utils.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. # type: ignore[reportUnusedImport]
  4. import subprocess
  5. import os
  6. import re
  7. import json
  8. import sys
  9. import requests
  10. import time
  11. from concurrent.futures import ThreadPoolExecutor, as_completed
  12. from typing import (
  13. Any,
  14. Callable,
  15. ContextManager,
  16. Iterable,
  17. Iterator,
  18. List,
  19. Literal,
  20. Tuple,
  21. Set,
  22. )
  23. from re import RegexFlag
  24. import wget
  25. class ServerResponse:
  26. headers: dict
  27. status_code: int
  28. body: dict | Any
  29. class ServerProcess:
  30. # default options
  31. debug: bool = False
  32. server_port: int = 8080
  33. server_host: str = "127.0.0.1"
  34. model_hf_repo: str = "ggml-org/models"
  35. model_hf_file: str = "tinyllamas/stories260K.gguf"
  36. model_alias: str = "tinyllama-2"
  37. temperature: float = 0.8
  38. seed: int = 42
  39. # custom options
  40. model_alias: str | None = None
  41. model_url: str | None = None
  42. model_file: str | None = None
  43. model_draft: str | None = None
  44. n_threads: int | None = None
  45. n_gpu_layer: int | None = None
  46. n_batch: int | None = None
  47. n_ubatch: int | None = None
  48. n_ctx: int | None = None
  49. n_ga: int | None = None
  50. n_ga_w: int | None = None
  51. n_predict: int | None = None
  52. n_prompts: int | None = 0
  53. slot_save_path: str | None = None
  54. id_slot: int | None = None
  55. cache_prompt: bool | None = None
  56. n_slots: int | None = None
  57. server_continuous_batching: bool | None = False
  58. server_embeddings: bool | None = False
  59. server_reranking: bool | None = False
  60. server_metrics: bool | None = False
  61. server_slots: bool | None = False
  62. pooling: str | None = None
  63. draft: int | None = None
  64. api_key: str | None = None
  65. response_format: str | None = None
  66. lora_files: List[str] | None = None
  67. disable_ctx_shift: int | None = False
  68. draft_min: int | None = None
  69. draft_max: int | None = None
  70. no_webui: bool | None = None
  71. chat_template: str | None = None
  72. # session variables
  73. process: subprocess.Popen | None = None
  74. def __init__(self):
  75. if "N_GPU_LAYERS" in os.environ:
  76. self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
  77. if "DEBUG" in os.environ:
  78. self.debug = True
  79. if "PORT" in os.environ:
  80. self.server_port = int(os.environ["PORT"])
  81. def start(self, timeout_seconds: int = 10) -> None:
  82. if "LLAMA_SERVER_BIN_PATH" in os.environ:
  83. server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
  84. elif os.name == "nt":
  85. server_path = "../../../build/bin/Release/llama-server.exe"
  86. else:
  87. server_path = "../../../build/bin/llama-server"
  88. server_args = [
  89. "--host",
  90. self.server_host,
  91. "--port",
  92. self.server_port,
  93. "--temp",
  94. self.temperature,
  95. "--seed",
  96. self.seed,
  97. ]
  98. if self.model_file:
  99. server_args.extend(["--model", self.model_file])
  100. if self.model_url:
  101. server_args.extend(["--model-url", self.model_url])
  102. if self.model_draft:
  103. server_args.extend(["--model-draft", self.model_draft])
  104. if self.model_hf_repo:
  105. server_args.extend(["--hf-repo", self.model_hf_repo])
  106. if self.model_hf_file:
  107. server_args.extend(["--hf-file", self.model_hf_file])
  108. if self.n_batch:
  109. server_args.extend(["--batch-size", self.n_batch])
  110. if self.n_ubatch:
  111. server_args.extend(["--ubatch-size", self.n_ubatch])
  112. if self.n_threads:
  113. server_args.extend(["--threads", self.n_threads])
  114. if self.n_gpu_layer:
  115. server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
  116. if self.draft is not None:
  117. server_args.extend(["--draft", self.draft])
  118. if self.server_continuous_batching:
  119. server_args.append("--cont-batching")
  120. if self.server_embeddings:
  121. server_args.append("--embedding")
  122. if self.server_reranking:
  123. server_args.append("--reranking")
  124. if self.server_metrics:
  125. server_args.append("--metrics")
  126. if self.server_slots:
  127. server_args.append("--slots")
  128. if self.pooling:
  129. server_args.extend(["--pooling", self.pooling])
  130. if self.model_alias:
  131. server_args.extend(["--alias", self.model_alias])
  132. if self.n_ctx:
  133. server_args.extend(["--ctx-size", self.n_ctx])
  134. if self.n_slots:
  135. server_args.extend(["--parallel", self.n_slots])
  136. if self.n_predict:
  137. server_args.extend(["--n-predict", self.n_predict])
  138. if self.slot_save_path:
  139. server_args.extend(["--slot-save-path", self.slot_save_path])
  140. if self.n_ga:
  141. server_args.extend(["--grp-attn-n", self.n_ga])
  142. if self.n_ga_w:
  143. server_args.extend(["--grp-attn-w", self.n_ga_w])
  144. if self.debug:
  145. server_args.append("--verbose")
  146. if self.lora_files:
  147. for lora_file in self.lora_files:
  148. server_args.extend(["--lora", lora_file])
  149. if self.disable_ctx_shift:
  150. server_args.extend(["--no-context-shift"])
  151. if self.api_key:
  152. server_args.extend(["--api-key", self.api_key])
  153. if self.draft_max:
  154. server_args.extend(["--draft-max", self.draft_max])
  155. if self.draft_min:
  156. server_args.extend(["--draft-min", self.draft_min])
  157. if self.no_webui:
  158. server_args.append("--no-webui")
  159. if self.chat_template:
  160. server_args.extend(["--chat-template", self.chat_template])
  161. args = [str(arg) for arg in [server_path, *server_args]]
  162. print(f"bench: starting server with: {' '.join(args)}")
  163. flags = 0
  164. if "nt" == os.name:
  165. flags |= subprocess.DETACHED_PROCESS
  166. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  167. flags |= subprocess.CREATE_NO_WINDOW
  168. self.process = subprocess.Popen(
  169. [str(arg) for arg in [server_path, *server_args]],
  170. creationflags=flags,
  171. stdout=sys.stdout,
  172. stderr=sys.stdout,
  173. env={**os.environ, "LLAMA_CACHE": "tmp"},
  174. )
  175. server_instances.add(self)
  176. print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
  177. # wait for server to start
  178. start_time = time.time()
  179. while time.time() - start_time < timeout_seconds:
  180. try:
  181. response = self.make_request("GET", "/health", headers={
  182. "Authorization": f"Bearer {self.api_key}" if self.api_key else None
  183. })
  184. if response.status_code == 200:
  185. self.ready = True
  186. return # server is ready
  187. except Exception as e:
  188. pass
  189. print(f"Waiting for server to start...")
  190. time.sleep(0.5)
  191. raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
  192. def stop(self) -> None:
  193. if self in server_instances:
  194. server_instances.remove(self)
  195. if self.process:
  196. print(f"Stopping server with pid={self.process.pid}")
  197. self.process.kill()
  198. self.process = None
  199. def make_request(
  200. self,
  201. method: str,
  202. path: str,
  203. data: dict | Any | None = None,
  204. headers: dict | None = None,
  205. ) -> ServerResponse:
  206. url = f"http://{self.server_host}:{self.server_port}{path}"
  207. parse_body = False
  208. if method == "GET":
  209. response = requests.get(url, headers=headers)
  210. parse_body = True
  211. elif method == "POST":
  212. response = requests.post(url, headers=headers, json=data)
  213. parse_body = True
  214. elif method == "OPTIONS":
  215. response = requests.options(url, headers=headers)
  216. else:
  217. raise ValueError(f"Unimplemented method: {method}")
  218. result = ServerResponse()
  219. result.headers = dict(response.headers)
  220. result.status_code = response.status_code
  221. result.body = response.json() if parse_body else None
  222. print("Response from server", json.dumps(result.body, indent=2))
  223. return result
  224. def make_stream_request(
  225. self,
  226. method: str,
  227. path: str,
  228. data: dict | None = None,
  229. headers: dict | None = None,
  230. ) -> Iterator[dict]:
  231. url = f"http://{self.server_host}:{self.server_port}{path}"
  232. if method == "POST":
  233. response = requests.post(url, headers=headers, json=data, stream=True)
  234. else:
  235. raise ValueError(f"Unimplemented method: {method}")
  236. for line_bytes in response.iter_lines():
  237. line = line_bytes.decode("utf-8")
  238. if '[DONE]' in line:
  239. break
  240. elif line.startswith('data: '):
  241. data = json.loads(line[6:])
  242. print("Partial response from server", json.dumps(data, indent=2))
  243. yield data
  244. server_instances: Set[ServerProcess] = set()
  245. class ServerPreset:
  246. @staticmethod
  247. def tinyllama2() -> ServerProcess:
  248. server = ServerProcess()
  249. server.model_hf_repo = "ggml-org/models"
  250. server.model_hf_file = "tinyllamas/stories260K.gguf"
  251. server.model_alias = "tinyllama-2"
  252. server.n_ctx = 256
  253. server.n_batch = 32
  254. server.n_slots = 2
  255. server.n_predict = 64
  256. server.seed = 42
  257. return server
  258. @staticmethod
  259. def bert_bge_small() -> ServerProcess:
  260. server = ServerProcess()
  261. server.model_hf_repo = "ggml-org/models"
  262. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  263. server.model_alias = "bert-bge-small"
  264. server.n_ctx = 512
  265. server.n_batch = 128
  266. server.n_ubatch = 128
  267. server.n_slots = 2
  268. server.seed = 42
  269. server.server_embeddings = True
  270. return server
  271. @staticmethod
  272. def tinyllama_infill() -> ServerProcess:
  273. server = ServerProcess()
  274. server.model_hf_repo = "ggml-org/models"
  275. server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
  276. server.model_alias = "tinyllama-infill"
  277. server.n_ctx = 2048
  278. server.n_batch = 1024
  279. server.n_slots = 1
  280. server.n_predict = 64
  281. server.temperature = 0.0
  282. server.seed = 42
  283. return server
  284. @staticmethod
  285. def stories15m_moe() -> ServerProcess:
  286. server = ServerProcess()
  287. server.model_hf_repo = "ggml-org/stories15M_MOE"
  288. server.model_hf_file = "stories15M_MOE-F16.gguf"
  289. server.model_alias = "stories15m-moe"
  290. server.n_ctx = 2048
  291. server.n_batch = 1024
  292. server.n_slots = 1
  293. server.n_predict = 64
  294. server.temperature = 0.0
  295. server.seed = 42
  296. return server
  297. @staticmethod
  298. def jina_reranker_tiny() -> ServerProcess:
  299. server = ServerProcess()
  300. server.model_hf_repo = "ggml-org/models"
  301. server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
  302. server.model_alias = "jina-reranker"
  303. server.n_ctx = 512
  304. server.n_batch = 512
  305. server.n_slots = 1
  306. server.seed = 42
  307. server.server_reranking = True
  308. return server
  309. def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
  310. """
  311. Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
  312. Example usage:
  313. results = parallel_function_calls([
  314. (func1, (arg1, arg2)),
  315. (func2, (arg3, arg4)),
  316. ])
  317. """
  318. results = [None] * len(function_list)
  319. exceptions = []
  320. def worker(index, func, args):
  321. try:
  322. result = func(*args)
  323. results[index] = result
  324. except Exception as e:
  325. exceptions.append((index, str(e)))
  326. with ThreadPoolExecutor() as executor:
  327. futures = []
  328. for i, (func, args) in enumerate(function_list):
  329. future = executor.submit(worker, i, func, args)
  330. futures.append(future)
  331. # Wait for all futures to complete
  332. for future in as_completed(futures):
  333. pass
  334. # Check if there were any exceptions
  335. if exceptions:
  336. print("Exceptions occurred:")
  337. for index, error in exceptions:
  338. print(f"Function at index {index}: {error}")
  339. return results
  340. def match_regex(regex: str, text: str) -> bool:
  341. return (
  342. re.compile(
  343. regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
  344. ).search(text)
  345. is not None
  346. )
  347. def download_file(url: str, output_file_path: str | None = None) -> str:
  348. """
  349. Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
  350. output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
  351. Returns the local path of the downloaded file.
  352. """
  353. file_name = url.split('/').pop()
  354. output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
  355. if not os.path.exists(output_file):
  356. print(f"Downloading {url} to {output_file}")
  357. wget.download(url, out=output_file)
  358. print(f"Done downloading to {output_file}")
  359. else:
  360. print(f"File already exists at {output_file}")
  361. return output_file
  362. def is_slow_test_allowed():
  363. return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"