Model):
  984. model_arch = gguf.MODEL_ARCH.PERSIMMON
  985. def set_gguf_parameters(self):
  986. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  987. head_count = self.hparams["num_attention_heads"]
  988. head_count_kv = head_count
  989. hidden_size = self.hparams["hidden_size"]
  990. self.gguf_writer.add_name('persimmon-8b-chat')
  991. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  992. self.gguf_writer.add_embedding_length(hidden_size)
  993. self.gguf_writer.add_block_count(block_count)
  994. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  995. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  996. # than the head size?
  997. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  998. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  999. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  1000. self.gguf_writer.add_head_count(head_count)
  1001. self.gguf_writer.add_head_count_kv(head_count_kv)
  1002. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1003. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1004. def set_vocab(self):
  1005. self._set_vocab_sentencepiece()
  1006. # self.gguf_writer.add_bos_token_id(71013)
  1007. # self.gguf_writer.add_eos_token_id(71013)
  1008. def write_tensors(self):
  1009. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1010. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1011. for name, data_torch in self.get_tensors():
  1012. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  1013. continue
  1014. old_dtype = data_torch.dtype
  1015. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  1016. data = data_torch.to(torch.float32).squeeze().numpy()
  1017. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1018. if new_name is None:
  1019. raise ValueError(f"Can not map tensor {name!r}")
  1020. n_dims = len(data.shape)
  1021. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1022. self.gguf_writer.add_tensor(new_name, data)
  1023. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1024. class StableLMModel(Model):
  1025. model_arch = gguf.MODEL_ARCH.STABLELM
  1026. def set_vocab(self):
  1027. if (self.dir_model / "tokenizer.json").is_file():
  1028. self._set_vocab_gpt2()
  1029. else:
  1030. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1031. self._set_vocab_qwen()
  1032. def set_gguf_parameters(self):
  1033. hparams = self.hparams
  1034. block_count = hparams["num_hidden_layers"]
  1035. self.gguf_writer.add_name(self.dir_model.name)
  1036. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1037. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1038. self.gguf_writer.add_block_count(block_count)
  1039. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1040. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1041. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1042. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1043. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1044. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1045. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1046. def write_tensors(self):
  1047. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1048. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1049. n_head = self.hparams.get("num_attention_heads")
  1050. n_kv_head = self.hparams.get("num_key_value_heads")
  1051. q_norms = dict()
  1052. k_norms = dict()
  1053. for name, data_torch in self.get_tensors():
  1054. # we don't need these
  1055. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1056. continue
  1057. old_dtype = data_torch.dtype
  1058. # convert any unsupported data types to float32
  1059. if data_torch.dtype not in (torch.float16, torch.float32):
  1060. data_torch = data_torch.to(torch.float32)
  1061. data = data_torch.squeeze().numpy()
  1062. n_dims = len(data.shape)
  1063. if name.find("q_layernorm.norms") != -1:
  1064. q_norms[name] = data
  1065. if len(q_norms) >= (block_count * n_head):
  1066. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  1067. continue
  1068. if name.find("k_layernorm.norms") != -1:
  1069. k_norms[name] = data
  1070. if len(k_norms) >= (block_count * n_kv_head):
  1071. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1072. continue
  1073. # map tensor names
  1074. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1075. if new_name is None:
  1076. raise ValueError(f"Can not map tensor {name!r}")
  1077. n_dims = len(data.shape)
  1078. data_dtype = data.dtype
  1079. # if f32 desired, convert any float16 to float32
  1080. if self.ftype == 0 and data_dtype == np.float16:
  1081. data = data.astype(np.float32)
  1082. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1083. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1084. data = data.astype(np.float32)
  1085. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1086. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1087. data = data.astype(np.float16)
  1088. logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1089. self.gguf_writer.add_tensor(new_name, data)
  1090. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1091. for bid in range(block_count):
  1092. datas = []
  1093. for xid in range(n_head):
  1094. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1095. datas.append(norms[ename])
  1096. del norms[ename]
  1097. data = np.stack(datas, axis=0)
  1098. data_dtype = data.dtype
  1099. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1100. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1101. if new_name is None:
  1102. raise ValueError(f"Can not map tensor {name!r}")
  1103. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1104. data = data.astype(np.float32)
  1105. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1106. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1107. data = data.astype(np.float16)
  1108. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1109. self.gguf_writer.add_tensor(new_name, data)
  1110. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1111. class LlamaModel(Model):
  1112. model_arch = gguf.MODEL_ARCH.LLAMA
  1113. def set_vocab(self):
  1114. try:
  1115. self. _set_vocab_sentencepiece()
  1116. except FileNotFoundError:
  1117. try:
  1118. self._set_vocab_llama_hf()
  1119. except (FileNotFoundError, TypeError):
  1120. # Llama 3
  1121. self._set_vocab_gpt2()
  1122. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1123. if self.hparams.get("vocab_size", 32000) == 32016:
  1124. special_vocab = gguf.SpecialVocab(
  1125. self.dir_model, load_merges=False,
  1126. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1127. )
  1128. special_vocab._set_special_token("prefix", 32007)
  1129. special_vocab._set_special_token("suffix", 32008)
  1130. special_vocab._set_special_token("middle", 32009)
  1131. special_vocab._set_special_token("eot", 32010)
  1132. special_vocab.add_to_gguf(self.gguf_writer)
  1133. def set_gguf_parameters(self):
  1134. super().set_gguf_parameters()
  1135. hparams = self.hparams
  1136. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1137. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1138. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1139. if self.hparams["rope_scaling"].get("type") == "linear":
  1140. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1141. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1142. # Same as super class, but permuting q_proj, k_proj
  1143. def write_tensors(self):
  1144. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1145. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1146. n_head = self.hparams.get("num_attention_heads")
  1147. n_kv_head = self.hparams.get("num_key_value_heads")
  1148. n_experts = self.hparams.get("num_local_experts")
  1149. experts = dict()
  1150. for name, data_torch in self.get_tensors():
  1151. # we don't need these
  1152. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  1153. continue
  1154. old_dtype = data_torch.dtype
  1155. # convert any unsupported data types to float32
  1156. if data_torch.dtype not in (torch.float16, torch.float32):
  1157. data_torch = data_torch.to(torch.float32)
  1158. data = data_torch.numpy()
  1159. if name.endswith("q_proj.weight"):
  1160. data = permute(data, n_head, n_head)
  1161. if name.endswith("k_proj.weight"):
  1162. data = permute(data, n_head, n_kv_head)
  1163. data = data.squeeze()
  1164. # process the experts separately
  1165. if name.find("block_sparse_moe.experts") != -1:
  1166. experts[name] = data
  1167. if len(experts) >= n_experts:
  1168. # merge the experts into a single 3d tensor
  1169. for bid in range(block_count):
  1170. for wid in range(1, 4):
  1171. full = True
  1172. for xid in range(n_experts):
  1173. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1174. if ename not in experts:
  1175. full = False
  1176. break
  1177. if not full:
  1178. continue
  1179. datas = []
  1180. for xid in range(n_experts):
  1181. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1182. datas.append(experts[ename])
  1183. del experts[ename]
  1184. data = np.stack(datas, axis=0)
  1185. data_dtype = data.dtype
  1186. if self.ftype == 0 and data_dtype == np.float16:
  1187. data = data.astype(np.float32)
  1188. if self.ftype == 1 and data_dtype == np.float32:
  1189. data = data.astype(np.float16)
  1190. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1191. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1192. if new_name is None:
  1193. raise ValueError(f"Can not map tensor {name!r}")
  1194. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1195. self.gguf_writer.add_tensor(new_name, data)
  1196. continue
  1197. # map tensor names
  1198. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1199. if new_name is None:
  1200. raise ValueError(f"Can not map tensor {name!r}")
  1201. n_dims = len(data.shape)
  1202. data_dtype = data.dtype
  1203. # if f32 desired, convert any float16 to float32
  1204. if self.ftype == 0 and data_dtype == np.float16:
  1205. data = data.astype(np.float32)
  1206. # 1d tensors need to be converted to float32
  1207. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1208. data = data.astype(np.float32)
  1209. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1210. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1211. data = data.astype(np.float16)
  1212. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1213. self.gguf_writer.add_tensor(new_name, data)
  1214. if len(experts) > 0:
  1215. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1216. @Model.register("GrokForCausalLM")
  1217. class GrokModel(Model):
  1218. model_arch = gguf.MODEL_ARCH.GROK
  1219. def set_vocab(self):
  1220. self._set_vocab_sentencepiece()
  1221. def __init__(self, *args, **kwargs):
  1222. super().__init__(*args, **kwargs)
  1223. def set_gguf_parameters(self):
  1224. super().set_gguf_parameters()
  1225. self.gguf_writer.add_name("Grok")
  1226. def write_tensors(self):
  1227. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1228. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1229. n_experts = self.hparams.get("num_local_experts")
  1230. experts = dict()
  1231. for name, data_torch in self.get_tensors():
  1232. # we don't need these
  1233. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1234. continue
  1235. old_dtype = data_torch.dtype
  1236. # convert any unsupported data types to float32
  1237. if data_torch.dtype not in (torch.float16, torch.float32):
  1238. data_torch = data_torch.to(torch.float32)
  1239. data = data_torch.squeeze().numpy()
  1240. # process the experts separately
  1241. if name.find(".moe.") != -1:
  1242. experts[name] = data
  1243. if len(experts) >= n_experts:
  1244. # merge the experts into a single 3d tensor
  1245. for bid in range(block_count):
  1246. for wid in ["linear", "linear_1", "linear_v"]:
  1247. full = True
  1248. for xid in range(n_experts):
  1249. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1250. if ename not in experts:
  1251. full = False
  1252. break
  1253. if not full:
  1254. continue
  1255. datas = []
  1256. for xid in range(n_experts):
  1257. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1258. datas.append(experts[ename])
  1259. del experts[ename]
  1260. data = np.stack(datas, axis=0)
  1261. data_dtype = data.dtype
  1262. if self.ftype == 0 and data_dtype == np.float16:
  1263. data = data.astype(np.float32)
  1264. if self.ftype == 1 and data_dtype == np.float32:
  1265. data = data.astype(np.float16)
  1266. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1267. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1268. if new_name is None:
  1269. raise ValueError(f"Can not map tensor {name!r}")
  1270. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1271. self.gguf_writer.add_tensor(new_name, data)
  1272. continue
  1273. # map tensor names
  1274. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1275. if new_name is None:
  1276. raise ValueError(f"Can not map tensor {name!r}")
  1277. n_dims = len(data.shape)
  1278. data_dtype = data.dtype
  1279. # if f32 desired, convert any float16 to float32
  1280. if self.ftype == 0 and data_dtype == np.float16:
  1281. data = data.astype(np.float32)
  1282. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1283. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1284. data = data.astype(np.float32)
  1285. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1286. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1287. data = data.astype(np.float16)
  1288. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1289. self.gguf_writer.add_tensor(new_name, data)
  1290. @Model.register("DbrxForCausalLM")
  1291. class DbrxModel(Model):
  1292. model_arch = gguf.MODEL_ARCH.DBRX
  1293. def set_gguf_parameters(self):
  1294. ffn_config = self.hparams["ffn_config"]
  1295. attn_config = self.hparams["attn_config"]
  1296. self.gguf_writer.add_name(self.hparams["model_type"])
  1297. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1298. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1299. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1300. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1301. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1302. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1303. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1304. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1305. self.gguf_writer.add_file_type(self.ftype)
  1306. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1307. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1308. self.gguf_writer.add_layer_norm_eps(1e-5)
  1309. self.gguf_writer.add_file_type(self.ftype)
  1310. logger.info(f"gguf: file type = {self.ftype}")
  1311. def write_tensors(self):
  1312. block_count = self.hparams.get("n_layers")
  1313. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1314. for name, data_torch in self.get_tensors():
  1315. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1316. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1317. n_embd = self.hparams["d_model"]
  1318. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1319. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1320. # But llama.cpp moe graph works differently
  1321. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1322. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1323. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1324. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1325. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1326. experts = False
  1327. for exp_tensor_name in exp_tensor_names.keys():
  1328. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1329. experts = True
  1330. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1331. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1332. data_torch = data_torch.permute(*permute_tensor)
  1333. break
  1334. old_dtype = data_torch.dtype
  1335. # convert any unsupported data types to float32
  1336. if data_torch.dtype not in (torch.float16, torch.float32):
  1337. data_torch = data_torch.to(torch.float32)
  1338. data = data_torch.squeeze().numpy()
  1339. # map tensor names
  1340. # In MoE models the ffn tensors are typically most of the model weights,
  1341. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1342. # Every other model has the weight names ending in .weight,
  1343. # let's assume that is the convention which is not the case for dbrx:
  1344. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1345. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1346. if new_name is None:
  1347. raise ValueError(f"Can not map tensor {name!r}")
  1348. n_dims = len(data.shape)
  1349. data_dtype = data.dtype
  1350. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1351. # and most of the outputs tensors are F32.
  1352. if data_dtype != np.float32 and n_dims == 1:
  1353. raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1354. # if f32 desired, convert any float16 to float32
  1355. if self.ftype == 0 and data_dtype == np.float16:
  1356. data = data.astype(np.float32)
  1357. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1358. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1359. data = data.astype(np.float16)
  1360. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1361. self.gguf_writer.add_tensor(new_name, data)
  1362. @Model.register("MiniCPMForCausalLM")
  1363. class MiniCPMModel(Model):
  1364. model_arch = gguf.MODEL_ARCH.MINICPM
  1365. def set_gguf_parameters(self):
  1366. block_count = self.hparams["num_hidden_layers"]
  1367. self.gguf_writer.add_name("MiniCPM")
  1368. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1369. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1370. self.gguf_writer.add_block_count(block_count)
  1371. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1372. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1373. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1374. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1375. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1376. self.gguf_writer.add_file_type(self.ftype)
  1377. def set_vocab(self):
  1378. self._set_vocab_llama_hf()
  1379. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1380. if n_kv_head is not None and n_head != n_kv_head:
  1381. n_head //= n_kv_head
  1382. return (
  1383. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1384. .swapaxes(1, 2)
  1385. .reshape(weights.shape)
  1386. )
  1387. def write_tensors(self):
  1388. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1389. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1390. n_head = self.hparams.get("num_attention_heads")
  1391. n_kv_head = self.hparams.get("num_key_value_heads")
  1392. for name, data_torch in self.get_tensors():
  1393. # we don't need these
  1394. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1395. continue
  1396. old_dtype = data_torch.dtype
  1397. # convert any unsupported data types to float32
  1398. if data_torch.dtype not in (torch.float16, torch.float32):
  1399. data_torch = data_torch.to(torch.float32)
  1400. # HF models permute some of the tensors, so we need to undo that
  1401. if name.endswith(("q_proj.weight")):
  1402. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1403. if name.endswith(("k_proj.weight")):
  1404. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1405. data = data_torch.squeeze().numpy()
  1406. # map tensor names
  1407. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1408. if new_name is None:
  1409. raise ValueError(f"Can not map tensor {name!r}")
  1410. n_dims = len(data.shape)
  1411. data_dtype = data.dtype
  1412. # if f32 desired, convert any float16 to float32
  1413. if self.ftype == 0 and data_dtype == np.float16:
  1414. data = data.astype(np.float32)
  1415. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1416. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1417. data = data.astype(np.float32)
  1418. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1419. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1420. data = data.astype(np.float16)
  1421. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1422. self.gguf_writer.add_tensor(new_name, data)
  1423. @Model.register("QWenLMHeadModel")
  1424. class QwenModel(Model):
  1425. model_arch = gguf.MODEL_ARCH.QWEN
  1426. @staticmethod
  1427. def token_bytes_to_string(b):
  1428. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1429. byte_encoder = bytes_to_unicode()
  1430. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1431. @staticmethod
  1432. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1433. parts = [bytes([b]) for b in token]
  1434. while True:
  1435. min_idx = None
  1436. min_rank = None
  1437. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1438. rank = mergeable_ranks.get(pair[0] + pair[1])
  1439. if rank is not None and (min_rank is None or rank < min_rank):
  1440. min_idx = i
  1441. min_rank = rank
  1442. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1443. break
  1444. assert min_idx is not None
  1445. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1446. return parts
  1447. def set_vocab(self):
  1448. self._set_vocab_qwen()
  1449. def set_gguf_parameters(self):
  1450. self.gguf_writer.add_name("Qwen")
  1451. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1452. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1453. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1454. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1455. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1456. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1457. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1458. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1459. def write_tensors(self):
  1460. block_count = self.hparams["num_hidden_layers"]
  1461. model_kv = dict(self.get_tensors())
  1462. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1463. for name, data_torch in model_kv.items():
  1464. # we don't need these
  1465. if name.endswith(".rotary_emb.inv_freq"):
  1466. continue
  1467. old_dtype = data_torch.dtype
  1468. # convert any unsupported data types to float32
  1469. if data_torch.dtype not in (torch.float16, torch.float32):
  1470. data_torch = data_torch.to(torch.float32)
  1471. data = data_torch.squeeze().numpy()
  1472. # map tensor names
  1473. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1474. if new_name is None:
  1475. raise ValueError(f"Can not map tensor {name!r}")
  1476. n_dims = len(data.shape)
  1477. data_dtype = data.dtype
  1478. # if f32 desired, convert any float16 to float32
  1479. if self.ftype == 0 and data_dtype == np.float16:
  1480. data = data.astype(np.float32)
  1481. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1482. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1483. data = data.astype(np.float32)
  1484. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1485. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1486. data = data.astype(np.float16)
  1487. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1488. self.gguf_writer.add_tensor(new_name, data)
  1489. @Model.register("Qwen2ForCausalLM")
  1490. class Qwen2Model(Model):
  1491. model_arch = gguf.MODEL_ARCH.QWEN2
  1492. def set_vocab(self):
  1493. try:
  1494. self._set_vocab_sentencepiece()
  1495. except FileNotFoundError:
  1496. self._set_vocab_gpt2()
  1497. @Model.register("Qwen2MoeForCausalLM")
  1498. class Qwen2MoeModel(Model):
  1499. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1500. def set_gguf_parameters(self):
  1501. super().set_gguf_parameters()
  1502. if (n_experts := self.hparams.get("num_experts")) is not None:
  1503. self.gguf_writer.add_expert_count(n_experts)
  1504. def write_tensors(self):
  1505. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1506. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1507. n_experts = self.hparams.get("num_experts")
  1508. experts = dict()
  1509. for name, data_torch in self.get_tensors():
  1510. # we don't need these
  1511. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1512. continue
  1513. old_dtype = data_torch.dtype
  1514. # convert any unsupported data types to float32
  1515. if data_torch.dtype not in (torch.float16, torch.float32):
  1516. data_torch = data_torch.to(torch.float32)
  1517. data = data_torch.squeeze().numpy()
  1518. # process the experts separately
  1519. if name.find("experts") != -1:
  1520. experts[name] = data
  1521. if len(experts) >= n_experts * 3:
  1522. # merge the experts into a single 3d tensor
  1523. for bid in range(block_count):
  1524. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1525. full = True
  1526. for xid in range(n_experts):
  1527. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1528. if ename not in experts:
  1529. full = False
  1530. break
  1531. if not full:
  1532. continue
  1533. datas = []
  1534. for xid in range(n_experts):
  1535. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1536. datas.append(experts[ename])
  1537. del experts[ename]
  1538. data = np.stack(datas, axis=0)
  1539. data_dtype = data.dtype
  1540. if self.ftype == 0 and data_dtype == np.float16:
  1541. data = data.astype(np.float32)
  1542. if self.ftype == 1 and data_dtype == np.float32:
  1543. data = data.astype(np.float16)
  1544. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1545. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1546. if new_name is None:
  1547. raise ValueError(f"Can not map tensor {name!r}")
  1548. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1549. self.gguf_writer.add_tensor(new_name, data)
  1550. continue
  1551. # map tensor names
  1552. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1553. if new_name is None:
  1554. raise ValueError(f"Can not map tensor {name!r}")
  1555. n_dims = len(data.shape)
  1556. data_dtype = data.dtype
  1557. # if f32 desired, convert any float16 to float32
  1558. if self.ftype == 0 and data_dtype == np.float16:
  1559. data = data.astype(np.float32)
  1560. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1561. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1562. data = data.astype(np.float32)
  1563. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1564. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1565. data = data.astype(np.float16)
  1566. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1567. self.gguf_writer.add_tensor(new_name, data)
  1568. if len(experts) > 0:
  1569. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1570. @Model.register("GPT2LMHeadModel")
  1571. class GPT2Model(Model):
  1572. model_arch = gguf.MODEL_ARCH.GPT2
  1573. def set_gguf_parameters(self):
  1574. self.gguf_writer.add_name(self.dir_model.name)
  1575. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1576. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1577. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1578. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1579. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1580. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1581. self.gguf_writer.add_file_type(self.ftype)
  1582. def write_tensors(self):
  1583. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1584. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1585. for name, data_torch in self.get_tensors():
  1586. # we don't need these
  1587. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1588. continue
  1589. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1590. data_torch = data_torch.transpose(1, 0)
  1591. old_dtype = data_torch.dtype
  1592. # convert any unsupported data types to float32
  1593. if data_torch.dtype not in (torch.float16, torch.float32):
  1594. data_torch = data_torch.to(torch.float32)
  1595. data = data_torch.squeeze().numpy()
  1596. # map tensor names
  1597. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1598. if new_name is None:
  1599. raise ValueError(f"Can not map tensor {name!r}")
  1600. n_dims = len(data.shape)
  1601. data_dtype = data.dtype
  1602. # if f32 desired, convert any float16 to float32
  1603. if self.ftype == 0 and data_dtype == np.float16:
  1604. data = data.astype(np.float32)
  1605. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1606. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1607. data = data.astype(np.float32)
  1608. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1609. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1610. data = data.astype(np.float16)
  1611. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1612. self.gguf_writer.add_tensor(new_name, data)
  1613. # note: GPT2 output is tied to (same as) wte in original model
  1614. if new_name == "token_embd.weight":
  1615. logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1616. self.gguf_writer.add_tensor("output.weight", data)
  1617. @Model.register("PhiForCausalLM")
  1618. class Phi2Model(Model):
  1619. model_arch = gguf.MODEL_ARCH.PHI2
  1620. def set_gguf_parameters(self):
  1621. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1622. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1623. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1624. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1625. self.gguf_writer.add_name("Phi2")
  1626. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1627. self.gguf_writer.add_embedding_length(n_embd)
  1628. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1629. self.gguf_writer.add_block_count(block_count)
  1630. self.gguf_writer.add_head_count(n_head)
  1631. self.gguf_writer.add_head_count_kv(n_head)
  1632. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1633. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1634. self.gguf_writer.add_file_type(self.ftype)
  1635. self.gguf_writer.add_add_bos_token(False)
  1636. @Model.register("Phi3ForCausalLM")
  1637. class Phi3MiniModel(Model):
  1638. model_arch = gguf.MODEL_ARCH.PHI3
  1639. def set_vocab(self):
  1640. from sentencepiece import SentencePieceProcessor
  1641. tokenizer_path = self.dir_model / 'tokenizer.model'
  1642. if not tokenizer_path.is_file():
  1643. raise ValueError(f'Error: Missing {tokenizer_path}')
  1644. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1645. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1646. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1647. scores: list[float] = [-10000.0] * vocab_size
  1648. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1649. for token_id in range(tokenizer.vocab_size()):
  1650. piece = tokenizer.id_to_piece(token_id)
  1651. text = piece.encode("utf-8")
  1652. score = tokenizer.get_score(token_id)
  1653. toktype = SentencePieceTokenTypes.NORMAL
  1654. if tokenizer.is_unknown(token_id):
  1655. toktype = SentencePieceTokenTypes.UNKNOWN
  1656. elif tokenizer.is_control(token_id):
  1657. toktype = SentencePieceTokenTypes.CONTROL
  1658. elif tokenizer.is_unused(token_id):
  1659. toktype = SentencePieceTokenTypes.UNUSED
  1660. elif tokenizer.is_byte(token_id):
  1661. toktype = SentencePieceTokenTypes.BYTE
  1662. tokens[token_id] = text
  1663. scores[token_id] = score
  1664. toktypes[token_id] = toktype
  1665. added_tokens_file = self.dir_model / 'added_tokens.json'
  1666. if added_tokens_file.is_file():
  1667. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1668. added_tokens_json = json.load(f)
  1669. for key in added_tokens_json:
  1670. token_id = added_tokens_json[key]
  1671. if (token_id >= vocab_size):
  1672. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1673. continue
  1674. tokens[token_id] = key.encode("utf-8")
  1675. scores[token_id] = -1000.0
  1676. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1677. self.gguf_writer.add_tokenizer_model("llama")
  1678. self.gguf_writer.add_tokenizer_pre("default")
  1679. self.gguf_writer.add_token_list(tokens)
  1680. self.gguf_writer.add_token_scores(scores)
  1681. self.gguf_writer.add_token_types(toktypes)
  1682. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1683. special_vocab.add_to_gguf(self.gguf_writer)
  1684. def set_gguf_parameters(self):
  1685. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1686. rot_pct = 1.0
  1687. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1688. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1689. rms_eps = self.find_hparam(["rms_norm_eps"])
  1690. self.gguf_writer.add_name("Phi3")
  1691. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1692. self.gguf_writer.add_embedding_length(n_embd)
  1693. self.gguf_writer.add_feed_forward_length(8192)
  1694. self.gguf_writer.add_block_count(block_count)
  1695. self.gguf_writer.add_head_count(n_head)
  1696. self.gguf_writer.add_head_count_kv(n_head)
  1697. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1698. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1699. self.gguf_writer.add_file_type(self.ftype)
  1700. @Model.register("PlamoForCausalLM")
  1701. class PlamoModel(Model):
  1702. model_arch = gguf.MODEL_ARCH.PLAMO
  1703. def set_vocab(self):
  1704. self._set_vocab_sentencepiece()
  1705. def set_gguf_parameters(self):
  1706. hparams = self.hparams
  1707. block_count = hparams["num_hidden_layers"]
  1708. self.gguf_writer.add_name("PLaMo")
  1709. self.gguf_writer.add_context_length(4096) # not in config.json
  1710. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1711. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1712. self.gguf_writer.add_block_count(block_count)
  1713. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1714. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1715. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1716. def shuffle_attn_q_weight(self, data_torch):
  1717. assert data_torch.size() == (5120, 5120)
  1718. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1719. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1720. data_torch = torch.reshape(data_torch, (5120, 5120))
  1721. return data_torch
  1722. def shuffle_attn_output_weight(self, data_torch):
  1723. assert data_torch.size() == (5120, 5120)
  1724. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1725. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1726. data_torch = torch.reshape(data_torch, (5120, 5120))
  1727. return data_torch
  1728. def write_tensors(self):
  1729. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1730. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1731. for name, data_torch in self.get_tensors():
  1732. if "self_attn.rotary_emb.inv_freq" in name:
  1733. continue
  1734. # map tensor names
  1735. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1736. if new_name is None:
  1737. raise ValueError(f"Can not map tensor {name!r}")
  1738. # shuffle for broadcasting of gqa in ggml_mul_mat
  1739. if new_name.endswith("attn_q.weight"):
  1740. data_torch = self.shuffle_attn_q_weight(data_torch)
  1741. elif new_name.endswith("attn_output.weight"):
  1742. data_torch = self.shuffle_attn_output_weight(data_torch)
  1743. old_dtype = data_torch.dtype
  1744. # convert any unsupported data types to float32
  1745. if data_torch.dtype not in (torch.float16, torch.float32):
  1746. data_torch = data_torch.to(torch.float32)
  1747. data = data_torch.squeeze().numpy()
  1748. n_dims = len(data.shape)
  1749. data_dtype = data.dtype
  1750. # if f32 desired, convert any float16 to float32
  1751. if self.ftype == 0 and data_dtype == np.float16:
  1752. data = data.astype(np.float32)
  1753. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1754. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1755. data = data.astype(np.float32)
  1756. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1757. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1758. data = data.astype(np.float16)
  1759. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1760. self.gguf_writer.add_tensor(new_name, data)
  1761. @Model.register("CodeShellForCausalLM")
  1762. class CodeShellModel(Model):
  1763. model_arch = gguf.MODEL_ARCH.CODESHELL
  1764. def set_gguf_parameters(self):
  1765. block_count = self.hparams["n_layer"]
  1766. self.gguf_writer.add_name("CodeShell")
  1767. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1768. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1769. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1770. self.gguf_writer.add_block_count(block_count)
  1771. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1772. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1773. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1774. self.gguf_writer.add_file_type(self.ftype)
  1775. self.gguf_writer.add_rope_freq_base(10000.0)
  1776. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1777. self.gguf_writer.add_rope_scaling_factor(1.0)
  1778. def write_tensors(self):
  1779. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1780. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1781. tensors = dict(self.get_tensors())
  1782. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1783. for name, data_torch in tensors.items():
  1784. # we don't need these
  1785. if name.endswith((".attn.rotary_emb.inv_freq")):
  1786. continue
  1787. old_dtype = data_torch.dtype
  1788. # convert any unsupported data types to float32
  1789. if data_torch.dtype not in (torch.float16, torch.float32):
  1790. data_torch = data_torch.to(torch.float32)
  1791. data = data_torch.squeeze().numpy()
  1792. # map tensor names
  1793. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1794. if new_name is None:
  1795. raise ValueError(f"Can not map tensor {name!r}")
  1796. n_dims = len(data.shape)
  1797. data_dtype = data.dtype
  1798. # if f32 desired, convert any float16 to float32
  1799. if self.ftype == 0 and data_dtype == np.float16:
  1800. data = data.astype(np.float32)
  1801. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1802. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1803. data = data.astype(np.float32)
  1804. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1805. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1806. data = data.astype(np.float16)
  1807. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1808. self.gguf_writer.add_tensor(new_name, data)
  1809. if not has_lm_head and name == "transformer.wte.weight":
  1810. self.gguf_writer.add_tensor("output.weight", data)
  1811. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1812. @Model.register("InternLM2ForCausalLM")
  1813. class InternLM2Model(Model):
  1814. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1815. def set_vocab(self):
  1816. # (TODO): Is there a better way?
  1817. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1818. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1819. # recognized as an empty string in C++.
  1820. from sentencepiece import SentencePieceProcessor
  1821. from sentencepiece import sentencepiece_model_pb2 as model
  1822. tokenizer_path = self.dir_model / 'tokenizer.model'
  1823. tokens: list[bytes] = []
  1824. scores: list[float] = []
  1825. toktypes: list[int] = []
  1826. if not tokenizer_path.is_file():
  1827. logger.error(f'Error: Missing {tokenizer_path}')
  1828. sys.exit(1)
  1829. sentencepiece_model = model.ModelProto()
  1830. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1831. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1832. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1833. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1834. for token_id in range(vocab_size):
  1835. piece = tokenizer.id_to_piece(token_id)
  1836. text = piece.encode("utf-8")
  1837. score = tokenizer.get_score(token_id)
  1838. if text == b"\x00":
  1839. # (TODO): fixme
  1840. # Hack here and replace the \x00 characters.
  1841. logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
  1842. text = "🐉"
  1843. toktype = SentencePieceTokenTypes.NORMAL
  1844. if tokenizer.is_unknown(token_id):
  1845. toktype = SentencePieceTokenTypes.UNKNOWN
  1846. elif tokenizer.is_control(token_id):
  1847. toktype = SentencePieceTokenTypes.CONTROL
  1848. elif tokenizer.is_unused(token_id):
  1849. toktype = SentencePieceTokenTypes.UNUSED
  1850. elif tokenizer.is_byte(token_id):
  1851. toktype = SentencePieceTokenTypes.BYTE
  1852. tokens.append(text)
  1853. scores.append(score)
  1854. toktypes.append(toktype)
  1855. added_tokens_file = self.dir_model / 'added_tokens.json'
  1856. if added_tokens_file.is_file():
  1857. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1858. added_tokens_json = json.load(f)
  1859. for key in added_tokens_json:
  1860. tokens.append(key.encode("utf-8"))
  1861. scores.append(-1000.0)
  1862. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1863. self.gguf_writer.add_tokenizer_model("llama")
  1864. self.gguf_writer.add_tokenizer_pre("default")
  1865. self.gguf_writer.add_token_list(tokens)
  1866. self.gguf_writer.add_token_scores(scores)
  1867. self.gguf_writer.add_token_types(toktypes)
  1868. self.gguf_writer.add_add_space_prefix(add_prefix)
  1869. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1870. old_eos = special_vocab.special_token_ids["eos"]
  1871. if "chat" in os.path.basename(self.dir_model.absolute()):
  1872. # For the chat model, we replace the eos with '<|im_end|>'.
  1873. # TODO: this is a hack, should be fixed
  1874. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1875. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1876. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1877. in chat mode so that the conversation can end normally.")
  1878. special_vocab.add_to_gguf(self.gguf_writer)
  1879. def _try_get_sft_eos(self, tokenizer):
  1880. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1881. im_end_list = tokenizer.encode('<|im_end|>')
  1882. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1883. if len(unused_145_list) == 1:
  1884. eos_token = unused_145_list[0]
  1885. if len(im_end_list) == 1:
  1886. eos_token = im_end_list[0]
  1887. return eos_token
  1888. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1889. if n_head_kv is not None and n_head != n_head_kv:
  1890. n_head = n_head_kv
  1891. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1892. .swapaxes(1, 2)
  1893. .reshape(weights.shape))
  1894. def set_gguf_parameters(self):
  1895. self.gguf_writer.add_name("InternLM2")
  1896. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1897. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1898. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1899. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1900. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1901. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1902. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1903. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1904. def post_write_tensors(self, tensor_map, name, data_torch):
  1905. old_dtype = data_torch.dtype
  1906. # convert any unsupported data types to float32
  1907. if data_torch.dtype not in (torch.float16, torch.float32):
  1908. data_torch = data_torch.to(torch.float32)
  1909. data = data_torch.squeeze().numpy()
  1910. # map tensor names
  1911. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1912. if new_name is None:
  1913. raise ValueError(f"Can not map tensor {name!r}")
  1914. n_dims = len(data.shape)
  1915. data_dtype = data.dtype
  1916. # if f32 desired, convert any float16 to float32
  1917. if self.ftype == 0 and data_dtype == np.float16:
  1918. data = data.astype(np.float32)
  1919. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1920. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1921. data = data.astype(np.float32)
  1922. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1923. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1924. data = data.astype(np.float16)
  1925. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1926. self.gguf_writer.add_tensor(new_name, data)
  1927. def write_tensors(self):
  1928. from einops import rearrange
  1929. num_heads = self.hparams.get("num_attention_heads")
  1930. num_kv_heads = self.hparams.get("num_key_value_heads")
  1931. hidden_size = self.hparams.get("hidden_size")
  1932. q_per_kv = num_heads // num_kv_heads
  1933. head_dim = hidden_size // num_heads
  1934. num_groups = num_heads // q_per_kv
  1935. block_count = self.hparams["num_hidden_layers"]
  1936. model_kv = dict(self.get_tensors())
  1937. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1938. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1939. for name, data_torch in model_kv.items():
  1940. # we don't need these
  1941. if name.endswith(".rotary_emb.inv_freq"):
  1942. continue
  1943. if re.match(qkv_pattern, name):
  1944. bid = re.findall(qkv_pattern, name)[0]
  1945. qkv = data_torch
  1946. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1947. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1948. # The model weights of q and k equire additional reshape.
  1949. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1950. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1951. v = rearrange(v, " o g n i -> o (g n i)").T
  1952. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1953. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1954. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1955. else:
  1956. self.post_write_tensors(tensor_map, name, data_torch)
  1957. @Model.register("BertModel", "CamembertModel")
  1958. class BertModel(Model):
  1959. model_arch = gguf.MODEL_ARCH.BERT
  1960. def __init__(self, *args, **kwargs):
  1961. super().__init__(*args, **kwargs)
  1962. self.vocab_size = None
  1963. def set_gguf_parameters(self):
  1964. super().set_gguf_parameters()
  1965. self.gguf_writer.add_causal_attention(False)
  1966. # get pooling path
  1967. pooling_path = None
  1968. module_path = self.dir_model / "modules.json"
  1969. if module_path.is_file():
  1970. with open(module_path, encoding="utf-8") as f:
  1971. modules = json.load(f)
  1972. for mod in modules:
  1973. if mod["type"] == "sentence_transformers.models.Pooling":
  1974. pooling_path = mod["path"]
  1975. break
  1976. # get pooling type
  1977. if pooling_path is not None:
  1978. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1979. pooling = json.load(f)
  1980. if pooling["pooling_mode_mean_tokens"]:
  1981. pooling_type = gguf.PoolingType.MEAN
  1982. elif pooling["pooling_mode_cls_token"]:
  1983. pooling_type = gguf.PoolingType.CLS
  1984. else:
  1985. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1986. self.gguf_writer.add_pooling_type(pooling_type)
  1987. def set_vocab(self):
  1988. tokens, toktypes, tokpre = self.get_vocab_base()
  1989. self.vocab_size = len(tokens)
  1990. # we need this to validate the size of the token_type embeddings
  1991. # though currently we are passing all zeros to the token_type embeddings
  1992. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1993. # convert to phantom space vocab
  1994. def phantom(tok):
  1995. if tok.startswith("[") and tok.endswith("]"):
  1996. return tok
  1997. if tok.startswith("##"):
  1998. return tok[2:]
  1999. return "\u2581" + tok
  2000. tokens = list(map(phantom, tokens))
  2001. # add vocab to gguf
  2002. self.gguf_writer.add_tokenizer_model("bert")
  2003. self.gguf_writer.add_tokenizer_pre(tokpre)
  2004. self.gguf_writer.add_token_list(tokens)
  2005. self.gguf_writer.add_token_types(toktypes)
  2006. # handle special tokens
  2007. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2008. special_vocab.add_to_gguf(self.gguf_writer)
  2009. def write_tensors(self):
  2010. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2011. tensors = dict(self.get_tensors())
  2012. for name, data_torch in tensors.items():
  2013. # we are only using BERT for embeddings so we don't need the pooling layer
  2014. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2015. continue # we don't need these
  2016. # map tensor names
  2017. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2018. if new_name is None:
  2019. raise ValueError(f"Can not map tensor {name!r}")
  2020. # convert any unsupported data types to float32
  2021. if data_torch.dtype not in (torch.float16, torch.float32):
  2022. data_torch = data_torch.to(torch.float32)
  2023. data = data_torch.squeeze().numpy()
  2024. n_dims = len(data.shape)
  2025. new_dtype: type[np.floating[Any]]
  2026. if (
  2027. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  2028. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  2029. ):
  2030. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2031. new_dtype = np.float16
  2032. else:
  2033. # if f32 desired, convert any float16 to float32
  2034. new_dtype = np.float32
  2035. logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  2036. if data.dtype != new_dtype:
  2037. data = data.astype(new_dtype)
  2038. self.gguf_writer.add_tensor(new_name, data)
  2039. @Model.register("NomicBertModel")
  2040. class NomicBertModel(BertModel):
  2041. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2042. def __init__(self, *args, **kwargs):
  2043. super().__init__(*args, **kwargs)
  2044. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2045. self.hparams["n_ctx"] = 2048
  2046. # SwigLU activation
  2047. assert self.hparams["activation_function"] == "swiglu"
  2048. # this doesn't do anything in the HF version
  2049. assert self.hparams["causal"] is False
  2050. # no bias tensors
  2051. assert self.hparams["qkv_proj_bias"] is False
  2052. assert self.hparams["mlp_fc1_bias"] is False
  2053. assert self.hparams["mlp_fc2_bias"] is False
  2054. # norm at end of layer
  2055. assert self.hparams["prenorm"] is False
  2056. # standard RoPE
  2057. assert self.hparams["rotary_emb_fraction"] == 1.0
  2058. assert self.hparams["rotary_emb_interleaved"] is False
  2059. assert self.hparams["rotary_emb_scale_base"] is None
  2060. def set_gguf_parameters(self):
  2061. super().set_gguf_parameters()
  2062. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2063. @Model.register("GemmaForCausalLM")
  2064. class GemmaModel(Model):
  2065. model_arch = gguf.MODEL_ARCH.GEMMA
  2066. def set_vocab(self):
  2067. self._set_vocab_sentencepiece()
  2068. # TODO: these special tokens should be exported only for the CodeGemma family
  2069. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2070. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2071. special_vocab._set_special_token("prefix", 67)
  2072. special_vocab._set_special_token("suffix", 69)
  2073. special_vocab._set_special_token("middle", 68)
  2074. special_vocab._set_special_token("fsep", 70)
  2075. special_vocab._set_special_token("eot", 107)
  2076. special_vocab.add_to_gguf(self.gguf_writer)
  2077. def set_gguf_parameters(self):
  2078. hparams = self.hparams
  2079. block_count = hparams["num_hidden_layers"]
  2080. self.gguf_writer.add_name(self.dir_model.name)
  2081. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2082. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2083. self.gguf_writer.add_block_count(block_count)
  2084. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2085. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2086. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2087. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2088. self.gguf_writer.add_key_length(hparams["head_dim"])
  2089. self.gguf_writer.add_value_length(hparams["head_dim"])
  2090. self.gguf_writer.add_file_type(self.ftype)
  2091. def write_tensors(self):
  2092. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2093. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2094. for name, data_torch in self.get_tensors():
  2095. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2096. # To prevent errors, skip loading lm_head.weight.
  2097. if name == "lm_head.weight":
  2098. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2099. continue
  2100. old_dtype = data_torch.dtype
  2101. # convert any unsupported data types to float32
  2102. if data_torch.dtype not in (torch.float16, torch.float32):
  2103. data_torch = data_torch.to(torch.float32)
  2104. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2105. if name.endswith("norm.weight"):
  2106. data_torch = data_torch + 1
  2107. data = data_torch.squeeze().numpy()
  2108. # map tensor names
  2109. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2110. if new_name is None:
  2111. raise ValueError(f"Can not map tensor {name!r}")
  2112. n_dims = len(data.shape)
  2113. data_dtype = data.dtype
  2114. data = data.astype(np.float32)
  2115. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2116. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2117. data = data.astype(np.float16)
  2118. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2119. self.gguf_writer.add_tensor(new_name, data)
  2120. @Model.register("Starcoder2ForCausalLM")
  2121. class StarCoder2Model(Model):
  2122. model_arch = gguf.MODEL_ARCH.STARCODER2
  2123. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2124. class MambaModel(Model):
  2125. model_arch = gguf.MODEL_ARCH.MAMBA
  2126. def set_vocab(self):
  2127. vocab_size = self.hparams["vocab_size"]
  2128. # Round vocab size to next multiple of 8
  2129. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2130. # pad using ceiling division
  2131. # ref: https://stackoverflow.com/a/17511341/22827863
  2132. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2133. self.hparams["vocab_size"] = vocab_size
  2134. if (self.dir_model / "tokenizer.json").is_file():
  2135. self._set_vocab_gpt2()
  2136. else:
  2137. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2138. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2139. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2140. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2141. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2142. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2143. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  2144. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
  2145. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2146. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2147. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2148. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2149. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2150. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2151. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2152. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2153. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2154. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2155. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2156. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2157. def set_gguf_parameters(self):
  2158. d_model = self.find_hparam(["hidden_size", "d_model"])
  2159. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2160. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2161. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2162. # ceiling division
  2163. # ref: https://stackoverflow.com/a/17511341/22827863
  2164. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2165. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2166. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2167. # Fail early for models which don't have a block expansion factor of 2
  2168. assert d_inner == 2 * d_model
  2169. self.gguf_writer.add_name(self.dir_model.name)
  2170. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2171. self.gguf_writer.add_embedding_length(d_model)
  2172. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2173. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2174. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2175. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2176. self.gguf_writer.add_ssm_inner_size(d_inner)
  2177. self.gguf_writer.add_ssm_state_size(d_state)
  2178. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2179. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2180. self.gguf_writer.add_file_type(self.ftype)
  2181. def write_tensors(self):
  2182. block_count = self.hparams["n_layer"]
  2183. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2184. tok_embd = None
  2185. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2186. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2187. for name, data_torch in self.get_tensors():
  2188. old_dtype = data_torch.dtype
  2189. # convert any unsupported data types to float32
  2190. if data_torch.dtype not in (torch.float16, torch.float32):
  2191. data_torch = data_torch.to(torch.float32)
  2192. # map tensor names
  2193. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2194. if new_name is None:
  2195. raise ValueError(f"Can not map tensor {name!r}")
  2196. if name.endswith(".A_log"):
  2197. logger.debug("A_log --> A ==> " + new_name)
  2198. data_torch = -torch.exp(data_torch)
  2199. # assuming token_embd.weight is seen before output.weight
  2200. if tok_embd is not None and new_name == output_name:
  2201. if torch.equal(tok_embd, data_torch):
  2202. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2203. continue
  2204. if new_name == tok_embd_name:
  2205. tok_embd = data_torch
  2206. data = data_torch.squeeze().numpy()
  2207. n_dims = len(data.shape)
  2208. data_dtype = data.dtype
  2209. # if f32 desired, convert any float16 to float32
  2210. if self.ftype == 0 and data_dtype == np.float16:
  2211. data = data.astype(np.float32)
  2212. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2213. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2214. data = data.astype(np.float32)
  2215. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2216. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2217. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2218. data = data.astype(np.float16)
  2219. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2220. self.gguf_writer.add_tensor(new_name, data)
  2221. @Model.register("CohereForCausalLM")
  2222. class CommandR2Model(Model):
  2223. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2224. def __init__(self, *args, **kwargs):
  2225. super().__init__(*args, **kwargs)
  2226. # max_position_embeddings = 8192 in config.json but model was actually
  2227. # trained on 128k context length
  2228. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2229. def set_gguf_parameters(self):
  2230. super().set_gguf_parameters()
  2231. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2232. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2233. @Model.register("OlmoForCausalLM")
  2234. @Model.register("OLMoForCausalLM")
  2235. class OlmoModel(Model):
  2236. model_arch = gguf.MODEL_ARCH.OLMO
  2237. def set_gguf_parameters(self):
  2238. super().set_gguf_parameters()
  2239. self.gguf_writer.add_layer_norm_eps(1e-5)
  2240. clip_qkv = self.hparams.get("clip_qkv")
  2241. if clip_qkv is not None:
  2242. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2243. # Same as super class, but permuting q_proj, k_proj
  2244. # Copied from: LlamaModel
  2245. def write_tensors(self):
  2246. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2247. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2248. n_head = self.hparams.get("num_attention_heads")
  2249. n_kv_head = self.hparams.get("num_key_value_heads")
  2250. for name, data_torch in self.get_tensors():
  2251. old_dtype = data_torch.dtype
  2252. # convert any unsupported data types to float32
  2253. if data_torch.dtype not in (torch.float16, torch.float32):
  2254. data_torch = data_torch.to(torch.float32)
  2255. data = data_torch.numpy()
  2256. if name.endswith("q_proj.weight"):
  2257. data = permute(data, n_head, n_head)
  2258. if name.endswith("k_proj.weight"):
  2259. data = permute(data, n_head, n_kv_head)
  2260. data = data.squeeze()
  2261. # map tensor names
  2262. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2263. if new_name is None:
  2264. raise ValueError(f"Can not map tensor {name!r}")
  2265. n_dims = len(data.shape)
  2266. data_dtype = data.dtype
  2267. # if f32 desired, convert any float16 to float32
  2268. if self.ftype == 0 and data_dtype == np.float16:
  2269. data = data.astype(np.float32)
  2270. # 1d tensors need to be converted to float32
  2271. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2272. data = data.astype(np.float32)
  2273. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2274. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2275. data = data.astype(np.float16)
  2276. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2277. self.gguf_writer.add_tensor(new_name, data)
  2278. ###### CONVERSION LOGIC ######
  2279. def parse_args() -> argparse.Namespace:
  2280. parser = argparse.ArgumentParser(
  2281. description="Convert a huggingface model to a GGML compatible file")
  2282. parser.add_argument(
  2283. "--vocab-only", action="store_true",
  2284. help="extract only the vocab",
  2285. )
  2286. parser.add_argument(
  2287. "--awq-path", type=Path, default=None,
  2288. help="Path to scale awq cache file")
  2289. parser.add_argument(
  2290. "--outfile", type=Path,
  2291. help="path to write to; default: based on input",
  2292. )
  2293. parser.add_argument(
  2294. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2295. help="output format - use f32 for float32, f16 for float16",
  2296. )
  2297. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2298. parser.add_argument(
  2299. "model", type=Path,
  2300. help="directory containing model file",
  2301. )
  2302. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2303. parser.add_argument("--model-name", type=str, default=None, help="name of the model")
  2304. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  2305. return parser.parse_args()
  2306. def main() -> None:
  2307. args = parse_args()
  2308. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2309. dir_model = args.model
  2310. if args.awq_path:
  2311. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2312. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2313. tmp_model_path = args.model / "weighted_model"
  2314. dir_model = tmp_model_path
  2315. if tmp_model_path.is_dir():
  2316. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2317. else:
  2318. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2319. logger.info("Saving new weighted model ...")
  2320. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2321. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2322. if not dir_model.is_dir():
  2323. logger.error(f'Error: {args.model} is not a directory')
  2324. sys.exit(1)
  2325. ftype_map = {
  2326. "f32": gguf.GGMLQuantizationType.F32,
  2327. "f16": gguf.GGMLQuantizationType.F16,
  2328. }
  2329. if args.outfile is not None:
  2330. fname_out = args.outfile
  2331. else:
  2332. # output in the same directory as the model by default
  2333. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2334. logger.info(f"Loading model: {dir_model.name}")
  2335. hparams = Model.load_hparams(dir_model)
  2336. with torch.inference_mode():
  2337. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2338. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2339. logger.info("Set model parameters")
  2340. model_instance.set_gguf_parameters()
  2341. logger.info("Set model tokenizer")
  2342. model_instance.set_vocab()
  2343. if args.vocab_only:
  2344. logger.info(f"Exporting model vocab to '{fname_out}'")
  2345. model_instance.write_vocab()
  2346. else:
  2347. logger.info(f"Exporting model to '{fname_out}'")
  2348. model_instance.write()
  2349. logger.info(f"Model successfully exported to '{fname_out}'")
  2350. if __name__ == '__main__':
  2351. main()