llama-bench.cpp 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<class T>
  41. static std::vector<T> split(const std::string & str, char delim) {
  42. std::vector<T> values;
  43. std::istringstream str_stream(str);
  44. std::string token;
  45. while (std::getline(str_stream, token, delim)) {
  46. T value;
  47. std::istringstream token_stream(token);
  48. token_stream >> value;
  49. values.push_back(value);
  50. }
  51. return values;
  52. }
  53. template<typename T, typename F>
  54. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  55. std::vector<std::string> str_values;
  56. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  57. return str_values;
  58. }
  59. template<typename T>
  60. static T avg(const std::vector<T> & v) {
  61. if (v.empty()) {
  62. return 0;
  63. }
  64. T sum = std::accumulate(v.begin(), v.end(), T(0));
  65. return sum / (T)v.size();
  66. }
  67. template<typename T>
  68. static T stdev(const std::vector<T> & v) {
  69. if (v.size() <= 1) {
  70. return 0;
  71. }
  72. T mean = avg(v);
  73. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  74. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  75. return stdev;
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. fclose(f);
  100. }
  101. #endif
  102. // TODO: other platforms
  103. return id;
  104. }
  105. static std::string get_gpu_info() {
  106. std::string id;
  107. #ifdef GGML_USE_CUDA
  108. int count = ggml_backend_cuda_get_device_count();
  109. for (int i = 0; i < count; i++) {
  110. char buf[128];
  111. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  112. id += buf;
  113. if (i < count - 1) {
  114. id += "/";
  115. }
  116. }
  117. #endif
  118. #ifdef GGML_USE_SYCL
  119. int count = ggml_backend_sycl_get_device_count();
  120. for (int i = 0; i < count; i++) {
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. if (i < count - 1) {
  125. id += "/";
  126. }
  127. }
  128. #endif
  129. // TODO: other backends
  130. return id;
  131. }
  132. // command line params
  133. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  134. static const char * output_format_str(output_formats format) {
  135. switch (format) {
  136. case CSV: return "csv";
  137. case JSON: return "json";
  138. case MARKDOWN: return "md";
  139. case SQL: return "sql";
  140. default: GGML_ASSERT(!"invalid output format");
  141. }
  142. }
  143. static const char * split_mode_str(llama_split_mode mode) {
  144. switch (mode) {
  145. case LLAMA_SPLIT_MODE_NONE: return "none";
  146. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  147. case LLAMA_SPLIT_MODE_ROW: return "row";
  148. default: GGML_ASSERT(!"invalid split mode");
  149. }
  150. }
  151. struct cmd_params {
  152. std::vector<std::string> model;
  153. std::vector<int> n_prompt;
  154. std::vector<int> n_gen;
  155. std::vector<int> n_batch;
  156. std::vector<int> n_ubatch;
  157. std::vector<ggml_type> type_k;
  158. std::vector<ggml_type> type_v;
  159. std::vector<int> n_threads;
  160. std::vector<int> n_gpu_layers;
  161. std::vector<llama_split_mode> split_mode;
  162. std::vector<int> main_gpu;
  163. std::vector<bool> no_kv_offload;
  164. std::vector<bool> flash_attn;
  165. std::vector<std::vector<float>> tensor_split;
  166. std::vector<bool> use_mmap;
  167. std::vector<bool> embeddings;
  168. ggml_numa_strategy numa;
  169. int reps;
  170. bool verbose;
  171. output_formats output_format;
  172. };
  173. static const cmd_params cmd_params_defaults = {
  174. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  175. /* n_prompt */ {512},
  176. /* n_gen */ {128},
  177. /* n_batch */ {2048},
  178. /* n_ubatch */ {512},
  179. /* type_k */ {GGML_TYPE_F16},
  180. /* type_v */ {GGML_TYPE_F16},
  181. /* n_threads */ {get_math_cpu_count()},
  182. /* n_gpu_layers */ {99},
  183. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  184. /* main_gpu */ {0},
  185. /* no_kv_offload */ {false},
  186. /* flash_attn */ {false},
  187. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  188. /* use_mmap */ {true},
  189. /* embeddings */ {false},
  190. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  191. /* reps */ 5,
  192. /* verbose */ false,
  193. /* output_format */ MARKDOWN
  194. };
  195. static void print_usage(int /* argc */, char ** argv) {
  196. printf("usage: %s [options]\n", argv[0]);
  197. printf("\n");
  198. printf("options:\n");
  199. printf(" -h, --help\n");
  200. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  201. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  202. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  203. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  204. printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  205. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  206. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  207. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  208. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  209. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  210. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  211. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  212. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  213. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  214. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  215. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  216. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  217. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  218. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  219. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  220. printf("\n");
  221. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  222. }
  223. static ggml_type ggml_type_from_name(const std::string & s) {
  224. if (s == "f16") {
  225. return GGML_TYPE_F16;
  226. }
  227. if (s == "q8_0") {
  228. return GGML_TYPE_Q8_0;
  229. }
  230. if (s == "q4_0") {
  231. return GGML_TYPE_Q4_0;
  232. }
  233. if (s == "q4_1") {
  234. return GGML_TYPE_Q4_1;
  235. }
  236. if (s == "q5_0") {
  237. return GGML_TYPE_Q5_0;
  238. }
  239. if (s == "q5_1") {
  240. return GGML_TYPE_Q5_1;
  241. }
  242. if (s == "iq4_nl") {
  243. return GGML_TYPE_IQ4_NL;
  244. }
  245. return GGML_TYPE_COUNT;
  246. }
  247. static cmd_params parse_cmd_params(int argc, char ** argv) {
  248. cmd_params params;
  249. std::string arg;
  250. bool invalid_param = false;
  251. const std::string arg_prefix = "--";
  252. const char split_delim = ',';
  253. params.verbose = cmd_params_defaults.verbose;
  254. params.output_format = cmd_params_defaults.output_format;
  255. params.reps = cmd_params_defaults.reps;
  256. for (int i = 1; i < argc; i++) {
  257. arg = argv[i];
  258. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  259. std::replace(arg.begin(), arg.end(), '_', '-');
  260. }
  261. if (arg == "-h" || arg == "--help") {
  262. print_usage(argc, argv);
  263. exit(0);
  264. } else if (arg == "-m" || arg == "--model") {
  265. if (++i >= argc) {
  266. invalid_param = true;
  267. break;
  268. }
  269. auto p = split<std::string>(argv[i], split_delim);
  270. params.model.insert(params.model.end(), p.begin(), p.end());
  271. } else if (arg == "-p" || arg == "--n-prompt") {
  272. if (++i >= argc) {
  273. invalid_param = true;
  274. break;
  275. }
  276. auto p = split<int>(argv[i], split_delim);
  277. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  278. } else if (arg == "-n" || arg == "--n-gen") {
  279. if (++i >= argc) {
  280. invalid_param = true;
  281. break;
  282. }
  283. auto p = split<int>(argv[i], split_delim);
  284. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  285. } else if (arg == "-b" || arg == "--batch-size") {
  286. if (++i >= argc) {
  287. invalid_param = true;
  288. break;
  289. }
  290. auto p = split<int>(argv[i], split_delim);
  291. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  292. } else if (arg == "-ub" || arg == "--ubatch-size") {
  293. if (++i >= argc) {
  294. invalid_param = true;
  295. break;
  296. }
  297. auto p = split<int>(argv[i], split_delim);
  298. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  299. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  300. if (++i >= argc) {
  301. invalid_param = true;
  302. break;
  303. }
  304. auto p = split<std::string>(argv[i], split_delim);
  305. std::vector<ggml_type> types;
  306. for (const auto & t : p) {
  307. ggml_type gt = ggml_type_from_name(t);
  308. if (gt == GGML_TYPE_COUNT) {
  309. invalid_param = true;
  310. break;
  311. }
  312. types.push_back(gt);
  313. }
  314. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  315. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  316. if (++i >= argc) {
  317. invalid_param = true;
  318. break;
  319. }
  320. auto p = split<std::string>(argv[i], split_delim);
  321. std::vector<ggml_type> types;
  322. for (const auto & t : p) {
  323. ggml_type gt = ggml_type_from_name(t);
  324. if (gt == GGML_TYPE_COUNT) {
  325. invalid_param = true;
  326. break;
  327. }
  328. types.push_back(gt);
  329. }
  330. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  331. } else if (arg == "-t" || arg == "--threads") {
  332. if (++i >= argc) {
  333. invalid_param = true;
  334. break;
  335. }
  336. auto p = split<int>(argv[i], split_delim);
  337. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  338. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  339. if (++i >= argc) {
  340. invalid_param = true;
  341. break;
  342. }
  343. auto p = split<int>(argv[i], split_delim);
  344. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  345. } else if (arg == "-sm" || arg == "--split-mode") {
  346. if (++i >= argc) {
  347. invalid_param = true;
  348. break;
  349. }
  350. auto p = split<std::string>(argv[i], split_delim);
  351. std::vector<llama_split_mode> modes;
  352. for (const auto & m : p) {
  353. llama_split_mode mode;
  354. if (m == "none") {
  355. mode = LLAMA_SPLIT_MODE_NONE;
  356. } else if (m == "layer") {
  357. mode = LLAMA_SPLIT_MODE_LAYER;
  358. } else if (m == "row") {
  359. mode = LLAMA_SPLIT_MODE_ROW;
  360. } else {
  361. invalid_param = true;
  362. break;
  363. }
  364. modes.push_back(mode);
  365. }
  366. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  367. } else if (arg == "-mg" || arg == "--main-gpu") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. break;
  371. }
  372. params.main_gpu = split<int>(argv[i], split_delim);
  373. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  374. if (++i >= argc) {
  375. invalid_param = true;
  376. break;
  377. }
  378. auto p = split<bool>(argv[i], split_delim);
  379. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  380. } else if (arg == "--numa") {
  381. if (++i >= argc) {
  382. invalid_param = true;
  383. break;
  384. } else {
  385. std::string value(argv[i]);
  386. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  387. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  388. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  389. else { invalid_param = true; break; }
  390. }
  391. } else if (arg == "-fa" || arg == "--flash-attn") {
  392. if (++i >= argc) {
  393. invalid_param = true;
  394. break;
  395. }
  396. auto p = split<bool>(argv[i], split_delim);
  397. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  398. } else if (arg == "-mmp" || arg == "--mmap") {
  399. if (++i >= argc) {
  400. invalid_param = true;
  401. break;
  402. }
  403. auto p = split<bool>(argv[i], split_delim);
  404. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  405. } else if (arg == "-embd" || arg == "--embeddings") {
  406. if (++i >= argc) {
  407. invalid_param = true;
  408. break;
  409. }
  410. auto p = split<bool>(argv[i], split_delim);
  411. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  412. } else if (arg == "-ts" || arg == "--tensor-split") {
  413. if (++i >= argc) {
  414. invalid_param = true;
  415. break;
  416. }
  417. for (auto ts : split<std::string>(argv[i], split_delim)) {
  418. // split string by ; and /
  419. const std::regex regex{R"([;/]+)"};
  420. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  421. std::vector<std::string> split_arg{it, {}};
  422. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  423. std::vector<float> tensor_split(llama_max_devices());
  424. for (size_t i = 0; i < llama_max_devices(); ++i) {
  425. if (i < split_arg.size()) {
  426. tensor_split[i] = std::stof(split_arg[i]);
  427. } else {
  428. tensor_split[i] = 0.0f;
  429. }
  430. }
  431. params.tensor_split.push_back(tensor_split);
  432. }
  433. } else if (arg == "-r" || arg == "--repetitions") {
  434. if (++i >= argc) {
  435. invalid_param = true;
  436. break;
  437. }
  438. params.reps = std::stoi(argv[i]);
  439. } else if (arg == "-o" || arg == "--output") {
  440. if (++i >= argc) {
  441. invalid_param = true;
  442. break;
  443. }
  444. if (argv[i] == std::string("csv")) {
  445. params.output_format = CSV;
  446. } else if (argv[i] == std::string("json")) {
  447. params.output_format = JSON;
  448. } else if (argv[i] == std::string("md")) {
  449. params.output_format = MARKDOWN;
  450. } else if (argv[i] == std::string("sql")) {
  451. params.output_format = SQL;
  452. } else {
  453. invalid_param = true;
  454. break;
  455. }
  456. } else if (arg == "-v" || arg == "--verbose") {
  457. params.verbose = true;
  458. } else {
  459. invalid_param = true;
  460. break;
  461. }
  462. }
  463. if (invalid_param) {
  464. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  465. print_usage(argc, argv);
  466. exit(1);
  467. }
  468. // set defaults
  469. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  470. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  471. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  472. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  473. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  474. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  475. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  476. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  477. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  478. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  479. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  480. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  481. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  482. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  483. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  484. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  485. return params;
  486. }
  487. struct cmd_params_instance {
  488. std::string model;
  489. int n_prompt;
  490. int n_gen;
  491. int n_batch;
  492. int n_ubatch;
  493. ggml_type type_k;
  494. ggml_type type_v;
  495. int n_threads;
  496. int n_gpu_layers;
  497. llama_split_mode split_mode;
  498. int main_gpu;
  499. bool no_kv_offload;
  500. bool flash_attn;
  501. std::vector<float> tensor_split;
  502. bool use_mmap;
  503. bool embeddings;
  504. llama_model_params to_llama_mparams() const {
  505. llama_model_params mparams = llama_model_default_params();
  506. mparams.n_gpu_layers = n_gpu_layers;
  507. mparams.split_mode = split_mode;
  508. mparams.main_gpu = main_gpu;
  509. mparams.tensor_split = tensor_split.data();
  510. mparams.use_mmap = use_mmap;
  511. return mparams;
  512. }
  513. bool equal_mparams(const cmd_params_instance & other) const {
  514. return model == other.model &&
  515. n_gpu_layers == other.n_gpu_layers &&
  516. split_mode == other.split_mode &&
  517. main_gpu == other.main_gpu &&
  518. use_mmap == other.use_mmap &&
  519. tensor_split == other.tensor_split;
  520. }
  521. llama_context_params to_llama_cparams() const {
  522. llama_context_params cparams = llama_context_default_params();
  523. cparams.n_ctx = n_prompt + n_gen;
  524. cparams.n_batch = n_batch;
  525. cparams.n_ubatch = n_ubatch;
  526. cparams.type_k = type_k;
  527. cparams.type_v = type_v;
  528. cparams.offload_kqv = !no_kv_offload;
  529. cparams.flash_attn = flash_attn;
  530. cparams.embeddings = embeddings;
  531. return cparams;
  532. }
  533. };
  534. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  535. std::vector<cmd_params_instance> instances;
  536. // this ordering minimizes the number of times that each model needs to be reloaded
  537. for (const auto & m : params.model)
  538. for (const auto & nl : params.n_gpu_layers)
  539. for (const auto & sm : params.split_mode)
  540. for (const auto & mg : params.main_gpu)
  541. for (const auto & ts : params.tensor_split)
  542. for (const auto & mmp : params.use_mmap)
  543. for (const auto & embd : params.embeddings)
  544. for (const auto & nb : params.n_batch)
  545. for (const auto & nub : params.n_ubatch)
  546. for (const auto & tk : params.type_k)
  547. for (const auto & tv : params.type_v)
  548. for (const auto & nkvo : params.no_kv_offload)
  549. for (const auto & fa : params.flash_attn)
  550. for (const auto & nt : params.n_threads) {
  551. for (const auto & n_prompt : params.n_prompt) {
  552. if (n_prompt == 0) {
  553. continue;
  554. }
  555. cmd_params_instance instance = {
  556. /* .model = */ m,
  557. /* .n_prompt = */ n_prompt,
  558. /* .n_gen = */ 0,
  559. /* .n_batch = */ nb,
  560. /* .n_ubatch = */ nub,
  561. /* .type_k = */ tk,
  562. /* .type_v = */ tv,
  563. /* .n_threads = */ nt,
  564. /* .n_gpu_layers = */ nl,
  565. /* .split_mode = */ sm,
  566. /* .main_gpu = */ mg,
  567. /* .no_kv_offload= */ nkvo,
  568. /* .flash_attn = */ fa,
  569. /* .tensor_split = */ ts,
  570. /* .use_mmap = */ mmp,
  571. /* .embeddings = */ embd,
  572. };
  573. instances.push_back(instance);
  574. }
  575. for (const auto & n_gen : params.n_gen) {
  576. if (n_gen == 0) {
  577. continue;
  578. }
  579. cmd_params_instance instance = {
  580. /* .model = */ m,
  581. /* .n_prompt = */ 0,
  582. /* .n_gen = */ n_gen,
  583. /* .n_batch = */ nb,
  584. /* .n_ubatch = */ nub,
  585. /* .type_k = */ tk,
  586. /* .type_v = */ tv,
  587. /* .n_threads = */ nt,
  588. /* .n_gpu_layers = */ nl,
  589. /* .split_mode = */ sm,
  590. /* .main_gpu = */ mg,
  591. /* .no_kv_offload= */ nkvo,
  592. /* .flash_attn = */ fa,
  593. /* .tensor_split = */ ts,
  594. /* .use_mmap = */ mmp,
  595. /* .embeddings = */ embd,
  596. };
  597. instances.push_back(instance);
  598. }
  599. }
  600. return instances;
  601. }
  602. struct test {
  603. static const std::string build_commit;
  604. static const int build_number;
  605. static const bool cuda;
  606. static const bool opencl;
  607. static const bool vulkan;
  608. static const bool kompute;
  609. static const bool metal;
  610. static const bool sycl;
  611. static const bool gpu_blas;
  612. static const bool blas;
  613. static const std::string cpu_info;
  614. static const std::string gpu_info;
  615. std::string model_filename;
  616. std::string model_type;
  617. uint64_t model_size;
  618. uint64_t model_n_params;
  619. int n_batch;
  620. int n_ubatch;
  621. int n_threads;
  622. ggml_type type_k;
  623. ggml_type type_v;
  624. int n_gpu_layers;
  625. llama_split_mode split_mode;
  626. int main_gpu;
  627. bool no_kv_offload;
  628. bool flash_attn;
  629. std::vector<float> tensor_split;
  630. bool use_mmap;
  631. bool embeddings;
  632. int n_prompt;
  633. int n_gen;
  634. std::string test_time;
  635. std::vector<uint64_t> samples_ns;
  636. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  637. model_filename = inst.model;
  638. char buf[128];
  639. llama_model_desc(lmodel, buf, sizeof(buf));
  640. model_type = buf;
  641. model_size = llama_model_size(lmodel);
  642. model_n_params = llama_model_n_params(lmodel);
  643. n_batch = inst.n_batch;
  644. n_ubatch = inst.n_ubatch;
  645. n_threads = inst.n_threads;
  646. type_k = inst.type_k;
  647. type_v = inst.type_v;
  648. n_gpu_layers = inst.n_gpu_layers;
  649. split_mode = inst.split_mode;
  650. main_gpu = inst.main_gpu;
  651. no_kv_offload = inst.no_kv_offload;
  652. flash_attn = inst.flash_attn;
  653. tensor_split = inst.tensor_split;
  654. use_mmap = inst.use_mmap;
  655. embeddings = inst.embeddings;
  656. n_prompt = inst.n_prompt;
  657. n_gen = inst.n_gen;
  658. // RFC 3339 date-time format
  659. time_t t = time(NULL);
  660. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  661. test_time = buf;
  662. (void) ctx;
  663. }
  664. uint64_t avg_ns() const {
  665. return ::avg(samples_ns);
  666. }
  667. uint64_t stdev_ns() const {
  668. return ::stdev(samples_ns);
  669. }
  670. std::vector<double> get_ts() const {
  671. int n_tokens = n_prompt + n_gen;
  672. std::vector<double> ts;
  673. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  674. return ts;
  675. }
  676. double avg_ts() const {
  677. return ::avg(get_ts());
  678. }
  679. double stdev_ts() const {
  680. return ::stdev(get_ts());
  681. }
  682. static std::string get_backend() {
  683. if (cuda) {
  684. return GGML_CUDA_NAME;
  685. }
  686. if (opencl) {
  687. return "OpenCL";
  688. }
  689. if (vulkan) {
  690. return "Vulkan";
  691. }
  692. if (kompute) {
  693. return "Kompute";
  694. }
  695. if (metal) {
  696. return "Metal";
  697. }
  698. if (sycl) {
  699. return GGML_SYCL_NAME;
  700. }
  701. if (gpu_blas) {
  702. return "GPU BLAS";
  703. }
  704. if (blas) {
  705. return "BLAS";
  706. }
  707. return "CPU";
  708. }
  709. static const std::vector<std::string> & get_fields() {
  710. static const std::vector<std::string> fields = {
  711. "build_commit", "build_number",
  712. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  713. "cpu_info", "gpu_info",
  714. "model_filename", "model_type", "model_size", "model_n_params",
  715. "n_batch", "n_ubatch",
  716. "n_threads", "type_k", "type_v",
  717. "n_gpu_layers", "split_mode",
  718. "main_gpu", "no_kv_offload", "flash_attn",
  719. "tensor_split", "use_mmap", "embeddings",
  720. "n_prompt", "n_gen", "test_time",
  721. "avg_ns", "stddev_ns",
  722. "avg_ts", "stddev_ts"
  723. };
  724. return fields;
  725. }
  726. enum field_type {STRING, BOOL, INT, FLOAT};
  727. static field_type get_field_type(const std::string & field) {
  728. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  729. field == "n_threads" ||
  730. field == "model_size" || field == "model_n_params" ||
  731. field == "n_gpu_layers" || field == "main_gpu" ||
  732. field == "n_prompt" || field == "n_gen" ||
  733. field == "avg_ns" || field == "stddev_ns") {
  734. return INT;
  735. }
  736. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  737. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  738. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  739. return BOOL;
  740. }
  741. if (field == "avg_ts" || field == "stddev_ts") {
  742. return FLOAT;
  743. }
  744. return STRING;
  745. }
  746. std::vector<std::string> get_values() const {
  747. std::string tensor_split_str;
  748. int max_nonzero = 0;
  749. for (size_t i = 0; i < llama_max_devices(); i++) {
  750. if (tensor_split[i] > 0) {
  751. max_nonzero = i;
  752. }
  753. }
  754. for (int i = 0; i <= max_nonzero; i++) {
  755. char buf[32];
  756. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  757. tensor_split_str += buf;
  758. if (i < max_nonzero) {
  759. tensor_split_str += "/";
  760. }
  761. }
  762. std::vector<std::string> values = {
  763. build_commit, std::to_string(build_number),
  764. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  765. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  766. cpu_info, gpu_info,
  767. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  768. std::to_string(n_batch), std::to_string(n_ubatch),
  769. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  770. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  771. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  772. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  773. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  774. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  775. std::to_string(avg_ts()), std::to_string(stdev_ts())
  776. };
  777. return values;
  778. }
  779. std::map<std::string, std::string> get_map() const {
  780. std::map<std::string, std::string> map;
  781. auto fields = get_fields();
  782. auto values = get_values();
  783. std::transform(fields.begin(), fields.end(), values.begin(),
  784. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  785. return map;
  786. }
  787. };
  788. const std::string test::build_commit = LLAMA_COMMIT;
  789. const int test::build_number = LLAMA_BUILD_NUMBER;
  790. const bool test::cuda = !!ggml_cpu_has_cuda();
  791. const bool test::opencl = !!ggml_cpu_has_clblast();
  792. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  793. const bool test::kompute = !!ggml_cpu_has_kompute();
  794. const bool test::metal = !!ggml_cpu_has_metal();
  795. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  796. const bool test::blas = !!ggml_cpu_has_blas();
  797. const bool test::sycl = !!ggml_cpu_has_sycl();
  798. const std::string test::cpu_info = get_cpu_info();
  799. const std::string test::gpu_info = get_gpu_info();
  800. struct printer {
  801. virtual ~printer() {}
  802. FILE * fout;
  803. virtual void print_header(const cmd_params & params) { (void) params; }
  804. virtual void print_test(const test & t) = 0;
  805. virtual void print_footer() { }
  806. };
  807. struct csv_printer : public printer {
  808. static std::string escape_csv(const std::string & field) {
  809. std::string escaped = "\"";
  810. for (auto c : field) {
  811. if (c == '"') {
  812. escaped += "\"";
  813. }
  814. escaped += c;
  815. }
  816. escaped += "\"";
  817. return escaped;
  818. }
  819. void print_header(const cmd_params & params) override {
  820. std::vector<std::string> fields = test::get_fields();
  821. fprintf(fout, "%s\n", join(fields, ",").c_str());
  822. (void) params;
  823. }
  824. void print_test(const test & t) override {
  825. std::vector<std::string> values = t.get_values();
  826. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  827. fprintf(fout, "%s\n", join(values, ",").c_str());
  828. }
  829. };
  830. struct json_printer : public printer {
  831. bool first = true;
  832. static std::string escape_json(const std::string & value) {
  833. std::string escaped;
  834. for (auto c : value) {
  835. if (c == '"') {
  836. escaped += "\\\"";
  837. } else if (c == '\\') {
  838. escaped += "\\\\";
  839. } else if (c <= 0x1f) {
  840. char buf[8];
  841. snprintf(buf, sizeof(buf), "\\u%04x", c);
  842. escaped += buf;
  843. } else {
  844. escaped += c;
  845. }
  846. }
  847. return escaped;
  848. }
  849. static std::string format_value(const std::string & field, const std::string & value) {
  850. switch (test::get_field_type(field)) {
  851. case test::STRING:
  852. return "\"" + escape_json(value) + "\"";
  853. case test::BOOL:
  854. return value == "0" ? "false" : "true";
  855. default:
  856. return value;
  857. }
  858. }
  859. void print_header(const cmd_params & params) override {
  860. fprintf(fout, "[\n");
  861. (void) params;
  862. }
  863. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  864. assert(fields.size() == values.size());
  865. for (size_t i = 0; i < fields.size(); i++) {
  866. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  867. }
  868. }
  869. void print_test(const test & t) override {
  870. if (first) {
  871. first = false;
  872. } else {
  873. fprintf(fout, ",\n");
  874. }
  875. fprintf(fout, " {\n");
  876. print_fields(test::get_fields(), t.get_values());
  877. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  878. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  879. fprintf(fout, " }");
  880. fflush(fout);
  881. }
  882. void print_footer() override {
  883. fprintf(fout, "\n]\n");
  884. }
  885. };
  886. struct markdown_printer : public printer {
  887. std::vector<std::string> fields;
  888. static int get_field_width(const std::string & field) {
  889. if (field == "model") {
  890. return -30;
  891. }
  892. if (field == "t/s") {
  893. return 16;
  894. }
  895. if (field == "size" || field == "params") {
  896. return 10;
  897. }
  898. if (field == "n_gpu_layers") {
  899. return 3;
  900. }
  901. int width = std::max((int)field.length(), 10);
  902. if (test::get_field_type(field) == test::STRING) {
  903. return -width;
  904. }
  905. return width;
  906. }
  907. static std::string get_field_display_name(const std::string & field) {
  908. if (field == "n_gpu_layers") {
  909. return "ngl";
  910. }
  911. if (field == "split_mode") {
  912. return "sm";
  913. }
  914. if (field == "n_threads") {
  915. return "threads";
  916. }
  917. if (field == "no_kv_offload") {
  918. return "nkvo";
  919. }
  920. if (field == "flash_attn") {
  921. return "fa";
  922. }
  923. if (field == "use_mmap") {
  924. return "mmap";
  925. }
  926. if (field == "embeddings") {
  927. return "embd";
  928. }
  929. if (field == "tensor_split") {
  930. return "ts";
  931. }
  932. return field;
  933. }
  934. void print_header(const cmd_params & params) override {
  935. // select fields to print
  936. fields.emplace_back("model");
  937. fields.emplace_back("size");
  938. fields.emplace_back("params");
  939. fields.emplace_back("backend");
  940. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  941. if (!is_cpu_backend) {
  942. fields.emplace_back("n_gpu_layers");
  943. }
  944. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  945. fields.emplace_back("n_threads");
  946. }
  947. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  948. fields.emplace_back("n_batch");
  949. }
  950. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  951. fields.emplace_back("n_ubatch");
  952. }
  953. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  954. fields.emplace_back("type_k");
  955. }
  956. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  957. fields.emplace_back("type_v");
  958. }
  959. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  960. fields.emplace_back("main_gpu");
  961. }
  962. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  963. fields.emplace_back("split_mode");
  964. }
  965. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  966. fields.emplace_back("no_kv_offload");
  967. }
  968. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  969. fields.emplace_back("flash_attn");
  970. }
  971. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  972. fields.emplace_back("tensor_split");
  973. }
  974. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  975. fields.emplace_back("use_mmap");
  976. }
  977. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  978. fields.emplace_back("embeddings");
  979. }
  980. fields.emplace_back("test");
  981. fields.emplace_back("t/s");
  982. fprintf(fout, "|");
  983. for (const auto & field : fields) {
  984. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  985. }
  986. fprintf(fout, "\n");
  987. fprintf(fout, "|");
  988. for (const auto & field : fields) {
  989. int width = get_field_width(field);
  990. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  991. }
  992. fprintf(fout, "\n");
  993. }
  994. void print_test(const test & t) override {
  995. std::map<std::string, std::string> vmap = t.get_map();
  996. fprintf(fout, "|");
  997. for (const auto & field : fields) {
  998. std::string value;
  999. char buf[128];
  1000. if (field == "model") {
  1001. value = t.model_type;
  1002. } else if (field == "size") {
  1003. if (t.model_size < 1024*1024*1024) {
  1004. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1005. } else {
  1006. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1007. }
  1008. value = buf;
  1009. } else if (field == "params") {
  1010. if (t.model_n_params < 1000*1000*1000) {
  1011. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1012. } else {
  1013. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1014. }
  1015. value = buf;
  1016. } else if (field == "backend") {
  1017. value = test::get_backend();
  1018. } else if (field == "test") {
  1019. if (t.n_prompt > 0 && t.n_gen == 0) {
  1020. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  1021. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1022. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  1023. } else {
  1024. assert(false);
  1025. exit(1);
  1026. }
  1027. value = buf;
  1028. } else if (field == "t/s") {
  1029. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1030. value = buf;
  1031. } else if (vmap.find(field) != vmap.end()) {
  1032. value = vmap.at(field);
  1033. } else {
  1034. assert(false);
  1035. exit(1);
  1036. }
  1037. int width = get_field_width(field);
  1038. if (field == "t/s") {
  1039. // HACK: the utf-8 character is 2 bytes
  1040. width += 1;
  1041. }
  1042. fprintf(fout, " %*s |", width, value.c_str());
  1043. }
  1044. fprintf(fout, "\n");
  1045. }
  1046. void print_footer() override {
  1047. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1048. }
  1049. };
  1050. struct sql_printer : public printer {
  1051. static std::string get_sql_field_type(const std::string & field) {
  1052. switch (test::get_field_type(field)) {
  1053. case test::STRING:
  1054. return "TEXT";
  1055. case test::BOOL:
  1056. case test::INT:
  1057. return "INTEGER";
  1058. case test::FLOAT:
  1059. return "REAL";
  1060. default:
  1061. assert(false);
  1062. exit(1);
  1063. }
  1064. }
  1065. void print_header(const cmd_params & params) override {
  1066. std::vector<std::string> fields = test::get_fields();
  1067. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1068. for (size_t i = 0; i < fields.size(); i++) {
  1069. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1070. }
  1071. fprintf(fout, ");\n");
  1072. fprintf(fout, "\n");
  1073. (void) params;
  1074. }
  1075. void print_test(const test & t) override {
  1076. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1077. fprintf(fout, "VALUES (");
  1078. std::vector<std::string> values = t.get_values();
  1079. for (size_t i = 0; i < values.size(); i++) {
  1080. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1081. }
  1082. fprintf(fout, ");\n");
  1083. }
  1084. };
  1085. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1086. llama_set_n_threads(ctx, n_threads, n_threads);
  1087. const llama_model * model = llama_get_model(ctx);
  1088. const int32_t n_vocab = llama_n_vocab(model);
  1089. std::vector<llama_token> tokens(n_batch);
  1090. int n_processed = 0;
  1091. while (n_processed < n_prompt) {
  1092. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1093. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1094. for (int i = 1; i < n_tokens; i++) {
  1095. tokens[i] = std::rand() % n_vocab;
  1096. }
  1097. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1098. n_processed += n_tokens;
  1099. }
  1100. llama_synchronize(ctx);
  1101. }
  1102. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1103. llama_set_n_threads(ctx, n_threads, n_threads);
  1104. const llama_model * model = llama_get_model(ctx);
  1105. const int32_t n_vocab = llama_n_vocab(model);
  1106. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1107. for (int i = 0; i < n_gen; i++) {
  1108. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1109. llama_synchronize(ctx);
  1110. token = std::rand() % n_vocab;
  1111. }
  1112. }
  1113. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1114. (void) level;
  1115. (void) text;
  1116. (void) user_data;
  1117. }
  1118. int main(int argc, char ** argv) {
  1119. // try to set locale for unicode characters in markdown
  1120. setlocale(LC_CTYPE, ".UTF-8");
  1121. #if !defined(NDEBUG)
  1122. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1123. #endif
  1124. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1125. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1126. #endif
  1127. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1128. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1129. #endif
  1130. cmd_params params = parse_cmd_params(argc, argv);
  1131. // initialize llama.cpp
  1132. if (!params.verbose) {
  1133. llama_log_set(llama_null_log_callback, NULL);
  1134. }
  1135. llama_backend_init();
  1136. llama_numa_init(params.numa);
  1137. // initialize printer
  1138. std::unique_ptr<printer> p;
  1139. switch (params.output_format) {
  1140. case CSV:
  1141. p.reset(new csv_printer());
  1142. break;
  1143. case JSON:
  1144. p.reset(new json_printer());
  1145. break;
  1146. case MARKDOWN:
  1147. p.reset(new markdown_printer());
  1148. break;
  1149. case SQL:
  1150. p.reset(new sql_printer());
  1151. break;
  1152. default:
  1153. assert(false);
  1154. exit(1);
  1155. }
  1156. p->fout = stdout;
  1157. p->print_header(params);
  1158. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1159. llama_model * lmodel = nullptr;
  1160. const cmd_params_instance * prev_inst = nullptr;
  1161. for (const auto & inst : params_instances) {
  1162. // keep the same model between tests when possible
  1163. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1164. if (lmodel) {
  1165. llama_free_model(lmodel);
  1166. }
  1167. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1168. if (lmodel == NULL) {
  1169. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1170. return 1;
  1171. }
  1172. prev_inst = &inst;
  1173. }
  1174. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1175. if (ctx == NULL) {
  1176. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1177. llama_free_model(lmodel);
  1178. return 1;
  1179. }
  1180. test t(inst, lmodel, ctx);
  1181. llama_kv_cache_clear(ctx);
  1182. // warmup run
  1183. if (t.n_prompt > 0) {
  1184. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1185. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1186. }
  1187. if (t.n_gen > 0) {
  1188. test_gen(ctx, 1, 0, t.n_threads);
  1189. }
  1190. for (int i = 0; i < params.reps; i++) {
  1191. llama_kv_cache_clear(ctx);
  1192. uint64_t t_start = get_time_ns();
  1193. if (t.n_prompt > 0) {
  1194. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1195. }
  1196. if (t.n_gen > 0) {
  1197. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1198. }
  1199. uint64_t t_ns = get_time_ns() - t_start;
  1200. t.samples_ns.push_back(t_ns);
  1201. }
  1202. p->print_test(t);
  1203. llama_print_timings(ctx);
  1204. llama_free(ctx);
  1205. }
  1206. llama_free_model(lmodel);
  1207. p->print_footer();
  1208. llama_backend_free();
  1209. return 0;
  1210. }