convert_hf_to_gguf.py 182 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. fname_out: Path
  38. is_big_endian: bool
  39. endianess: gguf.GGUFEndian
  40. use_temp_file: bool
  41. lazy: bool
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. gguf_writer: gguf.GGUFWriter
  49. model_name: str | None
  50. metadata_override: Path | None
  51. dir_model_card: Path
  52. is_lora: bool
  53. # subclasses should define this!
  54. model_arch: gguf.MODEL_ARCH
  55. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  56. use_temp_file: bool = False, eager: bool = False,
  57. metadata_override: Path | None = None, model_name: str | None = None,
  58. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  59. if type(self) is Model:
  60. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  61. self.dir_model = dir_model
  62. self.ftype = ftype
  63. self.fname_out = fname_out
  64. self.is_big_endian = is_big_endian
  65. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  66. self.use_temp_file = use_temp_file
  67. self.lazy = not eager
  68. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  69. self.is_safetensors = len(self.part_names) > 0
  70. if not self.is_safetensors:
  71. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  72. self.hparams = Model.load_hparams(self.dir_model)
  73. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  74. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  75. self.tensor_names = None
  76. self.metadata_override = metadata_override
  77. self.model_name = model_name
  78. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  79. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  80. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  81. if self.ftype == gguf.LlamaFileType.GUESSED:
  82. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  83. _, first_tensor = next(self.get_tensors())
  84. if first_tensor.dtype == torch.float16:
  85. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  86. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  87. else:
  88. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  89. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  90. # Configure GGUF Writer
  91. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  92. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  93. @classmethod
  94. def __init_subclass__(cls):
  95. # can't use an abstract property, because overriding it without type errors
  96. # would require using decorated functions instead of simply defining the property
  97. if "model_arch" not in cls.__dict__:
  98. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  99. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  100. key = next((k for k in keys if k in self.hparams), None)
  101. if key is not None:
  102. return self.hparams[key]
  103. if optional:
  104. return None
  105. raise KeyError(f"could not find any of: {keys}")
  106. def set_vocab(self):
  107. self._set_vocab_gpt2()
  108. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  109. tensor_names_from_parts: set[str] = set()
  110. if len(self.part_names) > 1:
  111. self.tensor_names = set()
  112. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  113. index_name += ".index.json"
  114. logger.info(f"gguf: loading model weight map from '{index_name}'")
  115. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  116. index: dict[str, Any] = json.load(f)
  117. weight_map = index.get("weight_map")
  118. if weight_map is None or not isinstance(weight_map, dict):
  119. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  120. self.tensor_names.update(weight_map.keys())
  121. else:
  122. self.tensor_names = tensor_names_from_parts
  123. for part_name in self.part_names:
  124. logger.info(f"gguf: loading model part '{part_name}'")
  125. ctx: ContextManager[Any]
  126. if self.is_safetensors:
  127. from safetensors import safe_open
  128. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  129. else:
  130. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  131. with ctx as model_part:
  132. tensor_names_from_parts.update(model_part.keys())
  133. for name in model_part.keys():
  134. if self.is_safetensors:
  135. if self.lazy:
  136. data = model_part.get_slice(name)
  137. data = LazyTorchTensor.from_safetensors_slice(data)
  138. else:
  139. data = model_part.get_tensor(name)
  140. else:
  141. data = model_part[name]
  142. if self.lazy:
  143. data = LazyTorchTensor.from_eager(data)
  144. yield name, data
  145. # only verify tensor name presence; it doesn't matter if they are not in the right files
  146. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  147. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  148. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  149. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  150. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  151. name: str = gguf.TENSOR_NAMES[key]
  152. if "{bid}" in name:
  153. assert bid is not None
  154. name = name.format(bid=bid)
  155. return name + suffix
  156. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  157. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  158. return False
  159. key_name: str = gguf.TENSOR_NAMES[key]
  160. if "{bid}" in key_name:
  161. if bid is None:
  162. return False
  163. key_name = key_name.format(bid=bid)
  164. else:
  165. if bid is not None:
  166. return False
  167. return name == (key_name + suffix)
  168. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  169. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  170. if new_name is None:
  171. raise ValueError(f"Can not map tensor {name!r}")
  172. return new_name
  173. def set_gguf_parameters(self):
  174. self.gguf_writer.add_block_count(self.block_count)
  175. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  176. self.gguf_writer.add_context_length(n_ctx)
  177. logger.info(f"gguf: context length = {n_ctx}")
  178. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  179. self.gguf_writer.add_embedding_length(n_embd)
  180. logger.info(f"gguf: embedding length = {n_embd}")
  181. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  182. self.gguf_writer.add_feed_forward_length(n_ff)
  183. logger.info(f"gguf: feed forward length = {n_ff}")
  184. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  185. self.gguf_writer.add_head_count(n_head)
  186. logger.info(f"gguf: head count = {n_head}")
  187. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  188. self.gguf_writer.add_head_count_kv(n_head_kv)
  189. logger.info(f"gguf: key-value head count = {n_head_kv}")
  190. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  191. self.gguf_writer.add_rope_freq_base(rope_theta)
  192. logger.info(f"gguf: rope theta = {rope_theta}")
  193. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  194. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  195. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  196. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  197. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  198. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  199. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  200. self.gguf_writer.add_expert_count(n_experts)
  201. logger.info(f"gguf: expert count = {n_experts}")
  202. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  203. self.gguf_writer.add_expert_used_count(n_experts_used)
  204. logger.info(f"gguf: experts used count = {n_experts_used}")
  205. if (head_dim := self.hparams.get("head_dim")) is not None:
  206. self.gguf_writer.add_key_length(head_dim)
  207. self.gguf_writer.add_value_length(head_dim)
  208. self.gguf_writer.add_file_type(self.ftype)
  209. logger.info(f"gguf: file type = {self.ftype}")
  210. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  211. del bid # unused
  212. return [(self.map_tensor_name(name), data_torch)]
  213. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  214. del name, new_name, bid, n_dims # unused
  215. return False
  216. def prepare_tensors(self):
  217. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  218. for name, data_torch in self.get_tensors():
  219. # we don't need these
  220. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  221. continue
  222. old_dtype = data_torch.dtype
  223. # convert any unsupported data types to float32
  224. if data_torch.dtype not in (torch.float16, torch.float32):
  225. data_torch = data_torch.to(torch.float32)
  226. # use the first number-like part of the tensor name as the block id
  227. bid = None
  228. for part in name.split("."):
  229. if part.isdecimal():
  230. bid = int(part)
  231. break
  232. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  233. data: np.ndarray # type hint
  234. n_dims = len(data.shape)
  235. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  236. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  237. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  238. data_qtype = gguf.GGMLQuantizationType.F32
  239. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  240. # Some tensor types are always in float32
  241. if data_qtype is False and (
  242. any(
  243. self.match_model_tensor_name(new_name, key, bid)
  244. for key in (
  245. gguf.MODEL_TENSOR.FFN_GATE_INP,
  246. gguf.MODEL_TENSOR.POS_EMBD,
  247. gguf.MODEL_TENSOR.TOKEN_TYPES,
  248. gguf.MODEL_TENSOR.SSM_CONV1D,
  249. )
  250. )
  251. or not name.endswith(".weight")
  252. ):
  253. data_qtype = gguf.GGMLQuantizationType.F32
  254. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  255. if isinstance(data_qtype, bool):
  256. if self.ftype == gguf.LlamaFileType.ALL_F32:
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  259. data_qtype = gguf.GGMLQuantizationType.F16
  260. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  261. data_qtype = gguf.GGMLQuantizationType.BF16
  262. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  263. data_qtype = gguf.GGMLQuantizationType.Q8_0
  264. else:
  265. raise ValueError(f"Unknown file type: {self.ftype.name}")
  266. try:
  267. data = gguf.quants.quantize(data, data_qtype)
  268. except gguf.QuantError as e:
  269. logger.warning("%s, %s", e, "falling back to F16")
  270. data_qtype = gguf.GGMLQuantizationType.F16
  271. data = gguf.quants.quantize(data, data_qtype)
  272. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  273. # reverse shape to make it similar to the internal ggml dimension order
  274. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  275. # n_dims is implicit in the shape
  276. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  277. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  278. def set_type(self):
  279. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  280. def prepare_metadata(self, vocab_only: bool):
  281. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  282. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  283. # Fallback to model directory name if metadata name is still missing
  284. if self.metadata.name is None:
  285. self.metadata.name = self.dir_model.name
  286. # Generate parameter weight class (useful for leader boards) if not yet determined
  287. if self.metadata.size_label is None and total_params > 0:
  288. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  289. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  290. output_type: str = self.ftype.name.partition("_")[2]
  291. # Filename Output
  292. if self.fname_out.is_dir():
  293. # Generate default filename based on model specification and available metadata
  294. if not vocab_only:
  295. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  296. else:
  297. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  298. # Use the default filename
  299. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  300. else:
  301. # Output path is a custom defined templated filename
  302. # Note: `not is_dir()` is used because `.is_file()` will not detect
  303. # file template strings as it doesn't actually exist as a file
  304. # Process templated file name with the output ftype, useful with the "auto" ftype
  305. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  306. self.set_type()
  307. logger.info("Set meta model")
  308. self.metadata.set_gguf_meta_model(self.gguf_writer)
  309. logger.info("Set model parameters")
  310. self.set_gguf_parameters()
  311. logger.info("Set model tokenizer")
  312. self.set_vocab()
  313. logger.info("Set model quantization version")
  314. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  315. def write(self):
  316. self.prepare_tensors()
  317. self.prepare_metadata(vocab_only=False)
  318. self.gguf_writer.write_header_to_file(path=self.fname_out)
  319. self.gguf_writer.write_kv_data_to_file()
  320. self.gguf_writer.write_tensors_to_file(progress=True)
  321. self.gguf_writer.close()
  322. def write_vocab(self):
  323. if len(self.gguf_writer.tensors) != 1:
  324. raise ValueError('Splitting the vocabulary is not supported')
  325. self.prepare_metadata(vocab_only=True)
  326. self.gguf_writer.write_header_to_file(path=self.fname_out)
  327. self.gguf_writer.write_kv_data_to_file()
  328. self.gguf_writer.close()
  329. @staticmethod
  330. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  331. part_names: list[str] = []
  332. for filename in os.listdir(dir_model):
  333. if filename.startswith(prefix) and filename.endswith(suffix):
  334. part_names.append(filename)
  335. part_names.sort()
  336. return part_names
  337. @staticmethod
  338. def load_hparams(dir_model: Path):
  339. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  340. return json.load(f)
  341. @classmethod
  342. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  343. assert names
  344. def func(modelcls: AnyModel) -> AnyModel:
  345. for name in names:
  346. cls._model_classes[name] = modelcls
  347. return modelcls
  348. return func
  349. @classmethod
  350. def from_model_architecture(cls, arch: str) -> type[Model]:
  351. try:
  352. return cls._model_classes[arch]
  353. except KeyError:
  354. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  355. def does_token_look_special(self, token: str | bytes) -> bool:
  356. if isinstance(token, (bytes, bytearray)):
  357. token_text = token.decode(encoding="utf-8")
  358. elif isinstance(token, memoryview):
  359. token_text = token.tobytes().decode(encoding="utf-8")
  360. else:
  361. token_text = token
  362. # Some models mark some added tokens which ought to be control tokens as not special.
  363. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  364. seems_special = token_text in (
  365. "<pad>", # deepseek-coder
  366. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  367. )
  368. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  369. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  370. # TODO: should these be marked as UNUSED instead? (maybe not)
  371. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  372. return seems_special
  373. # used for GPT-2 BPE and WordPiece vocabs
  374. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  375. tokens: list[str] = []
  376. toktypes: list[int] = []
  377. from transformers import AutoTokenizer
  378. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  379. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  380. assert max(tokenizer.vocab.values()) < vocab_size
  381. tokpre = self.get_vocab_base_pre(tokenizer)
  382. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  383. added_vocab = tokenizer.get_added_vocab()
  384. for i in range(vocab_size):
  385. if i not in reverse_vocab:
  386. tokens.append(f"[PAD{i}]")
  387. toktypes.append(gguf.TokenType.UNUSED)
  388. else:
  389. token: str = reverse_vocab[i]
  390. if token in added_vocab:
  391. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  392. toktypes.append(gguf.TokenType.CONTROL)
  393. else:
  394. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  395. toktypes.append(gguf.TokenType.USER_DEFINED)
  396. else:
  397. toktypes.append(gguf.TokenType.NORMAL)
  398. tokens.append(token)
  399. return tokens, toktypes, tokpre
  400. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  401. # do not modify it manually!
  402. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  403. # Marker: Start get_vocab_base_pre
  404. def get_vocab_base_pre(self, tokenizer) -> str:
  405. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  406. # is specific for the BPE pre-tokenizer used by the model
  407. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  408. # use in llama.cpp to implement the same pre-tokenizer
  409. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  410. chktok = tokenizer.encode(chktxt)
  411. chkhsh = sha256(str(chktok).encode()).hexdigest()
  412. logger.debug(f"chktok: {chktok}")
  413. logger.debug(f"chkhsh: {chkhsh}")
  414. res = None
  415. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  416. # or pull the latest version of the model from Huggingface
  417. # don't edit the hashes manually!
  418. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  419. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  420. res = "llama-bpe"
  421. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  422. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  423. res = "deepseek-llm"
  424. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  425. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  426. res = "deepseek-coder"
  427. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  428. # ref: https://huggingface.co/tiiuae/falcon-7b
  429. res = "falcon"
  430. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  431. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  432. res = "bert-bge"
  433. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  434. # ref: https://huggingface.co/mosaicml/mpt-7b
  435. res = "mpt"
  436. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  437. # ref: https://huggingface.co/bigcode/starcoder2-3b
  438. res = "starcoder"
  439. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  440. # ref: https://huggingface.co/openai-community/gpt2
  441. res = "gpt-2"
  442. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  443. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  444. res = "stablelm2"
  445. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  446. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  447. res = "refact"
  448. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  449. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  450. res = "command-r"
  451. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  452. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  453. res = "qwen2"
  454. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  455. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  456. res = "olmo"
  457. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  458. # ref: https://huggingface.co/databricks/dbrx-base
  459. res = "dbrx"
  460. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  461. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  462. res = "jina-v2-en"
  463. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  464. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  465. res = "jina-v2-es"
  466. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  467. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  468. res = "jina-v2-de"
  469. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  470. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  471. res = "smaug-bpe"
  472. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  473. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  474. res = "poro-chat"
  475. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  476. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  477. res = "jina-v2-code"
  478. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  479. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  480. res = "chatglm-bpe"
  481. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  482. # ref: https://huggingface.co/LumiOpen/Viking-7B
  483. res = "viking"
  484. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  485. # ref: https://huggingface.co/core42/jais-13b
  486. res = "jais"
  487. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  488. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  489. res = "codeshell"
  490. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  491. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  492. res = "tekken"
  493. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  494. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  495. res = "smollm"
  496. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  497. # ref: https://huggingface.co/bigscience/bloom
  498. res = "bloom"
  499. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  500. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  501. res = "gpt3-finnish"
  502. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  503. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  504. res = "exaone"
  505. if res is None:
  506. logger.warning("\n")
  507. logger.warning("**************************************************************************************")
  508. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  509. logger.warning("** There are 2 possible reasons for this:")
  510. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  511. logger.warning("** - the pre-tokenization config has changed upstream")
  512. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  513. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  514. logger.warning("**")
  515. logger.warning(f"** chkhsh: {chkhsh}")
  516. logger.warning("**************************************************************************************")
  517. logger.warning("\n")
  518. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  519. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  520. logger.debug(f"chkhsh: {chkhsh}")
  521. return res
  522. # Marker: End get_vocab_base_pre
  523. def _set_vocab_gpt2(self) -> None:
  524. tokens, toktypes, tokpre = self.get_vocab_base()
  525. self.gguf_writer.add_tokenizer_model("gpt2")
  526. self.gguf_writer.add_tokenizer_pre(tokpre)
  527. self.gguf_writer.add_token_list(tokens)
  528. self.gguf_writer.add_token_types(toktypes)
  529. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  530. special_vocab.add_to_gguf(self.gguf_writer)
  531. def _set_vocab_qwen(self):
  532. dir_model = self.dir_model
  533. hparams = self.hparams
  534. tokens: list[str] = []
  535. toktypes: list[int] = []
  536. from transformers import AutoTokenizer
  537. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  538. vocab_size = hparams["vocab_size"]
  539. assert max(tokenizer.get_vocab().values()) < vocab_size
  540. tokpre = self.get_vocab_base_pre(tokenizer)
  541. merges = []
  542. vocab = {}
  543. mergeable_ranks = tokenizer.mergeable_ranks
  544. for token, rank in mergeable_ranks.items():
  545. vocab[QwenModel.token_bytes_to_string(token)] = rank
  546. if len(token) == 1:
  547. continue
  548. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  549. assert len(merged) == 2
  550. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  551. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  552. added_vocab = tokenizer.special_tokens
  553. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  554. for i in range(vocab_size):
  555. if i not in reverse_vocab:
  556. tokens.append(f"[PAD{i}]")
  557. toktypes.append(gguf.TokenType.UNUSED)
  558. elif reverse_vocab[i] in added_vocab:
  559. tokens.append(reverse_vocab[i])
  560. toktypes.append(gguf.TokenType.CONTROL)
  561. else:
  562. tokens.append(reverse_vocab[i])
  563. toktypes.append(gguf.TokenType.NORMAL)
  564. self.gguf_writer.add_tokenizer_model("gpt2")
  565. self.gguf_writer.add_tokenizer_pre(tokpre)
  566. self.gguf_writer.add_token_list(tokens)
  567. self.gguf_writer.add_token_types(toktypes)
  568. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  569. special_vocab.merges = merges
  570. # only add special tokens when they were not already loaded from config.json
  571. if len(special_vocab.special_token_ids) == 0:
  572. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  573. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  574. # this one is usually not in config.json anyway
  575. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  576. special_vocab.add_to_gguf(self.gguf_writer)
  577. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  578. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  579. self.gguf_writer.add_tokenizer_model("llama")
  580. self.gguf_writer.add_tokenizer_pre("default")
  581. self.gguf_writer.add_token_list(tokens)
  582. self.gguf_writer.add_token_scores(scores)
  583. self.gguf_writer.add_token_types(toktypes)
  584. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  585. special_vocab.add_to_gguf(self.gguf_writer)
  586. def _create_vocab_sentencepiece(self):
  587. from sentencepiece import SentencePieceProcessor
  588. tokenizer_path = self.dir_model / 'tokenizer.model'
  589. if not tokenizer_path.is_file():
  590. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  591. tokenizer = SentencePieceProcessor()
  592. tokenizer.LoadFromFile(str(tokenizer_path))
  593. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  594. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  595. scores: list[float] = [-10000.0] * vocab_size
  596. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  597. for token_id in range(tokenizer.vocab_size()):
  598. piece = tokenizer.IdToPiece(token_id)
  599. text = piece.encode("utf-8")
  600. score = tokenizer.GetScore(token_id)
  601. toktype = SentencePieceTokenTypes.NORMAL
  602. if tokenizer.IsUnknown(token_id):
  603. toktype = SentencePieceTokenTypes.UNKNOWN
  604. elif tokenizer.IsControl(token_id):
  605. toktype = SentencePieceTokenTypes.CONTROL
  606. elif tokenizer.IsUnused(token_id):
  607. toktype = SentencePieceTokenTypes.UNUSED
  608. elif tokenizer.IsByte(token_id):
  609. toktype = SentencePieceTokenTypes.BYTE
  610. tokens[token_id] = text
  611. scores[token_id] = score
  612. toktypes[token_id] = toktype
  613. added_tokens_file = self.dir_model / 'added_tokens.json'
  614. if added_tokens_file.is_file():
  615. with open(added_tokens_file, "r", encoding="utf-8") as f:
  616. added_tokens_json = json.load(f)
  617. for key in added_tokens_json:
  618. token_id = added_tokens_json[key]
  619. if token_id >= vocab_size:
  620. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  621. continue
  622. tokens[token_id] = key.encode("utf-8")
  623. scores[token_id] = -1000.0
  624. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  625. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  626. if tokenizer_config_file.is_file():
  627. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  628. tokenizer_config_json = json.load(f)
  629. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  630. for token_id, token_data in added_tokens_decoder.items():
  631. token_id = int(token_id)
  632. token: str = token_data["content"]
  633. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  634. if tokens[token_id] != token.encode("utf-8"):
  635. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  636. if token_data.get("special") or self.does_token_look_special(token):
  637. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  638. else:
  639. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  640. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  641. scores[token_id] = -1000.0
  642. tokens[token_id] = token.encode("utf-8")
  643. if vocab_size > len(tokens):
  644. pad_count = vocab_size - len(tokens)
  645. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  646. for i in range(1, pad_count + 1):
  647. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  648. scores.append(-1000.0)
  649. toktypes.append(SentencePieceTokenTypes.UNUSED)
  650. return tokens, scores, toktypes
  651. def _set_vocab_llama_hf(self):
  652. vocab = gguf.LlamaHfVocab(self.dir_model)
  653. tokens = []
  654. scores = []
  655. toktypes = []
  656. for text, score, toktype in vocab.all_tokens():
  657. tokens.append(text)
  658. scores.append(score)
  659. toktypes.append(toktype)
  660. assert len(tokens) == vocab.vocab_size
  661. self.gguf_writer.add_tokenizer_model("llama")
  662. self.gguf_writer.add_tokenizer_pre("default")
  663. self.gguf_writer.add_token_list(tokens)
  664. self.gguf_writer.add_token_scores(scores)
  665. self.gguf_writer.add_token_types(toktypes)
  666. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  667. special_vocab.add_to_gguf(self.gguf_writer)
  668. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  669. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  670. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  671. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  672. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  673. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  674. assert field # tokenizer model
  675. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  676. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  677. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  678. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  679. assert field # token list
  680. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  681. if model_name == "llama-spm":
  682. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  683. assert field # token scores
  684. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  685. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  686. assert field # token types
  687. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  688. if model_name != "llama-spm":
  689. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  690. assert field # token merges
  691. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  692. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  693. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  694. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  695. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  696. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  697. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  698. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  699. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  700. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  701. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  702. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  703. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  704. @Model.register("GPTNeoXForCausalLM")
  705. class GPTNeoXModel(Model):
  706. model_arch = gguf.MODEL_ARCH.GPTNEOX
  707. def set_gguf_parameters(self):
  708. block_count = self.hparams["num_hidden_layers"]
  709. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  710. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  711. self.gguf_writer.add_block_count(block_count)
  712. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  713. self.gguf_writer.add_rope_dimension_count(
  714. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  715. )
  716. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  717. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  718. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  720. del bid # unused
  721. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  722. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  723. tensors: list[tuple[str, Tensor]] = []
  724. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  725. # Map bloom-style qkv_linear to gpt-style qkv_linear
  726. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  727. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  728. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  729. data_torch = torch.cat(
  730. (
  731. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  732. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  733. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  734. ),
  735. dim=0,
  736. )
  737. logger.info("re-format attention.linear_qkv.weight")
  738. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  739. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  740. data_torch = torch.cat(
  741. (
  742. qkv_bias[:, 0, :].reshape((n_embed,)),
  743. qkv_bias[:, 1, :].reshape((n_embed,)),
  744. qkv_bias[:, 2, :].reshape((n_embed,)),
  745. ),
  746. dim=0,
  747. )
  748. logger.info("re-format attention.linear_qkv.bias")
  749. tensors.append((self.map_tensor_name(name), data_torch))
  750. return tensors
  751. @Model.register("BloomForCausalLM", "BloomModel")
  752. class BloomModel(Model):
  753. model_arch = gguf.MODEL_ARCH.BLOOM
  754. def set_gguf_parameters(self):
  755. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  756. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  757. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  758. self.gguf_writer.add_embedding_length(n_embed)
  759. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  760. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  761. self.gguf_writer.add_head_count(n_head)
  762. self.gguf_writer.add_head_count_kv(n_head)
  763. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  764. self.gguf_writer.add_file_type(self.ftype)
  765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  766. del bid # unused
  767. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  768. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  769. name = re.sub(r'transformer\.', '', name)
  770. tensors: list[tuple[str, Tensor]] = []
  771. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  772. # Map bloom-style qkv_linear to gpt-style qkv_linear
  773. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  774. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  775. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  776. data_torch = torch.cat(
  777. (
  778. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  779. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  780. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  781. ),
  782. dim=0,
  783. )
  784. logger.info("re-format attention.linear_qkv.weight")
  785. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  786. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  787. data_torch = torch.cat(
  788. (
  789. qkv_bias[:, 0, :].reshape((n_embed,)),
  790. qkv_bias[:, 1, :].reshape((n_embed,)),
  791. qkv_bias[:, 2, :].reshape((n_embed,)),
  792. ),
  793. dim=0,
  794. )
  795. logger.info("re-format attention.linear_qkv.bias")
  796. tensors.append((self.map_tensor_name(name), data_torch))
  797. if name == "word_embeddings.weight":
  798. assert self.tensor_names is not None
  799. # TODO: tie them at runtime, don't duplicate in the model file
  800. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  801. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  802. return tensors
  803. @Model.register("MPTForCausalLM")
  804. class MPTModel(Model):
  805. model_arch = gguf.MODEL_ARCH.MPT
  806. def set_vocab(self):
  807. try:
  808. self._set_vocab_gpt2()
  809. except Exception:
  810. # Fallback for SEA-LION model
  811. self._set_vocab_sentencepiece()
  812. self.gguf_writer.add_add_bos_token(False)
  813. self.gguf_writer.add_pad_token_id(3)
  814. self.gguf_writer.add_eos_token_id(1)
  815. self.gguf_writer.add_unk_token_id(0)
  816. def set_gguf_parameters(self):
  817. block_count = self.hparams["n_layers"]
  818. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  819. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  820. self.gguf_writer.add_block_count(block_count)
  821. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  822. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  823. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  824. self.gguf_writer.add_head_count_kv(kv_n_heads)
  825. self.gguf_writer.add_layer_norm_eps(1e-5)
  826. if self.hparams["attn_config"]["clip_qkv"] is not None:
  827. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  828. if self.hparams["attn_config"]["alibi"]:
  829. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  830. else:
  831. self.gguf_writer.add_max_alibi_bias(0.0)
  832. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  833. del bid # unused
  834. if "scales" in name:
  835. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  836. new_name = new_name.replace("scales", "act.scales")
  837. else:
  838. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  839. return [(new_name, data_torch)]
  840. @Model.register("OrionForCausalLM")
  841. class OrionModel(Model):
  842. model_arch = gguf.MODEL_ARCH.ORION
  843. def set_vocab(self):
  844. self._set_vocab_sentencepiece()
  845. def set_gguf_parameters(self):
  846. block_count = self.hparams["num_hidden_layers"]
  847. head_count = self.hparams["num_attention_heads"]
  848. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  849. ctx_length = 0
  850. if "max_sequence_length" in self.hparams:
  851. ctx_length = self.hparams["max_sequence_length"]
  852. elif "max_position_embeddings" in self.hparams:
  853. ctx_length = self.hparams["max_position_embeddings"]
  854. elif "model_max_length" in self.hparams:
  855. ctx_length = self.hparams["model_max_length"]
  856. else:
  857. raise ValueError("gguf: can not find ctx length parameter.")
  858. self.gguf_writer.add_file_type(self.ftype)
  859. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  860. self.gguf_writer.add_context_length(ctx_length)
  861. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  862. self.gguf_writer.add_block_count(block_count)
  863. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  864. self.gguf_writer.add_head_count(head_count)
  865. self.gguf_writer.add_head_count_kv(head_count_kv)
  866. # note: config provides rms norm but it is actually layer norm
  867. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  868. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  869. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  870. class BaichuanModel(Model):
  871. model_arch = gguf.MODEL_ARCH.BAICHUAN
  872. def set_vocab(self):
  873. self._set_vocab_sentencepiece()
  874. def set_gguf_parameters(self):
  875. block_count = self.hparams["num_hidden_layers"]
  876. head_count = self.hparams["num_attention_heads"]
  877. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  878. ctx_length = 0
  879. if "max_sequence_length" in self.hparams:
  880. ctx_length = self.hparams["max_sequence_length"]
  881. elif "max_position_embeddings" in self.hparams:
  882. ctx_length = self.hparams["max_position_embeddings"]
  883. elif "model_max_length" in self.hparams:
  884. ctx_length = self.hparams["model_max_length"]
  885. else:
  886. raise ValueError("gguf: can not find ctx length parameter.")
  887. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  888. self.gguf_writer.add_context_length(ctx_length)
  889. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  890. self.gguf_writer.add_block_count(block_count)
  891. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  892. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  893. self.gguf_writer.add_head_count(head_count)
  894. self.gguf_writer.add_head_count_kv(head_count_kv)
  895. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  896. self.gguf_writer.add_file_type(self.ftype)
  897. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  898. if self.hparams["rope_scaling"].get("type") == "linear":
  899. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  900. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  901. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  902. head_count = self.hparams["num_attention_heads"]
  903. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  904. tensors: list[tuple[str, Tensor]] = []
  905. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  906. logger.info(f"Unpacking and permuting layer {bid}")
  907. tensors = [
  908. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  909. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  910. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  911. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  912. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  913. self._reverse_hf_part(data_torch, 2)),
  914. ]
  915. else:
  916. tensors = [(self.map_tensor_name(name), data_torch)]
  917. return tensors
  918. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  919. if n_kv_head is not None and n_head != n_kv_head:
  920. n_head //= n_kv_head
  921. return (
  922. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  923. .swapaxes(1, 2)
  924. .reshape(weights.shape)
  925. )
  926. def _reverse_hf_permute_part(
  927. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  928. ) -> Tensor:
  929. r = weights.shape[0] // 3
  930. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  931. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  932. r = weights.shape[0] // 3
  933. return weights[r * n_part:r * n_part + r, ...]
  934. @Model.register("XverseForCausalLM")
  935. class XverseModel(Model):
  936. model_arch = gguf.MODEL_ARCH.XVERSE
  937. def set_vocab(self):
  938. assert (self.dir_model / "tokenizer.json").is_file()
  939. dir_model = self.dir_model
  940. hparams = self.hparams
  941. tokens: list[bytes] = []
  942. toktypes: list[int] = []
  943. from transformers import AutoTokenizer
  944. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  945. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  946. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  947. # because vocab_size is the count of items, and indexes start at 0.
  948. max_vocab_index = max(tokenizer.get_vocab().values())
  949. if max_vocab_index >= vocab_size:
  950. raise ValueError("Vocabulary size exceeds expected maximum size.")
  951. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  952. added_vocab = tokenizer.get_added_vocab()
  953. for token_id in range(vocab_size):
  954. token_text = reverse_vocab[token_id].encode('utf-8')
  955. # replace "\x00" to string with length > 0
  956. if token_text == b"\x00":
  957. toktype = gguf.TokenType.BYTE # special
  958. token_text = f"<{token_text}>".encode('utf-8')
  959. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  960. toktype = gguf.TokenType.BYTE # special
  961. elif reverse_vocab[token_id] in added_vocab:
  962. if tokenizer.added_tokens_decoder[token_id].special:
  963. toktype = gguf.TokenType.CONTROL
  964. else:
  965. toktype = gguf.TokenType.USER_DEFINED
  966. else:
  967. toktype = gguf.TokenType.NORMAL
  968. tokens.append(token_text)
  969. toktypes.append(toktype)
  970. self.gguf_writer.add_tokenizer_model("llama")
  971. self.gguf_writer.add_tokenizer_pre("default")
  972. self.gguf_writer.add_token_list(tokens)
  973. self.gguf_writer.add_token_types(toktypes)
  974. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  975. special_vocab.add_to_gguf(self.gguf_writer)
  976. def set_gguf_parameters(self):
  977. block_count = self.hparams["num_hidden_layers"]
  978. head_count = self.hparams["num_attention_heads"]
  979. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  980. ctx_length = 0
  981. if "max_sequence_length" in self.hparams:
  982. ctx_length = self.hparams["max_sequence_length"]
  983. elif "max_position_embeddings" in self.hparams:
  984. ctx_length = self.hparams["max_position_embeddings"]
  985. elif "model_max_length" in self.hparams:
  986. ctx_length = self.hparams["model_max_length"]
  987. else:
  988. raise ValueError("gguf: can not find ctx length parameter.")
  989. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  990. self.gguf_writer.add_context_length(ctx_length)
  991. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  992. self.gguf_writer.add_block_count(block_count)
  993. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  994. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  995. self.gguf_writer.add_head_count(head_count)
  996. self.gguf_writer.add_head_count_kv(head_count_kv)
  997. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  998. self.gguf_writer.add_file_type(self.ftype)
  999. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1000. if self.hparams["rope_scaling"].get("type") == "linear":
  1001. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1002. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1004. del bid # unused
  1005. head_count = self.hparams["num_attention_heads"]
  1006. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1007. # HF models permute some of the tensors, so we need to undo that
  1008. if name.endswith("q_proj.weight"):
  1009. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1010. if name.endswith("k_proj.weight"):
  1011. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1012. return [(self.map_tensor_name(name), data_torch)]
  1013. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1014. if n_kv_head is not None and n_head != n_kv_head:
  1015. n_head //= n_kv_head
  1016. return (
  1017. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1018. .swapaxes(1, 2)
  1019. .reshape(weights.shape)
  1020. )
  1021. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1022. class FalconModel(Model):
  1023. model_arch = gguf.MODEL_ARCH.FALCON
  1024. def set_gguf_parameters(self):
  1025. block_count = self.hparams.get("num_hidden_layers")
  1026. if block_count is None:
  1027. block_count = self.hparams["n_layer"] # old name
  1028. n_head = self.hparams.get("num_attention_heads")
  1029. if n_head is None:
  1030. n_head = self.hparams["n_head"] # old name
  1031. n_head_kv = self.hparams.get("num_kv_heads")
  1032. if n_head_kv is None:
  1033. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1034. self.gguf_writer.add_context_length(2048) # not in config.json
  1035. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1036. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1037. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1038. self.gguf_writer.add_block_count(block_count)
  1039. self.gguf_writer.add_head_count(n_head)
  1040. self.gguf_writer.add_head_count_kv(n_head_kv)
  1041. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1042. self.gguf_writer.add_file_type(self.ftype)
  1043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1044. del bid # unused
  1045. # QKV tensor transform
  1046. # The original query_key_value tensor contains n_head_kv "kv groups",
  1047. # each consisting of n_head/n_head_kv query weights followed by one key
  1048. # and one value weight (shared by all query heads in the kv group).
  1049. # This layout makes it a big pain to work with in GGML.
  1050. # So we rearrange them here,, so that we have n_head query weights
  1051. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1052. # in contiguous fashion.
  1053. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1054. if "query_key_value" in name:
  1055. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1056. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1057. head_dim = self.hparams["hidden_size"] // n_head
  1058. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1059. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1060. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1061. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1062. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1063. return [(self.map_tensor_name(name), data_torch)]
  1064. @Model.register("GPTBigCodeForCausalLM")
  1065. class StarCoderModel(Model):
  1066. model_arch = gguf.MODEL_ARCH.STARCODER
  1067. def set_gguf_parameters(self):
  1068. block_count = self.hparams["n_layer"]
  1069. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1070. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1071. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1072. self.gguf_writer.add_block_count(block_count)
  1073. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1074. self.gguf_writer.add_head_count_kv(1)
  1075. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1076. self.gguf_writer.add_file_type(self.ftype)
  1077. @Model.register("GPTRefactForCausalLM")
  1078. class RefactModel(Model):
  1079. model_arch = gguf.MODEL_ARCH.REFACT
  1080. def set_vocab(self):
  1081. super().set_vocab()
  1082. # TODO: how to determine special FIM tokens automatically?
  1083. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1084. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1085. special_vocab._set_special_token("prefix", 1)
  1086. special_vocab._set_special_token("suffix", 3)
  1087. special_vocab._set_special_token("middle", 2)
  1088. special_vocab.chat_template = None # do not add it twice
  1089. special_vocab.add_to_gguf(self.gguf_writer)
  1090. def set_gguf_parameters(self):
  1091. hidden_dim = self.hparams["n_embd"]
  1092. inner_dim = 4 * hidden_dim
  1093. hidden_dim = int(2 * inner_dim / 3)
  1094. multiple_of = 256
  1095. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1096. block_count = self.hparams["n_layer"]
  1097. # refact uses Alibi. So this is from config.json which might be used by training.
  1098. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1099. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1100. self.gguf_writer.add_feed_forward_length(ff_dim)
  1101. self.gguf_writer.add_block_count(block_count)
  1102. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1103. self.gguf_writer.add_head_count_kv(1)
  1104. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1105. self.gguf_writer.add_file_type(self.ftype)
  1106. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1107. hidden_dim = self.hparams["n_embd"]
  1108. inner_dim = 4 * hidden_dim
  1109. hidden_dim = int(2 * inner_dim / 3)
  1110. multiple_of = 256
  1111. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1112. n_head = self.hparams["n_head"]
  1113. n_head_kv = 1
  1114. head_dim = self.hparams["n_embd"] // n_head
  1115. tensors: list[tuple[str, Tensor]] = []
  1116. if bid is not None:
  1117. if name == f"transformer.h.{bid}.attn.kv.weight":
  1118. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1119. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1120. elif name == f"transformer.h.{bid}.attn.q.weight":
  1121. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1122. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1123. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1124. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1125. if len(tensors) == 0:
  1126. tensors.append((self.map_tensor_name(name), data_torch))
  1127. return tensors
  1128. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1129. class StableLMModel(Model):
  1130. model_arch = gguf.MODEL_ARCH.STABLELM
  1131. def set_vocab(self):
  1132. if (self.dir_model / "tokenizer.json").is_file():
  1133. self._set_vocab_gpt2()
  1134. else:
  1135. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1136. self._set_vocab_qwen()
  1137. def set_gguf_parameters(self):
  1138. hparams = self.hparams
  1139. block_count = hparams["num_hidden_layers"]
  1140. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1141. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1142. self.gguf_writer.add_block_count(block_count)
  1143. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1144. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1145. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1146. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1147. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1148. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1149. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1150. self.gguf_writer.add_file_type(self.ftype)
  1151. _q_norms: list[dict[str, Tensor]] | None = None
  1152. _k_norms: list[dict[str, Tensor]] | None = None
  1153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1154. n_head = self.hparams["num_attention_heads"]
  1155. n_kv_head = self.hparams["num_key_value_heads"]
  1156. if name.find("q_layernorm.norms") != -1:
  1157. assert bid is not None
  1158. if self._q_norms is None:
  1159. self._q_norms = [{} for _ in range(self.block_count)]
  1160. self._q_norms[bid][name] = data_torch
  1161. if len(self._q_norms[bid]) >= n_head:
  1162. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1163. else:
  1164. return []
  1165. if name.find("k_layernorm.norms") != -1:
  1166. assert bid is not None
  1167. if self._k_norms is None:
  1168. self._k_norms = [{} for _ in range(self.block_count)]
  1169. self._k_norms[bid][name] = data_torch
  1170. if len(self._k_norms[bid]) >= n_kv_head:
  1171. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1172. else:
  1173. return []
  1174. return [(self.map_tensor_name(name), data_torch)]
  1175. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1176. datas: list[Tensor] = []
  1177. # extract the norms in order
  1178. for xid in range(n_head):
  1179. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1180. datas.append(norms[ename])
  1181. del norms[ename]
  1182. data_torch = torch.stack(datas, dim=0)
  1183. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1184. new_name = self.map_tensor_name(merged_name)
  1185. return [(new_name, data_torch)]
  1186. def prepare_tensors(self):
  1187. super().prepare_tensors()
  1188. if self._q_norms is not None or self._k_norms is not None:
  1189. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1190. norms = (
  1191. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1192. ) + (
  1193. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1194. )
  1195. if len(norms) > 0:
  1196. raise ValueError(f"Unprocessed norms: {norms}")
  1197. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1198. class LlamaModel(Model):
  1199. model_arch = gguf.MODEL_ARCH.LLAMA
  1200. def set_vocab(self):
  1201. try:
  1202. self._set_vocab_sentencepiece()
  1203. except FileNotFoundError:
  1204. try:
  1205. self._set_vocab_llama_hf()
  1206. except (FileNotFoundError, TypeError):
  1207. # Llama 3
  1208. self._set_vocab_gpt2()
  1209. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1210. if self.hparams.get("vocab_size", 32000) == 32016:
  1211. special_vocab = gguf.SpecialVocab(
  1212. self.dir_model, load_merges=False,
  1213. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1214. )
  1215. special_vocab._set_special_token("prefix", 32007)
  1216. special_vocab._set_special_token("suffix", 32008)
  1217. special_vocab._set_special_token("middle", 32009)
  1218. special_vocab._set_special_token("eot", 32010)
  1219. special_vocab.add_to_gguf(self.gguf_writer)
  1220. def set_gguf_parameters(self):
  1221. super().set_gguf_parameters()
  1222. hparams = self.hparams
  1223. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1224. if "head_dim" in hparams:
  1225. rope_dim = hparams["head_dim"]
  1226. else:
  1227. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1228. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1229. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1230. if self.hparams["rope_scaling"].get("type") == "linear":
  1231. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1232. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1233. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1234. if tokenizer_config_file.is_file():
  1235. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1236. tokenizer_config_json = json.load(f)
  1237. if "add_prefix_space" in tokenizer_config_json:
  1238. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1239. # Apply to granite small models only
  1240. if self.hparams.get("vocab_size", 32000) == 49152:
  1241. self.gguf_writer.add_add_bos_token(False)
  1242. @staticmethod
  1243. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1244. if n_head_kv is not None and n_head != n_head_kv:
  1245. n_head = n_head_kv
  1246. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1247. .swapaxes(1, 2)
  1248. .reshape(weights.shape))
  1249. _experts: list[dict[str, Tensor]] | None = None
  1250. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1251. n_head = self.hparams["num_attention_heads"]
  1252. n_kv_head = self.hparams.get("num_key_value_heads")
  1253. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1254. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1255. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1256. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1257. # process the experts separately
  1258. if name.find("block_sparse_moe.experts") != -1:
  1259. n_experts = self.hparams["num_local_experts"]
  1260. assert bid is not None
  1261. if self._experts is None:
  1262. self._experts = [{} for _ in range(self.block_count)]
  1263. self._experts[bid][name] = data_torch
  1264. if len(self._experts[bid]) >= n_experts * 3:
  1265. tensors: list[tuple[str, Tensor]] = []
  1266. # merge the experts into a single 3d tensor
  1267. for wid in ["w1", "w2", "w3"]:
  1268. datas: list[Tensor] = []
  1269. for xid in range(n_experts):
  1270. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1271. datas.append(self._experts[bid][ename])
  1272. del self._experts[bid][ename]
  1273. data_torch = torch.stack(datas, dim=0)
  1274. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1275. new_name = self.map_tensor_name(merged_name)
  1276. tensors.append((new_name, data_torch))
  1277. return tensors
  1278. else:
  1279. return []
  1280. return [(self.map_tensor_name(name), data_torch)]
  1281. def prepare_tensors(self):
  1282. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1283. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1284. base = self.hparams.get("rope_theta", 10000.0)
  1285. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1286. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1287. factor = rope_scaling.get("factor", 8.0)
  1288. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1289. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1290. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1291. low_freq_wavelen = old_context_len / low_freq_factor
  1292. high_freq_wavelen = old_context_len / high_freq_factor
  1293. assert low_freq_wavelen != high_freq_wavelen
  1294. rope_factors = []
  1295. for freq in freqs:
  1296. wavelen = 2 * math.pi / freq
  1297. if wavelen < high_freq_wavelen:
  1298. rope_factors.append(1)
  1299. elif wavelen > low_freq_wavelen:
  1300. rope_factors.append(factor)
  1301. else:
  1302. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1303. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1304. if not self.is_lora:
  1305. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1306. super().prepare_tensors()
  1307. if self._experts is not None:
  1308. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1309. experts = [k for d in self._experts for k in d.keys()]
  1310. if len(experts) > 0:
  1311. raise ValueError(f"Unprocessed experts: {experts}")
  1312. @Model.register("BitnetForCausalLM")
  1313. class BitnetModel(Model):
  1314. model_arch = gguf.MODEL_ARCH.BITNET
  1315. def set_vocab(self):
  1316. self._set_vocab_sentencepiece()
  1317. def set_gguf_parameters(self):
  1318. super().set_gguf_parameters()
  1319. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1320. self.gguf_writer.add_rope_scaling_factor(1.0)
  1321. def weight_quant(self, weight):
  1322. dtype = weight.dtype
  1323. weight = weight.float()
  1324. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1325. weight = (weight * s).round().clamp(-1, 1) / s
  1326. scale = weight.abs().max().unsqueeze(0)
  1327. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1328. weight = torch.sign(weight).type(dtype)
  1329. return weight.type(dtype), scale.type(torch.float32)
  1330. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1331. new_name = self.map_tensor_name(name)
  1332. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1333. gguf.MODEL_TENSOR.ATTN_Q,
  1334. gguf.MODEL_TENSOR.ATTN_K,
  1335. gguf.MODEL_TENSOR.ATTN_V,
  1336. gguf.MODEL_TENSOR.ATTN_OUT,
  1337. gguf.MODEL_TENSOR.FFN_UP,
  1338. gguf.MODEL_TENSOR.FFN_DOWN,
  1339. gguf.MODEL_TENSOR.FFN_GATE,
  1340. ]):
  1341. # transform weight into 1/0/-1 (in fp32)
  1342. weight_torch, scale_torch = self.weight_quant(data_torch)
  1343. yield (new_name, weight_torch)
  1344. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1345. else:
  1346. yield (new_name, data_torch)
  1347. @Model.register("GrokForCausalLM")
  1348. class GrokModel(Model):
  1349. model_arch = gguf.MODEL_ARCH.GROK
  1350. def set_vocab(self):
  1351. self._set_vocab_sentencepiece()
  1352. def __init__(self, *args, **kwargs):
  1353. super().__init__(*args, **kwargs)
  1354. def set_gguf_parameters(self):
  1355. super().set_gguf_parameters()
  1356. _experts: list[dict[str, Tensor]] | None = None
  1357. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1358. # process the experts separately
  1359. if name.find(".moe.") != -1:
  1360. n_experts = self.hparams["num_local_experts"]
  1361. assert bid is not None
  1362. if self._experts is None:
  1363. self._experts = [{} for _ in range(self.block_count)]
  1364. self._experts[bid][name] = data_torch
  1365. if len(self._experts[bid]) >= n_experts * 3:
  1366. tensors: list[tuple[str, Tensor]] = []
  1367. # merge the experts into a single 3d tensor
  1368. for wid in ["linear", "linear_1", "linear_v"]:
  1369. datas: list[Tensor] = []
  1370. for xid in range(n_experts):
  1371. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1372. datas.append(self._experts[bid][ename])
  1373. del self._experts[bid][ename]
  1374. data_torch = torch.stack(datas, dim=0)
  1375. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1376. new_name = self.map_tensor_name(merged_name)
  1377. tensors.append((new_name, data_torch))
  1378. return tensors
  1379. else:
  1380. return []
  1381. return [(self.map_tensor_name(name), data_torch)]
  1382. @Model.register("DbrxForCausalLM")
  1383. class DbrxModel(Model):
  1384. model_arch = gguf.MODEL_ARCH.DBRX
  1385. def set_gguf_parameters(self):
  1386. ffn_config = self.hparams["ffn_config"]
  1387. attn_config = self.hparams["attn_config"]
  1388. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1389. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1390. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1391. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1392. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1393. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1394. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1395. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1396. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1397. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1398. self.gguf_writer.add_layer_norm_eps(1e-5)
  1399. self.gguf_writer.add_file_type(self.ftype)
  1400. logger.info(f"gguf: file type = {self.ftype}")
  1401. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1402. del bid # unused
  1403. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1404. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1405. n_embd = self.hparams["d_model"]
  1406. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1407. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1408. # But llama.cpp moe graph works differently
  1409. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1410. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1411. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1412. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1413. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1414. experts = False
  1415. for exp_tensor_name in exp_tensor_names.keys():
  1416. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1417. experts = True
  1418. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1419. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1420. data_torch = data_torch.permute(*permute_tensor)
  1421. break
  1422. # map tensor names
  1423. # In MoE models the ffn tensors are typically most of the model weights,
  1424. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1425. # Every other model has the weight names ending in .weight,
  1426. # let's assume that is the convention which is not the case for dbrx:
  1427. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1428. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1429. return [(new_name, data_torch)]
  1430. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1431. del name, new_name, bid # unused
  1432. return n_dims > 1
  1433. @Model.register("MiniCPMForCausalLM")
  1434. class MiniCPMModel(Model):
  1435. model_arch = gguf.MODEL_ARCH.MINICPM
  1436. def set_gguf_parameters(self):
  1437. block_count = self.hparams["num_hidden_layers"]
  1438. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1439. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1440. self.gguf_writer.add_block_count(block_count)
  1441. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1442. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1443. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1444. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1445. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1446. self.gguf_writer.add_file_type(self.ftype)
  1447. def set_vocab(self):
  1448. self._set_vocab_llama_hf()
  1449. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1450. if n_kv_head is not None and n_head != n_kv_head:
  1451. n_head //= n_kv_head
  1452. return (
  1453. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1454. .swapaxes(1, 2)
  1455. .reshape(weights.shape)
  1456. )
  1457. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1458. del bid # unused
  1459. n_head = self.hparams["num_attention_heads"]
  1460. n_kv_head = self.hparams.get("num_key_value_heads")
  1461. # HF models permute some of the tensors, so we need to undo that
  1462. if name.endswith(("q_proj.weight")):
  1463. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1464. if name.endswith(("k_proj.weight")):
  1465. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1466. return [(self.map_tensor_name(name), data_torch)]
  1467. @Model.register("QWenLMHeadModel")
  1468. class QwenModel(Model):
  1469. model_arch = gguf.MODEL_ARCH.QWEN
  1470. @staticmethod
  1471. def token_bytes_to_string(b):
  1472. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1473. byte_encoder = bytes_to_unicode()
  1474. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1475. @staticmethod
  1476. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1477. parts = [bytes([b]) for b in token]
  1478. while True:
  1479. min_idx = None
  1480. min_rank = None
  1481. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1482. rank = mergeable_ranks.get(pair[0] + pair[1])
  1483. if rank is not None and (min_rank is None or rank < min_rank):
  1484. min_idx = i
  1485. min_rank = rank
  1486. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1487. break
  1488. assert min_idx is not None
  1489. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1490. return parts
  1491. def set_vocab(self):
  1492. self._set_vocab_qwen()
  1493. def set_gguf_parameters(self):
  1494. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1495. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1496. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1497. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1498. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1499. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1500. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1501. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1502. self.gguf_writer.add_file_type(self.ftype)
  1503. @Model.register("Qwen2ForCausalLM")
  1504. class Qwen2Model(Model):
  1505. model_arch = gguf.MODEL_ARCH.QWEN2
  1506. def set_vocab(self):
  1507. try:
  1508. self._set_vocab_sentencepiece()
  1509. except FileNotFoundError:
  1510. self._set_vocab_gpt2()
  1511. @Model.register("Qwen2MoeForCausalLM")
  1512. class Qwen2MoeModel(Model):
  1513. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1514. def set_gguf_parameters(self):
  1515. super().set_gguf_parameters()
  1516. if (n_experts := self.hparams.get("num_experts")) is not None:
  1517. self.gguf_writer.add_expert_count(n_experts)
  1518. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1519. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1520. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1521. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1522. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1523. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1524. _experts: list[dict[str, Tensor]] | None = None
  1525. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1526. # process the experts separately
  1527. if name.find("experts") != -1:
  1528. n_experts = self.hparams["num_experts"]
  1529. assert bid is not None
  1530. if self._experts is None:
  1531. self._experts = [{} for _ in range(self.block_count)]
  1532. self._experts[bid][name] = data_torch
  1533. if len(self._experts[bid]) >= n_experts * 3:
  1534. tensors: list[tuple[str, Tensor]] = []
  1535. # merge the experts into a single 3d tensor
  1536. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1537. datas: list[Tensor] = []
  1538. for xid in range(n_experts):
  1539. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1540. datas.append(self._experts[bid][ename])
  1541. del self._experts[bid][ename]
  1542. data_torch = torch.stack(datas, dim=0)
  1543. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1544. new_name = self.map_tensor_name(merged_name)
  1545. tensors.append((new_name, data_torch))
  1546. return tensors
  1547. else:
  1548. return []
  1549. return [(self.map_tensor_name(name), data_torch)]
  1550. def prepare_tensors(self):
  1551. super().prepare_tensors()
  1552. if self._experts is not None:
  1553. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1554. experts = [k for d in self._experts for k in d.keys()]
  1555. if len(experts) > 0:
  1556. raise ValueError(f"Unprocessed experts: {experts}")
  1557. @Model.register("GPT2LMHeadModel")
  1558. class GPT2Model(Model):
  1559. model_arch = gguf.MODEL_ARCH.GPT2
  1560. def set_gguf_parameters(self):
  1561. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1562. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1563. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1564. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1565. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1566. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1567. self.gguf_writer.add_file_type(self.ftype)
  1568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1569. del bid # unused
  1570. tensors: list[tuple[str, Tensor]] = []
  1571. # we don't need these
  1572. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1573. return tensors
  1574. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1575. data_torch = data_torch.transpose(1, 0)
  1576. new_name = self.map_tensor_name(name)
  1577. tensors.append((new_name, data_torch))
  1578. # note: GPT2 output is tied to (same as) wte in original model
  1579. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1580. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1581. return tensors
  1582. @Model.register("PhiForCausalLM")
  1583. class Phi2Model(Model):
  1584. model_arch = gguf.MODEL_ARCH.PHI2
  1585. def set_gguf_parameters(self):
  1586. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1587. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1588. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1589. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1590. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1591. self.gguf_writer.add_embedding_length(n_embd)
  1592. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1593. self.gguf_writer.add_block_count(block_count)
  1594. self.gguf_writer.add_head_count(n_head)
  1595. self.gguf_writer.add_head_count_kv(n_head)
  1596. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1597. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1598. self.gguf_writer.add_file_type(self.ftype)
  1599. self.gguf_writer.add_add_bos_token(False)
  1600. @Model.register("Phi3ForCausalLM")
  1601. class Phi3MiniModel(Model):
  1602. model_arch = gguf.MODEL_ARCH.PHI3
  1603. def set_vocab(self):
  1604. from sentencepiece import SentencePieceProcessor
  1605. tokenizer_path = self.dir_model / 'tokenizer.model'
  1606. if not tokenizer_path.is_file():
  1607. raise ValueError(f'Error: Missing {tokenizer_path}')
  1608. tokenizer = SentencePieceProcessor()
  1609. tokenizer.LoadFromFile(str(tokenizer_path))
  1610. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1611. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1612. scores: list[float] = [-10000.0] * vocab_size
  1613. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1614. for token_id in range(tokenizer.vocab_size()):
  1615. piece = tokenizer.IdToPiece(token_id)
  1616. text = piece.encode("utf-8")
  1617. score = tokenizer.GetScore(token_id)
  1618. toktype = SentencePieceTokenTypes.NORMAL
  1619. if tokenizer.IsUnknown(token_id):
  1620. toktype = SentencePieceTokenTypes.UNKNOWN
  1621. elif tokenizer.IsControl(token_id):
  1622. toktype = SentencePieceTokenTypes.CONTROL
  1623. elif tokenizer.IsUnused(token_id):
  1624. toktype = SentencePieceTokenTypes.UNUSED
  1625. elif tokenizer.IsByte(token_id):
  1626. toktype = SentencePieceTokenTypes.BYTE
  1627. tokens[token_id] = text
  1628. scores[token_id] = score
  1629. toktypes[token_id] = toktype
  1630. added_tokens_file = self.dir_model / 'added_tokens.json'
  1631. if added_tokens_file.is_file():
  1632. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1633. added_tokens_json = json.load(f)
  1634. for key in added_tokens_json:
  1635. token_id = added_tokens_json[key]
  1636. if token_id >= vocab_size:
  1637. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1638. continue
  1639. tokens[token_id] = key.encode("utf-8")
  1640. scores[token_id] = -1000.0
  1641. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1642. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1643. if tokenizer_config_file.is_file():
  1644. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1645. tokenizer_config_json = json.load(f)
  1646. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1647. for token_id, foken_data in added_tokens_decoder.items():
  1648. token_id = int(token_id)
  1649. token = foken_data["content"].encode("utf-8")
  1650. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1651. if tokens[token_id] != token:
  1652. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1653. tokens[token_id] = token
  1654. scores[token_id] = -1000.0
  1655. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1656. if foken_data.get("special"):
  1657. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1658. tokenizer_file = self.dir_model / 'tokenizer.json'
  1659. if tokenizer_file.is_file():
  1660. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1661. tokenizer_json = json.load(f)
  1662. added_tokens = tokenizer_json.get("added_tokens", [])
  1663. for foken_data in added_tokens:
  1664. token_id = int(foken_data["id"])
  1665. token = foken_data["content"].encode("utf-8")
  1666. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1667. if tokens[token_id] != token:
  1668. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1669. tokens[token_id] = token
  1670. scores[token_id] = -1000.0
  1671. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1672. if foken_data.get("special"):
  1673. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1674. self.gguf_writer.add_tokenizer_model("llama")
  1675. self.gguf_writer.add_tokenizer_pre("default")
  1676. self.gguf_writer.add_token_list(tokens)
  1677. self.gguf_writer.add_token_scores(scores)
  1678. self.gguf_writer.add_token_types(toktypes)
  1679. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1680. special_vocab.add_to_gguf(self.gguf_writer)
  1681. def set_gguf_parameters(self):
  1682. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1683. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1684. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1685. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1686. rms_eps = self.find_hparam(["rms_norm_eps"])
  1687. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1688. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1689. rope_dims = n_embd // n_head
  1690. self.gguf_writer.add_context_length(max_pos_embds)
  1691. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1692. self.gguf_writer.add_embedding_length(n_embd)
  1693. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1694. self.gguf_writer.add_block_count(block_count)
  1695. self.gguf_writer.add_head_count(n_head)
  1696. self.gguf_writer.add_head_count_kv(n_head_kv)
  1697. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1698. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1699. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1700. self.gguf_writer.add_file_type(self.ftype)
  1701. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1702. # write rope scaling for long context (128k) model
  1703. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1704. if rope_scaling is None:
  1705. return
  1706. scale = max_pos_embds / orig_max_pos_embds
  1707. rope_scaling_type = rope_scaling.get('type', '').lower()
  1708. if len(rope_scaling_type) == 0:
  1709. raise KeyError('Missing the required key rope_scaling.type')
  1710. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1711. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1712. elif rope_scaling_type == 'yarn':
  1713. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1714. else:
  1715. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1716. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1717. long_factors = rope_scaling.get('long_factor', None)
  1718. short_factors = rope_scaling.get('short_factor', None)
  1719. if long_factors is None or short_factors is None:
  1720. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1721. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1722. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1723. if not self.is_lora:
  1724. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1725. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1726. @Model.register("PlamoForCausalLM")
  1727. class PlamoModel(Model):
  1728. model_arch = gguf.MODEL_ARCH.PLAMO
  1729. def set_vocab(self):
  1730. self._set_vocab_sentencepiece()
  1731. def set_gguf_parameters(self):
  1732. hparams = self.hparams
  1733. block_count = hparams["num_hidden_layers"]
  1734. self.gguf_writer.add_context_length(4096) # not in config.json
  1735. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1736. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1737. self.gguf_writer.add_block_count(block_count)
  1738. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1739. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1740. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1741. self.gguf_writer.add_file_type(self.ftype)
  1742. def shuffle_attn_q_weight(self, data_torch):
  1743. assert data_torch.size() == (5120, 5120)
  1744. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1745. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1746. data_torch = torch.reshape(data_torch, (5120, 5120))
  1747. return data_torch
  1748. def shuffle_attn_output_weight(self, data_torch):
  1749. assert data_torch.size() == (5120, 5120)
  1750. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1751. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1752. data_torch = torch.reshape(data_torch, (5120, 5120))
  1753. return data_torch
  1754. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1755. del bid # unused
  1756. new_name = self.map_tensor_name(name)
  1757. # shuffle for broadcasting of gqa in ggml_mul_mat
  1758. if new_name.endswith("attn_q.weight"):
  1759. data_torch = self.shuffle_attn_q_weight(data_torch)
  1760. elif new_name.endswith("attn_output.weight"):
  1761. data_torch = self.shuffle_attn_output_weight(data_torch)
  1762. return [(new_name, data_torch)]
  1763. @Model.register("CodeShellForCausalLM")
  1764. class CodeShellModel(Model):
  1765. model_arch = gguf.MODEL_ARCH.CODESHELL
  1766. def set_gguf_parameters(self):
  1767. block_count = self.hparams["n_layer"]
  1768. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1769. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1770. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1771. self.gguf_writer.add_block_count(block_count)
  1772. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1773. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1774. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1775. self.gguf_writer.add_file_type(self.ftype)
  1776. self.gguf_writer.add_rope_freq_base(10000.0)
  1777. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1778. self.gguf_writer.add_rope_scaling_factor(1.0)
  1779. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1780. del bid # unused
  1781. new_name = self.map_tensor_name(name)
  1782. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1783. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1784. assert self.tensor_names is not None
  1785. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1786. # copy tok_embd.weight to output.weight
  1787. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1788. return tensors
  1789. @Model.register("InternLM2ForCausalLM")
  1790. class InternLM2Model(Model):
  1791. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1792. def set_vocab(self):
  1793. # (TODO): Is there a better way?
  1794. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1795. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1796. # recognized as an empty string in C++.
  1797. from sentencepiece import SentencePieceProcessor
  1798. from sentencepiece import sentencepiece_model_pb2 as model
  1799. tokenizer_path = self.dir_model / 'tokenizer.model'
  1800. tokens: list[bytes] = []
  1801. scores: list[float] = []
  1802. toktypes: list[int] = []
  1803. if not tokenizer_path.is_file():
  1804. logger.error(f'Error: Missing {tokenizer_path}')
  1805. sys.exit(1)
  1806. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1807. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1808. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1809. tokenizer = SentencePieceProcessor()
  1810. tokenizer.LoadFromFile(str(tokenizer_path))
  1811. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1812. for token_id in range(vocab_size):
  1813. piece = tokenizer.IdToPiece(token_id)
  1814. text = piece.encode("utf-8")
  1815. score = tokenizer.GetScore(token_id)
  1816. if text == b"\x00":
  1817. # (TODO): fixme
  1818. # Hack here and replace the \x00 characters.
  1819. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1820. text = "🐉".encode("utf-8")
  1821. toktype = SentencePieceTokenTypes.NORMAL
  1822. if tokenizer.IsUnknown(token_id):
  1823. toktype = SentencePieceTokenTypes.UNKNOWN
  1824. elif tokenizer.IsControl(token_id):
  1825. toktype = SentencePieceTokenTypes.CONTROL
  1826. elif tokenizer.IsUnused(token_id):
  1827. toktype = SentencePieceTokenTypes.UNUSED
  1828. elif tokenizer.IsByte(token_id):
  1829. toktype = SentencePieceTokenTypes.BYTE
  1830. # take care of ununsed raw token
  1831. if piece.startswith('[UNUSED'):
  1832. toktype = SentencePieceTokenTypes.UNUSED
  1833. tokens.append(text)
  1834. scores.append(score)
  1835. toktypes.append(toktype)
  1836. added_tokens_file = self.dir_model / 'added_tokens.json'
  1837. if added_tokens_file.is_file():
  1838. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1839. added_tokens_json = json.load(f)
  1840. for key in added_tokens_json:
  1841. tokens.append(key.encode("utf-8"))
  1842. scores.append(-1000.0)
  1843. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1844. chat_eos_token = '<|im_end|>'
  1845. chat_eos_token_id = None
  1846. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1847. if tokenizer_config_file.is_file():
  1848. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1849. tokenizer_config_json = json.load(f)
  1850. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1851. for token_id, foken_data in added_tokens_decoder.items():
  1852. token_id = int(token_id)
  1853. token = foken_data["content"]
  1854. if token == chat_eos_token:
  1855. chat_eos_token_id = token_id
  1856. token = token.encode("utf-8")
  1857. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1858. if tokens[token_id] != token:
  1859. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1860. tokens[token_id] = token
  1861. scores[token_id] = -1000.0
  1862. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1863. if foken_data.get("special"):
  1864. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1865. tokenizer_file = self.dir_model / 'tokenizer.json'
  1866. if tokenizer_file.is_file():
  1867. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1868. tokenizer_json = json.load(f)
  1869. added_tokens = tokenizer_json.get("added_tokens", [])
  1870. for foken_data in added_tokens:
  1871. token_id = int(foken_data["id"])
  1872. token = foken_data["content"]
  1873. if token == chat_eos_token:
  1874. chat_eos_token_id = token_id
  1875. token = token.encode("utf-8")
  1876. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1877. if tokens[token_id] != token:
  1878. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1879. tokens[token_id] = token
  1880. scores[token_id] = -1000.0
  1881. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1882. if foken_data.get("special"):
  1883. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1884. self.gguf_writer.add_tokenizer_model("llama")
  1885. self.gguf_writer.add_tokenizer_pre("default")
  1886. self.gguf_writer.add_token_list(tokens)
  1887. self.gguf_writer.add_token_scores(scores)
  1888. self.gguf_writer.add_token_types(toktypes)
  1889. self.gguf_writer.add_add_space_prefix(add_prefix)
  1890. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1891. old_eos = special_vocab.special_token_ids["eos"]
  1892. if chat_eos_token_id is not None:
  1893. # For the chat model, we replace the eos with '<|im_end|>'.
  1894. # TODO: this is a hack, should be fixed
  1895. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1896. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1897. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1898. " in chat mode so that the conversation can end normally.")
  1899. special_vocab.add_to_gguf(self.gguf_writer)
  1900. def set_gguf_parameters(self):
  1901. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1902. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1903. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1904. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1905. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1906. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1907. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1908. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1909. self.gguf_writer.add_file_type(self.ftype)
  1910. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1911. if self.hparams["rope_scaling"].get("type") == "linear":
  1912. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1913. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1914. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1915. num_heads = self.hparams["num_attention_heads"]
  1916. num_kv_heads = self.hparams["num_key_value_heads"]
  1917. n_embd = self.hparams["hidden_size"]
  1918. q_per_kv = num_heads // num_kv_heads
  1919. head_dim = n_embd // num_heads
  1920. num_groups = num_heads // q_per_kv
  1921. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1922. qkv = data_torch
  1923. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1924. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1925. # The model weights of q and k equire additional reshape.
  1926. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1927. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1928. v = v.reshape((-1, v.shape[-1]))
  1929. return [
  1930. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1931. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1932. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1933. ]
  1934. else:
  1935. return [(self.map_tensor_name(name), data_torch)]
  1936. @Model.register("BertModel", "CamembertModel")
  1937. class BertModel(Model):
  1938. model_arch = gguf.MODEL_ARCH.BERT
  1939. def __init__(self, *args, **kwargs):
  1940. super().__init__(*args, **kwargs)
  1941. self.vocab_size = None
  1942. def set_gguf_parameters(self):
  1943. super().set_gguf_parameters()
  1944. self.gguf_writer.add_causal_attention(False)
  1945. # get pooling path
  1946. pooling_path = None
  1947. module_path = self.dir_model / "modules.json"
  1948. if module_path.is_file():
  1949. with open(module_path, encoding="utf-8") as f:
  1950. modules = json.load(f)
  1951. for mod in modules:
  1952. if mod["type"] == "sentence_transformers.models.Pooling":
  1953. pooling_path = mod["path"]
  1954. break
  1955. # get pooling type
  1956. if pooling_path is not None:
  1957. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1958. pooling = json.load(f)
  1959. if pooling["pooling_mode_mean_tokens"]:
  1960. pooling_type = gguf.PoolingType.MEAN
  1961. elif pooling["pooling_mode_cls_token"]:
  1962. pooling_type = gguf.PoolingType.CLS
  1963. else:
  1964. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1965. self.gguf_writer.add_pooling_type(pooling_type)
  1966. def set_vocab(self):
  1967. tokens, toktypes, tokpre = self.get_vocab_base()
  1968. self.vocab_size = len(tokens)
  1969. # we need this to validate the size of the token_type embeddings
  1970. # though currently we are passing all zeros to the token_type embeddings
  1971. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1972. # convert to phantom space vocab
  1973. def phantom(tok):
  1974. if tok.startswith("[") and tok.endswith("]"):
  1975. return tok
  1976. if tok.startswith("##"):
  1977. return tok[2:]
  1978. return "\u2581" + tok
  1979. tokens = list(map(phantom, tokens))
  1980. # add vocab to gguf
  1981. self.gguf_writer.add_tokenizer_model("bert")
  1982. self.gguf_writer.add_tokenizer_pre(tokpre)
  1983. self.gguf_writer.add_token_list(tokens)
  1984. self.gguf_writer.add_token_types(toktypes)
  1985. # handle special tokens
  1986. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1987. special_vocab.add_to_gguf(self.gguf_writer)
  1988. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1989. del bid # unused
  1990. # we are only using BERT for embeddings so we don't need the pooling layer
  1991. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1992. return [] # we don't need these
  1993. return [(self.map_tensor_name(name), data_torch)]
  1994. @Model.register("NomicBertModel")
  1995. class NomicBertModel(BertModel):
  1996. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1997. def __init__(self, *args, **kwargs):
  1998. super().__init__(*args, **kwargs)
  1999. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2000. self.hparams["n_ctx"] = 2048
  2001. # SwigLU activation
  2002. assert self.hparams["activation_function"] == "swiglu"
  2003. # this doesn't do anything in the HF version
  2004. assert self.hparams["causal"] is False
  2005. # no bias tensors
  2006. assert self.hparams["qkv_proj_bias"] is False
  2007. assert self.hparams["mlp_fc1_bias"] is False
  2008. assert self.hparams["mlp_fc2_bias"] is False
  2009. # norm at end of layer
  2010. assert self.hparams["prenorm"] is False
  2011. # standard RoPE
  2012. assert self.hparams["rotary_emb_fraction"] == 1.0
  2013. assert self.hparams["rotary_emb_interleaved"] is False
  2014. assert self.hparams["rotary_emb_scale_base"] is None
  2015. def set_gguf_parameters(self):
  2016. super().set_gguf_parameters()
  2017. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2018. @Model.register("XLMRobertaModel")
  2019. class XLMRobertaModel(BertModel):
  2020. model_arch = gguf.MODEL_ARCH.BERT
  2021. def __init__(self, *args, **kwargs):
  2022. super().__init__(*args, **kwargs)
  2023. # we need the pad_token_id to know how to chop down position_embd matrix
  2024. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2025. self._position_offset = 1 + pad_token_id
  2026. if "max_position_embeddings" in self.hparams:
  2027. self.hparams["max_position_embeddings"] -= self._position_offset
  2028. else:
  2029. self._position_offset = None
  2030. def set_vocab(self):
  2031. # to avoid TypeError: Descriptors cannot be created directly
  2032. # exception when importing sentencepiece_model_pb2
  2033. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2034. from sentencepiece import SentencePieceProcessor
  2035. from sentencepiece import sentencepiece_model_pb2 as model
  2036. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2037. if not tokenizer_path.is_file():
  2038. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2039. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2040. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2041. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2042. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2043. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2044. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2045. tokenizer = SentencePieceProcessor()
  2046. tokenizer.LoadFromFile(str(tokenizer_path))
  2047. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2048. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2049. scores: list[float] = [-10000.0] * vocab_size
  2050. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2051. for token_id in range(tokenizer.vocab_size()):
  2052. piece = tokenizer.IdToPiece(token_id)
  2053. text = piece.encode("utf-8")
  2054. score = tokenizer.GetScore(token_id)
  2055. toktype = SentencePieceTokenTypes.NORMAL
  2056. if tokenizer.IsUnknown(token_id):
  2057. toktype = SentencePieceTokenTypes.UNKNOWN
  2058. elif tokenizer.IsControl(token_id):
  2059. toktype = SentencePieceTokenTypes.CONTROL
  2060. elif tokenizer.IsUnused(token_id):
  2061. toktype = SentencePieceTokenTypes.UNUSED
  2062. elif tokenizer.IsByte(token_id):
  2063. toktype = SentencePieceTokenTypes.BYTE
  2064. tokens[token_id] = text
  2065. scores[token_id] = score
  2066. toktypes[token_id] = toktype
  2067. if vocab_size > len(tokens):
  2068. pad_count = vocab_size - len(tokens)
  2069. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2070. for i in range(1, pad_count + 1):
  2071. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2072. scores.append(-1000.0)
  2073. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2074. # realign tokens (see HF tokenizer code)
  2075. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2076. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2077. toktypes = [
  2078. SentencePieceTokenTypes.CONTROL,
  2079. SentencePieceTokenTypes.CONTROL,
  2080. SentencePieceTokenTypes.CONTROL,
  2081. SentencePieceTokenTypes.UNKNOWN,
  2082. ] + toktypes[3:-1]
  2083. self.gguf_writer.add_tokenizer_model("t5")
  2084. self.gguf_writer.add_tokenizer_pre("default")
  2085. self.gguf_writer.add_token_list(tokens)
  2086. self.gguf_writer.add_token_scores(scores)
  2087. self.gguf_writer.add_token_types(toktypes)
  2088. self.gguf_writer.add_add_space_prefix(add_prefix)
  2089. self.gguf_writer.add_token_type_count(1)
  2090. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2091. if precompiled_charsmap:
  2092. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2093. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2094. special_vocab.add_to_gguf(self.gguf_writer)
  2095. self.gguf_writer.add_add_bos_token(True)
  2096. self.gguf_writer.add_add_eos_token(True)
  2097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2098. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2099. if name == "embeddings.position_embeddings.weight":
  2100. if self._position_offset is not None:
  2101. data_torch = data_torch[self._position_offset:,:]
  2102. return super().modify_tensors(data_torch, name, bid)
  2103. @Model.register("GemmaForCausalLM")
  2104. class GemmaModel(Model):
  2105. model_arch = gguf.MODEL_ARCH.GEMMA
  2106. def set_vocab(self):
  2107. self._set_vocab_sentencepiece()
  2108. # TODO: these special tokens should be exported only for the CodeGemma family
  2109. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2110. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2111. special_vocab._set_special_token("prefix", 67)
  2112. special_vocab._set_special_token("suffix", 69)
  2113. special_vocab._set_special_token("middle", 68)
  2114. special_vocab._set_special_token("fsep", 70)
  2115. special_vocab._set_special_token("eot", 107)
  2116. special_vocab.chat_template = None # do not add it twice
  2117. special_vocab.add_to_gguf(self.gguf_writer)
  2118. self.gguf_writer.add_add_space_prefix(False)
  2119. def set_gguf_parameters(self):
  2120. hparams = self.hparams
  2121. block_count = hparams["num_hidden_layers"]
  2122. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2123. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2124. self.gguf_writer.add_block_count(block_count)
  2125. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2126. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2127. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2128. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2129. self.gguf_writer.add_key_length(hparams["head_dim"])
  2130. self.gguf_writer.add_value_length(hparams["head_dim"])
  2131. self.gguf_writer.add_file_type(self.ftype)
  2132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2133. del bid # unused
  2134. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2135. # To prevent errors, skip loading lm_head.weight.
  2136. if name == "lm_head.weight":
  2137. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2138. return []
  2139. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2140. if name.endswith("norm.weight"):
  2141. data_torch = data_torch + 1
  2142. return [(self.map_tensor_name(name), data_torch)]
  2143. @Model.register("Gemma2ForCausalLM")
  2144. class Gemma2Model(Model):
  2145. model_arch = gguf.MODEL_ARCH.GEMMA2
  2146. def set_vocab(self):
  2147. self._set_vocab_sentencepiece()
  2148. self.gguf_writer.add_add_space_prefix(False)
  2149. def set_gguf_parameters(self):
  2150. hparams = self.hparams
  2151. block_count = hparams["num_hidden_layers"]
  2152. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2153. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2154. self.gguf_writer.add_block_count(block_count)
  2155. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2156. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2157. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2158. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2159. self.gguf_writer.add_key_length(hparams["head_dim"])
  2160. self.gguf_writer.add_value_length(hparams["head_dim"])
  2161. self.gguf_writer.add_file_type(self.ftype)
  2162. self.gguf_writer.add_attn_logit_softcapping(
  2163. self.hparams["attn_logit_softcapping"]
  2164. )
  2165. self.gguf_writer.add_final_logit_softcapping(
  2166. self.hparams["final_logit_softcapping"]
  2167. )
  2168. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2169. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2170. del bid # unused
  2171. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2172. # To prevent errors, skip loading lm_head.weight.
  2173. if name == "lm_head.weight":
  2174. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2175. return []
  2176. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2177. if name.endswith("norm.weight"):
  2178. data_torch = data_torch + 1
  2179. return [(self.map_tensor_name(name), data_torch)]
  2180. @Model.register("Starcoder2ForCausalLM")
  2181. class StarCoder2Model(Model):
  2182. model_arch = gguf.MODEL_ARCH.STARCODER2
  2183. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2184. class MambaModel(Model):
  2185. model_arch = gguf.MODEL_ARCH.MAMBA
  2186. def set_vocab(self):
  2187. vocab_size = self.hparams["vocab_size"]
  2188. # Round vocab size to next multiple of 8
  2189. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2190. # pad using ceiling division
  2191. # ref: https://stackoverflow.com/a/17511341/22827863
  2192. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2193. self.hparams["vocab_size"] = vocab_size
  2194. if (self.dir_model / "tokenizer.json").is_file():
  2195. self._set_vocab_gpt2()
  2196. elif (self.dir_model / "tokenizer.model").is_file():
  2197. self._set_vocab_sentencepiece()
  2198. else:
  2199. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2200. self._set_vocab_builtin("gpt-neox", vocab_size)
  2201. def set_gguf_parameters(self):
  2202. d_model = self.find_hparam(["hidden_size", "d_model"])
  2203. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2204. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2205. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2206. # ceiling division
  2207. # ref: https://stackoverflow.com/a/17511341/22827863
  2208. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2209. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2210. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2211. use_dt_b_c_norm = False
  2212. # For falconmamba we do apply RMS norm on B / DT and C layers
  2213. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2214. use_dt_b_c_norm = True
  2215. # Fail early for models which don't have a block expansion factor of 2
  2216. assert d_inner == 2 * d_model
  2217. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2218. self.gguf_writer.add_embedding_length(d_model)
  2219. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2220. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2221. self.gguf_writer.add_block_count(self.block_count)
  2222. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2223. self.gguf_writer.add_ssm_inner_size(d_inner)
  2224. self.gguf_writer.add_ssm_state_size(d_state)
  2225. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2226. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2227. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2228. self.gguf_writer.add_file_type(self.ftype)
  2229. _tok_embd = None
  2230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2231. del bid # unused
  2232. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2233. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2234. new_name = self.map_tensor_name(name)
  2235. if name.endswith(".A_log"):
  2236. logger.debug("A_log --> A ==> " + new_name)
  2237. data_torch = -torch.exp(data_torch)
  2238. # assuming token_embd.weight is seen before output.weight
  2239. if self._tok_embd is not None and new_name == output_name:
  2240. if torch.equal(self._tok_embd, data_torch):
  2241. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2242. return []
  2243. elif new_name == tok_embd_name:
  2244. self._tok_embd = data_torch
  2245. return [(new_name, data_torch)]
  2246. @Model.register("CohereForCausalLM")
  2247. class CommandR2Model(Model):
  2248. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2249. def __init__(self, *args, **kwargs):
  2250. super().__init__(*args, **kwargs)
  2251. # max_position_embeddings = 8192 in config.json but model was actually
  2252. # trained on 128k context length
  2253. # aya-23 models don't have model_max_length specified
  2254. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2255. def set_gguf_parameters(self):
  2256. super().set_gguf_parameters()
  2257. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2258. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2259. @Model.register("OlmoForCausalLM")
  2260. @Model.register("OLMoForCausalLM")
  2261. class OlmoModel(Model):
  2262. model_arch = gguf.MODEL_ARCH.OLMO
  2263. def set_gguf_parameters(self):
  2264. super().set_gguf_parameters()
  2265. self.gguf_writer.add_layer_norm_eps(1e-5)
  2266. clip_qkv = self.hparams.get("clip_qkv")
  2267. if clip_qkv is not None:
  2268. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2269. # Same as super class, but permuting q_proj, k_proj
  2270. # Copied from: LlamaModel
  2271. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2272. del bid # unused
  2273. n_head = self.hparams["num_attention_heads"]
  2274. n_kv_head = self.hparams.get("num_key_value_heads")
  2275. if name.endswith("q_proj.weight"):
  2276. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2277. if name.endswith("k_proj.weight"):
  2278. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2279. return [(self.map_tensor_name(name), data_torch)]
  2280. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2281. class JinaBertV2Model(BertModel):
  2282. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2283. def __init__(self, *args, **kwargs):
  2284. super().__init__(*args, **kwargs)
  2285. self.intermediate_size = self.hparams["intermediate_size"]
  2286. def get_tensors(self):
  2287. for name, data in super().get_tensors():
  2288. if 'gated_layer' in name:
  2289. d1 = data[:self.intermediate_size, :]
  2290. name1 = name.replace('gated_layers', 'gated_layers_w')
  2291. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2292. d2 = data[self.intermediate_size:, :]
  2293. name2 = name.replace('gated_layers', 'gated_layers_v')
  2294. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2295. yield name1, d1
  2296. yield name2, d2
  2297. continue
  2298. yield name, data
  2299. def set_vocab(self):
  2300. tokenizer_class = 'BertTokenizer'
  2301. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2302. tokenizer_class = json.load(f)['tokenizer_class']
  2303. if tokenizer_class == 'BertTokenizer':
  2304. super().set_vocab()
  2305. elif tokenizer_class == 'RobertaTokenizer':
  2306. self._set_vocab_gpt2()
  2307. self.gguf_writer.add_token_type_count(2)
  2308. else:
  2309. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2310. self.gguf_writer.add_add_bos_token(True)
  2311. self.gguf_writer.add_add_eos_token(True)
  2312. @Model.register("OpenELMForCausalLM")
  2313. class OpenELMModel(Model):
  2314. model_arch = gguf.MODEL_ARCH.OPENELM
  2315. @staticmethod
  2316. def _make_divisible(v: float | int, divisor: int) -> int:
  2317. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2318. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2319. # Make sure that round down does not go down by more than 10%.
  2320. if new_v < 0.9 * v:
  2321. new_v += divisor
  2322. return new_v
  2323. def __init__(self, *args, **kwargs):
  2324. super().__init__(*args, **kwargs)
  2325. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2326. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2327. self._n_embd: int = self.hparams["model_dim"]
  2328. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2329. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2330. self._ffn_dims: list[int] = [
  2331. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2332. for multiplier in ffn_multipliers
  2333. ]
  2334. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2335. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2336. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2337. def set_vocab(self):
  2338. try:
  2339. self._set_vocab_sentencepiece()
  2340. except FileNotFoundError:
  2341. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2342. def set_gguf_parameters(self):
  2343. n_embd = self._n_embd
  2344. head_dim = self.hparams["head_dim"]
  2345. rot_pct = 1.0
  2346. assert self.block_count == len(self._num_kv_heads)
  2347. assert self.block_count == len(self._num_query_heads)
  2348. assert self.block_count == len(self._ffn_dims)
  2349. self.gguf_writer.add_block_count(self.block_count)
  2350. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2351. self.gguf_writer.add_embedding_length(n_embd)
  2352. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2353. self.gguf_writer.add_head_count(self._num_query_heads)
  2354. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2355. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2356. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2357. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2358. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2359. self.gguf_writer.add_key_length(head_dim)
  2360. self.gguf_writer.add_value_length(head_dim)
  2361. self.gguf_writer.add_file_type(self.ftype)
  2362. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2363. if "n_layers" in keys:
  2364. return self.hparams["num_transformer_layers"]
  2365. return super().find_hparam(keys, optional)
  2366. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2367. # split ff
  2368. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2369. ff_dim = self._ffn_dims[bid]
  2370. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2371. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2372. return
  2373. yield (self.map_tensor_name(name), data_torch)
  2374. @Model.register("ArcticForCausalLM")
  2375. class ArcticModel(Model):
  2376. model_arch = gguf.MODEL_ARCH.ARCTIC
  2377. def set_vocab(self):
  2378. # The reason for using a custom implementation here is that the
  2379. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2380. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2381. from sentencepiece import SentencePieceProcessor
  2382. tokenizer_path = self.dir_model / 'tokenizer.model'
  2383. if not tokenizer_path.is_file():
  2384. logger.error(f'Error: Missing {tokenizer_path}')
  2385. sys.exit(1)
  2386. # Read the whole vocabulary from the tokenizer.model file
  2387. tokenizer = SentencePieceProcessor()
  2388. tokenizer.LoadFromFile(str(tokenizer_path))
  2389. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2390. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2391. scores: list[float] = [-10000.0] * vocab_size
  2392. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2393. for token_id in range(tokenizer.vocab_size()):
  2394. piece = tokenizer.IdToPiece(token_id)
  2395. text = piece.encode("utf-8")
  2396. score = tokenizer.GetScore(token_id)
  2397. toktype = SentencePieceTokenTypes.NORMAL
  2398. if tokenizer.IsUnknown(token_id):
  2399. toktype = SentencePieceTokenTypes.UNKNOWN
  2400. elif tokenizer.IsControl(token_id):
  2401. toktype = SentencePieceTokenTypes.CONTROL
  2402. elif tokenizer.IsUnused(token_id):
  2403. toktype = SentencePieceTokenTypes.UNUSED
  2404. elif tokenizer.IsByte(token_id):
  2405. toktype = SentencePieceTokenTypes.BYTE
  2406. tokens[token_id] = text
  2407. scores[token_id] = score
  2408. toktypes[token_id] = toktype
  2409. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2410. # of information about added/redefined tokens and modify them accordingly.
  2411. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2412. if tokenizer_config_file.is_file():
  2413. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2414. tokenizer_config_json = json.load(f)
  2415. if "added_tokens_decoder" in tokenizer_config_json:
  2416. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2417. for token_id, token_json in added_tokens_decoder.items():
  2418. token_id = int(token_id)
  2419. if token_id >= vocab_size:
  2420. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2421. continue
  2422. token_content = token_json["content"]
  2423. token_type = SentencePieceTokenTypes.USER_DEFINED
  2424. token_score = -10000.0
  2425. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2426. # Set the score to 0.0 as in the original tokenizer.model
  2427. if ("special" in token_json) and token_json["special"]:
  2428. if token_content == tokenizer_config_json["unk_token"]:
  2429. token_type = SentencePieceTokenTypes.UNKNOWN
  2430. else:
  2431. token_type = SentencePieceTokenTypes.CONTROL
  2432. token_score = 0.0
  2433. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2434. tokens[token_id] = token_content.encode("utf-8")
  2435. toktypes[token_id] = token_type
  2436. scores[token_id] = token_score
  2437. self.gguf_writer.add_tokenizer_model("llama")
  2438. self.gguf_writer.add_tokenizer_pre("default")
  2439. self.gguf_writer.add_token_list(tokens)
  2440. self.gguf_writer.add_token_scores(scores)
  2441. self.gguf_writer.add_token_types(toktypes)
  2442. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2443. special_vocab.add_to_gguf(self.gguf_writer)
  2444. def set_gguf_parameters(self):
  2445. super().set_gguf_parameters()
  2446. hparams = self.hparams
  2447. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2448. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2449. _experts: list[dict[str, Tensor]] | None = None
  2450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2451. n_head = self.hparams["num_attention_heads"]
  2452. n_kv_head = self.hparams.get("num_key_value_heads")
  2453. if name.endswith("q_proj.weight"):
  2454. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2455. if name.endswith("k_proj.weight"):
  2456. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2457. # process the experts separately
  2458. if name.find("block_sparse_moe.experts") != -1:
  2459. n_experts = self.hparams["num_local_experts"]
  2460. assert bid is not None
  2461. if self._experts is None:
  2462. self._experts = [{} for _ in range(self.block_count)]
  2463. self._experts[bid][name] = data_torch
  2464. if len(self._experts[bid]) >= n_experts * 3:
  2465. tensors: list[tuple[str, Tensor]] = []
  2466. # merge the experts into a single 3d tensor
  2467. for wid in ["w1", "w2", "w3"]:
  2468. datas: list[Tensor] = []
  2469. for xid in range(n_experts):
  2470. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2471. datas.append(self._experts[bid][ename])
  2472. del self._experts[bid][ename]
  2473. data_torch = torch.stack(datas, dim=0)
  2474. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2475. new_name = self.map_tensor_name(merged_name)
  2476. tensors.append((new_name, data_torch))
  2477. return tensors
  2478. else:
  2479. return []
  2480. return [(self.map_tensor_name(name), data_torch)]
  2481. def prepare_tensors(self):
  2482. super().prepare_tensors()
  2483. if self._experts is not None:
  2484. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2485. experts = [k for d in self._experts for k in d.keys()]
  2486. if len(experts) > 0:
  2487. raise ValueError(f"Unprocessed experts: {experts}")
  2488. @Model.register("DeepseekV2ForCausalLM")
  2489. class DeepseekV2Model(Model):
  2490. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2491. def set_vocab(self):
  2492. self._set_vocab_gpt2()
  2493. def set_gguf_parameters(self):
  2494. super().set_gguf_parameters()
  2495. hparams = self.hparams
  2496. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2497. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2498. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2499. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2500. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2501. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2502. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2503. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2504. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2505. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2506. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2507. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2508. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2509. if self.hparams["rope_scaling"].get("type") == "yarn":
  2510. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2511. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2512. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2513. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2514. _experts: list[dict[str, Tensor]] | None = None
  2515. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2516. # process the experts separately
  2517. if name.find("mlp.experts") != -1:
  2518. n_experts = self.hparams["n_routed_experts"]
  2519. assert bid is not None
  2520. if self._experts is None:
  2521. self._experts = [{} for _ in range(self.block_count)]
  2522. self._experts[bid][name] = data_torch
  2523. if len(self._experts[bid]) >= n_experts * 3:
  2524. tensors: list[tuple[str, Tensor]] = []
  2525. # merge the experts into a single 3d tensor
  2526. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2527. datas: list[Tensor] = []
  2528. for xid in range(n_experts):
  2529. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2530. datas.append(self._experts[bid][ename])
  2531. del self._experts[bid][ename]
  2532. data_torch = torch.stack(datas, dim=0)
  2533. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2534. new_name = self.map_tensor_name(merged_name)
  2535. tensors.append((new_name, data_torch))
  2536. return tensors
  2537. else:
  2538. return []
  2539. return [(self.map_tensor_name(name), data_torch)]
  2540. def prepare_tensors(self):
  2541. super().prepare_tensors()
  2542. if self._experts is not None:
  2543. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2544. experts = [k for d in self._experts for k in d.keys()]
  2545. if len(experts) > 0:
  2546. raise ValueError(f"Unprocessed experts: {experts}")
  2547. @Model.register("T5WithLMHeadModel")
  2548. @Model.register("T5ForConditionalGeneration")
  2549. @Model.register("MT5ForConditionalGeneration")
  2550. @Model.register("UMT5ForConditionalGeneration")
  2551. class T5Model(Model):
  2552. model_arch = gguf.MODEL_ARCH.T5
  2553. def __init__(self, *args, **kwargs):
  2554. super().__init__(*args, **kwargs)
  2555. self.shared_token_embeddings_found = False
  2556. def set_vocab(self):
  2557. # to avoid TypeError: Descriptors cannot be created directly
  2558. # exception when importing sentencepiece_model_pb2
  2559. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2560. from sentencepiece import SentencePieceProcessor
  2561. from sentencepiece import sentencepiece_model_pb2 as model
  2562. tokenizer_path = self.dir_model / 'tokenizer.model'
  2563. # many older models use spiece.model tokenizer model filename
  2564. if not tokenizer_path.is_file():
  2565. tokenizer_path = self.dir_model / 'spiece.model'
  2566. if not tokenizer_path.is_file():
  2567. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2568. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2569. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2570. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2571. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2572. # assure the tokenizer model file name is correct
  2573. assert tokenizer_path.name == 'tokenizer.model'
  2574. return self._set_vocab_sentencepiece()
  2575. else:
  2576. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2577. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2578. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2579. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2580. tokenizer = SentencePieceProcessor()
  2581. tokenizer.LoadFromFile(str(tokenizer_path))
  2582. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2583. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2584. scores: list[float] = [-10000.0] * vocab_size
  2585. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2586. for token_id in range(tokenizer.vocab_size()):
  2587. piece = tokenizer.IdToPiece(token_id)
  2588. text = piece.encode("utf-8")
  2589. score = tokenizer.GetScore(token_id)
  2590. toktype = SentencePieceTokenTypes.NORMAL
  2591. if tokenizer.IsUnknown(token_id):
  2592. toktype = SentencePieceTokenTypes.UNKNOWN
  2593. elif tokenizer.IsControl(token_id):
  2594. toktype = SentencePieceTokenTypes.CONTROL
  2595. elif tokenizer.IsUnused(token_id):
  2596. toktype = SentencePieceTokenTypes.UNUSED
  2597. elif tokenizer.IsByte(token_id):
  2598. toktype = SentencePieceTokenTypes.BYTE
  2599. tokens[token_id] = text
  2600. scores[token_id] = score
  2601. toktypes[token_id] = toktype
  2602. added_tokens_file = self.dir_model / 'added_tokens.json'
  2603. if added_tokens_file.is_file():
  2604. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2605. added_tokens_json = json.load(f)
  2606. for key in added_tokens_json:
  2607. token_id = added_tokens_json[key]
  2608. if token_id >= vocab_size:
  2609. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2610. continue
  2611. tokens[token_id] = key.encode("utf-8")
  2612. scores[token_id] = -1000.0
  2613. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2614. if vocab_size > len(tokens):
  2615. pad_count = vocab_size - len(tokens)
  2616. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2617. for i in range(1, pad_count + 1):
  2618. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2619. scores.append(-1000.0)
  2620. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2621. self.gguf_writer.add_tokenizer_model("t5")
  2622. self.gguf_writer.add_tokenizer_pre("default")
  2623. self.gguf_writer.add_token_list(tokens)
  2624. self.gguf_writer.add_token_scores(scores)
  2625. self.gguf_writer.add_token_types(toktypes)
  2626. self.gguf_writer.add_add_space_prefix(add_prefix)
  2627. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2628. if precompiled_charsmap:
  2629. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2630. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2631. special_vocab.add_to_gguf(self.gguf_writer)
  2632. self.gguf_writer.add_add_bos_token(False)
  2633. self.gguf_writer.add_add_eos_token(True)
  2634. def set_gguf_parameters(self):
  2635. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2636. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2637. n_ctx = 512
  2638. self.gguf_writer.add_context_length(n_ctx)
  2639. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2640. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2641. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2642. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2643. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2644. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2645. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2646. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2647. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2648. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2649. self.gguf_writer.add_file_type(self.ftype)
  2650. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2651. del bid # unused
  2652. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2653. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2654. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2655. # and decoder and ignore the remaining ones.
  2656. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2657. if not self.shared_token_embeddings_found:
  2658. name = "shared.weight"
  2659. self.shared_token_embeddings_found = True
  2660. else:
  2661. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2662. return []
  2663. return [(self.map_tensor_name(name), data_torch)]
  2664. @Model.register("T5EncoderModel")
  2665. class T5EncoderModel(Model):
  2666. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2667. def __init__(self, *args, **kwargs):
  2668. super().__init__(*args, **kwargs)
  2669. self.shared_token_embeddings_found = False
  2670. def set_vocab(self):
  2671. # to avoid TypeError: Descriptors cannot be created directly
  2672. # exception when importing sentencepiece_model_pb2
  2673. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2674. from sentencepiece import SentencePieceProcessor
  2675. from sentencepiece import sentencepiece_model_pb2 as model
  2676. tokenizer_path = self.dir_model / 'tokenizer.model'
  2677. # many older models use spiece.model tokenizer model filename
  2678. if not tokenizer_path.is_file():
  2679. tokenizer_path = self.dir_model / 'spiece.model'
  2680. if not tokenizer_path.is_file():
  2681. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2682. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2683. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2684. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2685. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2686. # assure the tokenizer model file name is correct
  2687. assert tokenizer_path.name == 'tokenizer.model'
  2688. return self._set_vocab_sentencepiece()
  2689. else:
  2690. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2691. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2692. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2693. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2694. tokenizer = SentencePieceProcessor()
  2695. tokenizer.LoadFromFile(str(tokenizer_path))
  2696. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2697. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2698. scores: list[float] = [-10000.0] * vocab_size
  2699. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2700. for token_id in range(tokenizer.vocab_size()):
  2701. piece = tokenizer.IdToPiece(token_id)
  2702. text = piece.encode("utf-8")
  2703. score = tokenizer.GetScore(token_id)
  2704. toktype = SentencePieceTokenTypes.NORMAL
  2705. if tokenizer.IsUnknown(token_id):
  2706. toktype = SentencePieceTokenTypes.UNKNOWN
  2707. elif tokenizer.IsControl(token_id):
  2708. toktype = SentencePieceTokenTypes.CONTROL
  2709. elif tokenizer.IsUnused(token_id):
  2710. toktype = SentencePieceTokenTypes.UNUSED
  2711. elif tokenizer.IsByte(token_id):
  2712. toktype = SentencePieceTokenTypes.BYTE
  2713. tokens[token_id] = text
  2714. scores[token_id] = score
  2715. toktypes[token_id] = toktype
  2716. added_tokens_file = self.dir_model / 'added_tokens.json'
  2717. if added_tokens_file.is_file():
  2718. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2719. added_tokens_json = json.load(f)
  2720. for key in added_tokens_json:
  2721. token_id = added_tokens_json[key]
  2722. if token_id >= vocab_size:
  2723. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2724. continue
  2725. tokens[token_id] = key.encode("utf-8")
  2726. scores[token_id] = -1000.0
  2727. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2728. if vocab_size > len(tokens):
  2729. pad_count = vocab_size - len(tokens)
  2730. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2731. for i in range(1, pad_count + 1):
  2732. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2733. scores.append(-1000.0)
  2734. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2735. self.gguf_writer.add_tokenizer_model("t5")
  2736. self.gguf_writer.add_tokenizer_pre("default")
  2737. self.gguf_writer.add_token_list(tokens)
  2738. self.gguf_writer.add_token_scores(scores)
  2739. self.gguf_writer.add_token_types(toktypes)
  2740. self.gguf_writer.add_add_space_prefix(add_prefix)
  2741. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2742. if precompiled_charsmap:
  2743. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2744. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2745. special_vocab.add_to_gguf(self.gguf_writer)
  2746. self.gguf_writer.add_add_bos_token(False)
  2747. self.gguf_writer.add_add_eos_token(True)
  2748. def set_gguf_parameters(self):
  2749. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2750. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2751. n_ctx = 512
  2752. self.gguf_writer.add_context_length(n_ctx)
  2753. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2754. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2755. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2756. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2757. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2758. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2759. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2760. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2761. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2762. self.gguf_writer.add_file_type(self.ftype)
  2763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2764. del bid # unused
  2765. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2766. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2767. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2768. # and decoder and ignore the remaining ones.
  2769. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2770. if not self.shared_token_embeddings_found:
  2771. name = "shared.weight"
  2772. self.shared_token_embeddings_found = True
  2773. else:
  2774. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2775. return []
  2776. return [(self.map_tensor_name(name), data_torch)]
  2777. @Model.register("JAISLMHeadModel")
  2778. class JaisModel(Model):
  2779. model_arch = gguf.MODEL_ARCH.JAIS
  2780. def __init__(self, *args, **kwargs):
  2781. super().__init__(*args, **kwargs)
  2782. # SwigLU activation
  2783. assert self.hparams["activation_function"] == "swiglu"
  2784. # ALiBi position embedding
  2785. assert self.hparams["position_embedding_type"] == "alibi"
  2786. # Embeddings scale
  2787. self.embeddings_scale = 1.0
  2788. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2789. self.output_is_wte = False
  2790. if 'mup_embeddings_scale' in self.hparams:
  2791. self.output_is_wte = True # Hack (?)
  2792. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2793. elif 'embeddings_scale' in self.hparams:
  2794. self.embeddings_scale = self.hparams['embeddings_scale']
  2795. else:
  2796. assert False
  2797. self.width_scale = 1.0
  2798. if 'mup_output_alpha' in self.hparams:
  2799. assert 'mup_width_scale' in self.hparams
  2800. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2801. elif 'width_scale' in self.hparams:
  2802. self.width_scale = self.hparams['width_scale']
  2803. else:
  2804. assert False
  2805. self.max_alibi_bias = 8.0
  2806. def set_vocab(self):
  2807. self._set_vocab_gpt2()
  2808. def set_gguf_parameters(self):
  2809. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2810. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2811. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2812. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2813. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2814. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2815. self.gguf_writer.add_file_type(self.ftype)
  2816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2817. del bid # unused
  2818. tensors: list[tuple[str, Tensor]] = []
  2819. # we don't need these
  2820. if name.endswith((".attn.bias")):
  2821. return tensors
  2822. if name.endswith(("relative_pe.slopes")):
  2823. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2824. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2825. # but Jais's PyTorch model simply precalculates the slope values and places them
  2826. # in relative_pes.slopes
  2827. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2828. first_val = float(data_torch[0].item())
  2829. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2830. return tensors
  2831. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2832. data_torch = data_torch.transpose(1, 0)
  2833. new_name = self.map_tensor_name(name)
  2834. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2835. tensors.append((new_name, data_torch * self.embeddings_scale))
  2836. if self.output_is_wte:
  2837. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2838. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2839. assert not self.output_is_wte
  2840. tensors.append((new_name, data_torch * self.width_scale))
  2841. else:
  2842. tensors.append((new_name, data_torch))
  2843. return tensors
  2844. def prepare_tensors(self):
  2845. super().prepare_tensors()
  2846. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2847. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2848. class ChatGLMModel(Model):
  2849. model_arch = gguf.MODEL_ARCH.CHATGLM
  2850. def set_vocab_chatglm3(self):
  2851. dir_model = self.dir_model
  2852. hparams = self.hparams
  2853. tokens: list[bytes] = []
  2854. toktypes: list[int] = []
  2855. scores: list[float] = []
  2856. from transformers import AutoTokenizer
  2857. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2858. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2859. assert max(tokenizer.get_vocab().values()) < vocab_size
  2860. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2861. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2862. for token_id in range(vocab_size):
  2863. piece = tokenizer._convert_id_to_token(token_id)
  2864. if token_id == 0:
  2865. piece = "<unk>"
  2866. elif token_id == 1:
  2867. piece = "<bos>"
  2868. elif token_id == 2:
  2869. piece = "<eos>"
  2870. text = piece.encode("utf-8")
  2871. score = 0.0
  2872. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2873. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2874. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2875. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2876. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2877. if piece in special_tokens:
  2878. toktype = SentencePieceTokenTypes.CONTROL
  2879. elif len(piece) == 0:
  2880. text = f"[PAD{token_id}]".encode("utf-8")
  2881. toktype = SentencePieceTokenTypes.UNUSED
  2882. else:
  2883. toktype = SentencePieceTokenTypes.USER_DEFINED
  2884. tokens.append(text)
  2885. scores.append(score)
  2886. toktypes.append(toktype)
  2887. continue
  2888. toktype = SentencePieceTokenTypes.NORMAL
  2889. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2890. toktype = SentencePieceTokenTypes.UNKNOWN
  2891. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2892. toktype = SentencePieceTokenTypes.CONTROL
  2893. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2894. toktype = SentencePieceTokenTypes.UNUSED
  2895. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2896. toktype = SentencePieceTokenTypes.BYTE
  2897. tokens.append(text)
  2898. scores.append(score)
  2899. toktypes.append(toktype)
  2900. self.gguf_writer.add_tokenizer_model("llama")
  2901. # glm3 needs prefix and suffix formatted as:
  2902. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2903. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2904. self.gguf_writer.add_token_list(tokens)
  2905. self.gguf_writer.add_token_scores(scores)
  2906. self.gguf_writer.add_token_types(toktypes)
  2907. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2908. special_vocab.add_to_gguf(self.gguf_writer)
  2909. @staticmethod
  2910. def token_bytes_to_string(b):
  2911. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2912. byte_encoder = bytes_to_unicode()
  2913. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2914. @staticmethod
  2915. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2916. parts = [bytes([b]) for b in token]
  2917. while True:
  2918. min_idx = None
  2919. min_rank = None
  2920. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2921. rank = mergeable_ranks.get(pair[0] + pair[1])
  2922. if rank is not None and (min_rank is None or rank < min_rank):
  2923. min_idx = i
  2924. min_rank = rank
  2925. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2926. break
  2927. assert min_idx is not None
  2928. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2929. return parts
  2930. def set_vocab(self):
  2931. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2932. self.set_vocab_chatglm3()
  2933. return
  2934. dir_model = self.dir_model
  2935. hparams = self.hparams
  2936. tokens: list[str] = []
  2937. toktypes: list[int] = []
  2938. from transformers import AutoTokenizer
  2939. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2940. vocab_size = hparams["padded_vocab_size"]
  2941. assert max(tokenizer.get_vocab().values()) < vocab_size
  2942. tokpre = self.get_vocab_base_pre(tokenizer)
  2943. merges = []
  2944. vocab = {}
  2945. mergeable_ranks = tokenizer.mergeable_ranks
  2946. for token, rank in mergeable_ranks.items():
  2947. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2948. if len(token) == 1:
  2949. continue
  2950. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2951. assert len(merged) >= 2 and len(merged) <= 7
  2952. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2953. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2954. added_vocab = tokenizer.get_added_vocab()
  2955. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2956. for i in range(vocab_size):
  2957. if i not in reverse_vocab:
  2958. tokens.append(f"[PAD{i}]")
  2959. toktypes.append(gguf.TokenType.UNUSED)
  2960. elif reverse_vocab[i] in added_vocab:
  2961. tokens.append(reverse_vocab[i])
  2962. if tokenizer.added_tokens_decoder[i].special:
  2963. toktypes.append(gguf.TokenType.CONTROL)
  2964. else:
  2965. toktypes.append(gguf.TokenType.USER_DEFINED)
  2966. else:
  2967. tokens.append(reverse_vocab[i])
  2968. toktypes.append(gguf.TokenType.NORMAL)
  2969. self.gguf_writer.add_tokenizer_model("gpt2")
  2970. self.gguf_writer.add_tokenizer_pre(tokpre)
  2971. self.gguf_writer.add_token_list(tokens)
  2972. self.gguf_writer.add_token_types(toktypes)
  2973. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2974. special_vocab.merges = merges
  2975. # only add special tokens when they were not already loaded from config.json
  2976. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2977. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2978. # this one is usually not in config.json anyway
  2979. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2980. special_vocab.add_to_gguf(self.gguf_writer)
  2981. def set_gguf_parameters(self):
  2982. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2983. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2984. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2985. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2986. self.gguf_writer.add_embedding_length(n_embed)
  2987. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2988. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2989. self.gguf_writer.add_head_count(n_head)
  2990. self.gguf_writer.add_head_count_kv(n_head_kv)
  2991. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2992. self.gguf_writer.add_file_type(self.ftype)
  2993. self.gguf_writer.add_rope_dimension_count(64)
  2994. self.gguf_writer.add_add_bos_token(False)
  2995. rope_freq = 10000
  2996. if "rope_ratio" in self.hparams:
  2997. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2998. self.gguf_writer.add_rope_freq_base(rope_freq)
  2999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3000. del bid # unused
  3001. if name.endswith(".rotary_pos_emb.inv_freq"):
  3002. return []
  3003. name = name.removeprefix("transformer.")
  3004. return [(self.map_tensor_name(name), data_torch)]
  3005. @Model.register("NemotronForCausalLM")
  3006. class NemotronModel(Model):
  3007. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3008. def set_vocab(self):
  3009. self._set_vocab_sentencepiece()
  3010. self.gguf_writer.add_pad_token_id(0)
  3011. self.gguf_writer.add_unk_token_id(1)
  3012. def set_gguf_parameters(self):
  3013. super().set_gguf_parameters()
  3014. hparams = self.hparams
  3015. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3016. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3017. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3018. # * Partial RoPE
  3019. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3020. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3021. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3022. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3023. # * RopeScaling for Nemotron
  3024. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3025. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3026. else:
  3027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3028. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3030. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3031. # model.layers.{l}.input_layernorm.weight
  3032. # model.layers.{l}.post_attention_layernorm.weight
  3033. # model.norm.weight
  3034. if name.endswith("norm.weight"):
  3035. data_torch = data_torch + 1
  3036. return [(self.map_tensor_name(name), data_torch)]
  3037. @Model.register("ExaoneForCausalLM")
  3038. class ExaoneModel(Model):
  3039. model_arch = gguf.MODEL_ARCH.EXAONE
  3040. def set_gguf_parameters(self):
  3041. hparams = self.hparams
  3042. assert (hparams["activation_function"] == "silu")
  3043. max_position_embeddings = hparams["max_position_embeddings"]
  3044. embed_dim = hparams["hidden_size"]
  3045. num_heads = hparams["num_attention_heads"]
  3046. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3047. layer_norm_eps = hparams["layer_norm_epsilon"]
  3048. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3049. num_layers = hparams["num_layers"]
  3050. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3051. # attention_dropout_rate = hparams["attention_dropout"]
  3052. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3053. # embed_dropout_rate = hparams["embed_dropout"]
  3054. self.gguf_writer.add_embedding_length(embed_dim)
  3055. self.gguf_writer.add_head_count(num_heads)
  3056. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3057. self.gguf_writer.add_context_length(max_position_embeddings)
  3058. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3059. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3060. self.gguf_writer.add_block_count(num_layers)
  3061. self.gguf_writer.add_file_type(self.ftype)
  3062. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3063. self.gguf_writer.add_rope_freq_base(rope_theta)
  3064. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3065. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3066. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3067. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3068. if hparams["rope_scaling"].get("type") == "linear":
  3069. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3070. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3071. def prepare_tensors(self):
  3072. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3073. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3074. base = self.hparams.get("rope_theta", 10000.0)
  3075. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3076. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3077. factor = rope_scaling.get("factor", 8.0)
  3078. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3079. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3080. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3081. low_freq_wavelen = old_context_len / low_freq_factor
  3082. high_freq_wavelen = old_context_len / high_freq_factor
  3083. assert low_freq_wavelen != high_freq_wavelen
  3084. rope_factors = []
  3085. for freq in freqs:
  3086. wavelen = 2 * math.pi / freq
  3087. if wavelen < high_freq_wavelen:
  3088. rope_factors.append(1)
  3089. elif wavelen > low_freq_wavelen:
  3090. rope_factors.append(factor)
  3091. else:
  3092. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3093. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3094. if not self.is_lora:
  3095. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3096. super().prepare_tensors()
  3097. ###### CONVERSION LOGIC ######
  3098. # tree of lazy tensors
  3099. class LazyTorchTensor(gguf.LazyBase):
  3100. _tensor_type = torch.Tensor
  3101. # to keep the type-checker happy
  3102. dtype: torch.dtype
  3103. shape: torch.Size
  3104. # only used when converting a torch.Tensor to a np.ndarray
  3105. _dtype_map: dict[torch.dtype, type] = {
  3106. torch.float16: np.float16,
  3107. torch.float32: np.float32,
  3108. }
  3109. # used for safetensors slices
  3110. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3111. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3112. _dtype_str_map: dict[str, torch.dtype] = {
  3113. "F64": torch.float64,
  3114. "F32": torch.float32,
  3115. "BF16": torch.bfloat16,
  3116. "F16": torch.float16,
  3117. # "U64": torch.uint64,
  3118. "I64": torch.int64,
  3119. # "U32": torch.uint32,
  3120. "I32": torch.int32,
  3121. # "U16": torch.uint16,
  3122. "I16": torch.int16,
  3123. "U8": torch.uint8,
  3124. "I8": torch.int8,
  3125. "BOOL": torch.bool,
  3126. "F8_E4M3": torch.float8_e4m3fn,
  3127. "F8_E5M2": torch.float8_e5m2,
  3128. }
  3129. def numpy(self) -> gguf.LazyNumpyTensor:
  3130. dtype = self._dtype_map[self.dtype]
  3131. return gguf.LazyNumpyTensor(
  3132. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3133. args=(self,),
  3134. func=(lambda s: s.numpy())
  3135. )
  3136. @classmethod
  3137. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3138. return torch.empty(size=shape, dtype=dtype, device="meta")
  3139. @classmethod
  3140. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3141. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3142. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3143. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3144. return cast(torch.Tensor, lazy)
  3145. @classmethod
  3146. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3147. del types # unused
  3148. if kwargs is None:
  3149. kwargs = {}
  3150. if func is torch.Tensor.numpy:
  3151. return args[0].numpy()
  3152. return cls._wrap_fn(func)(*args, **kwargs)
  3153. def parse_args() -> argparse.Namespace:
  3154. parser = argparse.ArgumentParser(
  3155. description="Convert a huggingface model to a GGML compatible file")
  3156. parser.add_argument(
  3157. "--vocab-only", action="store_true",
  3158. help="extract only the vocab",
  3159. )
  3160. parser.add_argument(
  3161. "--outfile", type=Path,
  3162. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3163. )
  3164. parser.add_argument(
  3165. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  3166. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3167. )
  3168. parser.add_argument(
  3169. "--bigendian", action="store_true",
  3170. help="model is executed on big endian machine",
  3171. )
  3172. parser.add_argument(
  3173. "model", type=Path,
  3174. help="directory containing model file",
  3175. )
  3176. parser.add_argument(
  3177. "--use-temp-file", action="store_true",
  3178. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3179. )
  3180. parser.add_argument(
  3181. "--no-lazy", action="store_true",
  3182. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3183. )
  3184. parser.add_argument(
  3185. "--model-name", type=str, default=None,
  3186. help="name of the model",
  3187. )
  3188. parser.add_argument(
  3189. "--verbose", action="store_true",
  3190. help="increase output verbosity",
  3191. )
  3192. parser.add_argument(
  3193. "--split-max-tensors", type=int, default=0,
  3194. help="max tensors in each split",
  3195. )
  3196. parser.add_argument(
  3197. "--split-max-size", type=str, default="0",
  3198. help="max size per split N(M|G)",
  3199. )
  3200. parser.add_argument(
  3201. "--dry-run", action="store_true",
  3202. help="only print out a split plan and exit, without writing any new files",
  3203. )
  3204. parser.add_argument(
  3205. "--no-tensor-first-split", action="store_true",
  3206. help="do not add tensors to the first split (disabled by default)"
  3207. )
  3208. parser.add_argument(
  3209. "--metadata", type=Path,
  3210. help="Specify the path for an authorship metadata override file"
  3211. )
  3212. return parser.parse_args()
  3213. def split_str_to_n_bytes(split_str: str) -> int:
  3214. if split_str.endswith("K"):
  3215. n = int(split_str[:-1]) * 1000
  3216. elif split_str.endswith("M"):
  3217. n = int(split_str[:-1]) * 1000 * 1000
  3218. elif split_str.endswith("G"):
  3219. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3220. elif split_str.isnumeric():
  3221. n = int(split_str)
  3222. else:
  3223. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3224. if n < 0:
  3225. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3226. return n
  3227. def main() -> None:
  3228. args = parse_args()
  3229. if args.verbose:
  3230. logging.basicConfig(level=logging.DEBUG)
  3231. else:
  3232. logging.basicConfig(level=logging.INFO)
  3233. dir_model = args.model
  3234. if not dir_model.is_dir():
  3235. logger.error(f'Error: {args.model} is not a directory')
  3236. sys.exit(1)
  3237. ftype_map: dict[str, gguf.LlamaFileType] = {
  3238. "f32": gguf.LlamaFileType.ALL_F32,
  3239. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3240. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3241. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3242. "auto": gguf.LlamaFileType.GUESSED,
  3243. }
  3244. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3245. if args.use_temp_file and is_split:
  3246. logger.error("Error: Cannot use temp file when splitting")
  3247. sys.exit(1)
  3248. if args.outfile is not None:
  3249. fname_out = args.outfile
  3250. else:
  3251. fname_out = dir_model
  3252. logger.info(f"Loading model: {dir_model.name}")
  3253. hparams = Model.load_hparams(dir_model)
  3254. with torch.inference_mode():
  3255. output_type = ftype_map[args.outtype]
  3256. model_architecture = hparams["architectures"][0]
  3257. try:
  3258. model_class = Model.from_model_architecture(model_architecture)
  3259. except NotImplementedError:
  3260. logger.error(f"Model {model_architecture} is not supported")
  3261. sys.exit(1)
  3262. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3263. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3264. eager=args.no_lazy,
  3265. metadata_override=args.metadata, model_name=args.model_name,
  3266. split_max_tensors=args.split_max_tensors,
  3267. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3268. small_first_shard=args.no_tensor_first_split)
  3269. if args.vocab_only:
  3270. logger.info("Exporting model vocab...")
  3271. model_instance.write_vocab()
  3272. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3273. else:
  3274. logger.info("Exporting model...")
  3275. model_instance.write()
  3276. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3277. logger.info(f"Model successfully exported to {out_path}")
  3278. if __name__ == '__main__':
  3279. main()