convert_hf_to_gguf.py 350 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  559. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  560. res = "minerva-7b"
  561. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  562. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  563. res = "hunyuan"
  564. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  565. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  566. res = "falcon-h1"
  567. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  568. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  569. res = "falcon-h1"
  570. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  577. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  578. res = "kimi-k2"
  579. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  580. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  581. res = "llama-bpe"
  582. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  583. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  584. res = "deepseek-llm"
  585. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  586. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  587. res = "deepseek-coder"
  588. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  589. # ref: https://huggingface.co/tiiuae/falcon-7b
  590. res = "falcon"
  591. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  592. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  593. res = "bert-bge"
  594. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  595. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  596. res = "falcon3"
  597. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  598. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  599. res = "bert-bge-large"
  600. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  601. # ref: https://huggingface.co/mosaicml/mpt-7b
  602. res = "mpt"
  603. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  604. # ref: https://huggingface.co/bigcode/starcoder2-3b
  605. res = "starcoder"
  606. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  607. # ref: https://huggingface.co/openai-community/gpt2
  608. res = "gpt-2"
  609. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  610. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  611. res = "stablelm2"
  612. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  613. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  614. res = "refact"
  615. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  616. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  617. res = "command-r"
  618. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  619. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  620. res = "qwen2"
  621. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  622. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  623. res = "olmo"
  624. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  625. # ref: https://huggingface.co/databricks/dbrx-base
  626. res = "dbrx"
  627. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  628. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  629. res = "jina-v1-en"
  630. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  631. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  632. res = "jina-v2-en"
  633. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  634. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  635. res = "jina-v2-es"
  636. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  637. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  638. res = "jina-v2-de"
  639. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  640. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  641. res = "smaug-bpe"
  642. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  643. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  644. res = "poro-chat"
  645. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  646. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  647. res = "jina-v2-code"
  648. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  649. # ref: https://huggingface.co/LumiOpen/Viking-7B
  650. res = "viking"
  651. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  652. # ref: https://huggingface.co/core42/jais-13b
  653. res = "jais"
  654. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  655. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  656. res = "codeshell"
  657. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  658. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  659. res = "tekken"
  660. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  661. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  662. res = "smollm"
  663. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  664. # ref: https://huggingface.co/bigscience/bloom
  665. res = "bloom"
  666. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  667. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  668. res = "gpt3-finnish"
  669. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  670. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  671. res = "exaone"
  672. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  673. # ref: https://huggingface.co/microsoft/phi-2
  674. res = "phi-2"
  675. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  676. # ref: https://huggingface.co/facebook/chameleon-7b
  677. res = "chameleon"
  678. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  679. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  680. res = "roberta-bpe"
  681. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  682. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  683. res = "gigachat"
  684. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  685. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  686. res = "megrez"
  687. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  688. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  689. res = "deepseek-v3"
  690. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  691. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  692. res = "deepseek-r1-qwen"
  693. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  694. # ref: https://huggingface.co/Xenova/gpt-4o
  695. res = "gpt-4o"
  696. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  697. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  698. res = "superbpe"
  699. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  700. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  701. res = "trillion"
  702. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  703. # ref: https://huggingface.co/inclusionAI/Ling-lite
  704. res = "bailingmoe"
  705. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  706. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  707. res = "llama4"
  708. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  709. # ref: https://huggingface.co/mistral-community/pixtral-12b
  710. res = "pixtral"
  711. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  712. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  713. res = "seed-coder"
  714. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  715. # ref: https://huggingface.co/skt/A.X-4.0
  716. res = "a.x-4.0"
  717. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  718. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  719. res = "midm-2.0"
  720. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  721. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  722. res = "lfm2"
  723. if res is None:
  724. logger.warning("\n")
  725. logger.warning("**************************************************************************************")
  726. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  727. logger.warning("** There are 2 possible reasons for this:")
  728. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  729. logger.warning("** - the pre-tokenization config has changed upstream")
  730. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  731. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  732. logger.warning("**")
  733. logger.warning(f"** chkhsh: {chkhsh}")
  734. logger.warning("**************************************************************************************")
  735. logger.warning("\n")
  736. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  737. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  738. logger.debug(f"chkhsh: {chkhsh}")
  739. return res
  740. # Marker: End get_vocab_base_pre
  741. def _set_vocab_none(self) -> None:
  742. self.gguf_writer.add_tokenizer_model("none")
  743. def _set_vocab_gpt2(self) -> None:
  744. tokens, toktypes, tokpre = self.get_vocab_base()
  745. self.gguf_writer.add_tokenizer_model("gpt2")
  746. self.gguf_writer.add_tokenizer_pre(tokpre)
  747. self.gguf_writer.add_token_list(tokens)
  748. self.gguf_writer.add_token_types(toktypes)
  749. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  750. special_vocab.add_to_gguf(self.gguf_writer)
  751. def _set_vocab_qwen(self):
  752. dir_model = self.dir_model
  753. hparams = self.hparams
  754. tokens: list[str] = []
  755. toktypes: list[int] = []
  756. from transformers import AutoTokenizer
  757. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  758. vocab_size = hparams["vocab_size"]
  759. assert max(tokenizer.get_vocab().values()) < vocab_size
  760. tokpre = self.get_vocab_base_pre(tokenizer)
  761. merges = []
  762. vocab = {}
  763. mergeable_ranks = tokenizer.mergeable_ranks
  764. for token, rank in mergeable_ranks.items():
  765. vocab[QwenModel.token_bytes_to_string(token)] = rank
  766. if len(token) == 1:
  767. continue
  768. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  769. assert len(merged) == 2
  770. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  771. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  772. added_vocab = tokenizer.special_tokens
  773. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  774. for i in range(vocab_size):
  775. if i not in reverse_vocab:
  776. tokens.append(f"[PAD{i}]")
  777. toktypes.append(gguf.TokenType.UNUSED)
  778. elif reverse_vocab[i] in added_vocab:
  779. tokens.append(reverse_vocab[i])
  780. toktypes.append(gguf.TokenType.CONTROL)
  781. else:
  782. tokens.append(reverse_vocab[i])
  783. toktypes.append(gguf.TokenType.NORMAL)
  784. self.gguf_writer.add_tokenizer_model("gpt2")
  785. self.gguf_writer.add_tokenizer_pre(tokpre)
  786. self.gguf_writer.add_token_list(tokens)
  787. self.gguf_writer.add_token_types(toktypes)
  788. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  789. special_vocab.merges = merges
  790. # only add special tokens when they were not already loaded from config.json
  791. if len(special_vocab.special_token_ids) == 0:
  792. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  793. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  794. # this one is usually not in config.json anyway
  795. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  796. special_vocab.add_to_gguf(self.gguf_writer)
  797. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  798. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  799. self.gguf_writer.add_tokenizer_model("llama")
  800. self.gguf_writer.add_tokenizer_pre("default")
  801. self.gguf_writer.add_token_list(tokens)
  802. self.gguf_writer.add_token_scores(scores)
  803. self.gguf_writer.add_token_types(toktypes)
  804. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  805. special_vocab.add_to_gguf(self.gguf_writer)
  806. def _create_vocab_sentencepiece(self):
  807. from sentencepiece import SentencePieceProcessor
  808. tokenizer_path = self.dir_model / 'tokenizer.model'
  809. if not tokenizer_path.is_file():
  810. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  811. tokenizer = SentencePieceProcessor()
  812. tokenizer.LoadFromFile(str(tokenizer_path))
  813. vocab_size = self.find_hparam([
  814. "vocab_size_per_layer_input", # gemma3n
  815. "vocab_size",
  816. ], optional=True) or tokenizer.vocab_size()
  817. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  818. scores: list[float] = [-10000.0] * vocab_size
  819. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  820. for token_id in range(tokenizer.vocab_size()):
  821. if token_id >= vocab_size:
  822. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  823. break
  824. piece = tokenizer.IdToPiece(token_id)
  825. text = piece.encode("utf-8")
  826. score = tokenizer.GetScore(token_id)
  827. toktype = SentencePieceTokenTypes.NORMAL
  828. if tokenizer.IsUnknown(token_id):
  829. toktype = SentencePieceTokenTypes.UNKNOWN
  830. elif tokenizer.IsControl(token_id):
  831. toktype = SentencePieceTokenTypes.CONTROL
  832. elif tokenizer.IsUnused(token_id):
  833. toktype = SentencePieceTokenTypes.UNUSED
  834. elif tokenizer.IsByte(token_id):
  835. toktype = SentencePieceTokenTypes.BYTE
  836. tokens[token_id] = text
  837. scores[token_id] = score
  838. toktypes[token_id] = toktype
  839. added_tokens_file = self.dir_model / 'added_tokens.json'
  840. if added_tokens_file.is_file():
  841. with open(added_tokens_file, "r", encoding="utf-8") as f:
  842. added_tokens_json = json.load(f)
  843. for key in added_tokens_json:
  844. token_id = added_tokens_json[key]
  845. if token_id >= vocab_size:
  846. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  847. continue
  848. tokens[token_id] = key.encode("utf-8")
  849. scores[token_id] = -1000.0
  850. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  851. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  852. if tokenizer_config_file.is_file():
  853. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  854. tokenizer_config_json = json.load(f)
  855. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  856. for token_id, token_data in added_tokens_decoder.items():
  857. token_id = int(token_id)
  858. token: str = token_data["content"]
  859. if token_id >= vocab_size:
  860. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  861. continue
  862. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  863. if tokens[token_id] != token.encode("utf-8"):
  864. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  865. if token_data.get("special") or self.does_token_look_special(token):
  866. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  867. else:
  868. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  869. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  870. scores[token_id] = -1000.0
  871. tokens[token_id] = token.encode("utf-8")
  872. if vocab_size > len(tokens):
  873. pad_count = vocab_size - len(tokens)
  874. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  875. for i in range(1, pad_count + 1):
  876. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  877. scores.append(-1000.0)
  878. toktypes.append(SentencePieceTokenTypes.UNUSED)
  879. return tokens, scores, toktypes
  880. def _set_vocab_llama_hf(self):
  881. vocab = gguf.LlamaHfVocab(self.dir_model)
  882. tokens = []
  883. scores = []
  884. toktypes = []
  885. for text, score, toktype in vocab.all_tokens():
  886. tokens.append(text)
  887. scores.append(score)
  888. toktypes.append(toktype)
  889. assert len(tokens) == vocab.vocab_size
  890. self.gguf_writer.add_tokenizer_model("llama")
  891. self.gguf_writer.add_tokenizer_pre("default")
  892. self.gguf_writer.add_token_list(tokens)
  893. self.gguf_writer.add_token_scores(scores)
  894. self.gguf_writer.add_token_types(toktypes)
  895. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  896. special_vocab.add_to_gguf(self.gguf_writer)
  897. def _set_vocab_rwkv_world(self):
  898. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  899. vocab_size = self.hparams.get("vocab_size", 65536)
  900. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  901. toktypes: list[int] = [gguf.TokenType.CONTROL]
  902. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  903. lines = f.readlines()
  904. for line in lines:
  905. parts = line.split(' ')
  906. assert len(parts) >= 3
  907. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  908. token = token.encode("utf-8") if isinstance(token, str) else token
  909. assert isinstance(token, bytes)
  910. assert len(token) == token_len
  911. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  912. tokens.append(token_text.encode("utf-8"))
  913. toktypes.append(gguf.TokenType.NORMAL)
  914. remainder = vocab_size - len(tokens)
  915. assert remainder >= 0
  916. for i in range(len(tokens), vocab_size):
  917. tokens.append(f"[PAD{i}]".encode("utf-8"))
  918. toktypes.append(gguf.TokenType.UNUSED)
  919. self.gguf_writer.add_tokenizer_model("rwkv")
  920. self.gguf_writer.add_token_list(tokens)
  921. self.gguf_writer.add_token_types(toktypes)
  922. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  923. if special_vocab.chat_template is None:
  924. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  925. if template_path.is_file():
  926. with open(template_path, "r", encoding="utf-8") as f:
  927. template = f.read()
  928. else:
  929. template = "rwkv-world"
  930. special_vocab.chat_template = template
  931. # hack: Add '\n\n' as the EOT token to make it chat normally
  932. special_vocab._set_special_token("eot", 261)
  933. # hack: Override these as they have already been set (incorrectly)
  934. special_vocab.special_token_ids["bos"] = 0
  935. special_vocab.special_token_ids["eos"] = 0
  936. special_vocab.add_to_gguf(self.gguf_writer)
  937. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  938. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  939. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  940. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  941. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  942. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  943. assert field # tokenizer model
  944. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  945. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  946. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  947. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  948. assert field # token list
  949. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  950. if model_name == "llama-spm":
  951. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  952. assert field # token scores
  953. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  954. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  955. assert field # token types
  956. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  957. if model_name != "llama-spm":
  958. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  959. assert field # token merges
  960. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  961. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  962. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  963. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  964. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  965. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  966. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  967. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  968. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  969. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  970. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  971. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  972. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  973. def _try_set_pooling_type(self) -> None:
  974. # get pooling path
  975. pooling_path = None
  976. module_path = self.dir_model / "modules.json"
  977. if module_path.is_file():
  978. with open(module_path, encoding="utf-8") as f:
  979. modules = json.load(f)
  980. for mod in modules:
  981. if mod["type"] == "sentence_transformers.models.Pooling":
  982. pooling_path = mod["path"]
  983. break
  984. # get pooling type
  985. if pooling_path is not None:
  986. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  987. pooling = json.load(f)
  988. if pooling["pooling_mode_mean_tokens"]:
  989. pooling_type = gguf.PoolingType.MEAN
  990. elif pooling["pooling_mode_cls_token"]:
  991. pooling_type = gguf.PoolingType.CLS
  992. elif pooling["pooling_mode_lasttoken"]:
  993. pooling_type = gguf.PoolingType.LAST
  994. else:
  995. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  996. self.gguf_writer.add_pooling_type(pooling_type)
  997. class MmprojModel(ModelBase):
  998. model_type = ModelType.MMPROJ
  999. model_arch = gguf.MODEL_ARCH.MMPROJ
  1000. preprocessor_config: dict[str, Any]
  1001. global_config: dict[str, Any]
  1002. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1003. has_vision_encoder: bool = True # by default
  1004. has_audio_encoder: bool = False
  1005. # for models having multiple encoders, we need to separate their hparams
  1006. hparams_vision: dict[str, Any] | None = None
  1007. hparams_audio: dict[str, Any] | None = None
  1008. def __init__(self, *args, **kwargs):
  1009. super().__init__(*args, **kwargs)
  1010. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1011. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1012. # get n_embd of the text model
  1013. if "text_config" not in self.hparams:
  1014. self.hparams["text_config"] = {}
  1015. if "audio_config" not in self.hparams:
  1016. self.hparams["audio_config"] = {}
  1017. text_config = {**self.hparams, **self.hparams["text_config"]}
  1018. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1019. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1020. # move vision config to the top level, while preserving the original hparams in global_config
  1021. import copy
  1022. self.global_config = copy.deepcopy(self.hparams)
  1023. self.hparams_vision = self.get_vision_config()
  1024. self.hparams_audio = self.get_audio_config()
  1025. if self.hparams_vision is None and self.hparams_audio is None:
  1026. raise ValueError("vision_config / audio_config not found in hparams")
  1027. # for compat with vision-only models
  1028. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1029. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1030. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1031. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1032. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1033. # load preprocessor config
  1034. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1035. self.preprocessor_config = json.load(f)
  1036. def get_vision_config(self) -> dict[str, Any] | None:
  1037. return self.global_config.get("vision_config")
  1038. def get_audio_config(self) -> dict[str, Any] | None:
  1039. return self.global_config.get("audio_config")
  1040. def set_type(self):
  1041. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1042. def set_gguf_parameters(self):
  1043. self.gguf_writer.add_file_type(self.ftype)
  1044. if self.has_vision_encoder:
  1045. self.gguf_writer.add_clip_has_vision_encoder(True)
  1046. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1047. # vision config
  1048. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1049. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1050. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1051. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1052. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1053. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1054. # preprocessor config
  1055. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1056. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1057. if self.has_audio_encoder:
  1058. self.gguf_writer.add_clip_has_audio_encoder(True)
  1059. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1060. # audio config
  1061. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1062. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1063. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1064. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1065. if not self.has_vision_encoder and not self.has_audio_encoder:
  1066. raise ValueError("MmprojModel must have either vision or audio encoder")
  1067. def write_vocab(self):
  1068. raise ValueError("MmprojModel does not support vocab writing")
  1069. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1070. assert self.hparams_vision is not None
  1071. return self._find_param(self.hparams_vision, keys, optional)
  1072. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1073. assert self.hparams_audio is not None
  1074. return self._find_param(self.hparams_audio, keys, optional)
  1075. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1076. key = next((k for k in keys if k in obj), None)
  1077. if key is not None:
  1078. return obj[key]
  1079. if optional:
  1080. return None
  1081. raise KeyError(f"could not find any of: {keys}")
  1082. @ModelBase.register("GPTNeoXForCausalLM")
  1083. class GPTNeoXModel(TextModel):
  1084. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1085. def set_gguf_parameters(self):
  1086. block_count = self.hparams["num_hidden_layers"]
  1087. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1088. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1089. self.gguf_writer.add_block_count(block_count)
  1090. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1091. self.gguf_writer.add_rope_dimension_count(
  1092. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1093. )
  1094. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1095. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1096. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1098. del bid # unused
  1099. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1100. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1101. tensors: list[tuple[str, Tensor]] = []
  1102. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1103. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1104. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1105. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1106. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1107. data_torch = torch.cat(
  1108. (
  1109. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1110. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1111. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1112. ),
  1113. dim=0,
  1114. )
  1115. logger.info("re-format attention.linear_qkv.weight")
  1116. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1117. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1118. data_torch = torch.cat(
  1119. (
  1120. qkv_bias[:, 0, :].reshape((n_embed,)),
  1121. qkv_bias[:, 1, :].reshape((n_embed,)),
  1122. qkv_bias[:, 2, :].reshape((n_embed,)),
  1123. ),
  1124. dim=0,
  1125. )
  1126. logger.info("re-format attention.linear_qkv.bias")
  1127. tensors.append((self.map_tensor_name(name), data_torch))
  1128. return tensors
  1129. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1130. class BloomModel(TextModel):
  1131. model_arch = gguf.MODEL_ARCH.BLOOM
  1132. def set_gguf_parameters(self):
  1133. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1134. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1135. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1136. self.gguf_writer.add_embedding_length(n_embed)
  1137. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1138. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1139. self.gguf_writer.add_head_count(n_head)
  1140. self.gguf_writer.add_head_count_kv(n_head)
  1141. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1142. self.gguf_writer.add_file_type(self.ftype)
  1143. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1144. del bid # unused
  1145. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1146. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1147. name = re.sub(r'transformer\.', '', name)
  1148. tensors: list[tuple[str, Tensor]] = []
  1149. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1150. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1151. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1152. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1153. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1154. data_torch = torch.cat(
  1155. (
  1156. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1157. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1158. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1159. ),
  1160. dim=0,
  1161. )
  1162. logger.info("re-format attention.linear_qkv.weight")
  1163. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1164. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1165. data_torch = torch.cat(
  1166. (
  1167. qkv_bias[:, 0, :].reshape((n_embed,)),
  1168. qkv_bias[:, 1, :].reshape((n_embed,)),
  1169. qkv_bias[:, 2, :].reshape((n_embed,)),
  1170. ),
  1171. dim=0,
  1172. )
  1173. logger.info("re-format attention.linear_qkv.bias")
  1174. tensors.append((self.map_tensor_name(name), data_torch))
  1175. return tensors
  1176. @ModelBase.register("MPTForCausalLM")
  1177. class MPTModel(TextModel):
  1178. model_arch = gguf.MODEL_ARCH.MPT
  1179. def set_vocab(self):
  1180. try:
  1181. self._set_vocab_gpt2()
  1182. except Exception:
  1183. # Fallback for SEA-LION model
  1184. self._set_vocab_sentencepiece()
  1185. self.gguf_writer.add_add_bos_token(False)
  1186. self.gguf_writer.add_pad_token_id(3)
  1187. self.gguf_writer.add_eos_token_id(1)
  1188. self.gguf_writer.add_unk_token_id(0)
  1189. def set_gguf_parameters(self):
  1190. block_count = self.hparams["n_layers"]
  1191. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1192. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1193. self.gguf_writer.add_block_count(block_count)
  1194. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1195. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1196. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1197. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1198. self.gguf_writer.add_layer_norm_eps(1e-5)
  1199. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1200. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1201. if self.hparams["attn_config"]["alibi"]:
  1202. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1203. else:
  1204. self.gguf_writer.add_max_alibi_bias(0.0)
  1205. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1206. del bid # unused
  1207. if "scales" in name:
  1208. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1209. new_name = new_name.replace("scales", "act.scales")
  1210. else:
  1211. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1212. return [(new_name, data_torch)]
  1213. @ModelBase.register("OrionForCausalLM")
  1214. class OrionModel(TextModel):
  1215. model_arch = gguf.MODEL_ARCH.ORION
  1216. def set_vocab(self):
  1217. self._set_vocab_sentencepiece()
  1218. def set_gguf_parameters(self):
  1219. block_count = self.hparams["num_hidden_layers"]
  1220. head_count = self.hparams["num_attention_heads"]
  1221. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1222. ctx_length = 0
  1223. if "max_sequence_length" in self.hparams:
  1224. ctx_length = self.hparams["max_sequence_length"]
  1225. elif "max_position_embeddings" in self.hparams:
  1226. ctx_length = self.hparams["max_position_embeddings"]
  1227. elif "model_max_length" in self.hparams:
  1228. ctx_length = self.hparams["model_max_length"]
  1229. else:
  1230. raise ValueError("gguf: can not find ctx length parameter.")
  1231. self.gguf_writer.add_file_type(self.ftype)
  1232. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1233. self.gguf_writer.add_context_length(ctx_length)
  1234. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1235. self.gguf_writer.add_block_count(block_count)
  1236. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1237. self.gguf_writer.add_head_count(head_count)
  1238. self.gguf_writer.add_head_count_kv(head_count_kv)
  1239. # note: config provides rms norm but it is actually layer norm
  1240. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1241. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1242. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1243. class BaichuanModel(TextModel):
  1244. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1245. def set_vocab(self):
  1246. self._set_vocab_sentencepiece()
  1247. def set_gguf_parameters(self):
  1248. block_count = self.hparams["num_hidden_layers"]
  1249. head_count = self.hparams["num_attention_heads"]
  1250. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1251. ctx_length = 0
  1252. if "max_sequence_length" in self.hparams:
  1253. ctx_length = self.hparams["max_sequence_length"]
  1254. elif "max_position_embeddings" in self.hparams:
  1255. ctx_length = self.hparams["max_position_embeddings"]
  1256. elif "model_max_length" in self.hparams:
  1257. ctx_length = self.hparams["model_max_length"]
  1258. else:
  1259. raise ValueError("gguf: can not find ctx length parameter.")
  1260. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1261. self.gguf_writer.add_context_length(ctx_length)
  1262. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1263. self.gguf_writer.add_block_count(block_count)
  1264. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1265. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1266. self.gguf_writer.add_head_count(head_count)
  1267. self.gguf_writer.add_head_count_kv(head_count_kv)
  1268. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1269. self.gguf_writer.add_file_type(self.ftype)
  1270. rope_scaling = self.hparams.get("rope_scaling") or {}
  1271. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1272. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1273. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1275. head_count = self.hparams["num_attention_heads"]
  1276. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1277. tensors: list[tuple[str, Tensor]] = []
  1278. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1279. logger.info(f"Unpacking and permuting layer {bid}")
  1280. tensors = [
  1281. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1282. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1283. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1284. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1285. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1286. self._reverse_hf_part(data_torch, 2)),
  1287. ]
  1288. else:
  1289. tensors = [(self.map_tensor_name(name), data_torch)]
  1290. return tensors
  1291. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1292. if n_kv_head is not None and n_head != n_kv_head:
  1293. n_head //= n_kv_head
  1294. return (
  1295. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1296. .swapaxes(1, 2)
  1297. .reshape(weights.shape)
  1298. )
  1299. def _reverse_hf_permute_part(
  1300. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1301. ) -> Tensor:
  1302. r = weights.shape[0] // 3
  1303. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1304. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1305. r = weights.shape[0] // 3
  1306. return weights[r * n_part:r * n_part + r, ...]
  1307. @ModelBase.register("XverseForCausalLM")
  1308. class XverseModel(TextModel):
  1309. model_arch = gguf.MODEL_ARCH.XVERSE
  1310. def set_vocab(self):
  1311. assert (self.dir_model / "tokenizer.json").is_file()
  1312. dir_model = self.dir_model
  1313. hparams = self.hparams
  1314. tokens: list[bytes] = []
  1315. toktypes: list[int] = []
  1316. from transformers import AutoTokenizer
  1317. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1318. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1319. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1320. # because vocab_size is the count of items, and indexes start at 0.
  1321. max_vocab_index = max(tokenizer.get_vocab().values())
  1322. if max_vocab_index >= vocab_size:
  1323. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1324. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1325. added_vocab = tokenizer.get_added_vocab()
  1326. for token_id in range(vocab_size):
  1327. token_text = reverse_vocab[token_id].encode('utf-8')
  1328. # replace "\x00" to string with length > 0
  1329. if token_text == b"\x00":
  1330. toktype = gguf.TokenType.BYTE # special
  1331. token_text = f"<{token_text}>".encode('utf-8')
  1332. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1333. toktype = gguf.TokenType.BYTE # special
  1334. elif reverse_vocab[token_id] in added_vocab:
  1335. if tokenizer.added_tokens_decoder[token_id].special:
  1336. toktype = gguf.TokenType.CONTROL
  1337. else:
  1338. toktype = gguf.TokenType.USER_DEFINED
  1339. else:
  1340. toktype = gguf.TokenType.NORMAL
  1341. tokens.append(token_text)
  1342. toktypes.append(toktype)
  1343. self.gguf_writer.add_tokenizer_model("llama")
  1344. self.gguf_writer.add_tokenizer_pre("default")
  1345. self.gguf_writer.add_token_list(tokens)
  1346. self.gguf_writer.add_token_types(toktypes)
  1347. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1348. special_vocab.add_to_gguf(self.gguf_writer)
  1349. def set_gguf_parameters(self):
  1350. block_count = self.hparams["num_hidden_layers"]
  1351. head_count = self.hparams["num_attention_heads"]
  1352. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1353. ctx_length = 0
  1354. if "max_sequence_length" in self.hparams:
  1355. ctx_length = self.hparams["max_sequence_length"]
  1356. elif "max_position_embeddings" in self.hparams:
  1357. ctx_length = self.hparams["max_position_embeddings"]
  1358. elif "model_max_length" in self.hparams:
  1359. ctx_length = self.hparams["model_max_length"]
  1360. else:
  1361. raise ValueError("gguf: can not find ctx length parameter.")
  1362. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1363. self.gguf_writer.add_context_length(ctx_length)
  1364. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1365. self.gguf_writer.add_block_count(block_count)
  1366. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1367. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1368. self.gguf_writer.add_head_count(head_count)
  1369. self.gguf_writer.add_head_count_kv(head_count_kv)
  1370. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1371. self.gguf_writer.add_file_type(self.ftype)
  1372. rope_scaling = self.hparams.get("rope_scaling") or {}
  1373. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1374. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1375. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1377. del bid # unused
  1378. head_count = self.hparams["num_attention_heads"]
  1379. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1380. # HF models permute some of the tensors, so we need to undo that
  1381. if name.endswith("q_proj.weight"):
  1382. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1383. if name.endswith("k_proj.weight"):
  1384. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1385. return [(self.map_tensor_name(name), data_torch)]
  1386. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1387. if n_kv_head is not None and n_head != n_kv_head:
  1388. n_head //= n_kv_head
  1389. return (
  1390. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1391. .swapaxes(1, 2)
  1392. .reshape(weights.shape)
  1393. )
  1394. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1395. class FalconModel(TextModel):
  1396. model_arch = gguf.MODEL_ARCH.FALCON
  1397. def set_gguf_parameters(self):
  1398. block_count = self.hparams.get("num_hidden_layers")
  1399. if block_count is None:
  1400. block_count = self.hparams["n_layer"] # old name
  1401. n_head = self.hparams.get("num_attention_heads")
  1402. if n_head is None:
  1403. n_head = self.hparams["n_head"] # old name
  1404. n_head_kv = self.hparams.get("num_kv_heads")
  1405. if n_head_kv is None:
  1406. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1407. self.gguf_writer.add_context_length(2048) # not in config.json
  1408. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1409. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1410. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1411. self.gguf_writer.add_block_count(block_count)
  1412. self.gguf_writer.add_head_count(n_head)
  1413. self.gguf_writer.add_head_count_kv(n_head_kv)
  1414. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1415. self.gguf_writer.add_file_type(self.ftype)
  1416. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1417. del bid # unused
  1418. # QKV tensor transform
  1419. # The original query_key_value tensor contains n_head_kv "kv groups",
  1420. # each consisting of n_head/n_head_kv query weights followed by one key
  1421. # and one value weight (shared by all query heads in the kv group).
  1422. # This layout makes it a big pain to work with in GGML.
  1423. # So we rearrange them here,, so that we have n_head query weights
  1424. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1425. # in contiguous fashion.
  1426. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1427. if "query_key_value" in name:
  1428. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1429. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1430. head_dim = self.hparams["hidden_size"] // n_head
  1431. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1432. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1433. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1434. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1435. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1436. return [(self.map_tensor_name(name), data_torch)]
  1437. @ModelBase.register("GPTBigCodeForCausalLM")
  1438. class StarCoderModel(TextModel):
  1439. model_arch = gguf.MODEL_ARCH.STARCODER
  1440. def set_gguf_parameters(self):
  1441. block_count = self.hparams["n_layer"]
  1442. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1443. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1444. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1445. self.gguf_writer.add_block_count(block_count)
  1446. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1447. self.gguf_writer.add_head_count_kv(1)
  1448. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1449. self.gguf_writer.add_file_type(self.ftype)
  1450. @ModelBase.register("GPTRefactForCausalLM")
  1451. class RefactModel(TextModel):
  1452. model_arch = gguf.MODEL_ARCH.REFACT
  1453. def set_vocab(self):
  1454. super().set_vocab()
  1455. # TODO: how to determine special FIM tokens automatically?
  1456. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1457. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1458. special_vocab._set_special_token("prefix", 1)
  1459. special_vocab._set_special_token("suffix", 3)
  1460. special_vocab._set_special_token("middle", 2)
  1461. special_vocab.chat_template = None # do not add it twice
  1462. special_vocab.add_to_gguf(self.gguf_writer)
  1463. def set_gguf_parameters(self):
  1464. hidden_dim = self.hparams["n_embd"]
  1465. inner_dim = 4 * hidden_dim
  1466. hidden_dim = int(2 * inner_dim / 3)
  1467. multiple_of = 256
  1468. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1469. block_count = self.hparams["n_layer"]
  1470. # refact uses Alibi. So this is from config.json which might be used by training.
  1471. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1472. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1473. self.gguf_writer.add_feed_forward_length(ff_dim)
  1474. self.gguf_writer.add_block_count(block_count)
  1475. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1476. self.gguf_writer.add_head_count_kv(1)
  1477. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1478. self.gguf_writer.add_file_type(self.ftype)
  1479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1480. hidden_dim = self.hparams["n_embd"]
  1481. inner_dim = 4 * hidden_dim
  1482. hidden_dim = int(2 * inner_dim / 3)
  1483. multiple_of = 256
  1484. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1485. n_head = self.hparams["n_head"]
  1486. n_head_kv = 1
  1487. head_dim = self.hparams["n_embd"] // n_head
  1488. tensors: list[tuple[str, Tensor]] = []
  1489. if bid is not None:
  1490. if name == f"transformer.h.{bid}.attn.kv.weight":
  1491. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1492. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1493. elif name == f"transformer.h.{bid}.attn.q.weight":
  1494. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1495. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1496. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1497. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1498. if len(tensors) == 0:
  1499. tensors.append((self.map_tensor_name(name), data_torch))
  1500. return tensors
  1501. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1502. class StableLMModel(TextModel):
  1503. model_arch = gguf.MODEL_ARCH.STABLELM
  1504. def set_vocab(self):
  1505. if (self.dir_model / "tokenizer.json").is_file():
  1506. self._set_vocab_gpt2()
  1507. else:
  1508. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1509. self._set_vocab_qwen()
  1510. def set_gguf_parameters(self):
  1511. hparams = self.hparams
  1512. block_count = hparams["num_hidden_layers"]
  1513. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1514. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1515. self.gguf_writer.add_block_count(block_count)
  1516. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1517. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1518. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1519. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1520. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1521. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1522. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1523. self.gguf_writer.add_file_type(self.ftype)
  1524. _q_norms: list[dict[str, Tensor]] | None = None
  1525. _k_norms: list[dict[str, Tensor]] | None = None
  1526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1527. n_head = self.hparams["num_attention_heads"]
  1528. n_kv_head = self.hparams["num_key_value_heads"]
  1529. if name.find("q_layernorm.norms") != -1:
  1530. assert bid is not None
  1531. if self._q_norms is None:
  1532. self._q_norms = [{} for _ in range(self.block_count)]
  1533. self._q_norms[bid][name] = data_torch
  1534. if len(self._q_norms[bid]) >= n_head:
  1535. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1536. else:
  1537. return []
  1538. if name.find("k_layernorm.norms") != -1:
  1539. assert bid is not None
  1540. if self._k_norms is None:
  1541. self._k_norms = [{} for _ in range(self.block_count)]
  1542. self._k_norms[bid][name] = data_torch
  1543. if len(self._k_norms[bid]) >= n_kv_head:
  1544. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1545. else:
  1546. return []
  1547. return [(self.map_tensor_name(name), data_torch)]
  1548. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1549. datas: list[Tensor] = []
  1550. # extract the norms in order
  1551. for xid in range(n_head):
  1552. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1553. datas.append(norms[ename])
  1554. del norms[ename]
  1555. data_torch = torch.stack(datas, dim=0)
  1556. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1557. new_name = self.map_tensor_name(merged_name)
  1558. return [(new_name, data_torch)]
  1559. def prepare_tensors(self):
  1560. super().prepare_tensors()
  1561. if self._q_norms is not None or self._k_norms is not None:
  1562. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1563. norms = (
  1564. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1565. ) + (
  1566. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1567. )
  1568. if len(norms) > 0:
  1569. raise ValueError(f"Unprocessed norms: {norms}")
  1570. @ModelBase.register(
  1571. "LLaMAForCausalLM",
  1572. "LlamaForCausalLM",
  1573. "MistralForCausalLM",
  1574. "MixtralForCausalLM",
  1575. "VLlama3ForCausalLM",
  1576. "LlavaForConditionalGeneration",
  1577. "LlamaModel")
  1578. class LlamaModel(TextModel):
  1579. model_arch = gguf.MODEL_ARCH.LLAMA
  1580. undo_permute = True
  1581. def __init__(self, *args, **kwargs):
  1582. super().__init__(*args, **kwargs)
  1583. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1584. if self.hf_arch == "VLlama3ForCausalLM":
  1585. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1586. def set_vocab(self):
  1587. try:
  1588. self._set_vocab_sentencepiece()
  1589. except FileNotFoundError:
  1590. try:
  1591. self._set_vocab_llama_hf()
  1592. except (FileNotFoundError, TypeError):
  1593. # Llama 3
  1594. self._set_vocab_gpt2()
  1595. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1596. if self.hparams.get("vocab_size", 32000) == 32016:
  1597. special_vocab = gguf.SpecialVocab(
  1598. self.dir_model, load_merges=False,
  1599. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1600. )
  1601. special_vocab._set_special_token("prefix", 32007)
  1602. special_vocab._set_special_token("suffix", 32008)
  1603. special_vocab._set_special_token("middle", 32009)
  1604. special_vocab._set_special_token("eot", 32010)
  1605. special_vocab.add_to_gguf(self.gguf_writer)
  1606. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1607. if tokenizer_config_file.is_file():
  1608. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1609. tokenizer_config_json = json.load(f)
  1610. if "add_prefix_space" in tokenizer_config_json:
  1611. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1612. # Apply to granite small models only
  1613. if self.hparams.get("vocab_size", 32000) == 49152:
  1614. self.gguf_writer.add_add_bos_token(False)
  1615. def set_gguf_parameters(self):
  1616. super().set_gguf_parameters()
  1617. hparams = self.hparams
  1618. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1619. if (rope_dim := hparams.get("head_dim")) is None:
  1620. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1621. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1622. rope_scaling = self.hparams.get("rope_scaling") or {}
  1623. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1624. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1625. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1626. @staticmethod
  1627. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1628. if n_head_kv is not None and n_head != n_head_kv:
  1629. n_head = n_head_kv
  1630. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1631. .swapaxes(1, 2)
  1632. .reshape(weights.shape))
  1633. _experts: list[dict[str, Tensor]] | None = None
  1634. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1635. n_head = self.hparams["num_attention_heads"]
  1636. n_kv_head = self.hparams.get("num_key_value_heads")
  1637. is_vision_tensor = "vision_tower" in name \
  1638. or "vision_model" in name \
  1639. or "model.connector" in name \
  1640. or "multi_modal_projector" in name
  1641. if is_vision_tensor:
  1642. return [] # skip vision tensors
  1643. elif self.hf_arch == "LlamaModel":
  1644. name = "model." + name
  1645. elif name.startswith("model.text_model"):
  1646. name = name.replace("text_model.", "") # for SmolVLM
  1647. elif name.startswith("language_model."):
  1648. name = name.replace("language_model.", "") # for the rest
  1649. if self.undo_permute:
  1650. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1651. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1652. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1653. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1654. # process the experts separately
  1655. if name.find("block_sparse_moe.experts") != -1:
  1656. n_experts = self.hparams["num_local_experts"]
  1657. assert bid is not None
  1658. if self._experts is None:
  1659. self._experts = [{} for _ in range(self.block_count)]
  1660. self._experts[bid][name] = data_torch
  1661. if len(self._experts[bid]) >= n_experts * 3:
  1662. tensors: list[tuple[str, Tensor]] = []
  1663. # merge the experts into a single 3d tensor
  1664. for wid in ["w1", "w2", "w3"]:
  1665. datas: list[Tensor] = []
  1666. for xid in range(n_experts):
  1667. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1668. datas.append(self._experts[bid][ename])
  1669. del self._experts[bid][ename]
  1670. data_torch = torch.stack(datas, dim=0)
  1671. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1672. new_name = self.map_tensor_name(merged_name)
  1673. tensors.append((new_name, data_torch))
  1674. return tensors
  1675. else:
  1676. return []
  1677. return [(self.map_tensor_name(name), data_torch)]
  1678. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1679. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1680. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1681. base = self.hparams.get("rope_theta", 10000.0)
  1682. if (dim := self.hparams.get("head_dim")) is None:
  1683. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1684. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1685. factor = rope_scaling.get("factor", 8.0)
  1686. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1687. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1688. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1689. low_freq_wavelen = old_context_len / low_freq_factor
  1690. high_freq_wavelen = old_context_len / high_freq_factor
  1691. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1692. rope_factors = []
  1693. for freq in freqs:
  1694. wavelen = 2 * math.pi / freq
  1695. if wavelen < high_freq_wavelen:
  1696. rope_factors.append(1)
  1697. elif wavelen > low_freq_wavelen:
  1698. rope_factors.append(factor)
  1699. else:
  1700. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1701. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1702. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1703. def prepare_tensors(self):
  1704. super().prepare_tensors()
  1705. if self._experts is not None:
  1706. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1707. experts = [k for d in self._experts for k in d.keys()]
  1708. if len(experts) > 0:
  1709. raise ValueError(f"Unprocessed experts: {experts}")
  1710. @ModelBase.register("ArceeForCausalLM")
  1711. class ArceeModel(LlamaModel):
  1712. model_arch = gguf.MODEL_ARCH.ARCEE
  1713. def set_gguf_parameters(self):
  1714. super().set_gguf_parameters()
  1715. self._try_set_pooling_type()
  1716. rope_scaling = self.hparams.get("rope_scaling") or {}
  1717. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1718. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1719. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1720. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1721. @ModelBase.register(
  1722. "LlavaForConditionalGeneration", # pixtral
  1723. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1724. )
  1725. class LlavaVisionModel(MmprojModel):
  1726. img_break_tok_id = -1
  1727. def __init__(self, *args, **kwargs):
  1728. super().__init__(*args, **kwargs)
  1729. if self.hparams["model_type"] == "pixtral":
  1730. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1731. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1732. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1733. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1734. else:
  1735. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1736. def get_token_id(self, token: str) -> int:
  1737. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1738. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1739. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1740. for id_, token_data in added_tokens_decoder.items():
  1741. if token_data["content"] == token:
  1742. return int(id_)
  1743. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1744. def set_gguf_parameters(self):
  1745. super().set_gguf_parameters()
  1746. hparams = self.hparams
  1747. if hparams["model_type"] == "pixtral":
  1748. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1749. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1750. # hidden_act
  1751. if hparams["hidden_act"] == "silu":
  1752. self.gguf_writer.add_vision_use_silu(True)
  1753. elif hparams["hidden_act"] == "gelu":
  1754. self.gguf_writer.add_vision_use_gelu(True)
  1755. else:
  1756. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1757. # spatial_merge_size
  1758. if "spatial_merge_size" in self.global_config:
  1759. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1760. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1761. del bid # unused
  1762. n_head = self.hparams["num_attention_heads"]
  1763. n_kv_head = n_head
  1764. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1765. # process vision tensors
  1766. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1767. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1768. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1769. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1770. return [(self.map_tensor_name(name), data_torch)]
  1771. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1772. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1773. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1774. img_break_embd = data_torch[self.img_break_tok_id]
  1775. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1776. return [(self.map_tensor_name(name), img_break_embd)]
  1777. return [] # skip other tensors
  1778. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1779. class SmolVLMModel(MmprojModel):
  1780. def __init__(self, *args, **kwargs):
  1781. super().__init__(*args, **kwargs)
  1782. if self.hparams["model_type"] == "smolvlm_vision":
  1783. # fix for SmolVLM2, missing some keys in config.json
  1784. # default values are taken from transformers code
  1785. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1786. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1787. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1788. def set_gguf_parameters(self):
  1789. super().set_gguf_parameters()
  1790. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1791. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1792. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1793. self.gguf_writer.add_vision_use_gelu(True)
  1794. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1795. del bid, new_name, n_dims # unused
  1796. if ".embeddings." in name:
  1797. return gguf.GGMLQuantizationType.F32
  1798. return False
  1799. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1800. del bid # unused
  1801. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1802. if is_vision_tensor:
  1803. return [(self.map_tensor_name(name), data_torch)]
  1804. return [] # skip other tensors
  1805. @ModelBase.register("Llama4ForConditionalGeneration")
  1806. class Llama4Model(LlamaModel):
  1807. model_arch = gguf.MODEL_ARCH.LLAMA4
  1808. undo_permute = False
  1809. def __init__(self, *args, **kwargs):
  1810. super().__init__(*args, **kwargs)
  1811. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1812. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1813. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1814. def set_vocab(self):
  1815. self._set_vocab_gpt2()
  1816. def set_gguf_parameters(self):
  1817. super().set_gguf_parameters()
  1818. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1819. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1821. if name.startswith("language_model."):
  1822. name = name.replace("language_model.", "")
  1823. # split the gate_up into gate and up
  1824. if "gate_up_proj" in name:
  1825. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1826. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1827. dim_half = data_torch.shape[-1] // 2
  1828. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1829. return [
  1830. (self.map_tensor_name(name_gate), gate_proj_weight),
  1831. (self.map_tensor_name(name_up), up_proj_weight)
  1832. ]
  1833. if name.endswith("down_proj"):
  1834. name += ".weight"
  1835. data_torch = data_torch.transpose(-1, -2)
  1836. if "multi_modal_projector" in name or "vision_model" in name:
  1837. return []
  1838. return super().modify_tensors(data_torch, name, bid)
  1839. @ModelBase.register("Llama4ForConditionalGeneration")
  1840. class Llama4VisionModel(MmprojModel):
  1841. def set_gguf_parameters(self):
  1842. super().set_gguf_parameters()
  1843. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1844. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1845. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1846. assert self.hparams["hidden_act"] == "gelu"
  1847. self.gguf_writer.add_vision_use_gelu(True)
  1848. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1849. del bid # unused
  1850. if "multi_modal_projector" in name or "vision_model" in name:
  1851. # process vision tensors
  1852. if "positional_embedding_vlm" in name and ".weight" not in name:
  1853. name += ".weight"
  1854. if "multi_modal_projector.linear_1" in name:
  1855. # despite the name with number postfix, this is a single fully connected layer
  1856. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1857. return [(self.map_tensor_name(name), data_torch)]
  1858. return []
  1859. @ModelBase.register("Mistral3ForConditionalGeneration")
  1860. class Mistral3Model(LlamaModel):
  1861. model_arch = gguf.MODEL_ARCH.LLAMA
  1862. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1863. name = name.replace("language_model.", "")
  1864. if "multi_modal_projector" in name or "vision_tower" in name:
  1865. return []
  1866. return super().modify_tensors(data_torch, name, bid)
  1867. @ModelBase.register("DeciLMForCausalLM")
  1868. class DeciModel(TextModel):
  1869. model_arch = gguf.MODEL_ARCH.DECI
  1870. @staticmethod
  1871. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1872. # DeciLM-specific code
  1873. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1874. return DeciModel._find_multiple(intermediate_size, 256)
  1875. @staticmethod
  1876. def _find_multiple(n: int, k: int) -> int:
  1877. # DeciLM-specific code
  1878. if n % k == 0:
  1879. return n
  1880. return n + k - (n % k)
  1881. def __init__(self, *args, **kwargs):
  1882. super().__init__(*args, **kwargs)
  1883. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1884. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1885. assert self.block_count == len(_block_configs)
  1886. self._num_kv_heads = list()
  1887. self._num_heads = list()
  1888. _ffn_multipliers = list()
  1889. # ***linear attention layer***
  1890. # if n_heads_in_group is None and replace_with_linear is True
  1891. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1892. # ***attention-free layer***
  1893. # if n_heads_in_group is None and replace_with_linear is False
  1894. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1895. # ***normal attention-layer***
  1896. # if n_heads_in_group is not None, then
  1897. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1898. # _num_heads[il] is num_attention_head
  1899. # ***dummy layer*** for nemotron 253B
  1900. # if n_heads_in_group is None and ffn_mult is None
  1901. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1902. for il in range(len(_block_configs)):
  1903. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1904. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1905. self._num_kv_heads.append(0)
  1906. self._num_heads.append(self.hparams["num_attention_heads"])
  1907. else:
  1908. self._num_kv_heads.append(0)
  1909. self._num_heads.append(0)
  1910. else:
  1911. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1912. self._num_heads.append(self.hparams["num_attention_heads"])
  1913. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1914. _ffn_multipliers.append(0.0)
  1915. else:
  1916. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1917. assert self.block_count == len(self._num_kv_heads)
  1918. assert self.block_count == len(self._num_heads)
  1919. assert self.block_count == len(_ffn_multipliers)
  1920. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1921. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1922. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1923. self._ffn_dims: list[int] = [
  1924. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1925. for multiplier in _ffn_multipliers
  1926. ]
  1927. def set_vocab(self):
  1928. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1929. # eos_token from '|eot_id|' to '|end_of_text|'
  1930. if self.hparams.get("vocab_size", 128256) == 128256:
  1931. tokens, toktypes, tokpre = self.get_vocab_base()
  1932. self.gguf_writer.add_tokenizer_model("gpt2")
  1933. self.gguf_writer.add_tokenizer_pre(tokpre)
  1934. self.gguf_writer.add_token_list(tokens)
  1935. self.gguf_writer.add_token_types(toktypes)
  1936. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1937. special_vocab.add_to_gguf(self.gguf_writer)
  1938. else:
  1939. # DeciLM-7B
  1940. self._set_vocab_llama_hf()
  1941. def set_gguf_parameters(self):
  1942. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1943. assert self.block_count == len(self._num_kv_heads)
  1944. assert self.block_count == len(self._num_heads)
  1945. assert self.block_count == len(self._ffn_dims)
  1946. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1947. self.gguf_writer.add_rope_freq_base(rope_theta)
  1948. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1949. self.gguf_writer.add_head_count(self._num_heads)
  1950. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1951. self.gguf_writer.add_block_count(self.block_count)
  1952. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1953. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1954. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1955. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1956. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1957. self.gguf_writer.add_file_type(self.ftype)
  1958. else: # DeciLM-7B
  1959. super().set_gguf_parameters()
  1960. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1961. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1962. assert self.block_count == len(self._num_kv_heads)
  1963. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1964. hparams = self.hparams
  1965. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1966. if (rope_dim := hparams.get("head_dim")) is None:
  1967. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1968. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1969. rope_scaling = self.hparams.get("rope_scaling") or {}
  1970. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1971. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1972. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1973. @staticmethod
  1974. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1975. if n_head_kv is not None and n_head != n_head_kv:
  1976. n_head = n_head_kv
  1977. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1978. .swapaxes(1, 2)
  1979. .reshape(weights.shape))
  1980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1981. n_head = self.hparams["num_attention_heads"]
  1982. if bid is not None:
  1983. if "num_key_value_heads_per_layer" in self.hparams:
  1984. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1985. elif "block_configs" in self.hparams:
  1986. n_kv_head = self._num_kv_heads[bid]
  1987. n_head = self._num_heads[bid]
  1988. else:
  1989. n_kv_head = self.hparams.get("num_key_value_heads")
  1990. else:
  1991. n_kv_head = self.hparams.get("num_key_value_heads")
  1992. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1993. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1994. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1995. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1996. return [(self.map_tensor_name(name), data_torch)]
  1997. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1998. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1999. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2000. base = self.hparams.get("rope_theta", 10000.0)
  2001. if (dim := self.hparams.get("head_dim")) is None:
  2002. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2003. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2004. factor = rope_scaling.get("factor", 8.0)
  2005. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2006. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2007. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2008. low_freq_wavelen = old_context_len / low_freq_factor
  2009. high_freq_wavelen = old_context_len / high_freq_factor
  2010. assert low_freq_wavelen != high_freq_wavelen
  2011. rope_factors = []
  2012. for freq in freqs:
  2013. wavelen = 2 * math.pi / freq
  2014. if wavelen < high_freq_wavelen:
  2015. rope_factors.append(1)
  2016. elif wavelen > low_freq_wavelen:
  2017. rope_factors.append(factor)
  2018. else:
  2019. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2020. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2021. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2022. def prepare_tensors(self):
  2023. super().prepare_tensors()
  2024. @ModelBase.register("BitnetForCausalLM")
  2025. class BitnetModel(TextModel):
  2026. model_arch = gguf.MODEL_ARCH.BITNET
  2027. def set_vocab(self):
  2028. self._set_vocab_sentencepiece()
  2029. def set_gguf_parameters(self):
  2030. super().set_gguf_parameters()
  2031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2032. self.gguf_writer.add_rope_scaling_factor(1.0)
  2033. def weight_quant(self, weight: Tensor) -> Tensor:
  2034. dtype = weight.dtype
  2035. weight = weight.float()
  2036. scale = weight.abs().mean().clamp(min=1e-5)
  2037. iscale = 1 / scale
  2038. # TODO: multiply by the scale directly instead of inverting it twice
  2039. # (this is also unnecessarily doubly inverted upstream)
  2040. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2041. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2042. return result.type(dtype)
  2043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2044. new_name = self.map_tensor_name(name)
  2045. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2046. gguf.MODEL_TENSOR.ATTN_Q,
  2047. gguf.MODEL_TENSOR.ATTN_K,
  2048. gguf.MODEL_TENSOR.ATTN_V,
  2049. gguf.MODEL_TENSOR.ATTN_OUT,
  2050. gguf.MODEL_TENSOR.FFN_UP,
  2051. gguf.MODEL_TENSOR.FFN_DOWN,
  2052. gguf.MODEL_TENSOR.FFN_GATE,
  2053. ]):
  2054. # transform weight into 1/0/-1 (in fp32)
  2055. data_torch = self.weight_quant(data_torch)
  2056. yield (new_name, data_torch)
  2057. @ModelBase.register("GrokForCausalLM")
  2058. class GrokModel(TextModel):
  2059. model_arch = gguf.MODEL_ARCH.GROK
  2060. def set_vocab(self):
  2061. self._set_vocab_sentencepiece()
  2062. def __init__(self, *args, **kwargs):
  2063. super().__init__(*args, **kwargs)
  2064. def set_gguf_parameters(self):
  2065. super().set_gguf_parameters()
  2066. _experts: list[dict[str, Tensor]] | None = None
  2067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2068. # process the experts separately
  2069. if name.find(".moe.") != -1:
  2070. n_experts = self.hparams["num_local_experts"]
  2071. assert bid is not None
  2072. if self._experts is None:
  2073. self._experts = [{} for _ in range(self.block_count)]
  2074. self._experts[bid][name] = data_torch
  2075. if len(self._experts[bid]) >= n_experts * 3:
  2076. tensors: list[tuple[str, Tensor]] = []
  2077. # merge the experts into a single 3d tensor
  2078. for wid in ["linear", "linear_1", "linear_v"]:
  2079. datas: list[Tensor] = []
  2080. for xid in range(n_experts):
  2081. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2082. datas.append(self._experts[bid][ename])
  2083. del self._experts[bid][ename]
  2084. data_torch = torch.stack(datas, dim=0)
  2085. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2086. new_name = self.map_tensor_name(merged_name)
  2087. tensors.append((new_name, data_torch))
  2088. return tensors
  2089. else:
  2090. return []
  2091. return [(self.map_tensor_name(name), data_torch)]
  2092. @ModelBase.register("DbrxForCausalLM")
  2093. class DbrxModel(TextModel):
  2094. model_arch = gguf.MODEL_ARCH.DBRX
  2095. def set_gguf_parameters(self):
  2096. ffn_config = self.hparams["ffn_config"]
  2097. attn_config = self.hparams["attn_config"]
  2098. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2099. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2100. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2101. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2102. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2103. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2104. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2105. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2106. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2107. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2108. self.gguf_writer.add_layer_norm_eps(1e-5)
  2109. self.gguf_writer.add_file_type(self.ftype)
  2110. logger.info(f"gguf: file type = {self.ftype}")
  2111. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2112. del bid # unused
  2113. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2114. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2115. n_embd = self.hparams["d_model"]
  2116. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2117. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2118. # But llama.cpp moe graph works differently
  2119. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2120. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2121. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2122. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2123. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2124. experts = False
  2125. for exp_tensor_name in exp_tensor_names.keys():
  2126. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2127. experts = True
  2128. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2129. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2130. data_torch = data_torch.permute(*permute_tensor)
  2131. break
  2132. # map tensor names
  2133. # In MoE models the ffn tensors are typically most of the model weights,
  2134. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2135. # Every other model has the weight names ending in .weight,
  2136. # let's assume that is the convention which is not the case for dbrx:
  2137. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2138. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2139. return [(new_name, data_torch)]
  2140. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2141. del name, new_name, bid # unused
  2142. return n_dims > 1
  2143. @ModelBase.register("MiniCPMForCausalLM")
  2144. class MiniCPMModel(TextModel):
  2145. model_arch = gguf.MODEL_ARCH.MINICPM
  2146. def set_gguf_parameters(self):
  2147. super().set_gguf_parameters()
  2148. embedding_scale = float(self.hparams["scale_emb"])
  2149. self.gguf_writer.add_embedding_scale(embedding_scale)
  2150. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2151. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2152. self.gguf_writer.add_residual_scale(residual_scale)
  2153. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2154. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2155. self.gguf_writer.add_logit_scale(logit_scale)
  2156. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2157. rope_scaling = self.hparams.get("rope_scaling") or {}
  2158. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2159. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2160. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2161. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2162. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2163. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2164. if rope_scaling is not None:
  2165. long_factors = rope_scaling.get('long_factor', None)
  2166. short_factors = rope_scaling.get('short_factor', None)
  2167. if long_factors is None or short_factors is None:
  2168. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2169. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2170. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2171. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2172. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2173. def set_vocab(self):
  2174. self._set_vocab_sentencepiece()
  2175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2176. del bid # unused
  2177. n_head = self.hparams["num_attention_heads"]
  2178. n_kv_head = self.hparams.get("num_key_value_heads")
  2179. # HF models permute some of the tensors, so we need to undo that
  2180. if name.endswith(("q_proj.weight")):
  2181. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2182. if name.endswith(("k_proj.weight")):
  2183. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2184. return [(self.map_tensor_name(name), data_torch)]
  2185. @ModelBase.register("MiniCPM3ForCausalLM")
  2186. class MiniCPM3Model(TextModel):
  2187. model_arch = gguf.MODEL_ARCH.MINICPM3
  2188. def set_gguf_parameters(self):
  2189. hparams = self.hparams
  2190. self.gguf_writer.add_file_type(self.ftype)
  2191. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2192. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2193. self.gguf_writer.add_block_count(self.block_count)
  2194. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2195. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2196. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2197. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2198. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2199. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2200. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2201. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2202. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2203. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2204. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2205. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2206. if rope_scaling is not None:
  2207. rope_dims = self.hparams["qk_rope_head_dim"]
  2208. long_factors = rope_scaling.get('long_factor', None)
  2209. short_factors = rope_scaling.get('short_factor', None)
  2210. if long_factors is None or short_factors is None:
  2211. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2212. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2213. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2214. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2215. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2216. def set_vocab(self):
  2217. self._set_vocab_sentencepiece()
  2218. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2219. if n_kv_head is not None and n_head != n_kv_head:
  2220. n_head //= n_kv_head
  2221. return (
  2222. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2223. .swapaxes(1, 2)
  2224. .reshape(weights.shape)
  2225. )
  2226. @ModelBase.register("QWenLMHeadModel")
  2227. class QwenModel(TextModel):
  2228. model_arch = gguf.MODEL_ARCH.QWEN
  2229. @staticmethod
  2230. def token_bytes_to_string(b):
  2231. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2232. byte_encoder = bytes_to_unicode()
  2233. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2234. @staticmethod
  2235. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2236. parts = [bytes([b]) for b in token]
  2237. while True:
  2238. min_idx = None
  2239. min_rank = None
  2240. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2241. rank = mergeable_ranks.get(pair[0] + pair[1])
  2242. if rank is not None and (min_rank is None or rank < min_rank):
  2243. min_idx = i
  2244. min_rank = rank
  2245. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2246. break
  2247. assert min_idx is not None
  2248. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2249. return parts
  2250. def set_vocab(self):
  2251. self._set_vocab_qwen()
  2252. def set_gguf_parameters(self):
  2253. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2254. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2255. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2256. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2257. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2258. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2259. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2260. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2261. self.gguf_writer.add_file_type(self.ftype)
  2262. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2263. class Qwen2Model(TextModel):
  2264. model_arch = gguf.MODEL_ARCH.QWEN2
  2265. def set_vocab(self):
  2266. try:
  2267. self._set_vocab_sentencepiece()
  2268. except FileNotFoundError:
  2269. self._set_vocab_gpt2()
  2270. def set_gguf_parameters(self):
  2271. super().set_gguf_parameters()
  2272. self._try_set_pooling_type()
  2273. rope_scaling = self.hparams.get("rope_scaling") or {}
  2274. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2275. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2276. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2277. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2278. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2279. if self.hf_arch == "Qwen2Model":
  2280. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2281. if "language_model." in name:
  2282. name = name.replace("language_model.", "") # for InternVL
  2283. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2284. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2285. # skip vision and audio tensors
  2286. return []
  2287. yield from super().modify_tensors(data_torch, name, bid)
  2288. @ModelBase.register("DreamModel")
  2289. class DreamModel(TextModel):
  2290. model_arch = gguf.MODEL_ARCH.DREAM
  2291. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2292. tokens: list[str] = []
  2293. toktypes: list[int] = []
  2294. from transformers import AutoTokenizer
  2295. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2296. vocab_dict = tokenizer.get_vocab()
  2297. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2298. assert max(vocab_dict.values()) < vocab_size
  2299. tokpre = self.get_vocab_base_pre(tokenizer)
  2300. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2301. added_vocab = tokenizer.get_added_vocab()
  2302. for i in range(vocab_size):
  2303. if i not in reverse_vocab:
  2304. tokens.append(f"[PAD{i}]")
  2305. toktypes.append(gguf.TokenType.UNUSED)
  2306. elif reverse_vocab[i] in added_vocab:
  2307. tokens.append(reverse_vocab[i])
  2308. # Check if it's a special token - treat special tokens as CONTROL tokens
  2309. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2310. if tokenizer.added_tokens_decoder[i].special:
  2311. toktypes.append(gguf.TokenType.CONTROL)
  2312. else:
  2313. toktypes.append(gguf.TokenType.USER_DEFINED)
  2314. else:
  2315. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2316. toktypes.append(gguf.TokenType.CONTROL)
  2317. else:
  2318. tokens.append(reverse_vocab[i])
  2319. toktypes.append(gguf.TokenType.NORMAL)
  2320. return tokens, toktypes, tokpre
  2321. def set_vocab(self):
  2322. try:
  2323. self._set_vocab_sentencepiece()
  2324. except FileNotFoundError:
  2325. self._set_vocab_gpt2()
  2326. def set_gguf_parameters(self):
  2327. super().set_gguf_parameters()
  2328. self._try_set_pooling_type()
  2329. # Dream models use non-causal attention for diffusion
  2330. self.gguf_writer.add_causal_attention(False)
  2331. # Handle RoPE scaling similar to Qwen2
  2332. rope_scaling = self.hparams.get("rope_scaling") or {}
  2333. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2334. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2335. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2336. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2337. # Add Dream-specific parameters
  2338. mask_token_id = self.hparams.get("mask_token_id")
  2339. if mask_token_id is not None:
  2340. self.gguf_writer.add_mask_token_id(mask_token_id)
  2341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2342. # Dream model tensors should be mapped directly since it's the base model
  2343. yield from super().modify_tensors(data_torch, name, bid)
  2344. @ModelBase.register("Ernie4_5_ForCausalLM")
  2345. class Ernie4_5Model(TextModel):
  2346. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2347. def set_vocab(self):
  2348. self._set_vocab_sentencepiece()
  2349. def set_gguf_parameters(self):
  2350. super().set_gguf_parameters()
  2351. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2352. num_heads = self.hparams["num_attention_heads"]
  2353. num_kv_heads = self.hparams["num_key_value_heads"]
  2354. head_dim = self.hparams["head_dim"]
  2355. if "ernie." in name:
  2356. name = name.replace("ernie.", "model.")
  2357. # split the qkv weights
  2358. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2359. if "qkv_proj" in name:
  2360. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2361. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2362. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2363. total_q_dim = num_heads * head_dim
  2364. total_k_dim = num_kv_heads * head_dim
  2365. total_v_dim = num_kv_heads * head_dim
  2366. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2367. return [
  2368. (self.map_tensor_name(name_q), q_proj_weight),
  2369. (self.map_tensor_name(name_k), k_proj_weight),
  2370. (self.map_tensor_name(name_v), v_proj_weight)
  2371. ]
  2372. # split the up_gate_proj into gate and up
  2373. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2374. if "up_gate_proj" in name:
  2375. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2376. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2377. dim_half = data_torch.shape[0] // 2
  2378. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2379. return [
  2380. (self.map_tensor_name(name_gate), gate_proj_weight),
  2381. (self.map_tensor_name(name_up), up_proj_weight)
  2382. ]
  2383. return [(self.map_tensor_name(name), data_torch)]
  2384. @ModelBase.register(
  2385. "Qwen2VLModel",
  2386. "Qwen2VLForConditionalGeneration",
  2387. "Qwen2_5_VLForConditionalGeneration",
  2388. "Qwen2_5OmniModel",
  2389. )
  2390. class Qwen2VLModel(TextModel):
  2391. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2392. def set_gguf_parameters(self):
  2393. super().set_gguf_parameters()
  2394. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2395. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2396. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2397. def set_vocab(self):
  2398. try:
  2399. self._set_vocab_sentencepiece()
  2400. except FileNotFoundError:
  2401. self._set_vocab_gpt2()
  2402. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2403. del bid # unused
  2404. if name.startswith("thinker."):
  2405. name = name.replace("thinker.", "")
  2406. if name.startswith("visual") or name.startswith("audio") or \
  2407. name.startswith("talker") or name.startswith("token2wav"):
  2408. # skip multimodal tensors
  2409. return []
  2410. return [(self.map_tensor_name(name), data_torch)]
  2411. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2412. class Qwen2VLVisionModel(MmprojModel):
  2413. def __init__(self, *args, **kwargs):
  2414. super().__init__(*args, **kwargs)
  2415. assert self.hparams_vision is not None
  2416. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2417. # rename config.json values
  2418. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2419. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2420. if "embed_dim" in self.hparams_vision: # qwen2vl
  2421. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2422. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2423. def set_gguf_parameters(self):
  2424. super().set_gguf_parameters()
  2425. assert self.hparams_vision is not None
  2426. hparams = self.hparams_vision
  2427. model_type = self.global_config['model_type']
  2428. if model_type == 'qwen2_vl':
  2429. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2430. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2431. if model_type == 'qwen2_5_omni':
  2432. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2433. else:
  2434. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2435. self.gguf_writer.add_vision_use_silu(True)
  2436. # find n_wa_pattern (window attention pattern)
  2437. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2438. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2439. n_wa_pattern = fullatt_block_indexes[0] + 1
  2440. # validate n_wa_pattern
  2441. for i in range(1, len(fullatt_block_indexes)):
  2442. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2443. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2444. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2445. else:
  2446. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2447. # default values below are taken from HF tranformers code
  2448. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2449. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2450. del bid, name, n_dims # unused
  2451. if ".patch_embd." in new_name:
  2452. return gguf.GGMLQuantizationType.F16
  2453. if ".position_embd." in new_name:
  2454. return gguf.GGMLQuantizationType.F32
  2455. return False
  2456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2457. del bid # unused
  2458. if name.startswith("visual."):
  2459. # process visual tensors
  2460. # split QKV tensors if needed
  2461. if ".qkv." in name:
  2462. if data_torch.ndim == 2: # weight
  2463. c3, _ = data_torch.shape
  2464. else: # bias
  2465. c3 = data_torch.shape[0]
  2466. assert c3 % 3 == 0
  2467. c = c3 // 3
  2468. wq = data_torch[:c]
  2469. wk = data_torch[c: c * 2]
  2470. wv = data_torch[c * 2:]
  2471. return [
  2472. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2473. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2474. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2475. ]
  2476. elif 'patch_embed.proj.weight' in name:
  2477. # split Conv3D into Conv2Ds
  2478. c1, c2, kt, kh, kw = data_torch.shape
  2479. del c1, c2, kh, kw # unused
  2480. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2481. return [
  2482. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2483. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2484. ]
  2485. else:
  2486. return [(self.map_tensor_name(name), data_torch)]
  2487. return [] # skip other tensors
  2488. @ModelBase.register("Qwen2_5OmniModel")
  2489. class Qwen25OmniModel(Qwen2VLVisionModel):
  2490. has_vision_encoder = True
  2491. has_audio_encoder = True
  2492. def __init__(self, *args, **kwargs):
  2493. super().__init__(*args, **kwargs)
  2494. assert self.hparams_audio is not None
  2495. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2496. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2497. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2498. def set_gguf_parameters(self):
  2499. super().set_gguf_parameters()
  2500. assert self.hparams_audio is not None
  2501. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2502. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2503. def get_vision_config(self) -> dict[str, Any] | None:
  2504. return self.global_config["thinker_config"].get("vision_config")
  2505. def get_audio_config(self) -> dict[str, Any] | None:
  2506. return self.global_config["thinker_config"].get("audio_config")
  2507. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2508. # SinusoidsPositionEmbedding
  2509. assert self.hparams_audio is not None
  2510. max_timescale = 10000
  2511. length = 1500
  2512. channels = self.hparams_audio["hidden_size"]
  2513. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2514. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2515. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2516. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2517. yield ("audio_tower.embed_positions.weight", pos_embd)
  2518. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2519. del bid, new_name, n_dims # unused
  2520. if ".conv" in name and ".weight" in name:
  2521. return gguf.GGMLQuantizationType.F16
  2522. return False
  2523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2524. if name.startswith("thinker."):
  2525. name = name.replace("thinker.", "")
  2526. if name.startswith("audio_tower"):
  2527. # process audio tensors
  2528. if "conv1.bias" in name or "conv2.bias" in name:
  2529. # transpose conv1 and conv2 bias
  2530. data_torch = data_torch.unsqueeze(-1)
  2531. if "audio_bos_eos_token" in name:
  2532. # this tensor is left unused in transformers code
  2533. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2534. return []
  2535. return [(self.map_tensor_name(name), data_torch)]
  2536. return super().modify_tensors(data_torch, name, bid)
  2537. @ModelBase.register("InternVisionModel")
  2538. class InternVisionModel(MmprojModel):
  2539. def set_gguf_parameters(self):
  2540. super().set_gguf_parameters()
  2541. hparams = self.hparams
  2542. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2543. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2544. # hidden_act
  2545. if hparams["hidden_act"] == "silu":
  2546. self.gguf_writer.add_vision_use_silu(True)
  2547. elif hparams["hidden_act"] == "gelu":
  2548. self.gguf_writer.add_vision_use_gelu(True)
  2549. else:
  2550. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2551. # downsample_ratio
  2552. downsample_ratio = self.global_config.get("downsample_ratio")
  2553. assert downsample_ratio is not None
  2554. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2555. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2556. del bid, name, n_dims # unused
  2557. if ".patch_embd." in new_name:
  2558. return gguf.GGMLQuantizationType.F16
  2559. if ".position_embd." in new_name:
  2560. return gguf.GGMLQuantizationType.F32
  2561. return False
  2562. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2563. del bid # unused
  2564. if name.startswith("vision_model") or name.startswith("mlp"):
  2565. # process visual tensors
  2566. # correct name
  2567. if name.startswith("vision_model"):
  2568. name = "vision_tower." + name
  2569. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2570. name += ".weight"
  2571. # split QKV tensors if needed
  2572. if ".qkv." in name:
  2573. if data_torch.ndim == 2: # weight
  2574. c3, _ = data_torch.shape
  2575. else: # bias
  2576. c3 = data_torch.shape[0]
  2577. assert c3 % 3 == 0
  2578. c = c3 // 3
  2579. wq = data_torch[:c]
  2580. wk = data_torch[c: c * 2]
  2581. wv = data_torch[c * 2:]
  2582. return [
  2583. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2584. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2585. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2586. ]
  2587. return [(self.map_tensor_name(name), data_torch)]
  2588. return [] # skip other tensors
  2589. @ModelBase.register("WavTokenizerDec")
  2590. class WavTokenizerDecModel(TextModel):
  2591. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2592. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2593. del bid # unused
  2594. if \
  2595. name.endswith("codebook.cluster_size") or \
  2596. name.endswith("codebook.embed_avg") or \
  2597. name.endswith("codebook.inited"):
  2598. logger.debug(f"Skipping {name!r}")
  2599. return []
  2600. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2601. return [(self.map_tensor_name(name), data_torch)]
  2602. def set_vocab(self):
  2603. self._set_vocab_none()
  2604. def set_gguf_parameters(self):
  2605. super().set_gguf_parameters()
  2606. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2607. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2608. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2609. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2610. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2611. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2612. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2613. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2614. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2615. self.gguf_writer.add_causal_attention(False)
  2616. @ModelBase.register("Qwen2MoeForCausalLM")
  2617. class Qwen2MoeModel(TextModel):
  2618. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2619. def set_gguf_parameters(self):
  2620. super().set_gguf_parameters()
  2621. if (n_experts := self.hparams.get("num_experts")) is not None:
  2622. self.gguf_writer.add_expert_count(n_experts)
  2623. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2624. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2625. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2626. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2627. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2628. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2629. # YaRN is not enabled by default
  2630. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2631. rope_scaling = self.hparams.get("rope_scaling") or {}
  2632. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2633. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2634. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2635. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2636. _experts: list[dict[str, Tensor]] | None = None
  2637. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2638. # process the experts separately
  2639. if name.find("experts") != -1:
  2640. n_experts = self.hparams["num_experts"]
  2641. assert bid is not None
  2642. if self._experts is None:
  2643. self._experts = [{} for _ in range(self.block_count)]
  2644. self._experts[bid][name] = data_torch
  2645. if len(self._experts[bid]) >= n_experts * 3:
  2646. tensors: list[tuple[str, Tensor]] = []
  2647. # merge the experts into a single 3d tensor
  2648. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2649. datas: list[Tensor] = []
  2650. for xid in range(n_experts):
  2651. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2652. datas.append(self._experts[bid][ename])
  2653. del self._experts[bid][ename]
  2654. data_torch = torch.stack(datas, dim=0)
  2655. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2656. new_name = self.map_tensor_name(merged_name)
  2657. tensors.append((new_name, data_torch))
  2658. return tensors
  2659. else:
  2660. return []
  2661. return [(self.map_tensor_name(name), data_torch)]
  2662. def prepare_tensors(self):
  2663. super().prepare_tensors()
  2664. if self._experts is not None:
  2665. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2666. experts = [k for d in self._experts for k in d.keys()]
  2667. if len(experts) > 0:
  2668. raise ValueError(f"Unprocessed experts: {experts}")
  2669. @ModelBase.register("Qwen3ForCausalLM")
  2670. class Qwen3Model(Qwen2Model):
  2671. model_arch = gguf.MODEL_ARCH.QWEN3
  2672. @ModelBase.register("Qwen3MoeForCausalLM")
  2673. class Qwen3MoeModel(Qwen2MoeModel):
  2674. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2675. @ModelBase.register("GPT2LMHeadModel")
  2676. class GPT2Model(TextModel):
  2677. model_arch = gguf.MODEL_ARCH.GPT2
  2678. def set_gguf_parameters(self):
  2679. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2680. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2681. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2682. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2683. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2684. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2685. self.gguf_writer.add_file_type(self.ftype)
  2686. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2687. del bid # unused
  2688. tensors: list[tuple[str, Tensor]] = []
  2689. # we don't need these
  2690. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2691. return tensors
  2692. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2693. data_torch = data_torch.transpose(1, 0)
  2694. new_name = self.map_tensor_name(name)
  2695. tensors.append((new_name, data_torch))
  2696. return tensors
  2697. @ModelBase.register("PhiForCausalLM")
  2698. class Phi2Model(TextModel):
  2699. model_arch = gguf.MODEL_ARCH.PHI2
  2700. def set_gguf_parameters(self):
  2701. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2702. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2703. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2704. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2705. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2706. self.gguf_writer.add_embedding_length(n_embd)
  2707. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2708. self.gguf_writer.add_block_count(block_count)
  2709. self.gguf_writer.add_head_count(n_head)
  2710. self.gguf_writer.add_head_count_kv(n_head)
  2711. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2712. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2713. self.gguf_writer.add_file_type(self.ftype)
  2714. self.gguf_writer.add_add_bos_token(False)
  2715. @ModelBase.register("Phi3ForCausalLM")
  2716. class Phi3MiniModel(TextModel):
  2717. model_arch = gguf.MODEL_ARCH.PHI3
  2718. def set_vocab(self):
  2719. # Phi-4 model uses GPT2Tokenizer
  2720. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2721. if tokenizer_config_file.is_file():
  2722. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2723. tokenizer_config_json = json.load(f)
  2724. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2725. if tokenizer_class == 'GPT2Tokenizer':
  2726. return self._set_vocab_gpt2()
  2727. from sentencepiece import SentencePieceProcessor
  2728. tokenizer_path = self.dir_model / 'tokenizer.model'
  2729. if not tokenizer_path.is_file():
  2730. raise ValueError(f'Error: Missing {tokenizer_path}')
  2731. tokenizer = SentencePieceProcessor()
  2732. tokenizer.LoadFromFile(str(tokenizer_path))
  2733. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2734. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2735. scores: list[float] = [-10000.0] * vocab_size
  2736. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2737. for token_id in range(tokenizer.vocab_size()):
  2738. piece = tokenizer.IdToPiece(token_id)
  2739. text = piece.encode("utf-8")
  2740. score = tokenizer.GetScore(token_id)
  2741. toktype = SentencePieceTokenTypes.NORMAL
  2742. if tokenizer.IsUnknown(token_id):
  2743. toktype = SentencePieceTokenTypes.UNKNOWN
  2744. elif tokenizer.IsControl(token_id):
  2745. toktype = SentencePieceTokenTypes.CONTROL
  2746. elif tokenizer.IsUnused(token_id):
  2747. toktype = SentencePieceTokenTypes.UNUSED
  2748. elif tokenizer.IsByte(token_id):
  2749. toktype = SentencePieceTokenTypes.BYTE
  2750. tokens[token_id] = text
  2751. scores[token_id] = score
  2752. toktypes[token_id] = toktype
  2753. added_tokens_file = self.dir_model / 'added_tokens.json'
  2754. if added_tokens_file.is_file():
  2755. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2756. added_tokens_json = json.load(f)
  2757. for key in added_tokens_json:
  2758. token_id = added_tokens_json[key]
  2759. if token_id >= vocab_size:
  2760. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2761. continue
  2762. tokens[token_id] = key.encode("utf-8")
  2763. scores[token_id] = -1000.0
  2764. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2765. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2766. if tokenizer_config_file.is_file():
  2767. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2768. tokenizer_config_json = json.load(f)
  2769. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2770. for token_id, foken_data in added_tokens_decoder.items():
  2771. token_id = int(token_id)
  2772. token = foken_data["content"].encode("utf-8")
  2773. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2774. if tokens[token_id] != token:
  2775. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2776. tokens[token_id] = token
  2777. scores[token_id] = -1000.0
  2778. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2779. if foken_data.get("special"):
  2780. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2781. tokenizer_file = self.dir_model / 'tokenizer.json'
  2782. if tokenizer_file.is_file():
  2783. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2784. tokenizer_json = json.load(f)
  2785. added_tokens = tokenizer_json.get("added_tokens", [])
  2786. for foken_data in added_tokens:
  2787. token_id = int(foken_data["id"])
  2788. token = foken_data["content"].encode("utf-8")
  2789. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2790. if tokens[token_id] != token:
  2791. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2792. tokens[token_id] = token
  2793. scores[token_id] = -1000.0
  2794. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2795. if foken_data.get("special"):
  2796. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2797. self.gguf_writer.add_tokenizer_model("llama")
  2798. self.gguf_writer.add_tokenizer_pre("default")
  2799. self.gguf_writer.add_token_list(tokens)
  2800. self.gguf_writer.add_token_scores(scores)
  2801. self.gguf_writer.add_token_types(toktypes)
  2802. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2803. special_vocab.add_to_gguf(self.gguf_writer)
  2804. def set_gguf_parameters(self):
  2805. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2806. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2807. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2808. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2809. rms_eps = self.find_hparam(["rms_norm_eps"])
  2810. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2811. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2812. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2813. rope_dims = int(rot_pct * n_embd) // n_head
  2814. self.gguf_writer.add_context_length(max_pos_embds)
  2815. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2816. self.gguf_writer.add_embedding_length(n_embd)
  2817. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2818. self.gguf_writer.add_block_count(block_count)
  2819. self.gguf_writer.add_head_count(n_head)
  2820. self.gguf_writer.add_head_count_kv(n_head_kv)
  2821. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2822. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2823. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2824. self.gguf_writer.add_file_type(self.ftype)
  2825. sliding_window = self.hparams.get("sliding_window")
  2826. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2827. if sliding_window is None:
  2828. sliding_window = 0
  2829. self.gguf_writer.add_sliding_window(sliding_window)
  2830. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2831. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2832. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2833. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2834. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2835. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2836. rope_dims = int(rot_pct * n_embd) // n_head
  2837. # write rope scaling for long context (128k) model
  2838. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2839. if rope_scaling is None:
  2840. return
  2841. scale = max_pos_embds / orig_max_pos_embds
  2842. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2843. if len(rope_scaling_type) == 0:
  2844. raise KeyError('Missing the required key rope_scaling.type')
  2845. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2846. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2847. elif rope_scaling_type == 'yarn':
  2848. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2849. else:
  2850. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2851. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2852. long_factors = rope_scaling.get('long_factor', None)
  2853. short_factors = rope_scaling.get('short_factor', None)
  2854. if long_factors is None or short_factors is None:
  2855. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2856. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2857. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2858. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2859. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2860. @ModelBase.register("PhiMoEForCausalLM")
  2861. class PhiMoeModel(Phi3MiniModel):
  2862. model_arch = gguf.MODEL_ARCH.PHIMOE
  2863. _experts: list[dict[str, Tensor]] | None = None
  2864. def set_gguf_parameters(self):
  2865. super().set_gguf_parameters()
  2866. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2867. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2869. # process the experts separately
  2870. if name.find("block_sparse_moe.experts") != -1:
  2871. n_experts = self.hparams["num_local_experts"]
  2872. assert bid is not None
  2873. if self._experts is None:
  2874. self._experts = [{} for _ in range(self.block_count)]
  2875. self._experts[bid][name] = data_torch
  2876. if len(self._experts[bid]) >= n_experts * 3:
  2877. tensors: list[tuple[str, Tensor]] = []
  2878. # merge the experts into a single 3d tensor
  2879. for w_name in ["w1", "w2", "w3"]:
  2880. datas: list[Tensor] = []
  2881. for xid in range(n_experts):
  2882. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2883. datas.append(self._experts[bid][ename])
  2884. del self._experts[bid][ename]
  2885. data_torch = torch.stack(datas, dim=0)
  2886. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2887. new_name = self.map_tensor_name(merged_name)
  2888. tensors.append((new_name, data_torch))
  2889. return tensors
  2890. else:
  2891. return []
  2892. return [(self.map_tensor_name(name), data_torch)]
  2893. def prepare_tensors(self):
  2894. super().prepare_tensors()
  2895. if self._experts is not None:
  2896. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2897. experts = [k for d in self._experts for k in d.keys()]
  2898. if len(experts) > 0:
  2899. raise ValueError(f"Unprocessed experts: {experts}")
  2900. @ModelBase.register("PlamoForCausalLM")
  2901. class PlamoModel(TextModel):
  2902. model_arch = gguf.MODEL_ARCH.PLAMO
  2903. def set_vocab(self):
  2904. self._set_vocab_sentencepiece()
  2905. def set_gguf_parameters(self):
  2906. hparams = self.hparams
  2907. block_count = hparams["num_hidden_layers"]
  2908. self.gguf_writer.add_context_length(4096) # not in config.json
  2909. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2910. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2911. self.gguf_writer.add_block_count(block_count)
  2912. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2913. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2914. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2915. self.gguf_writer.add_file_type(self.ftype)
  2916. def shuffle_attn_q_weight(self, data_torch):
  2917. assert data_torch.size() == (5120, 5120)
  2918. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2919. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2920. data_torch = torch.reshape(data_torch, (5120, 5120))
  2921. return data_torch
  2922. def shuffle_attn_output_weight(self, data_torch):
  2923. assert data_torch.size() == (5120, 5120)
  2924. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2925. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2926. data_torch = torch.reshape(data_torch, (5120, 5120))
  2927. return data_torch
  2928. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2929. del bid # unused
  2930. new_name = self.map_tensor_name(name)
  2931. # shuffle for broadcasting of gqa in ggml_mul_mat
  2932. if new_name.endswith("attn_q.weight"):
  2933. data_torch = self.shuffle_attn_q_weight(data_torch)
  2934. elif new_name.endswith("attn_output.weight"):
  2935. data_torch = self.shuffle_attn_output_weight(data_torch)
  2936. return [(new_name, data_torch)]
  2937. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  2938. class Plamo2Model(TextModel):
  2939. model_arch = gguf.MODEL_ARCH.PLAMO2
  2940. def set_vocab(self):
  2941. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  2942. # We need to handle this specially
  2943. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  2944. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  2945. if not tokenizer_jsonl_path.is_file():
  2946. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  2947. # Load tokenizer config
  2948. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  2949. tokenizer_config = json.load(f)
  2950. # Load tokens from JSONL file (actually a list format)
  2951. tokens = []
  2952. scores = []
  2953. toktypes = []
  2954. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  2955. for line_num, line in enumerate(f):
  2956. if line.strip():
  2957. token_data = json.loads(line)
  2958. # Format: [token, score, type, ?, ?, ?, ?]
  2959. token = token_data[0].encode("utf-8")
  2960. score = float(token_data[1])
  2961. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  2962. tokens.append(token)
  2963. scores.append(score)
  2964. # Map token type strings to GGUF token types
  2965. if token_type_str == "UNKNOWN":
  2966. toktypes.append(gguf.TokenType.UNKNOWN)
  2967. elif token_type_str == "CONTROL":
  2968. toktypes.append(gguf.TokenType.CONTROL)
  2969. elif token_type_str == "BYTE":
  2970. toktypes.append(gguf.TokenType.BYTE)
  2971. else:
  2972. # Check for PLaMo-2 special tokens
  2973. token_str = token_data[0]
  2974. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  2975. toktypes.append(gguf.TokenType.CONTROL)
  2976. else:
  2977. toktypes.append(gguf.TokenType.NORMAL)
  2978. vocab_size = self.hparams["vocab_size"]
  2979. if vocab_size > len(tokens):
  2980. pad_count = vocab_size - len(tokens)
  2981. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2982. for i in range(1, pad_count + 1):
  2983. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2984. scores.append(-1000.0)
  2985. toktypes.append(gguf.TokenType.UNUSED)
  2986. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  2987. self.gguf_writer.add_tokenizer_model("plamo2")
  2988. self.gguf_writer.add_tokenizer_pre("default")
  2989. self.gguf_writer.add_token_list(tokens)
  2990. self.gguf_writer.add_token_scores(scores)
  2991. self.gguf_writer.add_token_types(toktypes)
  2992. # Add special tokens from config
  2993. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  2994. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  2995. self.gguf_writer.add_bos_token_id(token_id)
  2996. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  2997. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  2998. self.gguf_writer.add_eos_token_id(token_id)
  2999. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3000. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3001. self.gguf_writer.add_pad_token_id(token_id)
  3002. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3003. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3004. self.gguf_writer.add_sep_token_id(token_id)
  3005. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3006. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3007. self.gguf_writer.add_unk_token_id(token_id)
  3008. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3009. self.gguf_writer.add_eot_token_id(4)
  3010. self.gguf_writer.add_add_space_prefix(False)
  3011. def set_gguf_parameters(self):
  3012. hparams = self.hparams
  3013. block_count = hparams["num_hidden_layers"]
  3014. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3015. # Which layers are Mamba layers
  3016. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3017. # This logic matches modeling_plamo.py's is_mamba function
  3018. mamba_step = hparams.get("mamba_step", 2)
  3019. mamba_enabled = hparams.get("mamba_enabled", True)
  3020. mamba_layers = []
  3021. if mamba_enabled:
  3022. for i in range(block_count):
  3023. if block_count <= (mamba_step // 2):
  3024. # use attention in last layer
  3025. is_mamba = (i != block_count - 1)
  3026. else:
  3027. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3028. if is_mamba:
  3029. mamba_layers.append(0)
  3030. else:
  3031. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3032. if mamba_layers:
  3033. self.gguf_writer.add_head_count_kv(mamba_layers)
  3034. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3035. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3036. self.gguf_writer.add_block_count(block_count)
  3037. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3038. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3039. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1000000.0))
  3040. # Mamba parameters
  3041. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3042. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3043. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3044. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3045. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3046. self.gguf_writer.add_ssm_group_count(0)
  3047. # MLP feed forward parameters (for attention layers)
  3048. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 16384))
  3049. self.gguf_writer.add_file_type(self.ftype)
  3050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3051. del bid # unused
  3052. if name.endswith(".A_log"):
  3053. data_torch = -torch.exp(data_torch)
  3054. elif name.endswith(".dt_bias"):
  3055. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3056. elif name.endswith(".dt_norm_weight"):
  3057. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3058. elif name.endswith(".B_norm_weight"):
  3059. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3060. elif name.endswith(".C_norm_weight"):
  3061. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3062. elif name.endswith(".k_weight"):
  3063. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3064. elif name.endswith(".q_weight"):
  3065. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3066. elif name.endswith(".conv1d.weight"):
  3067. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3068. assert data_torch.ndim == 2
  3069. elif name.endswith(".pre_mixer_norm.weight"):
  3070. data_torch += 1.0
  3071. elif name.endswith(".post_mixer_norm.weight"):
  3072. data_torch += 1.0 / 5
  3073. elif name.endswith(".pre_mlp_norm.weight"):
  3074. data_torch += 1.0
  3075. elif name.endswith(".post_mlp_norm.weight"):
  3076. data_torch += 1.0 / (5**1.5)
  3077. elif name.endswith(".norm.weight"):
  3078. data_torch += 1.0
  3079. new_name = self.map_tensor_name(name)
  3080. return [(new_name, data_torch)]
  3081. @ModelBase.register("CodeShellForCausalLM")
  3082. class CodeShellModel(TextModel):
  3083. model_arch = gguf.MODEL_ARCH.CODESHELL
  3084. def set_gguf_parameters(self):
  3085. block_count = self.hparams["n_layer"]
  3086. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3087. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3088. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3089. self.gguf_writer.add_block_count(block_count)
  3090. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3091. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3092. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3093. self.gguf_writer.add_file_type(self.ftype)
  3094. self.gguf_writer.add_rope_freq_base(10000.0)
  3095. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3096. self.gguf_writer.add_rope_scaling_factor(1.0)
  3097. _has_tok_embd = False
  3098. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3099. del bid # unused
  3100. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3101. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3102. new_name = self.map_tensor_name(name)
  3103. # assuming token_embd.weight is seen before output.weight
  3104. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3105. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3106. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3107. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3108. self.tensor_names.remove("transformer.wte.weight")
  3109. elif new_name == tok_embd_name:
  3110. self._has_tok_embd = True
  3111. return [(new_name, data_torch)]
  3112. @ModelBase.register("InternLM2ForCausalLM")
  3113. class InternLM2Model(TextModel):
  3114. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3115. def set_vocab(self):
  3116. # (TODO): Is there a better way?
  3117. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3118. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3119. # recognized as an empty string in C++.
  3120. from sentencepiece import SentencePieceProcessor
  3121. from sentencepiece import sentencepiece_model_pb2 as model
  3122. tokenizer_path = self.dir_model / 'tokenizer.model'
  3123. tokens: list[bytes] = []
  3124. scores: list[float] = []
  3125. toktypes: list[int] = []
  3126. if not tokenizer_path.is_file():
  3127. logger.error(f'Error: Missing {tokenizer_path}')
  3128. sys.exit(1)
  3129. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3130. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3131. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3132. tokenizer = SentencePieceProcessor()
  3133. tokenizer.LoadFromFile(str(tokenizer_path))
  3134. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3135. for token_id in range(vocab_size):
  3136. piece = tokenizer.IdToPiece(token_id)
  3137. text = piece.encode("utf-8")
  3138. score = tokenizer.GetScore(token_id)
  3139. if text == b"\x00":
  3140. # (TODO): fixme
  3141. # Hack here and replace the \x00 characters.
  3142. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3143. text = "🐉".encode("utf-8")
  3144. toktype = SentencePieceTokenTypes.NORMAL
  3145. if tokenizer.IsUnknown(token_id):
  3146. toktype = SentencePieceTokenTypes.UNKNOWN
  3147. elif tokenizer.IsControl(token_id):
  3148. toktype = SentencePieceTokenTypes.CONTROL
  3149. elif tokenizer.IsUnused(token_id):
  3150. toktype = SentencePieceTokenTypes.UNUSED
  3151. elif tokenizer.IsByte(token_id):
  3152. toktype = SentencePieceTokenTypes.BYTE
  3153. # take care of ununsed raw token
  3154. if piece.startswith('[UNUSED'):
  3155. toktype = SentencePieceTokenTypes.UNUSED
  3156. tokens.append(text)
  3157. scores.append(score)
  3158. toktypes.append(toktype)
  3159. added_tokens_file = self.dir_model / 'added_tokens.json'
  3160. if added_tokens_file.is_file():
  3161. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3162. added_tokens_json = json.load(f)
  3163. for key in added_tokens_json:
  3164. tokens.append(key.encode("utf-8"))
  3165. scores.append(-1000.0)
  3166. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3167. chat_eos_token = '<|im_end|>'
  3168. chat_eos_token_id = None
  3169. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3170. if tokenizer_config_file.is_file():
  3171. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3172. tokenizer_config_json = json.load(f)
  3173. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3174. for token_id, foken_data in added_tokens_decoder.items():
  3175. token_id = int(token_id)
  3176. token = foken_data["content"]
  3177. if token == chat_eos_token:
  3178. chat_eos_token_id = token_id
  3179. token = token.encode("utf-8")
  3180. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3181. if tokens[token_id] != token:
  3182. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3183. tokens[token_id] = token
  3184. scores[token_id] = -1000.0
  3185. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3186. if foken_data.get("special"):
  3187. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3188. tokenizer_file = self.dir_model / 'tokenizer.json'
  3189. if tokenizer_file.is_file():
  3190. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3191. tokenizer_json = json.load(f)
  3192. added_tokens = tokenizer_json.get("added_tokens", [])
  3193. for foken_data in added_tokens:
  3194. token_id = int(foken_data["id"])
  3195. token = foken_data["content"]
  3196. if token == chat_eos_token:
  3197. chat_eos_token_id = token_id
  3198. token = token.encode("utf-8")
  3199. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3200. if tokens[token_id] != token:
  3201. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3202. tokens[token_id] = token
  3203. scores[token_id] = -1000.0
  3204. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3205. if foken_data.get("special"):
  3206. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3207. self.gguf_writer.add_tokenizer_model("llama")
  3208. self.gguf_writer.add_tokenizer_pre("default")
  3209. self.gguf_writer.add_token_list(tokens)
  3210. self.gguf_writer.add_token_scores(scores)
  3211. self.gguf_writer.add_token_types(toktypes)
  3212. self.gguf_writer.add_add_space_prefix(add_prefix)
  3213. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3214. old_eos = special_vocab.special_token_ids["eos"]
  3215. if chat_eos_token_id is not None:
  3216. # For the chat model, we replace the eos with '<|im_end|>'.
  3217. # TODO: this is a hack, should be fixed
  3218. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3219. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3220. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3221. " in chat mode so that the conversation can end normally.")
  3222. special_vocab.add_to_gguf(self.gguf_writer)
  3223. def set_gguf_parameters(self):
  3224. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3225. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3226. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3227. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3228. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3229. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3230. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3231. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3232. self.gguf_writer.add_file_type(self.ftype)
  3233. rope_scaling = self.hparams.get("rope_scaling") or {}
  3234. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3235. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3236. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3238. num_heads = self.hparams["num_attention_heads"]
  3239. num_kv_heads = self.hparams["num_key_value_heads"]
  3240. n_embd = self.hparams["hidden_size"]
  3241. q_per_kv = num_heads // num_kv_heads
  3242. head_dim = n_embd // num_heads
  3243. num_groups = num_heads // q_per_kv
  3244. name = name.replace("language_model.", "") # InternVL
  3245. if name.startswith("mlp") or name.startswith("vision_model"):
  3246. # skip visual tensors
  3247. return []
  3248. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3249. qkv = data_torch
  3250. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3251. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3252. # The model weights of q and k equire additional reshape.
  3253. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3254. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3255. v = v.reshape((-1, v.shape[-1]))
  3256. return [
  3257. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3258. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3259. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3260. ]
  3261. else:
  3262. return [(self.map_tensor_name(name), data_torch)]
  3263. @ModelBase.register("InternLM3ForCausalLM")
  3264. class InternLM3Model(TextModel):
  3265. model_arch = gguf.MODEL_ARCH.LLAMA
  3266. def set_vocab(self):
  3267. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3268. self.gguf_writer.add_tokenizer_model("llama")
  3269. self.gguf_writer.add_tokenizer_pre("default")
  3270. self.gguf_writer.add_token_list(tokens)
  3271. self.gguf_writer.add_token_scores(scores)
  3272. self.gguf_writer.add_token_types(toktypes)
  3273. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3274. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3275. if tokenizer_config_file.is_file():
  3276. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3277. tokenizer_config_json = json.load(f)
  3278. if "add_prefix_space" in tokenizer_config_json:
  3279. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3280. if "added_tokens_decoder" in tokenizer_config_json:
  3281. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3282. if token_data.get("special"):
  3283. token_id = int(token_id)
  3284. token = token_data["content"]
  3285. special_vocab._set_special_token(token, token_id)
  3286. # update eos token
  3287. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3288. special_vocab.special_token_ids["eos"] = token_id
  3289. special_vocab.add_to_gguf(self.gguf_writer)
  3290. def set_gguf_parameters(self):
  3291. super().set_gguf_parameters()
  3292. hparams = self.hparams
  3293. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3294. if (rope_dim := hparams.get("head_dim")) is None:
  3295. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3296. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3297. rope_scaling = self.hparams.get("rope_scaling") or {}
  3298. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3299. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3300. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3301. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3302. n_head = self.hparams["num_attention_heads"]
  3303. n_kv_head = self.hparams.get("num_key_value_heads")
  3304. name = name.replace("language_model.", "") # InternVL
  3305. if name.startswith("mlp") or name.startswith("vision_model"):
  3306. # skip visual tensors
  3307. return []
  3308. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3309. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3310. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3311. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3312. return [(self.map_tensor_name(name), data_torch)]
  3313. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3314. class BertModel(TextModel):
  3315. model_arch = gguf.MODEL_ARCH.BERT
  3316. def __init__(self, *args, **kwargs):
  3317. super().__init__(*args, **kwargs)
  3318. self.vocab_size = None
  3319. if cls_out_labels := self.hparams.get("id2label"):
  3320. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3321. # Remove dummy labels added by AutoConfig
  3322. cls_out_labels = None
  3323. self.cls_out_labels = cls_out_labels
  3324. def set_gguf_parameters(self):
  3325. super().set_gguf_parameters()
  3326. self.gguf_writer.add_causal_attention(False)
  3327. self._try_set_pooling_type()
  3328. if self.cls_out_labels:
  3329. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3330. def set_vocab(self):
  3331. tokens, toktypes, tokpre = self.get_vocab_base()
  3332. self.vocab_size = len(tokens)
  3333. # we need this to validate the size of the token_type embeddings
  3334. # though currently we are passing all zeros to the token_type embeddings
  3335. # "Sequence A" or "Sequence B"
  3336. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3337. # convert to phantom space vocab
  3338. def phantom(tok):
  3339. if tok.startswith("[") and tok.endswith("]"):
  3340. return tok
  3341. if tok.startswith("##"):
  3342. return tok[2:]
  3343. return "\u2581" + tok
  3344. tokens = list(map(phantom, tokens))
  3345. # add vocab to gguf
  3346. self.gguf_writer.add_tokenizer_model("bert")
  3347. self.gguf_writer.add_tokenizer_pre(tokpre)
  3348. self.gguf_writer.add_token_list(tokens)
  3349. self.gguf_writer.add_token_types(toktypes)
  3350. # handle special tokens
  3351. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3352. special_vocab.add_to_gguf(self.gguf_writer)
  3353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3354. del bid # unused
  3355. if name.startswith("bert."):
  3356. name = name[5:]
  3357. if name.endswith(".gamma"):
  3358. name = name[:-6] + ".weight"
  3359. if name.endswith(".beta"):
  3360. name = name[:-5] + ".bias"
  3361. # we are only using BERT for embeddings so we don't need the pooling layer
  3362. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3363. return [] # we don't need these
  3364. if name.startswith("cls.predictions"):
  3365. return []
  3366. if name.startswith("cls.seq_relationship"):
  3367. return []
  3368. if self.cls_out_labels:
  3369. # For BertForSequenceClassification (direct projection layer)
  3370. if name == "classifier.weight":
  3371. name = "classifier.out_proj.weight"
  3372. if name == "classifier.bias":
  3373. name = "classifier.out_proj.bias"
  3374. return [(self.map_tensor_name(name), data_torch)]
  3375. def _xlmroberta_tokenizer_init(self) -> None:
  3376. # we need the pad_token_id to know how to chop down position_embd matrix
  3377. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3378. self._position_offset = 1 + pad_token_id
  3379. if "max_position_embeddings" in self.hparams:
  3380. self.hparams["max_position_embeddings"] -= self._position_offset
  3381. else:
  3382. self._position_offset = None
  3383. def _xlmroberta_set_vocab(self) -> None:
  3384. # to avoid TypeError: Descriptors cannot be created directly
  3385. # exception when importing sentencepiece_model_pb2
  3386. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3387. from sentencepiece import SentencePieceProcessor
  3388. from sentencepiece import sentencepiece_model_pb2 as model
  3389. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3390. tokenizer_json = {}
  3391. tokenizer_config_json = {}
  3392. if not tokenizer_path.is_file():
  3393. tokenizer_path = self.dir_model / 'tokenizer.json'
  3394. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3395. if not tokenizer_path.is_file():
  3396. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3397. from base64 import b64decode
  3398. from transformers import AutoTokenizer
  3399. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3400. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3401. tokenizer_json = json.load(fp)
  3402. if tokenizer_config_path.is_file():
  3403. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3404. tokenizer_config_json = json.load(fp)
  3405. add_prefix = tokenizer.add_prefix_space
  3406. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3407. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3408. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3409. else:
  3410. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3411. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3412. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3413. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3414. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3415. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3416. tokenizer = SentencePieceProcessor()
  3417. tokenizer.LoadFromFile(str(tokenizer_path))
  3418. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3419. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3420. scores: list[float] = [-10000.0] * vocab_size
  3421. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3422. if isinstance(tokenizer, SentencePieceProcessor):
  3423. for token_id in range(tokenizer.vocab_size()):
  3424. piece = tokenizer.IdToPiece(token_id)
  3425. text = piece.encode("utf-8")
  3426. score = tokenizer.GetScore(token_id)
  3427. toktype = SentencePieceTokenTypes.NORMAL
  3428. if tokenizer.IsUnknown(token_id):
  3429. toktype = SentencePieceTokenTypes.UNKNOWN
  3430. elif tokenizer.IsControl(token_id):
  3431. toktype = SentencePieceTokenTypes.CONTROL
  3432. elif tokenizer.IsUnused(token_id):
  3433. toktype = SentencePieceTokenTypes.UNUSED
  3434. elif tokenizer.IsByte(token_id):
  3435. toktype = SentencePieceTokenTypes.BYTE
  3436. tokens[token_id] = text
  3437. scores[token_id] = score
  3438. toktypes[token_id] = toktype
  3439. else:
  3440. added_vocab = tokenizer.get_added_vocab()
  3441. unk_token = tokenizer_config_json.get("unk_token")
  3442. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3443. for token_id in range(tokenizer.vocab_size):
  3444. piece = tokenizer._convert_id_to_token(token_id)
  3445. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3446. text = piece.encode("utf-8")
  3447. score = tokenizer_json["model"]["vocab"][token_id][1]
  3448. toktype = SentencePieceTokenTypes.NORMAL
  3449. if token_id == unk_token_id:
  3450. toktype = SentencePieceTokenTypes.UNKNOWN
  3451. elif token_id in tokenizer.all_special_ids:
  3452. toktype = SentencePieceTokenTypes.CONTROL
  3453. elif token_id in added_vocab.values():
  3454. toktype = SentencePieceTokenTypes.USER_DEFINED
  3455. # No reliable way to detect this, but jina doesn't have any
  3456. # elif tokenizer.IsByte(token_id):
  3457. # toktype = SentencePieceTokenTypes.BYTE
  3458. tokens[token_id] = text
  3459. scores[token_id] = score
  3460. toktypes[token_id] = toktype
  3461. if isinstance(tokenizer, SentencePieceProcessor):
  3462. # realign tokens (see HF tokenizer code)
  3463. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3464. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3465. toktypes = [
  3466. SentencePieceTokenTypes.CONTROL,
  3467. SentencePieceTokenTypes.CONTROL,
  3468. SentencePieceTokenTypes.CONTROL,
  3469. SentencePieceTokenTypes.UNKNOWN,
  3470. ] + toktypes[3:-1]
  3471. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3472. # Add mask token missing from sentencepiece.bpe.model
  3473. tokens[250001] = b'<mask>'
  3474. scores[250001] = 0.0
  3475. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3476. self.gguf_writer.add_tokenizer_model("t5")
  3477. self.gguf_writer.add_tokenizer_pre("default")
  3478. self.gguf_writer.add_token_list(tokens)
  3479. self.gguf_writer.add_token_scores(scores)
  3480. self.gguf_writer.add_token_types(toktypes)
  3481. self.gguf_writer.add_add_space_prefix(add_prefix)
  3482. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3483. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3484. if precompiled_charsmap:
  3485. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3486. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3487. special_vocab.add_to_gguf(self.gguf_writer)
  3488. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3489. class DistilBertModel(BertModel):
  3490. model_arch = gguf.MODEL_ARCH.BERT
  3491. def set_gguf_parameters(self):
  3492. self.gguf_writer.add_layer_norm_eps(1e-12)
  3493. logger.info("gguf: layer norm epsilon = 1e-12")
  3494. super().set_gguf_parameters()
  3495. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3496. if name.startswith("distilbert."):
  3497. name = name[11:]
  3498. # These layers act as MLM head, so we don't need them
  3499. if name.startswith("vocab_"):
  3500. return []
  3501. return super().modify_tensors(data_torch, name, bid)
  3502. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3503. class RobertaModel(BertModel):
  3504. model_arch = gguf.MODEL_ARCH.BERT
  3505. def __init__(self, *args, **kwargs):
  3506. super().__init__(*args, **kwargs)
  3507. # we need the pad_token_id to know how to chop down position_embd matrix
  3508. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3509. self._position_offset = 1 + pad_token_id
  3510. if "max_position_embeddings" in self.hparams:
  3511. self.hparams["max_position_embeddings"] -= self._position_offset
  3512. else:
  3513. self._position_offset = None
  3514. def set_vocab(self):
  3515. """Support BPE tokenizers for roberta models"""
  3516. bpe_tok_path = self.dir_model / "tokenizer.json"
  3517. if bpe_tok_path.exists():
  3518. self._set_vocab_gpt2()
  3519. # we need this to validate the size of the token_type embeddings
  3520. # though currently we are passing all zeros to the token_type embeddings
  3521. # "Sequence A" or "Sequence B"
  3522. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3523. else:
  3524. return super().set_vocab()
  3525. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3526. # if name starts with "roberta.", remove the prefix
  3527. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3528. if name.startswith("roberta."):
  3529. name = name[8:]
  3530. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3531. if name == "embeddings.position_embeddings.weight":
  3532. if self._position_offset is not None:
  3533. data_torch = data_torch[self._position_offset:,:]
  3534. return super().modify_tensors(data_torch, name, bid)
  3535. @ModelBase.register("NomicBertModel")
  3536. class NomicBertModel(BertModel):
  3537. model_arch = gguf.MODEL_ARCH.BERT
  3538. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3539. hparams = kwargs.pop("hparams", None)
  3540. if hparams is None:
  3541. hparams = ModelBase.load_hparams(dir_model)
  3542. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3543. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3544. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3545. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3546. if self._tokenizer_is_xlmroberta:
  3547. self._xlmroberta_tokenizer_init()
  3548. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3549. if npos == 8192 and mtp == 2048:
  3550. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3551. elif npos == 2048 and mtp == 2048:
  3552. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3553. else:
  3554. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3555. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3556. # this doesn't do anything in the HF version
  3557. assert self.hparams["causal"] is False
  3558. # no bias tensors unless MoE
  3559. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3560. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3561. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3562. # norm at end of layer
  3563. assert self.hparams["prenorm"] is False
  3564. # standard RoPE
  3565. assert self.hparams["rotary_emb_fraction"] == 1.0
  3566. assert self.hparams["rotary_emb_interleaved"] is False
  3567. assert self.hparams["rotary_emb_scale_base"] is None
  3568. def set_vocab(self) -> None:
  3569. if self._tokenizer_is_xlmroberta:
  3570. return self._xlmroberta_set_vocab()
  3571. return super().set_vocab()
  3572. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3573. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3574. if "mlp.experts.bias" in name:
  3575. return [] # Explicitly return an empty list.
  3576. if "mlp.experts.mlp.w1" in name:
  3577. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3578. name += ".weight"
  3579. if "mlp.experts.mlp.w2" in name:
  3580. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3581. data_torch = data_torch.transpose(1, 2)
  3582. name += ".weight"
  3583. return [(self.map_tensor_name(name), data_torch)]
  3584. def set_gguf_parameters(self):
  3585. super().set_gguf_parameters()
  3586. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3587. if self.is_moe:
  3588. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3589. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3590. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3591. def _is_tokenizer_xlmroberta(self) -> bool:
  3592. with open(self.dir_model / "tokenizer.json") as f:
  3593. tokenizer_json = json.load(f)
  3594. toktyp = tokenizer_json["model"]["type"]
  3595. if toktyp == "Unigram":
  3596. return True
  3597. if toktyp == "WordPiece":
  3598. return False
  3599. raise ValueError(f"unknown tokenizer: {toktyp}")
  3600. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3601. class NeoBert(BertModel):
  3602. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3603. def set_gguf_parameters(self):
  3604. super().set_gguf_parameters()
  3605. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3606. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3607. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3608. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3609. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3610. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3611. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3612. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3613. def modify_tensors(self, data_torch, name, bid):
  3614. if name.startswith("decoder."):
  3615. return []
  3616. if name.startswith("model."):
  3617. name = name[6:]
  3618. return super().modify_tensors(data_torch, name, bid)
  3619. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3620. class XLMRobertaModel(BertModel):
  3621. model_arch = gguf.MODEL_ARCH.BERT
  3622. def __init__(self, *args, **kwargs):
  3623. super().__init__(*args, **kwargs)
  3624. self._xlmroberta_tokenizer_init()
  3625. def set_vocab(self):
  3626. self._xlmroberta_set_vocab()
  3627. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3628. # if name starts with "roberta.", remove the prefix
  3629. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3630. if name.startswith("roberta."):
  3631. name = name[8:]
  3632. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3633. if name == "embeddings.position_embeddings.weight":
  3634. if self._position_offset is not None:
  3635. data_torch = data_torch[self._position_offset:,:]
  3636. return super().modify_tensors(data_torch, name, bid)
  3637. @ModelBase.register("GemmaForCausalLM")
  3638. class GemmaModel(TextModel):
  3639. model_arch = gguf.MODEL_ARCH.GEMMA
  3640. def set_vocab(self):
  3641. self._set_vocab_sentencepiece()
  3642. # TODO: these special tokens should be exported only for the CodeGemma family
  3643. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3644. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3645. special_vocab._set_special_token("prefix", 67)
  3646. special_vocab._set_special_token("suffix", 69)
  3647. special_vocab._set_special_token("middle", 68)
  3648. special_vocab._set_special_token("fsep", 70)
  3649. special_vocab._set_special_token("eot", 107)
  3650. special_vocab.chat_template = None # do not add it twice
  3651. special_vocab.add_to_gguf(self.gguf_writer)
  3652. self.gguf_writer.add_add_space_prefix(False)
  3653. def set_gguf_parameters(self):
  3654. hparams = self.hparams
  3655. block_count = hparams["num_hidden_layers"]
  3656. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3657. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3658. self.gguf_writer.add_block_count(block_count)
  3659. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3660. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3661. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3662. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3663. self.gguf_writer.add_key_length(hparams["head_dim"])
  3664. self.gguf_writer.add_value_length(hparams["head_dim"])
  3665. self.gguf_writer.add_file_type(self.ftype)
  3666. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3667. del bid # unused
  3668. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3669. # To prevent errors, skip loading lm_head.weight.
  3670. if name == "lm_head.weight":
  3671. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3672. return []
  3673. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3674. if name.endswith("norm.weight"):
  3675. data_torch = data_torch + 1
  3676. return [(self.map_tensor_name(name), data_torch)]
  3677. @ModelBase.register("Gemma2ForCausalLM")
  3678. class Gemma2Model(TextModel):
  3679. model_arch = gguf.MODEL_ARCH.GEMMA2
  3680. def set_vocab(self):
  3681. self._set_vocab_sentencepiece()
  3682. self.gguf_writer.add_add_space_prefix(False)
  3683. def set_gguf_parameters(self):
  3684. hparams = self.hparams
  3685. block_count = hparams["num_hidden_layers"]
  3686. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3687. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3688. self.gguf_writer.add_block_count(block_count)
  3689. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3690. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3691. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3692. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3693. self.gguf_writer.add_key_length(hparams["head_dim"])
  3694. self.gguf_writer.add_value_length(hparams["head_dim"])
  3695. self.gguf_writer.add_file_type(self.ftype)
  3696. self.gguf_writer.add_attn_logit_softcapping(
  3697. self.hparams["attn_logit_softcapping"]
  3698. )
  3699. self.gguf_writer.add_final_logit_softcapping(
  3700. self.hparams["final_logit_softcapping"]
  3701. )
  3702. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3703. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3704. del bid # unused
  3705. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3706. # To prevent errors, skip loading lm_head.weight.
  3707. if name == "lm_head.weight":
  3708. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3709. return []
  3710. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3711. if name.endswith("norm.weight"):
  3712. data_torch = data_torch + 1
  3713. return [(self.map_tensor_name(name), data_torch)]
  3714. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3715. class Gemma3Model(TextModel):
  3716. model_arch = gguf.MODEL_ARCH.GEMMA3
  3717. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3718. def set_vocab(self):
  3719. self._set_vocab_sentencepiece()
  3720. self.gguf_writer.add_add_space_prefix(False)
  3721. def set_gguf_parameters(self):
  3722. hparams = self.hparams
  3723. block_count = hparams["num_hidden_layers"]
  3724. # some default values are not specified in the hparams
  3725. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3726. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3727. self.gguf_writer.add_block_count(block_count)
  3728. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3729. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3730. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3731. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3732. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3733. self.gguf_writer.add_file_type(self.ftype)
  3734. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3735. # attn_logit_softcapping is removed in Gemma3
  3736. assert hparams.get("attn_logit_softcapping") is None
  3737. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3738. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3739. if hparams.get("rope_scaling") is not None:
  3740. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3741. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3742. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3743. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3744. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3745. del bid # unused
  3746. if "language_model." in name:
  3747. name = name.replace("language_model.", "")
  3748. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3749. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3750. return [] # skip vision tensors
  3751. # remove OOV (out-of-vocabulary) rows in token_embd
  3752. if "embed_tokens.weight" in name:
  3753. vocab = self._create_vocab_sentencepiece()
  3754. tokens = vocab[0]
  3755. data_torch = data_torch[:len(tokens)]
  3756. # ref code in Gemma3RMSNorm
  3757. # output = output * (1.0 + self.weight.float())
  3758. # note: this is not the case on gemma3n
  3759. if name.endswith("norm.weight"):
  3760. data_torch = data_torch + self.norm_shift
  3761. return [(self.map_tensor_name(name), data_torch)]
  3762. @ModelBase.register("Gemma3ForConditionalGeneration")
  3763. class Gemma3VisionModel(MmprojModel):
  3764. def set_gguf_parameters(self):
  3765. super().set_gguf_parameters()
  3766. hparams = self.hparams
  3767. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3768. # default values below are taken from HF tranformers code
  3769. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3770. self.gguf_writer.add_vision_use_gelu(True)
  3771. # calculate proj_scale_factor (used by tinygemma3 test model)
  3772. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3773. n_per_side = int(image_seq_length ** 0.5)
  3774. image_size = self.hparams["image_size"]
  3775. patch_size = self.hparams["patch_size"]
  3776. proj_scale_factor = (image_size // patch_size) // n_per_side
  3777. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3778. # we only need to write this if it's not the default value
  3779. # in this case, we are converting a test model
  3780. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3781. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3782. del bid, new_name, n_dims # unused
  3783. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3784. if "input_projection" in name:
  3785. return gguf.GGMLQuantizationType.F16
  3786. if ".embeddings." in name:
  3787. return gguf.GGMLQuantizationType.F32
  3788. return False
  3789. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3790. del bid # unused
  3791. if "vision_model.head." in name:
  3792. return [] # skip redundant tensors for tinygemma3
  3793. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3794. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3795. # process vision tensors
  3796. name = name.replace("_weight", ".weight")
  3797. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3798. # the other norm values are part of SigLIP model, and they are already correct
  3799. # ref code: Gemma3RMSNorm
  3800. if "soft_emb_norm.weight" in name:
  3801. logger.info(f"Correcting norm value for '{name}'")
  3802. data_torch = data_torch + 1
  3803. return [(self.map_tensor_name(name), data_torch)]
  3804. return [] # skip other tensors
  3805. @ModelBase.register("Gemma3nForConditionalGeneration")
  3806. class Gemma3NModel(Gemma3Model):
  3807. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3808. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3809. _altup_proj: list[Tensor] = []
  3810. _altup_unembd: list[Tensor] = []
  3811. def __init__(self, *args, **kwargs):
  3812. super().__init__(*args, **kwargs)
  3813. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3814. self._altup_proj = [
  3815. torch.Tensor(), # to be replaced
  3816. torch.Tensor(), # to be replaced
  3817. torch.Tensor(), # to be replaced
  3818. ]
  3819. self._altup_unembd = [
  3820. torch.Tensor(), # to be replaced
  3821. torch.Tensor(), # to be replaced
  3822. torch.Tensor(), # to be replaced
  3823. ]
  3824. def set_vocab(self):
  3825. super().set_vocab()
  3826. def set_gguf_parameters(self):
  3827. super().set_gguf_parameters()
  3828. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3829. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3830. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3831. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3832. activation_sparsity_scale = []
  3833. for s in self.hparams["activation_sparsity_pattern"]:
  3834. normal_dist = torch.distributions.normal.Normal(0, 1)
  3835. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3836. activation_sparsity_scale.append(std_multiplier.item())
  3837. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3838. sliding_window_pattern = []
  3839. for t in self.hparams["layer_types"]:
  3840. sliding_window_pattern.append(t == "sliding_attention")
  3841. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3842. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3843. has_all = all(m.numel() > 0 for m in matrices)
  3844. if not has_all:
  3845. return None
  3846. else:
  3847. return torch.stack(matrices, dim=0)
  3848. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3849. if name.endswith("_scale"):
  3850. name = name + ".weight"
  3851. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3852. if "language_model." not in name:
  3853. return [] # skip non-language model tensors
  3854. if "altup_unembed_projections" in name:
  3855. data_torch = data_torch.to(device="cpu")
  3856. if ".0." in name:
  3857. self._altup_unembd[0] = data_torch
  3858. elif ".1." in name:
  3859. self._altup_unembd[1] = data_torch
  3860. elif ".2." in name:
  3861. self._altup_unembd[2] = data_torch
  3862. else:
  3863. raise ValueError(f"Unknown name: {name}")
  3864. out = self._stack_matrices(self._altup_unembd)
  3865. if out is not None:
  3866. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3867. else:
  3868. return []
  3869. if "altup_projections" in name:
  3870. data_torch = data_torch.to(device="cpu")
  3871. if ".0." in name:
  3872. self._altup_proj[0] = data_torch
  3873. elif ".1." in name:
  3874. self._altup_proj[1] = data_torch
  3875. elif ".2." in name:
  3876. self._altup_proj[2] = data_torch
  3877. else:
  3878. raise ValueError(f"Unknown name: {name}")
  3879. out = self._stack_matrices(self._altup_proj)
  3880. if out is not None:
  3881. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3882. else:
  3883. return []
  3884. return super().modify_tensors(data_torch, name, bid)
  3885. @ModelBase.register("Starcoder2ForCausalLM")
  3886. class StarCoder2Model(TextModel):
  3887. model_arch = gguf.MODEL_ARCH.STARCODER2
  3888. @ModelBase.register("Rwkv6ForCausalLM")
  3889. class Rwkv6Model(TextModel):
  3890. model_arch = gguf.MODEL_ARCH.RWKV6
  3891. def set_vocab(self):
  3892. self._set_vocab_rwkv_world()
  3893. def set_gguf_parameters(self):
  3894. block_count = self.hparams["num_hidden_layers"]
  3895. head_size = self.hparams["head_size"]
  3896. hidden_size = self.hparams["hidden_size"]
  3897. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3898. rescale_every_n_layers = self.hparams["rescale_every"]
  3899. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3900. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3901. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3902. # RWKV isn't context limited
  3903. self.gguf_writer.add_context_length(1048576)
  3904. self.gguf_writer.add_embedding_length(hidden_size)
  3905. self.gguf_writer.add_block_count(block_count)
  3906. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3907. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3908. self.gguf_writer.add_wkv_head_size(head_size)
  3909. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3910. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3911. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3912. self.gguf_writer.add_file_type(self.ftype)
  3913. # required by llama.cpp, unused
  3914. self.gguf_writer.add_head_count(0)
  3915. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3917. new_name = self.map_tensor_name(name)
  3918. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3919. new_name += ".weight"
  3920. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3921. data_torch = data_torch.transpose(0, 1)
  3922. if new_name.endswith("time_mix_w2.weight"):
  3923. data_torch = data_torch.permute(0, 2, 1)
  3924. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3925. data_torch = data_torch.squeeze()
  3926. try:
  3927. rescale_every_n_layers = self.hparams["rescale_every"]
  3928. if rescale_every_n_layers > 0:
  3929. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3930. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3931. except KeyError:
  3932. pass
  3933. # concat time_mix_lerp weights to reduce some cpu overhead
  3934. # also reduces the number of tensors in the model
  3935. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3936. try:
  3937. self.lerp_weights[bid][new_name] = data_torch
  3938. except KeyError:
  3939. self.lerp_weights[bid] = {new_name: data_torch}
  3940. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3941. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3942. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3943. yield (new_name, data)
  3944. return
  3945. yield (new_name, data_torch)
  3946. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3947. class RWKV6Qwen2Model(Rwkv6Model):
  3948. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3949. def set_vocab(self):
  3950. try:
  3951. self._set_vocab_sentencepiece()
  3952. except FileNotFoundError:
  3953. self._set_vocab_gpt2()
  3954. def set_gguf_parameters(self):
  3955. block_count = self.hparams["num_hidden_layers"]
  3956. num_attention_heads = self.hparams["num_attention_heads"]
  3957. num_key_value_heads = self.hparams["num_key_value_heads"]
  3958. hidden_size = self.hparams["hidden_size"]
  3959. head_size = hidden_size // num_attention_heads
  3960. rms_norm_eps = self.hparams["rms_norm_eps"]
  3961. intermediate_size = self.hparams["intermediate_size"]
  3962. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3963. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3964. # RWKV isn't context limited
  3965. self.gguf_writer.add_context_length(1048576)
  3966. self.gguf_writer.add_embedding_length(hidden_size)
  3967. self.gguf_writer.add_block_count(block_count)
  3968. self.gguf_writer.add_wkv_head_size(head_size)
  3969. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3970. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3971. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3972. self.gguf_writer.add_file_type(self.ftype)
  3973. # special parameters for time_mixing in RWKV6QWEN2
  3974. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3975. self.gguf_writer.add_token_shift_count(1)
  3976. # RWKV6QWEN2 use grouped key/value like GQA
  3977. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3978. # required by llama.cpp, unused
  3979. self.gguf_writer.add_head_count(0)
  3980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3981. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3982. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3983. data = data.view(5, -1, data.shape[-1])
  3984. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3985. # permute them here to avoid code changes
  3986. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3987. if "w2" in new_name:
  3988. data = data.view(5, -1, data.shape[-1])
  3989. yield (new_name, data)
  3990. continue
  3991. yield (new_name, data)
  3992. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3993. class Rwkv7Model(TextModel):
  3994. model_arch = gguf.MODEL_ARCH.RWKV7
  3995. def set_vocab(self):
  3996. self._set_vocab_rwkv_world()
  3997. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3998. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3999. def set_gguf_parameters(self):
  4000. block_count = self.hparams["num_hidden_layers"]
  4001. try:
  4002. head_size = self.hparams["head_size"]
  4003. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4004. except KeyError:
  4005. head_size = self.hparams["head_dim"]
  4006. layer_norm_eps = self.hparams["norm_eps"]
  4007. hidden_size = self.hparams["hidden_size"]
  4008. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4009. # ICLR: In-Context-Learning-Rate
  4010. try:
  4011. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4012. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4013. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4014. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4015. except KeyError:
  4016. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4017. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4018. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4019. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4020. # RWKV isn't context limited
  4021. self.gguf_writer.add_context_length(1048576)
  4022. self.gguf_writer.add_embedding_length(hidden_size)
  4023. self.gguf_writer.add_block_count(block_count)
  4024. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4025. self.gguf_writer.add_wkv_head_size(head_size)
  4026. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4027. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4028. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4029. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4030. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4031. self.gguf_writer.add_file_type(self.ftype)
  4032. # required by llama.cpp, unused
  4033. self.gguf_writer.add_head_count(0)
  4034. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4035. lora_needs_transpose: bool = True
  4036. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4037. # unify tensor names here to make life easier
  4038. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4039. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4040. name = name.replace("time_mixer.", "")
  4041. # lora layer names in fla-hub's impl
  4042. if "_lora.lora" in name:
  4043. self.lora_needs_transpose = False
  4044. name = name.replace("_lora.lora.0.weight", "1.weight")
  4045. name = name.replace("_lora.lora.2.weight", "2.weight")
  4046. name = name.replace("_lora.lora.2.bias", "0.weight")
  4047. name = name.replace("feed_forward_norm", "ln2")
  4048. name = name.replace("g_norm", "ln_x")
  4049. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4050. # some models have dummy v0/v1/v2 on first layer while others don't
  4051. # ignore them all since they are not used
  4052. return
  4053. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4054. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4055. if bid is not None and "attention.x_" in name:
  4056. if "attention.x_x" in name:
  4057. # already concatenated
  4058. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4059. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4060. yield (new_name, data)
  4061. else:
  4062. try:
  4063. self.lerp_weights[bid][name] = data_torch
  4064. except KeyError:
  4065. self.lerp_weights[bid] = {name: data_torch}
  4066. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4067. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4068. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4069. yield (new_name, data)
  4070. return
  4071. else:
  4072. data_torch = data_torch.squeeze()
  4073. new_name = self.map_tensor_name(name)
  4074. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4075. new_name += ".weight"
  4076. if self.lora_needs_transpose and any(
  4077. new_name.endswith(t) for t in [
  4078. "time_mix_w1.weight", "time_mix_w2.weight",
  4079. "time_mix_a1.weight", "time_mix_a2.weight",
  4080. "time_mix_v1.weight", "time_mix_v2.weight",
  4081. "time_mix_g1.weight", "time_mix_g2.weight",
  4082. ]
  4083. ):
  4084. data_torch = data_torch.transpose(0, 1)
  4085. if 'r_k' in new_name:
  4086. data_torch = data_torch.flatten()
  4087. if bid == 0 and "time_mix_a" in new_name:
  4088. # dummy v0/v1/v2 on first layer
  4089. # easist way to make llama happy
  4090. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4091. yield (new_name, data_torch)
  4092. @ModelBase.register("RwkvHybridForCausalLM")
  4093. class ARwkv7Model(Rwkv7Model):
  4094. model_arch = gguf.MODEL_ARCH.ARWKV7
  4095. def set_vocab(self):
  4096. try:
  4097. self._set_vocab_sentencepiece()
  4098. except FileNotFoundError:
  4099. self._set_vocab_gpt2()
  4100. def set_gguf_parameters(self):
  4101. block_count = self.hparams["num_hidden_layers"]
  4102. hidden_size = self.hparams["hidden_size"]
  4103. head_size = self.hparams["head_size"]
  4104. rms_norm_eps = self.hparams["rms_norm_eps"]
  4105. intermediate_size = self.hparams["intermediate_size"]
  4106. wkv_has_gate = self.hparams["wkv_has_gate"]
  4107. assert self.hparams["wkv_version"] == 7
  4108. # ICLR: In-Context-Learning-Rate
  4109. lora_rank_decay = 64
  4110. lora_rank_iclr = 64
  4111. lora_rank_value_residual_mix = 32
  4112. lora_rank_gate = 128 if wkv_has_gate else 0
  4113. # RWKV isn't context limited
  4114. self.gguf_writer.add_context_length(1048576)
  4115. self.gguf_writer.add_embedding_length(hidden_size)
  4116. self.gguf_writer.add_block_count(block_count)
  4117. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4118. self.gguf_writer.add_wkv_head_size(head_size)
  4119. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4120. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4121. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4122. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4123. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4124. self.gguf_writer.add_file_type(self.ftype)
  4125. self.gguf_writer.add_token_shift_count(1)
  4126. # required by llama.cpp, unused
  4127. self.gguf_writer.add_head_count(0)
  4128. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4129. class MambaModel(TextModel):
  4130. model_arch = gguf.MODEL_ARCH.MAMBA
  4131. def __init__(self, dir_model: Path, *args, **kwargs):
  4132. # Avoid using AutoConfig for hparams
  4133. hparams = kwargs.pop("hparams", None)
  4134. if hparams is None:
  4135. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4136. hparams = json.load(f)
  4137. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4138. def set_vocab(self):
  4139. vocab_size = self.hparams["vocab_size"]
  4140. # Round vocab size to next multiple of 8
  4141. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4142. # pad using ceiling division
  4143. # ref: https://stackoverflow.com/a/17511341/22827863
  4144. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4145. self.hparams["vocab_size"] = vocab_size
  4146. if (self.dir_model / "tokenizer.json").is_file():
  4147. self._set_vocab_gpt2()
  4148. elif (self.dir_model / "tokenizer.model").is_file():
  4149. self._set_vocab_sentencepiece()
  4150. else:
  4151. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4152. self._set_vocab_builtin("gpt-neox", vocab_size)
  4153. def set_gguf_parameters(self):
  4154. d_model = self.find_hparam(["hidden_size", "d_model"])
  4155. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4156. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4157. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4158. # ceiling division
  4159. # ref: https://stackoverflow.com/a/17511341/22827863
  4160. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4161. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4162. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4163. use_dt_b_c_norm = False
  4164. # For falconmamba we do apply RMS norm on B / DT and C layers
  4165. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4166. use_dt_b_c_norm = True
  4167. # Fail early for models which don't have a block expansion factor of 2
  4168. assert d_inner == 2 * d_model
  4169. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4170. self.gguf_writer.add_embedding_length(d_model)
  4171. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4172. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4173. self.gguf_writer.add_block_count(self.block_count)
  4174. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4175. self.gguf_writer.add_ssm_inner_size(d_inner)
  4176. self.gguf_writer.add_ssm_state_size(d_state)
  4177. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4178. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4179. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4180. self.gguf_writer.add_file_type(self.ftype)
  4181. _tok_embd = None
  4182. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4183. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4184. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4185. new_name = self.map_tensor_name(name)
  4186. if name.endswith(".A_log"):
  4187. logger.debug("A_log --> A ==> " + new_name)
  4188. data_torch = -torch.exp(data_torch)
  4189. # [4 1 8192 1] -> [4 8192 1 1]
  4190. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4191. data_torch = data_torch.squeeze()
  4192. # assuming token_embd.weight is seen before output.weight
  4193. if self._tok_embd is not None and new_name == output_name:
  4194. if torch.equal(self._tok_embd, data_torch):
  4195. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4196. return []
  4197. elif new_name == tok_embd_name:
  4198. self._tok_embd = data_torch
  4199. return [(new_name, data_torch)]
  4200. @ModelBase.register("Mamba2ForCausalLM")
  4201. class Mamba2Model(TextModel):
  4202. model_arch = gguf.MODEL_ARCH.MAMBA2
  4203. def __init__(self, dir_model: Path, *args, **kwargs):
  4204. # Avoid using AutoConfig for hparams
  4205. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4206. hparams = kwargs.pop("hparams", None)
  4207. if hparams is None:
  4208. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4209. hparams = json.load(f)
  4210. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4211. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4212. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4213. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4214. def set_vocab(self):
  4215. vocab_size = self.hparams["vocab_size"]
  4216. # Round vocab size to next multiple of 16
  4217. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4218. # pad using ceiling division
  4219. # ref: https://stackoverflow.com/a/17511341/22827863
  4220. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4221. self.hparams["vocab_size"] = vocab_size
  4222. if (self.dir_model / "tokenizer.model").is_file():
  4223. self._set_vocab_sentencepiece()
  4224. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4225. # mamba-codestral
  4226. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4227. elif (self.dir_model / "tokenizer.json").is_file():
  4228. self._set_vocab_gpt2()
  4229. else:
  4230. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4231. self._set_vocab_builtin("gpt-neox", vocab_size)
  4232. def set_gguf_parameters(self):
  4233. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4234. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4235. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4236. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4237. # Fail early for models which don't have a block expansion factor of 2
  4238. # TODO: does this really matter?
  4239. # skip the assertion for FalconH1 Model
  4240. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4241. assert self.d_inner == 2 * self.d_model
  4242. assert self.d_inner % head_dim == 0
  4243. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4244. self.gguf_writer.add_embedding_length(self.d_model)
  4245. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4246. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4247. self.gguf_writer.add_block_count(self.block_count)
  4248. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4249. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4250. self.gguf_writer.add_ssm_state_size(d_state)
  4251. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4252. self.gguf_writer.add_ssm_group_count(self.n_group)
  4253. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4254. self.gguf_writer.add_file_type(self.ftype)
  4255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4256. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4257. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4258. name = name.removeprefix("model.")
  4259. if name.endswith(".dt_bias"):
  4260. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4261. new_name = self.map_tensor_name(name)
  4262. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4263. data_torch = data_torch.squeeze()
  4264. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4265. gguf.MODEL_TENSOR.SSM_A,
  4266. gguf.MODEL_TENSOR.SSM_D,
  4267. ]):
  4268. # unsqueeze A to use similar shape semantics as Mamba-1
  4269. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4270. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4271. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4272. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4273. if name.endswith(".A_log"):
  4274. logger.debug("A_log --> A ==> " + new_name)
  4275. data_torch = -torch.exp(data_torch)
  4276. yield (new_name, data_torch)
  4277. @ModelBase.register("JambaForCausalLM")
  4278. class JambaModel(TextModel):
  4279. model_arch = gguf.MODEL_ARCH.JAMBA
  4280. def get_vocab_base_pre(self, tokenizer) -> str:
  4281. del tokenizer # unused
  4282. return "gpt-2"
  4283. def set_vocab(self):
  4284. if (self.dir_model / "tokenizer.model").is_file():
  4285. # Using Jamba's tokenizer.json causes errors on model load
  4286. # (something about "byte not found in vocab"),
  4287. # but there's a working tokenizer.model
  4288. self._set_vocab_sentencepiece()
  4289. else:
  4290. # Some Jamba models only have a tokenizer.json, which works.
  4291. self._set_vocab_gpt2()
  4292. def set_gguf_parameters(self):
  4293. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4294. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4295. d_inner = self.hparams["mamba_expand"] * d_model
  4296. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4297. # ceiling division
  4298. # ref: https://stackoverflow.com/a/17511341/22827863
  4299. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4300. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4301. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4302. n_kv_head = self.hparams["num_key_value_heads"]
  4303. attn_offset = self.hparams["attn_layer_offset"]
  4304. attn_period = self.hparams["attn_layer_period"]
  4305. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4306. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4307. ]
  4308. self.gguf_writer.add_block_count(self.block_count)
  4309. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4310. self.gguf_writer.add_embedding_length(d_model)
  4311. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4312. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4313. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4314. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4315. self.gguf_writer.add_ssm_inner_size(d_inner)
  4316. self.gguf_writer.add_ssm_state_size(d_state)
  4317. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4318. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4319. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4320. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4321. self.gguf_writer.add_file_type(self.ftype)
  4322. _experts: list[dict[str, Tensor]] | None = None
  4323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4324. # Mini-Jamba
  4325. name = name.replace(".moe.", ".feed_forward.")
  4326. if bid is not None:
  4327. moe_offset = self.hparams["expert_layer_offset"]
  4328. moe_period = self.hparams["expert_layer_period"]
  4329. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4330. name = name.replace(".experts.0.", ".")
  4331. # process the experts separately
  4332. if ".feed_forward.experts." in name:
  4333. n_experts = self.hparams["num_experts"]
  4334. assert bid is not None
  4335. if self._experts is None:
  4336. self._experts = [{} for _ in range(self.block_count)]
  4337. self._experts[bid][name] = data_torch
  4338. if len(self._experts[bid]) >= n_experts * 3:
  4339. # merge the experts into a single 3d tensor
  4340. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4341. datas: list[Tensor] = []
  4342. for xid in range(n_experts):
  4343. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4344. datas.append(self._experts[bid][ename])
  4345. del self._experts[bid][ename]
  4346. data_torch = torch.stack(datas, dim=0)
  4347. # using the same merged name as qwen2moe
  4348. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4349. new_name = self.map_tensor_name(merged_name)
  4350. yield new_name, data_torch
  4351. return
  4352. new_name = self.map_tensor_name(name)
  4353. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4354. data_torch = data_torch.squeeze()
  4355. if name.endswith(".A_log"):
  4356. logger.debug("A_log --> A ==> " + new_name)
  4357. data_torch = -torch.exp(data_torch)
  4358. yield (new_name, data_torch)
  4359. def prepare_tensors(self):
  4360. super().prepare_tensors()
  4361. if self._experts is not None:
  4362. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4363. experts = [k for d in self._experts for k in d.keys()]
  4364. if len(experts) > 0:
  4365. raise ValueError(f"Unprocessed experts: {experts}")
  4366. @ModelBase.register("CohereForCausalLM")
  4367. class CommandR2Model(TextModel):
  4368. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4369. def __init__(self, *args, **kwargs):
  4370. super().__init__(*args, **kwargs)
  4371. # max_position_embeddings = 8192 in config.json but model was actually
  4372. # trained on 128k context length
  4373. # aya-23 models don't have model_max_length specified
  4374. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4375. def set_gguf_parameters(self):
  4376. super().set_gguf_parameters()
  4377. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4378. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4379. @ModelBase.register("Cohere2ForCausalLM")
  4380. class Cohere2Model(TextModel):
  4381. model_arch = gguf.MODEL_ARCH.COHERE2
  4382. def set_gguf_parameters(self):
  4383. super().set_gguf_parameters()
  4384. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4385. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4386. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4387. rotary_pct = self.hparams["rotary_pct"]
  4388. hidden_size = self.hparams["hidden_size"]
  4389. num_attention_heads = self.hparams["num_attention_heads"]
  4390. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4391. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4392. @ModelBase.register("OlmoForCausalLM")
  4393. @ModelBase.register("OLMoForCausalLM")
  4394. class OlmoModel(TextModel):
  4395. model_arch = gguf.MODEL_ARCH.OLMO
  4396. def set_gguf_parameters(self):
  4397. super().set_gguf_parameters()
  4398. self.gguf_writer.add_layer_norm_eps(1e-5)
  4399. clip_qkv = self.hparams.get("clip_qkv")
  4400. if clip_qkv is not None:
  4401. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4402. # Same as super class, but permuting q_proj, k_proj
  4403. # Copied from: LlamaModel
  4404. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4405. del bid # unused
  4406. n_head = self.hparams["num_attention_heads"]
  4407. n_kv_head = self.hparams.get("num_key_value_heads")
  4408. if name.endswith("q_proj.weight"):
  4409. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4410. if name.endswith("k_proj.weight"):
  4411. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4412. return [(self.map_tensor_name(name), data_torch)]
  4413. @ModelBase.register("Olmo2ForCausalLM")
  4414. class Olmo2Model(TextModel):
  4415. model_arch = gguf.MODEL_ARCH.OLMO2
  4416. @ModelBase.register("OlmoeForCausalLM")
  4417. class OlmoeModel(TextModel):
  4418. model_arch = gguf.MODEL_ARCH.OLMOE
  4419. def set_gguf_parameters(self):
  4420. super().set_gguf_parameters()
  4421. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4422. if (n_experts := self.hparams.get("num_experts")) is not None:
  4423. self.gguf_writer.add_expert_count(n_experts)
  4424. _experts: list[dict[str, Tensor]] | None = None
  4425. # Copied from: Qwen2MoeModel
  4426. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4427. # process the experts separately
  4428. if name.find("experts") != -1:
  4429. n_experts = self.hparams["num_experts"]
  4430. assert bid is not None
  4431. if self._experts is None:
  4432. self._experts = [{} for _ in range(self.block_count)]
  4433. self._experts[bid][name] = data_torch
  4434. if len(self._experts[bid]) >= n_experts * 3:
  4435. tensors: list[tuple[str, Tensor]] = []
  4436. # merge the experts into a single 3d tensor
  4437. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4438. datas: list[Tensor] = []
  4439. for xid in range(n_experts):
  4440. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4441. datas.append(self._experts[bid][ename])
  4442. del self._experts[bid][ename]
  4443. data_torch = torch.stack(datas, dim=0)
  4444. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4445. new_name = self.map_tensor_name(merged_name)
  4446. tensors.append((new_name, data_torch))
  4447. return tensors
  4448. else:
  4449. return []
  4450. return [(self.map_tensor_name(name), data_torch)]
  4451. # Copied from: Qwen2MoeModel
  4452. def prepare_tensors(self):
  4453. super().prepare_tensors()
  4454. if self._experts is not None:
  4455. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4456. experts = [k for d in self._experts for k in d.keys()]
  4457. if len(experts) > 0:
  4458. raise ValueError(f"Unprocessed experts: {experts}")
  4459. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4460. class JinaBertV2Model(BertModel):
  4461. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4462. def set_vocab(self):
  4463. tokenizer_class = 'BertTokenizer'
  4464. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4465. tokenizer_class = json.load(f)['tokenizer_class']
  4466. if tokenizer_class == 'BertTokenizer':
  4467. super().set_vocab()
  4468. elif tokenizer_class == 'RobertaTokenizer':
  4469. self._set_vocab_gpt2()
  4470. self.gguf_writer.add_token_type_count(2)
  4471. else:
  4472. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4473. @ModelBase.register("OpenELMForCausalLM")
  4474. class OpenELMModel(TextModel):
  4475. model_arch = gguf.MODEL_ARCH.OPENELM
  4476. @staticmethod
  4477. def _make_divisible(v: float | int, divisor: int) -> int:
  4478. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4479. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4480. # Make sure that round down does not go down by more than 10%.
  4481. if new_v < 0.9 * v:
  4482. new_v += divisor
  4483. return new_v
  4484. def __init__(self, *args, **kwargs):
  4485. super().__init__(*args, **kwargs)
  4486. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4487. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4488. self._n_embd: int = self.hparams["model_dim"]
  4489. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4490. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4491. self._ffn_dims: list[int] = [
  4492. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4493. for multiplier in ffn_multipliers
  4494. ]
  4495. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4496. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4497. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4498. def set_vocab(self):
  4499. try:
  4500. self._set_vocab_sentencepiece()
  4501. except FileNotFoundError:
  4502. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4503. def set_gguf_parameters(self):
  4504. n_embd = self._n_embd
  4505. head_dim = self.hparams["head_dim"]
  4506. rot_pct = 1.0
  4507. assert self.block_count == len(self._num_kv_heads)
  4508. assert self.block_count == len(self._num_query_heads)
  4509. assert self.block_count == len(self._ffn_dims)
  4510. self.gguf_writer.add_block_count(self.block_count)
  4511. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4512. self.gguf_writer.add_embedding_length(n_embd)
  4513. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4514. self.gguf_writer.add_head_count(self._num_query_heads)
  4515. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4516. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4517. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4518. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4519. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4520. self.gguf_writer.add_key_length(head_dim)
  4521. self.gguf_writer.add_value_length(head_dim)
  4522. self.gguf_writer.add_file_type(self.ftype)
  4523. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4524. if "n_layers" in keys:
  4525. return self.hparams["num_transformer_layers"]
  4526. return super().find_hparam(keys, optional)
  4527. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4528. # split ff
  4529. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4530. ff_dim = self._ffn_dims[bid]
  4531. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4532. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4533. return
  4534. yield (self.map_tensor_name(name), data_torch)
  4535. @ModelBase.register("ArcticForCausalLM")
  4536. class ArcticModel(TextModel):
  4537. model_arch = gguf.MODEL_ARCH.ARCTIC
  4538. def set_vocab(self):
  4539. # The reason for using a custom implementation here is that the
  4540. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4541. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4542. from sentencepiece import SentencePieceProcessor
  4543. tokenizer_path = self.dir_model / 'tokenizer.model'
  4544. if not tokenizer_path.is_file():
  4545. logger.error(f'Error: Missing {tokenizer_path}')
  4546. sys.exit(1)
  4547. # Read the whole vocabulary from the tokenizer.model file
  4548. tokenizer = SentencePieceProcessor()
  4549. tokenizer.LoadFromFile(str(tokenizer_path))
  4550. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4551. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4552. scores: list[float] = [-10000.0] * vocab_size
  4553. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4554. for token_id in range(tokenizer.vocab_size()):
  4555. piece = tokenizer.IdToPiece(token_id)
  4556. text = piece.encode("utf-8")
  4557. score = tokenizer.GetScore(token_id)
  4558. toktype = SentencePieceTokenTypes.NORMAL
  4559. if tokenizer.IsUnknown(token_id):
  4560. toktype = SentencePieceTokenTypes.UNKNOWN
  4561. elif tokenizer.IsControl(token_id):
  4562. toktype = SentencePieceTokenTypes.CONTROL
  4563. elif tokenizer.IsUnused(token_id):
  4564. toktype = SentencePieceTokenTypes.UNUSED
  4565. elif tokenizer.IsByte(token_id):
  4566. toktype = SentencePieceTokenTypes.BYTE
  4567. tokens[token_id] = text
  4568. scores[token_id] = score
  4569. toktypes[token_id] = toktype
  4570. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4571. # of information about added/redefined tokens and modify them accordingly.
  4572. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4573. if tokenizer_config_file.is_file():
  4574. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4575. tokenizer_config_json = json.load(f)
  4576. if "added_tokens_decoder" in tokenizer_config_json:
  4577. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4578. for token_id, token_json in added_tokens_decoder.items():
  4579. token_id = int(token_id)
  4580. if token_id >= vocab_size:
  4581. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4582. continue
  4583. token_content = token_json["content"]
  4584. token_type = SentencePieceTokenTypes.USER_DEFINED
  4585. token_score = -10000.0
  4586. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4587. # Set the score to 0.0 as in the original tokenizer.model
  4588. if ("special" in token_json) and token_json["special"]:
  4589. if token_content == tokenizer_config_json["unk_token"]:
  4590. token_type = SentencePieceTokenTypes.UNKNOWN
  4591. else:
  4592. token_type = SentencePieceTokenTypes.CONTROL
  4593. token_score = 0.0
  4594. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4595. tokens[token_id] = token_content.encode("utf-8")
  4596. toktypes[token_id] = token_type
  4597. scores[token_id] = token_score
  4598. self.gguf_writer.add_tokenizer_model("llama")
  4599. self.gguf_writer.add_tokenizer_pre("default")
  4600. self.gguf_writer.add_token_list(tokens)
  4601. self.gguf_writer.add_token_scores(scores)
  4602. self.gguf_writer.add_token_types(toktypes)
  4603. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4604. special_vocab.add_to_gguf(self.gguf_writer)
  4605. def set_gguf_parameters(self):
  4606. super().set_gguf_parameters()
  4607. hparams = self.hparams
  4608. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4609. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4610. _experts: list[dict[str, Tensor]] | None = None
  4611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4612. n_head = self.hparams["num_attention_heads"]
  4613. n_kv_head = self.hparams.get("num_key_value_heads")
  4614. if name.endswith("q_proj.weight"):
  4615. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4616. if name.endswith("k_proj.weight"):
  4617. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4618. # process the experts separately
  4619. if name.find("block_sparse_moe.experts") != -1:
  4620. n_experts = self.hparams["num_local_experts"]
  4621. assert bid is not None
  4622. if self._experts is None:
  4623. self._experts = [{} for _ in range(self.block_count)]
  4624. self._experts[bid][name] = data_torch
  4625. if len(self._experts[bid]) >= n_experts * 3:
  4626. tensors: list[tuple[str, Tensor]] = []
  4627. # merge the experts into a single 3d tensor
  4628. for wid in ["w1", "w2", "w3"]:
  4629. datas: list[Tensor] = []
  4630. for xid in range(n_experts):
  4631. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4632. datas.append(self._experts[bid][ename])
  4633. del self._experts[bid][ename]
  4634. data_torch = torch.stack(datas, dim=0)
  4635. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4636. new_name = self.map_tensor_name(merged_name)
  4637. tensors.append((new_name, data_torch))
  4638. return tensors
  4639. else:
  4640. return []
  4641. return [(self.map_tensor_name(name), data_torch)]
  4642. def prepare_tensors(self):
  4643. super().prepare_tensors()
  4644. if self._experts is not None:
  4645. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4646. experts = [k for d in self._experts for k in d.keys()]
  4647. if len(experts) > 0:
  4648. raise ValueError(f"Unprocessed experts: {experts}")
  4649. @ModelBase.register("DeepseekForCausalLM")
  4650. class DeepseekModel(TextModel):
  4651. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4652. def set_vocab(self):
  4653. try:
  4654. self._set_vocab_sentencepiece()
  4655. except FileNotFoundError:
  4656. self._set_vocab_gpt2()
  4657. def set_gguf_parameters(self):
  4658. super().set_gguf_parameters()
  4659. hparams = self.hparams
  4660. if (rope_dim := hparams.get("head_dim")) is None:
  4661. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4662. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4663. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4664. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4665. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4666. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4667. self.gguf_writer.add_expert_weights_scale(1.0)
  4668. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4669. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4670. _experts: list[dict[str, Tensor]] | None = None
  4671. @staticmethod
  4672. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4673. if n_head_kv is not None and n_head != n_head_kv:
  4674. n_head = n_head_kv
  4675. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4676. .swapaxes(1, 2)
  4677. .reshape(weights.shape))
  4678. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4679. n_head = self.hparams["num_attention_heads"]
  4680. n_kv_head = self.hparams.get("num_key_value_heads")
  4681. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4682. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4683. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4684. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4685. # process the experts separately
  4686. if name.find("mlp.experts") != -1:
  4687. n_experts = self.hparams["n_routed_experts"]
  4688. assert bid is not None
  4689. if self._experts is None:
  4690. self._experts = [{} for _ in range(self.block_count)]
  4691. self._experts[bid][name] = data_torch
  4692. if len(self._experts[bid]) >= n_experts * 3:
  4693. tensors: list[tuple[str, Tensor]] = []
  4694. # merge the experts into a single 3d tensor
  4695. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4696. datas: list[Tensor] = []
  4697. for xid in range(n_experts):
  4698. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4699. datas.append(self._experts[bid][ename])
  4700. del self._experts[bid][ename]
  4701. data_torch = torch.stack(datas, dim=0)
  4702. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4703. new_name = self.map_tensor_name(merged_name)
  4704. tensors.append((new_name, data_torch))
  4705. return tensors
  4706. else:
  4707. return []
  4708. return [(self.map_tensor_name(name), data_torch)]
  4709. def prepare_tensors(self):
  4710. super().prepare_tensors()
  4711. if self._experts is not None:
  4712. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4713. experts = [k for d in self._experts for k in d.keys()]
  4714. if len(experts) > 0:
  4715. raise ValueError(f"Unprocessed experts: {experts}")
  4716. @ModelBase.register("DeepseekV2ForCausalLM")
  4717. @ModelBase.register("DeepseekV3ForCausalLM")
  4718. class DeepseekV2Model(TextModel):
  4719. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4720. def set_vocab(self):
  4721. try:
  4722. self._set_vocab_gpt2()
  4723. return
  4724. except Exception:
  4725. pass
  4726. from transformers import AutoTokenizer
  4727. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4728. tokpre = self.get_vocab_base_pre(tokenizer)
  4729. if tokpre == "kimi-k2":
  4730. # Build merges list using the approach similar to HunYuanMoE
  4731. merges = []
  4732. vocab = {}
  4733. mergeable_ranks = tokenizer.model._mergeable_ranks
  4734. for token, rank in mergeable_ranks.items():
  4735. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4736. if len(token) == 1:
  4737. continue
  4738. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4739. if len(merged) == 2:
  4740. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4741. # Build token list
  4742. vocab_size = self.hparams["vocab_size"]
  4743. special_tokens = tokenizer.special_tokens
  4744. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4745. tokens: list[str] = []
  4746. toktypes: list[int] = []
  4747. for i in range(vocab_size):
  4748. if i not in reverse_vocab:
  4749. tokens.append(f"[PAD{i}]")
  4750. toktypes.append(gguf.TokenType.UNUSED)
  4751. else:
  4752. token = reverse_vocab[i]
  4753. tokens.append(token)
  4754. if i in special_tokens.values():
  4755. toktypes.append(gguf.TokenType.CONTROL)
  4756. else:
  4757. toktypes.append(gguf.TokenType.NORMAL)
  4758. self.gguf_writer.add_tokenizer_model("gpt2")
  4759. self.gguf_writer.add_tokenizer_pre(tokpre)
  4760. self.gguf_writer.add_token_list(tokens)
  4761. self.gguf_writer.add_token_types(toktypes)
  4762. self.gguf_writer.add_token_merges(merges)
  4763. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4764. special_vocab.add_to_gguf(self.gguf_writer)
  4765. else:
  4766. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4767. def set_gguf_parameters(self):
  4768. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4769. self.hparams["num_key_value_heads"] = 1
  4770. super().set_gguf_parameters()
  4771. hparams = self.hparams
  4772. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4773. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4774. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4775. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4776. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4777. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4778. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4779. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4780. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4781. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4782. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4783. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4784. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4785. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4786. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4787. if hparams["scoring_func"] == "sigmoid":
  4788. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4789. elif hparams["scoring_func"] == "softmax":
  4790. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4791. else:
  4792. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4793. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4794. rope_scaling = self.hparams.get("rope_scaling") or {}
  4795. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4796. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4797. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4798. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4799. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4800. _experts: list[dict[str, Tensor]] | None = None
  4801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4802. # rename e_score_correction_bias tensors
  4803. if name.endswith("e_score_correction_bias"):
  4804. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4805. # skip Multi-Token Prediction (MTP) layers
  4806. block_count = self.hparams["num_hidden_layers"]
  4807. match = re.match(r"model.layers.(\d+)", name)
  4808. if match and int(match.group(1)) >= block_count:
  4809. return []
  4810. # process the experts separately
  4811. if name.find("mlp.experts") != -1:
  4812. n_experts = self.hparams["n_routed_experts"]
  4813. assert bid is not None
  4814. if self._experts is None:
  4815. self._experts = [{} for _ in range(self.block_count)]
  4816. self._experts[bid][name] = data_torch
  4817. if len(self._experts[bid]) >= n_experts * 3:
  4818. tensors: list[tuple[str, Tensor]] = []
  4819. # merge the experts into a single 3d tensor
  4820. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4821. datas: list[Tensor] = []
  4822. for xid in range(n_experts):
  4823. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4824. datas.append(self._experts[bid][ename])
  4825. del self._experts[bid][ename]
  4826. data_torch = torch.stack(datas, dim=0)
  4827. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4828. new_name = self.map_tensor_name(merged_name)
  4829. tensors.append((new_name, data_torch))
  4830. return tensors
  4831. else:
  4832. return []
  4833. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4834. if name.endswith("kv_b_proj.weight"):
  4835. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4836. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4837. n_head_kv = self.hparams["num_key_value_heads"]
  4838. v_head_dim = self.hparams["v_head_dim"]
  4839. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4840. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4841. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4842. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4843. k_b = k_b.transpose(1, 2)
  4844. return [
  4845. (self.map_tensor_name(name_kb), k_b),
  4846. (self.map_tensor_name(name_vb), v_b)
  4847. ]
  4848. return [(self.map_tensor_name(name), data_torch)]
  4849. def prepare_tensors(self):
  4850. super().prepare_tensors()
  4851. if self._experts is not None:
  4852. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4853. experts = [k for d in self._experts for k in d.keys()]
  4854. if len(experts) > 0:
  4855. raise ValueError(f"Unprocessed experts: {experts}")
  4856. @ModelBase.register("Dots1ForCausalLM")
  4857. class Dots1Model(Qwen2MoeModel):
  4858. model_arch = gguf.MODEL_ARCH.DOTS1
  4859. def __init__(self, *args, **kwargs):
  4860. super().__init__(*args, **kwargs)
  4861. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4862. def set_gguf_parameters(self):
  4863. super().set_gguf_parameters()
  4864. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4865. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4866. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4867. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4868. if self.hparams["scoring_func"] == "noaux_tc":
  4869. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4870. else:
  4871. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4872. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4873. if name.endswith("e_score_correction_bias"):
  4874. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4875. if "shared_experts" in name:
  4876. return [(self.map_tensor_name(name), data_torch)]
  4877. return super().modify_tensors(data_torch, name, bid)
  4878. @ModelBase.register("PLMForCausalLM")
  4879. class PLMModel(TextModel):
  4880. model_arch = gguf.MODEL_ARCH.PLM
  4881. def set_vocab(self):
  4882. self._set_vocab_gpt2()
  4883. def set_gguf_parameters(self):
  4884. super().set_gguf_parameters()
  4885. hparams = self.hparams
  4886. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4887. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4888. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4889. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4890. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4891. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4892. return [(self.map_tensor_name(name), data_torch)]
  4893. def prepare_tensors(self):
  4894. super().prepare_tensors()
  4895. @ModelBase.register("T5WithLMHeadModel")
  4896. @ModelBase.register("T5ForConditionalGeneration")
  4897. @ModelBase.register("MT5ForConditionalGeneration")
  4898. @ModelBase.register("UMT5ForConditionalGeneration")
  4899. class T5Model(TextModel):
  4900. model_arch = gguf.MODEL_ARCH.T5
  4901. def __init__(self, *args, **kwargs):
  4902. super().__init__(*args, **kwargs)
  4903. self.shared_token_embeddings_found = False
  4904. def set_vocab(self):
  4905. # to avoid TypeError: Descriptors cannot be created directly
  4906. # exception when importing sentencepiece_model_pb2
  4907. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4908. from sentencepiece import SentencePieceProcessor
  4909. from sentencepiece import sentencepiece_model_pb2 as model
  4910. tokenizer_path = self.dir_model / 'tokenizer.model'
  4911. # many older models use spiece.model tokenizer model filename
  4912. if not tokenizer_path.is_file():
  4913. tokenizer_path = self.dir_model / 'spiece.model'
  4914. if not tokenizer_path.is_file():
  4915. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4916. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4917. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4918. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4919. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4920. # assure the tokenizer model file name is correct
  4921. assert tokenizer_path.name == 'tokenizer.model'
  4922. return self._set_vocab_sentencepiece()
  4923. else:
  4924. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4925. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4926. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4927. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4928. tokenizer = SentencePieceProcessor()
  4929. tokenizer.LoadFromFile(str(tokenizer_path))
  4930. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4931. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4932. scores: list[float] = [-10000.0] * vocab_size
  4933. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4934. for token_id in range(tokenizer.vocab_size()):
  4935. piece = tokenizer.IdToPiece(token_id)
  4936. text = piece.encode("utf-8")
  4937. score = tokenizer.GetScore(token_id)
  4938. toktype = SentencePieceTokenTypes.NORMAL
  4939. if tokenizer.IsUnknown(token_id):
  4940. toktype = SentencePieceTokenTypes.UNKNOWN
  4941. elif tokenizer.IsControl(token_id):
  4942. toktype = SentencePieceTokenTypes.CONTROL
  4943. elif tokenizer.IsUnused(token_id):
  4944. toktype = SentencePieceTokenTypes.UNUSED
  4945. elif tokenizer.IsByte(token_id):
  4946. toktype = SentencePieceTokenTypes.BYTE
  4947. tokens[token_id] = text
  4948. scores[token_id] = score
  4949. toktypes[token_id] = toktype
  4950. added_tokens_file = self.dir_model / 'added_tokens.json'
  4951. if added_tokens_file.is_file():
  4952. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4953. added_tokens_json = json.load(f)
  4954. for key in added_tokens_json:
  4955. token_id = added_tokens_json[key]
  4956. if token_id >= vocab_size:
  4957. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4958. continue
  4959. tokens[token_id] = key.encode("utf-8")
  4960. scores[token_id] = -1000.0
  4961. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4962. if vocab_size > len(tokens):
  4963. pad_count = vocab_size - len(tokens)
  4964. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4965. for i in range(1, pad_count + 1):
  4966. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4967. scores.append(-1000.0)
  4968. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4969. self.gguf_writer.add_tokenizer_model("t5")
  4970. self.gguf_writer.add_tokenizer_pre("default")
  4971. self.gguf_writer.add_token_list(tokens)
  4972. self.gguf_writer.add_token_scores(scores)
  4973. self.gguf_writer.add_token_types(toktypes)
  4974. self.gguf_writer.add_add_space_prefix(add_prefix)
  4975. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4976. if precompiled_charsmap:
  4977. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4978. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4979. special_vocab.add_to_gguf(self.gguf_writer)
  4980. def set_gguf_parameters(self):
  4981. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4982. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4983. n_ctx = 512
  4984. self.gguf_writer.add_context_length(n_ctx)
  4985. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4986. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4987. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4988. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4989. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4990. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4991. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4992. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4993. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4994. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4995. self.gguf_writer.add_file_type(self.ftype)
  4996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4997. del bid # unused
  4998. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4999. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5000. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5001. # and decoder and ignore the remaining ones.
  5002. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5003. if not self.shared_token_embeddings_found:
  5004. name = "shared.weight"
  5005. self.shared_token_embeddings_found = True
  5006. else:
  5007. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5008. return []
  5009. return [(self.map_tensor_name(name), data_torch)]
  5010. @ModelBase.register("T5EncoderModel")
  5011. class T5EncoderModel(TextModel):
  5012. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5013. def __init__(self, *args, **kwargs):
  5014. super().__init__(*args, **kwargs)
  5015. self.shared_token_embeddings_found = False
  5016. def set_vocab(self):
  5017. # to avoid TypeError: Descriptors cannot be created directly
  5018. # exception when importing sentencepiece_model_pb2
  5019. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5020. from sentencepiece import SentencePieceProcessor
  5021. from sentencepiece import sentencepiece_model_pb2 as model
  5022. tokenizer_path = self.dir_model / 'tokenizer.model'
  5023. # many older models use spiece.model tokenizer model filename
  5024. if not tokenizer_path.is_file():
  5025. tokenizer_path = self.dir_model / 'spiece.model'
  5026. if not tokenizer_path.is_file():
  5027. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5028. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5029. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5030. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5031. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5032. # assure the tokenizer model file name is correct
  5033. assert tokenizer_path.name == 'tokenizer.model'
  5034. return self._set_vocab_sentencepiece()
  5035. else:
  5036. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5037. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5038. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5039. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5040. tokenizer = SentencePieceProcessor()
  5041. tokenizer.LoadFromFile(str(tokenizer_path))
  5042. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5043. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5044. scores: list[float] = [-10000.0] * vocab_size
  5045. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5046. for token_id in range(tokenizer.vocab_size()):
  5047. piece = tokenizer.IdToPiece(token_id)
  5048. text = piece.encode("utf-8")
  5049. score = tokenizer.GetScore(token_id)
  5050. toktype = SentencePieceTokenTypes.NORMAL
  5051. if tokenizer.IsUnknown(token_id):
  5052. toktype = SentencePieceTokenTypes.UNKNOWN
  5053. elif tokenizer.IsControl(token_id):
  5054. toktype = SentencePieceTokenTypes.CONTROL
  5055. elif tokenizer.IsUnused(token_id):
  5056. toktype = SentencePieceTokenTypes.UNUSED
  5057. elif tokenizer.IsByte(token_id):
  5058. toktype = SentencePieceTokenTypes.BYTE
  5059. tokens[token_id] = text
  5060. scores[token_id] = score
  5061. toktypes[token_id] = toktype
  5062. added_tokens_file = self.dir_model / 'added_tokens.json'
  5063. if added_tokens_file.is_file():
  5064. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5065. added_tokens_json = json.load(f)
  5066. for key in added_tokens_json:
  5067. token_id = added_tokens_json[key]
  5068. if token_id >= vocab_size:
  5069. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5070. continue
  5071. tokens[token_id] = key.encode("utf-8")
  5072. scores[token_id] = -1000.0
  5073. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5074. if vocab_size > len(tokens):
  5075. pad_count = vocab_size - len(tokens)
  5076. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5077. for i in range(1, pad_count + 1):
  5078. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5079. scores.append(-1000.0)
  5080. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5081. self.gguf_writer.add_tokenizer_model("t5")
  5082. self.gguf_writer.add_tokenizer_pre("default")
  5083. self.gguf_writer.add_token_list(tokens)
  5084. self.gguf_writer.add_token_scores(scores)
  5085. self.gguf_writer.add_token_types(toktypes)
  5086. self.gguf_writer.add_add_space_prefix(add_prefix)
  5087. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5088. if precompiled_charsmap:
  5089. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5090. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5091. special_vocab.add_to_gguf(self.gguf_writer)
  5092. def set_gguf_parameters(self):
  5093. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5094. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5095. n_ctx = 512
  5096. self.gguf_writer.add_context_length(n_ctx)
  5097. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5098. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5099. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5100. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5101. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5102. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5103. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5104. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5105. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5106. self.gguf_writer.add_file_type(self.ftype)
  5107. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5108. del bid # unused
  5109. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5110. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5111. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5112. # and decoder and ignore the remaining ones.
  5113. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5114. if not self.shared_token_embeddings_found:
  5115. name = "shared.weight"
  5116. self.shared_token_embeddings_found = True
  5117. else:
  5118. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5119. return []
  5120. return [(self.map_tensor_name(name), data_torch)]
  5121. @ModelBase.register("JAISLMHeadModel")
  5122. class JaisModel(TextModel):
  5123. model_arch = gguf.MODEL_ARCH.JAIS
  5124. def __init__(self, *args, **kwargs):
  5125. super().__init__(*args, **kwargs)
  5126. # SwigLU activation
  5127. assert self.hparams["activation_function"] == "swiglu"
  5128. # ALiBi position embedding
  5129. assert self.hparams["position_embedding_type"] == "alibi"
  5130. # Embeddings scale
  5131. self.embeddings_scale = 1.0
  5132. if 'mup_embeddings_scale' in self.hparams:
  5133. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5134. elif 'embeddings_scale' in self.hparams:
  5135. self.embeddings_scale = self.hparams['embeddings_scale']
  5136. else:
  5137. assert False
  5138. self.width_scale = 1.0
  5139. if 'mup_output_alpha' in self.hparams:
  5140. assert 'mup_width_scale' in self.hparams
  5141. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5142. elif 'width_scale' in self.hparams:
  5143. self.width_scale = self.hparams['width_scale']
  5144. else:
  5145. assert False
  5146. self.max_alibi_bias = 8.0
  5147. def set_vocab(self):
  5148. self._set_vocab_gpt2()
  5149. def set_gguf_parameters(self):
  5150. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5151. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5152. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5153. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5154. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5155. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5156. self.gguf_writer.add_file_type(self.ftype)
  5157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5158. del bid # unused
  5159. tensors: list[tuple[str, Tensor]] = []
  5160. # we don't need these
  5161. if name.endswith((".attn.bias")):
  5162. return tensors
  5163. if name.endswith(("relative_pe.slopes")):
  5164. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5165. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5166. # but Jais's PyTorch model simply precalculates the slope values and places them
  5167. # in relative_pes.slopes
  5168. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5169. first_val = float(data_torch[0].item())
  5170. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5171. return tensors
  5172. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5173. data_torch = data_torch.transpose(1, 0)
  5174. new_name = self.map_tensor_name(name)
  5175. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5176. tensors.append((new_name, data_torch * self.embeddings_scale))
  5177. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5178. tensors.append((new_name, data_torch * self.width_scale))
  5179. else:
  5180. tensors.append((new_name, data_torch))
  5181. return tensors
  5182. def prepare_tensors(self):
  5183. super().prepare_tensors()
  5184. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5185. @ModelBase.register("Glm4ForCausalLM")
  5186. class Glm4Model(TextModel):
  5187. model_arch = gguf.MODEL_ARCH.GLM4
  5188. def set_vocab(self):
  5189. from transformers import AutoTokenizer
  5190. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5191. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5192. tokens, toktypes, tokpre = self.get_vocab_base()
  5193. self.gguf_writer.add_tokenizer_model("gpt2")
  5194. self.gguf_writer.add_tokenizer_pre(tokpre)
  5195. self.gguf_writer.add_token_list(tokens)
  5196. self.gguf_writer.add_token_types(toktypes)
  5197. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5198. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5199. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5200. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5201. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5202. special_vocab.add_to_gguf(self.gguf_writer)
  5203. def set_gguf_parameters(self):
  5204. super().set_gguf_parameters()
  5205. rope_dim = self.hparams["head_dim"]
  5206. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5207. rope_scaling = self.hparams.get("rope_scaling") or {}
  5208. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5209. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5210. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5211. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5212. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5213. class ChatGLMModel(TextModel):
  5214. model_arch = gguf.MODEL_ARCH.CHATGLM
  5215. def set_vocab_chatglm3(self):
  5216. dir_model = self.dir_model
  5217. hparams = self.hparams
  5218. tokens: list[bytes] = []
  5219. toktypes: list[int] = []
  5220. scores: list[float] = []
  5221. from transformers import AutoTokenizer
  5222. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5223. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5224. assert max(tokenizer.get_vocab().values()) < vocab_size
  5225. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5226. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5227. for token_id in range(vocab_size):
  5228. piece = tokenizer._convert_id_to_token(token_id)
  5229. if token_id == 0:
  5230. piece = "<unk>"
  5231. elif token_id == 1:
  5232. piece = "<bos>"
  5233. elif token_id == 2:
  5234. piece = "<eos>"
  5235. text = piece.encode("utf-8")
  5236. score = 0.0
  5237. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5238. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5239. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5240. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5241. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5242. if piece in special_tokens:
  5243. toktype = SentencePieceTokenTypes.CONTROL
  5244. elif len(piece) == 0:
  5245. text = f"[PAD{token_id}]".encode("utf-8")
  5246. toktype = SentencePieceTokenTypes.UNUSED
  5247. else:
  5248. toktype = SentencePieceTokenTypes.USER_DEFINED
  5249. tokens.append(text)
  5250. scores.append(score)
  5251. toktypes.append(toktype)
  5252. continue
  5253. toktype = SentencePieceTokenTypes.NORMAL
  5254. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5255. toktype = SentencePieceTokenTypes.UNKNOWN
  5256. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5257. toktype = SentencePieceTokenTypes.CONTROL
  5258. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5259. toktype = SentencePieceTokenTypes.UNUSED
  5260. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5261. toktype = SentencePieceTokenTypes.BYTE
  5262. tokens.append(text)
  5263. scores.append(score)
  5264. toktypes.append(toktype)
  5265. self.gguf_writer.add_tokenizer_model("llama")
  5266. # glm3 needs prefix and suffix formatted as:
  5267. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5268. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5269. self.gguf_writer.add_token_list(tokens)
  5270. self.gguf_writer.add_token_scores(scores)
  5271. self.gguf_writer.add_token_types(toktypes)
  5272. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5273. special_vocab.add_to_gguf(self.gguf_writer)
  5274. @staticmethod
  5275. def token_bytes_to_string(b):
  5276. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5277. byte_encoder = bytes_to_unicode()
  5278. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5279. @staticmethod
  5280. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5281. parts = [bytes([b]) for b in token]
  5282. while True:
  5283. min_idx = None
  5284. min_rank = None
  5285. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5286. rank = mergeable_ranks.get(pair[0] + pair[1])
  5287. if rank is not None and (min_rank is None or rank < min_rank):
  5288. min_idx = i
  5289. min_rank = rank
  5290. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5291. break
  5292. assert min_idx is not None
  5293. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5294. return parts
  5295. def set_vocab(self):
  5296. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5297. self.set_vocab_chatglm3()
  5298. return
  5299. dir_model = self.dir_model
  5300. hparams = self.hparams
  5301. tokens: list[str] = []
  5302. toktypes: list[int] = []
  5303. from transformers import AutoTokenizer
  5304. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5305. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5306. assert max(tokenizer.get_vocab().values()) < vocab_size
  5307. tokens, toktypes, tokpre = self.get_vocab_base()
  5308. self.gguf_writer.add_tokenizer_model("gpt2")
  5309. self.gguf_writer.add_tokenizer_pre(tokpre)
  5310. self.gguf_writer.add_token_list(tokens)
  5311. self.gguf_writer.add_token_types(toktypes)
  5312. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5313. # only add special tokens when they were not already loaded from config.json
  5314. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5315. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5316. # this one is usually not in config.json anyway
  5317. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5318. special_vocab.add_to_gguf(self.gguf_writer)
  5319. def set_gguf_parameters(self):
  5320. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5321. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5322. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5323. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5324. self.gguf_writer.add_embedding_length(n_embed)
  5325. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5326. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5327. self.gguf_writer.add_head_count(n_head)
  5328. self.gguf_writer.add_head_count_kv(n_head_kv)
  5329. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5330. self.gguf_writer.add_file_type(self.ftype)
  5331. if "attention_dim" in self.hparams:
  5332. rope_dim = self.hparams["attention_dim"]
  5333. else:
  5334. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5335. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5336. self.gguf_writer.add_add_bos_token(False)
  5337. rope_freq = 10000
  5338. if "rope_ratio" in self.hparams:
  5339. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5340. self.gguf_writer.add_rope_freq_base(rope_freq)
  5341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5342. del bid # unused
  5343. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5344. return []
  5345. name = name.removeprefix("transformer.")
  5346. return [(self.map_tensor_name(name), data_torch)]
  5347. @ModelBase.register("NemotronForCausalLM")
  5348. class NemotronModel(TextModel):
  5349. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5350. def set_vocab(self):
  5351. self._set_vocab_sentencepiece()
  5352. self.gguf_writer.add_pad_token_id(0)
  5353. self.gguf_writer.add_unk_token_id(1)
  5354. def set_gguf_parameters(self):
  5355. super().set_gguf_parameters()
  5356. hparams = self.hparams
  5357. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5358. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5359. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5360. # * Partial RoPE
  5361. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5362. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5363. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5364. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5365. # * RopeScaling for Nemotron
  5366. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5367. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5368. else:
  5369. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5370. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5371. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5372. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5373. # model.layers.{l}.input_layernorm.weight
  5374. # model.layers.{l}.post_attention_layernorm.weight
  5375. # model.norm.weight
  5376. if name.endswith("norm.weight"):
  5377. data_torch = data_torch + 1
  5378. return [(self.map_tensor_name(name), data_torch)]
  5379. @ModelBase.register("ExaoneForCausalLM")
  5380. class ExaoneModel(TextModel):
  5381. model_arch = gguf.MODEL_ARCH.EXAONE
  5382. def set_gguf_parameters(self):
  5383. hparams = self.hparams
  5384. assert (hparams["activation_function"] == "silu")
  5385. max_position_embeddings = hparams["max_position_embeddings"]
  5386. embed_dim = hparams["hidden_size"]
  5387. num_heads = hparams["num_attention_heads"]
  5388. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5389. layer_norm_eps = hparams["layer_norm_epsilon"]
  5390. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5391. num_layers = hparams["num_layers"]
  5392. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5393. # attention_dropout_rate = hparams["attention_dropout"]
  5394. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5395. # embed_dropout_rate = hparams["embed_dropout"]
  5396. self.gguf_writer.add_embedding_length(embed_dim)
  5397. self.gguf_writer.add_head_count(num_heads)
  5398. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5399. self.gguf_writer.add_context_length(max_position_embeddings)
  5400. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5401. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5402. self.gguf_writer.add_block_count(num_layers)
  5403. self.gguf_writer.add_file_type(self.ftype)
  5404. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5405. self.gguf_writer.add_rope_freq_base(rope_theta)
  5406. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5407. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5408. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5409. rope_scaling = self.hparams.get("rope_scaling") or {}
  5410. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5411. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5412. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5413. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5414. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5415. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5416. base = self.hparams.get("rope_theta", 10000.0)
  5417. if (dim := self.hparams.get("head_dim")) is None:
  5418. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5419. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5420. factor = rope_scaling.get("factor", 8.0)
  5421. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5422. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5423. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5424. low_freq_wavelen = old_context_len / low_freq_factor
  5425. high_freq_wavelen = old_context_len / high_freq_factor
  5426. assert low_freq_wavelen != high_freq_wavelen
  5427. rope_factors = []
  5428. for freq in freqs:
  5429. wavelen = 2 * math.pi / freq
  5430. if wavelen < high_freq_wavelen:
  5431. rope_factors.append(1)
  5432. elif wavelen > low_freq_wavelen:
  5433. rope_factors.append(factor)
  5434. else:
  5435. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5436. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5437. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5438. @ModelBase.register("GraniteForCausalLM")
  5439. class GraniteModel(LlamaModel):
  5440. """Conversion for IBM's GraniteForCausalLM"""
  5441. model_arch = gguf.MODEL_ARCH.GRANITE
  5442. def set_gguf_parameters(self):
  5443. """Granite uses standard llama parameters with the following differences:
  5444. - No head_dim support
  5445. - New multiplier params:
  5446. - attention_scale
  5447. - embedding_scale
  5448. - residual_scale
  5449. - logits_scaling
  5450. """
  5451. if head_dim := self.hparams.pop("head_dim", None):
  5452. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5453. super().set_gguf_parameters()
  5454. # NOTE: Convert _multiplier params to _scale params for naming
  5455. # consistency
  5456. if attention_scale := self.hparams.get("attention_multiplier"):
  5457. self.gguf_writer.add_attention_scale(attention_scale)
  5458. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5459. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5460. self.gguf_writer.add_embedding_scale(embedding_scale)
  5461. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5462. if residual_scale := self.hparams.get("residual_multiplier"):
  5463. self.gguf_writer.add_residual_scale(residual_scale)
  5464. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5465. if logits_scale := self.hparams.get("logits_scaling"):
  5466. self.gguf_writer.add_logit_scale(logits_scale)
  5467. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5468. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5469. class GraniteMoeModel(GraniteModel):
  5470. """Conversion for IBM's GraniteMoeForCausalLM"""
  5471. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5472. def set_gguf_parameters(self):
  5473. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5474. - shared_intermediate_size
  5475. """
  5476. super().set_gguf_parameters()
  5477. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5478. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5479. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5480. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5481. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5482. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5483. the hidden size that is then split during forward. To keep compatibility
  5484. with existing mixtral support, we pull them apart here.
  5485. """
  5486. if name.endswith("block_sparse_moe.input_linear.weight"):
  5487. ffn_dim = self.hparams["intermediate_size"]
  5488. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5489. gate, up = data_torch.split(ffn_dim, dim=-2)
  5490. return [
  5491. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5492. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5493. ]
  5494. has_experts = bool(self.hparams.get('num_local_experts'))
  5495. if name.endswith("shared_mlp.input_linear.weight"):
  5496. ffn_dim = self.hparams["shared_intermediate_size"]
  5497. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5498. gate, up = data_torch.split(ffn_dim, dim=-2)
  5499. if has_experts:
  5500. return [
  5501. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5502. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5503. ]
  5504. return [
  5505. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5506. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5507. ]
  5508. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5509. return [
  5510. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5511. ]
  5512. return super().modify_tensors(data_torch, name, bid)
  5513. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5514. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5515. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5516. layers and optionally uses MoE w/ a shared expert"""
  5517. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5518. undo_permute = True
  5519. def __init__(self, *args, **kwargs):
  5520. # Hybrid mamba models use a prefix for the mamba-specific params.
  5521. # TODO: Extend this if the prefix(es) need to be configurable
  5522. self.hparam_prefixes = ["mamba"]
  5523. super().__init__(*args, **kwargs)
  5524. # Lists of which layers use ssm vs attention
  5525. self._attn_layers = self.get_attn_layers()
  5526. self._ssm_layers = [
  5527. i for i in range(self.block_count)
  5528. if i not in self._attn_layers
  5529. ]
  5530. # n_group and d_inner are used during reshape_tensors for mamba2
  5531. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5532. self.n_group = self.find_hparam(["n_groups"])
  5533. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5534. def get_attn_layers(self):
  5535. # Explicit list of layer type names
  5536. if layer_types := self.hparams.get("layer_types"):
  5537. return [
  5538. i for i, typ in enumerate(layer_types)
  5539. if typ == "attention"
  5540. ]
  5541. # Layer types indicated by index or period
  5542. attn_layers = self.hparams.get("attn_layer_indices", [])
  5543. if not attn_layers:
  5544. attn_period = self.hparams.get("attn_layer_period")
  5545. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5546. attn_offset = self.hparams.get("attn_layer_offset")
  5547. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5548. attn_layers = [
  5549. i for i in range(self.block_count)
  5550. if i % attn_period == attn_offset
  5551. ]
  5552. return attn_layers
  5553. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5554. prefixed = []
  5555. for pfx in self.hparam_prefixes:
  5556. prefixed.extend(
  5557. "_".join([pfx, k])
  5558. for k in keys
  5559. )
  5560. keys = list(keys) + prefixed
  5561. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5562. def modify_tensors(
  5563. self, data_torch: Tensor, name: str, bid: int | None
  5564. ) -> Iterable[tuple[str, Tensor]]:
  5565. if (
  5566. name.endswith("block_sparse_moe.input_linear.weight")
  5567. or "shared_mlp" in name
  5568. ):
  5569. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5570. # Determine whether this is a mamba layer or an attention layer
  5571. if bid in self._ssm_layers:
  5572. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5573. elif bid in self._attn_layers:
  5574. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5575. return [(self.map_tensor_name(name), data_torch)]
  5576. def set_gguf_parameters(self):
  5577. """This method merges params from both parents and some that are
  5578. specific to this model. The result is some duplication of how the params
  5579. get set. The following warnings are expected during conversion:
  5580. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5581. WARNING:Duplicated key name 'granitehybrid.context_length'
  5582. """
  5583. GraniteMoeModel.set_gguf_parameters(self)
  5584. ## Mamba mixer params ##
  5585. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5586. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5587. self.gguf_writer.add_ssm_group_count(self.n_group)
  5588. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5589. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5590. # in llama.cpp
  5591. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5592. ## Attention params ##
  5593. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5594. head_count_kv_vec = [
  5595. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5596. ]
  5597. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5598. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5599. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5600. ## If Bamba, use rope, otherwise don't
  5601. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5602. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5603. if not use_rope:
  5604. self.gguf_writer.add_context_length(2**20)
  5605. ## Validation ##
  5606. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5607. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5608. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5609. def set_vocab(self):
  5610. self.hparams["pad_vocab_size_multiple"] = 8
  5611. Mamba2Model.set_vocab(self)
  5612. @ModelBase.register("BailingMoeForCausalLM")
  5613. class BailingMoeModel(TextModel):
  5614. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5615. def set_vocab(self):
  5616. self._set_vocab_gpt2()
  5617. def set_gguf_parameters(self):
  5618. super().set_gguf_parameters()
  5619. hparams = self.hparams
  5620. if (rope_dim := hparams.get("head_dim")) is None:
  5621. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5622. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5623. rope_scaling = self.hparams.get("rope_scaling") or {}
  5624. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5625. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5626. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5627. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5628. else:
  5629. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5630. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5631. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5632. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5633. self.gguf_writer.add_expert_weights_scale(1.0)
  5634. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5635. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5636. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5637. _experts: list[dict[str, Tensor]] | None = None
  5638. @staticmethod
  5639. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5640. if n_head_kv is not None and n_head != n_head_kv:
  5641. n_head = n_head_kv
  5642. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5643. .swapaxes(1, 2)
  5644. .reshape(weights.shape))
  5645. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5646. n_head = self.hparams["num_attention_heads"]
  5647. n_kv_head = self.hparams.get("num_key_value_heads")
  5648. n_embd = self.hparams["hidden_size"]
  5649. if (head_dim := self.hparams.get("head_dim")) is None:
  5650. head_dim = n_embd // n_head
  5651. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5652. if name.endswith("attention.dense.weight"):
  5653. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5654. elif name.endswith("query_key_value.weight"):
  5655. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5656. return [
  5657. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5658. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5659. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5660. ]
  5661. elif name.find("mlp.experts") != -1:
  5662. n_experts = self.hparams["num_experts"]
  5663. assert bid is not None
  5664. tensors: list[tuple[str, Tensor]] = []
  5665. if self._experts is None:
  5666. self._experts = [{} for _ in range(self.block_count)]
  5667. self._experts[bid][name] = data_torch
  5668. if len(self._experts[bid]) >= n_experts * 3:
  5669. # merge the experts into a single 3d tensor
  5670. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5671. datas: list[Tensor] = []
  5672. for xid in range(n_experts):
  5673. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5674. datas.append(self._experts[bid][ename])
  5675. del self._experts[bid][ename]
  5676. data_torch = torch.stack(datas, dim=0)
  5677. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5678. new_name = self.map_tensor_name(merged_name)
  5679. tensors.append((new_name, data_torch))
  5680. return tensors
  5681. new_name = self.map_tensor_name(name)
  5682. if new_name == output_name and self.hparams.get("norm_head"):
  5683. data_torch = data_torch.float()
  5684. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5685. return [(new_name, data_torch)]
  5686. def prepare_tensors(self):
  5687. super().prepare_tensors()
  5688. if self._experts is not None:
  5689. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5690. experts = [k for d in self._experts for k in d.keys()]
  5691. if len(experts) > 0:
  5692. raise ValueError(f"Unprocessed experts: {experts}")
  5693. @ModelBase.register("ChameleonForConditionalGeneration")
  5694. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5695. class ChameleonModel(TextModel):
  5696. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5697. def set_gguf_parameters(self):
  5698. super().set_gguf_parameters()
  5699. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5700. def set_vocab(self):
  5701. self._set_vocab_gpt2()
  5702. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5703. # ignore image tokenizer for now
  5704. # TODO: remove this once image support is implemented for Chameleon
  5705. if name.startswith("model.vqmodel"):
  5706. return []
  5707. n_head = self.hparams["num_attention_heads"]
  5708. n_kv_head = self.hparams.get("num_key_value_heads")
  5709. hidden_dim = self.hparams.get("hidden_size")
  5710. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5711. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5712. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5713. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5714. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5715. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5716. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5717. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5718. return [(self.map_tensor_name(name), data_torch)]
  5719. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5720. @staticmethod
  5721. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5722. head_dim = hidden_dim // n_heads
  5723. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5724. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5725. return data_torch
  5726. @ModelBase.register("UltravoxModel")
  5727. class UltravoxModel(TextModel):
  5728. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5729. def __init__(self, *args, **kwargs):
  5730. super().__init__(*args, **kwargs)
  5731. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5732. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5733. class WhisperEncoderModel(MmprojModel):
  5734. has_vision_encoder = False # no vision encoder
  5735. has_audio_encoder = True
  5736. def __init__(self, *args, **kwargs):
  5737. super().__init__(*args, **kwargs)
  5738. self.hparams["hidden_size"] = self.hparams["d_model"]
  5739. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5740. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5741. def set_gguf_parameters(self):
  5742. super().set_gguf_parameters()
  5743. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5744. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5745. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5746. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5747. del bid, new_name, n_dims # unused
  5748. if ".conv" in name and ".weight" in name:
  5749. return gguf.GGMLQuantizationType.F16
  5750. return False
  5751. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5752. del bid # unused
  5753. if name.startswith("language_model."):
  5754. # skip language model tensors
  5755. return []
  5756. # prevent clash naming with vision tensors
  5757. if name.startswith("multi_modal_projector"):
  5758. name = "audio." + name
  5759. if "conv1.bias" in name or "conv2.bias" in name:
  5760. # transpose conv1 and conv2 bias
  5761. data_torch = data_torch.unsqueeze(-1)
  5762. return [(self.map_tensor_name(name), data_torch)]
  5763. @ModelBase.register("UltravoxModel")
  5764. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5765. has_vision_encoder = False # no vision encoder
  5766. has_audio_encoder = True
  5767. def set_gguf_parameters(self):
  5768. super().set_gguf_parameters()
  5769. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5770. @ModelBase.register("FalconH1ForCausalLM")
  5771. class FalconH1Model(Mamba2Model):
  5772. model_arch = gguf.MODEL_ARCH.FALCON_H1
  5773. def __init__(self, *args, **kwargs):
  5774. # Set the hparam prefixes for Falcon Mamba2
  5775. self.hparam_prefixes = ["mamba"]
  5776. # Initialize the base Mamba2Model
  5777. super().__init__(*args, **kwargs)
  5778. # Use Llama conversion for attention
  5779. self._transformer_model_class = LlamaModel
  5780. # n_group and d_inner are used during reshape_tensors for mamba2
  5781. self.n_group = self.find_hparam(["n_groups"])
  5782. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  5783. self.d_head = self.find_hparam(["d_head"])
  5784. # Initialize any Falcon Mamba2 specific attributes
  5785. self.has_attention = True # Falcon Mamba2 has attention components
  5786. # Load Falcon-H1 multipliers from hyperparameters
  5787. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  5788. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  5789. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  5790. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  5791. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  5792. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  5793. self.intermediate_size = self.find_hparam(["intermediate_size"])
  5794. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  5795. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5796. prefixed = []
  5797. for pfx in self.hparam_prefixes:
  5798. prefixed.extend(
  5799. "_".join([pfx, k])
  5800. for k in keys
  5801. )
  5802. keys = list(keys) + prefixed
  5803. return super().find_hparam(keys, *args, **kwargs)
  5804. def set_vocab(self):
  5805. self._set_vocab_gpt2()
  5806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5807. tensors = list(super().modify_tensors(data_torch, name, bid))
  5808. tensor = tensors[0][1]
  5809. if "down_proj" in name:
  5810. tensor = tensor * self.mlp_multipliers[1]
  5811. elif "gate_proj" in name:
  5812. tensor = tensor * self.mlp_multipliers[0]
  5813. elif "k_proj" in name:
  5814. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  5815. elif "q_proj" in name:
  5816. tensor = tensor * self.attention_in_multiplier
  5817. elif "v_proj" in name:
  5818. tensor = tensor * self.attention_in_multiplier
  5819. elif "o_proj" in name:
  5820. tensor = tensor * self.attention_out_multiplier
  5821. elif "out_proj" in name:
  5822. tensor = tensor * self.ssm_out_multiplier
  5823. elif "in_proj" in name:
  5824. tensor = tensor * self.ssm_in_multiplier
  5825. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  5826. intermediate_size = self.hparams["mamba_d_ssm"]
  5827. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  5828. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  5829. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  5830. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  5831. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  5832. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  5833. elif "lm_head" in name:
  5834. tensor = tensor * self.hparams["lm_head_multiplier"]
  5835. elif "embed_tokens" in name:
  5836. tensor = tensor * self.hparams["embedding_multiplier"]
  5837. elif "mamba.norm" in name:
  5838. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  5839. tensors = [(tensors[0][0], tensor)]
  5840. return tensors
  5841. def set_gguf_parameters(self):
  5842. super().set_gguf_parameters()
  5843. ## General Params ##
  5844. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5845. # Override some Mamba2 defaults
  5846. self.gguf_writer.add_block_count(self.block_count)
  5847. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  5848. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5849. ## Attention params ##
  5850. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  5851. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  5852. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  5853. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  5854. ## Validation ##
  5855. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5856. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  5857. # Add any other Falcon Mamba2 specific configuration
  5858. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  5859. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  5860. class HunYuanMoEModel(TextModel):
  5861. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  5862. def __init__(self, *args, **kwargs):
  5863. super().__init__(*args, **kwargs)
  5864. # For handling tied embeddings
  5865. self._tok_embd = None
  5866. def set_vocab(self):
  5867. from transformers import AutoTokenizer
  5868. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5869. # 1. Get the pre-tokenizer identifier hash
  5870. tokpre = self.get_vocab_base_pre(tokenizer)
  5871. # 2. Reverse-engineer the merges list from mergeable_ranks
  5872. merges = []
  5873. vocab = {}
  5874. mergeable_ranks = tokenizer.mergeable_ranks
  5875. for token, rank in mergeable_ranks.items():
  5876. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5877. if len(token) == 1:
  5878. continue
  5879. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5880. if len(merged) == 2: # todo this is an assert in Qwen, why?
  5881. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5882. # 3. Generate the tokens and toktypes lists
  5883. vocab_size = self.hparams["vocab_size"]
  5884. assert tokenizer.vocab_size == vocab_size
  5885. special_tokens = tokenizer.special_tokens
  5886. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5887. tokens: list[str] = []
  5888. toktypes: list[int] = []
  5889. for i in range(vocab_size):
  5890. if i not in reverse_vocab:
  5891. tokens.append(f"[PAD{i}]")
  5892. toktypes.append(gguf.TokenType.UNUSED)
  5893. else:
  5894. token = reverse_vocab[i]
  5895. tokens.append(token)
  5896. if i in special_tokens.values():
  5897. toktypes.append(gguf.TokenType.CONTROL)
  5898. else:
  5899. toktypes.append(gguf.TokenType.NORMAL)
  5900. # 4. Write all vocab-related fields to the GGUF writer
  5901. self.gguf_writer.add_tokenizer_model("gpt2")
  5902. self.gguf_writer.add_tokenizer_pre(tokpre)
  5903. self.gguf_writer.add_token_list(tokens)
  5904. self.gguf_writer.add_token_types(toktypes)
  5905. self.gguf_writer.add_token_merges(merges)
  5906. # 5. Add special tokens and chat templates
  5907. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5908. special_vocab.add_to_gguf(self.gguf_writer)
  5909. # FIX for BOS token: Overwrite incorrect id read from config.json
  5910. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  5911. def set_gguf_parameters(self):
  5912. super().set_gguf_parameters()
  5913. hparams = self.hparams
  5914. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5915. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  5916. moe_intermediate_size = hparams["moe_intermediate_size"]
  5917. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  5918. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  5919. moe_topk = hparams["moe_topk"]
  5920. assert all(topk == moe_topk[0] for topk in moe_topk)
  5921. self.gguf_writer.add_expert_used_count(moe_topk[0])
  5922. moe_shared_expert = hparams["num_shared_expert"]
  5923. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  5924. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  5925. # Rope
  5926. rope_scaling = hparams.get("rope_scaling", {})
  5927. if rope_scaling.get("type") == "dynamic":
  5928. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  5929. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  5930. alpha = rope_scaling.get("alpha", 1000)
  5931. base = hparams.get("rope_theta", 10000.0)
  5932. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  5933. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  5934. self.gguf_writer.add_rope_freq_base(scaled_base)
  5935. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5936. self.gguf_writer.add_rope_scaling_factor(1)
  5937. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  5938. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  5939. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  5940. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  5941. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  5942. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  5943. _experts: list[dict[str, Tensor]] | None = None
  5944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5945. if name == "model.embed_tokens.weight":
  5946. self._tok_embd = data_torch.clone()
  5947. if name == "lm_head.weight":
  5948. if self.hparams.get("tie_word_embeddings", False):
  5949. logger.info("Skipping tied output layer 'lm_head.weight'")
  5950. return []
  5951. if name.find("mlp.experts") != -1:
  5952. n_experts = self.hparams["num_experts"]
  5953. assert bid is not None
  5954. if self._experts is None:
  5955. self._experts = [{} for _ in range(self.block_count)]
  5956. self._experts[bid][name] = data_torch
  5957. if len(self._experts[bid]) >= n_experts * 3:
  5958. # merge the experts into a single 3d tensor
  5959. tensors: list[tuple[str, Tensor]] = []
  5960. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5961. datas: list[Tensor] = []
  5962. for xid in range(n_experts):
  5963. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5964. datas.append(self._experts[bid][ename])
  5965. del self._experts[bid][ename]
  5966. data_torch = torch.stack(datas, dim=0)
  5967. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5968. new_name = self.map_tensor_name(merged_name)
  5969. tensors.append((new_name, data_torch))
  5970. return tensors
  5971. else:
  5972. return []
  5973. return [(self.map_tensor_name(name), data_torch)]
  5974. def prepare_tensors(self):
  5975. super().prepare_tensors()
  5976. if self._experts is not None:
  5977. experts = [k for d in self._experts for k in d.keys()]
  5978. if len(experts) > 0:
  5979. raise ValueError(f"Unprocessed experts: {experts}")
  5980. @ModelBase.register("SmolLM3ForCausalLM")
  5981. class SmolLM3Model(LlamaModel):
  5982. model_arch = gguf.MODEL_ARCH.SMOLLM3
  5983. def set_vocab(self):
  5984. super().set_vocab()
  5985. # remove unsupported array slicing in chat template
  5986. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  5987. from transformers import AutoTokenizer
  5988. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5989. if tokenizer.chat_template is not None:
  5990. chat_template = tokenizer.chat_template.replace("[:]", "")
  5991. self.gguf_writer.add_chat_template(chat_template)
  5992. @ModelBase.register("Lfm2ForCausalLM")
  5993. @ModelBase.register("LFM2ForCausalLM")
  5994. class LFM2Model(TextModel):
  5995. model_arch = gguf.MODEL_ARCH.LFM2
  5996. def _add_feed_forward_length(self):
  5997. ff_dim = self.hparams["block_ff_dim"]
  5998. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  5999. ff_dim = self.hparams["block_ff_dim"]
  6000. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6001. multiple_of = self.hparams["block_multiple_of"]
  6002. if auto_adjust_ff_dim:
  6003. ff_dim = int(2 * ff_dim / 3)
  6004. # custom dim factor multiplier
  6005. if ffn_dim_multiplier is not None:
  6006. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6007. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6008. self.gguf_writer.add_feed_forward_length(ff_dim)
  6009. def set_gguf_parameters(self):
  6010. # set num_key_value_heads only for attention layers
  6011. self.hparams["num_key_value_heads"] = [
  6012. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6013. for layer_type in self.hparams["layer_types"]
  6014. ]
  6015. super().set_gguf_parameters()
  6016. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6017. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6018. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6019. self._add_feed_forward_length()
  6020. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6021. # conv op requires 2d tensor
  6022. if 'conv.conv' in name:
  6023. data_torch = data_torch.squeeze(1)
  6024. return [(self.map_tensor_name(name), data_torch)]
  6025. ###### CONVERSION LOGIC ######
  6026. # tree of lazy tensors
  6027. class LazyTorchTensor(gguf.LazyBase):
  6028. _tensor_type = torch.Tensor
  6029. # to keep the type-checker happy
  6030. dtype: torch.dtype
  6031. shape: torch.Size
  6032. # only used when converting a torch.Tensor to a np.ndarray
  6033. _dtype_map: dict[torch.dtype, type] = {
  6034. torch.float16: np.float16,
  6035. torch.float32: np.float32,
  6036. }
  6037. # used for safetensors slices
  6038. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6039. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6040. _dtype_str_map: dict[str, torch.dtype] = {
  6041. "F64": torch.float64,
  6042. "F32": torch.float32,
  6043. "BF16": torch.bfloat16,
  6044. "F16": torch.float16,
  6045. # "U64": torch.uint64,
  6046. "I64": torch.int64,
  6047. # "U32": torch.uint32,
  6048. "I32": torch.int32,
  6049. # "U16": torch.uint16,
  6050. "I16": torch.int16,
  6051. "U8": torch.uint8,
  6052. "I8": torch.int8,
  6053. "BOOL": torch.bool,
  6054. "F8_E4M3": torch.float8_e4m3fn,
  6055. "F8_E5M2": torch.float8_e5m2,
  6056. }
  6057. def numpy(self) -> gguf.LazyNumpyTensor:
  6058. dtype = self._dtype_map[self.dtype]
  6059. return gguf.LazyNumpyTensor(
  6060. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6061. args=(self,),
  6062. func=(lambda s: s.numpy())
  6063. )
  6064. @classmethod
  6065. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6066. return torch.empty(size=shape, dtype=dtype, device="meta")
  6067. @classmethod
  6068. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6069. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6070. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6071. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6072. return cast(torch.Tensor, lazy)
  6073. @classmethod
  6074. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6075. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6076. shape = remote_tensor.shape
  6077. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6078. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6079. return cast(torch.Tensor, lazy)
  6080. @classmethod
  6081. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6082. del types # unused
  6083. if kwargs is None:
  6084. kwargs = {}
  6085. if func is torch.Tensor.numpy:
  6086. return args[0].numpy()
  6087. return cls._wrap_fn(func)(*args, **kwargs)
  6088. def parse_args() -> argparse.Namespace:
  6089. parser = argparse.ArgumentParser(
  6090. description="Convert a huggingface model to a GGML compatible file")
  6091. parser.add_argument(
  6092. "--vocab-only", action="store_true",
  6093. help="extract only the vocab",
  6094. )
  6095. parser.add_argument(
  6096. "--outfile", type=Path,
  6097. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6098. )
  6099. parser.add_argument(
  6100. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6101. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6102. )
  6103. parser.add_argument(
  6104. "--bigendian", action="store_true",
  6105. help="model is executed on big endian machine",
  6106. )
  6107. parser.add_argument(
  6108. "model", type=str,
  6109. help="directory containing model file or huggingface repository ID (if --remote)",
  6110. nargs="?",
  6111. )
  6112. parser.add_argument(
  6113. "--use-temp-file", action="store_true",
  6114. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6115. )
  6116. parser.add_argument(
  6117. "--no-lazy", action="store_true",
  6118. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6119. )
  6120. parser.add_argument(
  6121. "--model-name", type=str, default=None,
  6122. help="name of the model",
  6123. )
  6124. parser.add_argument(
  6125. "--verbose", action="store_true",
  6126. help="increase output verbosity",
  6127. )
  6128. parser.add_argument(
  6129. "--split-max-tensors", type=int, default=0,
  6130. help="max tensors in each split",
  6131. )
  6132. parser.add_argument(
  6133. "--split-max-size", type=str, default="0",
  6134. help="max size per split N(M|G)",
  6135. )
  6136. parser.add_argument(
  6137. "--dry-run", action="store_true",
  6138. help="only print out a split plan and exit, without writing any new files",
  6139. )
  6140. parser.add_argument(
  6141. "--no-tensor-first-split", action="store_true",
  6142. help="do not add tensors to the first split (disabled by default)"
  6143. )
  6144. parser.add_argument(
  6145. "--metadata", type=Path,
  6146. help="Specify the path for an authorship metadata override file"
  6147. )
  6148. parser.add_argument(
  6149. "--print-supported-models", action="store_true",
  6150. help="Print the supported models"
  6151. )
  6152. parser.add_argument(
  6153. "--remote", action="store_true",
  6154. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6155. )
  6156. parser.add_argument(
  6157. "--mmproj", action="store_true",
  6158. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6159. )
  6160. args = parser.parse_args()
  6161. if not args.print_supported_models and args.model is None:
  6162. parser.error("the following arguments are required: model")
  6163. return args
  6164. def split_str_to_n_bytes(split_str: str) -> int:
  6165. if split_str.endswith("K"):
  6166. n = int(split_str[:-1]) * 1000
  6167. elif split_str.endswith("M"):
  6168. n = int(split_str[:-1]) * 1000 * 1000
  6169. elif split_str.endswith("G"):
  6170. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6171. elif split_str.isnumeric():
  6172. n = int(split_str)
  6173. else:
  6174. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6175. if n < 0:
  6176. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6177. return n
  6178. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6179. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6180. # maybe we should fallback to text model's arch in that case, since not many models have both
  6181. text_config = hparams.get("text_config", {})
  6182. vision_config = hparams.get("vision_config", {})
  6183. arch = None
  6184. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6185. arch = arches[0]
  6186. elif "ssm_cfg" in hparams:
  6187. # For non-hf Mamba and Mamba2 models
  6188. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6189. # if "architectures" is found in the sub-config, use that instead
  6190. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6191. arch = text_config["architectures"][0]
  6192. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6193. arch = vision_config["architectures"][0]
  6194. if arch is None:
  6195. raise ValueError("Failed to detect model architecture")
  6196. return arch
  6197. def main() -> None:
  6198. args = parse_args()
  6199. if args.print_supported_models:
  6200. logger.error("Supported models:")
  6201. ModelBase.print_registered_models()
  6202. sys.exit(0)
  6203. if args.verbose:
  6204. logging.basicConfig(level=logging.DEBUG)
  6205. else:
  6206. logging.basicConfig(level=logging.INFO)
  6207. if args.remote:
  6208. hf_repo_id = args.model
  6209. from huggingface_hub import snapshot_download
  6210. local_dir = snapshot_download(
  6211. repo_id=hf_repo_id,
  6212. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6213. dir_model = Path(local_dir)
  6214. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6215. else:
  6216. hf_repo_id = None
  6217. dir_model = Path(args.model)
  6218. if not dir_model.is_dir():
  6219. logger.error(f'Error: {dir_model} is not a directory')
  6220. sys.exit(1)
  6221. ftype_map: dict[str, gguf.LlamaFileType] = {
  6222. "f32": gguf.LlamaFileType.ALL_F32,
  6223. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6224. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6225. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6226. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6227. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6228. "auto": gguf.LlamaFileType.GUESSED,
  6229. }
  6230. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6231. if args.use_temp_file and is_split:
  6232. logger.error("Error: Cannot use temp file when splitting")
  6233. sys.exit(1)
  6234. if args.outfile is not None:
  6235. fname_out = args.outfile
  6236. elif hf_repo_id:
  6237. # if remote, use the model ID as the output file name
  6238. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6239. else:
  6240. fname_out = dir_model
  6241. logger.info(f"Loading model: {dir_model.name}")
  6242. if args.mmproj:
  6243. if "mmproj" not in fname_out.name:
  6244. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6245. with torch.inference_mode():
  6246. output_type = ftype_map[args.outtype]
  6247. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6248. hparams = ModelBase.load_hparams(dir_model)
  6249. model_architecture = get_model_architecture(hparams, model_type)
  6250. logger.info(f"Model architecture: {model_architecture}")
  6251. try:
  6252. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6253. except NotImplementedError:
  6254. logger.error(f"Model {model_architecture} is not supported")
  6255. sys.exit(1)
  6256. model_instance = model_class(dir_model, output_type, fname_out,
  6257. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6258. eager=args.no_lazy,
  6259. metadata_override=args.metadata, model_name=args.model_name,
  6260. split_max_tensors=args.split_max_tensors,
  6261. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6262. small_first_shard=args.no_tensor_first_split,
  6263. remote_hf_model_id=hf_repo_id)
  6264. if args.vocab_only:
  6265. logger.info("Exporting model vocab...")
  6266. model_instance.write_vocab()
  6267. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6268. else:
  6269. logger.info("Exporting model...")
  6270. model_instance.write()
  6271. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6272. logger.info(f"Model successfully exported to {out_path}")
  6273. if __name__ == '__main__':
  6274. main()