tensor_mapping.py 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. # Output norm
  72. MODEL_TENSOR.OUTPUT_NORM: (
  73. "gpt_neox.final_layer_norm", # gptneox
  74. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  75. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  76. "norm", # llama-pth
  77. "transformer.norm_f", # mpt dbrx
  78. "ln_f", # refact bloom qwen gpt2
  79. "language_model.encoder.final_layernorm", # persimmon
  80. "model.final_layernorm", # persimmon
  81. "lm_head.ln", # phi2
  82. "model.norm_f", # mamba-qbert
  83. "backbone.norm_f", # mamba
  84. "transformer.rms_norm", # Grok
  85. "encoder.final_layernorm", # chatglm
  86. "transformer.norm", # openelm
  87. "model.norm", # nemotron
  88. "rwkv.ln_out", # rwkv6
  89. "model.ln_out", # rwkv7
  90. "backbone.final_layer_norm", # wavtokenizer
  91. "model.norm", # llama4
  92. "model.transformer.ln_f", # llada
  93. ),
  94. # Rope frequencies
  95. MODEL_TENSOR.ROPE_FREQS: (
  96. "rope.freqs", # llama-pth
  97. "rotary_pos_emb.inv_freq", # chatglm
  98. ),
  99. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  100. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  101. MODEL_TENSOR.CONV1D: (
  102. "backbone.embed", # roberta
  103. ),
  104. }
  105. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  106. # Attention norm
  107. MODEL_TENSOR.ATTN_NORM: (
  108. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  109. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  110. "transformer.blocks.{bid}.norm_1", # mpt
  111. "transformer.h.{bid}.input_layernorm", # falcon7b
  112. "h.{bid}.input_layernorm", # bloom
  113. "transformer.h.{bid}.ln_mlp", # falcon40b
  114. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  115. "layers.{bid}.attention_norm", # llama-pth
  116. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  117. "model.layers.{bid}.ln1", # yi
  118. "h.{bid}.ln_1", # gpt2
  119. "transformer.h.{bid}.ln", # phi2
  120. "model.layers.layers.{bid}.norm", # plamo
  121. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  122. "model.layers.{bid}.attention_norm", # internlm2
  123. "model.layers.{bid}.norm", # mamba-qbert
  124. "backbone.layers.{bid}.norm", # mamba
  125. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  126. "model.layers.{bid}.pre_attn_norm", # grok-2
  127. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  128. "encoder.layers.{bid}.input_layernorm", # chatglm
  129. "transformer.layers.{bid}.attn_norm", # openelm
  130. "rwkv.blocks.{bid}.ln1", # rwkv6
  131. "model.layers.{bid}.ln1", # rwkv7
  132. "model.layers.{bid}.input_layernorm", # llama4
  133. "layers.{bid}.input_layernorm", # embeddinggemma
  134. "transformer_encoder.{bid}.attention_norm", # neobert
  135. "model.layers.{bid}.operator_norm", # lfm2
  136. "model.transformer.blocks.{bid}.attn_norm", # llada
  137. "layers.{bid}.input_layernorm", # qwen3-embedding
  138. "model.layers.{bid}.attention_layernorm" # apertus
  139. ),
  140. # Attention norm 2
  141. MODEL_TENSOR.ATTN_NORM_2: (
  142. "transformer.h.{bid}.ln_attn", # falcon40b
  143. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  144. "rwkv.blocks.{bid}.ln2", # rwkv6
  145. "model.layers.{bid}.ln2", # rwkv7
  146. ),
  147. # Attention query-key-value
  148. MODEL_TENSOR.ATTN_QKV: (
  149. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  150. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  151. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  152. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  153. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  154. "h.{bid}.self_attention.query_key_value", # bloom
  155. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  156. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  157. "h.{bid}.attn.c_attn", # gpt2
  158. "transformer.h.{bid}.mixer.Wqkv", # phi2
  159. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  160. "encoder.layers.{bid}.mixer.Wqkv", # jina
  161. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  162. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  163. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  164. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  165. "transformer_encoder.{bid}.qkv", # neobert
  166. ),
  167. # Attention query
  168. MODEL_TENSOR.ATTN_Q: (
  169. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  170. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  171. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  172. "layers.{bid}.attention.wq", # llama-pth
  173. "encoder.layer.{bid}.attention.self.query", # bert
  174. "transformer.layer.{bid}.attention.q_lin", # distillbert
  175. "transformer.h.{bid}.attn.q_proj", # gpt-j
  176. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  177. "model.layers.{bid}.attention.wq", # internlm2
  178. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  179. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  180. "model.layers.{bid}.self_attn.q_proj", # llama4
  181. "model.transformer.blocks.{bid}.q_proj", # llada
  182. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  183. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  184. ),
  185. # Attention key
  186. MODEL_TENSOR.ATTN_K: (
  187. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  188. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  189. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  190. "layers.{bid}.attention.wk", # llama-pth
  191. "encoder.layer.{bid}.attention.self.key", # bert
  192. "transformer.layer.{bid}.attention.k_lin", # distillbert
  193. "transformer.h.{bid}.attn.k_proj", # gpt-j
  194. "transformer.h.{bid}.attn.k", # refact
  195. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  196. "model.layers.{bid}.attention.wk", # internlm2
  197. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  198. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  199. "model.layers.{bid}.self_attn.k_proj", # llama4
  200. "model.transformer.blocks.{bid}.k_proj", # llada
  201. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  202. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  203. ),
  204. # Attention value
  205. MODEL_TENSOR.ATTN_V: (
  206. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  207. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  208. "layers.{bid}.attention.wv", # llama-pth
  209. "encoder.layer.{bid}.attention.self.value", # bert
  210. "transformer.layer.{bid}.attention.v_lin", # distillbert
  211. "transformer.h.{bid}.attn.v_proj", # gpt-j
  212. "transformer.h.{bid}.attn.v", # refact
  213. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  214. "model.layers.{bid}.attention.wv", # internlm2
  215. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  216. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  217. "model.layers.{bid}.self_attn.v_proj", # llama4
  218. "model.transformer.blocks.{bid}.v_proj", # llada
  219. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  220. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  221. ),
  222. # Attention output
  223. MODEL_TENSOR.ATTN_OUT: (
  224. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  225. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  226. "transformer.blocks.{bid}.attn.out_proj", # mpt
  227. "transformer.h.{bid}.self_attention.dense", # falcon
  228. "h.{bid}.self_attention.dense", # bloom
  229. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  230. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  231. "model.layers.{bid}.self_attn.out_proj", # lfm2
  232. "model.layers.{bid}.self_attn.linear_attn", # deci
  233. "layers.{bid}.attention.wo", # llama-pth
  234. "encoder.layer.{bid}.attention.output.dense", # bert
  235. "transformer.layer.{bid}.attention.out_lin", # distillbert
  236. "transformer.h.{bid}.attn.out_proj", # gpt-j
  237. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  238. "model.layers.{bid}.self_attn.dense", # persimmon
  239. "h.{bid}.attn.c_proj", # gpt2
  240. "transformer.h.{bid}.mixer.out_proj", # phi2
  241. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  242. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  243. "model.layers.{bid}.attention.wo", # internlm2
  244. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  245. "encoder.layers.{bid}.mixer.out_proj", # jina
  246. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  247. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  248. "encoder.layers.{bid}.self_attention.dense", # chatglm
  249. "transformer.layers.{bid}.attn.out_proj", # openelm
  250. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  251. "model.layers.{bid}.self_attn.o_proj", # llama4
  252. "transformer_encoder.{bid}.wo", # neobert
  253. "model.transformer.blocks.{bid}.attn_out", # llada
  254. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  255. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  256. ),
  257. # Attention output norm
  258. MODEL_TENSOR.ATTN_OUT_NORM: (
  259. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  260. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  261. "encoder.layers.{bid}.norm1", # nomic-bert
  262. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  263. "model.layers.{bid}.post_attn_norm", # grok-2
  264. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  265. ),
  266. MODEL_TENSOR.ATTN_POST_NORM: (
  267. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  268. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  269. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  270. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  271. ),
  272. # Rotary embeddings
  273. MODEL_TENSOR.ATTN_ROT_EMBD: (
  274. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  275. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  276. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  277. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  278. ),
  279. MODEL_TENSOR.ATTN_SINKS: (
  280. "model.layers.{bid}.self_attn.sinks", # openai-moe
  281. ),
  282. # Feed-forward norm
  283. MODEL_TENSOR.FFN_NORM: (
  284. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  285. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  286. "h.{bid}.post_attention_layernorm", # bloom
  287. "transformer.blocks.{bid}.norm_2", # mpt
  288. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  289. "layers.{bid}.ffn_norm", # llama-pth
  290. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  291. "model.layers.{bid}.ln2", # yi
  292. "h.{bid}.ln_2", # gpt2
  293. "model.layers.{bid}.ffn_norm", # internlm2
  294. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  295. "model.layers.{bid}.pre_moe_norm", # grok-2
  296. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  297. "transformer.layers.{bid}.ffn_norm", # openelm
  298. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  299. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  300. "model.layers.{bid}.post_attention_layernorm", # llama4
  301. "transformer_encoder.{bid}.ffn_norm", # neobert
  302. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  303. "model.transformer.blocks.{bid}.ff_norm", # llada
  304. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  305. "model.layers.{bid}.feedforward_layernorm", # apertus
  306. ),
  307. # Post feed-forward norm
  308. MODEL_TENSOR.FFN_PRE_NORM: (
  309. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  310. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  311. "model.layers.{bid}.pre_ff_layernorm.weight",
  312. ),
  313. # Post feed-forward norm
  314. MODEL_TENSOR.FFN_POST_NORM: (
  315. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  316. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  317. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  318. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  319. "model.layers.{bid}.feed_forward.up_proj",
  320. "model.layers.{bid}.post_moe_norm", # grok-2
  321. ),
  322. MODEL_TENSOR.FFN_GATE_INP: (
  323. "layers.{bid}.feed_forward.gate", # mixtral
  324. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  325. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  326. "transformer.decoder_layer.{bid}.router", # Grok
  327. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  328. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  329. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  330. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  331. "model.layers.{bid}.mlp.router", # openai-moe
  332. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  333. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  334. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  335. ),
  336. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  337. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  338. ),
  339. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  340. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  341. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  342. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  343. ),
  344. # Feed-forward up
  345. MODEL_TENSOR.FFN_UP: (
  346. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  347. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  348. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  349. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  350. "h.{bid}.mlp.dense_h_to_4h", # bloom
  351. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  352. "layers.{bid}.mlp.up_proj", # embeddinggemma
  353. "layers.{bid}.feed_forward.w3", # llama-pth
  354. "encoder.layer.{bid}.intermediate.dense", # bert
  355. "transformer.layer.{bid}.ffn.lin1", # distillbert
  356. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  357. "transformer.h.{bid}.mlp.linear_3", # refact
  358. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  359. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  360. "transformer.h.{bid}.mlp.w1", # qwen
  361. "h.{bid}.mlp.c_fc", # gpt2
  362. "transformer.h.{bid}.mlp.fc1", # phi2
  363. "model.layers.{bid}.mlp.fc1", # phi2
  364. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  365. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  366. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  367. "model.layers.{bid}.feed_forward.w3", # internlm2
  368. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  369. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  370. "model.layers.{bid}.mlp.c_fc", # starcoder2
  371. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  372. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  373. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  374. "model.layers.{bid}.residual_mlp.w3", # arctic
  375. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  376. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  377. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  378. "transformer_encoder.{bid}.ffn.w12", # neobert
  379. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  380. "model.transformer.blocks.{bid}.up_proj", # llada
  381. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  382. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  383. ),
  384. MODEL_TENSOR.FFN_UP_EXP: (
  385. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  386. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  387. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  388. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  389. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  390. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  391. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  392. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  393. ),
  394. MODEL_TENSOR.FFN_UP_SHEXP: (
  395. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  396. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  397. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  398. "model.layers.{bid}.feed_forward.down_proj",
  399. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  400. ),
  401. MODEL_TENSOR.FFN_UP_CHEXP: (
  402. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  403. ),
  404. # AWQ-activation gate
  405. MODEL_TENSOR.FFN_ACT: (
  406. "transformer.blocks.{bid}.ffn.act", # mpt
  407. ),
  408. # Feed-forward gate
  409. MODEL_TENSOR.FFN_GATE: (
  410. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  411. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  412. "layers.{bid}.feed_forward.w1", # llama-pth
  413. "transformer.h.{bid}.mlp.w2", # qwen
  414. "transformer.h.{bid}.mlp.c_fc2", # jais
  415. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  416. "model.layers.{bid}.feed_forward.w1", # internlm2
  417. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  418. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  419. "transformer.h.{bid}.mlp.linear_1", # refact
  420. "model.layers.{bid}.residual_mlp.w1", # arctic
  421. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  422. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  423. "model.transformer.blocks.{bid}.ff_proj", # llada
  424. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  425. ),
  426. MODEL_TENSOR.FFN_GATE_EXP: (
  427. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  428. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  429. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  430. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  431. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  432. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  433. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  434. ),
  435. MODEL_TENSOR.FFN_GATE_SHEXP: (
  436. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  437. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  438. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  439. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  440. ),
  441. MODEL_TENSOR.FFN_GATE_CHEXP: (
  442. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  443. ),
  444. # Feed-forward down
  445. MODEL_TENSOR.FFN_DOWN: (
  446. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  447. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  448. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  449. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  450. "h.{bid}.mlp.dense_4h_to_h", # bloom
  451. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  452. "layers.{bid}.mlp.down_proj", # embeddinggemma
  453. "layers.{bid}.feed_forward.w2", # llama-pth
  454. "encoder.layer.{bid}.output.dense", # bert
  455. "transformer.layer.{bid}.ffn.lin2", # distillbert
  456. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  457. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  458. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  459. "h.{bid}.mlp.c_proj", # gpt2
  460. "transformer.h.{bid}.mlp.fc2", # phi2
  461. "model.layers.{bid}.mlp.fc2", # phi2
  462. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  463. "model.layers.{bid}.feed_forward.w2", # internlm2
  464. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  465. "model.layers.{bid}.mlp.c_proj", # starcoder2
  466. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  467. "transformer.layers.{bid}.ffn.proj_2", # openelm
  468. "model.layers.{bid}.residual_mlp.w2", # arctic
  469. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  470. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  471. "model.layers.h.{bid}.mlp.c_proj", # exaone
  472. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  473. "transformer_encoder.{bid}.ffn.w3", # neobert
  474. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  475. "model.transformer.blocks.{bid}.ff_out", # llada
  476. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  477. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  478. ),
  479. MODEL_TENSOR.FFN_DOWN_EXP: (
  480. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  481. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  482. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  483. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  484. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  485. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  486. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  487. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  488. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  489. ),
  490. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  491. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  492. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  493. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  494. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  495. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  496. ),
  497. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  498. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  499. ),
  500. MODEL_TENSOR.ATTN_Q_NORM: (
  501. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  502. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  503. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  504. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  505. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  506. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  507. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  508. "transformer.layers.{bid}.attn.q_norm", # openelm
  509. "model.layers.layers.{bid}.mixer.q", # plamo2
  510. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  511. "model.layers.{bid}.attention.query_layernorm", # apertus
  512. ),
  513. MODEL_TENSOR.ATTN_K_NORM: (
  514. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  515. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  516. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  517. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  518. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  519. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  520. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  521. "transformer.layers.{bid}.attn.k_norm", # openelm
  522. "model.layers.layers.{bid}.mixer.k", # plamo2
  523. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  524. "model.layers.{bid}.attention.key_layernorm", # apertus
  525. ),
  526. MODEL_TENSOR.ROPE_FREQS: (
  527. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  528. ),
  529. MODEL_TENSOR.LAYER_OUT_NORM: (
  530. "encoder.layer.{bid}.output.LayerNorm", # bert
  531. "transformer.layer.{bid}.output_layer_norm", # distillbert
  532. "encoder.layers.{bid}.norm2", # nomic-bert
  533. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  534. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  535. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  536. ),
  537. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  538. "model.embed_tokens_per_layer", # gemma3n
  539. ),
  540. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  541. "model.per_layer_model_projection", # gemma3n
  542. ),
  543. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  544. "model.per_layer_projection_norm", # gemma3n
  545. ),
  546. MODEL_TENSOR.ALTUP_PROJ: (
  547. "model.altup_projections", # gemma3n
  548. ),
  549. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  550. "model.altup_unembed_projections", # gemma3n
  551. ),
  552. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  553. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  554. ),
  555. MODEL_TENSOR.PER_LAYER_PROJ: (
  556. "model.layers.{bid}.per_layer_projection", # gemma3n
  557. ),
  558. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  559. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  560. ),
  561. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  562. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  563. ),
  564. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  565. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  566. ),
  567. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  568. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  569. ),
  570. MODEL_TENSOR.ALTUP_ROUTER: (
  571. "model.layers.{bid}.altup.modality_router", # gemma3n
  572. ),
  573. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  574. "model.layers.{bid}.altup.router_norm", # gemma3n
  575. ),
  576. MODEL_TENSOR.LAUREL_L: (
  577. "model.layers.{bid}.laurel.linear_left", # gemma3n
  578. ),
  579. MODEL_TENSOR.LAUREL_R: (
  580. "model.layers.{bid}.laurel.linear_right", # gemma3n
  581. ),
  582. MODEL_TENSOR.LAUREL_POST_NORM: (
  583. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  584. ),
  585. MODEL_TENSOR.SSM_IN: (
  586. "model.layers.{bid}.in_proj", # mamba-hf
  587. "backbone.layers.{bid}.mixer.in_proj", # mamba
  588. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  589. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  590. ),
  591. MODEL_TENSOR.SSM_CONV1D: (
  592. "model.layers.{bid}.conv1d", # mamba-hf
  593. "backbone.layers.{bid}.mixer.conv1d", # mamba
  594. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  595. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  596. ),
  597. MODEL_TENSOR.SSM_X: (
  598. "model.layers.{bid}.x_proj", # mamba-hf
  599. "backbone.layers.{bid}.mixer.x_proj", # mamba
  600. "model.layers.{bid}.mamba.x_proj", # jamba
  601. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  602. ),
  603. MODEL_TENSOR.SSM_DT: (
  604. "model.layers.{bid}.dt_proj", # mamba-hf
  605. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  606. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  607. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  608. ),
  609. MODEL_TENSOR.SSM_DT_NORM: (
  610. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  611. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  612. ),
  613. MODEL_TENSOR.SSM_A: (
  614. "model.layers.{bid}.A_log", # mamba-hf
  615. "backbone.layers.{bid}.mixer.A_log", # mamba
  616. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  617. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  618. ),
  619. MODEL_TENSOR.SSM_B_NORM: (
  620. "model.layers.{bid}.mamba.b_layernorm", # jamba
  621. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  622. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  623. ),
  624. MODEL_TENSOR.SSM_C_NORM: (
  625. "model.layers.{bid}.mamba.c_layernorm", # jamba
  626. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  627. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  628. ),
  629. MODEL_TENSOR.SSM_D: (
  630. "model.layers.{bid}.D", # mamba-hf
  631. "backbone.layers.{bid}.mixer.D", # mamba
  632. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  633. "model.layers.layers.{bid}.mixer.D", # plamo2
  634. ),
  635. MODEL_TENSOR.SSM_NORM: (
  636. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  637. "backbone.layers.{bid}.mixer.norm", # mamba2
  638. ),
  639. MODEL_TENSOR.SSM_OUT: (
  640. "model.layers.{bid}.out_proj", # mamba-hf
  641. "backbone.layers.{bid}.mixer.out_proj", # mamba
  642. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  643. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  644. ),
  645. MODEL_TENSOR.TIME_MIX_W0: (
  646. "model.layers.{bid}.attention.w0", # rwkv7
  647. ),
  648. MODEL_TENSOR.TIME_MIX_W1: (
  649. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  650. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  651. "model.layers.{bid}.attention.w1", # rwkv7
  652. ),
  653. MODEL_TENSOR.TIME_MIX_W2: (
  654. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  655. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  656. "model.layers.{bid}.attention.w2", # rwkv7
  657. ),
  658. MODEL_TENSOR.TIME_MIX_A0: (
  659. "model.layers.{bid}.attention.a0", # rwkv7
  660. ),
  661. MODEL_TENSOR.TIME_MIX_A1: (
  662. "model.layers.{bid}.attention.a1", # rwkv7
  663. ),
  664. MODEL_TENSOR.TIME_MIX_A2: (
  665. "model.layers.{bid}.attention.a2", # rwkv7
  666. ),
  667. MODEL_TENSOR.TIME_MIX_V0: (
  668. "model.layers.{bid}.attention.v0", # rwkv7
  669. ),
  670. MODEL_TENSOR.TIME_MIX_V1: (
  671. "model.layers.{bid}.attention.v1", # rwkv7
  672. ),
  673. MODEL_TENSOR.TIME_MIX_V2: (
  674. "model.layers.{bid}.attention.v2", # rwkv7
  675. ),
  676. MODEL_TENSOR.TIME_MIX_G1: (
  677. "model.layers.{bid}.attention.g1", # rwkv7
  678. ),
  679. MODEL_TENSOR.TIME_MIX_G2: (
  680. "model.layers.{bid}.attention.g2", # rwkv7
  681. ),
  682. MODEL_TENSOR.TIME_MIX_K_K: (
  683. "model.layers.{bid}.attention.k_k", # rwkv7
  684. ),
  685. MODEL_TENSOR.TIME_MIX_K_A: (
  686. "model.layers.{bid}.attention.k_a", # rwkv7
  687. ),
  688. MODEL_TENSOR.TIME_MIX_R_K: (
  689. "model.layers.{bid}.attention.r_k", # rwkv7
  690. ),
  691. MODEL_TENSOR.TIME_MIX_LERP_X: (
  692. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  693. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  694. ),
  695. MODEL_TENSOR.TIME_MIX_LERP_K: (
  696. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  697. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  698. ),
  699. MODEL_TENSOR.TIME_MIX_LERP_V: (
  700. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  701. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  702. ),
  703. MODEL_TENSOR.TIME_MIX_LERP_R: (
  704. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  705. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  706. ),
  707. MODEL_TENSOR.TIME_MIX_LERP_G: (
  708. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  709. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  710. ),
  711. MODEL_TENSOR.TIME_MIX_LERP_W: (
  712. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  713. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  714. ),
  715. MODEL_TENSOR.TIME_MIX_FIRST: (
  716. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  717. ),
  718. MODEL_TENSOR.TIME_MIX_DECAY: (
  719. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  720. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  721. ),
  722. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  723. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  724. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  725. ),
  726. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  727. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  728. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  729. ),
  730. MODEL_TENSOR.TIME_MIX_KEY: (
  731. "rwkv.blocks.{bid}.attention.key", # rwkv6
  732. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  733. "model.layers.{bid}.attention.key", # rwkv7
  734. "model.layers.{bid}.attention.k_proj", # rwkv7
  735. ),
  736. MODEL_TENSOR.TIME_MIX_VALUE: (
  737. "rwkv.blocks.{bid}.attention.value", # rwkv6
  738. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  739. "model.layers.{bid}.attention.value", # rwkv7
  740. "model.layers.{bid}.attention.v_proj", # rwkv7
  741. ),
  742. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  743. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  744. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  745. "model.layers.{bid}.attention.receptance", # rwkv7
  746. "model.layers.{bid}.attention.r_proj", # rwkv7
  747. ),
  748. MODEL_TENSOR.TIME_MIX_GATE: (
  749. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  750. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  751. ),
  752. MODEL_TENSOR.TIME_MIX_LN: (
  753. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  754. "model.layers.{bid}.attention.ln_x" # rwkv7
  755. ),
  756. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  757. "rwkv.blocks.{bid}.attention.output", # rwkv6
  758. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  759. "model.layers.{bid}.attention.output", # rwkv7
  760. "model.layers.{bid}.attention.o_proj", # rwkv7
  761. ),
  762. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  763. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  764. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  765. ),
  766. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  767. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  768. ),
  769. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  770. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  771. "model.layers.{bid}.feed_forward.key", # rwkv7
  772. ),
  773. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  774. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  775. ),
  776. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  777. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  778. "model.layers.{bid}.feed_forward.value", # rwkv7
  779. ),
  780. MODEL_TENSOR.ATTN_Q_A: (
  781. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  782. ),
  783. MODEL_TENSOR.ATTN_Q_B: (
  784. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  785. ),
  786. MODEL_TENSOR.ATTN_KV_A_MQA: (
  787. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  788. ),
  789. MODEL_TENSOR.ATTN_KV_B: (
  790. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  791. ),
  792. MODEL_TENSOR.ATTN_K_B: (
  793. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  794. ),
  795. MODEL_TENSOR.ATTN_V_B: (
  796. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  797. ),
  798. MODEL_TENSOR.ATTN_Q_A_NORM: (
  799. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  800. ),
  801. MODEL_TENSOR.ATTN_KV_A_NORM: (
  802. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  803. ),
  804. MODEL_TENSOR.ATTN_SUB_NORM: (
  805. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  806. ),
  807. MODEL_TENSOR.FFN_SUB_NORM: (
  808. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  809. ),
  810. MODEL_TENSOR.DEC_ATTN_NORM: (
  811. "decoder.block.{bid}.layer.0.layer_norm", # t5
  812. ),
  813. MODEL_TENSOR.DEC_ATTN_Q: (
  814. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  815. ),
  816. MODEL_TENSOR.DEC_ATTN_K: (
  817. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  818. ),
  819. MODEL_TENSOR.DEC_ATTN_V: (
  820. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  821. ),
  822. MODEL_TENSOR.DEC_ATTN_OUT: (
  823. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  824. ),
  825. MODEL_TENSOR.DEC_ATTN_REL_B: (
  826. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  827. ),
  828. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  829. "decoder.block.{bid}.layer.1.layer_norm", # t5
  830. ),
  831. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  832. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  833. ),
  834. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  835. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  836. ),
  837. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  838. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  839. ),
  840. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  841. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  842. ),
  843. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  844. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  845. ),
  846. MODEL_TENSOR.DEC_FFN_NORM: (
  847. "decoder.block.{bid}.layer.2.layer_norm", # t5
  848. ),
  849. MODEL_TENSOR.DEC_FFN_GATE: (
  850. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  851. ),
  852. MODEL_TENSOR.DEC_FFN_UP: (
  853. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  854. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  855. ),
  856. MODEL_TENSOR.DEC_FFN_DOWN: (
  857. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  858. ),
  859. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  860. "decoder.final_layer_norm", # t5
  861. ),
  862. MODEL_TENSOR.ENC_ATTN_NORM: (
  863. "encoder.block.{bid}.layer.0.layer_norm", # t5
  864. ),
  865. MODEL_TENSOR.ENC_ATTN_Q: (
  866. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  867. ),
  868. MODEL_TENSOR.ENC_ATTN_K: (
  869. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  870. ),
  871. MODEL_TENSOR.ENC_ATTN_V: (
  872. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  873. ),
  874. MODEL_TENSOR.ENC_ATTN_OUT: (
  875. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  876. ),
  877. MODEL_TENSOR.ENC_ATTN_REL_B: (
  878. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  879. ),
  880. MODEL_TENSOR.ENC_FFN_NORM: (
  881. "encoder.block.{bid}.layer.1.layer_norm", # t5
  882. ),
  883. MODEL_TENSOR.ENC_FFN_GATE: (
  884. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  885. ),
  886. MODEL_TENSOR.ENC_FFN_UP: (
  887. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  888. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  889. ),
  890. MODEL_TENSOR.ENC_FFN_DOWN: (
  891. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  892. ),
  893. ############################################################################
  894. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  895. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  896. "encoder.final_layer_norm", # t5
  897. "layer_norm", # neobert
  898. ),
  899. MODEL_TENSOR.CLS: (
  900. "classifier", # jina
  901. "classifier.dense", # roberta
  902. "pre_classifier", # distillbert
  903. "dense", # neobert
  904. ),
  905. MODEL_TENSOR.CLS_OUT: (
  906. "classifier.out_proj", # roberta
  907. ),
  908. #############################################################################
  909. MODEL_TENSOR.CONVNEXT_DW: (
  910. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  911. ),
  912. MODEL_TENSOR.CONVNEXT_NORM: (
  913. "backbone.convnext.{bid}.norm", # wavtokenizer
  914. ),
  915. MODEL_TENSOR.CONVNEXT_PW1: (
  916. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  917. ),
  918. MODEL_TENSOR.CONVNEXT_PW2: (
  919. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  920. ),
  921. MODEL_TENSOR.CONVNEXT_GAMMA: (
  922. "backbone.convnext.{bid}.gamma", # wavtokenizer
  923. ),
  924. MODEL_TENSOR.POSNET_CONV1: (
  925. "backbone.posnet.{bid}.conv1", # wavtokenizer
  926. ),
  927. MODEL_TENSOR.POSNET_CONV2: (
  928. "backbone.posnet.{bid}.conv2", # wavtokenizer
  929. ),
  930. MODEL_TENSOR.POSNET_NORM: (
  931. "backbone.posnet.{bid}.norm", # wavtokenizer
  932. ),
  933. MODEL_TENSOR.POSNET_NORM1: (
  934. "backbone.posnet.{bid}.norm1", # wavtokenizer
  935. ),
  936. MODEL_TENSOR.POSNET_NORM2: (
  937. "backbone.posnet.{bid}.norm2", # wavtokenizer
  938. ),
  939. MODEL_TENSOR.POSNET_ATTN_NORM: (
  940. "backbone.posnet.{bid}.norm", # wavtokenizer
  941. ),
  942. MODEL_TENSOR.POSNET_ATTN_Q: (
  943. "backbone.posnet.{bid}.q", # wavtokenizer
  944. ),
  945. MODEL_TENSOR.POSNET_ATTN_K: (
  946. "backbone.posnet.{bid}.k", # wavtokenizer
  947. ),
  948. MODEL_TENSOR.POSNET_ATTN_V: (
  949. "backbone.posnet.{bid}.v", # wavtokenizer
  950. ),
  951. MODEL_TENSOR.POSNET_ATTN_OUT: (
  952. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  953. ),
  954. MODEL_TENSOR.SHORTCONV_CONV: (
  955. "model.layers.{bid}.conv.conv",
  956. ),
  957. MODEL_TENSOR.SHORTCONV_INPROJ: (
  958. "model.layers.{bid}.conv.in_proj",
  959. ),
  960. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  961. "model.layers.{bid}.conv.out_proj",
  962. ),
  963. #############################################################################
  964. ## Vision encoder
  965. MODEL_TENSOR.V_MMPROJ: (
  966. "multi_modal_projector.linear_{bid}",
  967. "visual.merger.mlp.{bid}", # qwen2vl
  968. ),
  969. MODEL_TENSOR.V_MMPROJ_FC: (
  970. "model.connector.modality_projection.proj", # SmolVLM
  971. ),
  972. MODEL_TENSOR.V_MMPROJ_MLP: (
  973. "model.mm_projector.mlp.mlp.{bid}",
  974. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  975. "mlp1.{bid}", # InternVL
  976. ),
  977. MODEL_TENSOR.V_MMPROJ_PEG: (
  978. "model.mm_projector.peg.peg.{bid}",
  979. ),
  980. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  981. "vision_tower.vision_model.embeddings.class_embedding",
  982. "model.vision_tower.embeddings.cls_token", # Intern-S1
  983. "vision_model.class_embedding", # llama 4
  984. ),
  985. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  986. "vision_tower.vision_model.embeddings.patch_embedding",
  987. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  988. "vpm.embeddings.patch_embedding",
  989. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  990. "vision_tower.patch_conv", # pixtral-hf
  991. "vision_encoder.patch_conv", # pixtral
  992. "vision_model.patch_embedding.linear", # llama 4
  993. "visual.patch_embed.proj", # qwen2vl
  994. "vision_tower.patch_embed.proj", # kimi-vl
  995. ),
  996. MODEL_TENSOR.V_ENC_EMBD_POS: (
  997. "vision_tower.vision_model.embeddings.position_embedding",
  998. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  999. "vpm.embeddings.position_embedding",
  1000. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1001. "vision_model.positional_embedding_vlm", # llama 4
  1002. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1003. ),
  1004. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1005. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1006. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1007. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1008. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1009. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1010. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1011. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1012. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1013. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1014. ),
  1015. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1016. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1017. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1018. ),
  1019. MODEL_TENSOR.V_ENC_ATTN_K: (
  1020. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1021. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1022. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1023. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1024. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1025. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1026. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1027. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1028. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1029. ),
  1030. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1031. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1032. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1033. ),
  1034. MODEL_TENSOR.V_ENC_ATTN_V: (
  1035. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1036. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1037. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1038. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1039. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1040. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1041. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1042. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1043. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1044. ),
  1045. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1046. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1047. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1048. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1049. "vpm.encoder.layers.{bid}.layer_norm1",
  1050. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1051. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1052. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1053. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1054. "visual.blocks.{bid}.norm1", # qwen2vl
  1055. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1056. ),
  1057. MODEL_TENSOR.V_ENC_ATTN_O: (
  1058. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1059. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1060. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1061. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1062. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1063. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1064. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1065. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1066. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1067. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1068. ),
  1069. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1070. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1071. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1072. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1073. "vpm.encoder.layers.{bid}.layer_norm2",
  1074. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1075. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1076. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1077. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1078. "visual.blocks.{bid}.norm2", # qwen2vl
  1079. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1080. ),
  1081. MODEL_TENSOR.V_ENC_FFN_UP: (
  1082. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1083. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1084. "vpm.encoder.layers.{bid}.mlp.fc1",
  1085. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1086. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1087. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1088. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1089. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1090. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1091. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1092. ),
  1093. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1094. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1095. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1096. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1097. ),
  1098. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1099. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1100. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1101. "vpm.encoder.layers.{bid}.mlp.fc2",
  1102. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1103. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1104. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1105. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1106. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1107. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1108. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1109. ),
  1110. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1111. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1112. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1113. ),
  1114. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1115. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1116. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1117. ),
  1118. MODEL_TENSOR.V_PRE_NORM: (
  1119. "vision_tower.vision_model.pre_layrnorm",
  1120. "vision_tower.ln_pre", # pixtral-hf
  1121. "vision_encoder.ln_pre", # pixtral
  1122. "vision_model.layernorm_pre", # llama4
  1123. ),
  1124. MODEL_TENSOR.V_POST_NORM: (
  1125. "vision_tower.vision_model.post_layernorm",
  1126. "model.vision_model.post_layernorm", # SmolVLM
  1127. "vision_model.layernorm_post", # llama4
  1128. "visual.merger.ln_q", # qwen2vl
  1129. "vision_tower.encoder.final_layernorm", # kimi-vl
  1130. ),
  1131. MODEL_TENSOR.V_MM_INP_PROJ: (
  1132. "multi_modal_projector.mm_input_projection",
  1133. ),
  1134. MODEL_TENSOR.V_MM_INP_NORM: (
  1135. "multi_modal_projector.norm",
  1136. "multi_modal_projector.layer_norm",
  1137. "multi_modal_projector.pre_norm",
  1138. "pre_mm_projector_norm",
  1139. ),
  1140. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1141. "multi_modal_projector.mm_soft_emb_norm",
  1142. ),
  1143. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1144. "resampler.pos_embed_k",
  1145. ),
  1146. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1147. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1148. ),
  1149. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1150. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1151. ),
  1152. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1153. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1154. ),
  1155. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1156. "resampler.attn.out_proj",
  1157. ),
  1158. MODEL_TENSOR.V_RESMPL_KV: (
  1159. "resampler.kv_proj",
  1160. ),
  1161. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1162. "resampler.ln_post",
  1163. ),
  1164. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1165. "resampler.ln_kv",
  1166. ),
  1167. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1168. "resampler.ln_q",
  1169. ),
  1170. MODEL_TENSOR.V_RESMPL_PROJ: (
  1171. "resampler.proj",
  1172. ),
  1173. MODEL_TENSOR.V_RESMPL_QUERY: (
  1174. "resampler.query",
  1175. ),
  1176. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1177. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1178. ),
  1179. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1180. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1181. "patch_merger.merging_layer", # mistral
  1182. ),
  1183. # audio (mtmd)
  1184. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1185. "audio_tower.embed_positions", # ultravox
  1186. ),
  1187. MODEL_TENSOR.A_ENC_CONV1D: (
  1188. "audio_tower.conv{bid}", # ultravox
  1189. ),
  1190. MODEL_TENSOR.A_PRE_NORM: (),
  1191. MODEL_TENSOR.A_POST_NORM: (
  1192. "audio_tower.layer_norm", # ultravox
  1193. "audio_tower.ln_post", # qwen2omni
  1194. ),
  1195. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1196. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1197. ),
  1198. MODEL_TENSOR.A_ENC_ATTN_K: (
  1199. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1200. ),
  1201. MODEL_TENSOR.A_ENC_ATTN_V: (
  1202. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1203. ),
  1204. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1205. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1206. ),
  1207. MODEL_TENSOR.A_ENC_OUTPUT: (
  1208. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1209. ),
  1210. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1211. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1212. ),
  1213. MODEL_TENSOR.A_ENC_FFN_UP: (
  1214. "audio_tower.layers.{bid}.fc1", # ultravox
  1215. ),
  1216. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1217. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1218. "audio_tower.layers.{bid}.fc2", # ultravox
  1219. ),
  1220. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1221. # this prefix is added in the conversion code in modify_tensors()
  1222. MODEL_TENSOR.A_MMPROJ: (
  1223. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1224. ),
  1225. MODEL_TENSOR.A_MMPROJ_FC: (
  1226. "audio.multi_modal_projector.linear", # qwen2audio
  1227. "audio_tower.proj", # qwen2omni
  1228. ),
  1229. MODEL_TENSOR.A_MM_NORM_PRE: (
  1230. "audio.multi_modal_projector.ln_pre", # ultravox
  1231. ),
  1232. MODEL_TENSOR.A_MM_NORM_MID: (
  1233. "audio.multi_modal_projector.ln_mid", # ultravox
  1234. ),
  1235. # NextN/MTP tensors for GLM4_MOE
  1236. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1237. "model.layers.{bid}.eh_proj",
  1238. ),
  1239. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1240. "model.layers.{bid}.embed_tokens",
  1241. ),
  1242. MODEL_TENSOR.NEXTN_ENORM: (
  1243. "model.layers.{bid}.enorm",
  1244. ),
  1245. MODEL_TENSOR.NEXTN_HNORM: (
  1246. "model.layers.{bid}.hnorm",
  1247. ),
  1248. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1249. "model.layers.{bid}.shared_head.head",
  1250. ),
  1251. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1252. "model.layers.{bid}.shared_head.norm",
  1253. ),
  1254. }
  1255. # architecture-specific block mappings
  1256. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1257. MODEL_ARCH.ARCTIC: {
  1258. MODEL_TENSOR.FFN_NORM: (
  1259. "model.layers.{bid}.residual_layernorm",
  1260. ),
  1261. MODEL_TENSOR.FFN_NORM_EXP: (
  1262. "model.layers.{bid}.post_attention_layernorm",
  1263. ),
  1264. },
  1265. }
  1266. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1267. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1268. self.mapping = {}
  1269. for tensor, keys in self.mappings_cfg.items():
  1270. if tensor not in MODEL_TENSORS[arch]:
  1271. continue
  1272. tensor_name = TENSOR_NAMES[tensor]
  1273. self.mapping[tensor_name] = (tensor, tensor_name)
  1274. for key in keys:
  1275. self.mapping[key] = (tensor, tensor_name)
  1276. if arch in self.arch_block_mappings_cfg:
  1277. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1278. for bid in range(n_blocks):
  1279. for tensor, keys in self.block_mappings_cfg.items():
  1280. if tensor not in MODEL_TENSORS[arch]:
  1281. continue
  1282. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1283. self.mapping[tensor_name] = (tensor, tensor_name)
  1284. for key in keys:
  1285. key = key.format(bid = bid)
  1286. self.mapping[key] = (tensor, tensor_name)
  1287. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1288. result = self.mapping.get(key)
  1289. if result is not None:
  1290. return result
  1291. for suffix in try_suffixes:
  1292. if key.endswith(suffix):
  1293. result = self.mapping.get(key[:-len(suffix)])
  1294. if result is not None:
  1295. return result[0], result[1] + suffix
  1296. return None
  1297. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1298. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1299. if result is None:
  1300. return None
  1301. return result[1]
  1302. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1303. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1304. if result is None:
  1305. return None
  1306. return result[0]
  1307. def __getitem__(self, key: str) -> str:
  1308. try:
  1309. return self.mapping[key][1]
  1310. except KeyError:
  1311. raise KeyError(key)
  1312. def __contains__(self, key: str) -> bool:
  1313. return key in self.mapping
  1314. def __repr__(self) -> str:
  1315. return repr(self.mapping)
  1316. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1317. return TensorNameMap(arch, n_blocks)