llama-model.cpp 214 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-model-loader.h"
  5. #include "ggml-cpp.h"
  6. #include <algorithm>
  7. #include <cassert>
  8. #include <cstring>
  9. #include <functional>
  10. #include <map>
  11. #include <sstream>
  12. #include <stdexcept>
  13. const char * llm_type_name(llm_type type) {
  14. switch (type) {
  15. case LLM_TYPE_14M: return "14M";
  16. case LLM_TYPE_17M: return "17M";
  17. case LLM_TYPE_22M: return "22M";
  18. case LLM_TYPE_33M: return "33M";
  19. case LLM_TYPE_60M: return "60M";
  20. case LLM_TYPE_70M: return "70M";
  21. case LLM_TYPE_80M: return "80M";
  22. case LLM_TYPE_109M: return "109M";
  23. case LLM_TYPE_137M: return "137M";
  24. case LLM_TYPE_160M: return "160M";
  25. case LLM_TYPE_220M: return "220M";
  26. case LLM_TYPE_250M: return "250M";
  27. case LLM_TYPE_270M: return "270M";
  28. case LLM_TYPE_335M: return "335M";
  29. case LLM_TYPE_410M: return "410M";
  30. case LLM_TYPE_450M: return "450M";
  31. case LLM_TYPE_770M: return "770M";
  32. case LLM_TYPE_780M: return "780M";
  33. case LLM_TYPE_0_5B: return "0.5B";
  34. case LLM_TYPE_1B: return "1B";
  35. case LLM_TYPE_1_3B: return "1.3B";
  36. case LLM_TYPE_1_4B: return "1.4B";
  37. case LLM_TYPE_1_5B: return "1.5B";
  38. case LLM_TYPE_1_6B: return "1.6B";
  39. case LLM_TYPE_2B: return "2B";
  40. case LLM_TYPE_2_8B: return "2.8B";
  41. case LLM_TYPE_3B: return "3B";
  42. case LLM_TYPE_4B: return "4B";
  43. case LLM_TYPE_6B: return "6B";
  44. case LLM_TYPE_6_9B: return "6.9B";
  45. case LLM_TYPE_7B: return "7B";
  46. case LLM_TYPE_8B: return "8B";
  47. case LLM_TYPE_9B: return "9B";
  48. case LLM_TYPE_11B: return "11B";
  49. case LLM_TYPE_12B: return "12B";
  50. case LLM_TYPE_13B: return "13B";
  51. case LLM_TYPE_14B: return "14B";
  52. case LLM_TYPE_15B: return "15B";
  53. case LLM_TYPE_16B: return "16B";
  54. case LLM_TYPE_20B: return "20B";
  55. case LLM_TYPE_30B: return "30B";
  56. case LLM_TYPE_32B: return "32B";
  57. case LLM_TYPE_34B: return "34B";
  58. case LLM_TYPE_35B: return "35B";
  59. case LLM_TYPE_40B: return "40B";
  60. case LLM_TYPE_65B: return "65B";
  61. case LLM_TYPE_70B: return "70B";
  62. case LLM_TYPE_236B: return "236B";
  63. case LLM_TYPE_314B: return "314B";
  64. case LLM_TYPE_671B: return "671B";
  65. case LLM_TYPE_SMALL: return "0.1B";
  66. case LLM_TYPE_MEDIUM: return "0.4B";
  67. case LLM_TYPE_LARGE: return "0.8B";
  68. case LLM_TYPE_XL: return "1.5B";
  69. case LLM_TYPE_A1_7B: return "A1.7B";
  70. case LLM_TYPE_A2_7B: return "A2.7B";
  71. case LLM_TYPE_8x7B: return "8x7B";
  72. case LLM_TYPE_8x22B: return "8x22B";
  73. case LLM_TYPE_16x12B: return "16x12B";
  74. case LLM_TYPE_16x3_8B: return "16x3.8B";
  75. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  76. case LLM_TYPE_57B_A14B: return "57B.A14B";
  77. case LLM_TYPE_27B: return "27B";
  78. default: return "?B";
  79. }
  80. }
  81. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  82. switch (type) {
  83. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  84. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  85. default: return "unknown";
  86. }
  87. }
  88. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  89. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  90. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  91. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  92. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  93. };
  94. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  95. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  96. if (kv.second == name) {
  97. return (llama_rope_scaling_type) kv.first;
  98. }
  99. }
  100. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  101. }
  102. // checks if the weight tensor can be used with the specified buffer type and device
  103. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  104. GGML_ASSERT(w != nullptr);
  105. if (op == GGML_OP_NONE) {
  106. return true;
  107. }
  108. ggml_init_params params = {
  109. /*.mem_size =*/ ggml_tensor_overhead()*8,
  110. /*.mem_buffer =*/ NULL,
  111. /*.no_alloc =*/ true,
  112. };
  113. ggml_context_ptr ctx_ptr { ggml_init(params) };
  114. if (!ctx_ptr) {
  115. throw std::runtime_error(format("failed to create ggml context"));
  116. }
  117. ggml_context * ctx = ctx_ptr.get();
  118. ggml_tensor * op_tensor = nullptr;
  119. switch (op) {
  120. case GGML_OP_GET_ROWS:
  121. {
  122. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  123. op_tensor = ggml_get_rows(ctx, w, b);
  124. } break;
  125. case GGML_OP_MUL_MAT:
  126. {
  127. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  128. op_tensor = ggml_mul_mat(ctx, w, b);
  129. } break;
  130. case GGML_OP_MUL_MAT_ID:
  131. {
  132. int n_expert_used = hparams.n_expert_used;
  133. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  134. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  135. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  136. } break;
  137. case GGML_OP_ADD:
  138. {
  139. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  140. op_tensor = ggml_add(ctx, a, w);
  141. } break;
  142. case GGML_OP_MUL:
  143. {
  144. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  145. op_tensor = ggml_mul(ctx, a, w);
  146. } break;
  147. case GGML_OP_DIV:
  148. {
  149. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  150. op_tensor = ggml_div(ctx, a, w);
  151. } break;
  152. case GGML_OP_ROPE:
  153. {
  154. int n_embd_head = hparams.n_embd_head_v;
  155. int n_head = hparams.n_head();
  156. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  157. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  158. op_tensor = ggml_rope_ext(
  159. ctx, a, b, w,
  160. 0, 0, 0, 0, 0,
  161. 0, 0, 0, 0
  162. );
  163. } break;
  164. case GGML_OP_SSM_CONV:
  165. {
  166. // FIXME
  167. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  168. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  169. } break;
  170. case GGML_OP_SSM_SCAN:
  171. {
  172. // FIXME
  173. const int64_t d_state = w->ne[0];
  174. const int64_t d_inner = w->ne[1];
  175. const int64_t n_seq_tokens = 512;
  176. const int64_t n_seqs = 1;
  177. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  178. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  179. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  180. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  181. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  182. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  183. } break;
  184. case GGML_OP_RWKV_WKV6:
  185. {
  186. // FIXME
  187. const int64_t S = 123;
  188. const int64_t H = 123;
  189. const int64_t n_tokens = 123;
  190. const int64_t n_seqs = 123;
  191. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  192. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  193. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  194. ggml_tensor * tf = w;
  195. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  196. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  197. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  198. } break;
  199. case GGML_OP_IM2COL:
  200. {
  201. const int n_embd = hparams.n_embd;
  202. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  203. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  204. } break;
  205. default:
  206. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  207. }
  208. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  209. GGML_ASSERT(w->buffer == nullptr);
  210. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  211. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  212. ggml_backend_buffer_free(w->buffer);
  213. w->buffer = nullptr;
  214. return op_supported;
  215. }
  216. // lists of buffer types used for each layer
  217. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  218. // find the first buffer type in the list that can use the tensor
  219. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  220. GGML_ASSERT(!buft_list.empty());
  221. for (const auto & cur : buft_list) {
  222. ggml_backend_dev_t cur_dev = cur.first;
  223. ggml_backend_buffer_type_t cur_buft = cur.second;
  224. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  225. return cur_buft;
  226. }
  227. }
  228. return nullptr;
  229. }
  230. // CPU: ACCEL -> CPU extra -> GPU host -> CPU
  231. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  232. buft_list_t buft_list;
  233. // add ACCEL buffer types
  234. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  235. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  236. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  237. auto * buft = ggml_backend_dev_buffer_type(dev);
  238. // skip
  239. if (buft != ggml_backend_cpu_buffer_type()) {
  240. buft_list.emplace_back(dev, buft);
  241. }
  242. }
  243. }
  244. // add extra buffer types
  245. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  246. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  247. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  248. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  249. if (ggml_backend_dev_get_extra_bufts_fn) {
  250. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  251. while (extra_bufts && *extra_bufts) {
  252. buft_list.emplace_back(cpu_dev, *extra_bufts);
  253. ++extra_bufts;
  254. }
  255. }
  256. // add a host buffer type
  257. // storing the tensors in a host buffer is useful when the processing of large batches
  258. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  259. // generally, this will be done using the first device in the list
  260. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  261. // function of the device to determine if it would benefit from being stored in a host buffer
  262. for (auto * dev : devices) {
  263. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  264. if (buft) {
  265. buft_list.emplace_back(dev, buft);
  266. break;
  267. }
  268. }
  269. // add the CPU buffer type
  270. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  271. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  272. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  273. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  274. }
  275. }
  276. return buft_list;
  277. }
  278. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  279. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, enum llama_split_mode split_mode, const float * tensor_split) {
  280. buft_list_t buft_list;
  281. // add the device split buffer type if requested and available
  282. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  283. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  284. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  285. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  286. if (ggml_backend_split_buffer_type_fn) {
  287. size_t dev_index = [&]() {
  288. auto * reg = ggml_backend_dev_backend_reg(dev);
  289. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  290. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  291. return i;
  292. }
  293. }
  294. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  295. }();
  296. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  297. if (buft != nullptr) {
  298. buft_list.emplace_back(dev, buft);
  299. }
  300. }
  301. }
  302. // add the device default buffer type
  303. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  304. return buft_list;
  305. }
  306. struct llama_model::impl {
  307. impl() {}
  308. ~impl() {}
  309. uint64_t n_elements = 0;
  310. size_t n_bytes = 0;
  311. std::string desc_str;
  312. // model memory mapped files
  313. llama_mmaps mappings;
  314. // objects representing data potentially being locked in memory
  315. llama_mlocks mlock_bufs;
  316. llama_mlocks mlock_mmaps;
  317. // contexts where the model tensors metadata is stored
  318. std::vector<ggml_context_ptr> ctxs;
  319. // the model memory buffers for the tensor data
  320. std::vector<ggml_backend_buffer_ptr> bufs;
  321. buft_list_t cpu_buft_list;
  322. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  323. struct layer_dev {
  324. ggml_backend_dev_t dev;
  325. buft_list_t * buft_list;
  326. };
  327. layer_dev dev_input = {};
  328. layer_dev dev_output = {};
  329. std::vector<layer_dev> dev_layer;
  330. };
  331. llama_model::llama_model(const struct llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  332. }
  333. llama_model::~llama_model() {}
  334. void llama_model::load_stats(llama_model_loader & ml) {
  335. pimpl->n_elements = ml.n_elements;
  336. pimpl->n_bytes = ml.n_bytes;
  337. }
  338. void llama_model::load_arch(llama_model_loader & ml) {
  339. arch = ml.get_arch();
  340. if (arch == LLM_ARCH_UNKNOWN) {
  341. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  342. }
  343. }
  344. void llama_model::load_hparams(llama_model_loader & ml) {
  345. const gguf_context * ctx = ml.meta.get();
  346. // get metadata as string
  347. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  348. enum gguf_type type = gguf_get_kv_type(ctx, i);
  349. if (type == GGUF_TYPE_ARRAY) {
  350. continue;
  351. }
  352. const char * name = gguf_get_key(ctx, i);
  353. const std::string value = gguf_kv_to_str(ctx, i);
  354. gguf_kv.emplace(name, value);
  355. }
  356. // get general kv
  357. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  358. // everything past this point is not vocab-related
  359. if (hparams.vocab_only) {
  360. return;
  361. }
  362. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  363. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  364. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  365. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  366. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  367. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  368. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  369. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  370. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  371. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  372. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  373. }
  374. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  375. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  376. if (hparams.n_expert > 0) {
  377. GGML_ASSERT(hparams.n_expert_used > 0);
  378. } else {
  379. GGML_ASSERT(hparams.n_expert_used == 0);
  380. }
  381. // zero-out the array hparams
  382. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  383. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  384. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  385. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  386. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  387. // n_head_kv is optional, default to n_head
  388. hparams.n_head_kv_arr = hparams.n_head_arr;
  389. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  390. bool rope_finetuned = false;
  391. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  392. hparams.rope_finetuned = rope_finetuned;
  393. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  394. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  395. // rope_freq_base (optional)
  396. hparams.rope_freq_base_train = 10000.0f;
  397. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  398. std::string rope_scaling("linear");
  399. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  400. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  401. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  402. // rope_freq_scale (inverse of the kv) is optional
  403. float ropescale = 0.0f;
  404. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  405. // try the old key name
  406. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  407. }
  408. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  409. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  410. // non-transformer models do not have attention heads
  411. if (hparams.n_head() > 0) {
  412. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  413. // gpt-j n_rot = rotary_dim
  414. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  415. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  416. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  417. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  418. // sanity check for n_rot (optional)
  419. hparams.n_rot = hparams.n_embd_head_k;
  420. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  421. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  422. if (hparams.n_rot != hparams.n_embd_head_k) {
  423. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  424. }
  425. }
  426. } else {
  427. hparams.n_rot = 0;
  428. hparams.n_embd_head_k = 0;
  429. hparams.n_embd_head_v = 0;
  430. }
  431. // for differentiating model types
  432. uint32_t n_vocab = 0;
  433. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  434. // arch-specific KVs
  435. switch (arch) {
  436. case LLM_ARCH_LLAMA:
  437. {
  438. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  439. if (hparams.n_expert == 8) {
  440. switch (hparams.n_layer) {
  441. case 32: type = LLM_TYPE_8x7B; break;
  442. case 56: type = LLM_TYPE_8x22B; break;
  443. default: type = LLM_TYPE_UNKNOWN;
  444. }
  445. } else {
  446. switch (hparams.n_layer) {
  447. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  448. case 22: type = LLM_TYPE_1B; break;
  449. case 26: type = LLM_TYPE_3B; break;
  450. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  451. // granite uses a vocab with len 49152
  452. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  453. case 36: type = LLM_TYPE_8B; break; // granite
  454. case 40: type = LLM_TYPE_13B; break;
  455. case 48: type = LLM_TYPE_34B; break;
  456. case 60: type = LLM_TYPE_30B; break;
  457. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  458. default: type = LLM_TYPE_UNKNOWN;
  459. }
  460. }
  461. } break;
  462. case LLM_ARCH_DECI:
  463. {
  464. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  465. switch (hparams.n_layer) {
  466. case 32: type = LLM_TYPE_7B; break;
  467. case 80: type = LLM_TYPE_70B; break;
  468. default: type = LLM_TYPE_UNKNOWN;
  469. }
  470. } break;
  471. case LLM_ARCH_MINICPM:
  472. {
  473. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  474. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  475. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  476. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  477. switch (hparams.n_layer) {
  478. case 52: type = LLM_TYPE_1B; break;
  479. case 40: type = LLM_TYPE_2B; break;
  480. default: type = LLM_TYPE_UNKNOWN;
  481. }
  482. } break;
  483. case LLM_ARCH_MINICPM3:
  484. {
  485. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  486. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  487. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  488. switch (hparams.n_layer) {
  489. case 62: type = LLM_TYPE_4B; break;
  490. default: type = LLM_TYPE_UNKNOWN;
  491. }
  492. } break;
  493. case LLM_ARCH_GROK:
  494. {
  495. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  496. switch (hparams.n_layer) {
  497. case 64: type = LLM_TYPE_314B; break;
  498. default: type = LLM_TYPE_UNKNOWN;
  499. }
  500. } break;
  501. case LLM_ARCH_FALCON:
  502. {
  503. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  504. switch (hparams.n_layer) {
  505. case 32: type = LLM_TYPE_7B; break;
  506. case 60: type = LLM_TYPE_40B; break;
  507. default: type = LLM_TYPE_UNKNOWN;
  508. }
  509. } break;
  510. case LLM_ARCH_BAICHUAN:
  511. {
  512. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  513. switch (hparams.n_layer) {
  514. case 32: type = LLM_TYPE_7B; break;
  515. case 40: type = LLM_TYPE_13B; break;
  516. default: type = LLM_TYPE_UNKNOWN;
  517. }
  518. if (type == LLM_TYPE_13B) {
  519. // TODO: become GGUF KV parameter
  520. hparams.f_max_alibi_bias = 8.0f;
  521. }
  522. } break;
  523. case LLM_ARCH_STARCODER:
  524. {
  525. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  526. switch (hparams.n_layer) {
  527. case 24: type = LLM_TYPE_1B; break;
  528. case 36: type = LLM_TYPE_3B; break;
  529. case 42: type = LLM_TYPE_7B; break;
  530. case 40: type = LLM_TYPE_15B; break;
  531. default: type = LLM_TYPE_UNKNOWN;
  532. }
  533. } break;
  534. case LLM_ARCH_REFACT:
  535. {
  536. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  537. switch (hparams.n_layer) {
  538. case 32: type = LLM_TYPE_1B; break;
  539. default: type = LLM_TYPE_UNKNOWN;
  540. }
  541. // TODO: become GGUF KV parameter
  542. hparams.f_max_alibi_bias = 8.0f;
  543. } break;
  544. case LLM_ARCH_BERT:
  545. {
  546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  547. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  548. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  549. switch (hparams.n_layer) {
  550. case 3:
  551. type = LLM_TYPE_17M; break; // bge-micro
  552. case 6:
  553. type = LLM_TYPE_22M; break; // MiniLM-L6
  554. case 12:
  555. switch (hparams.n_embd) {
  556. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  557. case 768: type = LLM_TYPE_109M; break; // bge-base
  558. default: type = LLM_TYPE_UNKNOWN;
  559. } break;
  560. case 24:
  561. type = LLM_TYPE_335M; break; // bge-large
  562. default: type = LLM_TYPE_UNKNOWN;
  563. }
  564. } break;
  565. case LLM_ARCH_JINA_BERT_V2:
  566. {
  567. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  568. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  569. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  570. hparams.f_max_alibi_bias = 8.0f;
  571. switch (hparams.n_layer) {
  572. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  573. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  574. default: type = LLM_TYPE_UNKNOWN;
  575. }
  576. } break;
  577. case LLM_ARCH_NOMIC_BERT:
  578. {
  579. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  580. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  581. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  582. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  583. type = LLM_TYPE_137M;
  584. }
  585. } break;
  586. case LLM_ARCH_BLOOM:
  587. {
  588. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  589. switch (hparams.n_layer) {
  590. case 24: type = LLM_TYPE_1B; break;
  591. case 30:
  592. switch (hparams.n_embd) {
  593. case 2560: type = LLM_TYPE_3B; break;
  594. case 4096: type = LLM_TYPE_7B; break;
  595. default: type = LLM_TYPE_UNKNOWN;
  596. } break;
  597. default: type = LLM_TYPE_UNKNOWN;
  598. }
  599. // TODO: become GGUF KV parameter
  600. hparams.f_max_alibi_bias = 8.0f;
  601. } break;
  602. case LLM_ARCH_MPT:
  603. {
  604. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  605. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  606. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  607. switch (hparams.n_layer) {
  608. case 32: type = LLM_TYPE_7B; break;
  609. case 48: type = LLM_TYPE_30B; break;
  610. default: type = LLM_TYPE_UNKNOWN;
  611. }
  612. } break;
  613. case LLM_ARCH_STABLELM:
  614. {
  615. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  616. switch (hparams.n_layer) {
  617. case 24: type = LLM_TYPE_1B; break;
  618. case 32: type = LLM_TYPE_3B; break;
  619. case 40: type = LLM_TYPE_12B; break;
  620. default: type = LLM_TYPE_UNKNOWN;
  621. }
  622. } break;
  623. case LLM_ARCH_QWEN:
  624. {
  625. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  626. switch (hparams.n_layer) {
  627. case 32: type = LLM_TYPE_7B; break;
  628. case 40: type = LLM_TYPE_13B; break;
  629. default: type = LLM_TYPE_UNKNOWN;
  630. }
  631. } break;
  632. case LLM_ARCH_QWEN2VL:
  633. {
  634. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  635. }
  636. // fall through
  637. case LLM_ARCH_QWEN2:
  638. {
  639. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  640. switch (hparams.n_layer) {
  641. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  642. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  643. case 32: type = LLM_TYPE_7B; break;
  644. case 36: type = LLM_TYPE_3B; break;
  645. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  646. case 48: type = LLM_TYPE_14B; break;
  647. case 64: type = LLM_TYPE_32B; break;
  648. case 80: type = LLM_TYPE_70B; break;
  649. default: type = LLM_TYPE_UNKNOWN;
  650. }
  651. } break;
  652. case LLM_ARCH_QWEN2MOE:
  653. {
  654. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  655. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  656. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  657. switch (hparams.n_layer) {
  658. case 24: type = LLM_TYPE_A2_7B; break;
  659. case 28: type = LLM_TYPE_57B_A14B; break;
  660. default: type = LLM_TYPE_UNKNOWN;
  661. }
  662. } break;
  663. case LLM_ARCH_PHI2:
  664. {
  665. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  666. switch (hparams.n_layer) {
  667. case 24: type = LLM_TYPE_1B; break;
  668. case 32: type = LLM_TYPE_3B; break;
  669. default: type = LLM_TYPE_UNKNOWN;
  670. }
  671. } break;
  672. case LLM_ARCH_PHI3:
  673. {
  674. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  675. switch (hparams.n_layer) {
  676. case 24: type = LLM_TYPE_1B; break;
  677. case 32: type = LLM_TYPE_3B; break;
  678. case 40: type = LLM_TYPE_14B; break;
  679. default: type = LLM_TYPE_UNKNOWN;
  680. }
  681. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  682. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  683. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  684. hparams.n_swa = 2047;
  685. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  686. // default value for Phi-3-mini-128k-instruct
  687. hparams.n_swa = 262144;
  688. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  689. // default value for Phi-3-medium-128k-instruct
  690. hparams.n_swa = 131072;
  691. }
  692. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  693. if (!found_swa && hparams.n_swa == 0) {
  694. throw std::runtime_error("invalid value for sliding_window");
  695. }
  696. } break;
  697. case LLM_ARCH_PHIMOE:
  698. {
  699. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  700. switch (hparams.n_layer) {
  701. case 32: type = LLM_TYPE_16x3_8B; break;
  702. default: type = LLM_TYPE_UNKNOWN;
  703. }
  704. } break;
  705. case LLM_ARCH_PLAMO:
  706. {
  707. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  708. switch (hparams.n_layer) {
  709. case 40: type = LLM_TYPE_13B; break;
  710. default: type = LLM_TYPE_UNKNOWN;
  711. }
  712. } break;
  713. case LLM_ARCH_GPT2:
  714. {
  715. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  716. switch (hparams.n_layer) {
  717. case 12: type = LLM_TYPE_SMALL; break;
  718. case 24: type = LLM_TYPE_MEDIUM; break;
  719. case 36: type = LLM_TYPE_LARGE; break;
  720. case 48: type = LLM_TYPE_XL; break;
  721. default: type = LLM_TYPE_UNKNOWN;
  722. }
  723. } break;
  724. case LLM_ARCH_CODESHELL:
  725. {
  726. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  727. switch (hparams.n_layer) {
  728. case 42: type = LLM_TYPE_7B; break;
  729. default: type = LLM_TYPE_UNKNOWN;
  730. }
  731. } break;
  732. case LLM_ARCH_ORION:
  733. {
  734. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  735. switch (hparams.n_layer) {
  736. case 40: type = LLM_TYPE_14B; break;
  737. default: type = LLM_TYPE_UNKNOWN;
  738. }
  739. } break;
  740. case LLM_ARCH_INTERNLM2:
  741. {
  742. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  743. switch (hparams.n_layer) {
  744. case 32: type = LLM_TYPE_7B; break;
  745. case 48: type = LLM_TYPE_20B; break;
  746. default: type = LLM_TYPE_UNKNOWN;
  747. }
  748. } break;
  749. case LLM_ARCH_GEMMA:
  750. {
  751. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  752. switch (hparams.n_layer) {
  753. case 18: type = LLM_TYPE_2B; break;
  754. case 28: type = LLM_TYPE_7B; break;
  755. default: type = LLM_TYPE_UNKNOWN;
  756. }
  757. } break;
  758. case LLM_ARCH_GEMMA2:
  759. {
  760. hparams.n_swa = 4096; // default value of gemma 2
  761. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  762. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  763. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  764. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  765. hparams.attn_soft_cap = true;
  766. switch (hparams.n_layer) {
  767. case 26: type = LLM_TYPE_2B; break;
  768. case 42: type = LLM_TYPE_9B; break;
  769. case 46: type = LLM_TYPE_27B; break;
  770. default: type = LLM_TYPE_UNKNOWN;
  771. }
  772. } break;
  773. case LLM_ARCH_STARCODER2:
  774. {
  775. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  776. switch (hparams.n_layer) {
  777. case 30: type = LLM_TYPE_3B; break;
  778. case 32: type = LLM_TYPE_7B; break;
  779. case 40: type = LLM_TYPE_15B; break;
  780. case 52: type = LLM_TYPE_20B; break; // granite
  781. case 88: type = LLM_TYPE_34B; break; // granite
  782. default: type = LLM_TYPE_UNKNOWN;
  783. }
  784. } break;
  785. case LLM_ARCH_MAMBA:
  786. {
  787. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  788. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  789. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  790. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  791. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  792. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  793. switch (hparams.n_layer) {
  794. case 24:
  795. switch (hparams.n_embd) {
  796. case 768: type = LLM_TYPE_SMALL; break;
  797. default: type = LLM_TYPE_UNKNOWN;
  798. } break;
  799. case 48:
  800. switch (hparams.n_embd) {
  801. case 1024: type = LLM_TYPE_MEDIUM; break;
  802. case 1536: type = LLM_TYPE_LARGE; break;
  803. case 2048: type = LLM_TYPE_XL; break;
  804. default: type = LLM_TYPE_UNKNOWN;
  805. } break;
  806. case 64:
  807. switch (hparams.n_embd) {
  808. case 2560: type = LLM_TYPE_3B; break;
  809. default: type = LLM_TYPE_UNKNOWN;
  810. } break;
  811. default: type = LLM_TYPE_UNKNOWN;
  812. }
  813. } break;
  814. case LLM_ARCH_XVERSE:
  815. {
  816. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  817. switch (hparams.n_layer) {
  818. case 32: type = LLM_TYPE_7B; break;
  819. case 40: type = LLM_TYPE_13B; break;
  820. case 80: type = LLM_TYPE_65B; break;
  821. default: type = LLM_TYPE_UNKNOWN;
  822. }
  823. } break;
  824. case LLM_ARCH_COMMAND_R:
  825. {
  826. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  827. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  828. switch (hparams.n_layer) {
  829. case 40: type = LLM_TYPE_35B; break;
  830. default: type = LLM_TYPE_UNKNOWN;
  831. }
  832. } break;
  833. case LLM_ARCH_COHERE2:
  834. {
  835. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  836. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  837. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  838. switch (hparams.n_layer) {
  839. case 32: type = LLM_TYPE_8B; break;
  840. default: type = LLM_TYPE_UNKNOWN;
  841. }
  842. } break;
  843. case LLM_ARCH_DBRX:
  844. {
  845. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  846. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  847. switch (hparams.n_layer) {
  848. case 40: type = LLM_TYPE_16x12B; break;
  849. default: type = LLM_TYPE_UNKNOWN;
  850. }
  851. } break;
  852. case LLM_ARCH_OLMO:
  853. {
  854. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  855. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  856. switch (hparams.n_layer) {
  857. case 22: type = LLM_TYPE_1B; break;
  858. case 32: type = LLM_TYPE_7B; break;
  859. case 80: type = LLM_TYPE_70B; break;
  860. default: type = LLM_TYPE_UNKNOWN;
  861. }
  862. } break;
  863. case LLM_ARCH_OLMO2:
  864. {
  865. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  866. switch (hparams.n_layer) {
  867. case 16: type = LLM_TYPE_1B; break;
  868. case 32: type = LLM_TYPE_7B; break;
  869. case 40: type = LLM_TYPE_13B; break;
  870. default: type = LLM_TYPE_UNKNOWN;
  871. }
  872. } break;
  873. case LLM_ARCH_OLMOE:
  874. {
  875. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  876. switch (hparams.n_layer) {
  877. case 16: type = LLM_TYPE_A1_7B; break;
  878. default: type = LLM_TYPE_UNKNOWN;
  879. }
  880. } break;
  881. case LLM_ARCH_OPENELM:
  882. {
  883. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  884. switch (hparams.n_layer) {
  885. case 16: type = LLM_TYPE_270M; break;
  886. case 20: type = LLM_TYPE_450M; break;
  887. case 28: type = LLM_TYPE_1B; break;
  888. case 36: type = LLM_TYPE_3B; break;
  889. default: type = LLM_TYPE_UNKNOWN;
  890. }
  891. } break;
  892. case LLM_ARCH_GPTNEOX:
  893. {
  894. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  895. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  896. switch (hparams.n_layer) {
  897. case 6:
  898. switch (hparams.n_ff()) {
  899. case 512: type = LLM_TYPE_14M; break;
  900. case 2048: type = LLM_TYPE_70M; break;
  901. default: type = LLM_TYPE_UNKNOWN;
  902. } break;
  903. case 12:
  904. switch (hparams.n_ff()) {
  905. case 3072: type = LLM_TYPE_160M; break;
  906. default: type = LLM_TYPE_UNKNOWN;
  907. } break;
  908. case 16:
  909. switch (hparams.n_ff()) {
  910. case 8192: type = LLM_TYPE_1B; break;
  911. default: type = LLM_TYPE_UNKNOWN;
  912. } break;
  913. case 24:
  914. switch (hparams.n_ff()) {
  915. case 4096: type = LLM_TYPE_410M; break;
  916. case 8192: type = LLM_TYPE_1_4B; break;
  917. default: type = LLM_TYPE_UNKNOWN;
  918. } break;
  919. case 32:
  920. switch (hparams.n_ff()) {
  921. case 10240: type = LLM_TYPE_2_8B; break;
  922. case 16384: type = LLM_TYPE_6_9B; break;
  923. default: type = LLM_TYPE_UNKNOWN;
  924. } break;
  925. case 36:
  926. switch (hparams.n_ff()) {
  927. case 20480: type = LLM_TYPE_12B; break;
  928. default: type = LLM_TYPE_UNKNOWN;
  929. } break;
  930. case 44:
  931. switch (hparams.n_ff()) {
  932. case 24576: type = LLM_TYPE_20B; break;
  933. default: type = LLM_TYPE_UNKNOWN;
  934. } break;
  935. default: type = LLM_TYPE_UNKNOWN;
  936. }
  937. } break;
  938. case LLM_ARCH_ARCTIC:
  939. {
  940. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  941. if (hparams.n_expert == 128) {
  942. switch (hparams.n_layer) {
  943. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  944. default: type = LLM_TYPE_UNKNOWN;
  945. }
  946. } else {
  947. type = LLM_TYPE_UNKNOWN;
  948. }
  949. } break;
  950. case LLM_ARCH_DEEPSEEK:
  951. {
  952. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  953. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  954. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  955. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  956. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  957. switch (hparams.n_layer) {
  958. case 28: type = LLM_TYPE_20B; break;
  959. default: type = LLM_TYPE_UNKNOWN;
  960. }
  961. } break;
  962. case LLM_ARCH_DEEPSEEK2:
  963. {
  964. bool is_lite = (hparams.n_layer == 27);
  965. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  966. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  967. if (!is_lite) {
  968. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  969. }
  970. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  971. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  972. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  973. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  974. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  975. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  976. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  977. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  978. // that have no expert_gating_func model parameter set
  979. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  980. }
  981. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  982. switch (hparams.n_layer) {
  983. case 27: type = LLM_TYPE_16B; break;
  984. case 60: type = LLM_TYPE_236B; break;
  985. case 61: type = LLM_TYPE_671B; break;
  986. default: type = LLM_TYPE_UNKNOWN;
  987. }
  988. } break;
  989. case LLM_ARCH_CHATGLM:
  990. {
  991. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  992. switch (hparams.n_layer) {
  993. case 28: type = LLM_TYPE_6B; break;
  994. case 40: type = LLM_TYPE_9B; break;
  995. default: type = LLM_TYPE_UNKNOWN;
  996. }
  997. } break;
  998. case LLM_ARCH_BITNET:
  999. {
  1000. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1001. switch (hparams.n_layer) {
  1002. case 26: type = LLM_TYPE_3B; break;
  1003. default: type = LLM_TYPE_UNKNOWN;
  1004. }
  1005. } break;
  1006. case LLM_ARCH_T5:
  1007. {
  1008. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1009. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1010. uint32_t dec_start_token_id;
  1011. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1012. hparams.dec_start_token_id = dec_start_token_id;
  1013. }
  1014. switch (hparams.n_layer) {
  1015. case 6: type = LLM_TYPE_60M; break; // t5-small
  1016. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1017. case 12:
  1018. switch (hparams.n_ff()) {
  1019. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1020. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1021. default: type = LLM_TYPE_UNKNOWN;
  1022. } break;
  1023. case 24:
  1024. switch (hparams.n_ff()) {
  1025. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1026. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1027. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1028. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1029. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1030. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1031. default: type = LLM_TYPE_UNKNOWN;
  1032. } break;
  1033. default: type = LLM_TYPE_UNKNOWN;
  1034. }
  1035. } break;
  1036. case LLM_ARCH_T5ENCODER:
  1037. {
  1038. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1039. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1040. type = LLM_TYPE_UNKNOWN;
  1041. } break;
  1042. case LLM_ARCH_JAIS:
  1043. {
  1044. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1045. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1046. switch (hparams.n_layer) {
  1047. case 24: type = LLM_TYPE_1_3B; break;
  1048. case 40: type = LLM_TYPE_13B; break;
  1049. /* TODO: add variants */
  1050. default: type = LLM_TYPE_UNKNOWN;
  1051. }
  1052. } break;
  1053. case LLM_ARCH_NEMOTRON:
  1054. {
  1055. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1056. switch (hparams.n_layer) {
  1057. case 32: type = LLM_TYPE_4B; break;
  1058. default: type = LLM_TYPE_UNKNOWN;
  1059. }
  1060. } break;
  1061. case LLM_ARCH_EXAONE:
  1062. {
  1063. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1064. switch (hparams.n_layer) {
  1065. case 32: type = LLM_TYPE_8B; break;
  1066. default: type = LLM_TYPE_UNKNOWN;
  1067. }
  1068. } break;
  1069. case LLM_ARCH_RWKV6:
  1070. case LLM_ARCH_RWKV6QWEN2:
  1071. {
  1072. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1073. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1074. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1075. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1076. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1077. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1078. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1079. switch (hparams.n_layer) {
  1080. case 24: type = LLM_TYPE_1_6B; break;
  1081. case 32:
  1082. switch (hparams.n_embd) {
  1083. case 2560: type = LLM_TYPE_3B; break;
  1084. case 4096: type = LLM_TYPE_7B; break;
  1085. default: type = LLM_TYPE_UNKNOWN;
  1086. } break;
  1087. case 61: type = LLM_TYPE_14B; break;
  1088. case 64: type = LLM_TYPE_32B; break;
  1089. default: type = LLM_TYPE_UNKNOWN;
  1090. }
  1091. } break;
  1092. case LLM_ARCH_GRANITE:
  1093. case LLM_ARCH_GRANITE_MOE:
  1094. {
  1095. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1096. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1097. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1098. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1099. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1100. switch (hparams.n_layer) {
  1101. case 32: type = LLM_TYPE_3B; break;
  1102. case 40: type = LLM_TYPE_3B; break;
  1103. // Add additional layer/vocab/etc checks here for other model sizes
  1104. default: type = LLM_TYPE_UNKNOWN;
  1105. }
  1106. } break;
  1107. case LLM_ARCH_CHAMELEON:
  1108. {
  1109. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1110. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1111. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1112. switch (hparams.n_layer) {
  1113. case 32: type = LLM_TYPE_7B; break;
  1114. case 48: type = LLM_TYPE_34B; break;
  1115. default: type = LLM_TYPE_UNKNOWN;
  1116. }
  1117. } break;
  1118. case LLM_ARCH_WAVTOKENIZER_DEC:
  1119. {
  1120. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1121. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1122. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1123. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1124. } break;
  1125. default: throw std::runtime_error("unsupported model architecture");
  1126. }
  1127. pimpl->n_bytes = ml.n_bytes;
  1128. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1129. if (hparams.f_max_alibi_bias > 0.0f) {
  1130. hparams.use_alibi = true;
  1131. }
  1132. hparams.rope_type = llama_model_rope_type(this);
  1133. }
  1134. void llama_model::load_vocab(llama_model_loader & ml) {
  1135. const auto kv = LLM_KV(arch);
  1136. vocab.load(ml, kv);
  1137. }
  1138. bool llama_model::load_tensors(llama_model_loader & ml) {
  1139. const auto & split_mode = params.split_mode;
  1140. const auto & n_gpu_layers = params.n_gpu_layers;
  1141. const auto & use_mlock = params.use_mlock;
  1142. const auto & tensor_split = params.tensor_split;
  1143. const int n_layer = hparams.n_layer;
  1144. const bool use_mmap_buffer = true;
  1145. // build a list of buffer types for the CPU and GPU devices
  1146. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1147. for (auto * dev : devices) {
  1148. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1149. // add CPU buffer types as a fallback
  1150. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1151. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1152. }
  1153. // calculate the split points
  1154. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1155. std::vector<float> splits(n_devices());
  1156. if (all_zero) {
  1157. // default split, by free memory
  1158. for (size_t i = 0; i < n_devices(); ++i) {
  1159. ggml_backend_dev_t dev = devices[i];
  1160. size_t total;
  1161. size_t free;
  1162. ggml_backend_dev_memory(dev, &free, &total);
  1163. splits[i] = free;
  1164. }
  1165. } else {
  1166. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1167. }
  1168. // sum and normalize the splits to get the split points
  1169. float split_sum = 0.0f;
  1170. for (size_t i = 0; i < n_devices(); ++i) {
  1171. split_sum += splits[i];
  1172. splits[i] = split_sum;
  1173. }
  1174. for (size_t i = 0; i < n_devices(); ++i) {
  1175. splits[i] /= split_sum;
  1176. }
  1177. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1178. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1179. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1180. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1181. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1182. return {cpu_dev, &pimpl->cpu_buft_list};
  1183. }
  1184. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1185. auto * dev = devices.at(layer_gpu);
  1186. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1187. };
  1188. // assign the input layer
  1189. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1190. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1191. // assign the repeating layers to the devices according to the splits
  1192. pimpl->dev_layer.resize(n_layer);
  1193. for (int il = 0; il < n_layer; ++il) {
  1194. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1195. }
  1196. // assign the output layer
  1197. pimpl->dev_output = get_layer_buft_list(n_layer);
  1198. // one ggml context per buffer type
  1199. int max_n_tensors = ml.n_tensors;
  1200. max_n_tensors += 1; // duplicated output tensor
  1201. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1202. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1203. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1204. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1205. auto it = ctx_map.find(buft);
  1206. if (it == ctx_map.end()) {
  1207. ggml_init_params params = {
  1208. /*.mem_size =*/ ctx_size,
  1209. /*.mem_buffer =*/ NULL,
  1210. /*.no_alloc =*/ true,
  1211. };
  1212. ggml_context * ctx = ggml_init(params);
  1213. if (!ctx) {
  1214. throw std::runtime_error(format("failed to create ggml context"));
  1215. }
  1216. ctx_map[buft] = ctx;
  1217. pimpl->ctxs.emplace_back(ctx);
  1218. return ctx;
  1219. }
  1220. return it->second;
  1221. };
  1222. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1223. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1224. // create tensors for the weights
  1225. {
  1226. // note: cast to int64_t since we will use these for the tensor dimensions
  1227. const int64_t n_head = hparams.n_head();
  1228. const int64_t n_head_kv = hparams.n_head_kv();
  1229. const int64_t n_embd = hparams.n_embd;
  1230. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1231. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1232. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1233. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1234. const int64_t n_ff = hparams.n_ff();
  1235. const int64_t n_embd_gqa = n_embd_v_gqa;
  1236. const int64_t n_vocab = vocab.n_tokens();
  1237. const int64_t n_token_types = vocab.n_token_types();
  1238. const int64_t n_rot = hparams.n_rot;
  1239. const int64_t n_expert = hparams.n_expert;
  1240. const int64_t n_expert_used = hparams.n_expert_used;
  1241. const int64_t n_ctx_train = hparams.n_ctx_train;
  1242. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1243. throw std::runtime_error("model has expert layers but no expert layers are used");
  1244. }
  1245. int n_moved_tensors = 0;
  1246. ggml_tensor * first_moved_tensor = nullptr;
  1247. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1248. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1249. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1250. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1251. if (!t_meta) {
  1252. if (flags & TENSOR_NOT_REQUIRED) {
  1253. return nullptr;
  1254. }
  1255. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1256. }
  1257. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1258. // the tensor is duplicated
  1259. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1260. llm_tensor tn_tensor = tn.tensor;
  1261. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1262. tn_tensor = LLM_TENSOR_OUTPUT;
  1263. }
  1264. llm_tensor_info info;
  1265. try {
  1266. info = llm_tensor_info_for(tn_tensor);
  1267. } catch (const std::out_of_range & e) {
  1268. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1269. }
  1270. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1271. ggml_op op;
  1272. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1273. if (bias) {
  1274. op = GGML_OP_ADD;
  1275. } else {
  1276. op = info.op;
  1277. }
  1278. // sanity checks
  1279. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1280. if (tn.bid != -1) {
  1281. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1282. }
  1283. } else {
  1284. if (tn.bid == -1) {
  1285. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1286. }
  1287. }
  1288. // select the buffer type for this tensor
  1289. buft_list_t * buft_list;
  1290. switch (info.layer) {
  1291. case LLM_TENSOR_LAYER_INPUT:
  1292. buft_list = pimpl->dev_input.buft_list;
  1293. break;
  1294. case LLM_TENSOR_LAYER_OUTPUT:
  1295. buft_list = pimpl->dev_output.buft_list;
  1296. break;
  1297. case LLM_TENSOR_LAYER_REPEATING:
  1298. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1299. break;
  1300. default:
  1301. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1302. }
  1303. ggml_backend_buffer_type_t buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1304. if (!buft) {
  1305. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1306. }
  1307. // avoid using a host buffer when using mmap
  1308. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1309. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1310. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1311. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1312. }
  1313. if (buft != buft_list->front().second) {
  1314. n_moved_tensors++;
  1315. if (!first_moved_tensor) {
  1316. first_moved_tensor = t_meta;
  1317. first_moved_from_buft = buft_list->front().second;
  1318. first_moved_to_buft = buft;
  1319. }
  1320. }
  1321. ggml_context * ctx = ctx_for_buft(buft);
  1322. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1323. if (flags & TENSOR_DUPLICATED) {
  1324. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1325. if (t) {
  1326. return t;
  1327. }
  1328. }
  1329. return ml.create_tensor(ctx, tn, ne, flags);
  1330. };
  1331. layers.resize(n_layer);
  1332. // TODO: move to a separate function
  1333. const auto tn = LLM_TN(arch);
  1334. switch (arch) {
  1335. case LLM_ARCH_LLAMA:
  1336. case LLM_ARCH_REFACT:
  1337. case LLM_ARCH_MINICPM:
  1338. case LLM_ARCH_GRANITE:
  1339. case LLM_ARCH_GRANITE_MOE:
  1340. {
  1341. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1342. // output
  1343. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1344. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1345. // if output is NULL, init from the input tok embed
  1346. if (output == NULL) {
  1347. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1348. }
  1349. for (int i = 0; i < n_layer; ++i) {
  1350. auto & layer = layers[i];
  1351. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1352. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1353. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1354. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1355. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1356. // optional bias tensors
  1357. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1358. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1359. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1360. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1361. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1362. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1363. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1364. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1365. }
  1366. else {
  1367. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1368. }
  1369. if (n_expert == 0) {
  1370. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1371. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1372. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1373. // optional MLP bias
  1374. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1375. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1376. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1377. } else {
  1378. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1379. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1380. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1381. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1382. }
  1383. }
  1384. } break;
  1385. case LLM_ARCH_DECI:
  1386. {
  1387. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1388. // output
  1389. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1390. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1391. // if output is NULL, init from the input tok embed
  1392. if (output == NULL) {
  1393. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1394. }
  1395. for (int i = 0; i < n_layer; ++i) {
  1396. auto & layer = layers[i];
  1397. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1398. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1399. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1400. const int64_t n_ff = hparams.n_ff(i);
  1401. const int64_t n_head = hparams.n_head(i);
  1402. const int64_t n_head_kv = hparams.n_head_kv(i);
  1403. if (n_head_kv == 0 && n_head > 0) {
  1404. // linear attention for DeciLMCausalModel
  1405. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1406. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1407. }
  1408. else if (n_head_kv > 0) {
  1409. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1410. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1411. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1412. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1413. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1414. }
  1415. // optional bias tensors
  1416. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1417. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1418. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1419. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1420. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1421. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1422. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1423. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1424. }
  1425. else {
  1426. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1427. }
  1428. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1429. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1430. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1431. // optional MLP bias
  1432. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1433. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1434. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1435. }
  1436. } break;
  1437. case LLM_ARCH_MINICPM3:
  1438. {
  1439. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1440. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1441. const int64_t q_lora_rank = hparams.n_lora_q;
  1442. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1443. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1444. // output
  1445. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1446. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1447. // if output is NULL, init from the input tok embed
  1448. if (output == NULL) {
  1449. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1450. }
  1451. for (int i = 0; i < n_layer; ++i) {
  1452. auto & layer = layers[i];
  1453. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1454. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1455. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1456. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1457. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1458. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1459. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1460. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1461. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1462. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1463. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1464. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1465. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1466. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1467. }
  1468. } break;
  1469. case LLM_ARCH_GROK:
  1470. {
  1471. if (n_expert == 0) {
  1472. throw std::runtime_error("Grok model cannot have zero experts");
  1473. }
  1474. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1475. // output
  1476. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1477. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1478. // if output is NULL, init from the input tok embed
  1479. if (output == NULL) {
  1480. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1481. }
  1482. for (int i = 0; i < n_layer; ++i) {
  1483. auto & layer = layers[i];
  1484. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1485. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1486. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1487. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1488. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1489. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1490. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1491. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1492. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1493. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1494. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1495. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1496. }
  1497. } break;
  1498. case LLM_ARCH_DBRX:
  1499. {
  1500. if (n_expert == 0) {
  1501. throw std::runtime_error("DBRX model cannot have zero experts");
  1502. }
  1503. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1504. // output
  1505. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1506. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1507. for (int i = 0; i < n_layer; ++i) {
  1508. auto & layer = layers[i];
  1509. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1510. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1511. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1512. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1513. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1514. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1515. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1516. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1517. }
  1518. } break;
  1519. case LLM_ARCH_BAICHUAN:
  1520. {
  1521. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1522. {
  1523. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1524. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1525. }
  1526. for (int i = 0; i < n_layer; ++i) {
  1527. auto & layer = layers[i];
  1528. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1529. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1530. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1531. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1532. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1533. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1534. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1535. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1536. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1537. }
  1538. } break;
  1539. case LLM_ARCH_FALCON:
  1540. {
  1541. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1542. // output
  1543. {
  1544. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1545. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1546. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1547. if (!output) {
  1548. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1549. }
  1550. }
  1551. for (int i = 0; i < n_layer; ++i) {
  1552. auto & layer = layers[i];
  1553. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1554. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1555. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1556. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1557. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1558. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1559. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1560. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1561. }
  1562. } break;
  1563. case LLM_ARCH_STARCODER:
  1564. {
  1565. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1566. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1567. // output
  1568. {
  1569. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1570. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1571. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1572. if (!output) {
  1573. // needs to be on GPU
  1574. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1575. }
  1576. }
  1577. for (int i = 0; i < n_layer; ++i) {
  1578. auto & layer = layers[i];
  1579. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1580. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1581. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1582. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1583. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1584. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1585. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1586. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1587. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1588. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1589. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1590. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1591. }
  1592. } break;
  1593. case LLM_ARCH_BERT:
  1594. case LLM_ARCH_NOMIC_BERT:
  1595. {
  1596. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1597. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1598. if (arch == LLM_ARCH_BERT) {
  1599. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1600. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1601. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1602. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1603. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1604. }
  1605. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1606. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1607. for (int i = 0; i < n_layer; ++i) {
  1608. auto & layer = layers[i];
  1609. if (arch == LLM_ARCH_BERT) {
  1610. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1611. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1612. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1613. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1614. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1615. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1616. } else {
  1617. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1618. }
  1619. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1620. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1621. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1622. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1623. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1624. if (arch == LLM_ARCH_BERT) {
  1625. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1626. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1627. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1628. } else {
  1629. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1630. }
  1631. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1632. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1633. }
  1634. } break;
  1635. case LLM_ARCH_JINA_BERT_V2:
  1636. {
  1637. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1638. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1639. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1640. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1641. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1642. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1643. for (int i = 0; i < n_layer; ++i) {
  1644. auto & layer = layers[i]; // JinaBertLayer
  1645. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1646. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1647. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1648. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1649. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1650. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1651. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1652. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1653. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1654. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1655. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1656. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1657. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1658. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1659. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1660. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1661. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1662. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1663. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1664. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1665. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1666. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1667. }
  1668. } break;
  1669. case LLM_ARCH_BLOOM:
  1670. {
  1671. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1672. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1673. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1674. // output
  1675. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1676. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1677. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1678. for (int i = 0; i < n_layer; ++i) {
  1679. auto & layer = layers[i];
  1680. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1681. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1682. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1683. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1684. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1685. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1686. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1687. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1688. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1689. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1690. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1691. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1692. }
  1693. } break;
  1694. case LLM_ARCH_MPT:
  1695. {
  1696. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1697. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1698. // output
  1699. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1700. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1701. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1702. if (!output) {
  1703. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1704. }
  1705. for (int i = 0; i < n_layer; ++i) {
  1706. auto & layer = layers[i];
  1707. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1708. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1709. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1710. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1711. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1712. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1713. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1714. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1715. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1716. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1717. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1718. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1719. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1720. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1721. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1722. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1723. // AWQ ScaleActivation layer
  1724. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1725. }
  1726. } break;
  1727. case LLM_ARCH_STABLELM:
  1728. {
  1729. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1730. // output
  1731. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1732. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1733. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1734. for (int i = 0; i < n_layer; ++i) {
  1735. auto & layer = layers[i];
  1736. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1737. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1738. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1739. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1740. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1741. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1742. // optional bias tensors, present in Stable LM 2 1.6B
  1743. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1744. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1745. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1746. // optional q and k layernorms, present in StableLM 2 12B
  1747. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  1748. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  1749. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  1750. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1751. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1752. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1753. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1754. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1755. }
  1756. } break;
  1757. case LLM_ARCH_QWEN:
  1758. {
  1759. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1760. // output
  1761. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1762. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1763. for (int i = 0; i < n_layer; ++i) {
  1764. auto & layer = layers[i];
  1765. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1766. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  1767. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  1768. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1769. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1770. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  1771. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  1772. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  1773. }
  1774. } break;
  1775. case LLM_ARCH_QWEN2:
  1776. case LLM_ARCH_QWEN2VL:
  1777. {
  1778. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1779. // output
  1780. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1781. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1782. // if output is NULL, init from the input tok embed
  1783. if (output == NULL) {
  1784. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1785. }
  1786. for (int i = 0; i < n_layer; ++i) {
  1787. auto & layer = layers[i];
  1788. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1789. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1790. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1791. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1792. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1793. // optional bias tensors
  1794. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1795. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1796. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1797. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1798. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1799. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1800. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1801. }
  1802. } break;
  1803. case LLM_ARCH_QWEN2MOE:
  1804. {
  1805. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1806. // output
  1807. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1808. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1809. for (int i = 0; i < n_layer; ++i) {
  1810. auto & layer = layers[i];
  1811. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1812. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1813. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1814. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1815. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1816. // optional bias tensors
  1817. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1818. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1819. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1820. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1821. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1822. if (n_expert == 0) {
  1823. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  1824. }
  1825. if (n_expert_used == 0) {
  1826. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  1827. }
  1828. // MoE branch
  1829. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  1830. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1831. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  1832. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1833. // Shared expert branch
  1834. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  1835. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  1836. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1837. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  1838. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1839. }
  1840. } break;
  1841. case LLM_ARCH_PHI2:
  1842. {
  1843. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1844. // output
  1845. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1846. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1847. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1848. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  1849. for (int i = 0; i < n_layer; ++i) {
  1850. auto & layer = layers[i];
  1851. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1852. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1853. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1854. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1855. if (layer.wqkv == nullptr) {
  1856. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1857. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1858. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1859. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1860. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1861. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1862. }
  1863. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1864. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1865. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1866. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1867. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1868. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1869. }
  1870. } break;
  1871. case LLM_ARCH_PHI3:
  1872. {
  1873. const int64_t n_embd_head = n_embd / n_head;
  1874. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  1875. // output
  1876. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  1877. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  1878. for (int i = 0; i < n_layer; ++i) {
  1879. auto & layer = layers[i];
  1880. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  1881. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  1882. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  1883. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  1884. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  1885. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  1886. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1887. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1888. }
  1889. } break;
  1890. case LLM_ARCH_PHIMOE:
  1891. {
  1892. const int64_t n_embd_head = n_embd / n_head;
  1893. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  1894. // output
  1895. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  1896. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1897. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  1898. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  1899. for (int i = 0; i < n_layer; ++i) {
  1900. auto & layer = layers[i];
  1901. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  1902. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  1903. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  1904. if (layer.wqkv == nullptr) {
  1905. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1906. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1907. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1908. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1909. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1910. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1911. }
  1912. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  1913. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  1914. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  1915. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  1916. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1917. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1918. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1919. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1920. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1921. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1922. }
  1923. } break;
  1924. case LLM_ARCH_PLAMO:
  1925. {
  1926. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1927. // output
  1928. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1929. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1930. for (int i = 0; i < n_layer; ++i) {
  1931. auto & layer = layers[i];
  1932. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1933. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1934. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1935. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1936. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1937. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1938. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1939. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1940. }
  1941. } break;
  1942. case LLM_ARCH_GPT2:
  1943. {
  1944. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1945. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1946. // output
  1947. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1948. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1949. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1950. for (int i = 0; i < n_layer; ++i) {
  1951. auto & layer = layers[i];
  1952. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1953. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1954. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1955. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1956. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1957. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1958. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1959. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1960. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1961. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1962. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1963. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1964. }
  1965. } break;
  1966. case LLM_ARCH_CODESHELL:
  1967. {
  1968. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1969. // output
  1970. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1971. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1972. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1973. for (int i = 0; i < n_layer; ++i) {
  1974. auto & layer = layers[i];
  1975. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1976. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1977. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1978. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1979. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1980. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1981. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1982. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1983. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1984. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1985. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1986. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1987. }
  1988. } break;
  1989. case LLM_ARCH_ORION:
  1990. {
  1991. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1992. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1993. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1994. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1995. for (int i = 0; i < n_layer; ++i) {
  1996. auto & layer = layers[i];
  1997. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1998. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1999. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2000. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2001. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2002. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2003. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2004. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2005. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2006. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2007. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2008. }
  2009. } break;
  2010. case LLM_ARCH_INTERNLM2:
  2011. {
  2012. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2013. // output
  2014. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2015. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2016. for (int i = 0; i < n_layer; ++i) {
  2017. auto & layer = layers[i];
  2018. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2019. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2020. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2021. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2022. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2023. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2024. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2025. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2026. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2027. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2028. }
  2029. } break;
  2030. case LLM_ARCH_GEMMA:
  2031. {
  2032. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2033. // output
  2034. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2035. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2036. for (int i = 0; i < n_layer; ++i) {
  2037. auto & layer = layers[i];
  2038. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2039. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2040. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2041. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2042. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2043. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2044. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2045. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2046. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2047. }
  2048. } break;
  2049. case LLM_ARCH_GEMMA2:
  2050. {
  2051. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2052. // output
  2053. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2054. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2055. for (int i = 0; i < n_layer; ++i) {
  2056. auto & layer = layers[i];
  2057. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2058. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2059. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2060. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2061. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2062. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2063. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2064. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2065. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2066. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2067. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2068. }
  2069. } break;
  2070. case LLM_ARCH_STARCODER2:
  2071. {
  2072. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2073. // output
  2074. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2075. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2076. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2077. // if output is NULL, init from the input tok embed
  2078. if (output == NULL) {
  2079. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2080. }
  2081. for (int i = 0; i < n_layer; ++i) {
  2082. auto & layer = layers[i];
  2083. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2084. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2085. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2086. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2087. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2088. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2089. // optional bias tensors
  2090. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2091. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2092. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2093. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2094. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2095. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2096. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2097. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2098. // optional bias tensors
  2099. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2100. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2101. }
  2102. } break;
  2103. case LLM_ARCH_MAMBA:
  2104. {
  2105. const int64_t d_conv = hparams.ssm_d_conv;
  2106. const int64_t d_inner = hparams.ssm_d_inner;
  2107. const int64_t d_state = hparams.ssm_d_state;
  2108. const int64_t dt_rank = hparams.ssm_dt_rank;
  2109. // only an expansion factor of 2 is supported for now
  2110. if (2 * n_embd != d_inner) {
  2111. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2112. }
  2113. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2114. // output
  2115. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2116. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2117. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2118. if (output == NULL) {
  2119. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2120. }
  2121. for (int i = 0; i < n_layer; ++i) {
  2122. auto & layer = layers[i];
  2123. // norm
  2124. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2125. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2126. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2127. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2128. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2129. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2130. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2131. // no "weight" suffix for these
  2132. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2133. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2134. // out_proj
  2135. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2136. }
  2137. } break;
  2138. case LLM_ARCH_XVERSE:
  2139. {
  2140. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2141. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2142. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2143. for (int i = 0; i < n_layer; ++i) {
  2144. auto & layer = layers[i];
  2145. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2146. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2147. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2148. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2149. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2150. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2151. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2152. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2153. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2154. }
  2155. } break;
  2156. case LLM_ARCH_COMMAND_R:
  2157. {
  2158. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2159. // output
  2160. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2161. // init output from the input tok embed
  2162. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2163. for (int i = 0; i < n_layer; ++i) {
  2164. auto & layer = layers[i];
  2165. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2166. if (n_layer >= 64){
  2167. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2168. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2169. }
  2170. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2171. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2172. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2173. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2174. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2175. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2176. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2177. }
  2178. } break;
  2179. case LLM_ARCH_COHERE2:
  2180. {
  2181. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2182. // output
  2183. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2184. // init output from the input tok embed
  2185. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2186. TENSOR_DUPLICATED);
  2187. for (int i = 0; i < n_layer; ++i) {
  2188. auto & layer = layers[i];
  2189. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2190. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2191. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2192. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2193. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2194. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2195. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2196. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2197. }
  2198. }
  2199. break;
  2200. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2201. {
  2202. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2203. // output
  2204. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2205. // if output is NULL, init from the input tok embed
  2206. if (output == NULL) {
  2207. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2208. }
  2209. for (int i = 0; i < n_layer; ++i) {
  2210. auto & layer = layers[i];
  2211. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2212. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2213. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2214. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2215. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2216. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2217. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2218. }
  2219. } break;
  2220. case LLM_ARCH_OLMO2:
  2221. {
  2222. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2223. // output
  2224. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2225. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2226. for (int i = 0; i < n_layer; ++i) {
  2227. auto & layer = layers[i];
  2228. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2229. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2230. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2231. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2232. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2233. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2234. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2235. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2236. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2237. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2238. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2239. }
  2240. } break;
  2241. case LLM_ARCH_OLMOE:
  2242. {
  2243. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2244. // output
  2245. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2246. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2247. for (int i = 0; i < n_layer; ++i) {
  2248. auto & layer = layers[i];
  2249. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2250. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2251. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2252. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2253. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2254. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2255. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2256. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2257. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2258. if (n_expert == 0) {
  2259. throw std::runtime_error("n_expert must be > 0");
  2260. }
  2261. if (n_expert_used == 0) {
  2262. throw std::runtime_error("n_expert_used must be > 0");
  2263. }
  2264. // MoE branch
  2265. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2266. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2267. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2268. }
  2269. } break;
  2270. case LLM_ARCH_OPENELM:
  2271. {
  2272. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2273. // output
  2274. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2275. // init output from the input tok embed
  2276. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2277. for (int i = 0; i < n_layer; ++i) {
  2278. const int64_t n_head = hparams.n_head(i);
  2279. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2280. const int64_t n_ff = hparams.n_ff(i);
  2281. auto & layer = layers[i];
  2282. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2283. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2284. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2285. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2286. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2287. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2288. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2289. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2290. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2291. }
  2292. } break;
  2293. case LLM_ARCH_GPTNEOX:
  2294. {
  2295. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2296. // output
  2297. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2298. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2299. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2300. for (int i = 0; i < n_layer; ++i) {
  2301. auto & layer = layers[i];
  2302. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2303. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2304. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2305. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2306. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2307. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2308. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2309. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2310. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2311. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2312. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2313. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2314. }
  2315. } break;
  2316. case LLM_ARCH_ARCTIC:
  2317. {
  2318. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2319. // output
  2320. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2321. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2322. // if output is NULL, init from the input tok embed
  2323. if (output == NULL) {
  2324. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2325. }
  2326. for (int i = 0; i < n_layer; ++i) {
  2327. auto & layer = layers[i];
  2328. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2329. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2330. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2331. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2332. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2333. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2334. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2335. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2336. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2337. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2338. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2339. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2340. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2341. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2342. }
  2343. } break;
  2344. case LLM_ARCH_DEEPSEEK:
  2345. {
  2346. const int64_t n_ff_exp = hparams.n_ff_exp;
  2347. const int64_t n_expert_shared = hparams.n_expert_shared;
  2348. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2349. // output
  2350. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2351. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2352. for (int i = 0; i < n_layer; ++i) {
  2353. auto & layer = layers[i];
  2354. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2355. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2356. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2357. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2358. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2359. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2360. if (i < (int) hparams.n_layer_dense_lead) {
  2361. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2362. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2363. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2364. } else {
  2365. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2366. if (n_expert == 0) {
  2367. throw std::runtime_error("n_expert must be > 0");
  2368. }
  2369. if (n_expert_used == 0) {
  2370. throw std::runtime_error("n_expert_used must be > 0");
  2371. }
  2372. // MoE branch
  2373. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2374. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2375. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2376. // Shared expert branch
  2377. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2378. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2379. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2380. }
  2381. }
  2382. } break;
  2383. case LLM_ARCH_DEEPSEEK2:
  2384. {
  2385. const bool is_lite = (hparams.n_layer == 27);
  2386. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2387. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2388. const int64_t q_lora_rank = hparams.n_lora_q;
  2389. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2390. const int64_t n_ff_exp = hparams.n_ff_exp;
  2391. const int64_t n_expert_shared = hparams.n_expert_shared;
  2392. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2393. // output
  2394. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2395. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2396. for (int i = 0; i < n_layer; ++i) {
  2397. auto & layer = layers[i];
  2398. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2399. if (!is_lite) {
  2400. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2401. }
  2402. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2403. if (!is_lite) {
  2404. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2405. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  2406. } else {
  2407. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2408. }
  2409. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2410. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2411. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2412. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2413. if (i < (int) hparams.n_layer_dense_lead) {
  2414. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2415. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2416. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2417. } else {
  2418. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2419. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2420. if (n_expert == 0) {
  2421. throw std::runtime_error("n_expert must be > 0");
  2422. }
  2423. if (n_expert_used == 0) {
  2424. throw std::runtime_error("n_expert_used must be > 0");
  2425. }
  2426. // MoE branch
  2427. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2428. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2429. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2430. // Shared expert branch
  2431. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2432. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2433. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2434. }
  2435. }
  2436. } break;
  2437. case LLM_ARCH_BITNET:
  2438. {
  2439. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2440. // output
  2441. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2442. for (int i = 0; i < n_layer; ++i) {
  2443. auto & layer = layers[i];
  2444. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2445. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2446. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2447. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2448. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2449. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2450. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2451. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2452. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2453. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2454. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2455. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2456. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2457. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2458. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2459. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2460. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2461. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2462. }
  2463. } break;
  2464. case LLM_ARCH_T5:
  2465. {
  2466. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2467. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2468. // output
  2469. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2470. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2471. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2472. // if output is NULL, init from the input tok embed
  2473. if (output == NULL) {
  2474. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2475. }
  2476. for (int i = 0; i < n_layer; ++i) {
  2477. auto & layer = layers[i];
  2478. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2479. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2480. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2481. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2482. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2483. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2484. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2485. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2486. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2487. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2488. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2489. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2490. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2491. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2492. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2493. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2494. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2495. // this tensor seems to be unused in HF transformers implementation
  2496. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2497. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2498. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2499. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2500. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2501. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2502. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2503. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2504. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2505. }
  2506. } break;
  2507. case LLM_ARCH_T5ENCODER:
  2508. {
  2509. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2510. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2511. // output
  2512. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2513. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2514. // if output is NULL, init from the input tok embed
  2515. if (output == NULL) {
  2516. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2517. }
  2518. for (int i = 0; i < n_layer; ++i) {
  2519. auto & layer = layers[i];
  2520. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2521. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2522. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2523. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2524. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2525. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2526. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2527. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2528. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2529. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2530. }
  2531. } break;
  2532. case LLM_ARCH_JAIS:
  2533. {
  2534. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2535. // output
  2536. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2537. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2538. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2539. for (int i = 0; i < n_layer; ++i) {
  2540. auto & layer = layers[i];
  2541. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2542. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2543. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2544. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2545. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2546. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2547. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2548. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2549. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2550. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2551. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2552. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2553. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2554. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2555. }
  2556. } break;
  2557. case LLM_ARCH_CHATGLM:
  2558. {
  2559. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2560. // output
  2561. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2562. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2563. for (int i = 0; i < n_layer; ++i) {
  2564. auto & layer = layers[i];
  2565. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2566. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2567. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2568. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2569. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2570. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2571. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2572. }
  2573. } break;
  2574. case LLM_ARCH_NEMOTRON:
  2575. {
  2576. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2577. // output
  2578. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2579. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2580. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2581. for (int i = 0; i < n_layer; ++i) {
  2582. auto & layer = layers[i];
  2583. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2584. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2585. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2586. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2587. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2588. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2589. // optional bias tensors
  2590. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2591. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2592. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2593. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2594. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2595. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2596. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2597. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2598. // optional MLP bias
  2599. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2600. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2601. }
  2602. } break;
  2603. case LLM_ARCH_EXAONE:
  2604. {
  2605. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2606. // output
  2607. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2608. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2609. for (int i = 0; i < n_layer; ++i) {
  2610. auto & layer = layers[i];
  2611. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2612. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2613. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2614. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2615. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2616. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2617. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2618. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2619. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2620. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2621. }
  2622. } break;
  2623. case LLM_ARCH_RWKV6:
  2624. {
  2625. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2626. // Block 0, LN0
  2627. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2628. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2629. // output
  2630. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2631. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2632. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2633. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2634. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2635. const int head_size = hparams.wkv_head_size;
  2636. const int attn_hidden_size = n_embd;
  2637. const int ffn_size = hparams.n_ff_arr[0];
  2638. for (int i = 0; i < n_layer; ++i) {
  2639. auto & layer = layers[i];
  2640. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2641. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2642. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  2643. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  2644. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2645. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2646. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2647. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2648. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2649. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2650. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2651. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2652. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2653. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  2654. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  2655. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2656. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2657. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2658. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2659. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2660. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2661. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2662. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  2663. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  2664. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2665. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  2666. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  2667. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  2668. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  2669. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  2670. }
  2671. } break;
  2672. case LLM_ARCH_RWKV6QWEN2:
  2673. {
  2674. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2675. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2676. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2677. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2678. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2679. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2680. const int head_size = hparams.wkv_head_size;
  2681. const int attn_hidden_size = n_embd;
  2682. const int n_head_kv = hparams.n_head_kv();
  2683. int attn_key_value_size;
  2684. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  2685. attn_key_value_size = attn_hidden_size;
  2686. } else {
  2687. attn_key_value_size = n_head_kv * head_size;
  2688. }
  2689. for (int i = 0; i < n_layer; ++i) {
  2690. auto & layer = layers[i];
  2691. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2692. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2693. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2694. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2695. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  2696. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2697. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2698. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2699. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2700. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  2701. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  2702. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2703. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2704. // optional bias tensors
  2705. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2706. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2707. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
  2708. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2709. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2710. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2711. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2712. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2713. }
  2714. } break;
  2715. case LLM_ARCH_CHAMELEON:
  2716. {
  2717. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2718. // output
  2719. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2720. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2721. // if output is NULL, init from the input tok embed
  2722. if (output == NULL) {
  2723. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2724. }
  2725. for (int i = 0; i < n_layer; ++i) {
  2726. auto & layer = layers[i];
  2727. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2728. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2729. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2730. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2731. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2732. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2733. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2734. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2735. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2736. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2737. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2738. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2739. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2740. }
  2741. } break;
  2742. case LLM_ARCH_WAVTOKENIZER_DEC:
  2743. {
  2744. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  2745. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  2746. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  2747. // posnet
  2748. {
  2749. const int64_t n_embd = hparams.posnet.n_embd;
  2750. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  2751. auto & layer = layers[i].posnet;
  2752. // posnet:
  2753. //
  2754. // - resnet
  2755. // - resnet
  2756. // - attn
  2757. // - resnet
  2758. // - resnet
  2759. // - norm
  2760. //
  2761. switch (i) {
  2762. case 0:
  2763. case 1:
  2764. case 3:
  2765. case 4:
  2766. {
  2767. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  2768. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  2769. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  2770. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  2771. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  2772. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  2773. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  2774. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  2775. } break;
  2776. case 2:
  2777. {
  2778. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  2779. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  2780. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  2781. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  2782. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  2783. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  2784. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  2785. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  2786. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  2787. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  2788. } break;
  2789. case 5:
  2790. {
  2791. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  2792. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  2793. } break;
  2794. default: GGML_ABORT("unknown posnet layer");
  2795. };
  2796. }
  2797. }
  2798. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  2799. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  2800. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  2801. // convnext
  2802. {
  2803. const int64_t n_embd = hparams.convnext.n_embd;
  2804. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  2805. auto & layer = layers[i].convnext;
  2806. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  2807. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  2808. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  2809. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  2810. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  2811. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  2812. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  2813. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  2814. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  2815. }
  2816. // output
  2817. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2818. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2819. }
  2820. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  2821. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  2822. } break;
  2823. default:
  2824. throw std::runtime_error("unknown architecture");
  2825. }
  2826. if (n_moved_tensors > 0) {
  2827. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  2828. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  2829. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  2830. }
  2831. }
  2832. ml.done_getting_tensors();
  2833. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  2834. pimpl->mappings.reserve(ml.mappings.size());
  2835. // create the backend buffers
  2836. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  2837. ctx_bufs.reserve(ctx_map.size());
  2838. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  2839. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  2840. pimpl->bufs.reserve(n_max_backend_buffer);
  2841. for (auto & it : ctx_map) {
  2842. ggml_backend_buffer_type_t buft = it.first;
  2843. ggml_context * ctx = it.second;
  2844. // skip contexts without tensors
  2845. if (ggml_get_first_tensor(ctx) == nullptr) {
  2846. continue;
  2847. }
  2848. llama_buf_map buf_map;
  2849. buf_map.reserve(n_max_backend_buffer);
  2850. // check if it is possible to use buffer_from_host_ptr with this buffer type
  2851. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  2852. if (!dev) {
  2853. // FIXME: workaround for CPU backend buft having a NULL device
  2854. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  2855. }
  2856. ggml_backend_dev_props props;
  2857. ggml_backend_dev_get_props(dev, &props);
  2858. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  2859. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  2860. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  2861. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  2862. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  2863. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  2864. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  2865. void * addr = nullptr;
  2866. size_t first, last; // NOLINT
  2867. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  2868. if (first >= last) {
  2869. continue;
  2870. }
  2871. const size_t max_size = ggml_get_max_tensor_size(ctx);
  2872. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  2873. if (buf == nullptr) {
  2874. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  2875. }
  2876. pimpl->bufs.emplace_back(buf);
  2877. buf_map.emplace(idx, buf);
  2878. }
  2879. }
  2880. else {
  2881. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2882. if (buf == nullptr) {
  2883. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  2884. }
  2885. pimpl->bufs.emplace_back(buf);
  2886. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  2887. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  2888. auto & mlock_buf = pimpl->mlock_bufs.back();
  2889. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  2890. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  2891. }
  2892. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  2893. buf_map.emplace(idx, buf);
  2894. }
  2895. }
  2896. if (pimpl->bufs.empty()) {
  2897. throw std::runtime_error("failed to allocate buffer");
  2898. }
  2899. for (auto & buf : buf_map) {
  2900. // indicate that this buffer contains weights
  2901. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  2902. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2903. }
  2904. ctx_bufs.emplace_back(ctx, buf_map);
  2905. }
  2906. if (llama_supports_gpu_offload()) {
  2907. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  2908. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  2909. if (n_gpu_layers > (int) hparams.n_layer) {
  2910. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  2911. }
  2912. const int max_backend_supported_layers = hparams.n_layer + 1;
  2913. const int max_offloadable_layers = hparams.n_layer + 1;
  2914. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  2915. }
  2916. // print memory requirements per buffer type
  2917. for (auto & buf : pimpl->bufs) {
  2918. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  2919. }
  2920. // populate tensors_by_name
  2921. for (auto & ctx : pimpl->ctxs) {
  2922. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  2923. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  2924. }
  2925. }
  2926. // load tensor data
  2927. for (auto & it : ctx_bufs) {
  2928. ggml_context * ctx = it.first;
  2929. auto & bufs = it.second;
  2930. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  2931. return false;
  2932. }
  2933. }
  2934. if (use_mmap_buffer) {
  2935. for (auto & mapping : ml.mappings) {
  2936. pimpl->mappings.emplace_back(std::move(mapping));
  2937. }
  2938. }
  2939. return true;
  2940. }
  2941. std::string llama_model::arch_name() const {
  2942. return llm_arch_name(arch);
  2943. }
  2944. std::string llama_model::type_name() const {
  2945. return llm_type_name(type);
  2946. }
  2947. std::string llama_model::desc() const {
  2948. return pimpl->desc_str;
  2949. }
  2950. size_t llama_model::size() const {
  2951. return pimpl->n_bytes;
  2952. }
  2953. size_t llama_model::max_nodes() const {
  2954. return std::max<size_t>(8192, tensors_by_name.size()*5);
  2955. }
  2956. size_t llama_model::n_devices() const {
  2957. return devices.size();
  2958. }
  2959. uint64_t llama_model::n_elements() const {
  2960. return pimpl->n_elements;
  2961. }
  2962. void llama_model::print_info() const {
  2963. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  2964. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  2965. bool is_var = false;
  2966. std::vector<uint32_t> v;
  2967. for (uint32_t i = 0; i < n; ++i) {
  2968. v.push_back(f(i));
  2969. if (v[i] != v[0]) {
  2970. is_var = true;
  2971. }
  2972. }
  2973. std::stringstream ss;
  2974. if (is_var) {
  2975. ss << "[";
  2976. for (uint32_t i = 0; i < n; ++i) {
  2977. ss << v[i];
  2978. if (i < n - 1) {
  2979. ss << ", ";
  2980. }
  2981. }
  2982. ss << "]";
  2983. } else {
  2984. ss << v[0];
  2985. }
  2986. return ss.str();
  2987. };
  2988. // hparams
  2989. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  2990. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  2991. if (!hparams.vocab_only) {
  2992. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  2993. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  2994. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  2995. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  2996. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  2997. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  2998. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  2999. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3000. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3001. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3002. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3003. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3004. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3005. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3006. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3007. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3008. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3009. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3010. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3011. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3012. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3013. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3014. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3015. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3016. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3017. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3018. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3019. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3020. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3021. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3022. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3023. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3024. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3025. }
  3026. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3027. if (pimpl->n_elements >= 1e12) {
  3028. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3029. } else if (pimpl->n_elements >= 1e9) {
  3030. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3031. } else if (pimpl->n_elements >= 1e6) {
  3032. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3033. } else {
  3034. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3035. }
  3036. // general kv
  3037. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3038. if (arch == LLM_ARCH_DEEPSEEK) {
  3039. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3040. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3041. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3042. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3043. }
  3044. if (arch == LLM_ARCH_DEEPSEEK2) {
  3045. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3046. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3047. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3048. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3049. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3050. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3051. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3052. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((enum llama_expert_gating_func_type) hparams.expert_gating_func));
  3053. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3054. }
  3055. if (arch == LLM_ARCH_QWEN2MOE) {
  3056. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3057. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3058. }
  3059. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3060. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3061. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3062. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3063. }
  3064. vocab.print_info();
  3065. }
  3066. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3067. return pimpl->dev_layer.at(il).dev;
  3068. }
  3069. ggml_backend_dev_t llama_model::dev_output() const {
  3070. return pimpl->dev_output.dev;
  3071. }
  3072. template<typename F>
  3073. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3074. ggml_init_params params = {
  3075. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3076. /*.mem_buffer =*/ NULL,
  3077. /*.no_alloc =*/ true,
  3078. };
  3079. ggml_context_ptr ctx { ggml_init(params) };
  3080. if (!ctx) {
  3081. throw std::runtime_error(format("failed to create ggml context"));
  3082. }
  3083. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3084. ggml_tensor * op_tensor = fn(ctx.get());
  3085. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3086. if (op_tensor->src[i] != nullptr) {
  3087. assert(op_tensor->src[i]->buffer == nullptr);
  3088. op_tensor->src[i]->buffer = buf.get();
  3089. }
  3090. }
  3091. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3092. return op_supported;
  3093. }
  3094. template<typename F>
  3095. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3096. for (const auto & cur : buft_list) {
  3097. ggml_backend_dev_t cur_dev = cur.first;
  3098. ggml_backend_buffer_type_t cur_buft = cur.second;
  3099. if (buft_supported(cur_buft, cur_dev, fn)) {
  3100. return cur_buft;
  3101. }
  3102. }
  3103. throw std::runtime_error(format("no suitable buffer type found"));
  3104. }
  3105. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3106. return ::select_buft(
  3107. *pimpl->dev_layer.at(il).buft_list,
  3108. [&](ggml_context * ctx) {
  3109. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3110. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3111. return ggml_add(ctx, cur, layer_dir);
  3112. });
  3113. }
  3114. const struct ggml_tensor * llama_model::get_tensor(const char * name) const {
  3115. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3116. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  3117. return it.first == name;
  3118. });
  3119. if (it == tensors_by_name.end()) {
  3120. return nullptr;
  3121. }
  3122. return it->second;
  3123. }
  3124. //
  3125. // interface implementation
  3126. //
  3127. struct llama_model_params llama_model_default_params() {
  3128. struct llama_model_params result = {
  3129. /*.devices =*/ nullptr,
  3130. /*.n_gpu_layers =*/ 0,
  3131. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  3132. /*.main_gpu =*/ 0,
  3133. /*.tensor_split =*/ nullptr,
  3134. /*.progress_callback =*/ nullptr,
  3135. /*.progress_callback_user_data =*/ nullptr,
  3136. /*.kv_overrides =*/ nullptr,
  3137. /*.vocab_only =*/ false,
  3138. /*.use_mmap =*/ true,
  3139. /*.use_mlock =*/ false,
  3140. /*.check_tensors =*/ false,
  3141. };
  3142. #ifdef GGML_USE_METAL
  3143. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  3144. result.n_gpu_layers = 999;
  3145. #endif
  3146. return result;
  3147. }
  3148. const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model) {
  3149. return &model->vocab;
  3150. }
  3151. void llama_free_model(struct llama_model * model) {
  3152. llama_model_free(model);
  3153. }
  3154. void llama_model_free(struct llama_model * model) {
  3155. delete model;
  3156. }
  3157. int32_t llama_model_n_ctx_train(const struct llama_model * model) {
  3158. return model->hparams.n_ctx_train;
  3159. }
  3160. int32_t llama_model_n_embd(const struct llama_model * model) {
  3161. return model->hparams.n_embd;
  3162. }
  3163. int32_t llama_model_n_layer(const struct llama_model * model) {
  3164. return model->hparams.n_layer;
  3165. }
  3166. int32_t llama_model_n_head(const struct llama_model * model) {
  3167. return model->hparams.n_head();
  3168. }
  3169. // deprecated
  3170. int32_t llama_n_ctx_train(const struct llama_model * model) {
  3171. return llama_model_n_ctx_train(model);
  3172. }
  3173. // deprecated
  3174. int32_t llama_n_embd(const struct llama_model * model) {
  3175. return llama_model_n_embd(model);
  3176. }
  3177. // deprecated
  3178. int32_t llama_n_layer(const struct llama_model * model) {
  3179. return llama_model_n_layer(model);
  3180. }
  3181. // deprecated
  3182. int32_t llama_n_head(const struct llama_model * model) {
  3183. return llama_model_n_head(model);
  3184. }
  3185. enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
  3186. switch (model->arch) {
  3187. // these models do not use RoPE
  3188. case LLM_ARCH_GPT2:
  3189. case LLM_ARCH_GPTJ:
  3190. case LLM_ARCH_MPT:
  3191. case LLM_ARCH_REFACT:
  3192. case LLM_ARCH_BLOOM:
  3193. case LLM_ARCH_MAMBA:
  3194. case LLM_ARCH_JINA_BERT_V2:
  3195. case LLM_ARCH_T5:
  3196. case LLM_ARCH_T5ENCODER:
  3197. case LLM_ARCH_JAIS:
  3198. case LLM_ARCH_RWKV6:
  3199. case LLM_ARCH_RWKV6QWEN2:
  3200. case LLM_ARCH_WAVTOKENIZER_DEC:
  3201. return LLAMA_ROPE_TYPE_NONE;
  3202. // use what we call a normal RoPE, operating on pairs of consecutive head values
  3203. case LLM_ARCH_LLAMA:
  3204. case LLM_ARCH_DECI:
  3205. case LLM_ARCH_BAICHUAN:
  3206. case LLM_ARCH_STARCODER:
  3207. case LLM_ARCH_PLAMO:
  3208. case LLM_ARCH_ORION:
  3209. case LLM_ARCH_INTERNLM2:
  3210. case LLM_ARCH_MINICPM:
  3211. case LLM_ARCH_XVERSE:
  3212. case LLM_ARCH_COMMAND_R:
  3213. case LLM_ARCH_COHERE2:
  3214. case LLM_ARCH_OLMO:
  3215. case LLM_ARCH_ARCTIC:
  3216. case LLM_ARCH_DEEPSEEK:
  3217. case LLM_ARCH_DEEPSEEK2:
  3218. case LLM_ARCH_CHATGLM:
  3219. case LLM_ARCH_GRANITE:
  3220. case LLM_ARCH_GRANITE_MOE:
  3221. case LLM_ARCH_CHAMELEON:
  3222. return LLAMA_ROPE_TYPE_NORM;
  3223. // the pairs of head values are offset by n_rot/2
  3224. case LLM_ARCH_FALCON:
  3225. case LLM_ARCH_GROK:
  3226. case LLM_ARCH_DBRX:
  3227. case LLM_ARCH_BERT:
  3228. case LLM_ARCH_NOMIC_BERT:
  3229. case LLM_ARCH_STABLELM:
  3230. case LLM_ARCH_BITNET:
  3231. case LLM_ARCH_QWEN:
  3232. case LLM_ARCH_QWEN2:
  3233. case LLM_ARCH_QWEN2MOE:
  3234. case LLM_ARCH_OLMO2:
  3235. case LLM_ARCH_OLMOE:
  3236. case LLM_ARCH_PHI2:
  3237. case LLM_ARCH_PHI3:
  3238. case LLM_ARCH_PHIMOE:
  3239. case LLM_ARCH_GEMMA:
  3240. case LLM_ARCH_GEMMA2:
  3241. case LLM_ARCH_STARCODER2:
  3242. case LLM_ARCH_OPENELM:
  3243. case LLM_ARCH_GPTNEOX:
  3244. case LLM_ARCH_CODESHELL:
  3245. case LLM_ARCH_NEMOTRON:
  3246. case LLM_ARCH_EXAONE:
  3247. case LLM_ARCH_MINICPM3:
  3248. return LLAMA_ROPE_TYPE_NEOX;
  3249. case LLM_ARCH_QWEN2VL:
  3250. return LLAMA_ROPE_TYPE_MROPE;
  3251. // all model arches should be listed explicitly here
  3252. case LLM_ARCH_UNKNOWN:
  3253. GGML_ABORT("unknown architecture");
  3254. }
  3255. return LLAMA_ROPE_TYPE_NONE;
  3256. }
  3257. float llama_model_rope_freq_scale_train(const struct llama_model * model) {
  3258. return model->hparams.rope_freq_scale_train;
  3259. }
  3260. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  3261. const auto & it = model->gguf_kv.find(key);
  3262. if (it == model->gguf_kv.end()) {
  3263. if (buf_size > 0) {
  3264. buf[0] = '\0';
  3265. }
  3266. return -1;
  3267. }
  3268. return snprintf(buf, buf_size, "%s", it->second.c_str());
  3269. }
  3270. int32_t llama_model_meta_count(const struct llama_model * model) {
  3271. return (int)model->gguf_kv.size();
  3272. }
  3273. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  3274. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  3275. if (buf_size > 0) {
  3276. buf[0] = '\0';
  3277. }
  3278. return -1;
  3279. }
  3280. auto it = model->gguf_kv.begin();
  3281. std::advance(it, i);
  3282. return snprintf(buf, buf_size, "%s", it->first.c_str());
  3283. }
  3284. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  3285. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  3286. if (buf_size > 0) {
  3287. buf[0] = '\0';
  3288. }
  3289. return -1;
  3290. }
  3291. auto it = model->gguf_kv.begin();
  3292. std::advance(it, i);
  3293. return snprintf(buf, buf_size, "%s", it->second.c_str());
  3294. }
  3295. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  3296. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  3297. }
  3298. uint64_t llama_model_size(const struct llama_model * model) {
  3299. return model->size();
  3300. }
  3301. const char * llama_model_chat_template(const struct llama_model * model) {
  3302. const auto & it = model->gguf_kv.find(LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE));
  3303. if (it == model->gguf_kv.end()) {
  3304. return nullptr;
  3305. }
  3306. return it->second.c_str();
  3307. }
  3308. uint64_t llama_model_n_params(const struct llama_model * model) {
  3309. return model->n_elements();
  3310. }
  3311. bool llama_model_has_encoder(const struct llama_model * model) {
  3312. switch (model->arch) {
  3313. case LLM_ARCH_T5: return true;
  3314. case LLM_ARCH_T5ENCODER: return true;
  3315. default: return false;
  3316. }
  3317. }
  3318. bool llama_model_has_decoder(const struct llama_model * model) {
  3319. switch (model->arch) {
  3320. case LLM_ARCH_T5ENCODER: return false;
  3321. default: return true;
  3322. }
  3323. }
  3324. llama_token llama_model_decoder_start_token(const struct llama_model * model) {
  3325. return model->hparams.dec_start_token_id;
  3326. }
  3327. bool llama_model_is_recurrent(const struct llama_model * model) {
  3328. switch (model->arch) {
  3329. case LLM_ARCH_MAMBA: return true;
  3330. case LLM_ARCH_RWKV6: return true;
  3331. case LLM_ARCH_RWKV6QWEN2: return true;
  3332. default: return false;
  3333. }
  3334. }