llama.cpp 689 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <initializer_list>
  72. #include <locale>
  73. #include <map>
  74. #include <memory>
  75. #include <mutex>
  76. #include <numeric>
  77. #include <queue>
  78. #include <random>
  79. #include <regex>
  80. #include <set>
  81. #include <sstream>
  82. #include <thread>
  83. #include <type_traits>
  84. #include <unordered_map>
  85. #if defined(_MSC_VER)
  86. #pragma warning(disable: 4244 4267) // possible loss of data
  87. #endif
  88. #ifdef __GNUC__
  89. #ifdef __MINGW32__
  90. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  93. #endif
  94. #else
  95. #define LLAMA_ATTRIBUTE_FORMAT(...)
  96. #endif
  97. #define LLAMA_MAX_NODES 8192
  98. #define LLAMA_MAX_EXPERTS 60
  99. //
  100. // logging
  101. //
  102. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  103. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  104. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  105. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  106. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  107. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  108. //
  109. // helpers
  110. //
  111. static size_t utf8_len(char src) {
  112. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  113. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  114. return lookup[highbits];
  115. }
  116. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  117. std::string result;
  118. for (size_t pos = 0; ; pos += search.length()) {
  119. auto new_pos = s.find(search, pos);
  120. if (new_pos == std::string::npos) {
  121. result += s.substr(pos, s.size() - pos);
  122. break;
  123. }
  124. result += s.substr(pos, new_pos - pos) + replace;
  125. pos = new_pos;
  126. }
  127. s = std::move(result);
  128. }
  129. static bool is_float_close(float a, float b, float abs_tol) {
  130. // Check for non-negative tolerance
  131. if (abs_tol < 0.0) {
  132. throw std::invalid_argument("Tolerance must be non-negative");
  133. }
  134. // Exact equality check
  135. if (a == b) {
  136. return true;
  137. }
  138. // Check for infinities
  139. if (std::isinf(a) || std::isinf(b)) {
  140. return false;
  141. }
  142. // Regular comparison using the provided absolute tolerance
  143. return std::fabs(b - a) <= abs_tol;
  144. }
  145. static void zeros(std::ofstream & file, size_t n) {
  146. char zero = 0;
  147. for (size_t i = 0; i < n; ++i) {
  148. file.write(&zero, 1);
  149. }
  150. }
  151. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  152. static std::string format(const char * fmt, ...) {
  153. va_list ap;
  154. va_list ap2;
  155. va_start(ap, fmt);
  156. va_copy(ap2, ap);
  157. int size = vsnprintf(NULL, 0, fmt, ap);
  158. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  159. std::vector<char> buf(size + 1);
  160. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  161. GGML_ASSERT(size2 == size);
  162. va_end(ap2);
  163. va_end(ap);
  164. return std::string(buf.data(), size);
  165. }
  166. //
  167. // gguf constants (sync with gguf.py)
  168. //
  169. enum llm_arch {
  170. LLM_ARCH_LLAMA,
  171. LLM_ARCH_FALCON,
  172. LLM_ARCH_BAICHUAN,
  173. LLM_ARCH_GROK,
  174. LLM_ARCH_GPT2,
  175. LLM_ARCH_GPTJ,
  176. LLM_ARCH_GPTNEOX,
  177. LLM_ARCH_MPT,
  178. LLM_ARCH_STARCODER,
  179. LLM_ARCH_PERSIMMON,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_BLOOM,
  184. LLM_ARCH_STABLELM,
  185. LLM_ARCH_QWEN,
  186. LLM_ARCH_QWEN2,
  187. LLM_ARCH_QWEN2MOE,
  188. LLM_ARCH_PHI2,
  189. LLM_ARCH_PLAMO,
  190. LLM_ARCH_CODESHELL,
  191. LLM_ARCH_ORION,
  192. LLM_ARCH_INTERNLM2,
  193. LLM_ARCH_MINICPM,
  194. LLM_ARCH_GEMMA,
  195. LLM_ARCH_STARCODER2,
  196. LLM_ARCH_MAMBA,
  197. LLM_ARCH_XVERSE,
  198. LLM_ARCH_COMMAND_R,
  199. LLM_ARCH_DBRX,
  200. LLM_ARCH_OLMO,
  201. LLM_ARCH_UNKNOWN,
  202. };
  203. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  204. { LLM_ARCH_LLAMA, "llama" },
  205. { LLM_ARCH_FALCON, "falcon" },
  206. { LLM_ARCH_GROK, "grok" },
  207. { LLM_ARCH_GPT2, "gpt2" },
  208. { LLM_ARCH_GPTJ, "gptj" },
  209. { LLM_ARCH_GPTNEOX, "gptneox" },
  210. { LLM_ARCH_MPT, "mpt" },
  211. { LLM_ARCH_BAICHUAN, "baichuan" },
  212. { LLM_ARCH_STARCODER, "starcoder" },
  213. { LLM_ARCH_PERSIMMON, "persimmon" },
  214. { LLM_ARCH_REFACT, "refact" },
  215. { LLM_ARCH_BERT, "bert" },
  216. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  217. { LLM_ARCH_BLOOM, "bloom" },
  218. { LLM_ARCH_STABLELM, "stablelm" },
  219. { LLM_ARCH_QWEN, "qwen" },
  220. { LLM_ARCH_QWEN2, "qwen2" },
  221. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  222. { LLM_ARCH_PHI2, "phi2" },
  223. { LLM_ARCH_PLAMO, "plamo" },
  224. { LLM_ARCH_CODESHELL, "codeshell" },
  225. { LLM_ARCH_ORION, "orion" },
  226. { LLM_ARCH_INTERNLM2, "internlm2" },
  227. { LLM_ARCH_MINICPM, "minicpm" },
  228. { LLM_ARCH_GEMMA, "gemma" },
  229. { LLM_ARCH_STARCODER2, "starcoder2" },
  230. { LLM_ARCH_MAMBA, "mamba" },
  231. { LLM_ARCH_XVERSE, "xverse" },
  232. { LLM_ARCH_COMMAND_R, "command-r" },
  233. { LLM_ARCH_DBRX, "dbrx" },
  234. { LLM_ARCH_OLMO, "olmo" },
  235. { LLM_ARCH_UNKNOWN, "(unknown)" },
  236. };
  237. enum llm_kv {
  238. LLM_KV_GENERAL_ARCHITECTURE,
  239. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  240. LLM_KV_GENERAL_ALIGNMENT,
  241. LLM_KV_GENERAL_NAME,
  242. LLM_KV_GENERAL_AUTHOR,
  243. LLM_KV_GENERAL_VERSION,
  244. LLM_KV_GENERAL_URL,
  245. LLM_KV_GENERAL_DESCRIPTION,
  246. LLM_KV_GENERAL_LICENSE,
  247. LLM_KV_GENERAL_SOURCE_URL,
  248. LLM_KV_GENERAL_SOURCE_HF_REPO,
  249. LLM_KV_VOCAB_SIZE,
  250. LLM_KV_CONTEXT_LENGTH,
  251. LLM_KV_EMBEDDING_LENGTH,
  252. LLM_KV_BLOCK_COUNT,
  253. LLM_KV_FEED_FORWARD_LENGTH,
  254. LLM_KV_USE_PARALLEL_RESIDUAL,
  255. LLM_KV_TENSOR_DATA_LAYOUT,
  256. LLM_KV_EXPERT_COUNT,
  257. LLM_KV_EXPERT_USED_COUNT,
  258. LLM_KV_POOLING_TYPE,
  259. LLM_KV_LOGIT_SCALE,
  260. LLM_KV_ATTENTION_HEAD_COUNT,
  261. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  262. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  263. LLM_KV_ATTENTION_CLAMP_KQV,
  264. LLM_KV_ATTENTION_KEY_LENGTH,
  265. LLM_KV_ATTENTION_VALUE_LENGTH,
  266. LLM_KV_ATTENTION_LAYERNORM_EPS,
  267. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  268. LLM_KV_ATTENTION_CAUSAL,
  269. LLM_KV_ROPE_DIMENSION_COUNT,
  270. LLM_KV_ROPE_FREQ_BASE,
  271. LLM_KV_ROPE_SCALE_LINEAR,
  272. LLM_KV_ROPE_SCALING_TYPE,
  273. LLM_KV_ROPE_SCALING_FACTOR,
  274. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  275. LLM_KV_ROPE_SCALING_FINETUNED,
  276. LLM_KV_SPLIT_NO,
  277. LLM_KV_SPLIT_COUNT,
  278. LLM_KV_SPLIT_TENSORS_COUNT,
  279. LLM_KV_SSM_INNER_SIZE,
  280. LLM_KV_SSM_CONV_KERNEL,
  281. LLM_KV_SSM_STATE_SIZE,
  282. LLM_KV_SSM_TIME_STEP_RANK,
  283. LLM_KV_TOKENIZER_MODEL,
  284. LLM_KV_TOKENIZER_LIST,
  285. LLM_KV_TOKENIZER_TOKEN_TYPE,
  286. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  287. LLM_KV_TOKENIZER_SCORES,
  288. LLM_KV_TOKENIZER_MERGES,
  289. LLM_KV_TOKENIZER_BOS_ID,
  290. LLM_KV_TOKENIZER_EOS_ID,
  291. LLM_KV_TOKENIZER_UNK_ID,
  292. LLM_KV_TOKENIZER_SEP_ID,
  293. LLM_KV_TOKENIZER_PAD_ID,
  294. LLM_KV_TOKENIZER_CLS_ID,
  295. LLM_KV_TOKENIZER_MASK_ID,
  296. LLM_KV_TOKENIZER_ADD_BOS,
  297. LLM_KV_TOKENIZER_ADD_EOS,
  298. LLM_KV_TOKENIZER_ADD_PREFIX,
  299. LLM_KV_TOKENIZER_HF_JSON,
  300. LLM_KV_TOKENIZER_RWKV,
  301. LLM_KV_TOKENIZER_PREFIX_ID,
  302. LLM_KV_TOKENIZER_SUFFIX_ID,
  303. LLM_KV_TOKENIZER_MIDDLE_ID,
  304. LLM_KV_TOKENIZER_EOT_ID,
  305. };
  306. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  307. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  308. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  309. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  310. { LLM_KV_GENERAL_NAME, "general.name" },
  311. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  312. { LLM_KV_GENERAL_VERSION, "general.version" },
  313. { LLM_KV_GENERAL_URL, "general.url" },
  314. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  315. { LLM_KV_GENERAL_LICENSE, "general.license" },
  316. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  317. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  318. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  319. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  320. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  321. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  322. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  323. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  324. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  325. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  326. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  327. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  328. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  329. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  330. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  331. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  332. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  333. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  334. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  335. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  336. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  337. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  338. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  339. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  340. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  341. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  342. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  343. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  344. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  345. { LLM_KV_SPLIT_NO, "split.no" },
  346. { LLM_KV_SPLIT_COUNT, "split.count" },
  347. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  348. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  349. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  350. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  351. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  352. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  353. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  354. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  355. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  356. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  357. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  358. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  359. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  360. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  361. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  362. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  363. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  364. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  365. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  366. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  367. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  368. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  369. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  370. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  371. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  372. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  373. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  374. };
  375. struct LLM_KV {
  376. LLM_KV(llm_arch arch) : arch(arch) {}
  377. llm_arch arch;
  378. std::string operator()(llm_kv kv) const {
  379. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  380. }
  381. };
  382. enum llm_tensor {
  383. LLM_TENSOR_TOKEN_EMBD,
  384. LLM_TENSOR_TOKEN_EMBD_NORM,
  385. LLM_TENSOR_TOKEN_TYPES,
  386. LLM_TENSOR_POS_EMBD,
  387. LLM_TENSOR_OUTPUT,
  388. LLM_TENSOR_OUTPUT_NORM,
  389. LLM_TENSOR_ROPE_FREQS,
  390. LLM_TENSOR_ATTN_Q,
  391. LLM_TENSOR_ATTN_K,
  392. LLM_TENSOR_ATTN_V,
  393. LLM_TENSOR_ATTN_QKV,
  394. LLM_TENSOR_ATTN_OUT,
  395. LLM_TENSOR_ATTN_NORM,
  396. LLM_TENSOR_ATTN_NORM_2,
  397. LLM_TENSOR_ATTN_OUT_NORM,
  398. LLM_TENSOR_ATTN_ROT_EMBD,
  399. LLM_TENSOR_FFN_GATE_INP,
  400. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  401. LLM_TENSOR_FFN_NORM,
  402. LLM_TENSOR_FFN_GATE,
  403. LLM_TENSOR_FFN_DOWN,
  404. LLM_TENSOR_FFN_UP,
  405. LLM_TENSOR_FFN_ACT,
  406. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  407. LLM_TENSOR_FFN_GATE_EXP,
  408. LLM_TENSOR_FFN_UP_EXP,
  409. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  410. LLM_TENSOR_FFN_GATE_EXPS,
  411. LLM_TENSOR_FFN_UP_EXPS,
  412. LLM_TENSOR_FFN_DOWN_SHEXP,
  413. LLM_TENSOR_FFN_GATE_SHEXP,
  414. LLM_TENSOR_FFN_UP_SHEXP,
  415. LLM_TENSOR_ATTN_Q_NORM,
  416. LLM_TENSOR_ATTN_K_NORM,
  417. LLM_TENSOR_LAYER_OUT_NORM,
  418. LLM_TENSOR_SSM_IN,
  419. LLM_TENSOR_SSM_CONV1D,
  420. LLM_TENSOR_SSM_X,
  421. LLM_TENSOR_SSM_DT,
  422. LLM_TENSOR_SSM_A,
  423. LLM_TENSOR_SSM_D,
  424. LLM_TENSOR_SSM_OUT,
  425. };
  426. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  427. {
  428. LLM_ARCH_LLAMA,
  429. {
  430. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  431. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  432. { LLM_TENSOR_OUTPUT, "output" },
  433. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  434. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  435. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  436. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  437. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  438. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  439. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  440. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  441. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  442. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  443. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  444. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  445. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  446. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  447. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  448. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  449. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  450. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  451. },
  452. },
  453. {
  454. LLM_ARCH_BAICHUAN,
  455. {
  456. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  457. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  458. { LLM_TENSOR_OUTPUT, "output" },
  459. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  460. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  461. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  462. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  463. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  464. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  465. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  466. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  467. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  468. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  469. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  470. },
  471. },
  472. {
  473. LLM_ARCH_FALCON,
  474. {
  475. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  476. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  477. { LLM_TENSOR_OUTPUT, "output" },
  478. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  479. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  480. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  481. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  482. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  483. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  484. },
  485. },
  486. {
  487. LLM_ARCH_GROK,
  488. {
  489. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  490. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  491. { LLM_TENSOR_OUTPUT, "output" },
  492. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  493. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  494. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  495. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  496. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  497. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  498. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  499. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  500. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  501. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  502. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  503. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  504. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  505. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  506. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  507. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  508. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  509. },
  510. },
  511. {
  512. LLM_ARCH_GPT2,
  513. {
  514. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  515. { LLM_TENSOR_POS_EMBD, "position_embd" },
  516. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  517. { LLM_TENSOR_OUTPUT, "output" },
  518. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  519. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  520. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  521. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  522. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  523. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  524. },
  525. },
  526. {
  527. LLM_ARCH_GPTJ,
  528. {
  529. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  530. },
  531. },
  532. {
  533. LLM_ARCH_GPTNEOX,
  534. {
  535. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  536. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  537. { LLM_TENSOR_OUTPUT, "output" },
  538. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  539. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  540. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  541. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  542. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  543. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  544. },
  545. },
  546. {
  547. LLM_ARCH_PERSIMMON,
  548. {
  549. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  550. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  551. { LLM_TENSOR_OUTPUT, "output"},
  552. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  553. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  554. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  555. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  556. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  557. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  558. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  559. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  560. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  561. },
  562. },
  563. {
  564. LLM_ARCH_MPT,
  565. {
  566. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  567. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  568. { LLM_TENSOR_OUTPUT, "output"},
  569. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  570. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  571. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  572. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  573. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  574. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  575. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  576. { LLM_TENSOR_POS_EMBD, "position_embd" },
  577. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  578. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  579. },
  580. },
  581. {
  582. LLM_ARCH_STARCODER,
  583. {
  584. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  585. { LLM_TENSOR_POS_EMBD, "position_embd" },
  586. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  587. { LLM_TENSOR_OUTPUT, "output" },
  588. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  589. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  590. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  591. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  592. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  593. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  594. },
  595. },
  596. {
  597. LLM_ARCH_REFACT,
  598. {
  599. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  600. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  601. { LLM_TENSOR_OUTPUT, "output" },
  602. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  603. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  604. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  605. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  606. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  607. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  608. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  609. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  610. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  611. },
  612. },
  613. {
  614. LLM_ARCH_BERT,
  615. {
  616. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  617. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  618. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  619. { LLM_TENSOR_POS_EMBD, "position_embd" },
  620. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  621. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  622. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  623. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  624. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  625. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  626. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  627. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  628. },
  629. },
  630. {
  631. LLM_ARCH_NOMIC_BERT,
  632. {
  633. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  634. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  635. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  636. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  637. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  638. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  639. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  640. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  641. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  642. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  643. },
  644. },
  645. {
  646. LLM_ARCH_BLOOM,
  647. {
  648. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  649. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  650. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  651. { LLM_TENSOR_OUTPUT, "output" },
  652. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  653. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  654. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  655. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  656. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  657. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  658. },
  659. },
  660. {
  661. LLM_ARCH_STABLELM,
  662. {
  663. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  664. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  665. { LLM_TENSOR_OUTPUT, "output" },
  666. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  667. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  668. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  669. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  670. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  671. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  672. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  673. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  674. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  675. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  676. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  677. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  678. },
  679. },
  680. {
  681. LLM_ARCH_QWEN,
  682. {
  683. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  684. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  685. { LLM_TENSOR_OUTPUT, "output" },
  686. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  687. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  688. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  689. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  690. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  691. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  692. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  693. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  694. },
  695. },
  696. {
  697. LLM_ARCH_QWEN2,
  698. {
  699. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  700. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  701. { LLM_TENSOR_OUTPUT, "output" },
  702. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  703. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  704. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  705. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  706. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  707. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  708. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  709. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  710. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  711. },
  712. },
  713. {
  714. LLM_ARCH_QWEN2MOE,
  715. {
  716. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  717. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  718. { LLM_TENSOR_OUTPUT, "output" },
  719. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  720. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  721. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  722. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  723. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  724. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  725. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  726. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  727. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  728. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  729. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  730. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  731. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  732. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  733. },
  734. },
  735. {
  736. LLM_ARCH_PHI2,
  737. {
  738. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  739. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  740. { LLM_TENSOR_OUTPUT, "output" },
  741. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  742. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  743. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  744. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  745. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  746. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  747. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  748. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  749. },
  750. },
  751. {
  752. LLM_ARCH_PLAMO,
  753. {
  754. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  755. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  756. { LLM_TENSOR_OUTPUT, "output" },
  757. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  758. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  759. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  760. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  761. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  762. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  763. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  764. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  765. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  766. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  767. },
  768. },
  769. {
  770. LLM_ARCH_CODESHELL,
  771. {
  772. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  773. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  774. { LLM_TENSOR_OUTPUT, "output" },
  775. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  776. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  777. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  778. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  779. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  780. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  781. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  782. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  783. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  784. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  785. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  786. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  787. },
  788. },
  789. {
  790. LLM_ARCH_ORION,
  791. {
  792. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  793. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  794. { LLM_TENSOR_OUTPUT, "output" },
  795. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  796. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  797. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  798. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  799. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  800. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  801. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  802. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  803. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  804. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  805. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  806. },
  807. },
  808. {
  809. LLM_ARCH_INTERNLM2,
  810. {
  811. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  812. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  813. { LLM_TENSOR_OUTPUT, "output" },
  814. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  815. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  816. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  817. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  818. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  819. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  820. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  821. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  822. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  823. },
  824. },
  825. {
  826. LLM_ARCH_MINICPM,
  827. {
  828. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  829. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  830. { LLM_TENSOR_OUTPUT, "output" },
  831. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  832. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  833. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  834. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  835. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  836. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  837. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  838. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  839. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  840. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  841. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  842. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  843. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  844. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  845. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  846. },
  847. },
  848. {
  849. LLM_ARCH_GEMMA,
  850. {
  851. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  852. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  853. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  854. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  855. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  856. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  857. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  858. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  859. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  860. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  861. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  862. },
  863. },
  864. {
  865. LLM_ARCH_STARCODER2,
  866. {
  867. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  868. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  869. { LLM_TENSOR_OUTPUT, "output" },
  870. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  871. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  872. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  873. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  874. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  875. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  876. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  877. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  878. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  879. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  880. },
  881. },
  882. {
  883. LLM_ARCH_MAMBA,
  884. {
  885. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  886. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  887. { LLM_TENSOR_OUTPUT, "output" },
  888. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  889. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  890. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  891. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  892. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  893. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  894. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  895. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  896. },
  897. },
  898. {
  899. LLM_ARCH_XVERSE,
  900. {
  901. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  902. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  903. { LLM_TENSOR_OUTPUT, "output" },
  904. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  905. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  906. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  907. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  908. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  909. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  910. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  911. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  912. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  913. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  914. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  915. },
  916. },
  917. {
  918. LLM_ARCH_COMMAND_R,
  919. {
  920. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  921. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  922. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  923. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  924. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  925. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  926. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  927. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  928. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  929. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  930. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  931. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  932. },
  933. },
  934. {
  935. LLM_ARCH_DBRX,
  936. {
  937. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  938. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  939. { LLM_TENSOR_OUTPUT, "output" },
  940. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  941. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  942. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  943. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  944. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  945. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  946. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  947. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  948. },
  949. },
  950. {
  951. LLM_ARCH_OLMO,
  952. {
  953. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  954. { LLM_TENSOR_OUTPUT, "output" },
  955. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  956. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  957. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  958. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  959. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  960. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  961. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  962. },
  963. },
  964. {
  965. LLM_ARCH_UNKNOWN,
  966. {
  967. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  968. },
  969. },
  970. };
  971. static llm_arch llm_arch_from_string(const std::string & name) {
  972. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  973. if (kv.second == name) {
  974. return kv.first;
  975. }
  976. }
  977. return LLM_ARCH_UNKNOWN;
  978. }
  979. // helper to handle gguf constants
  980. // usage:
  981. //
  982. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  983. //
  984. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  985. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  986. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  987. //
  988. struct LLM_TN {
  989. LLM_TN(llm_arch arch) : arch(arch) {}
  990. llm_arch arch;
  991. std::string operator()(llm_tensor tensor) const {
  992. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  993. return "__missing__";
  994. }
  995. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  996. }
  997. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  998. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  999. return "__missing__";
  1000. }
  1001. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1002. }
  1003. std::string operator()(llm_tensor tensor, int bid) const {
  1004. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1005. return "__missing__";
  1006. }
  1007. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1008. }
  1009. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1010. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1011. return "__missing__";
  1012. }
  1013. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1014. }
  1015. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1016. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1017. return "__missing__";
  1018. }
  1019. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1020. }
  1021. };
  1022. //
  1023. // gguf helpers
  1024. //
  1025. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1026. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1027. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1028. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1029. };
  1030. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1031. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1032. if (kv.second == name) {
  1033. return (llama_rope_scaling_type) kv.first;
  1034. }
  1035. }
  1036. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1037. }
  1038. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1039. switch (type) {
  1040. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1041. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1042. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1043. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1044. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1045. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1046. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1047. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1048. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1049. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1050. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1051. default: return format("unknown type %d", type);
  1052. }
  1053. }
  1054. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1055. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1056. switch (type) {
  1057. case GGUF_TYPE_STRING:
  1058. return gguf_get_val_str(ctx_gguf, i);
  1059. case GGUF_TYPE_ARRAY:
  1060. {
  1061. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1062. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1063. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1064. std::stringstream ss;
  1065. ss << "[";
  1066. for (int j = 0; j < arr_n; j++) {
  1067. if (arr_type == GGUF_TYPE_STRING) {
  1068. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1069. // escape quotes
  1070. replace_all(val, "\\", "\\\\");
  1071. replace_all(val, "\"", "\\\"");
  1072. ss << '"' << val << '"';
  1073. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1074. ss << "???";
  1075. } else {
  1076. ss << gguf_data_to_str(arr_type, data, j);
  1077. }
  1078. if (j < arr_n - 1) {
  1079. ss << ", ";
  1080. }
  1081. }
  1082. ss << "]";
  1083. return ss.str();
  1084. }
  1085. default:
  1086. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1087. }
  1088. }
  1089. //
  1090. // llama helpers
  1091. //
  1092. #if defined(_WIN32)
  1093. static std::string llama_format_win_err(DWORD err) {
  1094. LPSTR buf;
  1095. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1096. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1097. if (!size) {
  1098. return "FormatMessageA failed";
  1099. }
  1100. std::string ret(buf, size);
  1101. LocalFree(buf);
  1102. return ret;
  1103. }
  1104. #endif
  1105. template <typename T>
  1106. struct no_init {
  1107. T value;
  1108. no_init() { /* do nothing */ }
  1109. };
  1110. struct llama_file {
  1111. // use FILE * so we don't have to re-open the file to mmap
  1112. FILE * fp;
  1113. size_t size;
  1114. llama_file(const char * fname, const char * mode) {
  1115. fp = ggml_fopen(fname, mode);
  1116. if (fp == NULL) {
  1117. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1118. }
  1119. seek(0, SEEK_END);
  1120. size = tell();
  1121. seek(0, SEEK_SET);
  1122. }
  1123. size_t tell() const {
  1124. #ifdef _WIN32
  1125. __int64 ret = _ftelli64(fp);
  1126. #else
  1127. long ret = std::ftell(fp);
  1128. #endif
  1129. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1130. return (size_t) ret;
  1131. }
  1132. void seek(size_t offset, int whence) const {
  1133. #ifdef _WIN32
  1134. int ret = _fseeki64(fp, (__int64) offset, whence);
  1135. #else
  1136. int ret = std::fseek(fp, (long) offset, whence);
  1137. #endif
  1138. GGML_ASSERT(ret == 0); // same
  1139. }
  1140. void read_raw(void * ptr, size_t len) const {
  1141. if (len == 0) {
  1142. return;
  1143. }
  1144. errno = 0;
  1145. std::size_t ret = std::fread(ptr, len, 1, fp);
  1146. if (ferror(fp)) {
  1147. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1148. }
  1149. if (ret != 1) {
  1150. throw std::runtime_error("unexpectedly reached end of file");
  1151. }
  1152. }
  1153. uint32_t read_u32() const {
  1154. uint32_t ret;
  1155. read_raw(&ret, sizeof(ret));
  1156. return ret;
  1157. }
  1158. void write_raw(const void * ptr, size_t len) const {
  1159. if (len == 0) {
  1160. return;
  1161. }
  1162. errno = 0;
  1163. size_t ret = std::fwrite(ptr, len, 1, fp);
  1164. if (ret != 1) {
  1165. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1166. }
  1167. }
  1168. void write_u32(std::uint32_t val) const {
  1169. write_raw(&val, sizeof(val));
  1170. }
  1171. ~llama_file() {
  1172. if (fp) {
  1173. std::fclose(fp);
  1174. }
  1175. }
  1176. };
  1177. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1178. struct llama_mmap {
  1179. void * addr;
  1180. size_t size;
  1181. llama_mmap(const llama_mmap &) = delete;
  1182. #ifdef _POSIX_MAPPED_FILES
  1183. static constexpr bool SUPPORTED = true;
  1184. // list of mapped fragments (first_offset, last_offset)
  1185. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1186. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1187. size = file->size;
  1188. int fd = fileno(file->fp);
  1189. int flags = MAP_SHARED;
  1190. // prefetch/readahead impairs performance on NUMA systems
  1191. if (numa) { prefetch = 0; }
  1192. #ifdef __linux__
  1193. // advise the kernel to read the file sequentially (increases readahead)
  1194. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1195. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1196. strerror(errno));
  1197. }
  1198. if (prefetch) { flags |= MAP_POPULATE; }
  1199. #endif
  1200. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1201. if (addr == MAP_FAILED) { // NOLINT
  1202. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1203. }
  1204. if (prefetch > 0) {
  1205. // advise the kernel to preload the mapped memory
  1206. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1207. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1208. strerror(errno));
  1209. }
  1210. }
  1211. if (numa) {
  1212. // advise the kernel not to use readahead
  1213. // (because the next page might not belong on the same node)
  1214. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1215. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1216. strerror(errno));
  1217. }
  1218. }
  1219. // initialize list of mapped_fragments
  1220. mapped_fragments.emplace_back(0, file->size);
  1221. }
  1222. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1223. // align first to the next page
  1224. size_t offset_in_page = *first & (page_size - 1);
  1225. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1226. *first += offset_to_page;
  1227. // align last to the previous page
  1228. *last = *last & ~(page_size - 1);
  1229. if (*last <= *first) {
  1230. *last = *first;
  1231. }
  1232. }
  1233. // partially unmap the file in the range [first, last)
  1234. void unmap_fragment(size_t first, size_t last) {
  1235. // note: this function must not be called multiple times with overlapping ranges
  1236. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1237. int page_size = sysconf(_SC_PAGESIZE);
  1238. align_range(&first, &last, page_size);
  1239. size_t len = last - first;
  1240. if (len == 0) {
  1241. return;
  1242. }
  1243. GGML_ASSERT(first % page_size == 0);
  1244. GGML_ASSERT(last % page_size == 0);
  1245. GGML_ASSERT(last > first);
  1246. void * next_page_start = (uint8_t *) addr + first;
  1247. // unmap the range
  1248. if (munmap(next_page_start, len)) {
  1249. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1250. }
  1251. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1252. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1253. for (const auto & frag : mapped_fragments) {
  1254. if (frag.first < first && frag.second > last) {
  1255. // the range is in the middle of the fragment, split it
  1256. new_mapped_fragments.emplace_back(frag.first, first);
  1257. new_mapped_fragments.emplace_back(last, frag.second);
  1258. } else if (frag.first < first && frag.second > first) {
  1259. // the range starts in the middle of the fragment
  1260. new_mapped_fragments.emplace_back(frag.first, first);
  1261. } else if (frag.first < last && frag.second > last) {
  1262. // the range ends in the middle of the fragment
  1263. new_mapped_fragments.emplace_back(last, frag.second);
  1264. } else if (frag.first >= first && frag.second <= last) {
  1265. // the range covers the entire fragment
  1266. } else {
  1267. // the range is outside the fragment
  1268. new_mapped_fragments.push_back(frag);
  1269. }
  1270. }
  1271. mapped_fragments = std::move(new_mapped_fragments);
  1272. }
  1273. ~llama_mmap() {
  1274. for (const auto & frag : mapped_fragments) {
  1275. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1276. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1277. }
  1278. }
  1279. }
  1280. #elif defined(_WIN32)
  1281. static constexpr bool SUPPORTED = true;
  1282. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1283. GGML_UNUSED(numa);
  1284. size = file->size;
  1285. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1286. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1287. if (hMapping == NULL) {
  1288. DWORD error = GetLastError();
  1289. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1290. }
  1291. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1292. DWORD error = GetLastError();
  1293. CloseHandle(hMapping);
  1294. if (addr == NULL) {
  1295. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1296. }
  1297. if (prefetch > 0) {
  1298. #if _WIN32_WINNT >= 0x602
  1299. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1300. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1301. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1302. // may fail on pre-Windows 8 systems
  1303. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1304. if (pPrefetchVirtualMemory) {
  1305. // advise the kernel to preload the mapped memory
  1306. WIN32_MEMORY_RANGE_ENTRY range;
  1307. range.VirtualAddress = addr;
  1308. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1309. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1310. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1311. llama_format_win_err(GetLastError()).c_str());
  1312. }
  1313. }
  1314. #else
  1315. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1316. #endif
  1317. }
  1318. }
  1319. void unmap_fragment(size_t first, size_t last) {
  1320. // not supported
  1321. GGML_UNUSED(first);
  1322. GGML_UNUSED(last);
  1323. }
  1324. ~llama_mmap() {
  1325. if (!UnmapViewOfFile(addr)) {
  1326. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1327. llama_format_win_err(GetLastError()).c_str());
  1328. }
  1329. }
  1330. #else
  1331. static constexpr bool SUPPORTED = false;
  1332. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1333. GGML_UNUSED(file);
  1334. GGML_UNUSED(prefetch);
  1335. GGML_UNUSED(numa);
  1336. throw std::runtime_error("mmap not supported");
  1337. }
  1338. void unmap_fragment(size_t first, size_t last) {
  1339. GGML_UNUSED(first);
  1340. GGML_UNUSED(last);
  1341. throw std::runtime_error("mmap not supported");
  1342. }
  1343. #endif
  1344. };
  1345. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1346. // Represents some region of memory being locked using mlock or VirtualLock;
  1347. // will automatically unlock on destruction.
  1348. struct llama_mlock {
  1349. void * addr = NULL;
  1350. size_t size = 0;
  1351. bool failed_already = false;
  1352. llama_mlock() {}
  1353. llama_mlock(const llama_mlock &) = delete;
  1354. ~llama_mlock() {
  1355. if (size) {
  1356. raw_unlock(addr, size);
  1357. }
  1358. }
  1359. void init(void * ptr) {
  1360. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1361. addr = ptr;
  1362. }
  1363. void grow_to(size_t target_size) {
  1364. GGML_ASSERT(addr);
  1365. if (failed_already) {
  1366. return;
  1367. }
  1368. size_t granularity = lock_granularity();
  1369. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1370. if (target_size > size) {
  1371. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1372. size = target_size;
  1373. } else {
  1374. failed_already = true;
  1375. }
  1376. }
  1377. }
  1378. #ifdef _POSIX_MEMLOCK_RANGE
  1379. static constexpr bool SUPPORTED = true;
  1380. static size_t lock_granularity() {
  1381. return (size_t) sysconf(_SC_PAGESIZE);
  1382. }
  1383. #ifdef __APPLE__
  1384. #define MLOCK_SUGGESTION \
  1385. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1386. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1387. #else
  1388. #define MLOCK_SUGGESTION \
  1389. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1390. #endif
  1391. bool raw_lock(const void * addr, size_t size) const {
  1392. if (!mlock(addr, size)) {
  1393. return true;
  1394. }
  1395. char* errmsg = std::strerror(errno);
  1396. bool suggest = (errno == ENOMEM);
  1397. // Check if the resource limit is fine after all
  1398. struct rlimit lock_limit;
  1399. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1400. suggest = false;
  1401. }
  1402. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1403. suggest = false;
  1404. }
  1405. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1406. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1407. return false;
  1408. }
  1409. #undef MLOCK_SUGGESTION
  1410. static void raw_unlock(void * addr, size_t size) {
  1411. if (munlock(addr, size)) {
  1412. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1413. }
  1414. }
  1415. #elif defined(_WIN32)
  1416. static constexpr bool SUPPORTED = true;
  1417. static size_t lock_granularity() {
  1418. SYSTEM_INFO si;
  1419. GetSystemInfo(&si);
  1420. return (size_t) si.dwPageSize;
  1421. }
  1422. bool raw_lock(void * ptr, size_t len) const {
  1423. for (int tries = 1; ; tries++) {
  1424. if (VirtualLock(ptr, len)) {
  1425. return true;
  1426. }
  1427. if (tries == 2) {
  1428. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1429. len, size, llama_format_win_err(GetLastError()).c_str());
  1430. return false;
  1431. }
  1432. // It failed but this was only the first try; increase the working
  1433. // set size and try again.
  1434. SIZE_T min_ws_size, max_ws_size;
  1435. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1436. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1437. llama_format_win_err(GetLastError()).c_str());
  1438. return false;
  1439. }
  1440. // Per MSDN: "The maximum number of pages that a process can lock
  1441. // is equal to the number of pages in its minimum working set minus
  1442. // a small overhead."
  1443. // Hopefully a megabyte is enough overhead:
  1444. size_t increment = len + 1048576;
  1445. // The minimum must be <= the maximum, so we need to increase both:
  1446. min_ws_size += increment;
  1447. max_ws_size += increment;
  1448. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1449. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1450. llama_format_win_err(GetLastError()).c_str());
  1451. return false;
  1452. }
  1453. }
  1454. }
  1455. static void raw_unlock(void * ptr, size_t len) {
  1456. if (!VirtualUnlock(ptr, len)) {
  1457. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1458. llama_format_win_err(GetLastError()).c_str());
  1459. }
  1460. }
  1461. #else
  1462. static constexpr bool SUPPORTED = false;
  1463. static size_t lock_granularity() {
  1464. return (size_t) 65536;
  1465. }
  1466. bool raw_lock(const void * addr, size_t len) const {
  1467. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1468. return false;
  1469. }
  1470. static void raw_unlock(const void * addr, size_t len) {}
  1471. #endif
  1472. };
  1473. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1474. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1475. std::vector<char> result(8, 0);
  1476. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1477. if (n_tokens < 0) {
  1478. result.resize(-n_tokens);
  1479. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1480. GGML_ASSERT(check == -n_tokens);
  1481. }
  1482. else {
  1483. result.resize(n_tokens);
  1484. }
  1485. return std::string(result.data(), result.size());
  1486. }
  1487. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1488. ggml_backend_buffer_type_t buft = nullptr;
  1489. #if defined(GGML_USE_CUDA)
  1490. // host buffers should only be used when data is expected to be copied to/from the GPU
  1491. if (host_buffer) {
  1492. buft = ggml_backend_cuda_host_buffer_type();
  1493. }
  1494. #elif defined(GGML_USE_SYCL)
  1495. if (host_buffer) {
  1496. buft = ggml_backend_sycl_host_buffer_type();
  1497. }
  1498. #elif defined(GGML_USE_CPU_HBM)
  1499. buft = ggml_backend_cpu_hbm_buffer_type();
  1500. #elif defined(GGML_USE_VULKAN)
  1501. if (host_buffer) {
  1502. buft = ggml_backend_vk_host_buffer_type();
  1503. }
  1504. #endif
  1505. if (buft == nullptr) {
  1506. buft = ggml_backend_cpu_buffer_type();
  1507. }
  1508. return buft;
  1509. GGML_UNUSED(host_buffer);
  1510. }
  1511. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1512. ggml_backend_buffer_type_t buft = nullptr;
  1513. #ifdef GGML_USE_METAL
  1514. buft = ggml_backend_metal_buffer_type();
  1515. #elif defined(GGML_USE_CUDA)
  1516. buft = ggml_backend_cuda_buffer_type(gpu);
  1517. #elif defined(GGML_USE_VULKAN)
  1518. buft = ggml_backend_vk_buffer_type(gpu);
  1519. #elif defined(GGML_USE_SYCL)
  1520. buft = ggml_backend_sycl_buffer_type(gpu);
  1521. #elif defined(GGML_USE_CLBLAST)
  1522. buft = ggml_backend_opencl_buffer_type();
  1523. #elif defined(GGML_USE_KOMPUTE)
  1524. buft = ggml_backend_kompute_buffer_type(gpu);
  1525. if (buft == nullptr) {
  1526. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1527. }
  1528. #endif
  1529. if (buft == nullptr) {
  1530. buft = llama_default_buffer_type_cpu(true);
  1531. }
  1532. return buft;
  1533. GGML_UNUSED(gpu);
  1534. }
  1535. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1536. ggml_backend_buffer_type_t buft = nullptr;
  1537. #ifdef GGML_USE_CUDA
  1538. if (ggml_backend_cuda_get_device_count() > 1) {
  1539. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1540. }
  1541. #endif
  1542. #ifdef GGML_USE_SYCL
  1543. if (ggml_backend_sycl_get_device_count() > 1) {
  1544. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1545. }
  1546. #endif
  1547. if (buft == nullptr) {
  1548. buft = llama_default_buffer_type_offload(fallback_gpu);
  1549. }
  1550. return buft;
  1551. GGML_UNUSED(tensor_split);
  1552. }
  1553. static size_t llama_get_device_count() {
  1554. #if defined(GGML_USE_CUDA)
  1555. return ggml_backend_cuda_get_device_count();
  1556. #elif defined(GGML_USE_SYCL)
  1557. return ggml_backend_sycl_get_device_count();
  1558. #elif defined(GGML_USE_VULKAN)
  1559. return ggml_backend_vk_get_device_count();
  1560. #else
  1561. return 1;
  1562. #endif
  1563. }
  1564. static size_t llama_get_device_memory(int device) {
  1565. #if defined(GGML_USE_CUDA)
  1566. size_t total;
  1567. size_t free;
  1568. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1569. return free;
  1570. #elif defined(GGML_USE_SYCL)
  1571. size_t total;
  1572. size_t free;
  1573. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1574. return free;
  1575. #elif defined(GGML_USE_VULKAN)
  1576. size_t total;
  1577. size_t free;
  1578. ggml_backend_vk_get_device_memory(device, &free, &total);
  1579. return free;
  1580. #else
  1581. return 1;
  1582. GGML_UNUSED(device);
  1583. #endif
  1584. }
  1585. //
  1586. // globals
  1587. //
  1588. struct llama_state {
  1589. llama_state() {
  1590. #ifdef GGML_USE_METAL
  1591. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1592. #endif
  1593. }
  1594. // We save the log callback globally
  1595. ggml_log_callback log_callback = llama_log_callback_default;
  1596. void * log_callback_user_data = nullptr;
  1597. };
  1598. static llama_state g_state;
  1599. // available llama models
  1600. enum e_model {
  1601. MODEL_UNKNOWN,
  1602. MODEL_17M,
  1603. MODEL_22M,
  1604. MODEL_33M,
  1605. MODEL_109M,
  1606. MODEL_137M,
  1607. MODEL_335M,
  1608. MODEL_0_5B,
  1609. MODEL_1B,
  1610. MODEL_2B,
  1611. MODEL_3B,
  1612. MODEL_4B,
  1613. MODEL_7B,
  1614. MODEL_8B,
  1615. MODEL_12B,
  1616. MODEL_13B,
  1617. MODEL_14B,
  1618. MODEL_15B,
  1619. MODEL_20B,
  1620. MODEL_30B,
  1621. MODEL_34B,
  1622. MODEL_35B,
  1623. MODEL_40B,
  1624. MODEL_65B,
  1625. MODEL_70B,
  1626. MODEL_314B,
  1627. MODEL_SMALL,
  1628. MODEL_MEDIUM,
  1629. MODEL_LARGE,
  1630. MODEL_XL,
  1631. MODEL_A2_7B,
  1632. MODEL_8x7B,
  1633. MODEL_8x22B,
  1634. MODEL_16x12B,
  1635. };
  1636. static const size_t kiB = 1024;
  1637. static const size_t MiB = 1024*kiB;
  1638. static const size_t GiB = 1024*MiB;
  1639. struct llama_hparams {
  1640. bool vocab_only;
  1641. bool rope_finetuned;
  1642. uint32_t n_vocab;
  1643. uint32_t n_ctx_train; // context size the model was trained on
  1644. uint32_t n_embd;
  1645. uint32_t n_head;
  1646. uint32_t n_head_kv;
  1647. uint32_t n_layer;
  1648. uint32_t n_rot;
  1649. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1650. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1651. uint32_t n_ff;
  1652. uint32_t n_expert = 0;
  1653. uint32_t n_expert_used = 0;
  1654. uint32_t n_vocab_type = 0; // for BERT-style token types
  1655. float f_norm_eps;
  1656. float f_norm_rms_eps;
  1657. float rope_freq_base_train;
  1658. float rope_freq_scale_train;
  1659. uint32_t n_yarn_orig_ctx;
  1660. // for State Space Models
  1661. uint32_t ssm_d_conv = 0;
  1662. uint32_t ssm_d_inner = 0;
  1663. uint32_t ssm_d_state = 0;
  1664. uint32_t ssm_dt_rank = 0;
  1665. float f_clamp_kqv = 0.0f;
  1666. float f_max_alibi_bias = 0.0f;
  1667. float f_logit_scale = 0.0f;
  1668. bool causal_attn = true;
  1669. bool need_kq_pos = false;
  1670. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1671. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1672. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1673. bool operator!=(const llama_hparams & other) const {
  1674. if (this->vocab_only != other.vocab_only) return true;
  1675. if (this->n_vocab != other.n_vocab) return true;
  1676. if (this->n_ctx_train != other.n_ctx_train) return true;
  1677. if (this->n_embd != other.n_embd) return true;
  1678. if (this->n_head != other.n_head) return true;
  1679. if (this->n_head_kv != other.n_head_kv) return true;
  1680. if (this->n_layer != other.n_layer) return true;
  1681. if (this->n_rot != other.n_rot) return true;
  1682. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1683. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1684. if (this->n_ff != other.n_ff) return true;
  1685. if (this->n_expert != other.n_expert) return true;
  1686. if (this->n_expert_used != other.n_expert_used) return true;
  1687. if (this->rope_finetuned != other.rope_finetuned) return true;
  1688. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1689. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1690. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1691. if (this->ssm_d_state != other.ssm_d_state) return true;
  1692. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1693. const float EPSILON = 1e-9f;
  1694. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1695. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1696. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1697. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1698. return false;
  1699. }
  1700. uint32_t n_gqa() const {
  1701. if (n_head_kv == 0) {
  1702. return 0;
  1703. }
  1704. return n_head/n_head_kv;
  1705. }
  1706. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1707. return n_embd_head_k * n_head_kv;
  1708. }
  1709. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1710. return n_embd_head_v * n_head_kv;
  1711. }
  1712. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1713. // corresponds to Mamba's conv_states size
  1714. // TODO: maybe support other convolution strides than 1
  1715. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1716. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1717. }
  1718. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1719. // corresponds to Mamba's ssm_states size
  1720. return ssm_d_state * ssm_d_inner;
  1721. }
  1722. };
  1723. struct llama_cparams {
  1724. uint32_t n_ctx; // context size used during inference
  1725. uint32_t n_batch;
  1726. uint32_t n_ubatch;
  1727. uint32_t n_seq_max;
  1728. uint32_t n_threads; // number of threads to use for generation
  1729. uint32_t n_threads_batch; // number of threads to use for batch processing
  1730. float rope_freq_base;
  1731. float rope_freq_scale;
  1732. uint32_t n_yarn_orig_ctx;
  1733. // These hyperparameters are not exposed in GGUF, because all
  1734. // existing YaRN models use the same values for them.
  1735. float yarn_ext_factor;
  1736. float yarn_attn_factor;
  1737. float yarn_beta_fast;
  1738. float yarn_beta_slow;
  1739. float defrag_thold;
  1740. bool embeddings;
  1741. bool causal_attn;
  1742. bool offload_kqv;
  1743. enum llama_pooling_type pooling_type;
  1744. ggml_backend_sched_eval_callback cb_eval;
  1745. void * cb_eval_user_data;
  1746. };
  1747. struct llama_layer {
  1748. // normalization
  1749. struct ggml_tensor * attn_norm;
  1750. struct ggml_tensor * attn_norm_b;
  1751. struct ggml_tensor * attn_norm_2;
  1752. struct ggml_tensor * attn_norm_2_b;
  1753. struct ggml_tensor * attn_q_norm;
  1754. struct ggml_tensor * attn_q_norm_b;
  1755. struct ggml_tensor * attn_k_norm;
  1756. struct ggml_tensor * attn_k_norm_b;
  1757. struct ggml_tensor * attn_out_norm;
  1758. struct ggml_tensor * attn_out_norm_b;
  1759. // attention
  1760. struct ggml_tensor * wq;
  1761. struct ggml_tensor * wk;
  1762. struct ggml_tensor * wv;
  1763. struct ggml_tensor * wo;
  1764. struct ggml_tensor * wqkv;
  1765. // attention bias
  1766. struct ggml_tensor * bq;
  1767. struct ggml_tensor * bk;
  1768. struct ggml_tensor * bv;
  1769. struct ggml_tensor * bo;
  1770. struct ggml_tensor * bqkv;
  1771. // normalization
  1772. struct ggml_tensor * ffn_norm;
  1773. struct ggml_tensor * ffn_norm_b;
  1774. struct ggml_tensor * layer_out_norm;
  1775. struct ggml_tensor * layer_out_norm_b;
  1776. // ff
  1777. struct ggml_tensor * ffn_gate; // w1
  1778. struct ggml_tensor * ffn_down; // w2
  1779. struct ggml_tensor * ffn_up; // w3
  1780. // ff MoE
  1781. struct ggml_tensor * ffn_gate_inp;
  1782. struct ggml_tensor * ffn_gate_exps;
  1783. struct ggml_tensor * ffn_down_exps;
  1784. struct ggml_tensor * ffn_up_exps ;
  1785. // ff shared expert (shexp)
  1786. struct ggml_tensor * ffn_gate_inp_shexp;
  1787. struct ggml_tensor * ffn_gate_shexp;
  1788. struct ggml_tensor * ffn_down_shexp;
  1789. struct ggml_tensor * ffn_up_shexp;
  1790. // ff bias
  1791. struct ggml_tensor * ffn_down_b; // b2
  1792. struct ggml_tensor * ffn_up_b; // b3
  1793. struct ggml_tensor * ffn_act;
  1794. // mamba proj
  1795. struct ggml_tensor * ssm_in;
  1796. struct ggml_tensor * ssm_x;
  1797. struct ggml_tensor * ssm_dt;
  1798. struct ggml_tensor * ssm_out;
  1799. // mamba
  1800. struct ggml_tensor * ssm_conv1d;
  1801. struct ggml_tensor * ssm_a;
  1802. struct ggml_tensor * ssm_d;
  1803. // mamba bias
  1804. struct ggml_tensor * ssm_conv1d_b;
  1805. struct ggml_tensor * ssm_dt_b;
  1806. };
  1807. struct llama_kv_cell {
  1808. llama_pos pos = -1;
  1809. llama_pos delta = 0;
  1810. int32_t src = 0; // used by recurrent state models to copy states
  1811. std::set<llama_seq_id> seq_id;
  1812. bool has_seq_id(const llama_seq_id & id) const {
  1813. return seq_id.find(id) != seq_id.end();
  1814. }
  1815. bool is_empty() const {
  1816. return seq_id.empty();
  1817. }
  1818. bool is_same_seq(const llama_kv_cell & other) const {
  1819. return seq_id == other.seq_id;
  1820. }
  1821. };
  1822. // ring-buffer of cached KV data
  1823. struct llama_kv_cache {
  1824. bool has_shift = false;
  1825. bool do_defrag = false;
  1826. bool do_copy = false;
  1827. // with recurrent state models, a cell can hold the state for more than one past token
  1828. bool recurrent = false;
  1829. // Note: The value of head isn't only used to optimize searching
  1830. // for a free KV slot. llama_decode_internal also uses it, so it
  1831. // cannot be freely changed after a slot has been allocated.
  1832. uint32_t head = 0;
  1833. uint32_t size = 0;
  1834. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1835. // computed before each graph build
  1836. uint32_t n = 0;
  1837. ggml_type type_k = GGML_TYPE_F16;
  1838. ggml_type type_v = GGML_TYPE_F16;
  1839. std::vector<llama_kv_cell> cells;
  1840. std::vector<struct ggml_tensor *> k_l; // per layer
  1841. std::vector<struct ggml_tensor *> v_l;
  1842. std::vector<struct ggml_context *> ctxs;
  1843. std::vector<ggml_backend_buffer_t> bufs;
  1844. size_t total_size() const {
  1845. size_t size = 0;
  1846. for (ggml_backend_buffer_t buf : bufs) {
  1847. size += ggml_backend_buffer_get_size(buf);
  1848. }
  1849. return size;
  1850. }
  1851. ~llama_kv_cache() {
  1852. for (struct ggml_context * ctx : ctxs) {
  1853. ggml_free(ctx);
  1854. }
  1855. for (ggml_backend_buffer_t buf : bufs) {
  1856. ggml_backend_buffer_free(buf);
  1857. }
  1858. }
  1859. };
  1860. struct llama_control_vector {
  1861. std::vector<struct ggml_tensor *> tensors; // per layer
  1862. std::vector<struct ggml_context *> ctxs;
  1863. std::vector<ggml_backend_buffer_t> bufs;
  1864. int32_t layer_start = -1;
  1865. int32_t layer_end = -1;
  1866. ggml_tensor * tensor_for(int il) const {
  1867. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1868. return nullptr;
  1869. }
  1870. return tensors[il];
  1871. }
  1872. ~llama_control_vector() {
  1873. for (struct ggml_context * ctx : ctxs) {
  1874. ggml_free(ctx);
  1875. }
  1876. for (ggml_backend_buffer_t buf : bufs) {
  1877. ggml_backend_buffer_free(buf);
  1878. }
  1879. }
  1880. };
  1881. struct llama_vocab {
  1882. using id = int32_t;
  1883. using token = std::string;
  1884. using ttype = llama_token_type;
  1885. struct token_data {
  1886. token text;
  1887. float score;
  1888. ttype type;
  1889. };
  1890. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1891. std::unordered_map<token, id> token_to_id;
  1892. std::vector<token_data> id_to_token;
  1893. std::unordered_map<token, id> special_tokens_cache;
  1894. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1895. // default LLaMA special tokens
  1896. id special_bos_id = 1;
  1897. id special_eos_id = 2;
  1898. id special_unk_id = 0;
  1899. id special_sep_id = -1;
  1900. id special_pad_id = -1;
  1901. id special_cls_id = -1;
  1902. id special_mask_id = -1;
  1903. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1904. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1905. id linefeed_id = 13;
  1906. id special_prefix_id = -1;
  1907. id special_suffix_id = -1;
  1908. id special_middle_id = -1;
  1909. id special_eot_id = -1;
  1910. bool add_space_prefix = true;
  1911. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1912. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1913. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1914. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1915. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1916. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1917. if (it == bpe_ranks.end()) {
  1918. return -1;
  1919. }
  1920. return it->second;
  1921. }
  1922. };
  1923. struct llama_model {
  1924. e_model type = MODEL_UNKNOWN;
  1925. llm_arch arch = LLM_ARCH_UNKNOWN;
  1926. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1927. std::string name = "n/a";
  1928. llama_hparams hparams = {};
  1929. llama_vocab vocab;
  1930. struct ggml_tensor * tok_embd;
  1931. struct ggml_tensor * type_embd;
  1932. struct ggml_tensor * pos_embd;
  1933. struct ggml_tensor * tok_norm;
  1934. struct ggml_tensor * tok_norm_b;
  1935. struct ggml_tensor * output_norm;
  1936. struct ggml_tensor * output_norm_b;
  1937. struct ggml_tensor * output;
  1938. struct ggml_tensor * output_b;
  1939. std::vector<llama_layer> layers;
  1940. llama_split_mode split_mode;
  1941. int main_gpu;
  1942. int n_gpu_layers;
  1943. // gguf metadata
  1944. std::unordered_map<std::string, std::string> gguf_kv;
  1945. // layer -> buffer type mapping
  1946. struct layer_buft {
  1947. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1948. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1949. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1950. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1951. ggml_backend_buffer_type_t buft; // everything else
  1952. };
  1953. layer_buft buft_input;
  1954. layer_buft buft_output;
  1955. std::vector<layer_buft> buft_layer;
  1956. // contexts where the model tensors metadata is stored
  1957. std::vector<struct ggml_context *> ctxs;
  1958. // the model memory buffers for the tensor data
  1959. std::vector<ggml_backend_buffer_t> bufs;
  1960. // model memory mapped files
  1961. llama_mmaps mappings;
  1962. // objects representing data potentially being locked in memory
  1963. llama_mlocks mlock_bufs;
  1964. llama_mlocks mlock_mmaps;
  1965. // for quantize-stats only
  1966. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1967. int64_t t_load_us = 0;
  1968. int64_t t_start_us = 0;
  1969. ~llama_model() {
  1970. for (struct ggml_context * ctx : ctxs) {
  1971. ggml_free(ctx);
  1972. }
  1973. for (ggml_backend_buffer_t buf : bufs) {
  1974. #ifdef GGML_USE_CUDA
  1975. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1976. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1977. }
  1978. #endif
  1979. ggml_backend_buffer_free(buf);
  1980. }
  1981. }
  1982. };
  1983. struct llama_context {
  1984. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1985. ~llama_context() {
  1986. ggml_backend_sched_free(sched);
  1987. for (ggml_backend_t backend : backends) {
  1988. ggml_backend_free(backend);
  1989. }
  1990. ggml_backend_buffer_free(buf_output);
  1991. }
  1992. llama_cparams cparams;
  1993. std::vector<ggml_backend_t> backends;
  1994. #ifdef GGML_USE_METAL
  1995. ggml_backend_t backend_metal = nullptr;
  1996. #endif
  1997. ggml_backend_t backend_cpu = nullptr;
  1998. const llama_model & model;
  1999. // key + value cache for the self attention
  2000. struct llama_kv_cache kv_self;
  2001. std::mt19937 rng;
  2002. bool has_evaluated_once = false;
  2003. int64_t t_start_us;
  2004. int64_t t_load_us;
  2005. int64_t t_sample_us = 0;
  2006. int64_t t_p_eval_us = 0;
  2007. int64_t t_eval_us = 0;
  2008. int64_t t_compute_start_us = 0;
  2009. int64_t n_queued_tokens = 0;
  2010. int32_t n_sample = 0; // number of tokens sampled
  2011. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2012. int32_t n_eval = 0; // number of eval calls
  2013. // host buffer for the model output (logits and embeddings)
  2014. ggml_backend_buffer_t buf_output = nullptr;
  2015. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2016. size_t logits_size = 0; // capacity (of floats) for logits
  2017. float * logits = nullptr;
  2018. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2019. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2020. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2021. bool logits_all = false;
  2022. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2023. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2024. size_t embd_size = 0; // capacity (of floats) for embeddings
  2025. float * embd = nullptr;
  2026. // sequence embeddings output (map of [n_embd] vectors)
  2027. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2028. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2029. // memory buffers used to evaluate the model
  2030. std::vector<uint8_t> buf_compute_meta;
  2031. ggml_backend_sched_t sched = nullptr;
  2032. ggml_abort_callback abort_callback = nullptr;
  2033. void * abort_callback_data = nullptr;
  2034. // input tensors
  2035. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2036. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2037. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2038. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2039. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2040. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2041. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2042. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2043. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2044. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2045. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2046. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2047. // control vectors
  2048. struct llama_control_vector cvec;
  2049. #ifdef GGML_USE_MPI
  2050. ggml_mpi_context * ctx_mpi = NULL;
  2051. #endif
  2052. };
  2053. //
  2054. // kv cache helpers
  2055. //
  2056. static bool llama_kv_cache_init(
  2057. struct llama_kv_cache & cache,
  2058. const llama_model & model,
  2059. ggml_type type_k,
  2060. ggml_type type_v,
  2061. uint32_t kv_size,
  2062. bool offload) {
  2063. const struct llama_hparams & hparams = model.hparams;
  2064. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2065. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2066. const int64_t n_layer = hparams.n_layer;
  2067. cache.has_shift = false;
  2068. // TODO: find a nicer way to add other recurrent model architectures
  2069. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2070. // TODO: support mixed reccurent Transformer architectues
  2071. // NOTE: (!a || b) is a logical implication (a -> b)
  2072. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2073. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2074. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2075. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2076. cache.head = 0;
  2077. cache.size = kv_size;
  2078. cache.used = 0;
  2079. cache.type_k = type_k;
  2080. cache.type_v = type_v;
  2081. cache.cells.clear();
  2082. cache.cells.resize(kv_size);
  2083. if (cache.recurrent) {
  2084. // init state copy sources
  2085. for (uint32_t i = 0; i < cache.size; ++i) {
  2086. cache.cells[i].src = i;
  2087. }
  2088. }
  2089. #ifdef GGML_USE_CLBLAST
  2090. offload = false;
  2091. #endif
  2092. // count used buffer types
  2093. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2094. if (offload) {
  2095. for (int64_t i = 0; i < n_layer; ++i) {
  2096. buft_layer_count[model.buft_layer[i].buft]++;
  2097. }
  2098. } else {
  2099. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2100. }
  2101. // create a context for each buffer type
  2102. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2103. for (auto & it : buft_layer_count) {
  2104. int n_layers = it.second;
  2105. struct ggml_init_params params = {
  2106. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2107. /*.mem_buffer =*/ NULL,
  2108. /*.no_alloc =*/ true,
  2109. };
  2110. ggml_context * ctx = ggml_init(params);
  2111. if (!ctx) {
  2112. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2113. return false;
  2114. }
  2115. ctx_map[it.first] = ctx;
  2116. cache.ctxs.push_back(ctx);
  2117. }
  2118. cache.k_l.reserve(n_layer);
  2119. cache.v_l.reserve(n_layer);
  2120. for (int i = 0; i < (int) n_layer; i++) {
  2121. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2122. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2123. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2124. ggml_format_name(k, "cache_k_l%d", i);
  2125. ggml_format_name(v, "cache_v_l%d", i);
  2126. cache.k_l.push_back(k);
  2127. cache.v_l.push_back(v);
  2128. }
  2129. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2130. for (auto it : ctx_map) {
  2131. ggml_backend_buffer_type_t buft = it.first;
  2132. ggml_context * ctx = it.second;
  2133. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2134. if (!buf) {
  2135. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2136. return false;
  2137. }
  2138. ggml_backend_buffer_clear(buf, 0);
  2139. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2140. cache.bufs.push_back(buf);
  2141. }
  2142. return true;
  2143. }
  2144. // find an empty slot of size "n_tokens" in the cache
  2145. // updates the cache head
  2146. // Note: On success, it's important that cache.head points
  2147. // to the first cell of the slot.
  2148. static bool llama_kv_cache_find_slot(
  2149. struct llama_kv_cache & cache,
  2150. const struct llama_batch & batch) {
  2151. const uint32_t n_ctx = cache.size;
  2152. const uint32_t n_tokens = batch.n_tokens;
  2153. if (cache.recurrent) {
  2154. // For recurrent state architectures (like Mamba),
  2155. // each KV cache cell can store the state for a whole sequence.
  2156. llama_seq_id min = cache.size - 1;
  2157. llama_seq_id max = 0;
  2158. for (uint32_t i = 0; i < n_tokens; ++i) {
  2159. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2160. llama_seq_id seq_id = batch.seq_id[i][j];
  2161. // make sure it's a valid seq_id
  2162. if ((uint32_t) seq_id < cache.size) {
  2163. if (seq_id > max) {
  2164. max = seq_id;
  2165. }
  2166. if (seq_id < min) {
  2167. min = seq_id;
  2168. }
  2169. // Assuming the tokens are in-order
  2170. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2171. // What should happen when the pos backtracks or skips a value?
  2172. // Clearing the state mid-batch would require special-casing which isn't done.
  2173. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2174. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2175. }
  2176. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2177. cache.used += 1;
  2178. }
  2179. cache.cells[seq_id].pos = batch.pos[i];
  2180. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2181. } else {
  2182. // too big seq_id
  2183. // TODO: would it be possible to resize the KV cache size instead?
  2184. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2185. return false;
  2186. }
  2187. }
  2188. }
  2189. // allow getting the range of used cells, from head to head + n
  2190. cache.head = min;
  2191. cache.n = max - min + 1;
  2192. // sanity check
  2193. return max >= min;
  2194. }
  2195. // otherwise, one cell per token.
  2196. if (n_tokens > n_ctx) {
  2197. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2198. return false;
  2199. }
  2200. uint32_t n_tested = 0;
  2201. while (true) {
  2202. if (cache.head + n_tokens > n_ctx) {
  2203. n_tested += n_ctx - cache.head;
  2204. cache.head = 0;
  2205. continue;
  2206. }
  2207. bool found = true;
  2208. for (uint32_t i = 0; i < n_tokens; i++) {
  2209. if (cache.cells[cache.head + i].pos >= 0) {
  2210. found = false;
  2211. cache.head += i + 1;
  2212. n_tested += i + 1;
  2213. break;
  2214. }
  2215. }
  2216. if (found) {
  2217. break;
  2218. }
  2219. if (n_tested >= n_ctx) {
  2220. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2221. return false;
  2222. }
  2223. }
  2224. for (uint32_t i = 0; i < n_tokens; i++) {
  2225. cache.cells[cache.head + i].pos = batch.pos[i];
  2226. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2227. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2228. }
  2229. }
  2230. cache.used += n_tokens;
  2231. return true;
  2232. }
  2233. // find how many cells are currently in use
  2234. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2235. for (uint32_t i = cache.size; i > 0; --i) {
  2236. const llama_kv_cell & cell = cache.cells[i - 1];
  2237. if (cell.pos >= 0 && !cell.is_empty()) {
  2238. return i;
  2239. }
  2240. }
  2241. return 0;
  2242. }
  2243. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2244. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2245. cache.cells[i].pos = -1;
  2246. cache.cells[i].seq_id.clear();
  2247. }
  2248. cache.head = 0;
  2249. cache.used = 0;
  2250. }
  2251. static bool llama_kv_cache_seq_rm(
  2252. struct llama_kv_cache & cache,
  2253. llama_seq_id seq_id,
  2254. llama_pos p0,
  2255. llama_pos p1) {
  2256. uint32_t new_head = cache.size;
  2257. if (p0 < 0) p0 = 0;
  2258. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2259. // models like Mamba can't have a state partially erased
  2260. if (cache.recurrent) {
  2261. if (seq_id >= (int64_t) cache.size) {
  2262. // could be fatal
  2263. return false;
  2264. }
  2265. if (0 <= seq_id) {
  2266. // partial intersection is invalid
  2267. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2268. return false;
  2269. }
  2270. } else {
  2271. // seq_id is negative, then the range should include everything or nothing
  2272. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2273. return false;
  2274. }
  2275. }
  2276. }
  2277. for (uint32_t i = 0; i < cache.size; ++i) {
  2278. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2279. if (seq_id < 0) {
  2280. cache.cells[i].seq_id.clear();
  2281. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2282. cache.cells[i].seq_id.erase(seq_id);
  2283. } else {
  2284. continue;
  2285. }
  2286. if (cache.cells[i].is_empty()) {
  2287. // keep count of the number of used cells
  2288. if (cache.cells[i].pos >= 0) cache.used--;
  2289. cache.cells[i].pos = -1;
  2290. if (new_head == cache.size) new_head = i;
  2291. }
  2292. }
  2293. }
  2294. // If we freed up a slot, set head to it so searching can start there.
  2295. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2296. return true;
  2297. }
  2298. static void llama_kv_cache_seq_cp(
  2299. struct llama_kv_cache & cache,
  2300. llama_seq_id seq_id_src,
  2301. llama_seq_id seq_id_dst,
  2302. llama_pos p0,
  2303. llama_pos p1) {
  2304. if (p0 < 0) p0 = 0;
  2305. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2306. if (cache.recurrent) {
  2307. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2308. seq_id_src = cache.cells[seq_id_src].src;
  2309. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2310. // intent to "copy from"
  2311. // supports copy chains thanks to taking the source of the source
  2312. cache.cells[seq_id_dst].src = seq_id_src;
  2313. // preserve the "keep or clear" status of the copied sequence
  2314. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2315. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2316. } else {
  2317. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2318. }
  2319. cache.do_copy = true;
  2320. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2321. }
  2322. return;
  2323. }
  2324. // otherwise, this is the KV cache of a Transformer-like model
  2325. cache.head = 0;
  2326. for (uint32_t i = 0; i < cache.size; ++i) {
  2327. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2328. cache.cells[i].seq_id.insert(seq_id_dst);
  2329. }
  2330. }
  2331. }
  2332. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2333. uint32_t new_head = cache.size;
  2334. for (uint32_t i = 0; i < cache.size; ++i) {
  2335. if (!cache.cells[i].has_seq_id(seq_id)) {
  2336. if (cache.cells[i].pos >= 0) cache.used--;
  2337. cache.cells[i].pos = -1;
  2338. cache.cells[i].seq_id.clear();
  2339. if (new_head == cache.size) new_head = i;
  2340. } else {
  2341. cache.cells[i].seq_id.clear();
  2342. cache.cells[i].seq_id.insert(seq_id);
  2343. }
  2344. }
  2345. // If we freed up a slot, set head to it so searching can start there.
  2346. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2347. }
  2348. static void llama_kv_cache_seq_add(
  2349. struct llama_kv_cache & cache,
  2350. llama_seq_id seq_id,
  2351. llama_pos p0,
  2352. llama_pos p1,
  2353. llama_pos delta) {
  2354. uint32_t new_head = cache.size;
  2355. if (p0 < 0) p0 = 0;
  2356. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2357. if (cache.recurrent) {
  2358. // for Mamba-like models, only the pos needs to be shifted
  2359. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2360. llama_kv_cell & cell = cache.cells[seq_id];
  2361. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2362. cell.pos += delta;
  2363. }
  2364. }
  2365. return;
  2366. }
  2367. for (uint32_t i = 0; i < cache.size; ++i) {
  2368. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2369. cache.has_shift = true;
  2370. cache.cells[i].pos += delta;
  2371. cache.cells[i].delta += delta;
  2372. if (cache.cells[i].pos < 0) {
  2373. if (!cache.cells[i].is_empty()) {
  2374. cache.used--;
  2375. }
  2376. cache.cells[i].pos = -1;
  2377. cache.cells[i].seq_id.clear();
  2378. if (new_head == cache.size) {
  2379. new_head = i;
  2380. }
  2381. }
  2382. }
  2383. }
  2384. // If we freed up a slot, set head to it so searching can start there.
  2385. // Otherwise we just start the next search from the beginning.
  2386. cache.head = new_head != cache.size ? new_head : 0;
  2387. }
  2388. static void llama_kv_cache_seq_div(
  2389. struct llama_kv_cache & cache,
  2390. llama_seq_id seq_id,
  2391. llama_pos p0,
  2392. llama_pos p1,
  2393. int d) {
  2394. if (p0 < 0) p0 = 0;
  2395. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2396. if (cache.recurrent) {
  2397. // for Mamba-like models, only the pos needs to be changed
  2398. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2399. llama_kv_cell & cell = cache.cells[seq_id];
  2400. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2401. cell.pos /= d;
  2402. }
  2403. }
  2404. return;
  2405. }
  2406. for (uint32_t i = 0; i < cache.size; ++i) {
  2407. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2408. cache.has_shift = true;
  2409. {
  2410. llama_pos p_old = cache.cells[i].pos;
  2411. cache.cells[i].pos /= d;
  2412. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2413. }
  2414. }
  2415. }
  2416. }
  2417. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2418. llama_pos result = 0;
  2419. for (uint32_t i = 0; i < cache.size; ++i) {
  2420. if (cache.cells[i].has_seq_id(seq_id)) {
  2421. result = std::max(result, cache.cells[i].pos);
  2422. }
  2423. }
  2424. return result;
  2425. }
  2426. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2427. cache.do_defrag = true;
  2428. }
  2429. //
  2430. // model loading and saving
  2431. //
  2432. enum llama_fver {
  2433. GGUF_FILE_VERSION_V1 = 1,
  2434. GGUF_FILE_VERSION_V2 = 2,
  2435. GGUF_FILE_VERSION_V3 = 3,
  2436. };
  2437. static const char * llama_file_version_name(llama_fver version) {
  2438. switch (version) {
  2439. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2440. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2441. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2442. }
  2443. return "unknown";
  2444. }
  2445. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2446. char buf[256];
  2447. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2448. for (size_t i = 1; i < ne.size(); i++) {
  2449. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2450. }
  2451. return buf;
  2452. }
  2453. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2454. char buf[256];
  2455. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2456. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2457. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2458. }
  2459. return buf;
  2460. }
  2461. namespace GGUFMeta {
  2462. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2463. struct GKV_Base_Type {
  2464. static constexpr gguf_type gt = gt_;
  2465. static T getter(const gguf_context * ctx, const int kid) {
  2466. return gfun(ctx, kid);
  2467. }
  2468. };
  2469. template<typename T> struct GKV_Base;
  2470. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2471. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2472. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2473. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2474. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2475. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2476. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2477. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2478. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2479. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2480. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2481. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2482. template<> struct GKV_Base<std::string> {
  2483. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2484. static std::string getter(const gguf_context * ctx, const int kid) {
  2485. return gguf_get_val_str(ctx, kid);
  2486. }
  2487. };
  2488. struct ArrayInfo {
  2489. const gguf_type gt;
  2490. const size_t length;
  2491. const void * data;
  2492. };
  2493. template<> struct GKV_Base<ArrayInfo> {
  2494. public:
  2495. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2496. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2497. return ArrayInfo {
  2498. gguf_get_arr_type(ctx, k),
  2499. size_t(gguf_get_arr_n(ctx, k)),
  2500. gguf_get_arr_data(ctx, k),
  2501. };
  2502. }
  2503. };
  2504. template<typename T>
  2505. class GKV : public GKV_Base<T> {
  2506. GKV() = delete;
  2507. public:
  2508. static T get_kv(const gguf_context * ctx, const int k) {
  2509. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2510. if (kt != GKV::gt) {
  2511. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2512. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2513. }
  2514. return GKV::getter(ctx, k);
  2515. }
  2516. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2517. switch (ty) {
  2518. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2519. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2520. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2521. }
  2522. return "unknown";
  2523. }
  2524. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2525. if (!ovrd) { return false; }
  2526. if (ovrd->tag == expected_type) {
  2527. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2528. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2529. switch (ovrd->tag) {
  2530. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2531. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2532. } break;
  2533. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2534. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2535. } break;
  2536. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2537. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2538. } break;
  2539. default:
  2540. // Shouldn't be possible to end up here, but just in case...
  2541. throw std::runtime_error(
  2542. format("Unsupported attempt to override %s type for metadata key %s\n",
  2543. override_type_to_str(ovrd->tag), ovrd->key));
  2544. }
  2545. return true;
  2546. }
  2547. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2548. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2549. return false;
  2550. }
  2551. template<typename OT>
  2552. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2553. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2554. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2555. target = ovrd->bool_value;
  2556. return true;
  2557. }
  2558. return false;
  2559. }
  2560. template<typename OT>
  2561. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2562. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2563. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2564. target = ovrd->int_value;
  2565. return true;
  2566. }
  2567. return false;
  2568. }
  2569. template<typename OT>
  2570. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2571. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2572. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2573. target = ovrd->float_value;
  2574. return true;
  2575. }
  2576. return false;
  2577. }
  2578. template<typename OT>
  2579. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2580. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2581. (void)target;
  2582. (void)ovrd;
  2583. if (!ovrd) { return false; }
  2584. // Currently, we should never end up here so it would be a bug if we do.
  2585. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2586. ovrd ? ovrd->key : "NULL"));
  2587. }
  2588. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2589. if (try_override<T>(target, ovrd)) {
  2590. return true;
  2591. }
  2592. if (k < 0) { return false; }
  2593. target = get_kv(ctx, k);
  2594. return true;
  2595. }
  2596. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2597. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2598. }
  2599. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2600. return set(ctx, key.c_str(), target, ovrd);
  2601. }
  2602. };
  2603. }
  2604. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2605. struct llama_model_loader {
  2606. int n_kv = 0;
  2607. int n_tensors = 0;
  2608. int n_created = 0;
  2609. int64_t n_elements = 0;
  2610. size_t n_bytes = 0;
  2611. bool use_mmap = false;
  2612. llama_files files;
  2613. llama_ftype ftype;
  2614. llama_fver fver;
  2615. llama_mmaps mappings;
  2616. // Holds information on a model weight
  2617. struct llama_tensor_weight {
  2618. uint16_t idx; // source file index
  2619. size_t offs; // tensor data offset in the original file
  2620. ggml_tensor * tensor;
  2621. llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2622. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2623. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2624. }
  2625. };
  2626. std::vector<llama_tensor_weight> weights;
  2627. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2628. struct gguf_context * meta = NULL;
  2629. std::vector<ggml_context *> contexts;
  2630. std::string arch_name;
  2631. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2632. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
  2633. int trace = 0;
  2634. if (getenv("LLAMA_TRACE")) {
  2635. trace = atoi(getenv("LLAMA_TRACE"));
  2636. }
  2637. if (param_overrides_p != nullptr) {
  2638. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2639. kv_overrides.insert({std::string(p->key), *p});
  2640. }
  2641. }
  2642. struct ggml_context * ctx = NULL;
  2643. struct gguf_init_params params = {
  2644. /*.no_alloc = */ true,
  2645. /*.ctx = */ &ctx,
  2646. };
  2647. meta = gguf_init_from_file(fname.c_str(), params);
  2648. if (!meta) {
  2649. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2650. }
  2651. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2652. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2653. // Save tensors data offset of the main file.
  2654. // For subsidiary files, `meta` tensor data offset must not be used,
  2655. // so we build a unified tensors index for weights.
  2656. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2657. weights.emplace_back(0, cur->name, meta, cur);
  2658. }
  2659. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2660. contexts.emplace_back(ctx);
  2661. uint16_t n_split = 0;
  2662. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2663. // Load additional GGML contexts
  2664. if (n_split > 1) {
  2665. uint16_t idx = 0;
  2666. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2667. if (idx != 0) {
  2668. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2669. }
  2670. char split_prefix[PATH_MAX] = {0};
  2671. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2672. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2673. }
  2674. if (trace > 0) {
  2675. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2676. }
  2677. char split_path[PATH_MAX] = {0};
  2678. for (idx = 1; idx < n_split; idx++) {
  2679. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2680. struct gguf_init_params split_params = {
  2681. /*.no_alloc = */ true,
  2682. /*.ctx = */ &ctx,
  2683. };
  2684. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2685. if (!ctx_gguf) {
  2686. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2687. }
  2688. // Save tensors data offset info of the shard.
  2689. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2690. weights.emplace_back(idx, cur->name, ctx_gguf, cur);
  2691. }
  2692. files.emplace_back(new llama_file(split_path, "rb"));
  2693. contexts.emplace_back(ctx);
  2694. gguf_free(ctx_gguf);
  2695. }
  2696. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2697. // sanity check
  2698. {
  2699. const int n_tensors_loaded = (int) weights.size();
  2700. if (n_tensors != n_tensors_loaded) {
  2701. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2702. }
  2703. }
  2704. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2705. }
  2706. n_kv = gguf_get_n_kv(meta);
  2707. n_tensors = weights.size();
  2708. fver = (enum llama_fver) gguf_get_version(meta);
  2709. for (auto & w : weights) {
  2710. n_elements += ggml_nelements(w.tensor);
  2711. n_bytes += ggml_nbytes(w.tensor);
  2712. }
  2713. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2714. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2715. // determine file type based on the number of tensors for each quantization and print meta data
  2716. // TODO: make optional
  2717. {
  2718. std::map<enum ggml_type, uint32_t> n_type;
  2719. uint32_t n_type_max = 0;
  2720. enum ggml_type type_max = GGML_TYPE_F32;
  2721. for (int i = 0; i < n_tensors; i++) {
  2722. const ggml_tensor * tensor = weights.at(i).tensor;
  2723. enum ggml_type type = tensor->type;
  2724. n_type[type]++;
  2725. if (n_type_max < n_type[type]) {
  2726. n_type_max = n_type[type];
  2727. type_max = type;
  2728. }
  2729. if (trace > 0) {
  2730. const uint16_t sid = weights.at(i).idx;
  2731. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2732. }
  2733. }
  2734. switch (type_max) {
  2735. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2736. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2737. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2738. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2739. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2740. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2741. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2742. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2743. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2744. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2745. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2746. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2747. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2748. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2749. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2750. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2751. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2752. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2753. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2754. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2755. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2756. default:
  2757. {
  2758. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2759. ftype = LLAMA_FTYPE_ALL_F32;
  2760. } break;
  2761. }
  2762. // this is a way to mark that we have "guessed" the file type
  2763. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2764. {
  2765. const int kid = gguf_find_key(meta, "general.file_type");
  2766. if (kid >= 0) {
  2767. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2768. }
  2769. }
  2770. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2771. for (int i = 0; i < n_kv; i++) {
  2772. const char * name = gguf_get_key(meta, i);
  2773. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2774. const std::string type_name =
  2775. type == GGUF_TYPE_ARRAY
  2776. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2777. : gguf_type_name(type);
  2778. std::string value = gguf_kv_to_str(meta, i);
  2779. const size_t MAX_VALUE_LEN = 40;
  2780. if (value.size() > MAX_VALUE_LEN) {
  2781. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2782. }
  2783. replace_all(value, "\n", "\\n");
  2784. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2785. }
  2786. // print type counts
  2787. for (auto & kv : n_type) {
  2788. if (kv.second == 0) {
  2789. continue;
  2790. }
  2791. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2792. }
  2793. }
  2794. if (!llama_mmap::SUPPORTED) {
  2795. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2796. use_mmap = false;
  2797. }
  2798. this->use_mmap = use_mmap;
  2799. }
  2800. ~llama_model_loader() {
  2801. if (meta) {
  2802. gguf_free(meta);
  2803. }
  2804. for (auto * ctx : contexts) {
  2805. ggml_free(ctx);
  2806. }
  2807. }
  2808. template<typename T>
  2809. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2810. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2811. const int kid = gguf_find_key(meta, key.c_str());
  2812. if (kid < 0) {
  2813. if (required) {
  2814. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2815. }
  2816. return false;
  2817. }
  2818. struct GGUFMeta::ArrayInfo arr_info =
  2819. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2820. result = arr_info.length;
  2821. return true;
  2822. }
  2823. template<typename T>
  2824. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2825. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2826. return get_arr_n(llm_kv(kid), result, required);
  2827. }
  2828. template<typename T>
  2829. bool get_key(const std::string & key, T & result, const bool required = true) {
  2830. auto it = kv_overrides.find(key);
  2831. const struct llama_model_kv_override * override =
  2832. it != kv_overrides.end() ? &it->second : nullptr;
  2833. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2834. if (required && !found) {
  2835. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2836. }
  2837. return found;
  2838. }
  2839. template<typename T>
  2840. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2841. return get_key(llm_kv(kid), result, required);
  2842. }
  2843. std::string get_arch_name() const {
  2844. return arch_name;
  2845. }
  2846. enum llm_arch get_arch() const {
  2847. return llm_kv.arch;
  2848. }
  2849. const char * get_tensor_name(int i) const {
  2850. return weights.at(i).tensor->name;
  2851. }
  2852. const llama_tensor_weight * get_weight(const char * name) const {
  2853. for (const auto & weight : weights) {
  2854. if (strcmp(name, weight.tensor->name) == 0) {
  2855. return &weight;
  2856. }
  2857. }
  2858. return nullptr;
  2859. }
  2860. const llama_tensor_weight & require_weight(const char * name) const {
  2861. const llama_tensor_weight * weight = get_weight(name);
  2862. if (!weight) {
  2863. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2864. }
  2865. return *weight;
  2866. }
  2867. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2868. const auto * weight = get_weight(name);
  2869. if (!weight) {
  2870. return nullptr;
  2871. }
  2872. return weight->tensor;
  2873. }
  2874. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2875. struct ggml_tensor * tensor = get_tensor_meta(name);
  2876. if (!tensor) {
  2877. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2878. }
  2879. return tensor;
  2880. }
  2881. struct ggml_tensor * get_tensor_meta(int i) const {
  2882. return get_tensor_meta(get_tensor_name(i));
  2883. }
  2884. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2885. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2886. ggml_set_name(tensor, ggml_get_name(cur));
  2887. n_created++;
  2888. return tensor;
  2889. }
  2890. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2891. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2892. if (cur == NULL) {
  2893. if (!required) {
  2894. return NULL;
  2895. }
  2896. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2897. }
  2898. {
  2899. bool is_ok = true;
  2900. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2901. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2902. is_ok = false;
  2903. break;
  2904. }
  2905. }
  2906. if (!is_ok) {
  2907. throw std::runtime_error(
  2908. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2909. __func__, name.c_str(),
  2910. llama_format_tensor_shape(ne).c_str(),
  2911. llama_format_tensor_shape(cur).c_str()));
  2912. }
  2913. }
  2914. return cur;
  2915. }
  2916. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2917. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2918. if (cur == NULL) {
  2919. return NULL;
  2920. }
  2921. return create_tensor_for(ctx, cur);
  2922. }
  2923. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2924. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2925. if (cur == NULL) {
  2926. return NULL;
  2927. }
  2928. if (cur->type != base->type) {
  2929. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2930. }
  2931. std::array<int64_t, GGML_MAX_DIMS> dims;
  2932. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2933. dims[i] = i < ne.size() ? ne[i] : 1;
  2934. }
  2935. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2936. dims[0], dims[1], dims[2], dims[3],
  2937. cur->nb[1], cur->nb[2], cur->nb[3],
  2938. offset);
  2939. ggml_set_name(tensor, name.c_str());
  2940. n_created++;
  2941. return tensor;
  2942. }
  2943. void done_getting_tensors() const {
  2944. if (n_created != n_tensors) {
  2945. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2946. }
  2947. }
  2948. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2949. if (use_mmap) {
  2950. mappings.reserve(files.size());
  2951. mmaps_used.reserve(files.size());
  2952. for (const auto & file : files) {
  2953. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2954. mmaps_used.emplace_back(mapping->size, 0);
  2955. if (mlock_mmaps) {
  2956. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2957. mlock_mmap->init(mapping->addr);
  2958. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2959. }
  2960. mappings.emplace_back(std::move(mapping));
  2961. }
  2962. }
  2963. // compute the total size of all tensors for progress reporting
  2964. for (auto & w : weights) {
  2965. size_data += ggml_nbytes(w.tensor);
  2966. }
  2967. }
  2968. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  2969. GGML_ASSERT(!mappings.empty());
  2970. const auto & mapping = mappings.at(idx);
  2971. *first = mapping->size;
  2972. *last = 0;
  2973. *addr = mapping->addr;
  2974. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2975. try {
  2976. const auto * weight = get_weight(ggml_get_name(tensor));
  2977. if (!weight) {
  2978. continue;
  2979. }
  2980. if (weight->idx != idx) {
  2981. continue;
  2982. }
  2983. *first = std::min(*first, weight->offs);
  2984. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  2985. } catch(...) {
  2986. // the tensor is not in the model
  2987. }
  2988. }
  2989. }
  2990. // for backwards compatibility, does not support ggml-backend
  2991. void load_data_for(struct ggml_tensor * cur) const {
  2992. const auto & w = require_weight(ggml_get_name(cur));
  2993. if (use_mmap) {
  2994. const auto & mapping = mappings.at(w.idx);
  2995. if (cur->data == nullptr) {
  2996. cur->data = (uint8_t *)mapping->addr + w.offs;
  2997. } else {
  2998. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  2999. }
  3000. } else {
  3001. GGML_ASSERT(cur->data != nullptr);
  3002. GGML_ASSERT(w.idx < files.size());
  3003. const auto & file = files.at(w.idx);
  3004. file->seek(w.offs, SEEK_SET);
  3005. file->read_raw(cur->data, ggml_nbytes(cur));
  3006. }
  3007. }
  3008. size_t size_done = 0;
  3009. size_t size_data = 0;
  3010. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3011. // Returns false if cancelled by progress_callback
  3012. bool load_all_data(
  3013. struct ggml_context * ctx,
  3014. llama_buf_map & bufs_mmap,
  3015. llama_mlocks * lmlocks,
  3016. llama_progress_callback progress_callback,
  3017. void * progress_callback_user_data) {
  3018. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3019. std::vector<no_init<uint8_t>> read_buf;
  3020. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3021. const auto * weight = get_weight(ggml_get_name(cur));
  3022. if (weight == nullptr) {
  3023. // this can happen with split experts models
  3024. continue;
  3025. }
  3026. if (progress_callback) {
  3027. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3028. return false;
  3029. }
  3030. }
  3031. size_t n_size = ggml_nbytes(cur);
  3032. if (use_mmap) {
  3033. const auto & mapping = mappings.at(weight->idx);
  3034. ggml_backend_buffer_t buf_mmap = nullptr;
  3035. if (bufs_mmap.count(weight->idx)) {
  3036. buf_mmap = bufs_mmap.at(weight->idx);
  3037. }
  3038. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3039. if (buf_mmap && cur->data == nullptr) {
  3040. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
  3041. if (lmlocks) {
  3042. const auto & lmlock = lmlocks->at(weight->idx);
  3043. lmlock->grow_to(weight->offs + ggml_nbytes(cur));
  3044. }
  3045. auto & mmap_used = mmaps_used[weight->idx];
  3046. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3047. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3048. } else {
  3049. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
  3050. }
  3051. } else {
  3052. GGML_ASSERT(weight->idx < files.size());
  3053. const auto & file = files.at(weight->idx);
  3054. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3055. file->seek(weight->offs, SEEK_SET);
  3056. file->read_raw(cur->data, ggml_nbytes(cur));
  3057. } else {
  3058. read_buf.resize(ggml_nbytes(cur));
  3059. file->seek(weight->offs, SEEK_SET);
  3060. file->read_raw(read_buf.data(), ggml_nbytes(cur));
  3061. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3062. }
  3063. }
  3064. size_done += n_size;
  3065. }
  3066. // check if this is the last call and do final cleanup
  3067. if (size_done >= size_data) {
  3068. // unmap offloaded tensors and metadata
  3069. if (use_mmap) {
  3070. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3071. const auto & mmap_used = mmaps_used.at(idx);
  3072. auto & mapping = mappings.at(idx);
  3073. mapping->unmap_fragment(0, mmap_used.first);
  3074. if (mmap_used.second != 0) {
  3075. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3076. }
  3077. }
  3078. }
  3079. if (progress_callback) {
  3080. // Even though the model is done loading, we still honor
  3081. // cancellation since we need to free allocations.
  3082. return progress_callback(1.0f, progress_callback_user_data);
  3083. }
  3084. }
  3085. return true;
  3086. }
  3087. };
  3088. template<>
  3089. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3090. uint32_t tmp;
  3091. const bool found = get_key(kid, tmp, required);
  3092. if (found) {
  3093. result = (enum llama_pooling_type) tmp;
  3094. } else {
  3095. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3096. }
  3097. return found;
  3098. }
  3099. //
  3100. // load LLaMA models
  3101. //
  3102. static const char * llama_model_arch_name(llm_arch arch) {
  3103. auto it = LLM_ARCH_NAMES.find(arch);
  3104. if (it == LLM_ARCH_NAMES.end()) {
  3105. return "unknown";
  3106. }
  3107. return it->second;
  3108. }
  3109. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3110. if (ftype & LLAMA_FTYPE_GUESSED) {
  3111. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3112. }
  3113. switch (ftype) {
  3114. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3115. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3116. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3117. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3118. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3119. return "Q4_1, some F16";
  3120. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3121. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3122. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3123. // K-quants
  3124. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3125. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3126. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3127. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3128. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3129. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3130. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3131. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3132. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3133. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3134. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3135. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3136. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3137. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3138. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3139. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3140. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3141. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3142. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3143. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3144. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3145. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3146. default: return "unknown, may not work";
  3147. }
  3148. }
  3149. static const char * llama_model_type_name(e_model type) {
  3150. switch (type) {
  3151. case MODEL_22M: return "22M";
  3152. case MODEL_33M: return "33M";
  3153. case MODEL_109M: return "109M";
  3154. case MODEL_137M: return "137M";
  3155. case MODEL_0_5B: return "0.5B";
  3156. case MODEL_1B: return "1B";
  3157. case MODEL_2B: return "2B";
  3158. case MODEL_3B: return "3B";
  3159. case MODEL_7B: return "7B";
  3160. case MODEL_8B: return "8B";
  3161. case MODEL_12B: return "12B";
  3162. case MODEL_13B: return "13B";
  3163. case MODEL_14B: return "14B";
  3164. case MODEL_15B: return "15B";
  3165. case MODEL_20B: return "20B";
  3166. case MODEL_30B: return "30B";
  3167. case MODEL_34B: return "34B";
  3168. case MODEL_35B: return "35B";
  3169. case MODEL_40B: return "40B";
  3170. case MODEL_65B: return "65B";
  3171. case MODEL_70B: return "70B";
  3172. case MODEL_314B: return "314B";
  3173. case MODEL_SMALL: return "0.1B";
  3174. case MODEL_MEDIUM: return "0.4B";
  3175. case MODEL_LARGE: return "0.8B";
  3176. case MODEL_XL: return "1.5B";
  3177. case MODEL_A2_7B: return "A2.7B";
  3178. case MODEL_8x7B: return "8x7B";
  3179. case MODEL_8x22B: return "8x22B";
  3180. case MODEL_16x12B: return "16x12B";
  3181. default: return "?B";
  3182. }
  3183. }
  3184. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3185. switch (type) {
  3186. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3187. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3188. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3189. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3190. default: return "unknown";
  3191. }
  3192. }
  3193. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3194. model.arch = ml.get_arch();
  3195. if (model.arch == LLM_ARCH_UNKNOWN) {
  3196. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3197. }
  3198. }
  3199. static void llm_load_hparams(
  3200. llama_model_loader & ml,
  3201. llama_model & model) {
  3202. auto & hparams = model.hparams;
  3203. const gguf_context * ctx = ml.meta;
  3204. // get metadata as string
  3205. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3206. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3207. if (type == GGUF_TYPE_ARRAY) {
  3208. continue;
  3209. }
  3210. const char * name = gguf_get_key(ctx, i);
  3211. const std::string value = gguf_kv_to_str(ctx, i);
  3212. model.gguf_kv.emplace(name, value);
  3213. }
  3214. // get general kv
  3215. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3216. // get hparams kv
  3217. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3218. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3219. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3220. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3221. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3222. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3223. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3224. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3225. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3226. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3227. if (hparams.n_expert > 0) {
  3228. GGML_ASSERT(hparams.n_expert_used > 0);
  3229. } else {
  3230. GGML_ASSERT(hparams.n_expert_used == 0);
  3231. }
  3232. // n_head_kv is optional, default to n_head
  3233. hparams.n_head_kv = hparams.n_head;
  3234. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3235. bool rope_finetuned = false;
  3236. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3237. hparams.rope_finetuned = rope_finetuned;
  3238. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3239. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3240. // rope_freq_base (optional)
  3241. hparams.rope_freq_base_train = 10000.0f;
  3242. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3243. std::string rope_scaling("linear");
  3244. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3245. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3246. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3247. // rope_freq_scale (inverse of the kv) is optional
  3248. float ropescale = 0.0f;
  3249. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3250. // try the old key name
  3251. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3252. }
  3253. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3254. // sanity check for n_rot (optional)
  3255. {
  3256. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3257. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3258. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3259. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3260. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3261. }
  3262. }
  3263. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3264. // gpt-j n_rot = rotary_dim
  3265. }
  3266. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3267. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3268. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3269. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3270. // arch-specific KVs
  3271. switch (model.arch) {
  3272. case LLM_ARCH_LLAMA:
  3273. {
  3274. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3275. if (hparams.n_expert == 8) {
  3276. switch (hparams.n_layer) {
  3277. case 32: model.type = e_model::MODEL_8x7B; break;
  3278. case 56: model.type = e_model::MODEL_8x22B; break;
  3279. default: model.type = e_model::MODEL_UNKNOWN;
  3280. }
  3281. } else {
  3282. switch (hparams.n_layer) {
  3283. case 22: model.type = e_model::MODEL_1B; break;
  3284. case 26: model.type = e_model::MODEL_3B; break;
  3285. case 32: model.type = e_model::MODEL_7B; break;
  3286. case 40: model.type = e_model::MODEL_13B; break;
  3287. case 48: model.type = e_model::MODEL_34B; break;
  3288. case 60: model.type = e_model::MODEL_30B; break;
  3289. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3290. default: model.type = e_model::MODEL_UNKNOWN;
  3291. }
  3292. }
  3293. } break;
  3294. case LLM_ARCH_MINICPM:
  3295. {
  3296. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3297. switch (hparams.n_layer) {
  3298. case 40: model.type = e_model::MODEL_2B; break;
  3299. default: model.type = e_model::MODEL_UNKNOWN;
  3300. }
  3301. } break;
  3302. case LLM_ARCH_GROK:
  3303. {
  3304. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3305. switch (hparams.n_layer) {
  3306. case 64: model.type = e_model::MODEL_314B; break;
  3307. default: model.type = e_model::MODEL_UNKNOWN;
  3308. }
  3309. } break;
  3310. case LLM_ARCH_FALCON:
  3311. {
  3312. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3313. switch (hparams.n_layer) {
  3314. case 32: model.type = e_model::MODEL_7B; break;
  3315. case 60: model.type = e_model::MODEL_40B; break;
  3316. default: model.type = e_model::MODEL_UNKNOWN;
  3317. }
  3318. } break;
  3319. case LLM_ARCH_BAICHUAN:
  3320. {
  3321. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3322. switch (hparams.n_layer) {
  3323. case 32: model.type = e_model::MODEL_7B; break;
  3324. case 40: model.type = e_model::MODEL_13B; break;
  3325. default: model.type = e_model::MODEL_UNKNOWN;
  3326. }
  3327. if (model.type == e_model::MODEL_13B) {
  3328. // TODO: become GGUF KV parameter
  3329. hparams.f_max_alibi_bias = 8.0f;
  3330. }
  3331. } break;
  3332. case LLM_ARCH_STARCODER:
  3333. {
  3334. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3335. switch (hparams.n_layer) {
  3336. case 24: model.type = e_model::MODEL_1B; break;
  3337. case 36: model.type = e_model::MODEL_3B; break;
  3338. case 42: model.type = e_model::MODEL_7B; break;
  3339. case 40: model.type = e_model::MODEL_15B; break;
  3340. default: model.type = e_model::MODEL_UNKNOWN;
  3341. }
  3342. } break;
  3343. case LLM_ARCH_PERSIMMON:
  3344. {
  3345. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3346. switch (hparams.n_layer) {
  3347. case 36: model.type = e_model::MODEL_8B; break;
  3348. default: model.type = e_model::MODEL_UNKNOWN;
  3349. }
  3350. } break;
  3351. case LLM_ARCH_REFACT:
  3352. {
  3353. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3354. switch (hparams.n_layer) {
  3355. case 32: model.type = e_model::MODEL_1B; break;
  3356. default: model.type = e_model::MODEL_UNKNOWN;
  3357. }
  3358. // TODO: become GGUF KV parameter
  3359. hparams.f_max_alibi_bias = 8.0f;
  3360. } break;
  3361. case LLM_ARCH_BERT:
  3362. {
  3363. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3364. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3365. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3366. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3367. switch (hparams.n_layer) {
  3368. case 3:
  3369. model.type = e_model::MODEL_17M; break; // bge-micro
  3370. case 6:
  3371. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3372. case 12:
  3373. switch (hparams.n_embd) {
  3374. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3375. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3376. } break;
  3377. case 24:
  3378. model.type = e_model::MODEL_335M; break; // bge-large
  3379. }
  3380. } break;
  3381. case LLM_ARCH_NOMIC_BERT:
  3382. {
  3383. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3384. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3385. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3386. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3387. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3388. model.type = e_model::MODEL_137M;
  3389. }
  3390. } break;
  3391. case LLM_ARCH_BLOOM:
  3392. {
  3393. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3394. switch (hparams.n_layer) {
  3395. case 24: model.type = e_model::MODEL_1B; break;
  3396. case 30:
  3397. switch (hparams.n_embd) {
  3398. case 2560: model.type = e_model::MODEL_3B; break;
  3399. case 4096: model.type = e_model::MODEL_7B; break;
  3400. } break;
  3401. }
  3402. // TODO: become GGUF KV parameter
  3403. hparams.f_max_alibi_bias = 8.0f;
  3404. } break;
  3405. case LLM_ARCH_MPT:
  3406. {
  3407. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3408. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3409. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3410. switch (hparams.n_layer) {
  3411. case 32: model.type = e_model::MODEL_7B; break;
  3412. case 48: model.type = e_model::MODEL_30B; break;
  3413. default: model.type = e_model::MODEL_UNKNOWN;
  3414. }
  3415. } break;
  3416. case LLM_ARCH_STABLELM:
  3417. {
  3418. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3419. switch (hparams.n_layer) {
  3420. case 24: model.type = e_model::MODEL_1B; break;
  3421. case 32: model.type = e_model::MODEL_3B; break;
  3422. case 40: model.type = e_model::MODEL_12B; break;
  3423. default: model.type = e_model::MODEL_UNKNOWN;
  3424. }
  3425. } break;
  3426. case LLM_ARCH_QWEN:
  3427. {
  3428. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3429. switch (hparams.n_layer) {
  3430. case 32: model.type = e_model::MODEL_7B; break;
  3431. case 40: model.type = e_model::MODEL_13B; break;
  3432. default: model.type = e_model::MODEL_UNKNOWN;
  3433. }
  3434. } break;
  3435. case LLM_ARCH_QWEN2:
  3436. {
  3437. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3438. switch (hparams.n_layer) {
  3439. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3440. case 32: model.type = e_model::MODEL_7B; break;
  3441. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3442. case 80: model.type = e_model::MODEL_70B; break;
  3443. default: model.type = e_model::MODEL_UNKNOWN;
  3444. }
  3445. } break;
  3446. case LLM_ARCH_QWEN2MOE:
  3447. {
  3448. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3449. switch (hparams.n_layer) {
  3450. case 24: model.type = e_model::MODEL_A2_7B; break;
  3451. default: model.type = e_model::MODEL_UNKNOWN;
  3452. }
  3453. } break;
  3454. case LLM_ARCH_PHI2:
  3455. {
  3456. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3457. switch (hparams.n_layer) {
  3458. case 24: model.type = e_model::MODEL_1B; break;
  3459. case 32: model.type = e_model::MODEL_3B; break;
  3460. default: model.type = e_model::MODEL_UNKNOWN;
  3461. }
  3462. } break;
  3463. case LLM_ARCH_PLAMO:
  3464. {
  3465. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3466. switch (hparams.n_layer) {
  3467. case 40: model.type = e_model::MODEL_13B; break;
  3468. default: model.type = e_model::MODEL_UNKNOWN;
  3469. }
  3470. } break;
  3471. case LLM_ARCH_GPT2:
  3472. {
  3473. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3474. switch (hparams.n_layer) {
  3475. case 12: model.type = e_model::MODEL_SMALL; break;
  3476. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3477. case 36: model.type = e_model::MODEL_LARGE; break;
  3478. case 48: model.type = e_model::MODEL_XL; break;
  3479. default: model.type = e_model::MODEL_UNKNOWN;
  3480. }
  3481. } break;
  3482. case LLM_ARCH_CODESHELL:
  3483. {
  3484. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3485. switch (hparams.n_layer) {
  3486. case 42: model.type = e_model::MODEL_SMALL; break;
  3487. default: model.type = e_model::MODEL_UNKNOWN;
  3488. }
  3489. } break;
  3490. case LLM_ARCH_ORION:
  3491. {
  3492. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3493. switch (hparams.n_layer) {
  3494. case 40: model.type = e_model::MODEL_14B; break;
  3495. default: model.type = e_model::MODEL_UNKNOWN;
  3496. }
  3497. } break;
  3498. case LLM_ARCH_INTERNLM2:
  3499. {
  3500. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3501. switch (hparams.n_layer) {
  3502. case 32: model.type = e_model::MODEL_7B; break;
  3503. case 48: model.type = e_model::MODEL_20B; break;
  3504. default: model.type = e_model::MODEL_UNKNOWN;
  3505. }
  3506. } break;
  3507. case LLM_ARCH_GEMMA:
  3508. {
  3509. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3510. switch (hparams.n_layer) {
  3511. case 18: model.type = e_model::MODEL_2B; break;
  3512. case 28: model.type = e_model::MODEL_7B; break;
  3513. default: model.type = e_model::MODEL_UNKNOWN;
  3514. }
  3515. } break;
  3516. case LLM_ARCH_STARCODER2:
  3517. {
  3518. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3519. switch (hparams.n_layer) {
  3520. case 30: model.type = e_model::MODEL_3B; break;
  3521. case 32: model.type = e_model::MODEL_7B; break;
  3522. case 40: model.type = e_model::MODEL_15B; break;
  3523. default: model.type = e_model::MODEL_UNKNOWN;
  3524. }
  3525. } break;
  3526. case LLM_ARCH_MAMBA:
  3527. {
  3528. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3529. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3530. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3531. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3532. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3533. switch (hparams.n_layer) {
  3534. case 24:
  3535. switch (hparams.n_embd) {
  3536. case 768: model.type = e_model::MODEL_SMALL; break;
  3537. default: model.type = e_model::MODEL_UNKNOWN;
  3538. } break;
  3539. case 48:
  3540. switch (hparams.n_embd) {
  3541. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3542. case 1536: model.type = e_model::MODEL_LARGE; break;
  3543. case 2048: model.type = e_model::MODEL_XL; break;
  3544. default: model.type = e_model::MODEL_UNKNOWN;
  3545. } break;
  3546. case 64:
  3547. switch (hparams.n_embd) {
  3548. case 2560: model.type = e_model::MODEL_3B; break;
  3549. default: model.type = e_model::MODEL_UNKNOWN;
  3550. } break;
  3551. default: model.type = e_model::MODEL_UNKNOWN;
  3552. }
  3553. } break;
  3554. case LLM_ARCH_XVERSE:
  3555. {
  3556. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3557. switch (hparams.n_layer) {
  3558. case 32: model.type = e_model::MODEL_7B; break;
  3559. case 40: model.type = e_model::MODEL_13B; break;
  3560. case 80: model.type = e_model::MODEL_65B; break;
  3561. default: model.type = e_model::MODEL_UNKNOWN;
  3562. }
  3563. } break;
  3564. case LLM_ARCH_COMMAND_R:
  3565. {
  3566. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3567. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3568. switch (hparams.n_layer) {
  3569. case 40: model.type = e_model::MODEL_35B; break;
  3570. default: model.type = e_model::MODEL_UNKNOWN;
  3571. }
  3572. } break;
  3573. case LLM_ARCH_DBRX:
  3574. {
  3575. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3576. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3577. switch (hparams.n_layer) {
  3578. case 40: model.type = e_model::MODEL_16x12B; break;
  3579. default: model.type = e_model::MODEL_UNKNOWN;
  3580. }
  3581. } break;
  3582. case LLM_ARCH_OLMO:
  3583. {
  3584. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3585. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3586. switch (hparams.n_layer) {
  3587. case 22: model.type = e_model::MODEL_1B; break;
  3588. case 32: model.type = e_model::MODEL_7B; break;
  3589. case 80: model.type = e_model::MODEL_70B; break;
  3590. default: model.type = e_model::MODEL_UNKNOWN;
  3591. }
  3592. } break;
  3593. default: (void)0;
  3594. }
  3595. model.ftype = ml.ftype;
  3596. if (hparams.f_max_alibi_bias > 0.0f) {
  3597. hparams.need_kq_pos = true;
  3598. }
  3599. hparams.rope_type = llama_rope_type(&model);
  3600. }
  3601. // TODO: This should probably be in llama.h
  3602. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3603. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3604. );
  3605. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3606. static void llm_load_vocab(
  3607. llama_model_loader & ml,
  3608. llama_model & model) {
  3609. auto & vocab = model.vocab;
  3610. struct gguf_context * ctx = ml.meta;
  3611. const auto kv = LLM_KV(model.arch);
  3612. // determine vocab type
  3613. {
  3614. std::string tokenizer_name;
  3615. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3616. if (tokenizer_name == "no_vocab") {
  3617. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3618. // default special tokens
  3619. vocab.special_bos_id = -1;
  3620. vocab.special_eos_id = -1;
  3621. vocab.special_unk_id = -1;
  3622. vocab.special_sep_id = -1;
  3623. vocab.special_pad_id = -1;
  3624. vocab.special_cls_id = -1;
  3625. vocab.special_mask_id = -1;
  3626. vocab.linefeed_id = -1;
  3627. return;
  3628. } else if (tokenizer_name == "llama") {
  3629. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3630. // default special tokens
  3631. vocab.special_bos_id = 1;
  3632. vocab.special_eos_id = 2;
  3633. vocab.special_unk_id = 0;
  3634. vocab.special_sep_id = -1;
  3635. vocab.special_pad_id = -1;
  3636. vocab.special_cls_id = -1;
  3637. vocab.special_mask_id = -1;
  3638. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3639. // prior to support of FIM special tokens in GGUF, the following
  3640. // will allow those models to continue to work. The general names
  3641. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3642. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3643. // new versions of these models have been published.
  3644. std::string gen_name;
  3645. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3646. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3647. [](unsigned char c){ return std::tolower(c); });
  3648. if (gen_name.find("code") != std::string::npos) {
  3649. if (model.arch == LLM_ARCH_LLAMA) {
  3650. vocab.special_prefix_id = 32007;
  3651. vocab.special_suffix_id = 32008;
  3652. vocab.special_middle_id = 32009;
  3653. vocab.special_eot_id = 32010;
  3654. } else if (model.arch == LLM_ARCH_GEMMA) {
  3655. vocab.special_prefix_id = 67;
  3656. vocab.special_suffix_id = 69;
  3657. vocab.special_middle_id = 68;
  3658. vocab.special_eot_id = 70;
  3659. }
  3660. }
  3661. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3662. if (add_space_prefix_keyidx != -1) {
  3663. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3664. } // The default value of add_space_prefix is true.
  3665. } else if (tokenizer_name == "gpt2") {
  3666. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3667. // read bpe merges and populate bpe ranks
  3668. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3669. if (merges_keyidx == -1) {
  3670. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3671. }
  3672. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3673. for (int i = 0; i < n_merges; i++) {
  3674. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3675. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3676. std::string first;
  3677. std::string second;
  3678. const size_t pos = word.find(' ', 1);
  3679. if (pos != std::string::npos) {
  3680. first = word.substr(0, pos);
  3681. second = word.substr(pos + 1);
  3682. }
  3683. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3684. }
  3685. // default special tokens
  3686. vocab.special_bos_id = 11;
  3687. vocab.special_eos_id = 11;
  3688. vocab.special_unk_id = -1;
  3689. vocab.special_sep_id = -1;
  3690. vocab.special_pad_id = -1;
  3691. vocab.special_cls_id = -1;
  3692. vocab.special_mask_id = -1;
  3693. } else if (tokenizer_name == "bert") {
  3694. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3695. // default special tokens
  3696. vocab.special_bos_id = -1;
  3697. vocab.special_eos_id = -1;
  3698. vocab.special_unk_id = 100;
  3699. vocab.special_sep_id = 102;
  3700. vocab.special_pad_id = 0;
  3701. vocab.special_cls_id = 101;
  3702. vocab.special_mask_id = 103;
  3703. vocab.add_space_prefix = false;
  3704. } else {
  3705. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3706. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3707. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3708. }
  3709. }
  3710. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3711. if (token_idx == -1) {
  3712. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3713. }
  3714. const float * scores = nullptr;
  3715. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3716. if (score_idx != -1) {
  3717. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3718. }
  3719. const int * toktypes = nullptr;
  3720. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3721. if (toktype_idx != -1) {
  3722. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3723. }
  3724. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3725. vocab.id_to_token.resize(n_vocab);
  3726. for (uint32_t i = 0; i < n_vocab; i++) {
  3727. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3728. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3729. vocab.token_to_id[word] = i;
  3730. auto & token_data = vocab.id_to_token[i];
  3731. token_data.text = std::move(word);
  3732. token_data.score = scores ? scores[i] : 0.0f;
  3733. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3734. }
  3735. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3736. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3737. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3738. try {
  3739. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3740. } catch (const std::exception & e) {
  3741. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3742. vocab.linefeed_id = vocab.special_pad_id;
  3743. }
  3744. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3745. vocab.linefeed_id = vocab.special_pad_id;
  3746. } else {
  3747. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3748. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3749. vocab.linefeed_id = ids[0];
  3750. }
  3751. // special tokens
  3752. {
  3753. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3754. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3755. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3756. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3757. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3758. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3759. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3760. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3761. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3762. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3763. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3764. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3765. };
  3766. for (const auto & it : special_token_types) {
  3767. const std::string & key = kv(std::get<0>(it));
  3768. int32_t & id = std::get<1>(it);
  3769. uint32_t new_id;
  3770. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3771. continue;
  3772. }
  3773. if (new_id >= vocab.id_to_token.size()) {
  3774. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3775. __func__, key.c_str(), new_id, id);
  3776. } else {
  3777. id = new_id;
  3778. }
  3779. }
  3780. // Handle add_bos_token and add_eos_token
  3781. {
  3782. bool temp = true;
  3783. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3784. vocab.special_add_bos = int(temp);
  3785. }
  3786. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3787. vocab.special_add_eos = int(temp);
  3788. }
  3789. }
  3790. }
  3791. // build special tokens cache
  3792. {
  3793. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3794. // and will always be correctly labeled in 'added_tokens.json' etc.
  3795. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3796. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3797. // are special tokens.
  3798. // From testing, this appears to correlate 1:1 with special tokens.
  3799. //
  3800. // Counting special tokens and verifying in only one direction
  3801. // is sufficient to detect difference in those two sets.
  3802. //
  3803. uint32_t special_tokens_count_by_type = 0;
  3804. uint32_t special_tokens_count_from_verification = 0;
  3805. bool special_tokens_definition_mismatch = false;
  3806. for (const auto & t : vocab.token_to_id) {
  3807. const auto & token = t.first;
  3808. const auto & id = t.second;
  3809. // Count all non-normal tokens in the vocab while iterating
  3810. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3811. special_tokens_count_by_type++;
  3812. }
  3813. // Skip single character tokens
  3814. if (token.length() > 1) {
  3815. bool is_tokenizable = false;
  3816. // Split token string representation in two, in all possible ways
  3817. // and check if both halves can be matched to a valid token
  3818. for (unsigned i = 1; i < token.length();) {
  3819. const auto left = token.substr(0, i);
  3820. const auto right = token.substr(i);
  3821. // check if we didnt partition in the middle of a utf sequence
  3822. auto utf = utf8_len(left.at(left.length() - 1));
  3823. if (utf == 1) {
  3824. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3825. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3826. is_tokenizable = true;
  3827. break;
  3828. }
  3829. i++;
  3830. } else {
  3831. // skip over the rest of multibyte utf sequence
  3832. i += utf - 1;
  3833. }
  3834. }
  3835. if (!is_tokenizable) {
  3836. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3837. // it's faster to re-filter them here, since there are way less candidates now
  3838. // Calculate a total "utf" length of a token string representation
  3839. size_t utf8_str_len = 0;
  3840. for (unsigned i = 0; i < token.length();) {
  3841. utf8_str_len++;
  3842. i += utf8_len(token.at(i));
  3843. }
  3844. // And skip the ones which are one character
  3845. if (utf8_str_len > 1) {
  3846. // At this point what we have left are special tokens only
  3847. vocab.special_tokens_cache[token] = id;
  3848. // Count manually found special tokens
  3849. special_tokens_count_from_verification++;
  3850. // If this manually found special token is not marked as such, flag a mismatch
  3851. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3852. special_tokens_definition_mismatch = true;
  3853. }
  3854. }
  3855. }
  3856. }
  3857. }
  3858. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3859. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3860. __func__,
  3861. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3862. special_tokens_count_by_type, vocab.id_to_token.size()
  3863. );
  3864. } else {
  3865. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3866. __func__,
  3867. special_tokens_count_from_verification, vocab.id_to_token.size()
  3868. );
  3869. }
  3870. }
  3871. }
  3872. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3873. const auto & hparams = model.hparams;
  3874. const auto & vocab = model.vocab;
  3875. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3876. // hparams
  3877. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3878. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3879. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3880. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3881. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3882. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3883. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3884. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3885. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3886. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3887. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3888. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3889. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3890. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3891. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3892. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3893. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3894. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3895. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3896. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3897. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3898. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3899. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3900. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3901. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3902. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3903. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3904. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3905. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3906. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3907. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3908. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3909. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3910. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3911. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3912. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3913. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3914. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3915. if (ml.n_elements >= 1e12) {
  3916. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3917. } else if (ml.n_elements >= 1e9) {
  3918. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3919. } else if (ml.n_elements >= 1e6) {
  3920. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3921. } else {
  3922. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3923. }
  3924. if (ml.n_bytes < GiB) {
  3925. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3926. } else {
  3927. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3928. }
  3929. // general kv
  3930. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3931. // special tokens
  3932. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3933. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3934. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3935. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3936. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3937. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  3938. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  3939. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3940. }
  3941. // Returns false if cancelled by progress_callback
  3942. static bool llm_load_tensors(
  3943. llama_model_loader & ml,
  3944. llama_model & model,
  3945. int n_gpu_layers,
  3946. enum llama_split_mode split_mode,
  3947. int main_gpu,
  3948. const float * tensor_split,
  3949. bool use_mlock,
  3950. llama_progress_callback progress_callback,
  3951. void * progress_callback_user_data) {
  3952. model.t_start_us = ggml_time_us();
  3953. auto & hparams = model.hparams;
  3954. #ifdef GGML_USE_SYCL
  3955. // disable MoE with SYCL until mul_mat_id is updated
  3956. if (hparams.n_expert > 0) {
  3957. n_gpu_layers = 0;
  3958. }
  3959. #endif
  3960. model.split_mode = split_mode;
  3961. model.main_gpu = main_gpu;
  3962. model.n_gpu_layers = n_gpu_layers;
  3963. const int64_t n_layer = hparams.n_layer;
  3964. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  3965. bool use_mmap_buffer = true;
  3966. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  3967. model.buft_input = llama_default_buffer_type_cpu(true);
  3968. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  3969. model.buft_layer.resize(n_layer);
  3970. // assign cpu layers
  3971. for (int64_t i = 0; i < i_gpu_start; ++i) {
  3972. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  3973. }
  3974. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  3975. // calculate the split points
  3976. int device_count = llama_get_device_count();
  3977. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  3978. std::vector<float> splits(device_count);
  3979. if (all_zero) {
  3980. // default split, by free memory
  3981. for (int i = 0; i < device_count; ++i) {
  3982. splits[i] = llama_get_device_memory(i);
  3983. }
  3984. } else {
  3985. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  3986. }
  3987. // sum and normalize the splits to get the split points
  3988. float split_sum = 0.0f;
  3989. for (int i = 0; i < device_count; ++i) {
  3990. split_sum += splits[i];
  3991. splits[i] = split_sum;
  3992. }
  3993. for (int i = 0; i < device_count; ++i) {
  3994. splits[i] /= split_sum;
  3995. }
  3996. // assign the repeating layers to the devices according to the splits
  3997. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  3998. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3999. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4000. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  4001. }
  4002. // assign the output layer
  4003. if (n_gpu_layers > n_layer) {
  4004. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4005. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  4006. } else {
  4007. model.buft_output = llama_default_buffer_type_cpu(true);
  4008. }
  4009. } else {
  4010. ggml_backend_buffer_type_t split_buft;
  4011. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4012. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  4013. } else {
  4014. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4015. split_buft = llama_default_buffer_type_offload(main_gpu);
  4016. }
  4017. // assign the repeating layers
  4018. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4019. model.buft_layer[i] = {
  4020. split_buft,
  4021. llama_default_buffer_type_offload(main_gpu)
  4022. };
  4023. }
  4024. // assign the output layer
  4025. if (n_gpu_layers > n_layer) {
  4026. model.buft_output = {
  4027. split_buft,
  4028. llama_default_buffer_type_offload(main_gpu)
  4029. };
  4030. } else {
  4031. model.buft_output = llama_default_buffer_type_cpu(true);
  4032. }
  4033. }
  4034. // count used buffer types
  4035. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4036. buft_layer_count[model.buft_input.buft]++;
  4037. buft_layer_count[model.buft_input.buft_matrix]++;
  4038. buft_layer_count[model.buft_output.buft]++;
  4039. buft_layer_count[model.buft_output.buft_matrix]++;
  4040. for (int64_t i = 0; i < n_layer; ++i) {
  4041. buft_layer_count[model.buft_layer[i].buft]++;
  4042. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4043. }
  4044. // create one context per buffer type
  4045. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4046. // for moe merged tensors
  4047. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4048. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4049. for (auto & it : buft_layer_count) {
  4050. struct ggml_init_params params = {
  4051. /*.mem_size =*/ ctx_size,
  4052. /*.mem_buffer =*/ NULL,
  4053. /*.no_alloc =*/ true,
  4054. };
  4055. ggml_context * ctx = ggml_init(params);
  4056. if (!ctx) {
  4057. throw std::runtime_error(format("failed to create context"));
  4058. }
  4059. ctx_map[it.first] = ctx;
  4060. model.ctxs.push_back(ctx);
  4061. }
  4062. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4063. // create tensors for the weights
  4064. {
  4065. const int64_t n_embd = hparams.n_embd;
  4066. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4067. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4068. const int64_t n_embd_gqa = n_embd_v_gqa;
  4069. const int64_t n_vocab = hparams.n_vocab;
  4070. const int64_t n_vocab_type = hparams.n_vocab_type;
  4071. const int64_t n_ff = hparams.n_ff;
  4072. const int64_t n_expert = hparams.n_expert;
  4073. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4074. throw std::runtime_error("model has expert layers but no expert layers are used");
  4075. }
  4076. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4077. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4078. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4079. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4080. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4081. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4082. model.layers.resize(n_layer);
  4083. const auto tn = LLM_TN(model.arch);
  4084. switch (model.arch) {
  4085. case LLM_ARCH_LLAMA:
  4086. case LLM_ARCH_REFACT:
  4087. case LLM_ARCH_MINICPM:
  4088. {
  4089. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4090. // output
  4091. {
  4092. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4093. if (model.arch != LLM_ARCH_MINICPM){
  4094. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4095. // if output is NULL, init from the input tok embed
  4096. if (model.output == NULL) {
  4097. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4098. ml.n_created--; // artificial tensor
  4099. ml.size_data += ggml_nbytes(model.output);
  4100. }
  4101. }
  4102. }
  4103. for (int i = 0; i < n_layer; ++i) {
  4104. ggml_context * ctx_layer = ctx_for_layer(i);
  4105. ggml_context * ctx_split = ctx_for_layer_split(i);
  4106. auto & layer = model.layers[i];
  4107. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4108. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4109. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4110. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4111. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4112. // optional bias tensors
  4113. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4114. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4115. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4116. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4117. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4118. if (n_expert == 0) {
  4119. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4120. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4121. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4122. } else {
  4123. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4124. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4125. if (layer.ffn_gate_exps) {
  4126. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4127. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4128. } else {
  4129. // merge split expert into a single tensor for compatibility with older models
  4130. // requires disabling mmap
  4131. use_mmap_buffer = false;
  4132. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4133. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4134. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4135. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4136. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4137. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4138. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4139. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4140. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4141. for (uint32_t x = 0; x < n_expert; ++x) {
  4142. // the individual experts are loaded into a view of the merged tensor
  4143. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4144. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4145. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4146. }
  4147. }
  4148. }
  4149. }
  4150. } break;
  4151. case LLM_ARCH_GROK:
  4152. {
  4153. if (n_expert == 0) {
  4154. throw std::runtime_error("Grok model cannot have zero experts");
  4155. }
  4156. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4157. // output
  4158. {
  4159. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4160. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4161. // if output is NULL, init from the input tok embed
  4162. if (model.output == NULL) {
  4163. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4164. ml.n_created--; // artificial tensor
  4165. ml.size_data += ggml_nbytes(model.output);
  4166. }
  4167. }
  4168. for (int i = 0; i < n_layer; ++i) {
  4169. ggml_context * ctx_layer = ctx_for_layer(i);
  4170. ggml_context * ctx_split = ctx_for_layer_split(i);
  4171. auto & layer = model.layers[i];
  4172. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4173. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4174. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4175. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4176. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4177. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4178. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4179. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4180. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4181. if (layer.ffn_gate_exps) {
  4182. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4183. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4184. } else {
  4185. // merge split expert into a single tensor for compatibility with older models
  4186. // requires disabling mmap
  4187. use_mmap_buffer = false;
  4188. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4189. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4190. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4191. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4192. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4193. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4194. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4195. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4196. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4197. for (uint32_t x = 0; x < n_expert; ++x) {
  4198. // the individual experts are loaded into a view of the merged tensor
  4199. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4200. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4201. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4202. }
  4203. }
  4204. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4205. }
  4206. } break;
  4207. case LLM_ARCH_DBRX:
  4208. {
  4209. if (n_expert == 0) {
  4210. throw std::runtime_error("DBRX model cannot have zero experts");
  4211. }
  4212. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4213. // output
  4214. {
  4215. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4216. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4217. }
  4218. for (int i = 0; i < n_layer; ++i) {
  4219. ggml_context * ctx_layer = ctx_for_layer(i);
  4220. ggml_context * ctx_split = ctx_for_layer_split(i);
  4221. auto & layer = model.layers[i];
  4222. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4223. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4224. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4225. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4226. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4227. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4228. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4229. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4230. }
  4231. } break;
  4232. case LLM_ARCH_BAICHUAN:
  4233. {
  4234. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4235. {
  4236. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4237. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4238. }
  4239. for (int i = 0; i < n_layer; ++i) {
  4240. ggml_context * ctx_layer = ctx_for_layer(i);
  4241. ggml_context * ctx_split = ctx_for_layer_split(i);
  4242. auto & layer = model.layers[i];
  4243. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4244. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4245. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4246. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4247. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4248. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4249. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4250. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4251. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4252. }
  4253. } break;
  4254. case LLM_ARCH_FALCON:
  4255. {
  4256. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4257. // output
  4258. {
  4259. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4260. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4261. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4262. if (!model.output) {
  4263. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4264. ml.n_created--; // artificial tensor
  4265. ml.size_data += ggml_nbytes(model.output);
  4266. }
  4267. }
  4268. for (int i = 0; i < n_layer; ++i) {
  4269. ggml_context * ctx_layer = ctx_for_layer(i);
  4270. ggml_context * ctx_split = ctx_for_layer_split(i);
  4271. auto & layer = model.layers[i];
  4272. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4273. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4274. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4275. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4276. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4277. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4278. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4279. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4280. }
  4281. } break;
  4282. case LLM_ARCH_STARCODER:
  4283. {
  4284. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4285. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4286. // output
  4287. {
  4288. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4289. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4290. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4291. }
  4292. for (int i = 0; i < n_layer; ++i) {
  4293. ggml_context * ctx_layer = ctx_for_layer(i);
  4294. ggml_context * ctx_split = ctx_for_layer_split(i);
  4295. auto & layer = model.layers[i];
  4296. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4297. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4298. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4299. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4300. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4301. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4302. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4303. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4304. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4305. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4306. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4307. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4308. }
  4309. } break;
  4310. case LLM_ARCH_PERSIMMON:
  4311. {
  4312. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4313. {
  4314. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4315. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4316. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4317. }
  4318. for (int i = 0; i < n_layer; ++i) {
  4319. ggml_context * ctx_layer = ctx_for_layer(i);
  4320. ggml_context * ctx_split = ctx_for_layer_split(i);
  4321. auto & layer = model.layers[i];
  4322. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4323. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4324. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4325. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4326. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4327. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4328. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4329. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4330. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4331. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4332. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4333. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4334. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4335. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4336. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4337. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4338. }
  4339. } break;
  4340. case LLM_ARCH_BERT:
  4341. case LLM_ARCH_NOMIC_BERT:
  4342. {
  4343. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4344. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4345. if (model.arch == LLM_ARCH_BERT) {
  4346. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4347. }
  4348. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4349. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4350. for (int i = 0; i < n_layer; ++i) {
  4351. ggml_context * ctx_layer = ctx_for_layer(i);
  4352. ggml_context * ctx_split = ctx_for_layer_split(i);
  4353. auto & layer = model.layers[i];
  4354. if (model.arch == LLM_ARCH_BERT) {
  4355. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4356. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4357. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4358. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4359. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4360. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4361. } else {
  4362. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4363. }
  4364. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4365. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4366. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4367. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4368. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4369. if (model.arch == LLM_ARCH_BERT) {
  4370. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4371. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4372. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4373. } else {
  4374. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4375. }
  4376. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4377. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4378. }
  4379. } break;
  4380. case LLM_ARCH_BLOOM:
  4381. {
  4382. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4383. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4384. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4385. // output
  4386. {
  4387. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4388. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4389. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4390. }
  4391. for (int i = 0; i < n_layer; ++i) {
  4392. ggml_context * ctx_layer = ctx_for_layer(i);
  4393. ggml_context * ctx_split = ctx_for_layer_split(i);
  4394. auto & layer = model.layers[i];
  4395. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4396. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4397. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4398. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4399. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4400. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4401. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4402. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4403. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4404. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4405. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4406. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4407. }
  4408. } break;
  4409. case LLM_ARCH_MPT:
  4410. {
  4411. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4412. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4413. // output
  4414. {
  4415. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4416. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4417. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4418. if (!model.output) {
  4419. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4420. ml.n_created--; // artificial tensor
  4421. ml.size_data += ggml_nbytes(model.output);
  4422. }
  4423. }
  4424. for (int i = 0; i < n_layer; ++i) {
  4425. ggml_context * ctx_layer = ctx_for_layer(i);
  4426. ggml_context * ctx_split = ctx_for_layer_split(i);
  4427. auto & layer = model.layers[i];
  4428. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4429. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4430. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4431. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4432. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4433. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4434. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4435. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4436. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4437. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4438. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4439. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4440. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4441. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4442. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4443. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4444. // AWQ ScaleActivation layer
  4445. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4446. }
  4447. } break;
  4448. case LLM_ARCH_STABLELM:
  4449. {
  4450. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4451. // output
  4452. {
  4453. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4454. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4455. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4456. }
  4457. for (int i = 0; i < n_layer; ++i) {
  4458. ggml_context * ctx_layer = ctx_for_layer(i);
  4459. ggml_context * ctx_split = ctx_for_layer_split(i);
  4460. auto & layer = model.layers[i];
  4461. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4462. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4463. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4464. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4465. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4466. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4467. // optional bias tensors, present in Stable LM 2 1.6B
  4468. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4469. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4470. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4471. // optional q and k layernorms, present in StableLM 2 12B
  4472. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4473. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4474. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4475. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4476. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4477. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4478. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4479. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4480. }
  4481. } break;
  4482. case LLM_ARCH_QWEN:
  4483. {
  4484. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4485. // output
  4486. {
  4487. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4488. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4489. }
  4490. for (int i = 0; i < n_layer; ++i) {
  4491. ggml_context * ctx_layer = ctx_for_layer(i);
  4492. ggml_context * ctx_split = ctx_for_layer_split(i);
  4493. auto & layer = model.layers[i];
  4494. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4495. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4496. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4497. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4498. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4499. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4500. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4501. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4502. }
  4503. } break;
  4504. case LLM_ARCH_QWEN2:
  4505. {
  4506. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4507. // output
  4508. {
  4509. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4510. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4511. // if output is NULL, init from the input tok embed
  4512. if (model.output == NULL) {
  4513. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4514. ml.n_created--; // artificial tensor
  4515. ml.size_data += ggml_nbytes(model.output);
  4516. }
  4517. }
  4518. for (int i = 0; i < n_layer; ++i) {
  4519. ggml_context * ctx_layer = ctx_for_layer(i);
  4520. ggml_context * ctx_split = ctx_for_layer_split(i);
  4521. auto & layer = model.layers[i];
  4522. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4523. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4524. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4525. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4526. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4527. // optional bias tensors
  4528. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4529. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4530. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4531. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4532. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4533. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4534. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4535. }
  4536. } break;
  4537. case LLM_ARCH_QWEN2MOE:
  4538. {
  4539. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4540. // output
  4541. {
  4542. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4543. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4544. }
  4545. for (int i = 0; i < n_layer; ++i) {
  4546. ggml_context * ctx_layer = ctx_for_layer(i);
  4547. ggml_context * ctx_split = ctx_for_layer_split(i);
  4548. auto & layer = model.layers[i];
  4549. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4550. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4551. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4552. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4553. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4554. // optional bias tensors
  4555. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4556. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4557. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4558. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4559. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4560. GGML_ASSERT(hparams.n_expert > 0);
  4561. GGML_ASSERT(hparams.n_expert_used > 0);
  4562. // MoE branch
  4563. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4564. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4565. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4566. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4567. // Shared expert branch
  4568. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4569. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4570. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4571. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4572. }
  4573. } break;
  4574. case LLM_ARCH_PHI2:
  4575. {
  4576. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4577. // output
  4578. {
  4579. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4580. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4581. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4582. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4583. }
  4584. for (int i = 0; i < n_layer; ++i) {
  4585. ggml_context * ctx_layer = ctx_for_layer(i);
  4586. ggml_context * ctx_split = ctx_for_layer_split(i);
  4587. auto & layer = model.layers[i];
  4588. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4589. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4590. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4591. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4592. if (layer.wqkv == nullptr) {
  4593. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4594. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4595. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4596. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4597. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4598. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4599. }
  4600. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4601. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4602. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4603. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4604. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4605. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4606. }
  4607. } break;
  4608. case LLM_ARCH_PLAMO:
  4609. {
  4610. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4611. // output
  4612. {
  4613. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4614. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4615. }
  4616. for (int i = 0; i < n_layer; ++i) {
  4617. ggml_context * ctx_layer = ctx_for_layer(i);
  4618. ggml_context * ctx_split = ctx_for_layer_split(i);
  4619. auto & layer = model.layers[i];
  4620. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4621. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4622. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4623. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4624. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4625. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4626. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4627. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4628. }
  4629. } break;
  4630. case LLM_ARCH_GPT2:
  4631. {
  4632. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4633. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4634. // output
  4635. {
  4636. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4637. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4638. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4639. }
  4640. for (int i = 0; i < n_layer; ++i) {
  4641. ggml_context * ctx_layer = ctx_for_layer(i);
  4642. ggml_context * ctx_split = ctx_for_layer_split(i);
  4643. auto & layer = model.layers[i];
  4644. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4645. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4646. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4647. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4648. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4649. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4650. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4651. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4652. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4653. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4654. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4655. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4656. }
  4657. } break;
  4658. case LLM_ARCH_CODESHELL:
  4659. {
  4660. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4661. // output
  4662. {
  4663. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4664. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4665. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4666. }
  4667. for (int i = 0; i < n_layer; ++i) {
  4668. ggml_context * ctx_layer = ctx_for_layer(i);
  4669. ggml_context * ctx_split = ctx_for_layer_split(i);
  4670. auto & layer = model.layers[i];
  4671. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4672. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4673. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4674. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4675. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4676. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4677. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4678. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4679. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4680. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4681. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4682. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4683. }
  4684. } break;
  4685. case LLM_ARCH_ORION:
  4686. {
  4687. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4688. {
  4689. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4690. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4691. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4692. }
  4693. for (int i = 0; i < n_layer; ++i) {
  4694. ggml_context * ctx_layer = ctx_for_layer(i);
  4695. ggml_context * ctx_split = ctx_for_layer_split(i);
  4696. auto & layer = model.layers[i];
  4697. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4698. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4699. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4700. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4701. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4702. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4703. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4704. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4705. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4706. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4707. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4708. }
  4709. } break;
  4710. case LLM_ARCH_INTERNLM2:
  4711. {
  4712. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4713. // output
  4714. {
  4715. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4716. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4717. }
  4718. for (int i = 0; i < n_layer; ++i) {
  4719. ggml_context * ctx_layer = ctx_for_layer(i);
  4720. ggml_context * ctx_split = ctx_for_layer_split(i);
  4721. auto & layer = model.layers[i];
  4722. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4723. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4724. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4725. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4726. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4727. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4728. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4729. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4730. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4731. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4732. }
  4733. } break;
  4734. case LLM_ARCH_GEMMA:
  4735. {
  4736. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4737. // output
  4738. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4739. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4740. ml.n_created--; // artificial tensor
  4741. ml.size_data += ggml_nbytes(model.output);
  4742. const int64_t n_ff = hparams.n_ff;
  4743. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4744. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4745. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4746. for (uint32_t i = 0; i < n_layer; ++i) {
  4747. ggml_context * ctx_layer = ctx_for_layer(i);
  4748. ggml_context * ctx_split = ctx_for_layer_split(i);
  4749. auto & layer = model.layers[i];
  4750. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4751. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4752. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4753. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4754. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4755. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4756. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4757. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4758. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4759. }
  4760. } break;
  4761. case LLM_ARCH_STARCODER2:
  4762. {
  4763. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4764. // output
  4765. {
  4766. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4767. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4768. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4769. // if output is NULL, init from the input tok embed
  4770. if (model.output == NULL) {
  4771. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4772. ml.n_created--; // artificial tensor
  4773. ml.size_data += ggml_nbytes(model.output);
  4774. }
  4775. }
  4776. for (int i = 0; i < n_layer; ++i) {
  4777. ggml_context * ctx_layer = ctx_for_layer(i);
  4778. ggml_context * ctx_split = ctx_for_layer_split(i);
  4779. auto & layer = model.layers[i];
  4780. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4781. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4782. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4783. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4784. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4785. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4786. // optional bias tensors
  4787. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4788. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4789. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4790. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4791. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4792. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4793. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4794. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4795. // optional bias tensors
  4796. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4797. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4798. }
  4799. } break;
  4800. case LLM_ARCH_MAMBA:
  4801. {
  4802. const int64_t d_conv = hparams.ssm_d_conv;
  4803. const int64_t d_inner = hparams.ssm_d_inner;
  4804. const int64_t d_state = hparams.ssm_d_state;
  4805. const int64_t dt_rank = hparams.ssm_dt_rank;
  4806. // only an expansion factor of 2 is supported for now
  4807. GGML_ASSERT(2 * n_embd == d_inner);
  4808. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4809. // output
  4810. {
  4811. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4812. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4813. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4814. if (model.output == NULL) {
  4815. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4816. ml.n_created--; // artificial tensor
  4817. ml.size_data += ggml_nbytes(model.output);
  4818. }
  4819. }
  4820. for (int i = 0; i < n_layer; ++i) {
  4821. ggml_context * ctx_layer = ctx_for_layer(i);
  4822. ggml_context * ctx_split = ctx_for_layer_split(i);
  4823. auto & layer = model.layers[i];
  4824. // norm
  4825. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4826. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4827. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4828. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4829. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4830. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4831. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4832. // no "weight" suffix for these
  4833. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4834. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4835. // out_proj
  4836. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4837. }
  4838. } break;
  4839. case LLM_ARCH_XVERSE:
  4840. {
  4841. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4842. {
  4843. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4844. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4845. }
  4846. for (int i = 0; i < n_layer; ++i) {
  4847. ggml_context * ctx_layer = ctx_for_layer(i);
  4848. ggml_context * ctx_split = ctx_for_layer_split(i);
  4849. auto & layer = model.layers[i];
  4850. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4851. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4852. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4853. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4854. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4855. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4856. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4857. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4858. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4859. }
  4860. } break;
  4861. case LLM_ARCH_COMMAND_R:
  4862. {
  4863. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4864. // output
  4865. {
  4866. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4867. // init output from the input tok embed
  4868. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4869. ml.n_created--; // artificial tensor
  4870. ml.size_data += ggml_nbytes(model.output);
  4871. }
  4872. for (int i = 0; i < n_layer; ++i) {
  4873. ggml_context * ctx_layer = ctx_for_layer(i);
  4874. ggml_context * ctx_split = ctx_for_layer_split(i);
  4875. auto & layer = model.layers[i];
  4876. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4877. if (n_layer >= 64){
  4878. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  4879. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  4880. }
  4881. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4882. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4883. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4884. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4885. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4886. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4887. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4888. }
  4889. } break;
  4890. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  4891. {
  4892. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4893. // output
  4894. {
  4895. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4896. // if output is NULL, init from the input tok embed
  4897. if (model.output == NULL) {
  4898. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4899. ml.n_created--; // artificial tensor
  4900. ml.size_data += ggml_nbytes(model.output);
  4901. }
  4902. }
  4903. for (int i = 0; i < n_layer; ++i) {
  4904. ggml_context * ctx_split = ctx_for_layer_split(i);
  4905. auto & layer = model.layers[i];
  4906. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4907. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4908. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4909. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4910. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4911. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4912. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4913. }
  4914. } break;
  4915. default:
  4916. throw std::runtime_error("unknown architecture");
  4917. }
  4918. }
  4919. ml.done_getting_tensors();
  4920. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  4921. model.mappings.reserve(ml.mappings.size());
  4922. // create the backend buffers
  4923. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  4924. ctx_bufs.reserve(ctx_map.size());
  4925. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  4926. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  4927. model.bufs.reserve(n_max_backend_buffer);
  4928. for (auto & it : ctx_map) {
  4929. ggml_backend_buffer_type_t buft = it.first;
  4930. ggml_context * ctx = it.second;
  4931. llama_buf_map bufs;
  4932. bufs.reserve(n_max_backend_buffer);
  4933. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  4934. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  4935. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  4936. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  4937. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4938. void * addr = nullptr;
  4939. size_t first, last;
  4940. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4941. if (first >= last) {
  4942. continue;
  4943. }
  4944. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  4945. if (buf == nullptr) {
  4946. throw std::runtime_error("unable to allocate backend CPU buffer");
  4947. }
  4948. model.bufs.push_back(buf);
  4949. bufs.emplace(idx, buf);
  4950. #ifdef GGML_USE_CUDA
  4951. if (n_layer >= n_gpu_layers) {
  4952. ggml_backend_cuda_register_host_buffer(
  4953. ggml_backend_buffer_get_base(buf),
  4954. ggml_backend_buffer_get_size(buf));
  4955. }
  4956. #endif
  4957. }
  4958. }
  4959. #ifdef GGML_USE_METAL
  4960. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  4961. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4962. const size_t max_size = ggml_get_max_tensor_size(ctx);
  4963. void * addr = nullptr;
  4964. size_t first, last;
  4965. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4966. if (first >= last) {
  4967. continue;
  4968. }
  4969. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  4970. if (buf == nullptr) {
  4971. throw std::runtime_error("unable to allocate backend metal buffer");
  4972. }
  4973. model.bufs.push_back(buf);
  4974. bufs.emplace(idx, buf);
  4975. }
  4976. }
  4977. #endif
  4978. else {
  4979. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  4980. if (buf == nullptr) {
  4981. throw std::runtime_error("unable to allocate backend buffer");
  4982. }
  4983. model.bufs.push_back(buf);
  4984. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  4985. model.mlock_bufs.emplace_back(new llama_mlock);
  4986. auto & mlock_buf = model.mlock_bufs.back();
  4987. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  4988. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  4989. }
  4990. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4991. bufs.emplace(idx, buf);
  4992. }
  4993. }
  4994. if (bufs.empty()) {
  4995. throw std::runtime_error("failed to allocate buffer");
  4996. }
  4997. for (auto & buf : bufs) {
  4998. // indicate that this buffer contains weights
  4999. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5000. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5001. }
  5002. ctx_bufs.emplace_back(ctx, bufs);
  5003. }
  5004. if (llama_supports_gpu_offload()) {
  5005. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5006. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5007. if (n_gpu_layers > (int) hparams.n_layer) {
  5008. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5009. }
  5010. const int max_backend_supported_layers = hparams.n_layer + 1;
  5011. const int max_offloadable_layers = hparams.n_layer + 1;
  5012. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5013. }
  5014. // print memory requirements
  5015. for (ggml_backend_buffer_t buf : model.bufs) {
  5016. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5017. }
  5018. // populate tensors_by_name
  5019. for (ggml_context * ctx : model.ctxs) {
  5020. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5021. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5022. }
  5023. }
  5024. // load tensor data
  5025. for (auto & it : ctx_bufs) {
  5026. ggml_context * ctx = it.first;
  5027. auto & bufs = it.second;
  5028. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5029. return false;
  5030. }
  5031. }
  5032. if (use_mmap_buffer) {
  5033. for (auto & mapping : ml.mappings) {
  5034. model.mappings.emplace_back(std::move(mapping));
  5035. }
  5036. }
  5037. // loading time will be recalculate after the first eval, so
  5038. // we take page faults deferred by mmap() into consideration
  5039. model.t_load_us = ggml_time_us() - model.t_start_us;
  5040. return true;
  5041. }
  5042. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5043. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5044. try {
  5045. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  5046. model.hparams.vocab_only = params.vocab_only;
  5047. try {
  5048. llm_load_arch(ml, model);
  5049. } catch(const std::exception & e) {
  5050. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5051. }
  5052. try {
  5053. llm_load_hparams(ml, model);
  5054. } catch(const std::exception & e) {
  5055. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5056. }
  5057. try {
  5058. llm_load_vocab(ml, model);
  5059. } catch(const std::exception & e) {
  5060. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5061. }
  5062. llm_load_print_meta(ml, model);
  5063. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5064. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5065. throw std::runtime_error("vocab size mismatch");
  5066. }
  5067. if (params.vocab_only) {
  5068. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5069. return 0;
  5070. }
  5071. #ifdef GGML_USE_KOMPUTE
  5072. if (params.n_gpu_layers > 0 && (
  5073. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5074. || !(
  5075. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5076. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5077. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5078. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5079. )
  5080. )) {
  5081. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5082. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5083. params.n_gpu_layers = 0;
  5084. }
  5085. #endif
  5086. #ifdef GGML_USE_SYCL
  5087. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5088. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5089. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5090. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5091. } else {
  5092. ggml_backend_sycl_set_mul_device_mode();
  5093. }
  5094. #endif
  5095. if (!llm_load_tensors(
  5096. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5097. params.progress_callback, params.progress_callback_user_data
  5098. )) {
  5099. return -2;
  5100. }
  5101. } catch (const std::exception & err) {
  5102. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5103. return -1;
  5104. }
  5105. return 0;
  5106. }
  5107. //
  5108. // llm_build
  5109. //
  5110. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5111. enum llm_ffn_op_type {
  5112. LLM_FFN_SILU,
  5113. LLM_FFN_GELU,
  5114. LLM_FFN_RELU,
  5115. LLM_FFN_RELU_SQR,
  5116. };
  5117. enum llm_ffn_gate_type {
  5118. LLM_FFN_SEQ,
  5119. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5120. };
  5121. enum llm_norm_type {
  5122. LLM_NORM,
  5123. LLM_NORM_RMS,
  5124. };
  5125. static struct ggml_tensor * llm_build_inp_embd(
  5126. struct ggml_context * ctx,
  5127. struct llama_context & lctx,
  5128. const llama_hparams & hparams,
  5129. const llama_batch & batch,
  5130. struct ggml_tensor * tok_embd,
  5131. const llm_build_cb & cb) {
  5132. const int64_t n_embd = hparams.n_embd;
  5133. struct ggml_tensor * inpL;
  5134. if (batch.token) {
  5135. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5136. cb(lctx.inp_tokens, "inp_tokens", -1);
  5137. ggml_set_input(lctx.inp_tokens);
  5138. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5139. } else {
  5140. #ifdef GGML_USE_MPI
  5141. GGML_ASSERT(false && "not implemented");
  5142. #endif
  5143. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5144. inpL = lctx.inp_embd;
  5145. ggml_set_input(lctx.inp_embd);
  5146. }
  5147. cb(inpL, "inp_embd", -1);
  5148. return inpL;
  5149. }
  5150. static void llm_build_kv_store(
  5151. struct ggml_context * ctx,
  5152. const llama_hparams & hparams,
  5153. const llama_kv_cache & kv,
  5154. struct ggml_cgraph * graph,
  5155. struct ggml_tensor * k_cur,
  5156. struct ggml_tensor * v_cur,
  5157. int64_t n_ctx,
  5158. int32_t n_tokens,
  5159. int32_t kv_head,
  5160. const llm_build_cb & cb,
  5161. int64_t il) {
  5162. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5163. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5164. GGML_ASSERT(kv.size == n_ctx);
  5165. // compute the transposed [n_tokens, n_embd] V matrix
  5166. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5167. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  5168. cb(v_cur_t, "v_cur_t", il);
  5169. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5170. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5171. cb(k_cache_view, "k_cache_view", il);
  5172. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5173. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5174. (kv_head)*ggml_element_size(kv.v_l[il]));
  5175. cb(v_cache_view, "v_cache_view", il);
  5176. // important: storing RoPE-ed version of K in the KV cache!
  5177. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5178. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  5179. }
  5180. static struct ggml_tensor * llm_build_norm(
  5181. struct ggml_context * ctx,
  5182. struct ggml_tensor * cur,
  5183. const llama_hparams & hparams,
  5184. struct ggml_tensor * mw,
  5185. struct ggml_tensor * mb,
  5186. llm_norm_type type,
  5187. const llm_build_cb & cb,
  5188. int il) {
  5189. switch (type) {
  5190. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5191. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5192. }
  5193. if (mw || mb) {
  5194. cb(cur, "norm", il);
  5195. }
  5196. if (mw) {
  5197. cur = ggml_mul(ctx, cur, mw);
  5198. if (mb) {
  5199. cb(cur, "norm_w", il);
  5200. }
  5201. }
  5202. if (mb) {
  5203. cur = ggml_add(ctx, cur, mb);
  5204. }
  5205. return cur;
  5206. }
  5207. static struct ggml_tensor * llm_build_ffn(
  5208. struct ggml_context * ctx,
  5209. struct ggml_tensor * cur,
  5210. struct ggml_tensor * up,
  5211. struct ggml_tensor * up_b,
  5212. struct ggml_tensor * gate,
  5213. struct ggml_tensor * gate_b,
  5214. struct ggml_tensor * down,
  5215. struct ggml_tensor * down_b,
  5216. struct ggml_tensor * act_scales,
  5217. llm_ffn_op_type type_op,
  5218. llm_ffn_gate_type type_gate,
  5219. const llm_build_cb & cb,
  5220. int il) {
  5221. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5222. cb(tmp, "ffn_up", il);
  5223. if (up_b) {
  5224. tmp = ggml_add(ctx, tmp, up_b);
  5225. cb(tmp, "ffn_up_b", il);
  5226. }
  5227. if (gate) {
  5228. switch (type_gate) {
  5229. case LLM_FFN_SEQ:
  5230. {
  5231. cur = ggml_mul_mat(ctx, gate, tmp);
  5232. cb(cur, "ffn_gate", il);
  5233. } break;
  5234. case LLM_FFN_PAR:
  5235. {
  5236. cur = ggml_mul_mat(ctx, gate, cur);
  5237. cb(cur, "ffn_gate", il);
  5238. } break;
  5239. }
  5240. if (gate_b) {
  5241. cur = ggml_add(ctx, cur, gate_b);
  5242. cb(cur, "ffn_gate_b", il);
  5243. }
  5244. } else {
  5245. cur = tmp;
  5246. }
  5247. switch (type_op) {
  5248. case LLM_FFN_SILU:
  5249. {
  5250. cur = ggml_silu(ctx, cur);
  5251. cb(cur, "ffn_silu", il);
  5252. } break;
  5253. case LLM_FFN_GELU:
  5254. {
  5255. cur = ggml_gelu(ctx, cur);
  5256. cb(cur, "ffn_gelu", il);
  5257. if (act_scales != NULL) {
  5258. cur = ggml_div(ctx, cur, act_scales);
  5259. cb(cur, "ffn_act", il);
  5260. }
  5261. } break;
  5262. case LLM_FFN_RELU:
  5263. {
  5264. cur = ggml_relu(ctx, cur);
  5265. cb(cur, "ffn_relu", il);
  5266. } break;
  5267. case LLM_FFN_RELU_SQR:
  5268. {
  5269. cur = ggml_relu(ctx, cur);
  5270. cb(cur, "ffn_relu", il);
  5271. cur = ggml_sqr(ctx, cur);
  5272. cb(cur, "ffn_sqr(relu)", il);
  5273. } break;
  5274. }
  5275. if (type_gate == LLM_FFN_PAR) {
  5276. cur = ggml_mul(ctx, cur, tmp);
  5277. cb(cur, "ffn_gate_par", il);
  5278. }
  5279. cur = ggml_mul_mat(ctx, down, cur);
  5280. if (down_b) {
  5281. cb(cur, "ffn_down", il);
  5282. }
  5283. if (down_b) {
  5284. cur = ggml_add(ctx, cur, down_b);
  5285. }
  5286. return cur;
  5287. }
  5288. static struct ggml_tensor * llm_build_moe_ffn(
  5289. struct ggml_context * ctx,
  5290. struct ggml_tensor * cur,
  5291. struct ggml_tensor * gate_inp,
  5292. struct ggml_tensor * up_exps,
  5293. struct ggml_tensor * gate_exps,
  5294. struct ggml_tensor * down_exps,
  5295. int64_t n_expert,
  5296. int64_t n_expert_used,
  5297. llm_ffn_op_type type_op,
  5298. bool norm_w,
  5299. const llm_build_cb & cb,
  5300. int il) {
  5301. int64_t n_embd = cur->ne[0];
  5302. int64_t n_tokens = cur->ne[1];
  5303. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5304. cb(logits, "ffn_moe_logits", il);
  5305. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5306. cb(probs, "ffn_moe_probs", il);
  5307. // select experts
  5308. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5309. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5310. cb(selected_experts, "ffn_moe_topk", il);
  5311. ggml_tensor * weights = ggml_get_rows(ctx,
  5312. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5313. cb(weights, "ffn_moe_weights", il);
  5314. if (norm_w) {
  5315. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5316. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5317. cb(weights_sum, "ffn_moe_weights_sum", il);
  5318. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5319. cb(weights, "ffn_moe_weights_norm", il);
  5320. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5321. }
  5322. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5323. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5324. cb(up, "ffn_moe_up", il);
  5325. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5326. cb(gate, "ffn_moe_gate", il);
  5327. switch (type_op) {
  5328. case LLM_FFN_SILU:
  5329. {
  5330. gate = ggml_silu(ctx, gate);
  5331. cb(gate, "ffn_moe_silu", il);
  5332. } break;
  5333. case LLM_FFN_GELU:
  5334. {
  5335. gate = ggml_gelu(ctx, gate);
  5336. cb(gate, "ffn_moe_gelu", il);
  5337. } break;
  5338. default:
  5339. GGML_ASSERT(false);
  5340. }
  5341. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5342. cb(par, "ffn_moe_gate_par", il);
  5343. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5344. cb(experts, "ffn_moe_down", il);
  5345. experts = ggml_mul(ctx, experts, weights);
  5346. // aggregate experts
  5347. ggml_tensor * moe_out = nullptr;
  5348. for (int i = 0; i < n_expert_used; ++i) {
  5349. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5350. experts->nb[2], i*experts->nb[1]);
  5351. if (i == 0) {
  5352. moe_out = cur_expert;
  5353. } else {
  5354. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5355. }
  5356. }
  5357. if (n_expert_used == 1) {
  5358. // avoid returning a non-contiguous tensor
  5359. moe_out = ggml_cont(ctx, moe_out);
  5360. }
  5361. return moe_out;
  5362. }
  5363. // if max_alibi_bias > 0 then apply ALiBi
  5364. static struct ggml_tensor * llm_build_kqv(
  5365. struct ggml_context * ctx,
  5366. const llama_model & model,
  5367. const llama_hparams & hparams,
  5368. const llama_kv_cache & kv,
  5369. struct ggml_cgraph * graph,
  5370. struct ggml_tensor * wo,
  5371. struct ggml_tensor * wo_b,
  5372. struct ggml_tensor * q_cur,
  5373. struct ggml_tensor * kq_mask,
  5374. struct ggml_tensor * kq_pos,
  5375. int64_t n_ctx,
  5376. int32_t n_tokens,
  5377. int32_t n_kv,
  5378. float kq_scale,
  5379. const llm_build_cb & cb,
  5380. int il) {
  5381. const int64_t n_head = hparams.n_head;
  5382. const int64_t n_head_kv = hparams.n_head_kv;
  5383. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5384. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5385. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5386. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5387. cb(q, "q", il);
  5388. struct ggml_tensor * k =
  5389. ggml_view_3d(ctx, kv.k_l[il],
  5390. n_embd_head_k, n_kv, n_head_kv,
  5391. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5392. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5393. 0);
  5394. cb(k, "k", il);
  5395. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5396. cb(kq, "kq", il);
  5397. if (model.arch == LLM_ARCH_PHI2) {
  5398. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5399. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5400. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5401. }
  5402. if (model.arch == LLM_ARCH_GROK) {
  5403. // need to do the following:
  5404. // multiply by attn_output_multiplyer of 0.08838834764831845
  5405. // and then :
  5406. // kq = 30 * tanh(kq / 30)
  5407. // before the softmax below
  5408. //try from phi2
  5409. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5410. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5411. kq = ggml_scale(ctx, kq, 30);
  5412. }
  5413. #if defined(GGML_USE_KOMPUTE)
  5414. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5415. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5416. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5417. if (hparams.f_max_alibi_bias > 0.0f) {
  5418. kq = ggml_scale(ctx, kq, kq_scale);
  5419. cb(kq, "kq_scaled", il);
  5420. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5421. cb(kq, "kq_scaled_alibi", il);
  5422. kq = ggml_add(ctx, kq, kq_mask);
  5423. cb(kq, "kq_masked", il);
  5424. kq = ggml_soft_max(ctx, kq);
  5425. cb(kq, "kq_soft_max", il);
  5426. } else
  5427. #endif
  5428. {
  5429. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5430. cb(kq, "kq_soft_max_ext", il);
  5431. }
  5432. GGML_ASSERT(kv.size == n_ctx);
  5433. // split cached v into n_head heads
  5434. struct ggml_tensor * v =
  5435. ggml_view_3d(ctx, kv.v_l[il],
  5436. n_kv, n_embd_head_v, n_head_kv,
  5437. ggml_element_size(kv.v_l[il])*n_ctx,
  5438. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5439. 0);
  5440. cb(v, "v", il);
  5441. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5442. cb(kqv, "kqv", il);
  5443. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5444. cb(kqv_merged, "kqv_merged", il);
  5445. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5446. cb(cur, "kqv_merged_cont", il);
  5447. ggml_build_forward_expand(graph, cur);
  5448. cur = ggml_mul_mat(ctx, wo, cur);
  5449. if (wo_b) {
  5450. cb(cur, "kqv_wo", il);
  5451. }
  5452. if (wo_b) {
  5453. cur = ggml_add(ctx, cur, wo_b);
  5454. }
  5455. return cur;
  5456. }
  5457. static struct ggml_tensor * llm_build_kv(
  5458. struct ggml_context * ctx,
  5459. const llama_model & model,
  5460. const llama_hparams & hparams,
  5461. const llama_kv_cache & kv,
  5462. struct ggml_cgraph * graph,
  5463. struct ggml_tensor * wo,
  5464. struct ggml_tensor * wo_b,
  5465. struct ggml_tensor * k_cur,
  5466. struct ggml_tensor * v_cur,
  5467. struct ggml_tensor * q_cur,
  5468. struct ggml_tensor * kq_mask,
  5469. struct ggml_tensor * kq_pos,
  5470. int64_t n_ctx,
  5471. int32_t n_tokens,
  5472. int32_t kv_head,
  5473. int32_t n_kv,
  5474. float kq_scale,
  5475. const llm_build_cb & cb,
  5476. int il) {
  5477. // these nodes are added to the graph together so that they are not reordered
  5478. // by doing so, the number of splits in the graph is reduced
  5479. ggml_build_forward_expand(graph, q_cur);
  5480. ggml_build_forward_expand(graph, k_cur);
  5481. ggml_build_forward_expand(graph, v_cur);
  5482. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5483. struct ggml_tensor * cur;
  5484. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5485. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5486. cb(cur, "kqv_out", il);
  5487. return cur;
  5488. }
  5489. struct llm_build_context {
  5490. const llama_model & model;
  5491. llama_context & lctx;
  5492. const llama_hparams & hparams;
  5493. const llama_cparams & cparams;
  5494. const llama_batch & batch;
  5495. const llama_kv_cache & kv_self;
  5496. const int64_t n_embd;
  5497. const int64_t n_layer;
  5498. const int64_t n_rot;
  5499. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5500. const int64_t n_head;
  5501. const int64_t n_head_kv;
  5502. const int64_t n_embd_head_k;
  5503. const int64_t n_embd_k_gqa;
  5504. const int64_t n_embd_head_v;
  5505. const int64_t n_embd_v_gqa;
  5506. const int64_t n_expert;
  5507. const int64_t n_expert_used;
  5508. const float freq_base;
  5509. const float freq_scale;
  5510. const float ext_factor;
  5511. const float attn_factor;
  5512. const float beta_fast;
  5513. const float beta_slow;
  5514. const float norm_eps;
  5515. const float norm_rms_eps;
  5516. const int32_t n_tokens;
  5517. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5518. const int32_t n_outputs;
  5519. const int32_t kv_head; // index of where we store new KV data in the cache
  5520. const int32_t n_orig_ctx;
  5521. const enum llama_pooling_type pooling_type;
  5522. const enum llama_rope_type rope_type;
  5523. const llm_build_cb & cb;
  5524. std::vector<uint8_t> & buf_compute_meta;
  5525. struct ggml_context * ctx0 = nullptr;
  5526. // TODO: consider making the entire interface noexcept
  5527. llm_build_context(
  5528. llama_context & lctx,
  5529. const llama_batch & batch,
  5530. const llm_build_cb & cb,
  5531. bool worst_case) :
  5532. model (lctx.model),
  5533. lctx (lctx),
  5534. hparams (model.hparams),
  5535. cparams (lctx.cparams),
  5536. batch (batch),
  5537. kv_self (lctx.kv_self),
  5538. n_embd (hparams.n_embd),
  5539. n_layer (hparams.n_layer),
  5540. n_rot (hparams.n_rot),
  5541. n_ctx (cparams.n_ctx),
  5542. n_head (hparams.n_head),
  5543. n_head_kv (hparams.n_head_kv),
  5544. n_embd_head_k (hparams.n_embd_head_k),
  5545. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5546. n_embd_head_v (hparams.n_embd_head_v),
  5547. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5548. n_expert (hparams.n_expert),
  5549. n_expert_used (hparams.n_expert_used),
  5550. freq_base (cparams.rope_freq_base),
  5551. freq_scale (cparams.rope_freq_scale),
  5552. ext_factor (cparams.yarn_ext_factor),
  5553. attn_factor (cparams.yarn_attn_factor),
  5554. beta_fast (cparams.yarn_beta_fast),
  5555. beta_slow (cparams.yarn_beta_slow),
  5556. norm_eps (hparams.f_norm_eps),
  5557. norm_rms_eps (hparams.f_norm_rms_eps),
  5558. n_tokens (batch.n_tokens),
  5559. n_kv (worst_case ? kv_self.size : kv_self.n),
  5560. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5561. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5562. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5563. pooling_type (cparams.pooling_type),
  5564. rope_type (hparams.rope_type),
  5565. cb (cb),
  5566. buf_compute_meta (lctx.buf_compute_meta) {
  5567. // all initializations should be done in init()
  5568. }
  5569. void init() {
  5570. struct ggml_init_params params = {
  5571. /*.mem_size =*/ buf_compute_meta.size(),
  5572. /*.mem_buffer =*/ buf_compute_meta.data(),
  5573. /*.no_alloc =*/ true,
  5574. };
  5575. ctx0 = ggml_init(params);
  5576. lctx.inp_tokens = nullptr;
  5577. lctx.inp_embd = nullptr;
  5578. lctx.inp_pos = nullptr;
  5579. lctx.inp_out_ids = nullptr;
  5580. lctx.inp_KQ_mask = nullptr;
  5581. lctx.inp_KQ_pos = nullptr;
  5582. lctx.inp_K_shift = nullptr;
  5583. lctx.inp_mean = nullptr;
  5584. lctx.inp_cls = nullptr;
  5585. lctx.inp_s_copy = nullptr;
  5586. lctx.inp_s_mask = nullptr;
  5587. lctx.inp_s_seq = nullptr;
  5588. }
  5589. void free() {
  5590. if (ctx0) {
  5591. ggml_free(ctx0);
  5592. ctx0 = nullptr;
  5593. }
  5594. }
  5595. struct ggml_cgraph * build_k_shift() {
  5596. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5597. GGML_ASSERT(kv_self.size == n_ctx);
  5598. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5599. cb(lctx.inp_K_shift, "K_shift", -1);
  5600. ggml_set_input(lctx.inp_K_shift);
  5601. for (int il = 0; il < n_layer; ++il) {
  5602. struct ggml_tensor * tmp =
  5603. // we rotate only the first n_rot dimensions
  5604. ggml_rope_custom_inplace(ctx0,
  5605. ggml_view_3d(ctx0, kv_self.k_l[il],
  5606. n_embd_head_k, n_head_kv, n_ctx,
  5607. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5608. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5609. 0),
  5610. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5611. ext_factor, attn_factor, beta_fast, beta_slow);
  5612. cb(tmp, "K_shifted", il);
  5613. ggml_build_forward_expand(gf, tmp);
  5614. }
  5615. return gf;
  5616. }
  5617. struct ggml_cgraph * build_s_copy() {
  5618. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5619. GGML_ASSERT(kv_self.recurrent);
  5620. struct ggml_tensor * state_copy = build_inp_s_copy();
  5621. for (int il = 0; il < n_layer; ++il) {
  5622. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5623. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5624. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5625. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5626. // TODO: name the intermediate tensors with cb()
  5627. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5628. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5629. }
  5630. return gf;
  5631. }
  5632. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5633. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5634. for (uint32_t i = 0; i < ids.size(); ++i) {
  5635. const uint32_t id = ids[i];
  5636. if (i == id || id == ids.size()) {
  5637. continue;
  5638. }
  5639. uint32_t nm = 1;
  5640. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5641. nm++;
  5642. }
  5643. for (int il = 0; il < n_layer; ++il) {
  5644. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5645. n_embd_k_gqa, nm,
  5646. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5647. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5648. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5649. n_embd_k_gqa, nm,
  5650. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5651. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5652. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5653. nm, n_embd_v_gqa,
  5654. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5655. ggml_row_size(kv_self.v_l[il]->type, i));
  5656. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5657. nm, n_embd_v_gqa,
  5658. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5659. ggml_row_size(kv_self.v_l[il]->type, id));
  5660. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5661. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5662. }
  5663. i += nm - 1;
  5664. }
  5665. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5666. return gf;
  5667. }
  5668. struct ggml_tensor * build_inp_pos() {
  5669. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5670. cb(lctx.inp_pos, "inp_pos", -1);
  5671. ggml_set_input(lctx.inp_pos);
  5672. return lctx.inp_pos;
  5673. }
  5674. struct ggml_tensor * build_inp_out_ids() {
  5675. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5676. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5677. ggml_set_input(lctx.inp_out_ids);
  5678. return lctx.inp_out_ids;
  5679. }
  5680. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5681. if (causal) {
  5682. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5683. } else {
  5684. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5685. }
  5686. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5687. ggml_set_input(lctx.inp_KQ_mask);
  5688. return lctx.inp_KQ_mask;
  5689. }
  5690. struct ggml_tensor * build_inp_KQ_pos() {
  5691. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5692. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5693. ggml_set_input(lctx.inp_KQ_pos);
  5694. return lctx.inp_KQ_pos;
  5695. }
  5696. struct ggml_tensor * build_inp_mean() {
  5697. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5698. cb(lctx.inp_mean, "inp_mean", -1);
  5699. ggml_set_input(lctx.inp_mean);
  5700. return lctx.inp_mean;
  5701. }
  5702. struct ggml_tensor * build_inp_cls() {
  5703. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5704. cb(lctx.inp_cls, "inp_cls", -1);
  5705. ggml_set_input(lctx.inp_cls);
  5706. return lctx.inp_cls;
  5707. }
  5708. struct ggml_tensor * build_inp_s_copy() {
  5709. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5710. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5711. ggml_set_input(lctx.inp_s_copy);
  5712. return lctx.inp_s_copy;
  5713. }
  5714. struct ggml_tensor * build_inp_s_mask() {
  5715. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5716. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5717. ggml_set_input(lctx.inp_s_mask);
  5718. return lctx.inp_s_mask;
  5719. }
  5720. struct ggml_tensor * build_inp_s_seq() {
  5721. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5722. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5723. ggml_set_input(lctx.inp_s_seq);
  5724. return lctx.inp_s_seq;
  5725. }
  5726. struct ggml_cgraph * build_llama() {
  5727. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5728. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5729. int32_t n_tokens = this->n_tokens;
  5730. const int64_t n_embd_head = hparams.n_embd_head_v;
  5731. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5732. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5733. struct ggml_tensor * cur;
  5734. struct ggml_tensor * inpL;
  5735. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5736. // inp_pos - contains the positions
  5737. struct ggml_tensor * inp_pos = build_inp_pos();
  5738. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5739. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5740. for (int il = 0; il < n_layer; ++il) {
  5741. struct ggml_tensor * inpSA = inpL;
  5742. // norm
  5743. cur = llm_build_norm(ctx0, inpL, hparams,
  5744. model.layers[il].attn_norm, NULL,
  5745. LLM_NORM_RMS, cb, il);
  5746. cb(cur, "attn_norm", il);
  5747. // self-attention
  5748. {
  5749. // compute Q and K and RoPE them
  5750. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5751. cb(Qcur, "Qcur", il);
  5752. if (model.layers[il].bq) {
  5753. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5754. cb(Qcur, "Qcur", il);
  5755. }
  5756. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5757. cb(Kcur, "Kcur", il);
  5758. if (model.layers[il].bk) {
  5759. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5760. cb(Kcur, "Kcur", il);
  5761. }
  5762. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5763. cb(Vcur, "Vcur", il);
  5764. if (model.layers[il].bv) {
  5765. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5766. cb(Vcur, "Vcur", il);
  5767. }
  5768. Qcur = ggml_rope_custom(
  5769. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5770. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5771. ext_factor, attn_factor, beta_fast, beta_slow
  5772. );
  5773. cb(Qcur, "Qcur", il);
  5774. Kcur = ggml_rope_custom(
  5775. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5776. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5777. ext_factor, attn_factor, beta_fast, beta_slow
  5778. );
  5779. cb(Kcur, "Kcur", il);
  5780. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5781. model.layers[il].wo, model.layers[il].bo,
  5782. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5783. }
  5784. if (il == n_layer - 1) {
  5785. // skip computing output for unused tokens
  5786. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5787. n_tokens = n_outputs;
  5788. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5789. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5790. }
  5791. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5792. cb(ffn_inp, "ffn_inp", il);
  5793. // feed-forward network
  5794. if (model.layers[il].ffn_gate_inp == nullptr) {
  5795. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5796. model.layers[il].ffn_norm, NULL,
  5797. LLM_NORM_RMS, cb, il);
  5798. cb(cur, "ffn_norm", il);
  5799. cur = llm_build_ffn(ctx0, cur,
  5800. model.layers[il].ffn_up, NULL,
  5801. model.layers[il].ffn_gate, NULL,
  5802. model.layers[il].ffn_down, NULL,
  5803. NULL,
  5804. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5805. cb(cur, "ffn_out", il);
  5806. } else {
  5807. // MoE branch
  5808. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5809. model.layers[il].ffn_norm, NULL,
  5810. LLM_NORM_RMS, cb, il);
  5811. cb(cur, "ffn_norm", il);
  5812. cur = llm_build_moe_ffn(ctx0, cur,
  5813. model.layers[il].ffn_gate_inp,
  5814. model.layers[il].ffn_up_exps,
  5815. model.layers[il].ffn_gate_exps,
  5816. model.layers[il].ffn_down_exps,
  5817. n_expert, n_expert_used,
  5818. LLM_FFN_SILU, true,
  5819. cb, il);
  5820. cb(cur, "ffn_moe_out", il);
  5821. }
  5822. cur = ggml_add(ctx0, cur, ffn_inp);
  5823. cb(cur, "ffn_out", il);
  5824. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5825. if (layer_dir != nullptr) {
  5826. cur = ggml_add(ctx0, cur, layer_dir);
  5827. }
  5828. cb(cur, "l_out", il);
  5829. // input for next layer
  5830. inpL = cur;
  5831. }
  5832. cur = inpL;
  5833. cur = llm_build_norm(ctx0, cur, hparams,
  5834. model.output_norm, NULL,
  5835. LLM_NORM_RMS, cb, -1);
  5836. cb(cur, "result_norm", -1);
  5837. // lm_head
  5838. cur = ggml_mul_mat(ctx0, model.output, cur);
  5839. cb(cur, "result_output", -1);
  5840. ggml_build_forward_expand(gf, cur);
  5841. return gf;
  5842. }
  5843. struct ggml_cgraph * build_baichuan() {
  5844. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5845. const int64_t n_embd_head = hparams.n_embd_head_v;
  5846. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5847. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5848. struct ggml_tensor * cur;
  5849. struct ggml_tensor * inpL;
  5850. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5851. // inp_pos - contains the positions
  5852. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5853. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5854. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5855. // positions of the tokens in the KV cache
  5856. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5857. for (int il = 0; il < n_layer; ++il) {
  5858. struct ggml_tensor * inpSA = inpL;
  5859. cur = llm_build_norm(ctx0, inpL, hparams,
  5860. model.layers[il].attn_norm, NULL,
  5861. LLM_NORM_RMS, cb, il);
  5862. cb(cur, "attn_norm", il);
  5863. // self-attention
  5864. {
  5865. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5866. cb(Qcur, "Qcur", il);
  5867. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5868. cb(Kcur, "Kcur", il);
  5869. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5870. cb(Vcur, "Vcur", il);
  5871. switch (model.type) {
  5872. case MODEL_7B:
  5873. Qcur = ggml_rope_custom(
  5874. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5875. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5876. ext_factor, attn_factor, beta_fast, beta_slow
  5877. );
  5878. Kcur = ggml_rope_custom(
  5879. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5880. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5881. ext_factor, attn_factor, beta_fast, beta_slow
  5882. );
  5883. break;
  5884. case MODEL_13B:
  5885. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  5886. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  5887. break;
  5888. default:
  5889. GGML_ASSERT(false);
  5890. }
  5891. cb(Qcur, "Qcur", il);
  5892. cb(Kcur, "Kcur", il);
  5893. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5894. model.layers[il].wo, NULL,
  5895. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5896. }
  5897. if (il == n_layer - 1) {
  5898. // skip computing output for unused tokens
  5899. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5900. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5901. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5902. }
  5903. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5904. cb(ffn_inp, "ffn_inp", il);
  5905. // feed-forward network
  5906. {
  5907. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5908. model.layers[il].ffn_norm, NULL,
  5909. LLM_NORM_RMS, cb, il);
  5910. cb(cur, "ffn_norm", il);
  5911. cur = llm_build_ffn(ctx0, cur,
  5912. model.layers[il].ffn_up, NULL,
  5913. model.layers[il].ffn_gate, NULL,
  5914. model.layers[il].ffn_down, NULL,
  5915. NULL,
  5916. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5917. cb(cur, "ffn_out", il);
  5918. }
  5919. cur = ggml_add(ctx0, cur, ffn_inp);
  5920. cb(cur, "l_out", il);
  5921. // input for next layer
  5922. inpL = cur;
  5923. }
  5924. cur = inpL;
  5925. cur = llm_build_norm(ctx0, cur, hparams,
  5926. model.output_norm, NULL,
  5927. LLM_NORM_RMS, cb, -1);
  5928. cb(cur, "result_norm", -1);
  5929. // lm_head
  5930. cur = ggml_mul_mat(ctx0, model.output, cur);
  5931. cb(cur, "result_output", -1);
  5932. ggml_build_forward_expand(gf, cur);
  5933. return gf;
  5934. }
  5935. struct ggml_cgraph * build_xverse() {
  5936. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5937. const int64_t n_embd_head = hparams.n_embd_head_v;
  5938. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5939. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5940. struct ggml_tensor * cur;
  5941. struct ggml_tensor * inpL;
  5942. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5943. // inp_pos - contains the positions
  5944. struct ggml_tensor * inp_pos = build_inp_pos();
  5945. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5946. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5947. // positions of the tokens in the KV cache
  5948. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5949. for (int il = 0; il < n_layer; ++il) {
  5950. struct ggml_tensor * inpSA = inpL;
  5951. cur = llm_build_norm(ctx0, inpL, hparams,
  5952. model.layers[il].attn_norm, NULL,
  5953. LLM_NORM_RMS, cb, il);
  5954. cb(cur, "attn_norm", il);
  5955. // self-attention
  5956. {
  5957. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5958. cb(Qcur, "Qcur", il);
  5959. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5960. cb(Kcur, "Kcur", il);
  5961. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5962. cb(Vcur, "Vcur", il);
  5963. Qcur = ggml_rope_custom(
  5964. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5965. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5966. ext_factor, attn_factor, beta_fast, beta_slow
  5967. );
  5968. cb(Qcur, "Qcur", il);
  5969. Kcur = ggml_rope_custom(
  5970. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5971. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5972. ext_factor, attn_factor, beta_fast, beta_slow
  5973. );
  5974. cb(Kcur, "Kcur", il);
  5975. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5976. model.layers[il].wo, NULL,
  5977. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5978. }
  5979. if (il == n_layer - 1) {
  5980. // skip computing output for unused tokens
  5981. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5982. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5983. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5984. }
  5985. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5986. cb(ffn_inp, "ffn_inp", il);
  5987. // feed-forward network
  5988. {
  5989. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5990. model.layers[il].ffn_norm, NULL,
  5991. LLM_NORM_RMS, cb, il);
  5992. cb(cur, "ffn_norm", il);
  5993. cur = llm_build_ffn(ctx0, cur,
  5994. model.layers[il].ffn_up, NULL,
  5995. model.layers[il].ffn_gate, NULL,
  5996. model.layers[il].ffn_down, NULL,
  5997. NULL,
  5998. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5999. cb(cur, "ffn_out", il);
  6000. }
  6001. cur = ggml_add(ctx0, cur, ffn_inp);
  6002. cb(cur, "l_out", il);
  6003. // input for next layer
  6004. inpL = cur;
  6005. }
  6006. cur = inpL;
  6007. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6008. cb(cur, "result_norm", -1);
  6009. // lm_head
  6010. cur = ggml_mul_mat(ctx0, model.output, cur);
  6011. cb(cur, "result_output", -1);
  6012. ggml_build_forward_expand(gf, cur);
  6013. return gf;
  6014. }
  6015. struct ggml_cgraph * build_falcon() {
  6016. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6017. const int64_t n_embd_head = hparams.n_embd_head_v;
  6018. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6019. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6020. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6021. struct ggml_tensor * cur;
  6022. struct ggml_tensor * inpL;
  6023. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6024. // inp_pos - contains the positions
  6025. struct ggml_tensor * inp_pos = build_inp_pos();
  6026. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6027. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6028. for (int il = 0; il < n_layer; ++il) {
  6029. struct ggml_tensor * attn_norm;
  6030. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6031. model.layers[il].attn_norm,
  6032. model.layers[il].attn_norm_b,
  6033. LLM_NORM, cb, il);
  6034. cb(attn_norm, "attn_norm", il);
  6035. // self-attention
  6036. {
  6037. if (model.layers[il].attn_norm_2) {
  6038. // Falcon-40B
  6039. cur = llm_build_norm(ctx0, inpL, hparams,
  6040. model.layers[il].attn_norm_2,
  6041. model.layers[il].attn_norm_2_b,
  6042. LLM_NORM, cb, il);
  6043. cb(cur, "attn_norm_2", il);
  6044. } else {
  6045. cur = attn_norm;
  6046. }
  6047. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6048. cb(cur, "wqkv", il);
  6049. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6050. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6051. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6052. cb(Qcur, "Qcur", il);
  6053. cb(Kcur, "Kcur", il);
  6054. cb(Vcur, "Vcur", il);
  6055. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6056. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6057. // using mode = 2 for neox mode
  6058. Qcur = ggml_rope_custom(
  6059. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6060. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6061. );
  6062. cb(Qcur, "Qcur", il);
  6063. Kcur = ggml_rope_custom(
  6064. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6065. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6066. );
  6067. cb(Kcur, "Kcur", il);
  6068. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6069. model.layers[il].wo, NULL,
  6070. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6071. }
  6072. if (il == n_layer - 1) {
  6073. // skip computing output for unused tokens
  6074. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6075. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6076. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6077. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6078. }
  6079. struct ggml_tensor * ffn_inp = cur;
  6080. // feed forward
  6081. {
  6082. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6083. model.layers[il].ffn_up, NULL,
  6084. NULL, NULL,
  6085. model.layers[il].ffn_down, NULL,
  6086. NULL,
  6087. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6088. cb(cur, "ffn_out", il);
  6089. }
  6090. cur = ggml_add(ctx0, cur, ffn_inp);
  6091. cb(cur, "l_out", il);
  6092. cur = ggml_add(ctx0, cur, inpL);
  6093. cb(cur, "l_out", il);
  6094. // input for next layer
  6095. inpL = cur;
  6096. }
  6097. cur = inpL;
  6098. // norm
  6099. cur = llm_build_norm(ctx0, cur, hparams,
  6100. model.output_norm,
  6101. model.output_norm_b,
  6102. LLM_NORM, cb, -1);
  6103. cb(cur, "result_norm", -1);
  6104. cur = ggml_mul_mat(ctx0, model.output, cur);
  6105. cb(cur, "result_output", -1);
  6106. ggml_build_forward_expand(gf, cur);
  6107. return gf;
  6108. }
  6109. struct ggml_cgraph * build_grok() {
  6110. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6111. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6112. int32_t n_tokens = this->n_tokens;
  6113. const int64_t n_embd_head = hparams.n_embd_head_v;
  6114. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6115. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6116. struct ggml_tensor * cur;
  6117. struct ggml_tensor * inpL;
  6118. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6119. // multiply by embedding_multiplier_scale of 78.38367176906169
  6120. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6121. // inp_pos - contains the positions
  6122. struct ggml_tensor * inp_pos = build_inp_pos();
  6123. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6124. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6125. for (int il = 0; il < n_layer; ++il) {
  6126. struct ggml_tensor * inpSA = inpL;
  6127. // norm
  6128. cur = llm_build_norm(ctx0, inpL, hparams,
  6129. model.layers[il].attn_norm, NULL,
  6130. LLM_NORM_RMS, cb, il);
  6131. cb(cur, "attn_norm", il);
  6132. // self-attention
  6133. {
  6134. // compute Q and K and RoPE them
  6135. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6136. cb(Qcur, "Qcur", il);
  6137. if (model.layers[il].bq) {
  6138. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6139. cb(Qcur, "Qcur", il);
  6140. }
  6141. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6142. cb(Kcur, "Kcur", il);
  6143. if (model.layers[il].bk) {
  6144. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6145. cb(Kcur, "Kcur", il);
  6146. }
  6147. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6148. cb(Vcur, "Vcur", il);
  6149. if (model.layers[il].bv) {
  6150. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6151. cb(Vcur, "Vcur", il);
  6152. }
  6153. Qcur = ggml_rope_custom(
  6154. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6155. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6156. ext_factor, attn_factor, beta_fast, beta_slow
  6157. );
  6158. cb(Qcur, "Qcur", il);
  6159. Kcur = ggml_rope_custom(
  6160. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6161. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6162. ext_factor, attn_factor, beta_fast, beta_slow
  6163. );
  6164. cb(Kcur, "Kcur", il);
  6165. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6166. model.layers[il].wo, model.layers[il].bo,
  6167. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6168. }
  6169. if (il == n_layer - 1) {
  6170. // skip computing output for unused tokens
  6171. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6172. n_tokens = n_outputs;
  6173. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6174. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6175. }
  6176. // Grok
  6177. // if attn_out_norm is present then apply it before adding the input
  6178. if (model.layers[il].attn_out_norm) {
  6179. cur = llm_build_norm(ctx0, cur, hparams,
  6180. model.layers[il].attn_out_norm, NULL,
  6181. LLM_NORM_RMS, cb, il);
  6182. cb(cur, "attn_out_norm", il);
  6183. }
  6184. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6185. cb(ffn_inp, "ffn_inp", il);
  6186. // feed-forward network
  6187. // MoE branch
  6188. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6189. model.layers[il].ffn_norm, NULL,
  6190. LLM_NORM_RMS, cb, il);
  6191. cb(cur, "ffn_norm", il);
  6192. cur = llm_build_moe_ffn(ctx0, cur,
  6193. model.layers[il].ffn_gate_inp,
  6194. model.layers[il].ffn_up_exps,
  6195. model.layers[il].ffn_gate_exps,
  6196. model.layers[il].ffn_down_exps,
  6197. n_expert, n_expert_used,
  6198. LLM_FFN_GELU, true,
  6199. cb, il);
  6200. cb(cur, "ffn_moe_out", il);
  6201. // Grok
  6202. // if layer_out_norm is present then apply it before adding the input
  6203. // Idea: maybe ffn_out_norm is a better name
  6204. if (model.layers[il].layer_out_norm) {
  6205. cur = llm_build_norm(ctx0, cur, hparams,
  6206. model.layers[il].layer_out_norm, NULL,
  6207. LLM_NORM_RMS, cb, il);
  6208. cb(cur, "layer_out_norm", il);
  6209. }
  6210. cur = ggml_add(ctx0, cur, ffn_inp);
  6211. cb(cur, "ffn_out", il);
  6212. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6213. if (layer_dir != nullptr) {
  6214. cur = ggml_add(ctx0, cur, layer_dir);
  6215. }
  6216. cb(cur, "l_out", il);
  6217. // input for next layer
  6218. inpL = cur;
  6219. }
  6220. cur = inpL;
  6221. cur = llm_build_norm(ctx0, cur, hparams,
  6222. model.output_norm, NULL,
  6223. LLM_NORM_RMS, cb, -1);
  6224. cb(cur, "result_norm", -1);
  6225. // lm_head
  6226. cur = ggml_mul_mat(ctx0, model.output, cur);
  6227. // Grok
  6228. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6229. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6230. cb(cur, "result_output", -1);
  6231. ggml_build_forward_expand(gf, cur);
  6232. return gf;
  6233. }
  6234. struct ggml_cgraph * build_dbrx() {
  6235. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6236. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6237. int32_t n_tokens = this->n_tokens;
  6238. const int64_t n_embd_head = hparams.n_embd_head_v;
  6239. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6240. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6241. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6242. struct ggml_tensor * cur;
  6243. struct ggml_tensor * inpL;
  6244. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6245. // inp_pos - contains the positions
  6246. struct ggml_tensor * inp_pos = build_inp_pos();
  6247. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6248. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6249. for (int il = 0; il < n_layer; ++il) {
  6250. struct ggml_tensor * inpSA = inpL;
  6251. // norm
  6252. cur = llm_build_norm(ctx0, inpL, hparams,
  6253. model.layers[il].attn_norm, NULL,
  6254. LLM_NORM, cb, il);
  6255. cb(cur, "attn_norm", il);
  6256. // self-attention
  6257. {
  6258. struct ggml_tensor * Qcur = nullptr;
  6259. struct ggml_tensor * Kcur = nullptr;
  6260. struct ggml_tensor * Vcur = nullptr;
  6261. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6262. cb(cur, "wqkv", il);
  6263. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6264. cb(cur, "wqkv_clamped", il);
  6265. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6266. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6267. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6268. cb(Qcur, "Qcur", il);
  6269. cb(Kcur, "Kcur", il);
  6270. cb(Vcur, "Vcur", il);
  6271. Qcur = ggml_rope_custom(
  6272. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6273. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6274. ext_factor, attn_factor, beta_fast, beta_slow
  6275. );
  6276. cb(Qcur, "Qcur", il);
  6277. Kcur = ggml_rope_custom(
  6278. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6279. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6280. ext_factor, attn_factor, beta_fast, beta_slow
  6281. );
  6282. cb(Kcur, "Kcur", il);
  6283. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6284. model.layers[il].wo, NULL,
  6285. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6286. }
  6287. if (il == n_layer - 1) {
  6288. // skip computing output for unused tokens
  6289. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6290. n_tokens = n_outputs;
  6291. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6292. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6293. }
  6294. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6295. cb(ffn_inp, "ffn_inp", il);
  6296. // feed-forward network
  6297. // MoE branch
  6298. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6299. model.layers[il].attn_out_norm, NULL,
  6300. LLM_NORM, cb, il);
  6301. cb(cur, "attn_out_norm", il);
  6302. cur = llm_build_moe_ffn(ctx0, cur,
  6303. model.layers[il].ffn_gate_inp,
  6304. model.layers[il].ffn_up_exps,
  6305. model.layers[il].ffn_gate_exps,
  6306. model.layers[il].ffn_down_exps,
  6307. n_expert, n_expert_used,
  6308. LLM_FFN_SILU, true,
  6309. cb, il);
  6310. cb(cur, "ffn_moe_out", il);
  6311. cur = ggml_add(ctx0, cur, ffn_inp);
  6312. cb(cur, "ffn_out", il);
  6313. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6314. if (layer_dir != nullptr) {
  6315. cur = ggml_add(ctx0, cur, layer_dir);
  6316. }
  6317. cb(cur, "l_out", il);
  6318. // input for next layer
  6319. inpL = cur;
  6320. }
  6321. cur = inpL;
  6322. cur = llm_build_norm(ctx0, cur, hparams,
  6323. model.output_norm, NULL,
  6324. LLM_NORM, cb, -1);
  6325. cb(cur, "result_norm", -1);
  6326. // lm_head
  6327. cur = ggml_mul_mat(ctx0, model.output, cur);
  6328. cb(cur, "result_output", -1);
  6329. ggml_build_forward_expand(gf, cur);
  6330. return gf;
  6331. }
  6332. struct ggml_cgraph * build_starcoder() {
  6333. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6334. const int64_t n_embd_head = hparams.n_embd_head_v;
  6335. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6336. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6337. struct ggml_tensor * cur;
  6338. struct ggml_tensor * inpL;
  6339. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6340. // inp_pos - contains the positions
  6341. struct ggml_tensor * inp_pos = build_inp_pos();
  6342. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6343. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6344. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6345. cb(pos, "pos_embd", -1);
  6346. inpL = ggml_add(ctx0, inpL, pos);
  6347. cb(inpL, "inpL", -1);
  6348. for (int il = 0; il < n_layer; ++il) {
  6349. cur = llm_build_norm(ctx0, inpL, hparams,
  6350. model.layers[il].attn_norm,
  6351. model.layers[il].attn_norm_b,
  6352. LLM_NORM, cb, il);
  6353. cb(cur, "attn_norm", il);
  6354. // self-attention
  6355. {
  6356. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6357. cb(cur, "wqkv", il);
  6358. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6359. cb(cur, "bqkv", il);
  6360. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6361. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6362. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6363. cb(Qcur, "Qcur", il);
  6364. cb(Kcur, "Kcur", il);
  6365. cb(Vcur, "Vcur", il);
  6366. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6367. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6368. model.layers[il].wo, model.layers[il].bo,
  6369. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6370. }
  6371. if (il == n_layer - 1) {
  6372. // skip computing output for unused tokens
  6373. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6374. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6375. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6376. }
  6377. // add the input
  6378. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6379. cb(ffn_inp, "ffn_inp", il);
  6380. // FF
  6381. {
  6382. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6383. model.layers[il].ffn_norm,
  6384. model.layers[il].ffn_norm_b,
  6385. LLM_NORM, cb, il);
  6386. cb(cur, "ffn_norm", il);
  6387. cur = llm_build_ffn(ctx0, cur,
  6388. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6389. NULL, NULL,
  6390. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6391. NULL,
  6392. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6393. cb(cur, "ffn_out", il);
  6394. }
  6395. inpL = ggml_add(ctx0, cur, ffn_inp);
  6396. cb(inpL, "l_out", il);
  6397. }
  6398. cur = llm_build_norm(ctx0, inpL, hparams,
  6399. model.output_norm,
  6400. model.output_norm_b,
  6401. LLM_NORM, cb, -1);
  6402. cb(cur, "result_norm", -1);
  6403. cur = ggml_mul_mat(ctx0, model.output, cur);
  6404. cb(cur, "result_output", -1);
  6405. ggml_build_forward_expand(gf, cur);
  6406. return gf;
  6407. }
  6408. struct ggml_cgraph * build_persimmon() {
  6409. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6410. const int64_t n_embd_head = hparams.n_embd_head_v;
  6411. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6412. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6413. struct ggml_tensor * cur;
  6414. struct ggml_tensor * inpL;
  6415. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6416. // inp_pos - contains the positions
  6417. struct ggml_tensor * inp_pos = build_inp_pos();
  6418. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6419. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6420. for (int il = 0; il < n_layer; ++il) {
  6421. struct ggml_tensor * residual = inpL;
  6422. cur = llm_build_norm(ctx0, inpL, hparams,
  6423. model.layers[il].attn_norm,
  6424. model.layers[il].attn_norm_b,
  6425. LLM_NORM, cb, il);
  6426. cb(cur, "attn_norm", il);
  6427. // self attention
  6428. {
  6429. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6430. cb(cur, "wqkv", il);
  6431. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6432. cb(cur, "bqkv", il);
  6433. // split qkv
  6434. GGML_ASSERT(n_head_kv == n_head);
  6435. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6436. cb(tmpqkv, "tmpqkv", il);
  6437. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6438. cb(tmpqkv_perm, "tmpqkv", il);
  6439. struct ggml_tensor * tmpq = ggml_view_3d(
  6440. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6441. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6442. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6443. 0
  6444. );
  6445. cb(tmpq, "tmpq", il);
  6446. struct ggml_tensor * tmpk = ggml_view_3d(
  6447. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6448. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6449. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6450. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6451. );
  6452. cb(tmpk, "tmpk", il);
  6453. // Q/K Layernorm
  6454. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6455. model.layers[il].attn_q_norm,
  6456. model.layers[il].attn_q_norm_b,
  6457. LLM_NORM, cb, il);
  6458. cb(tmpq, "tmpq", il);
  6459. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6460. model.layers[il].attn_k_norm,
  6461. model.layers[il].attn_k_norm_b,
  6462. LLM_NORM, cb, il);
  6463. cb(tmpk, "tmpk", il);
  6464. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6465. struct ggml_tensor * qrot = ggml_view_3d(
  6466. ctx0, tmpq, n_rot, n_head, n_tokens,
  6467. ggml_element_size(tmpq) * n_embd_head,
  6468. ggml_element_size(tmpq) * n_embd_head * n_head,
  6469. 0
  6470. );
  6471. cb(qrot, "qrot", il);
  6472. struct ggml_tensor * krot = ggml_view_3d(
  6473. ctx0, tmpk, n_rot, n_head, n_tokens,
  6474. ggml_element_size(tmpk) * n_embd_head,
  6475. ggml_element_size(tmpk) * n_embd_head * n_head,
  6476. 0
  6477. );
  6478. cb(krot, "krot", il);
  6479. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6480. struct ggml_tensor * qpass = ggml_view_3d(
  6481. ctx0, tmpq, n_rot, n_head, n_tokens,
  6482. ggml_element_size(tmpq) * n_embd_head,
  6483. ggml_element_size(tmpq) * n_embd_head * n_head,
  6484. ggml_element_size(tmpq) * n_rot
  6485. );
  6486. cb(qpass, "qpass", il);
  6487. struct ggml_tensor * kpass = ggml_view_3d(
  6488. ctx0, tmpk, n_rot, n_head, n_tokens,
  6489. ggml_element_size(tmpk) * n_embd_head,
  6490. ggml_element_size(tmpk) * n_embd_head * n_head,
  6491. ggml_element_size(tmpk) * n_rot
  6492. );
  6493. cb(kpass, "kpass", il);
  6494. struct ggml_tensor * qrotated = ggml_rope_custom(
  6495. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6496. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6497. );
  6498. cb(qrotated, "qrotated", il);
  6499. struct ggml_tensor * krotated = ggml_rope_custom(
  6500. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6501. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6502. );
  6503. cb(krotated, "krotated", il);
  6504. // ggml currently only supports concatenation on dim=2
  6505. // so we need to permute qrot, qpass, concat, then permute back.
  6506. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6507. cb(qrotated, "qrotated", il);
  6508. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6509. cb(krotated, "krotated", il);
  6510. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6511. cb(qpass, "qpass", il);
  6512. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6513. cb(kpass, "kpass", il);
  6514. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6515. cb(Qcur, "Qcur", il);
  6516. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6517. cb(Kcur, "Kcur", il);
  6518. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6519. cb(Q, "Q", il);
  6520. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6521. cb(Kcur, "Kcur", il);
  6522. struct ggml_tensor * Vcur = ggml_view_3d(
  6523. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6524. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6525. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6526. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6527. );
  6528. cb(Vcur, "Vcur", il);
  6529. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6530. model.layers[il].wo, model.layers[il].bo,
  6531. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6532. }
  6533. if (il == n_layer - 1) {
  6534. // skip computing output for unused tokens
  6535. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6536. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6537. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6538. }
  6539. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6540. cb(ffn_inp, "ffn_inp", il);
  6541. // feed-forward network
  6542. {
  6543. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6544. model.layers[il].ffn_norm,
  6545. model.layers[il].ffn_norm_b,
  6546. LLM_NORM, cb, il);
  6547. cb(cur, "ffn_norm", il);
  6548. cur = llm_build_ffn(ctx0, cur,
  6549. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6550. NULL, NULL,
  6551. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6552. NULL,
  6553. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6554. cb(cur, "ffn_out", il);
  6555. }
  6556. cur = ggml_add(ctx0, cur, ffn_inp);
  6557. cb(cur, "l_out", il);
  6558. inpL = cur;
  6559. }
  6560. cur = inpL;
  6561. cur = llm_build_norm(ctx0, cur, hparams,
  6562. model.output_norm,
  6563. model.output_norm_b,
  6564. LLM_NORM, cb, -1);
  6565. cb(cur, "result_norm", -1);
  6566. cur = ggml_mul_mat(ctx0, model.output, cur);
  6567. cb(cur, "result_output", -1);
  6568. ggml_build_forward_expand(gf, cur);
  6569. return gf;
  6570. }
  6571. struct ggml_cgraph * build_refact() {
  6572. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6573. const int64_t n_embd_head = hparams.n_embd_head_v;
  6574. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6575. struct ggml_tensor * cur;
  6576. struct ggml_tensor * inpL;
  6577. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6578. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6579. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6580. // positions of the tokens in the KV cache
  6581. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6582. for (int il = 0; il < n_layer; ++il) {
  6583. struct ggml_tensor * inpSA = inpL;
  6584. cur = llm_build_norm(ctx0, inpL, hparams,
  6585. model.layers[il].attn_norm, NULL,
  6586. LLM_NORM_RMS, cb, il);
  6587. cb(cur, "attn_norm", il);
  6588. // self-attention
  6589. {
  6590. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6591. cb(Qcur, "Qcur", il);
  6592. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6593. cb(Kcur, "Kcur", il);
  6594. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6595. cb(Vcur, "Vcur", il);
  6596. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6597. cb(Kcur, "Kcur", il);
  6598. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6599. cb(Qcur, "Qcur", il);
  6600. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6601. model.layers[il].wo, NULL,
  6602. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6603. }
  6604. if (il == n_layer - 1) {
  6605. // skip computing output for unused tokens
  6606. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6607. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6608. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6609. }
  6610. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6611. cb(ffn_inp, "ffn_inp", il);
  6612. // feed-forward network
  6613. {
  6614. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6615. model.layers[il].ffn_norm, NULL,
  6616. LLM_NORM_RMS, cb, il);
  6617. cb(cur, "ffn_norm", il);
  6618. cur = llm_build_ffn(ctx0, cur,
  6619. model.layers[il].ffn_up, NULL,
  6620. model.layers[il].ffn_gate, NULL,
  6621. model.layers[il].ffn_down, NULL,
  6622. NULL,
  6623. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6624. cb(cur, "ffn_out", il);
  6625. }
  6626. cur = ggml_add(ctx0, cur, ffn_inp);
  6627. cb(cur, "l_out", il);
  6628. // input for next layer
  6629. inpL = cur;
  6630. }
  6631. cur = inpL;
  6632. cur = llm_build_norm(ctx0, cur, hparams,
  6633. model.output_norm, NULL,
  6634. LLM_NORM_RMS, cb, -1);
  6635. cb(cur, "result_norm", -1);
  6636. // lm_head
  6637. cur = ggml_mul_mat(ctx0, model.output, cur);
  6638. cb(cur, "result_output", -1);
  6639. ggml_build_forward_expand(gf, cur);
  6640. return gf;
  6641. }
  6642. struct ggml_cgraph * build_bert() {
  6643. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6644. const int64_t n_embd_head = hparams.n_embd_head_v;
  6645. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6646. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6647. struct ggml_tensor * cur;
  6648. struct ggml_tensor * inpL;
  6649. struct ggml_tensor * inp_pos = build_inp_pos();
  6650. struct ggml_tensor * inp_mean = build_inp_mean();
  6651. struct ggml_tensor * inp_cls = build_inp_cls();
  6652. // construct input embeddings (token, type, position)
  6653. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6654. // token types are hardcoded to zero ("Sentence A")
  6655. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6656. inpL = ggml_add(ctx0, inpL, type_row0);
  6657. if (model.arch == LLM_ARCH_BERT) {
  6658. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6659. }
  6660. cb(inpL, "inp_embd", -1);
  6661. // embed layer norm
  6662. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6663. cb(inpL, "inp_norm", -1);
  6664. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6665. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6666. // iterate layers
  6667. for (int il = 0; il < n_layer; ++il) {
  6668. struct ggml_tensor * cur = inpL;
  6669. struct ggml_tensor * Qcur;
  6670. struct ggml_tensor * Kcur;
  6671. struct ggml_tensor * Vcur;
  6672. // self-attention
  6673. if (model.arch == LLM_ARCH_BERT) {
  6674. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6675. cb(Qcur, "Qcur", il);
  6676. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6677. cb(Kcur, "Kcur", il);
  6678. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6679. cb(Vcur, "Vcur", il);
  6680. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6681. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6682. } else {
  6683. // compute Q and K and RoPE them
  6684. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6685. cb(cur, "wqkv", il);
  6686. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6687. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6688. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6689. cb(Qcur, "Qcur", il);
  6690. cb(Kcur, "Kcur", il);
  6691. cb(Vcur, "Vcur", il);
  6692. Qcur = ggml_rope_custom(
  6693. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6694. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6695. ext_factor, attn_factor, beta_fast, beta_slow
  6696. );
  6697. cb(Qcur, "Qcur", il);
  6698. Kcur = ggml_rope_custom(
  6699. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6700. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6701. ext_factor, attn_factor, beta_fast, beta_slow
  6702. );
  6703. cb(Kcur, "Kcur", il);
  6704. }
  6705. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6706. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6707. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6708. cb(kq, "kq", il);
  6709. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6710. cb(kq, "kq_soft_max_ext", il);
  6711. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6712. cb(v, "v", il);
  6713. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6714. cb(kqv, "kqv", il);
  6715. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6716. cb(kqv_merged, "kqv_merged", il);
  6717. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6718. cb(cur, "kqv_merged_cont", il);
  6719. ggml_build_forward_expand(gf, cur);
  6720. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6721. if (model.layers[il].bo) {
  6722. cb(cur, "kqv_wo", il);
  6723. }
  6724. if (model.layers[il].bo) {
  6725. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6726. }
  6727. cb(cur, "kqv_out", il);
  6728. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6729. // skip computing output for unused tokens
  6730. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6731. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6732. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6733. }
  6734. // re-add the layer input
  6735. cur = ggml_add(ctx0, cur, inpL);
  6736. // attention layer norm
  6737. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6738. struct ggml_tensor * ffn_inp = cur;
  6739. cb(ffn_inp, "ffn_inp", il);
  6740. // feed-forward network
  6741. if (model.arch == LLM_ARCH_BERT) {
  6742. cur = llm_build_ffn(ctx0, cur,
  6743. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6744. NULL, NULL,
  6745. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6746. NULL,
  6747. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6748. } else {
  6749. cur = llm_build_ffn(ctx0, cur,
  6750. model.layers[il].ffn_up, NULL,
  6751. model.layers[il].ffn_gate, NULL,
  6752. model.layers[il].ffn_down, NULL,
  6753. NULL,
  6754. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6755. }
  6756. cb(cur, "ffn_out", il);
  6757. // attentions bypass the intermediate layer
  6758. cur = ggml_add(ctx0, cur, ffn_inp);
  6759. // output layer norm
  6760. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6761. // input for next layer
  6762. inpL = cur;
  6763. }
  6764. // final output
  6765. cur = inpL;
  6766. cb(cur, "result_embd", -1);
  6767. // pooling layer
  6768. switch (pooling_type) {
  6769. case LLAMA_POOLING_TYPE_NONE:
  6770. {
  6771. // nop
  6772. } break;
  6773. case LLAMA_POOLING_TYPE_MEAN:
  6774. {
  6775. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6776. cb(cur, "result_embd_pooled", -1);
  6777. } break;
  6778. case LLAMA_POOLING_TYPE_CLS:
  6779. {
  6780. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6781. cb(cur, "result_embd_pooled", -1);
  6782. } break;
  6783. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6784. {
  6785. GGML_ASSERT(false && "Invalid pooling type");
  6786. } break;
  6787. }
  6788. ggml_build_forward_expand(gf, cur);
  6789. return gf;
  6790. }
  6791. struct ggml_cgraph * build_bloom() {
  6792. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6793. const int64_t n_embd_head = hparams.n_embd_head_v;
  6794. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6795. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6796. struct ggml_tensor * cur;
  6797. struct ggml_tensor * inpL;
  6798. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6799. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6800. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6801. // positions of the tokens in the KV cache
  6802. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6803. inpL = llm_build_norm(ctx0, inpL, hparams,
  6804. model.tok_norm,
  6805. model.tok_norm_b,
  6806. LLM_NORM, cb, -1);
  6807. cb(inpL, "inp_norm", -1);
  6808. for (int il = 0; il < n_layer; ++il) {
  6809. cur = llm_build_norm(ctx0, inpL, hparams,
  6810. model.layers[il].attn_norm,
  6811. model.layers[il].attn_norm_b,
  6812. LLM_NORM, cb, il);
  6813. cb(cur, "attn_norm", il);
  6814. // self-attention
  6815. {
  6816. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6817. cb(cur, "wqkv", il);
  6818. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6819. cb(cur, "bqkv", il);
  6820. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6821. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6822. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6823. cb(Qcur, "Qcur", il);
  6824. cb(Kcur, "Kcur", il);
  6825. cb(Vcur, "Vcur", il);
  6826. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6827. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6828. model.layers[il].wo, model.layers[il].bo,
  6829. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6830. }
  6831. if (il == n_layer - 1) {
  6832. // skip computing output for unused tokens
  6833. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6834. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6835. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6836. }
  6837. // Add the input
  6838. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6839. cb(ffn_inp, "ffn_inp", il);
  6840. // FF
  6841. {
  6842. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6843. model.layers[il].ffn_norm,
  6844. model.layers[il].ffn_norm_b,
  6845. LLM_NORM, cb, il);
  6846. cb(cur, "ffn_norm", il);
  6847. cur = llm_build_ffn(ctx0, cur,
  6848. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6849. NULL, NULL,
  6850. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6851. NULL,
  6852. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6853. cb(cur, "ffn_out", il);
  6854. }
  6855. inpL = ggml_add(ctx0, cur, ffn_inp);
  6856. cb(inpL, "l_out", il);
  6857. }
  6858. cur = llm_build_norm(ctx0, inpL, hparams,
  6859. model.output_norm,
  6860. model.output_norm_b,
  6861. LLM_NORM, cb, -1);
  6862. cb(cur, "result_norm", -1);
  6863. cur = ggml_mul_mat(ctx0, model.output, cur);
  6864. cb(cur, "result_output", -1);
  6865. ggml_build_forward_expand(gf, cur);
  6866. return gf;
  6867. }
  6868. struct ggml_cgraph * build_mpt() {
  6869. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6870. const int64_t n_embd_head = hparams.n_embd_head_v;
  6871. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6872. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6873. struct ggml_tensor * cur;
  6874. struct ggml_tensor * pos;
  6875. struct ggml_tensor * inpL;
  6876. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6877. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6878. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6879. // positions of the tokens in the KV cache
  6880. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6881. if (model.pos_embd) {
  6882. // inp_pos - contains the positions
  6883. struct ggml_tensor * inp_pos = build_inp_pos();
  6884. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6885. cb(pos, "pos_embd", -1);
  6886. inpL = ggml_add(ctx0, inpL, pos);
  6887. cb(inpL, "inpL", -1);
  6888. }
  6889. for (int il = 0; il < n_layer; ++il) {
  6890. struct ggml_tensor * attn_norm;
  6891. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6892. model.layers[il].attn_norm,
  6893. model.layers[il].attn_norm_b,
  6894. LLM_NORM, cb, il);
  6895. cb(attn_norm, "attn_norm", il);
  6896. // self-attention
  6897. {
  6898. cur = attn_norm;
  6899. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6900. cb(cur, "wqkv", il);
  6901. if (model.layers[il].bqkv){
  6902. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6903. cb(cur, "bqkv", il);
  6904. }
  6905. if (hparams.f_clamp_kqv > 0.0f) {
  6906. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6907. cb(cur, "wqkv_clamped", il);
  6908. }
  6909. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6910. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6911. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6912. cb(Qcur, "Qcur", il);
  6913. cb(Kcur, "Kcur", il);
  6914. cb(Vcur, "Vcur", il);
  6915. // Q/K Layernorm
  6916. if (model.layers[il].attn_q_norm) {
  6917. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6918. model.layers[il].attn_q_norm,
  6919. model.layers[il].attn_q_norm_b,
  6920. LLM_NORM, cb, il);
  6921. cb(Qcur, "Qcur", il);
  6922. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6923. model.layers[il].attn_k_norm,
  6924. model.layers[il].attn_k_norm_b,
  6925. LLM_NORM, cb, il);
  6926. cb(Kcur, "Kcur", il);
  6927. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6928. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6929. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6930. model.layers[il].wo, model.layers[il].bo,
  6931. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6932. } else {
  6933. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6934. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6935. model.layers[il].wo, model.layers[il].bo,
  6936. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6937. }
  6938. }
  6939. if (il == n_layer - 1) {
  6940. // skip computing output for unused tokens
  6941. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6942. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6943. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6944. }
  6945. // Add the input
  6946. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6947. cb(ffn_inp, "ffn_inp", il);
  6948. // feed forward
  6949. {
  6950. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6951. model.layers[il].ffn_norm,
  6952. model.layers[il].ffn_norm_b,
  6953. LLM_NORM, cb, il);
  6954. cb(cur, "ffn_norm", il);
  6955. cur = llm_build_ffn(ctx0, cur,
  6956. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6957. NULL, NULL,
  6958. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6959. model.layers[il].ffn_act,
  6960. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6961. cb(cur, "ffn_out", il);
  6962. }
  6963. cur = ggml_add(ctx0, cur, ffn_inp);
  6964. cb(cur, "l_out", il);
  6965. // input for next layer
  6966. inpL = cur;
  6967. }
  6968. cur = inpL;
  6969. cur = llm_build_norm(ctx0, cur, hparams,
  6970. model.output_norm,
  6971. model.output_norm_b,
  6972. LLM_NORM, cb, -1);
  6973. cb(cur, "result_norm", -1);
  6974. cur = ggml_mul_mat(ctx0, model.output, cur);
  6975. cb(cur, "result_output", -1);
  6976. ggml_build_forward_expand(gf, cur);
  6977. return gf;
  6978. }
  6979. struct ggml_cgraph * build_stablelm() {
  6980. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  6981. const int64_t n_embd_head = hparams.n_embd_head_v;
  6982. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6983. struct ggml_tensor * cur;
  6984. struct ggml_tensor * inpL;
  6985. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6986. // inp_pos - contains the positions
  6987. struct ggml_tensor * inp_pos = build_inp_pos();
  6988. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6989. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6990. for (int il = 0; il < n_layer; ++il) {
  6991. // norm
  6992. cur = llm_build_norm(ctx0, inpL, hparams,
  6993. model.layers[il].attn_norm,
  6994. model.layers[il].attn_norm_b,
  6995. LLM_NORM, cb, il);
  6996. cb(cur, "attn_norm", il);
  6997. struct ggml_tensor * inpSA = cur;
  6998. // self-attention
  6999. {
  7000. // compute Q and K and RoPE them
  7001. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7002. cb(Qcur, "Qcur", il);
  7003. if (model.layers[il].bq) {
  7004. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7005. cb(Qcur, "Qcur", il);
  7006. }
  7007. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7008. cb(Kcur, "Kcur", il);
  7009. if (model.layers[il].bk) {
  7010. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7011. cb(Kcur, "Kcur", il);
  7012. }
  7013. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7014. cb(Vcur, "Vcur", il);
  7015. if (model.layers[il].bv) {
  7016. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7017. cb(Vcur, "Vcur", il);
  7018. }
  7019. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7020. cb(Qcur, "Qcur", il);
  7021. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7022. cb(Kcur, "Kcur", il);
  7023. if (model.layers[il].attn_q_norm) {
  7024. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7025. model.layers[il].attn_q_norm,
  7026. NULL,
  7027. LLM_NORM, cb, il);
  7028. cb(Qcur, "Qcur", il);
  7029. }
  7030. if (model.layers[il].attn_k_norm) {
  7031. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7032. model.layers[il].attn_k_norm,
  7033. NULL,
  7034. LLM_NORM, cb, il);
  7035. cb(Kcur, "Kcur", il);
  7036. }
  7037. Qcur = ggml_rope_custom(
  7038. ctx0, Qcur, inp_pos,
  7039. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7040. ext_factor, attn_factor, beta_fast, beta_slow
  7041. );
  7042. cb(Qcur, "Qcur", il);
  7043. Kcur = ggml_rope_custom(
  7044. ctx0, Kcur, inp_pos,
  7045. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7046. ext_factor, attn_factor, beta_fast, beta_slow
  7047. );
  7048. cb(Kcur, "Kcur", il);
  7049. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7050. model.layers[il].wo, NULL,
  7051. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7052. }
  7053. if (il == n_layer - 1) {
  7054. // skip computing output for unused tokens
  7055. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7056. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7057. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7058. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7059. }
  7060. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7061. cb(ffn_inp, "ffn_inp", il);
  7062. // feed-forward network
  7063. {
  7064. if (model.layers[il].ffn_norm) {
  7065. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7066. model.layers[il].ffn_norm,
  7067. model.layers[il].ffn_norm_b,
  7068. LLM_NORM, cb, il);
  7069. cb(cur, "ffn_norm", il);
  7070. } else {
  7071. // parallel residual
  7072. cur = inpSA;
  7073. }
  7074. cur = llm_build_ffn(ctx0, cur,
  7075. model.layers[il].ffn_up, NULL,
  7076. model.layers[il].ffn_gate, NULL,
  7077. model.layers[il].ffn_down, NULL,
  7078. NULL,
  7079. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7080. cb(cur, "ffn_out", il);
  7081. }
  7082. cur = ggml_add(ctx0, cur, ffn_inp);
  7083. cb(cur, "l_out", il);
  7084. // input for next layer
  7085. inpL = cur;
  7086. }
  7087. cur = inpL;
  7088. cur = llm_build_norm(ctx0, cur, hparams,
  7089. model.output_norm,
  7090. model.output_norm_b,
  7091. LLM_NORM, cb, -1);
  7092. cb(cur, "result_norm", -1);
  7093. // lm_head
  7094. cur = ggml_mul_mat(ctx0, model.output, cur);
  7095. cb(cur, "result_output", -1);
  7096. ggml_build_forward_expand(gf, cur);
  7097. return gf;
  7098. }
  7099. struct ggml_cgraph * build_qwen() {
  7100. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7101. const int64_t n_embd_head = hparams.n_embd_head_v;
  7102. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7103. struct ggml_tensor * cur;
  7104. struct ggml_tensor * inpL;
  7105. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7106. // inp_pos - contains the positions
  7107. struct ggml_tensor * inp_pos = build_inp_pos();
  7108. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7109. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7110. for (int il = 0; il < n_layer; ++il) {
  7111. struct ggml_tensor * inpSA = inpL;
  7112. cur = llm_build_norm(ctx0, inpL, hparams,
  7113. model.layers[il].attn_norm, NULL,
  7114. LLM_NORM_RMS, cb, il);
  7115. cb(cur, "attn_norm", il);
  7116. // self-attention
  7117. {
  7118. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7119. cb(cur, "wqkv", il);
  7120. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7121. cb(cur, "bqkv", il);
  7122. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7123. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7124. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7125. cb(Qcur, "Qcur", il);
  7126. cb(Kcur, "Kcur", il);
  7127. cb(Vcur, "Vcur", il);
  7128. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7129. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7130. // using mode = 2 for neox mode
  7131. Qcur = ggml_rope_custom(
  7132. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7133. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7134. );
  7135. cb(Qcur, "Qcur", il);
  7136. Kcur = ggml_rope_custom(
  7137. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7138. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7139. );
  7140. cb(Kcur, "Kcur", il);
  7141. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7142. model.layers[il].wo, NULL,
  7143. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7144. }
  7145. if (il == n_layer - 1) {
  7146. // skip computing output for unused tokens
  7147. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7148. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7149. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7150. }
  7151. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7152. cb(ffn_inp, "ffn_inp", il);
  7153. // feed-forward forward
  7154. {
  7155. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7156. model.layers[il].ffn_norm, NULL,
  7157. LLM_NORM_RMS, cb, il);
  7158. cb(cur, "ffn_norm", il);
  7159. cur = llm_build_ffn(ctx0, cur,
  7160. model.layers[il].ffn_up, NULL,
  7161. model.layers[il].ffn_gate, NULL,
  7162. model.layers[il].ffn_down, NULL,
  7163. NULL,
  7164. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7165. cb(cur, "ffn_out", il);
  7166. }
  7167. cur = ggml_add(ctx0, cur, ffn_inp);
  7168. cb(cur, "l_out", il);
  7169. // input for next layer
  7170. inpL = cur;
  7171. }
  7172. cur = inpL;
  7173. cur = llm_build_norm(ctx0, cur, hparams,
  7174. model.output_norm, NULL,
  7175. LLM_NORM_RMS, cb, -1);
  7176. cb(cur, "result_norm", -1);
  7177. // lm_head
  7178. cur = ggml_mul_mat(ctx0, model.output, cur);
  7179. cb(cur, "result_output", -1);
  7180. ggml_build_forward_expand(gf, cur);
  7181. return gf;
  7182. }
  7183. struct ggml_cgraph * build_qwen2() {
  7184. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7185. const int64_t n_embd_head = hparams.n_embd_head_v;
  7186. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7187. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7188. struct ggml_tensor * cur;
  7189. struct ggml_tensor * inpL;
  7190. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7191. // inp_pos - contains the positions
  7192. struct ggml_tensor * inp_pos = build_inp_pos();
  7193. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7194. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7195. for (int il = 0; il < n_layer; ++il) {
  7196. struct ggml_tensor * inpSA = inpL;
  7197. // norm
  7198. cur = llm_build_norm(ctx0, inpL, hparams,
  7199. model.layers[il].attn_norm, NULL,
  7200. LLM_NORM_RMS, cb, il);
  7201. cb(cur, "attn_norm", il);
  7202. // self-attention
  7203. {
  7204. // compute Q and K and RoPE them
  7205. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7206. cb(Qcur, "Qcur", il);
  7207. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7208. cb(Qcur, "Qcur", il);
  7209. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7210. cb(Kcur, "Kcur", il);
  7211. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7212. cb(Kcur, "Kcur", il);
  7213. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7214. cb(Vcur, "Vcur", il);
  7215. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7216. cb(Vcur, "Vcur", il);
  7217. Qcur = ggml_rope_custom(
  7218. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7219. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7220. ext_factor, attn_factor, beta_fast, beta_slow
  7221. );
  7222. cb(Qcur, "Qcur", il);
  7223. Kcur = ggml_rope_custom(
  7224. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7225. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7226. ext_factor, attn_factor, beta_fast, beta_slow
  7227. );
  7228. cb(Kcur, "Kcur", il);
  7229. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7230. model.layers[il].wo, model.layers[il].bo,
  7231. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7232. }
  7233. if (il == n_layer - 1) {
  7234. // skip computing output for unused tokens
  7235. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7236. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7237. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7238. }
  7239. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7240. cb(ffn_inp, "ffn_inp", il);
  7241. // feed-forward network
  7242. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7243. model.layers[il].ffn_norm, NULL,
  7244. LLM_NORM_RMS, cb, il);
  7245. cb(cur, "ffn_norm", il);
  7246. cur = llm_build_ffn(ctx0, cur,
  7247. model.layers[il].ffn_up, NULL,
  7248. model.layers[il].ffn_gate, NULL,
  7249. model.layers[il].ffn_down, NULL,
  7250. NULL,
  7251. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7252. cb(cur, "ffn_out", il);
  7253. cur = ggml_add(ctx0, cur, ffn_inp);
  7254. cb(cur, "l_out", il);
  7255. // input for next layer
  7256. inpL = cur;
  7257. }
  7258. cur = inpL;
  7259. cur = llm_build_norm(ctx0, cur, hparams,
  7260. model.output_norm, NULL,
  7261. LLM_NORM_RMS, cb, -1);
  7262. cb(cur, "result_norm", -1);
  7263. // lm_head
  7264. cur = ggml_mul_mat(ctx0, model.output, cur);
  7265. cb(cur, "result_output", -1);
  7266. ggml_build_forward_expand(gf, cur);
  7267. return gf;
  7268. }
  7269. struct ggml_cgraph * build_qwen2moe() {
  7270. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7271. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7272. int32_t n_tokens = this->n_tokens;
  7273. const int64_t n_embd_head = hparams.n_embd_head_v;
  7274. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7275. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7276. struct ggml_tensor * cur;
  7277. struct ggml_tensor * inpL;
  7278. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7279. // inp_pos - contains the positions
  7280. struct ggml_tensor * inp_pos = build_inp_pos();
  7281. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7282. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7283. for (int il = 0; il < n_layer; ++il) {
  7284. struct ggml_tensor * inpSA = inpL;
  7285. // norm
  7286. cur = llm_build_norm(ctx0, inpL, hparams,
  7287. model.layers[il].attn_norm, NULL,
  7288. LLM_NORM_RMS, cb, il);
  7289. cb(cur, "attn_norm", il);
  7290. // self_attention
  7291. {
  7292. // compute Q and K and RoPE them
  7293. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7294. cb(Qcur, "Qcur", il);
  7295. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7296. cb(Qcur, "Qcur", il);
  7297. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7298. cb(Kcur, "Kcur", il);
  7299. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7300. cb(Kcur, "Kcur", il);
  7301. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7302. cb(Vcur, "Vcur", il);
  7303. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7304. cb(Vcur, "Vcur", il);
  7305. Qcur = ggml_rope_custom(
  7306. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7307. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7308. ext_factor, attn_factor, beta_fast, beta_slow
  7309. );
  7310. cb(Qcur, "Qcur", il);
  7311. Kcur = ggml_rope_custom(
  7312. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7313. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7314. ext_factor, attn_factor, beta_fast, beta_slow
  7315. );
  7316. cb(Kcur, "Kcur", il);
  7317. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7318. model.layers[il].wo, model.layers[il].bo,
  7319. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7320. }
  7321. if (il == n_layer - 1) {
  7322. // skip computing output for unused tokens
  7323. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7324. n_tokens = n_outputs;
  7325. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7326. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7327. }
  7328. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7329. cb(ffn_inp, "ffn_inp", il);
  7330. // MoE branch
  7331. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7332. model.layers[il].ffn_norm, NULL,
  7333. LLM_NORM_RMS, cb, il);
  7334. cb(cur, "ffn_norm", il);
  7335. ggml_tensor * moe_out =
  7336. llm_build_moe_ffn(ctx0, cur,
  7337. model.layers[il].ffn_gate_inp,
  7338. model.layers[il].ffn_up_exps,
  7339. model.layers[il].ffn_gate_exps,
  7340. model.layers[il].ffn_down_exps,
  7341. n_expert, n_expert_used,
  7342. LLM_FFN_SILU, false,
  7343. cb, il);
  7344. cb(cur, "ffn_moe_out", il);
  7345. // FFN shared expert
  7346. {
  7347. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7348. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7349. // sigmoid
  7350. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7351. cb(cur_gate, "ffn_shexp_gate", il);
  7352. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7353. model.layers[il].ffn_up_shexp, NULL,
  7354. model.layers[il].ffn_gate_shexp, NULL,
  7355. model.layers[il].ffn_down_shexp, NULL,
  7356. NULL,
  7357. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7358. cb(cur_ffn, "ffn_shexp", il);
  7359. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7360. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7361. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7362. cb(moe_out, "ffn_out", il);
  7363. cur = moe_out;
  7364. }
  7365. cur = ggml_add(ctx0, cur, ffn_inp);
  7366. cb(cur, "l_out", il);
  7367. // input for next layer
  7368. inpL = cur;
  7369. }
  7370. cur = inpL;
  7371. cur = llm_build_norm(ctx0, cur, hparams,
  7372. model.output_norm, NULL,
  7373. LLM_NORM_RMS, cb, -1);
  7374. cb(cur, "result_norm", -1);
  7375. // lm_head
  7376. cur = ggml_mul_mat(ctx0, model.output, cur);
  7377. cb(cur, "result_output", -1);
  7378. ggml_build_forward_expand(gf, cur);
  7379. return gf;
  7380. }
  7381. struct ggml_cgraph * build_phi2() {
  7382. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7383. const int64_t n_embd_head = hparams.n_embd_head_v;
  7384. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7385. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7386. struct ggml_tensor * cur;
  7387. struct ggml_tensor * attn_norm_output;
  7388. struct ggml_tensor * ffn_output;
  7389. struct ggml_tensor * inpL;
  7390. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7391. // inp_pos - contains the positions
  7392. struct ggml_tensor * inp_pos = build_inp_pos();
  7393. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7394. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7395. for (int il = 0; il < n_layer; ++il) {
  7396. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7397. model.layers[il].attn_norm,
  7398. model.layers[il].attn_norm_b,
  7399. LLM_NORM, cb, il);
  7400. cb(attn_norm_output, "attn_norm", il);
  7401. // self-attention
  7402. {
  7403. struct ggml_tensor * Qcur = nullptr;
  7404. struct ggml_tensor * Kcur = nullptr;
  7405. struct ggml_tensor * Vcur = nullptr;
  7406. if (model.layers[il].wqkv) {
  7407. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7408. cb(cur, "wqkv", il);
  7409. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7410. cb(cur, "bqkv", il);
  7411. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7412. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7413. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7414. } else {
  7415. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7416. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7417. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7418. }
  7419. cb(Qcur, "Qcur", il);
  7420. cb(Kcur, "Kcur", il);
  7421. cb(Vcur, "Vcur", il);
  7422. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7423. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7424. Qcur = ggml_rope_custom(
  7425. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7426. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7427. );
  7428. cb(Qcur, "Qcur", il);
  7429. // with phi2, we scale the Q to avoid precision issues
  7430. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7431. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7432. cb(Qcur, "Qcur", il);
  7433. Kcur = ggml_rope_custom(
  7434. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7435. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7436. );
  7437. cb(Kcur, "Kcur", il);
  7438. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7439. model.layers[il].wo, model.layers[il].bo,
  7440. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7441. }
  7442. if (il == n_layer - 1) {
  7443. // skip computing output for unused tokens
  7444. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7445. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7446. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7447. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7448. }
  7449. // FF
  7450. {
  7451. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7452. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7453. NULL, NULL,
  7454. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7455. NULL,
  7456. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7457. cb(ffn_output, "ffn_out", il);
  7458. }
  7459. cur = ggml_add(ctx0, cur, ffn_output);
  7460. cb(cur, "l_out", il);
  7461. cur = ggml_add(ctx0, cur, inpL);
  7462. cb(cur, "l_out", il);
  7463. inpL = cur;
  7464. }
  7465. cur = llm_build_norm(ctx0, inpL, hparams,
  7466. model.output_norm,
  7467. model.output_norm_b,
  7468. LLM_NORM, cb, -1);
  7469. cb(cur, "result_norm", -1);
  7470. cur = ggml_mul_mat(ctx0, model.output, cur);
  7471. cb(cur, "result_output_no_bias", -1);
  7472. cur = ggml_add(ctx0, cur, model.output_b);
  7473. cb(cur, "result_output", -1);
  7474. ggml_build_forward_expand(gf, cur);
  7475. return gf;
  7476. }
  7477. struct ggml_cgraph * build_plamo() {
  7478. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7479. const int64_t n_embd_head = hparams.n_embd_head_v;
  7480. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7481. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7482. struct ggml_tensor * cur;
  7483. struct ggml_tensor * inpL;
  7484. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7485. // inp_pos - contains the positions
  7486. struct ggml_tensor * inp_pos = build_inp_pos();
  7487. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7488. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7489. for (int il = 0; il < n_layer; ++il) {
  7490. // norm
  7491. cur = llm_build_norm(ctx0, inpL, hparams,
  7492. model.layers[il].attn_norm, NULL,
  7493. LLM_NORM_RMS, cb, il);
  7494. cb(cur, "attn_norm", il);
  7495. struct ggml_tensor * attention_norm = cur;
  7496. // self-attention
  7497. {
  7498. // compute Q and K and RoPE them
  7499. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7500. cb(Qcur, "Qcur", il);
  7501. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7502. cb(Kcur, "Kcur", il);
  7503. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7504. cb(Vcur, "Vcur", il);
  7505. Qcur = ggml_rope_custom(
  7506. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7507. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7508. ext_factor, attn_factor, beta_fast, beta_slow);
  7509. cb(Qcur, "Qcur", il);
  7510. Kcur = ggml_rope_custom(
  7511. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7512. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7513. ext_factor, attn_factor, beta_fast, beta_slow);
  7514. cb(Kcur, "Kcur", il);
  7515. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7516. model.layers[il].wo, NULL,
  7517. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7518. }
  7519. struct ggml_tensor * sa_out = cur;
  7520. cur = attention_norm;
  7521. if (il == n_layer - 1) {
  7522. // skip computing output for unused tokens
  7523. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7524. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7525. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7526. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7527. }
  7528. // feed-forward network
  7529. {
  7530. cur = llm_build_ffn(ctx0, cur,
  7531. model.layers[il].ffn_up, NULL,
  7532. model.layers[il].ffn_gate, NULL,
  7533. model.layers[il].ffn_down, NULL,
  7534. NULL,
  7535. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7536. cb(cur, "ffn_out", il);
  7537. }
  7538. cur = ggml_add(ctx0, cur, sa_out);
  7539. cb(cur, "l_out", il);
  7540. cur = ggml_add(ctx0, cur, inpL);
  7541. cb(cur, "l_out", il);
  7542. // input for next layer
  7543. inpL = cur;
  7544. }
  7545. cur = inpL;
  7546. cur = llm_build_norm(ctx0, cur, hparams,
  7547. model.output_norm, NULL,
  7548. LLM_NORM_RMS, cb, -1);
  7549. cb(cur, "result_norm", -1);
  7550. // lm_head
  7551. cur = ggml_mul_mat(ctx0, model.output, cur);
  7552. cb(cur, "result_output", -1);
  7553. ggml_build_forward_expand(gf, cur);
  7554. return gf;
  7555. }
  7556. struct ggml_cgraph * build_gpt2() {
  7557. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7558. const int64_t n_embd_head = hparams.n_embd_head_v;
  7559. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7560. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7561. struct ggml_tensor * cur;
  7562. struct ggml_tensor * pos;
  7563. struct ggml_tensor * inpL;
  7564. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7565. // inp_pos - contains the positions
  7566. struct ggml_tensor * inp_pos = build_inp_pos();
  7567. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7568. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7569. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7570. cb(pos, "pos_embd", -1);
  7571. inpL = ggml_add(ctx0, inpL, pos);
  7572. cb(inpL, "inpL", -1);
  7573. for (int il = 0; il < n_layer; ++il) {
  7574. cur = llm_build_norm(ctx0, inpL, hparams,
  7575. model.layers[il].attn_norm,
  7576. model.layers[il].attn_norm_b,
  7577. LLM_NORM, cb, il);
  7578. cb(cur, "attn_norm", il);
  7579. // self-attention
  7580. {
  7581. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7582. cb(cur, "wqkv", il);
  7583. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7584. cb(cur, "bqkv", il);
  7585. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7586. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7587. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7588. cb(Qcur, "Qcur", il);
  7589. cb(Kcur, "Kcur", il);
  7590. cb(Vcur, "Vcur", il);
  7591. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7592. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7593. model.layers[il].wo, model.layers[il].bo,
  7594. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7595. }
  7596. if (il == n_layer - 1) {
  7597. // skip computing output for unused tokens
  7598. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7599. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7600. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7601. }
  7602. // add the input
  7603. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7604. cb(ffn_inp, "ffn_inp", il);
  7605. // FF
  7606. {
  7607. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7608. model.layers[il].ffn_norm,
  7609. model.layers[il].ffn_norm_b,
  7610. LLM_NORM, cb, il);
  7611. cb(cur, "ffn_norm", il);
  7612. cur = llm_build_ffn(ctx0, cur,
  7613. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7614. NULL, NULL,
  7615. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7616. NULL,
  7617. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7618. cb(cur, "ffn_out", il);
  7619. }
  7620. inpL = ggml_add(ctx0, cur, ffn_inp);
  7621. cb(inpL, "l_out", il);
  7622. }
  7623. cur = llm_build_norm(ctx0, inpL, hparams,
  7624. model.output_norm,
  7625. model.output_norm_b,
  7626. LLM_NORM, cb, -1);
  7627. cb(cur, "result_norm", -1);
  7628. cur = ggml_mul_mat(ctx0, model.output, cur);
  7629. cb(cur, "result_output", -1);
  7630. ggml_build_forward_expand(gf, cur);
  7631. return gf;
  7632. }
  7633. struct ggml_cgraph * build_codeshell() {
  7634. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7635. const int64_t n_embd_head = hparams.n_embd_head_v;
  7636. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7637. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7638. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7639. struct ggml_tensor * cur;
  7640. struct ggml_tensor * inpL;
  7641. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7642. // inp_pos - contains the positions
  7643. struct ggml_tensor * inp_pos = build_inp_pos();
  7644. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7645. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7646. for (int il = 0; il < n_layer; ++il) {
  7647. cur = llm_build_norm(ctx0, inpL, hparams,
  7648. model.layers[il].attn_norm,
  7649. model.layers[il].attn_norm_b,
  7650. LLM_NORM, cb, il);
  7651. cb(cur, "attn_norm", il);
  7652. // self-attention
  7653. {
  7654. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7655. cb(cur, "wqkv", il);
  7656. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7657. cb(cur, "bqkv", il);
  7658. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7659. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7660. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7661. cb(tmpq, "tmpq", il);
  7662. cb(tmpk, "tmpk", il);
  7663. cb(Vcur, "Vcur", il);
  7664. struct ggml_tensor * Qcur = ggml_rope_custom(
  7665. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7666. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7667. ext_factor, attn_factor, beta_fast, beta_slow
  7668. );
  7669. cb(Qcur, "Qcur", il);
  7670. struct ggml_tensor * Kcur = ggml_rope_custom(
  7671. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7672. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7673. ext_factor, attn_factor, beta_fast, beta_slow
  7674. );
  7675. cb(Kcur, "Kcur", il);
  7676. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7677. model.layers[il].wo, model.layers[il].bo,
  7678. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7679. }
  7680. if (il == n_layer - 1) {
  7681. // skip computing output for unused tokens
  7682. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7683. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7684. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7685. }
  7686. // add the input
  7687. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7688. cb(ffn_inp, "ffn_inp", il);
  7689. // FF
  7690. {
  7691. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7692. model.layers[il].ffn_norm,
  7693. model.layers[il].ffn_norm_b,
  7694. LLM_NORM, cb, il);
  7695. cb(cur, "ffn_norm", il);
  7696. cur = llm_build_ffn(ctx0, cur,
  7697. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7698. NULL, NULL,
  7699. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7700. NULL,
  7701. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7702. cb(cur, "ffn_out", il);
  7703. }
  7704. inpL = ggml_add(ctx0, cur, ffn_inp);
  7705. cb(inpL, "l_out", il);
  7706. }
  7707. cur = llm_build_norm(ctx0, inpL, hparams,
  7708. model.output_norm,
  7709. model.output_norm_b,
  7710. LLM_NORM, cb, -1);
  7711. cb(cur, "result_norm", -1);
  7712. cur = ggml_mul_mat(ctx0, model.output, cur);
  7713. cb(cur, "result_output", -1);
  7714. ggml_build_forward_expand(gf, cur);
  7715. return gf;
  7716. }
  7717. struct ggml_cgraph * build_orion() {
  7718. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7719. const int64_t n_embd_head = hparams.n_embd_head_v;
  7720. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7721. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7722. struct ggml_tensor * cur;
  7723. struct ggml_tensor * inpL;
  7724. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7725. // inp_pos - contains the positions
  7726. struct ggml_tensor * inp_pos = build_inp_pos();
  7727. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7728. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7729. for (int il = 0; il < n_layer; ++il) {
  7730. struct ggml_tensor * inpSA = inpL;
  7731. // norm
  7732. cur = llm_build_norm(ctx0, inpL, hparams,
  7733. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7734. LLM_NORM, cb, il);
  7735. cb(cur, "attn_norm", il);
  7736. // self-attention
  7737. {
  7738. // compute Q and K and RoPE them
  7739. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7740. cb(Qcur, "Qcur", il);
  7741. // if (model.layers[il].bq) {
  7742. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7743. // cb(Qcur, "Qcur", il);
  7744. // }
  7745. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7746. cb(Kcur, "Kcur", il);
  7747. // if (model.layers[il].bk) {
  7748. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7749. // cb(Kcur, "Kcur", il);
  7750. // }
  7751. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7752. cb(Vcur, "Vcur", il);
  7753. // if (model.layers[il].bv) {
  7754. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7755. // cb(Vcur, "Vcur", il);
  7756. // }
  7757. Qcur = ggml_rope_custom(
  7758. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7759. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7760. ext_factor, attn_factor, beta_fast, beta_slow
  7761. );
  7762. cb(Qcur, "Qcur", il);
  7763. Kcur = ggml_rope_custom(
  7764. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7765. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7766. ext_factor, attn_factor, beta_fast, beta_slow
  7767. );
  7768. cb(Kcur, "Kcur", il);
  7769. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7770. model.layers[il].wo, NULL,
  7771. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7772. }
  7773. if (il == n_layer - 1) {
  7774. // skip computing output for unused tokens
  7775. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7776. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7777. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7778. }
  7779. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7780. cb(ffn_inp, "ffn_inp", il);
  7781. // feed-forward network
  7782. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7783. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7784. LLM_NORM, cb, il);
  7785. cb(cur, "ffn_norm", il);
  7786. cur = llm_build_ffn(ctx0, cur,
  7787. model.layers[il].ffn_up, NULL,
  7788. model.layers[il].ffn_gate, NULL,
  7789. model.layers[il].ffn_down, NULL,
  7790. NULL,
  7791. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7792. cb(cur, "ffn_out", il);
  7793. cur = ggml_add(ctx0, cur, ffn_inp);
  7794. cb(cur, "l_out", il);
  7795. // input for next layer
  7796. inpL = cur;
  7797. }
  7798. cur = inpL;
  7799. cur = llm_build_norm(ctx0, cur, hparams,
  7800. model.output_norm, model.output_norm_b,
  7801. LLM_NORM, cb, -1);
  7802. cb(cur, "result_norm", -1);
  7803. // lm_head
  7804. cur = ggml_mul_mat(ctx0, model.output, cur);
  7805. cb(cur, "result_output", -1);
  7806. ggml_build_forward_expand(gf, cur);
  7807. return gf;
  7808. }
  7809. struct ggml_cgraph * build_internlm2() {
  7810. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7811. const int64_t n_embd_head = hparams.n_embd_head_v;
  7812. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7813. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7814. struct ggml_tensor * cur;
  7815. struct ggml_tensor * inpL;
  7816. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7817. // inp_pos - contains the positions
  7818. struct ggml_tensor * inp_pos = build_inp_pos();
  7819. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7820. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7821. for (int il = 0; il < n_layer; ++il) {
  7822. struct ggml_tensor * inpSA = inpL;
  7823. // norm
  7824. cur = llm_build_norm(ctx0, inpL, hparams,
  7825. model.layers[il].attn_norm, NULL,
  7826. LLM_NORM_RMS, cb, il);
  7827. cb(cur, "attn_norm", il);
  7828. // self-attention
  7829. {
  7830. // compute Q and K and RoPE them
  7831. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7832. cb(Qcur, "Qcur", il);
  7833. if (model.layers[il].bq) {
  7834. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7835. cb(Qcur, "Qcur", il);
  7836. }
  7837. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7838. cb(Kcur, "Kcur", il);
  7839. if (model.layers[il].bk) {
  7840. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7841. cb(Kcur, "Kcur", il);
  7842. }
  7843. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7844. cb(Vcur, "Vcur", il);
  7845. if (model.layers[il].bv) {
  7846. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7847. cb(Vcur, "Vcur", il);
  7848. }
  7849. Qcur = ggml_rope_custom(
  7850. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7851. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7852. ext_factor, attn_factor, beta_fast, beta_slow
  7853. );
  7854. cb(Qcur, "Qcur", il);
  7855. Kcur = ggml_rope_custom(
  7856. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7857. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7858. ext_factor, attn_factor, beta_fast, beta_slow
  7859. );
  7860. cb(Kcur, "Kcur", il);
  7861. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7862. model.layers[il].wo, model.layers[il].bo,
  7863. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7864. }
  7865. if (il == n_layer - 1) {
  7866. // skip computing output for unused tokens
  7867. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7868. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7869. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7870. }
  7871. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7872. cb(ffn_inp, "ffn_inp", il);
  7873. // feed-forward network
  7874. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7875. model.layers[il].ffn_norm, NULL,
  7876. LLM_NORM_RMS, cb, il);
  7877. cb(cur, "ffn_norm", il);
  7878. cur = llm_build_ffn(ctx0, cur,
  7879. model.layers[il].ffn_up, NULL,
  7880. model.layers[il].ffn_gate, NULL,
  7881. model.layers[il].ffn_down, NULL,
  7882. NULL,
  7883. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7884. cb(cur, "ffn_out", il);
  7885. cur = ggml_add(ctx0, cur, ffn_inp);
  7886. cb(cur, "l_out", il);
  7887. // input for next layer
  7888. inpL = cur;
  7889. }
  7890. cur = inpL;
  7891. cur = llm_build_norm(ctx0, cur, hparams,
  7892. model.output_norm, NULL,
  7893. LLM_NORM_RMS, cb, -1);
  7894. cb(cur, "result_norm", -1);
  7895. // lm_head
  7896. cur = ggml_mul_mat(ctx0, model.output, cur);
  7897. cb(cur, "result_output", -1);
  7898. ggml_build_forward_expand(gf, cur);
  7899. return gf;
  7900. }
  7901. // ref: https://arxiv.org/abs/2203.03466
  7902. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  7903. // based on the original build_llama() function
  7904. struct ggml_cgraph * build_minicpm() {
  7905. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7906. const int64_t n_embd_head = hparams.n_embd_head_v;
  7907. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7908. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7909. const int64_t n_embd = hparams.n_embd;
  7910. //TODO: if the model varies, these parameters need to be read from the model
  7911. const int64_t n_embd_base = 256;
  7912. const float scale_embd = 12.0f;
  7913. const float scale_depth = 1.4f;
  7914. struct ggml_tensor * cur;
  7915. struct ggml_tensor * inpL;
  7916. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7917. // scale the input embeddings
  7918. inpL = ggml_scale(ctx0, inpL, scale_embd);
  7919. cb(inpL, "inp_scaled", -1);
  7920. // inp_pos - contains the positions
  7921. struct ggml_tensor * inp_pos = build_inp_pos();
  7922. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7923. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7924. for (int il = 0; il < n_layer; ++il) {
  7925. struct ggml_tensor * inpSA = inpL;
  7926. // norm
  7927. cur = llm_build_norm(ctx0, inpL, hparams,
  7928. model.layers[il].attn_norm, NULL,
  7929. LLM_NORM_RMS, cb, il);
  7930. cb(cur, "attn_norm", il);
  7931. // self-attention
  7932. {
  7933. // compute Q and K and RoPE them
  7934. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7935. cb(Qcur, "Qcur", il);
  7936. if (model.layers[il].bq) {
  7937. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7938. cb(Qcur, "Qcur", il);
  7939. }
  7940. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7941. cb(Kcur, "Kcur", il);
  7942. if (model.layers[il].bk) {
  7943. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7944. cb(Kcur, "Kcur", il);
  7945. }
  7946. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7947. cb(Vcur, "Vcur", il);
  7948. if (model.layers[il].bv) {
  7949. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7950. cb(Vcur, "Vcur", il);
  7951. }
  7952. Qcur = ggml_rope_custom(
  7953. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7954. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7955. ext_factor, attn_factor, beta_fast, beta_slow
  7956. );
  7957. cb(Qcur, "Qcur", il);
  7958. Kcur = ggml_rope_custom(
  7959. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7960. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7961. ext_factor, attn_factor, beta_fast, beta_slow
  7962. );
  7963. cb(Kcur, "Kcur", il);
  7964. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7965. model.layers[il].wo, model.layers[il].bo,
  7966. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7967. }
  7968. if (il == n_layer - 1) {
  7969. // skip computing output for unused tokens
  7970. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7971. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7972. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7973. }
  7974. // scale_res - scale the hidden states for residual connection
  7975. const float scale_res = scale_depth/sqrtf(float(n_layer));
  7976. cur = ggml_scale(ctx0, cur, scale_res);
  7977. cb(cur, "hidden_scaled", -1);
  7978. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7979. cb(ffn_inp, "ffn_inp", il);
  7980. // feed-forward network
  7981. {
  7982. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7983. model.layers[il].ffn_norm, NULL,
  7984. LLM_NORM_RMS, cb, il);
  7985. cb(cur, "ffn_norm", il);
  7986. cur = llm_build_ffn(ctx0, cur,
  7987. model.layers[il].ffn_up, NULL,
  7988. model.layers[il].ffn_gate, NULL,
  7989. model.layers[il].ffn_down, NULL,
  7990. NULL,
  7991. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7992. cb(cur, "ffn_out", il);
  7993. }
  7994. // scale the hidden states for residual connection
  7995. cur = ggml_scale(ctx0, cur, scale_res);
  7996. cb(cur, "hidden_scaled_ffn", -1);
  7997. cur = ggml_add(ctx0, cur, ffn_inp);
  7998. cb(cur, "l_out", il);
  7999. // input for next layer
  8000. inpL = cur;
  8001. }
  8002. cur = inpL;
  8003. cur = llm_build_norm(ctx0, cur, hparams,
  8004. model.output_norm, NULL,
  8005. LLM_NORM_RMS, cb, -1);
  8006. cb(cur, "result_norm", -1);
  8007. // lm_head scaling
  8008. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8009. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8010. cb(cur, "lmhead_scaling", -1);
  8011. // lm_head
  8012. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8013. cb(cur, "result_output", -1);
  8014. ggml_build_forward_expand(gf, cur);
  8015. return gf;
  8016. }
  8017. struct ggml_cgraph * build_gemma() {
  8018. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8019. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8020. struct ggml_tensor * cur;
  8021. struct ggml_tensor * inpL;
  8022. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8023. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8024. cb(inpL, "inp_scaled", -1);
  8025. // inp_pos - contains the positions
  8026. struct ggml_tensor * inp_pos = build_inp_pos();
  8027. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8028. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8029. for (int il = 0; il < n_layer; ++il) {
  8030. // norm
  8031. cur = llm_build_norm(ctx0, inpL, hparams,
  8032. model.layers[il].attn_norm, NULL,
  8033. LLM_NORM_RMS, cb, il);
  8034. cb(cur, "attn_norm", il);
  8035. // self-attention
  8036. {
  8037. // compute Q and K and RoPE them
  8038. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8039. cb(Qcur, "Qcur", il);
  8040. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8041. cb(Kcur, "Kcur", il);
  8042. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8043. cb(Vcur, "Vcur", il);
  8044. Qcur = ggml_rope_custom(
  8045. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8046. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8047. ext_factor, attn_factor, beta_fast, beta_slow);
  8048. cb(Qcur, "Qcur", il);
  8049. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8050. cb(Qcur, "Qcur_scaled", il);
  8051. Kcur = ggml_rope_custom(
  8052. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8053. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8054. ext_factor, attn_factor, beta_fast, beta_slow);
  8055. cb(Kcur, "Kcur", il);
  8056. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8057. model.layers[il].wo, NULL,
  8058. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8059. }
  8060. if (il == n_layer - 1) {
  8061. // skip computing output for unused tokens
  8062. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8063. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8064. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8065. }
  8066. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8067. cb(sa_out, "sa_out", il);
  8068. cur = llm_build_norm(ctx0, sa_out, hparams,
  8069. model.layers[il].ffn_norm, NULL,
  8070. LLM_NORM_RMS, cb, il);
  8071. cb(cur, "ffn_norm", il);
  8072. // feed-forward network
  8073. {
  8074. cur = llm_build_ffn(ctx0, cur,
  8075. model.layers[il].ffn_up, NULL,
  8076. model.layers[il].ffn_gate, NULL,
  8077. model.layers[il].ffn_down, NULL,
  8078. NULL,
  8079. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8080. cb(cur, "ffn_out", il);
  8081. }
  8082. cur = ggml_add(ctx0, cur, sa_out);
  8083. cb(cur, "l_out", il);
  8084. // input for next layer
  8085. inpL = cur;
  8086. }
  8087. cur = inpL;
  8088. cur = llm_build_norm(ctx0, cur, hparams,
  8089. model.output_norm, NULL,
  8090. LLM_NORM_RMS, cb, -1);
  8091. cb(cur, "result_norm", -1);
  8092. // lm_head
  8093. cur = ggml_mul_mat(ctx0, model.output, cur);
  8094. cb(cur, "result_output", -1);
  8095. ggml_build_forward_expand(gf, cur);
  8096. return gf;
  8097. }
  8098. struct ggml_cgraph * build_starcoder2() {
  8099. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8100. const int64_t n_embd_head = hparams.n_embd_head_v;
  8101. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8102. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8103. struct ggml_tensor * cur;
  8104. struct ggml_tensor * inpL;
  8105. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8106. // inp_pos - contains the positions
  8107. struct ggml_tensor * inp_pos = build_inp_pos();
  8108. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8109. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8110. for (int il = 0; il < n_layer; ++il) {
  8111. struct ggml_tensor * inpSA = inpL;
  8112. // norm
  8113. cur = llm_build_norm(ctx0, inpL, hparams,
  8114. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8115. LLM_NORM, cb, il);
  8116. cb(cur, "attn_norm", il);
  8117. // self-attention
  8118. {
  8119. // compute Q and K and RoPE them
  8120. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8121. cb(Qcur, "Qcur", il);
  8122. if (model.layers[il].bq) {
  8123. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8124. cb(Qcur, "Qcur", il);
  8125. }
  8126. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8127. cb(Kcur, "Kcur", il);
  8128. if (model.layers[il].bk) {
  8129. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8130. cb(Kcur, "Kcur", il);
  8131. }
  8132. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8133. cb(Vcur, "Vcur", il);
  8134. if (model.layers[il].bv) {
  8135. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8136. cb(Vcur, "Vcur", il);
  8137. }
  8138. Qcur = ggml_rope_custom(
  8139. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8140. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8141. ext_factor, attn_factor, beta_fast, beta_slow
  8142. );
  8143. cb(Qcur, "Qcur", il);
  8144. Kcur = ggml_rope_custom(
  8145. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8146. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8147. ext_factor, attn_factor, beta_fast, beta_slow
  8148. );
  8149. cb(Kcur, "Kcur", il);
  8150. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8151. model.layers[il].wo, model.layers[il].bo,
  8152. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8153. }
  8154. if (il == n_layer - 1) {
  8155. // skip computing output for unused tokens
  8156. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8157. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8158. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8159. }
  8160. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8161. cb(ffn_inp, "ffn_inp", il);
  8162. // feed-forward network
  8163. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8164. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8165. LLM_NORM, cb, il);
  8166. cb(cur, "ffn_norm", il);
  8167. cur = llm_build_ffn(ctx0, cur,
  8168. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8169. NULL, NULL,
  8170. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8171. NULL,
  8172. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8173. cb(cur, "ffn_out", il);
  8174. cur = ggml_add(ctx0, cur, ffn_inp);
  8175. cb(cur, "l_out", il);
  8176. // input for next layer
  8177. inpL = cur;
  8178. }
  8179. cur = inpL;
  8180. cur = llm_build_norm(ctx0, cur, hparams,
  8181. model.output_norm, model.output_norm_b,
  8182. LLM_NORM, cb, -1);
  8183. cb(cur, "result_norm", -1);
  8184. // lm_head
  8185. cur = ggml_mul_mat(ctx0, model.output, cur);
  8186. cb(cur, "result_output", -1);
  8187. ggml_build_forward_expand(gf, cur);
  8188. return gf;
  8189. }
  8190. struct ggml_cgraph * build_mamba() {
  8191. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8192. const int64_t d_model = n_embd;
  8193. const int64_t d_conv = hparams.ssm_d_conv;
  8194. const int64_t d_inner = hparams.ssm_d_inner;
  8195. GGML_ASSERT(2 * d_model == d_inner);
  8196. const int64_t d_state = hparams.ssm_d_state;
  8197. const int64_t dt_rank = hparams.ssm_dt_rank;
  8198. struct ggml_tensor * cur;
  8199. struct ggml_tensor * inpL;
  8200. // {n_embd, n_tokens}
  8201. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8202. struct ggml_tensor * state_mask = build_inp_s_mask();
  8203. struct ggml_tensor * state_seq = build_inp_s_seq();
  8204. for (int il = 0; il < n_layer; ++il) {
  8205. // (ab)using the KV cache to store the states
  8206. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8207. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8208. // clear states of sequences which are starting at the beginning of this batch
  8209. {
  8210. conv_states = ggml_mul(ctx0,
  8211. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8212. state_mask);
  8213. ssm_states = ggml_mul(ctx0,
  8214. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8215. state_mask);
  8216. }
  8217. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8218. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8219. // norm
  8220. cur = llm_build_norm(ctx0, inpL, hparams,
  8221. model.layers[il].attn_norm, NULL,
  8222. LLM_NORM_RMS, cb, il);
  8223. cb(cur, "attn_norm", il);
  8224. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8225. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8226. // split the above in two
  8227. // => {d_inner, n_tokens}
  8228. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8229. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8230. // conv
  8231. {
  8232. // Custom operator which is needed only to ease simultaneous sequence processing.
  8233. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8234. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8235. // then element-wise multiply that with the conv1d weigth,
  8236. // then sum the elements of each row,
  8237. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8238. // then permute away the ne[0] dimension,
  8239. // and then you're left with the resulting x tensor.
  8240. // The new conv_states is the last (d_conv - 1) columns
  8241. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8242. // For simultaneous sequences, it's more complicated.
  8243. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8244. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8245. ggml_build_forward_expand(gf,
  8246. ggml_cpy(ctx0,
  8247. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8248. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8249. // extract x from x_conv
  8250. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8251. // bias
  8252. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8253. x = ggml_silu(ctx0, x);
  8254. }
  8255. // ssm
  8256. {
  8257. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8258. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8259. // split
  8260. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8261. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8262. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8263. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8264. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8265. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8266. // Custom operator to optimize the parallel associative scan
  8267. // as described in the Annex D of the Mamba paper.
  8268. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8269. // because only a single tensor can be returned.
  8270. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8271. // store last states (the second part of y_ssm_states)
  8272. ggml_build_forward_expand(gf,
  8273. ggml_cpy(ctx0,
  8274. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8275. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8276. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8277. if (il == n_layer - 1) {
  8278. // skip computing output for unused tokens
  8279. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8280. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8281. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8282. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8283. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8284. }
  8285. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8286. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8287. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8288. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8289. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8290. }
  8291. // residual
  8292. cur = ggml_add(ctx0, cur, inpL);
  8293. cb(cur, "l_out", il);
  8294. // input for next layer
  8295. inpL = cur;
  8296. }
  8297. // final rmsnorm
  8298. cur = llm_build_norm(ctx0, inpL, hparams,
  8299. model.output_norm, NULL,
  8300. LLM_NORM_RMS, cb, -1);
  8301. cb(cur, "result_norm", -1);
  8302. // lm_head
  8303. cur = ggml_mul_mat(ctx0, model.output, cur);
  8304. cb(cur, "result_output", -1);
  8305. ggml_build_forward_expand(gf, cur);
  8306. return gf;
  8307. }
  8308. struct ggml_cgraph * build_command_r() {
  8309. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8310. const int64_t n_embd_head = hparams.n_embd_head_v;
  8311. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8312. const float f_logit_scale = hparams.f_logit_scale;
  8313. struct ggml_tensor * cur;
  8314. struct ggml_tensor * inpL;
  8315. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8316. // inp_pos - contains the positions
  8317. struct ggml_tensor * inp_pos = build_inp_pos();
  8318. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8319. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8320. for (int il = 0; il < n_layer; ++il) {
  8321. // norm
  8322. cur = llm_build_norm(ctx0, inpL, hparams,
  8323. model.layers[il].attn_norm, NULL,
  8324. LLM_NORM, cb, il);
  8325. cb(cur, "attn_norm", il);
  8326. struct ggml_tensor * ffn_inp = cur;
  8327. // self-attention
  8328. {
  8329. // compute Q and K and RoPE them
  8330. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8331. cb(Qcur, "Qcur", il);
  8332. if (model.layers[il].bq) {
  8333. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8334. cb(Qcur, "Qcur", il);
  8335. }
  8336. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8337. cb(Kcur, "Kcur", il);
  8338. if (model.layers[il].bk) {
  8339. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8340. cb(Kcur, "Kcur", il);
  8341. }
  8342. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8343. cb(Vcur, "Vcur", il);
  8344. if (model.layers[il].bv) {
  8345. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8346. cb(Vcur, "Vcur", il);
  8347. }
  8348. if (model.layers[il].attn_q_norm) {
  8349. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8350. ggml_element_size(Qcur) * n_embd_head,
  8351. ggml_element_size(Qcur) * n_embd_head * n_head,
  8352. 0);
  8353. cb(Qcur, "Qcur", il);
  8354. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8355. ggml_element_size(Kcur) * n_embd_head,
  8356. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8357. 0);
  8358. cb(Kcur, "Kcur", il);
  8359. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8360. model.layers[il].attn_q_norm,
  8361. NULL,
  8362. LLM_NORM, cb, il);
  8363. cb(Qcur, "Qcur", il);
  8364. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8365. model.layers[il].attn_k_norm,
  8366. NULL,
  8367. LLM_NORM, cb, il);
  8368. cb(Kcur, "Kcur", il);
  8369. }
  8370. Qcur = ggml_rope_custom(
  8371. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8372. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8373. ext_factor, attn_factor, beta_fast, beta_slow
  8374. );
  8375. cb(Qcur, "Qcur", il);
  8376. Kcur = ggml_rope_custom(
  8377. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8378. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8379. ext_factor, attn_factor, beta_fast, beta_slow
  8380. );
  8381. cb(Kcur, "Kcur", il);
  8382. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8383. model.layers[il].wo, model.layers[il].bo,
  8384. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8385. }
  8386. if (il == n_layer - 1) {
  8387. // skip computing output for unused tokens
  8388. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8389. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8390. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8391. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8392. }
  8393. struct ggml_tensor * attn_out = cur;
  8394. // feed-forward network
  8395. {
  8396. cur = llm_build_ffn(ctx0, ffn_inp,
  8397. model.layers[il].ffn_up, NULL,
  8398. model.layers[il].ffn_gate, NULL,
  8399. model.layers[il].ffn_down, NULL,
  8400. NULL,
  8401. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8402. cb(cur, "ffn_out", il);
  8403. }
  8404. // add together residual + FFN + self-attention
  8405. cur = ggml_add(ctx0, cur, inpL);
  8406. cur = ggml_add(ctx0, cur, attn_out);
  8407. cb(cur, "l_out", il);
  8408. // input for next layer
  8409. inpL = cur;
  8410. }
  8411. cur = inpL;
  8412. cur = llm_build_norm(ctx0, cur, hparams,
  8413. model.output_norm, NULL,
  8414. LLM_NORM, cb, -1);
  8415. cb(cur, "result_norm", -1);
  8416. // lm_head
  8417. cur = ggml_mul_mat(ctx0, model.output, cur);
  8418. if (f_logit_scale) {
  8419. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8420. }
  8421. cb(cur, "result_output", -1);
  8422. ggml_build_forward_expand(gf, cur);
  8423. return gf;
  8424. }
  8425. // ref: https://allenai.org/olmo
  8426. // based on the original build_llama() function, changes:
  8427. // * non-parametric layer norm
  8428. // * clamp qkv
  8429. // * removed bias
  8430. // * removed MoE
  8431. struct ggml_cgraph * build_olmo() {
  8432. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8433. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8434. int32_t n_tokens = this->n_tokens;
  8435. const int64_t n_embd_head = hparams.n_embd_head_v;
  8436. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8437. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8438. struct ggml_tensor * cur;
  8439. struct ggml_tensor * inpL;
  8440. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8441. // inp_pos - contains the positions
  8442. struct ggml_tensor * inp_pos = build_inp_pos();
  8443. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8444. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8445. for (int il = 0; il < n_layer; ++il) {
  8446. struct ggml_tensor * inpSA = inpL;
  8447. // norm
  8448. cur = llm_build_norm(ctx0, inpL, hparams,
  8449. NULL, NULL,
  8450. LLM_NORM, cb, il);
  8451. cb(cur, "attn_norm", il);
  8452. // self-attention
  8453. {
  8454. // compute Q and K and RoPE them
  8455. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8456. cb(Qcur, "Qcur", il);
  8457. if (hparams.f_clamp_kqv > 0.0f) {
  8458. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8459. cb(Qcur, "Qcur", il);
  8460. }
  8461. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8462. cb(Kcur, "Kcur", il);
  8463. if (hparams.f_clamp_kqv > 0.0f) {
  8464. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8465. cb(Kcur, "Kcur", il);
  8466. }
  8467. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8468. cb(Vcur, "Vcur", il);
  8469. if (hparams.f_clamp_kqv > 0.0f) {
  8470. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8471. cb(Vcur, "Vcur", il);
  8472. }
  8473. Qcur = ggml_rope_custom(
  8474. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8475. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8476. ext_factor, attn_factor, beta_fast, beta_slow
  8477. );
  8478. cb(Qcur, "Qcur", il);
  8479. Kcur = ggml_rope_custom(
  8480. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8481. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8482. ext_factor, attn_factor, beta_fast, beta_slow
  8483. );
  8484. cb(Kcur, "Kcur", il);
  8485. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8486. model.layers[il].wo, nullptr,
  8487. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8488. }
  8489. if (il == n_layer - 1) {
  8490. // skip computing output for unused tokens
  8491. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8492. n_tokens = n_outputs;
  8493. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8494. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8495. }
  8496. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8497. cb(ffn_inp, "ffn_inp", il);
  8498. // feed-forward network
  8499. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8500. NULL, NULL,
  8501. LLM_NORM, cb, il);
  8502. cb(cur, "ffn_norm", il);
  8503. cur = llm_build_ffn(ctx0, cur,
  8504. model.layers[il].ffn_up, NULL,
  8505. model.layers[il].ffn_gate, NULL,
  8506. model.layers[il].ffn_down, NULL,
  8507. NULL,
  8508. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8509. cb(cur, "ffn_out", il);
  8510. cur = ggml_add(ctx0, cur, ffn_inp);
  8511. cb(cur, "ffn_out", il);
  8512. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8513. if (layer_dir != nullptr) {
  8514. cur = ggml_add(ctx0, cur, layer_dir);
  8515. }
  8516. cb(cur, "l_out", il);
  8517. // input for next layer
  8518. inpL = cur;
  8519. }
  8520. cur = inpL;
  8521. cur = llm_build_norm(ctx0, cur, hparams,
  8522. NULL, NULL,
  8523. LLM_NORM, cb, -1);
  8524. cb(cur, "result_norm", -1);
  8525. // lm_head
  8526. cur = ggml_mul_mat(ctx0, model.output, cur);
  8527. cb(cur, "result_output", -1);
  8528. ggml_build_forward_expand(gf, cur);
  8529. return gf;
  8530. }
  8531. };
  8532. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8533. llama_batch dummy;
  8534. dummy.n_tokens = 0;
  8535. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8536. struct llm_build_context llm(lctx, dummy, cb, false);
  8537. llm.init();
  8538. struct ggml_cgraph * result = llm.build_defrag(ids);
  8539. llm.free();
  8540. return result;
  8541. }
  8542. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8543. llama_batch dummy;
  8544. dummy.n_tokens = 0;
  8545. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8546. struct llm_build_context llm(lctx, dummy, cb, false);
  8547. llm.init();
  8548. struct ggml_cgraph * result = llm.build_k_shift();
  8549. llm.free();
  8550. return result;
  8551. }
  8552. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8553. llama_batch dummy;
  8554. dummy.n_tokens = 0;
  8555. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8556. struct llm_build_context llm(lctx, dummy, cb, false);
  8557. llm.init();
  8558. struct ggml_cgraph * result = llm.build_s_copy();
  8559. llm.free();
  8560. return result;
  8561. }
  8562. static struct ggml_cgraph * llama_build_graph(
  8563. llama_context & lctx,
  8564. const llama_batch & batch,
  8565. bool worst_case) {
  8566. const auto & model = lctx.model;
  8567. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8568. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8569. if (il >= 0) {
  8570. ggml_format_name(cur, "%s-%d", name, il);
  8571. } else {
  8572. ggml_set_name(cur, name);
  8573. }
  8574. if (!lctx.cparams.offload_kqv) {
  8575. if (strcmp(name, "kqv_merged_cont") == 0) {
  8576. // all nodes between the KV store and the attention output are run on the CPU
  8577. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8578. }
  8579. }
  8580. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8581. // FIXME: fix in ggml_backend_sched
  8582. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8583. if (batch.n_tokens < 32 || full_offload) {
  8584. if (il != -1 && strcmp(name, "norm") == 0) {
  8585. for (auto * backend : lctx.backends) {
  8586. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8587. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8588. break;
  8589. }
  8590. }
  8591. }
  8592. }
  8593. };
  8594. struct ggml_cgraph * result = NULL;
  8595. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8596. llm.init();
  8597. switch (model.arch) {
  8598. case LLM_ARCH_LLAMA:
  8599. {
  8600. result = llm.build_llama();
  8601. } break;
  8602. case LLM_ARCH_BAICHUAN:
  8603. {
  8604. result = llm.build_baichuan();
  8605. } break;
  8606. case LLM_ARCH_FALCON:
  8607. {
  8608. result = llm.build_falcon();
  8609. } break;
  8610. case LLM_ARCH_GROK:
  8611. {
  8612. result = llm.build_grok();
  8613. } break;
  8614. case LLM_ARCH_STARCODER:
  8615. {
  8616. result = llm.build_starcoder();
  8617. } break;
  8618. case LLM_ARCH_PERSIMMON:
  8619. {
  8620. result = llm.build_persimmon();
  8621. } break;
  8622. case LLM_ARCH_REFACT:
  8623. {
  8624. result = llm.build_refact();
  8625. } break;
  8626. case LLM_ARCH_BERT:
  8627. case LLM_ARCH_NOMIC_BERT:
  8628. {
  8629. result = llm.build_bert();
  8630. } break;
  8631. case LLM_ARCH_BLOOM:
  8632. {
  8633. result = llm.build_bloom();
  8634. } break;
  8635. case LLM_ARCH_MPT:
  8636. {
  8637. result = llm.build_mpt();
  8638. } break;
  8639. case LLM_ARCH_STABLELM:
  8640. {
  8641. result = llm.build_stablelm();
  8642. } break;
  8643. case LLM_ARCH_QWEN:
  8644. {
  8645. result = llm.build_qwen();
  8646. } break;
  8647. case LLM_ARCH_QWEN2:
  8648. {
  8649. result = llm.build_qwen2();
  8650. } break;
  8651. case LLM_ARCH_QWEN2MOE:
  8652. {
  8653. result = llm.build_qwen2moe();
  8654. } break;
  8655. case LLM_ARCH_PHI2:
  8656. {
  8657. result = llm.build_phi2();
  8658. } break;
  8659. case LLM_ARCH_PLAMO:
  8660. {
  8661. result = llm.build_plamo();
  8662. } break;
  8663. case LLM_ARCH_GPT2:
  8664. {
  8665. result = llm.build_gpt2();
  8666. } break;
  8667. case LLM_ARCH_CODESHELL:
  8668. {
  8669. result = llm.build_codeshell();
  8670. } break;
  8671. case LLM_ARCH_ORION:
  8672. {
  8673. result = llm.build_orion();
  8674. } break;
  8675. case LLM_ARCH_INTERNLM2:
  8676. {
  8677. result = llm.build_internlm2();
  8678. } break;
  8679. case LLM_ARCH_MINICPM:
  8680. {
  8681. result = llm.build_minicpm();
  8682. } break;
  8683. case LLM_ARCH_GEMMA:
  8684. {
  8685. result = llm.build_gemma();
  8686. } break;
  8687. case LLM_ARCH_STARCODER2:
  8688. {
  8689. result = llm.build_starcoder2();
  8690. } break;
  8691. case LLM_ARCH_MAMBA:
  8692. {
  8693. result = llm.build_mamba();
  8694. } break;
  8695. case LLM_ARCH_XVERSE:
  8696. {
  8697. result = llm.build_xverse();
  8698. } break;
  8699. case LLM_ARCH_COMMAND_R:
  8700. {
  8701. result = llm.build_command_r();
  8702. } break;
  8703. case LLM_ARCH_DBRX:
  8704. {
  8705. result = llm.build_dbrx();
  8706. } break;
  8707. case LLM_ARCH_OLMO:
  8708. {
  8709. result = llm.build_olmo();
  8710. } break;
  8711. default:
  8712. GGML_ASSERT(false);
  8713. }
  8714. llm.free();
  8715. return result;
  8716. }
  8717. static void llama_set_k_shift(llama_context & lctx) {
  8718. const int64_t kv_size = lctx.kv_self.size;
  8719. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8720. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8721. for (int i = 0; i < kv_size; ++i) {
  8722. data[i] = lctx.kv_self.cells[i].delta;
  8723. }
  8724. }
  8725. static void llama_set_s_copy(llama_context & lctx) {
  8726. const int64_t kv_size = lctx.kv_self.size;
  8727. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8728. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8729. for (int i = 0; i < kv_size; ++i) {
  8730. data[i] = lctx.kv_self.cells[i].src;
  8731. }
  8732. }
  8733. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8734. //
  8735. // set input data
  8736. //
  8737. const auto & hparams = lctx.model.hparams;
  8738. const auto & cparams = lctx.cparams;
  8739. const auto & kv_self = lctx.kv_self;
  8740. if (batch.token) {
  8741. const int64_t n_tokens = batch.n_tokens;
  8742. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8743. }
  8744. if (batch.embd) {
  8745. const int64_t n_embd = hparams.n_embd;
  8746. const int64_t n_tokens = batch.n_tokens;
  8747. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8748. }
  8749. if (batch.pos && lctx.inp_pos) {
  8750. const int64_t n_tokens = batch.n_tokens;
  8751. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8752. }
  8753. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8754. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8755. const int64_t n_tokens = batch.n_tokens;
  8756. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8757. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8758. if (lctx.n_outputs == n_tokens) {
  8759. for (int i = 0; i < n_tokens; ++i) {
  8760. data[i] = i;
  8761. }
  8762. } else if (batch.logits) {
  8763. int32_t n_outputs = 0;
  8764. for (int i = 0; i < n_tokens; ++i) {
  8765. if (batch.logits[i]) {
  8766. data[n_outputs++] = i;
  8767. }
  8768. }
  8769. // the graph needs to have been passed the correct number of outputs
  8770. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8771. } else if (lctx.n_outputs == 1) {
  8772. // only keep last output
  8773. data[0] = n_tokens - 1;
  8774. } else {
  8775. GGML_ASSERT(lctx.n_outputs == 0);
  8776. }
  8777. }
  8778. GGML_ASSERT(
  8779. // (!a || b) is a logical implication (a -> b)
  8780. // !hparams.causal_attn -> !cparams.causal_attn
  8781. (hparams.causal_attn || !cparams.causal_attn) &&
  8782. "causal attention with embedding models is not supported"
  8783. );
  8784. if (lctx.inp_KQ_mask) {
  8785. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  8786. if (cparams.causal_attn) {
  8787. const int64_t n_kv = kv_self.n;
  8788. const int64_t n_tokens = batch.n_tokens;
  8789. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8790. float * data = (float *) lctx.inp_KQ_mask->data;
  8791. // For causal attention, use only the previous KV cells
  8792. // of the correct sequence for each token of the batch.
  8793. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  8794. for (int h = 0; h < 1; ++h) {
  8795. for (int j = 0; j < n_tokens; ++j) {
  8796. const llama_pos pos = batch.pos[j];
  8797. const llama_seq_id seq_id = batch.seq_id[j][0];
  8798. for (int i = 0; i < n_kv; ++i) {
  8799. float f;
  8800. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  8801. f = -INFINITY;
  8802. } else {
  8803. f = 0.0f;
  8804. }
  8805. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  8806. }
  8807. }
  8808. }
  8809. } else {
  8810. // when using kv cache, the mask needs to match the kv cache size
  8811. const int64_t n_tokens = batch.n_tokens;
  8812. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  8813. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8814. float * data = (float *) lctx.inp_KQ_mask->data;
  8815. for (int h = 0; h < 1; ++h) {
  8816. for (int j = 0; j < n_tokens; ++j) {
  8817. const llama_seq_id seq_id = batch.seq_id[j][0];
  8818. for (int i = 0; i < n_tokens; ++i) {
  8819. float f = -INFINITY;
  8820. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  8821. if (batch.seq_id[i][s] == seq_id) {
  8822. f = 0.0f;
  8823. break;
  8824. }
  8825. }
  8826. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  8827. }
  8828. for (int i = n_tokens; i < n_stride; ++i) {
  8829. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  8830. }
  8831. }
  8832. }
  8833. }
  8834. }
  8835. if (hparams.need_kq_pos) {
  8836. const int64_t n_kv = kv_self.n;
  8837. GGML_ASSERT(lctx.inp_KQ_pos);
  8838. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  8839. float * data = (float *) lctx.inp_KQ_pos->data;
  8840. for (int i = 0; i < n_kv; ++i) {
  8841. data[i] = float(lctx.kv_self.cells[i].pos);
  8842. }
  8843. }
  8844. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  8845. const int64_t n_tokens = batch.n_tokens;
  8846. GGML_ASSERT(lctx.inp_mean);
  8847. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  8848. float * data = (float *) lctx.inp_mean->data;
  8849. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  8850. std::vector<uint64_t> sum(n_tokens, 0);
  8851. for (int i = 0; i < n_tokens; ++i) {
  8852. const llama_seq_id seq_id = batch.seq_id[i][0];
  8853. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  8854. sum[seq_id] += 1;
  8855. }
  8856. std::vector<float> div(n_tokens, 0.0f);
  8857. for (int i = 0; i < n_tokens; ++i) {
  8858. const uint64_t s = sum[i];
  8859. if (s > 0) {
  8860. div[i] = 1.0f/float(s);
  8861. }
  8862. }
  8863. for (int i = 0; i < n_tokens; ++i) {
  8864. const llama_seq_id seq_id = batch.seq_id[i][0];
  8865. data[seq_id*n_tokens + i] = div[seq_id];
  8866. }
  8867. }
  8868. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  8869. const int64_t n_tokens = batch.n_tokens;
  8870. GGML_ASSERT(lctx.inp_cls);
  8871. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  8872. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  8873. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  8874. for (int i = 0; i < n_tokens; ++i) {
  8875. const llama_seq_id seq_id = batch.seq_id[i][0];
  8876. const llama_pos pos = batch.pos[i];
  8877. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  8878. if (pos == 0) {
  8879. data[seq_id] = i;
  8880. }
  8881. }
  8882. }
  8883. if (kv_self.recurrent) {
  8884. const int64_t n_kv = kv_self.n;
  8885. if (lctx.inp_s_mask) {
  8886. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  8887. float * data = (float *) lctx.inp_s_mask->data;
  8888. // states which are not affected by the current batch are left untouched
  8889. for (int i = 0; i < n_kv; ++i) {
  8890. llama_seq_id seq_id = i + lctx.kv_self.head;
  8891. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  8892. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  8893. data[i] = (float) has_self_seq;
  8894. // ensure current sequences will be kept
  8895. if (!has_self_seq && kv_cell.pos >= 0) {
  8896. kv_cell.seq_id.insert(seq_id);
  8897. }
  8898. }
  8899. }
  8900. // For Mamba (and other recurrent architectures),
  8901. // update the correct state(s)/sequence(s) for each token of the batch.
  8902. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  8903. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  8904. if (lctx.inp_s_seq) {
  8905. const int64_t n_tokens = batch.n_tokens;
  8906. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  8907. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  8908. for (int j = 0; j < n_tokens; ++j) {
  8909. const int32_t n_seq = batch.n_seq_id[j];
  8910. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  8911. for (int i = 0; i < n_kv; ++i) {
  8912. if (i < n_seq) {
  8913. // for this type of model, the head is the minimum seq_id of the batch
  8914. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  8915. } else {
  8916. data[j*n_kv + i] = -1;
  8917. }
  8918. }
  8919. }
  8920. }
  8921. }
  8922. }
  8923. // Make sure enough space is available for outputs.
  8924. // Returns max number of outputs for which space was reserved.
  8925. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  8926. const auto & cparams = lctx.cparams;
  8927. const auto & hparams = lctx.model.hparams;
  8928. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  8929. const auto n_batch = cparams.n_batch;
  8930. const auto n_vocab = hparams.n_vocab;
  8931. const auto n_embd = hparams.n_embd;
  8932. // TODO: use a per-batch flag for logits presence instead
  8933. const bool has_logits = cparams.causal_attn;
  8934. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  8935. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  8936. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  8937. if (lctx.output_ids.empty()) {
  8938. // init, never resized afterwards
  8939. lctx.output_ids.resize(n_batch);
  8940. }
  8941. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  8942. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  8943. // alloc only when more than the current capacity is required
  8944. // TODO: also consider shrinking the buffer
  8945. if (!lctx.buf_output || prev_size < new_size) {
  8946. if (lctx.buf_output) {
  8947. #ifndef NDEBUG
  8948. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  8949. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  8950. #endif
  8951. ggml_backend_buffer_free(lctx.buf_output);
  8952. lctx.buf_output = nullptr;
  8953. lctx.logits = nullptr;
  8954. lctx.embd = nullptr;
  8955. }
  8956. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  8957. if (lctx.buf_output == nullptr) {
  8958. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  8959. return 0;
  8960. }
  8961. }
  8962. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  8963. lctx.logits = has_logits ? output_base : nullptr;
  8964. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  8965. lctx.output_size = n_outputs_max;
  8966. lctx.logits_size = logits_size;
  8967. lctx.embd_size = embd_size;
  8968. // set all ids as invalid (negative)
  8969. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  8970. ggml_backend_buffer_clear(lctx.buf_output, 0);
  8971. lctx.n_outputs = 0;
  8972. return n_outputs_max;
  8973. }
  8974. static void llama_graph_compute(
  8975. llama_context & lctx,
  8976. ggml_cgraph * gf,
  8977. int n_threads) {
  8978. #ifdef GGML_USE_MPI
  8979. const int64_t n_layer = lctx.model.hparams.n_layer;
  8980. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  8981. #endif
  8982. #ifdef GGML_USE_METAL
  8983. if (ggml_backend_is_metal(lctx.backend_metal)) {
  8984. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  8985. }
  8986. #endif
  8987. if (lctx.backend_cpu != nullptr) {
  8988. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  8989. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  8990. }
  8991. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  8992. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  8993. #ifdef GGML_USE_MPI
  8994. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  8995. #endif
  8996. }
  8997. // decode a batch of tokens by evaluating the transformer
  8998. //
  8999. // - lctx: llama context
  9000. // - batch: batch to evaluate
  9001. //
  9002. // return 0 on success
  9003. // return positive int on warning
  9004. // return negative int on error
  9005. //
  9006. static int llama_decode_internal(
  9007. llama_context & lctx,
  9008. llama_batch batch_all) { // TODO: rename back to batch
  9009. const uint32_t n_tokens_all = batch_all.n_tokens;
  9010. if (n_tokens_all == 0) {
  9011. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9012. return -1;
  9013. }
  9014. const auto & model = lctx.model;
  9015. const auto & hparams = model.hparams;
  9016. const auto & cparams = lctx.cparams;
  9017. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9018. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9019. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9020. if (lctx.t_compute_start_us == 0) {
  9021. lctx.t_compute_start_us = ggml_time_us();
  9022. }
  9023. lctx.n_queued_tokens += n_tokens_all;
  9024. #ifdef GGML_USE_MPI
  9025. // TODO: needs fix after #3228
  9026. GGML_ASSERT(false && "not implemented");
  9027. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9028. #endif
  9029. auto & kv_self = lctx.kv_self;
  9030. const int64_t n_embd = hparams.n_embd;
  9031. const int64_t n_vocab = hparams.n_vocab;
  9032. uint32_t n_outputs = 0;
  9033. uint32_t n_outputs_prev = 0;
  9034. const auto n_ubatch = cparams.n_ubatch;
  9035. std::vector<llama_pos> pos;
  9036. std::vector<int32_t> n_seq_id;
  9037. std::vector<llama_seq_id *> seq_id_arr;
  9038. std::vector<std::vector<llama_seq_id>> seq_id;
  9039. // count outputs
  9040. if (batch_all.logits) {
  9041. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9042. n_outputs += batch_all.logits[i] != 0;
  9043. }
  9044. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9045. n_outputs = n_tokens_all;
  9046. } else {
  9047. // keep last output only
  9048. n_outputs = 1;
  9049. }
  9050. // reserve output buffer
  9051. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9052. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9053. return -2;
  9054. };
  9055. // set output mappings
  9056. if (batch_all.logits) {
  9057. int32_t i_logits = 0;
  9058. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9059. if (batch_all.logits[i]) {
  9060. lctx.output_ids[i] = i_logits++;
  9061. }
  9062. }
  9063. } else {
  9064. for (uint32_t i = 0; i < n_outputs; ++i) {
  9065. lctx.output_ids[i] = i;
  9066. }
  9067. }
  9068. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9069. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9070. llama_batch u_batch = {
  9071. /* .n_tokens = */ (int32_t) n_tokens,
  9072. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9073. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9074. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9075. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9076. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9077. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9078. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9079. /* .all_pos_1 = */ batch_all.all_pos_1,
  9080. /* .all_seq_id = */ batch_all.all_seq_id,
  9081. };
  9082. // count the outputs in this u_batch
  9083. {
  9084. int32_t n_outputs_new = 0;
  9085. if (u_batch.logits) {
  9086. for (uint32_t i = 0; i < n_tokens; i++) {
  9087. n_outputs_new += u_batch.logits[i] != 0;
  9088. }
  9089. } else if (n_outputs == n_tokens_all) {
  9090. n_outputs_new = n_tokens;
  9091. } else {
  9092. // keep last output only
  9093. if (cur_token + n_tokens >= n_tokens_all) {
  9094. n_outputs_new = 1;
  9095. }
  9096. }
  9097. // needs to happen before the graph is built
  9098. lctx.n_outputs = n_outputs_new;
  9099. }
  9100. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9101. GGML_ASSERT(n_threads > 0);
  9102. // helpers for smoother batch API transition
  9103. // after deprecating the llama_eval calls, these will be removed
  9104. if (u_batch.pos == nullptr) {
  9105. pos.resize(n_tokens);
  9106. for (uint32_t i = 0; i < n_tokens; i++) {
  9107. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9108. }
  9109. u_batch.pos = pos.data();
  9110. }
  9111. if (u_batch.seq_id == nullptr) {
  9112. n_seq_id.resize(n_tokens);
  9113. seq_id.resize(n_tokens);
  9114. seq_id_arr.resize(n_tokens);
  9115. for (uint32_t i = 0; i < n_tokens; i++) {
  9116. n_seq_id[i] = 1;
  9117. seq_id[i].resize(1);
  9118. seq_id[i][0] = u_batch.all_seq_id;
  9119. seq_id_arr[i] = seq_id[i].data();
  9120. }
  9121. u_batch.n_seq_id = n_seq_id.data();
  9122. u_batch.seq_id = seq_id_arr.data();
  9123. }
  9124. // non-causal masks do not use the KV cache
  9125. if (hparams.causal_attn) {
  9126. llama_kv_cache_update(&lctx);
  9127. // if we have enough unused cells before the current head ->
  9128. // better to start searching from the beginning of the cache, hoping to fill it
  9129. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9130. kv_self.head = 0;
  9131. }
  9132. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9133. return 1;
  9134. }
  9135. if (!kv_self.recurrent) {
  9136. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9137. // after enough generations, the benefit from this heuristic disappears
  9138. // if we start defragmenting the cache, the benefit from this will be more important
  9139. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  9140. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9141. }
  9142. }
  9143. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9144. ggml_backend_sched_reset(lctx.sched);
  9145. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9146. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9147. // the output is always the last tensor in the graph
  9148. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9149. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9150. if (lctx.n_outputs == 0) {
  9151. // no output
  9152. res = nullptr;
  9153. embd = nullptr;
  9154. } else if (!hparams.causal_attn) {
  9155. res = nullptr; // do not extract logits for embedding models such as BERT
  9156. // token or sequence embeddings
  9157. embd = gf->nodes[gf->n_nodes - 1];
  9158. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9159. } else if (cparams.embeddings) {
  9160. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9161. int i_embd = gf->n_nodes - 2;
  9162. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9163. i_embd = gf->n_nodes - i;
  9164. if (i_embd < 0) { break; }
  9165. embd = gf->nodes[i_embd];
  9166. }
  9167. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9168. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9169. if (!cparams.causal_attn) {
  9170. res = nullptr; // do not extract logits when not needed
  9171. // skip computing logits
  9172. // TODO: is this safe?
  9173. gf->n_nodes = i_embd + 1;
  9174. }
  9175. } else {
  9176. embd = nullptr; // do not extract embeddings when not needed
  9177. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9178. }
  9179. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9180. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9181. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9182. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9183. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9184. // with the BLAS calls. need a better solution
  9185. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9186. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9187. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9188. n_threads = std::min(4, n_threads);
  9189. }
  9190. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9191. llama_set_inputs(lctx, u_batch);
  9192. llama_graph_compute(lctx, gf, n_threads);
  9193. // update the kv ring buffer
  9194. {
  9195. kv_self.head += n_tokens;
  9196. // Ensure kv cache head points to a valid index.
  9197. if (kv_self.head >= kv_self.size) {
  9198. kv_self.head = 0;
  9199. }
  9200. }
  9201. #ifdef GGML_PERF
  9202. // print timing information per ggml operation (for debugging purposes)
  9203. // requires GGML_PERF to be defined
  9204. ggml_graph_print(gf);
  9205. #endif
  9206. // plot the computation graph in dot format (for debugging purposes)
  9207. //if (n_past%100 == 0) {
  9208. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9209. //}
  9210. // extract logits
  9211. if (res) {
  9212. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9213. GGML_ASSERT(backend_res != nullptr);
  9214. GGML_ASSERT(lctx.logits != nullptr);
  9215. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9216. const int32_t n_outputs_new = lctx.n_outputs;
  9217. if (n_outputs_new) {
  9218. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9219. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9220. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9221. }
  9222. }
  9223. // extract embeddings
  9224. if (embd) {
  9225. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9226. GGML_ASSERT(backend_embd != nullptr);
  9227. switch (cparams.pooling_type) {
  9228. case LLAMA_POOLING_TYPE_NONE:
  9229. {
  9230. // extract token embeddings
  9231. GGML_ASSERT(lctx.embd != nullptr);
  9232. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9233. const int32_t n_outputs_new = lctx.n_outputs;
  9234. if (n_outputs_new) {
  9235. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9236. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9237. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9238. }
  9239. } break;
  9240. case LLAMA_POOLING_TYPE_CLS:
  9241. case LLAMA_POOLING_TYPE_MEAN:
  9242. {
  9243. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9244. // extract sequence embeddings
  9245. auto & embd_seq_out = lctx.embd_seq;
  9246. embd_seq_out.clear();
  9247. for (uint32_t i = 0; i < n_tokens; i++) {
  9248. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9249. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9250. continue;
  9251. }
  9252. embd_seq_out[seq_id].resize(n_embd);
  9253. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9254. }
  9255. } break;
  9256. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9257. {
  9258. GGML_ASSERT(false && "unknown pooling type");
  9259. } break;
  9260. }
  9261. }
  9262. n_outputs_prev += lctx.n_outputs;
  9263. }
  9264. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9265. lctx.n_outputs = n_outputs;
  9266. // wait for the computation to finish (automatically done when obtaining the model output)
  9267. //llama_synchronize(&lctx);
  9268. // decide if we need to defrag the kv cache
  9269. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9270. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9271. // queue defragmentation for next llama_kv_cache_update
  9272. if (fragmentation > cparams.defrag_thold) {
  9273. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9274. llama_kv_cache_defrag(kv_self);
  9275. }
  9276. }
  9277. return 0;
  9278. }
  9279. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9280. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9281. auto & kv_self = lctx.kv_self;
  9282. const auto & hparams = lctx.model.hparams;
  9283. const uint32_t n_layer = hparams.n_layer;
  9284. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9285. const uint32_t n_used = kv_self.used;
  9286. assert(n_used <= n_kv);
  9287. //const int64_t t_start = ggml_time_us();
  9288. // number of cells moved
  9289. uint32_t n_moves = 0;
  9290. // each move requires 6*n_layer tensors (see build_defrag)
  9291. // - source view, destination view, copy operation
  9292. // - x2 for keys and values
  9293. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9294. // determine which KV cells to move where
  9295. //
  9296. // cell i moves to ids[i]
  9297. //
  9298. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9299. //
  9300. std::vector<uint32_t> ids(n_kv, n_kv);
  9301. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9302. const auto & cell0 = kv_self.cells[i0];
  9303. if (!cell0.is_empty()) {
  9304. ids[i0] = i0;
  9305. continue;
  9306. }
  9307. // found a hole - fill it with data from the end of the cache
  9308. uint32_t nh = 1;
  9309. // determine the size of the hole
  9310. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9311. nh++;
  9312. }
  9313. uint32_t nf = 0;
  9314. uint32_t is = n_kv - 1;
  9315. // starting from the end, find nh non-empty cells
  9316. for (; is > i0; --is) {
  9317. const auto & cell1 = kv_self.cells[is];
  9318. if (cell1.is_empty() || ids[is] != n_kv) {
  9319. continue;
  9320. }
  9321. // non-empty cell which is not yet moved
  9322. nf++;
  9323. if (nf == nh) {
  9324. break;
  9325. }
  9326. }
  9327. // this can only happen if `n_used` is not accurate, which would be a bug
  9328. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9329. nf = 0;
  9330. uint32_t i1 = is;
  9331. // are we moving a continuous block of memory?
  9332. bool cont = false;
  9333. // should we stop searching for the next move?
  9334. bool stop = false;
  9335. // go back and move the nf cells to the hole
  9336. for (; i1 < n_kv; ++i1) {
  9337. auto & cell1 = kv_self.cells[i1];
  9338. if (cell1.is_empty() || ids[i1] != n_kv) {
  9339. if (n_moves == max_moves) {
  9340. stop = true;
  9341. break;
  9342. }
  9343. cont = false;
  9344. continue;
  9345. }
  9346. // this cell goes to (i0 + nf)
  9347. ids[i1] = i0 + nf;
  9348. // move the cell meta data
  9349. kv_self.cells[i0 + nf] = cell1;
  9350. // clear the old cell and move the head there
  9351. cell1 = llama_kv_cell();
  9352. kv_self.head = n_used;
  9353. if (!cont) {
  9354. n_moves++;
  9355. cont = true;
  9356. }
  9357. nf++;
  9358. if (nf == nh) {
  9359. break;
  9360. }
  9361. }
  9362. if (stop || n_moves == max_moves) {
  9363. break;
  9364. }
  9365. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9366. i0 += nh - 1;
  9367. }
  9368. if (n_moves == 0) {
  9369. return;
  9370. }
  9371. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9372. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9373. #if 0
  9374. // CPU defrag
  9375. //
  9376. // TODO: optimizations are possible:
  9377. // - multiple threads
  9378. // - avoid copying to the host memory when already there
  9379. //
  9380. // likely not worth the effort, as we have ggml_graph based defrag
  9381. //
  9382. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9383. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9384. const uint32_t kv_size = kv_self.size;
  9385. std::vector<uint8_t> buf_k;
  9386. std::vector<uint8_t> buf_v;
  9387. for (uint32_t il = 0; il < n_layer; ++il) {
  9388. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9389. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9390. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9391. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9392. buf_k.resize(k_size);
  9393. buf_v.resize(v_size);
  9394. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9395. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9396. // batch move [i, i+nm) to [id, id+nm)
  9397. // note: cells can move only to a lower index
  9398. for (uint32_t i = 0; i < n_kv; ++i) {
  9399. const uint32_t id = ids[i];
  9400. if (i == id || id == n_kv) {
  9401. continue;
  9402. }
  9403. uint32_t nm = 1;
  9404. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9405. nm++;
  9406. }
  9407. // move keys
  9408. {
  9409. const int64_t os = i*k_size_row;
  9410. const int64_t od = id*k_size_row;
  9411. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9412. }
  9413. // move values (note: they are transposed)
  9414. {
  9415. const int64_t os = i;
  9416. const int64_t od = id;
  9417. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9418. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9419. }
  9420. }
  9421. i += nm - 1;
  9422. }
  9423. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9424. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9425. }
  9426. #else
  9427. // ggml_graph defrag
  9428. ggml_backend_sched_reset(lctx.sched);
  9429. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9430. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9431. #endif
  9432. //const int64_t t_end = ggml_time_us();
  9433. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9434. }
  9435. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9436. bool need_reserve = false;
  9437. // apply K-shift if needed
  9438. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9439. {
  9440. ggml_backend_sched_reset(lctx.sched);
  9441. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9442. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9443. llama_set_k_shift(lctx);
  9444. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9445. need_reserve = true;
  9446. }
  9447. {
  9448. auto & kv_self = lctx.kv_self;
  9449. kv_self.has_shift = false;
  9450. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9451. kv_self.cells[i].delta = 0;
  9452. }
  9453. }
  9454. }
  9455. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9456. {
  9457. ggml_backend_sched_reset(lctx.sched);
  9458. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9459. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9460. llama_set_s_copy(lctx);
  9461. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9462. need_reserve = true;
  9463. }
  9464. {
  9465. auto & kv_self = lctx.kv_self;
  9466. kv_self.do_copy = false;
  9467. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9468. kv_self.cells[i].src = i;
  9469. }
  9470. }
  9471. }
  9472. // defragment the KV cache if needed
  9473. if (lctx.kv_self.do_defrag) {
  9474. llama_kv_cache_defrag_internal(lctx);
  9475. need_reserve = true;
  9476. lctx.kv_self.do_defrag = false;
  9477. }
  9478. // reserve a worst case graph again
  9479. if (need_reserve) {
  9480. // TODO: extract to a function
  9481. // build worst-case graph
  9482. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9483. int n_past = lctx.cparams.n_ctx - n_tokens;
  9484. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9485. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9486. // initialize scheduler with the worst-case graph
  9487. ggml_backend_sched_reset(lctx.sched);
  9488. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9489. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9490. }
  9491. }
  9492. }
  9493. //
  9494. // tokenizer
  9495. //
  9496. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9497. return vocab.type;
  9498. }
  9499. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9500. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9501. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9502. }
  9503. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9504. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9505. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9506. }
  9507. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9508. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9509. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9510. }
  9511. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9512. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9513. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9514. }
  9515. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9516. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9517. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9518. }
  9519. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9520. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9521. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9522. const auto& token_data = vocab.id_to_token.at(id);
  9523. switch (llama_vocab_get_type(vocab)) {
  9524. case LLAMA_VOCAB_TYPE_SPM: {
  9525. auto buf = token_data.text.substr(3, 2);
  9526. return strtol(buf.c_str(), NULL, 16);
  9527. }
  9528. case LLAMA_VOCAB_TYPE_BPE: {
  9529. GGML_ASSERT(false);
  9530. return unicode_utf8_to_byte(token_data.text);
  9531. }
  9532. case LLAMA_VOCAB_TYPE_WPM: {
  9533. GGML_ASSERT(false);
  9534. }
  9535. default:
  9536. GGML_ASSERT(false);
  9537. }
  9538. }
  9539. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9540. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9541. static const char * hex = "0123456789ABCDEF";
  9542. switch (llama_vocab_get_type(vocab)) {
  9543. case LLAMA_VOCAB_TYPE_SPM: {
  9544. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9545. auto token = vocab.token_to_id.find(buf);
  9546. if (token != vocab.token_to_id.end()) {
  9547. return (*token).second;
  9548. }
  9549. // Try to fall back to just the byte as a string
  9550. const char buf2[2] = { (char)ch, 0 };
  9551. return vocab.token_to_id.at(buf2);
  9552. }
  9553. case LLAMA_VOCAB_TYPE_WPM:
  9554. case LLAMA_VOCAB_TYPE_BPE: {
  9555. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9556. }
  9557. default:
  9558. GGML_ASSERT(false);
  9559. }
  9560. }
  9561. static void llama_escape_whitespace(std::string & text) {
  9562. replace_all(text, " ", "\xe2\x96\x81");
  9563. }
  9564. static void llama_unescape_whitespace(std::string & word) {
  9565. replace_all(word, "\xe2\x96\x81", " ");
  9566. }
  9567. struct llm_symbol {
  9568. using index = int;
  9569. index prev;
  9570. index next;
  9571. const char * text;
  9572. size_t n;
  9573. };
  9574. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9575. // SPM tokenizer
  9576. // original implementation:
  9577. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9578. struct llm_bigram_spm {
  9579. struct comparator {
  9580. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9581. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9582. }
  9583. };
  9584. using queue_storage = std::vector<llm_bigram_spm>;
  9585. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9586. llm_symbol::index left;
  9587. llm_symbol::index right;
  9588. float score;
  9589. size_t size;
  9590. };
  9591. struct llm_tokenizer_spm {
  9592. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9593. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9594. // split string into utf8 chars
  9595. int index = 0;
  9596. size_t offs = 0;
  9597. while (offs < text.size()) {
  9598. llm_symbol sym;
  9599. size_t len = utf8_len(text[offs]);
  9600. sym.text = text.c_str() + offs;
  9601. sym.n = std::min(len, text.size() - offs);
  9602. offs += sym.n;
  9603. sym.prev = index - 1;
  9604. sym.next = offs == text.size() ? -1 : index + 1;
  9605. index++;
  9606. symbols.emplace_back(sym);
  9607. }
  9608. // seed the work queue with all possible 2-character tokens.
  9609. for (size_t i = 1; i < symbols.size(); ++i) {
  9610. try_add_bigram(i - 1, i);
  9611. }
  9612. // keep substituting the highest frequency pairs for as long as we can.
  9613. while (!work_queue.empty()) {
  9614. auto bigram = work_queue.top();
  9615. work_queue.pop();
  9616. auto & left_sym = symbols[bigram.left];
  9617. auto & right_sym = symbols[bigram.right];
  9618. // if one of the symbols already got merged, skip it.
  9619. if (left_sym.n == 0 || right_sym.n == 0 ||
  9620. left_sym.n + right_sym.n != bigram.size) {
  9621. continue;
  9622. }
  9623. // merge the right sym into the left one
  9624. left_sym.n += right_sym.n;
  9625. right_sym.n = 0;
  9626. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9627. // remove the right sym from the chain
  9628. left_sym.next = right_sym.next;
  9629. if (right_sym.next >= 0) {
  9630. symbols[right_sym.next].prev = bigram.left;
  9631. }
  9632. // find more substitutions
  9633. try_add_bigram(left_sym.prev, bigram.left);
  9634. try_add_bigram(bigram.left, left_sym.next);
  9635. }
  9636. for (int i = 0; i != -1; i = symbols[i].next) {
  9637. auto & symbol = symbols[i];
  9638. resegment(symbol, output);
  9639. }
  9640. }
  9641. private:
  9642. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9643. auto text = std::string(symbol.text, symbol.n);
  9644. auto token = vocab.token_to_id.find(text);
  9645. // Do we need to support is_unused?
  9646. if (token != vocab.token_to_id.end()) {
  9647. output.push_back((*token).second);
  9648. return;
  9649. }
  9650. const auto p = rev_merge.find(text);
  9651. if (p == rev_merge.end()) {
  9652. // output any symbols that did not form tokens as bytes.
  9653. output.reserve(output.size() + symbol.n);
  9654. for (int j = 0; j < (int)symbol.n; ++j) {
  9655. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9656. output.push_back(token_id);
  9657. }
  9658. return;
  9659. }
  9660. resegment(symbols[p->second.first], output);
  9661. resegment(symbols[p->second.second], output);
  9662. }
  9663. void try_add_bigram(int left, int right) {
  9664. if (left == -1 || right == -1) {
  9665. return;
  9666. }
  9667. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9668. auto token = vocab.token_to_id.find(text);
  9669. if (token == vocab.token_to_id.end()) {
  9670. return;
  9671. }
  9672. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9673. return;
  9674. }
  9675. const auto & tok_data = vocab.id_to_token[(*token).second];
  9676. llm_bigram_spm bigram;
  9677. bigram.left = left;
  9678. bigram.right = right;
  9679. bigram.score = tok_data.score;
  9680. bigram.size = text.size();
  9681. work_queue.push(bigram);
  9682. // Do we need to support is_unused?
  9683. rev_merge[text] = std::make_pair(left, right);
  9684. }
  9685. const llama_vocab & vocab;
  9686. std::vector<llm_symbol> symbols;
  9687. llm_bigram_spm::queue work_queue;
  9688. std::map<std::string, std::pair<int, int>> rev_merge;
  9689. };
  9690. // BPE tokenizer
  9691. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9692. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9693. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9694. struct llm_bigram_bpe {
  9695. struct comparator {
  9696. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9697. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9698. }
  9699. };
  9700. using queue_storage = std::vector<llm_bigram_bpe>;
  9701. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9702. llm_symbol::index left;
  9703. llm_symbol::index right;
  9704. std::string text;
  9705. int rank;
  9706. size_t size;
  9707. };
  9708. struct llm_tokenizer_bpe {
  9709. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9710. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9711. int final_prev_index = -1;
  9712. auto word_collection = bpe_gpt2_preprocess(text);
  9713. symbols_final.clear();
  9714. for (auto & word : word_collection) {
  9715. work_queue = llm_bigram_bpe::queue();
  9716. symbols.clear();
  9717. int index = 0;
  9718. size_t offset = 0;
  9719. while (offset < word.size()) {
  9720. llm_symbol sym;
  9721. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9722. sym.text = word.c_str() + offset;
  9723. sym.n = char_len;
  9724. offset += sym.n;
  9725. sym.prev = index - 1;
  9726. sym.next = offset == word.size() ? -1 : index + 1;
  9727. index++;
  9728. symbols.emplace_back(sym);
  9729. }
  9730. for (size_t i = 1; i < symbols.size(); ++i) {
  9731. add_new_bigram(i - 1, i);
  9732. }
  9733. // build token(s)
  9734. while (!work_queue.empty()) {
  9735. auto bigram = work_queue.top();
  9736. work_queue.pop();
  9737. auto & left_symbol = symbols[bigram.left];
  9738. auto & right_symbol = symbols[bigram.right];
  9739. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9740. continue;
  9741. }
  9742. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9743. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9744. if (left_token + right_token != bigram.text) {
  9745. continue; // Skip this bigram if it's outdated
  9746. }
  9747. // merge the right sym into the left one
  9748. left_symbol.n += right_symbol.n;
  9749. right_symbol.n = 0;
  9750. // remove the right sym from the chain
  9751. left_symbol.next = right_symbol.next;
  9752. if (right_symbol.next >= 0) {
  9753. symbols[right_symbol.next].prev = bigram.left;
  9754. }
  9755. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9756. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9757. }
  9758. // add the finished tokens to the final list keeping correct order for next and prev
  9759. for (auto & sym : symbols) {
  9760. if (sym.n > 0) {
  9761. sym.prev = final_prev_index;
  9762. sym.next = -1;
  9763. if (final_prev_index != -1) {
  9764. symbols_final[final_prev_index].next = symbols_final.size();
  9765. }
  9766. symbols_final.emplace_back(sym);
  9767. final_prev_index = symbols_final.size() - 1;
  9768. }
  9769. }
  9770. }
  9771. symbols = symbols_final;
  9772. if (!symbols.empty()) {
  9773. for (int i = 0; i != -1; i = symbols[i].next) {
  9774. auto & symbol = symbols[i];
  9775. if (symbol.n == 0) {
  9776. continue;
  9777. }
  9778. const std::string str = std::string(symbol.text, symbol.n);
  9779. const auto token = vocab.token_to_id.find(str);
  9780. if (token == vocab.token_to_id.end()) {
  9781. for (auto j = str.begin(); j != str.end(); ++j) {
  9782. std::string byte_str(1, *j);
  9783. auto token_multibyte = vocab.token_to_id.find(byte_str);
  9784. if (token_multibyte == vocab.token_to_id.end()) {
  9785. throw std::runtime_error("ERROR: byte not found in vocab");
  9786. }
  9787. output.push_back((*token_multibyte).second);
  9788. }
  9789. } else {
  9790. output.push_back((*token).second);
  9791. }
  9792. }
  9793. }
  9794. }
  9795. private:
  9796. void add_new_bigram(int left, int right) {
  9797. if (left == -1 || right == -1) {
  9798. return;
  9799. }
  9800. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  9801. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  9802. int rank_found = -1;
  9803. rank_found = vocab.find_bpe_rank(left_token, right_token);
  9804. if (rank_found < 0) {
  9805. return;
  9806. }
  9807. llm_bigram_bpe bigram;
  9808. bigram.left = left;
  9809. bigram.right = right;
  9810. bigram.text = left_token + right_token;
  9811. bigram.size = left_token.size() + right_token.size();
  9812. bigram.rank = rank_found;
  9813. work_queue.push(bigram);
  9814. }
  9815. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  9816. std::vector<std::string> bpe_words;
  9817. std::vector<std::string> bpe_encoded_words;
  9818. std::string token = "";
  9819. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  9820. bool collecting_numeric = false;
  9821. bool collecting_letter = false;
  9822. bool collecting_special = false;
  9823. bool collecting_whitespace_lookahead = false;
  9824. bool collecting = false;
  9825. std::vector<std::string> text_utf;
  9826. text_utf.reserve(text.size());
  9827. bpe_words.reserve(text.size());
  9828. bpe_encoded_words.reserve(text.size());
  9829. const auto cpts = unicode_cpts_from_utf8(text);
  9830. for (size_t i = 0; i < cpts.size(); ++i)
  9831. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  9832. for (int i = 0; i < (int)text_utf.size(); i++) {
  9833. const std::string & utf_char = text_utf[i];
  9834. bool split_condition = false;
  9835. int bytes_remain = text_utf.size() - i;
  9836. // forward backward lookups
  9837. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  9838. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  9839. // handling contractions
  9840. if (!split_condition && bytes_remain >= 2) {
  9841. // 's|'t|'m|'d
  9842. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  9843. split_condition = true;
  9844. }
  9845. if (split_condition) {
  9846. if (token.size()) {
  9847. bpe_words.emplace_back(token); // push previous content as token
  9848. }
  9849. token = utf_char + utf_char_next;
  9850. bpe_words.emplace_back(token);
  9851. token = "";
  9852. i++;
  9853. continue;
  9854. }
  9855. }
  9856. if (!split_condition && bytes_remain >= 3) {
  9857. // 're|'ve|'ll
  9858. if (utf_char == "\'" && (
  9859. (utf_char_next == "r" && utf_char_next_next == "e") ||
  9860. (utf_char_next == "v" && utf_char_next_next == "e") ||
  9861. (utf_char_next == "l" && utf_char_next_next == "l"))
  9862. ) {
  9863. split_condition = true;
  9864. }
  9865. if (split_condition) {
  9866. // current token + next token can be defined
  9867. if (token.size()) {
  9868. bpe_words.emplace_back(token); // push previous content as token
  9869. }
  9870. token = utf_char + utf_char_next + utf_char_next_next;
  9871. bpe_words.emplace_back(token); // the contraction
  9872. token = "";
  9873. i += 2;
  9874. continue;
  9875. }
  9876. }
  9877. if (!split_condition && !collecting) {
  9878. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  9879. collecting_letter = true;
  9880. collecting = true;
  9881. }
  9882. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9883. collecting_numeric = true;
  9884. collecting = true;
  9885. }
  9886. else if (
  9887. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  9888. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  9889. ) {
  9890. collecting_special = true;
  9891. collecting = true;
  9892. }
  9893. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  9894. collecting_whitespace_lookahead = true;
  9895. collecting = true;
  9896. }
  9897. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  9898. split_condition = true;
  9899. }
  9900. }
  9901. else if (!split_condition && collecting) {
  9902. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  9903. split_condition = true;
  9904. }
  9905. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  9906. split_condition = true;
  9907. }
  9908. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  9909. split_condition = true;
  9910. }
  9911. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9912. split_condition = true;
  9913. }
  9914. }
  9915. if (utf_char_next == "") {
  9916. split_condition = true; // final
  9917. token += utf_char;
  9918. }
  9919. if (split_condition) {
  9920. if (token.size()) {
  9921. bpe_words.emplace_back(token);
  9922. }
  9923. token = utf_char;
  9924. collecting = false;
  9925. collecting_letter = false;
  9926. collecting_numeric = false;
  9927. collecting_special = false;
  9928. collecting_whitespace_lookahead = false;
  9929. }
  9930. else {
  9931. token += utf_char;
  9932. }
  9933. }
  9934. for (std::string & word : bpe_words) {
  9935. std::string encoded_token = "";
  9936. for (char & c : word) {
  9937. encoded_token += unicode_byte_to_utf8(c);
  9938. }
  9939. bpe_encoded_words.emplace_back(encoded_token);
  9940. }
  9941. return bpe_encoded_words;
  9942. }
  9943. const llama_vocab & vocab;
  9944. std::vector<llm_symbol> symbols;
  9945. std::vector<llm_symbol> symbols_final;
  9946. llm_bigram_bpe::queue work_queue;
  9947. };
  9948. struct llm_tokenizer_wpm {
  9949. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  9950. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9951. auto * token_map = &vocab.token_to_id;
  9952. // normalize and split by whitespace
  9953. std::vector<std::string> words = preprocess(text);
  9954. // bos token prepended already
  9955. // find the longest tokens that form the words
  9956. for (const std::string &word : words) {
  9957. // skip empty words
  9958. if (word.size() == 0) {
  9959. continue;
  9960. }
  9961. // prepend phantom space
  9962. std::string word1 = "\xe2\x96\x81" + word;
  9963. int n = word1.size();
  9964. // we're at the start of a new word
  9965. int i = 0;
  9966. bool match_any = false;
  9967. // move through character position in word
  9968. while (i < n) {
  9969. // loop through possible match length
  9970. bool match = false;
  9971. for (int j = n; j > i; j--) {
  9972. auto it = token_map->find(word1.substr(i, j - i));
  9973. if (it != token_map->end()) {
  9974. output.push_back(it->second);
  9975. match = true;
  9976. match_any = true;
  9977. i = j;
  9978. break;
  9979. }
  9980. }
  9981. // must be an unknown character
  9982. if (!match) {
  9983. i++;
  9984. }
  9985. }
  9986. // we didn't find any matches for this word
  9987. if (!match_any) {
  9988. output.push_back(vocab.special_unk_id);
  9989. }
  9990. }
  9991. }
  9992. std::vector<std::string> preprocess(const std::string & text) {
  9993. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  9994. // strip accents, strip control, uniformize whitespace,
  9995. // to lowercase, pad chinese characters, pad punctuation
  9996. std::string new_str = "";
  9997. for (uint32_t code : cpts_nfd) {
  9998. int type = unicode_cpt_type(code);
  9999. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10000. continue;
  10001. }
  10002. code = unicode_tolower(code);
  10003. if (type == CODEPOINT_TYPE_WHITESPACE) {
  10004. code = ' ';
  10005. }
  10006. std::string s = unicode_cpt_to_utf8(code);
  10007. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10008. new_str += " ";
  10009. new_str += s;
  10010. new_str += " ";
  10011. } else {
  10012. new_str += s;
  10013. }
  10014. }
  10015. // split by whitespace
  10016. uint64_t l = 0;
  10017. uint64_t r = 0;
  10018. std::vector<std::string> words;
  10019. while (r < new_str.size()) {
  10020. // if is whitespace
  10021. if (isspace(new_str[r], std::locale::classic())) {
  10022. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10023. l = r + 1;
  10024. r = l;
  10025. } else {
  10026. r += 1;
  10027. }
  10028. }
  10029. if (r > l) {
  10030. words.push_back(new_str.substr(l, (r - l)));
  10031. }
  10032. return words;
  10033. }
  10034. bool is_ascii_punct(uint32_t code) {
  10035. if (code > 0xFF) {
  10036. return false;
  10037. }
  10038. auto c = char(static_cast<unsigned char>(code));
  10039. return ispunct(c, std::locale::classic());
  10040. }
  10041. bool is_chinese_char(uint32_t cpt) {
  10042. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10043. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10044. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10045. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10046. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10047. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10048. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10049. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10050. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10051. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10052. return true; // NOLINT
  10053. }
  10054. return false;
  10055. }
  10056. const llama_vocab & vocab;
  10057. };
  10058. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10059. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10060. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10061. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10062. struct fragment_buffer_variant {
  10063. fragment_buffer_variant(llama_vocab::id _token)
  10064. :
  10065. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10066. token(_token),
  10067. raw_text(_dummy),
  10068. offset(0),
  10069. length(0) {}
  10070. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10071. :
  10072. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10073. token((llama_vocab::id) - 1),
  10074. raw_text(_raw_text),
  10075. offset(_offset),
  10076. length(_length){
  10077. GGML_ASSERT(_offset >= 0);
  10078. GGML_ASSERT(_length >= 1);
  10079. GGML_ASSERT(offset + length <= raw_text.length());
  10080. }
  10081. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10082. const llama_vocab::id token;
  10083. const std::string _dummy;
  10084. const std::string & raw_text;
  10085. const uint64_t offset;
  10086. const uint64_t length;
  10087. };
  10088. // #define PRETOKENIZERDEBUG
  10089. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10090. // for each special token
  10091. for (const auto & st: vocab.special_tokens_cache) {
  10092. const auto & special_token = st.first;
  10093. const auto & special_id = st.second;
  10094. // for each text fragment
  10095. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10096. while (it != buffer.end()) {
  10097. auto & fragment = (*it);
  10098. // if a fragment is text ( not yet processed )
  10099. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10100. auto * raw_text = &(fragment.raw_text);
  10101. auto raw_text_base_offset = fragment.offset;
  10102. auto raw_text_base_length = fragment.length;
  10103. // loop over the text
  10104. while (true) {
  10105. // find the first occurrence of a given special token in this fragment
  10106. // passing offset argument only limit the "search area" but match coordinates
  10107. // are still relative to the source full raw_text
  10108. auto match = raw_text->find(special_token, raw_text_base_offset);
  10109. // no occurrences found, stop processing this fragment for a given special token
  10110. if (match == std::string::npos) break;
  10111. // check if match is within bounds of offset <-> length
  10112. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10113. #ifdef PRETOKENIZERDEBUG
  10114. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10115. #endif
  10116. auto source = std::distance(buffer.begin(), it);
  10117. // if match is further than base offset
  10118. // then we have some text to the left of it
  10119. if (match > raw_text_base_offset) {
  10120. // left
  10121. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10122. const int64_t left_reminder_length = match - raw_text_base_offset;
  10123. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10124. #ifdef PRETOKENIZERDEBUG
  10125. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10126. #endif
  10127. it++;
  10128. }
  10129. // special token
  10130. buffer.emplace_after(it, special_id);
  10131. it++;
  10132. // right
  10133. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10134. const int64_t right_reminder_offset = match + special_token.length();
  10135. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10136. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10137. #ifdef PRETOKENIZERDEBUG
  10138. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10139. #endif
  10140. it++;
  10141. if (source == 0) {
  10142. buffer.erase_after(buffer.before_begin());
  10143. } else {
  10144. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10145. }
  10146. // repeat for the right side
  10147. raw_text_base_offset = right_reminder_offset;
  10148. raw_text_base_length = right_reminder_length;
  10149. #ifdef PRETOKENIZERDEBUG
  10150. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10151. #endif
  10152. } else {
  10153. if (source == 0) {
  10154. buffer.erase_after(buffer.before_begin());
  10155. } else {
  10156. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10157. }
  10158. break;
  10159. }
  10160. }
  10161. }
  10162. it++;
  10163. }
  10164. }
  10165. }
  10166. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10167. std::vector<llama_vocab::id> output;
  10168. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10169. if (!raw_text.empty()) {
  10170. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10171. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10172. }
  10173. switch (vocab.type) {
  10174. case LLAMA_VOCAB_TYPE_SPM:
  10175. {
  10176. // OG tokenizer behavior:
  10177. //
  10178. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10179. // tokenizer.encode('', add_special_tokens=False) returns []
  10180. if (add_special && vocab.special_add_bos != 0) {
  10181. GGML_ASSERT(vocab.special_bos_id != -1);
  10182. output.push_back(vocab.special_bos_id);
  10183. }
  10184. for (const auto & fragment : fragment_buffer) {
  10185. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10186. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10187. // TODO: It's likely possible to get rid of this string copy entirely
  10188. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10189. // and passing 'add space prefix' as bool argument
  10190. //
  10191. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10192. if (&fragment == &fragment_buffer.front()) {
  10193. if (vocab.add_space_prefix) {
  10194. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10195. }
  10196. }
  10197. #ifdef PRETOKENIZERDEBUG
  10198. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10199. #endif
  10200. llm_tokenizer_spm tokenizer(vocab);
  10201. llama_escape_whitespace(raw_text);
  10202. tokenizer.tokenize(raw_text, output);
  10203. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10204. output.push_back(fragment.token);
  10205. }
  10206. }
  10207. if (add_special && vocab.special_add_eos == 1) {
  10208. GGML_ASSERT(vocab.special_eos_id != -1);
  10209. output.push_back(vocab.special_eos_id);
  10210. }
  10211. } break;
  10212. case LLAMA_VOCAB_TYPE_BPE:
  10213. {
  10214. if (add_special && vocab.special_add_bos == 1) {
  10215. GGML_ASSERT(vocab.special_bos_id != -1);
  10216. output.push_back(vocab.special_bos_id);
  10217. }
  10218. for (const auto & fragment : fragment_buffer) {
  10219. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10220. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10221. #ifdef PRETOKENIZERDEBUG
  10222. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10223. #endif
  10224. llm_tokenizer_bpe tokenizer(vocab);
  10225. tokenizer.tokenize(raw_text, output);
  10226. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10227. output.push_back(fragment.token);
  10228. }
  10229. }
  10230. GGML_ASSERT(vocab.special_add_eos != 1);
  10231. } break;
  10232. case LLAMA_VOCAB_TYPE_WPM:
  10233. {
  10234. if (add_special) {
  10235. GGML_ASSERT(vocab.special_cls_id != -1);
  10236. output.push_back(vocab.special_cls_id);
  10237. }
  10238. for (const auto & fragment : fragment_buffer) {
  10239. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10240. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10241. #ifdef PRETOKENIZERDEBUG
  10242. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10243. #endif
  10244. llm_tokenizer_wpm tokenizer(vocab);
  10245. tokenizer.tokenize(raw_text, output);
  10246. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10247. output.push_back(fragment.token);
  10248. }
  10249. }
  10250. if (add_special) {
  10251. GGML_ASSERT(vocab.special_sep_id != -1);
  10252. output.push_back(vocab.special_sep_id);
  10253. }
  10254. } break;
  10255. case LLAMA_VOCAB_TYPE_NONE:
  10256. GGML_ASSERT(false);
  10257. }
  10258. return output;
  10259. }
  10260. //
  10261. // grammar - internal
  10262. //
  10263. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10264. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10265. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10266. const std::string & src,
  10267. llama_partial_utf8 partial_start) {
  10268. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10269. const char * pos = src.c_str();
  10270. std::vector<uint32_t> code_points;
  10271. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10272. code_points.reserve(src.size() + 1);
  10273. uint32_t value = partial_start.value;
  10274. int n_remain = partial_start.n_remain;
  10275. // continue previous decode, if applicable
  10276. while (*pos != 0 && n_remain > 0) {
  10277. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10278. if ((next_byte >> 6) != 2) {
  10279. // invalid sequence, abort
  10280. code_points.push_back(0);
  10281. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10282. }
  10283. value = (value << 6) + (next_byte & 0x3F);
  10284. ++pos;
  10285. --n_remain;
  10286. }
  10287. if (partial_start.n_remain > 0 && n_remain == 0) {
  10288. code_points.push_back(value);
  10289. }
  10290. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10291. while (*pos != 0) {
  10292. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10293. uint8_t highbits = first_byte >> 4;
  10294. n_remain = lookup[highbits] - 1;
  10295. if (n_remain < 0) {
  10296. // invalid sequence, abort
  10297. code_points.clear();
  10298. code_points.push_back(0);
  10299. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10300. }
  10301. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10302. value = first_byte & mask;
  10303. ++pos;
  10304. while (*pos != 0 && n_remain > 0) {
  10305. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10306. ++pos;
  10307. --n_remain;
  10308. }
  10309. if (n_remain == 0) {
  10310. code_points.push_back(value);
  10311. }
  10312. }
  10313. code_points.push_back(0);
  10314. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10315. }
  10316. // returns true iff pos points to the end of one of the definitions of a rule
  10317. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10318. switch (pos->type) {
  10319. case LLAMA_GRETYPE_END: return true; // NOLINT
  10320. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10321. default: return false;
  10322. }
  10323. }
  10324. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10325. // asserts that pos is pointing to a char range element
  10326. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10327. const llama_grammar_element * pos,
  10328. const uint32_t chr) {
  10329. bool found = false;
  10330. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10331. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10332. do {
  10333. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10334. // inclusive range, e.g. [a-z]
  10335. found = found || (pos->value <= chr && chr <= pos[1].value);
  10336. pos += 2;
  10337. } else {
  10338. // exact char match, e.g. [a] or "a"
  10339. found = found || pos->value == chr;
  10340. pos += 1;
  10341. }
  10342. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10343. return std::make_pair(found == is_positive_char, pos);
  10344. }
  10345. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10346. // range at pos (regular or inverse range)
  10347. // asserts that pos is pointing to a char range element
  10348. static bool llama_grammar_match_partial_char(
  10349. const llama_grammar_element * pos,
  10350. const llama_partial_utf8 partial_utf8) {
  10351. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10352. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10353. uint32_t partial_value = partial_utf8.value;
  10354. int n_remain = partial_utf8.n_remain;
  10355. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10356. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10357. return false;
  10358. }
  10359. // range of possible code points this partial UTF-8 sequence could complete to
  10360. uint32_t low = partial_value << (n_remain * 6);
  10361. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10362. if (low == 0) {
  10363. if (n_remain == 2) {
  10364. low = 1 << 11;
  10365. } else if (n_remain == 3) {
  10366. low = 1 << 16;
  10367. }
  10368. }
  10369. do {
  10370. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10371. // inclusive range, e.g. [a-z]
  10372. if (pos->value <= high && low <= pos[1].value) {
  10373. return is_positive_char;
  10374. }
  10375. pos += 2;
  10376. } else {
  10377. // exact char match, e.g. [a] or "a"
  10378. if (low <= pos->value && pos->value <= high) {
  10379. return is_positive_char;
  10380. }
  10381. pos += 1;
  10382. }
  10383. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10384. return !is_positive_char;
  10385. }
  10386. // transforms a grammar pushdown stack into N possible stacks, all ending
  10387. // at a character range (terminal element)
  10388. static void llama_grammar_advance_stack(
  10389. const std::vector<std::vector<llama_grammar_element>> & rules,
  10390. const std::vector<const llama_grammar_element *> & stack,
  10391. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10392. if (stack.empty()) {
  10393. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10394. new_stacks.emplace_back(stack);
  10395. }
  10396. return;
  10397. }
  10398. const llama_grammar_element * pos = stack.back();
  10399. switch (pos->type) {
  10400. case LLAMA_GRETYPE_RULE_REF: {
  10401. const size_t rule_id = static_cast<size_t>(pos->value);
  10402. const llama_grammar_element * subpos = rules[rule_id].data();
  10403. do {
  10404. // init new stack without the top (pos)
  10405. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10406. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10407. // if this rule ref is followed by another element, add that to stack
  10408. new_stack.push_back(pos + 1);
  10409. }
  10410. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10411. // if alternate is nonempty, add to stack
  10412. new_stack.push_back(subpos);
  10413. }
  10414. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10415. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10416. // scan to end of alternate def
  10417. subpos++;
  10418. }
  10419. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10420. // there's another alternate def of this rule to process
  10421. subpos++;
  10422. } else {
  10423. break;
  10424. }
  10425. } while (true);
  10426. break;
  10427. }
  10428. case LLAMA_GRETYPE_CHAR:
  10429. case LLAMA_GRETYPE_CHAR_NOT:
  10430. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10431. // only add the stack if it's not a duplicate of one we already have
  10432. new_stacks.emplace_back(stack);
  10433. }
  10434. break;
  10435. default:
  10436. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10437. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10438. // those
  10439. GGML_ASSERT(false);
  10440. }
  10441. }
  10442. // takes a set of possible pushdown stacks on a grammar, which are required to
  10443. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10444. // produces the N possible stacks if the given char is accepted at those
  10445. // positions
  10446. void llama_grammar_accept(
  10447. const std::vector<std::vector<llama_grammar_element>> & rules,
  10448. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10449. const uint32_t chr,
  10450. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10451. new_stacks.clear();
  10452. for (const auto & stack : stacks) {
  10453. if (stack.empty()) {
  10454. continue;
  10455. }
  10456. auto match = llama_grammar_match_char(stack.back(), chr);
  10457. if (match.first) {
  10458. const llama_grammar_element * pos = match.second;
  10459. // update top of stack to next element, if any
  10460. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10461. if (!llama_grammar_is_end_of_sequence(pos)) {
  10462. new_stack.push_back(pos);
  10463. }
  10464. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10465. }
  10466. }
  10467. }
  10468. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10469. const std::vector<std::vector<llama_grammar_element>> & rules,
  10470. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10471. const std::vector<llama_grammar_candidate> & candidates);
  10472. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10473. const std::vector<std::vector<llama_grammar_element>> & rules,
  10474. const std::vector<const llama_grammar_element *> & stack,
  10475. const std::vector<llama_grammar_candidate> & candidates) {
  10476. std::vector<llama_grammar_candidate> rejects;
  10477. rejects.reserve(candidates.size());
  10478. if (stack.empty()) {
  10479. for (const auto & tok : candidates) {
  10480. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10481. rejects.push_back(tok);
  10482. }
  10483. }
  10484. return rejects;
  10485. }
  10486. const llama_grammar_element * stack_pos = stack.back();
  10487. std::vector<llama_grammar_candidate> next_candidates;
  10488. next_candidates.reserve(candidates.size());
  10489. for (const auto & tok : candidates) {
  10490. if (*tok.code_points == 0) {
  10491. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10492. // that cannot satisfy this position in grammar
  10493. if (tok.partial_utf8.n_remain != 0 &&
  10494. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10495. rejects.push_back(tok);
  10496. }
  10497. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10498. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10499. } else {
  10500. rejects.push_back(tok);
  10501. }
  10502. }
  10503. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10504. // update top of stack to next element, if any
  10505. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10506. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10507. stack_after.push_back(stack_pos_after);
  10508. }
  10509. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10510. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10511. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10512. for (const auto & tok : next_rejects) {
  10513. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10514. }
  10515. return rejects;
  10516. }
  10517. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10518. const std::vector<std::vector<llama_grammar_element>> & rules,
  10519. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10520. const std::vector<llama_grammar_candidate> & candidates) {
  10521. GGML_ASSERT(!stacks.empty()); // REVIEW
  10522. if (candidates.empty()) {
  10523. return std::vector<llama_grammar_candidate>();
  10524. }
  10525. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10526. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10527. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10528. }
  10529. return rejects;
  10530. }
  10531. //
  10532. // grammar - external
  10533. //
  10534. struct llama_grammar * llama_grammar_init(
  10535. const llama_grammar_element ** rules,
  10536. size_t n_rules,
  10537. size_t start_rule_index) {
  10538. const llama_grammar_element * pos;
  10539. // copy rule definitions into vectors
  10540. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10541. for (size_t i = 0; i < n_rules; i++) {
  10542. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10543. vec_rules[i].push_back(*pos);
  10544. }
  10545. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10546. }
  10547. // loop over alternates of start rule to build initial stacks
  10548. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10549. pos = vec_rules[start_rule_index].data();
  10550. do {
  10551. std::vector<const llama_grammar_element *> stack;
  10552. if (!llama_grammar_is_end_of_sequence(pos)) {
  10553. // if alternate is nonempty, add to stack
  10554. stack.push_back(pos);
  10555. }
  10556. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10557. while (!llama_grammar_is_end_of_sequence(pos)) {
  10558. // scan to end of alternate def
  10559. pos++;
  10560. }
  10561. if (pos->type == LLAMA_GRETYPE_ALT) {
  10562. // there's another alternate def of this rule to process
  10563. pos++;
  10564. } else {
  10565. break;
  10566. }
  10567. } while (true);
  10568. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10569. }
  10570. void llama_grammar_free(struct llama_grammar * grammar) {
  10571. delete grammar;
  10572. }
  10573. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10574. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10575. // redirect elements in stacks to point to new rules
  10576. for (size_t is = 0; is < result->stacks.size(); is++) {
  10577. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10578. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10579. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10580. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10581. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10582. }
  10583. }
  10584. }
  10585. }
  10586. }
  10587. return result;
  10588. }
  10589. //
  10590. // sampling
  10591. //
  10592. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10593. if (seed == LLAMA_DEFAULT_SEED) {
  10594. seed = time(NULL);
  10595. }
  10596. ctx->rng.seed(seed);
  10597. }
  10598. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10599. GGML_ASSERT(candidates->size > 0);
  10600. const int64_t t_start_sample_us = ggml_time_us();
  10601. // Sort the logits in descending order
  10602. if (!candidates->sorted) {
  10603. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10604. return a.logit > b.logit;
  10605. });
  10606. candidates->sorted = true;
  10607. }
  10608. float max_l = candidates->data[0].logit;
  10609. float cum_sum = 0.0f;
  10610. for (size_t i = 0; i < candidates->size; ++i) {
  10611. float p = expf(candidates->data[i].logit - max_l);
  10612. candidates->data[i].p = p;
  10613. cum_sum += p;
  10614. }
  10615. for (size_t i = 0; i < candidates->size; ++i) {
  10616. candidates->data[i].p /= cum_sum;
  10617. }
  10618. if (ctx) {
  10619. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10620. }
  10621. }
  10622. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10623. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10624. // if (k >= (int32_t)candidates->size) {
  10625. // return;
  10626. // }
  10627. const int64_t t_start_sample_us = ggml_time_us();
  10628. if (k <= 0) {
  10629. k = candidates->size;
  10630. }
  10631. k = std::max(k, (int) min_keep);
  10632. k = std::min(k, (int) candidates->size);
  10633. // Sort scores in descending order
  10634. if (!candidates->sorted) {
  10635. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10636. return a.logit > b.logit;
  10637. };
  10638. if (k <= 128) {
  10639. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10640. } else {
  10641. constexpr int nbuckets = 128;
  10642. constexpr float bucket_low = -10.0f;
  10643. constexpr float bucket_high = 10.0f;
  10644. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10645. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10646. std::vector<int> bucket_idx(candidates->size);
  10647. std::vector<int> histo(nbuckets, 0);
  10648. for (int i = 0; i < (int)candidates->size; ++i) {
  10649. const float val = candidates->data[i].logit;
  10650. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10651. ib = std::max(0, std::min(nbuckets-1, ib));
  10652. bucket_idx[i] = ib;
  10653. ++histo[ib];
  10654. }
  10655. int nhave = 0;
  10656. int ib = nbuckets - 1;
  10657. for ( ; ib >= 0; --ib) {
  10658. nhave += histo[ib];
  10659. if (nhave >= k) break;
  10660. }
  10661. std::vector<llama_token_data> tmp_tokens(nhave);
  10662. auto ptr = tmp_tokens.data();
  10663. std::vector<llama_token_data*> bucket_ptrs;
  10664. bucket_ptrs.reserve(nbuckets - ib);
  10665. for (int j = nbuckets - 1; j >= ib; --j) {
  10666. bucket_ptrs.push_back(ptr);
  10667. ptr += histo[j];
  10668. }
  10669. for (int i = 0; i < (int)candidates->size; ++i) {
  10670. int j = bucket_idx[i];
  10671. if (j >= ib) {
  10672. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10673. }
  10674. }
  10675. ptr = tmp_tokens.data();
  10676. int ndone = 0;
  10677. for (int j = nbuckets-1; j > ib; --j) {
  10678. std::sort(ptr, ptr + histo[j], comp);
  10679. ptr += histo[j];
  10680. ndone += histo[j];
  10681. }
  10682. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10683. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10684. }
  10685. candidates->sorted = true;
  10686. }
  10687. candidates->size = k;
  10688. if (ctx) {
  10689. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10690. }
  10691. }
  10692. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10693. if (p >= 1.0f) {
  10694. return;
  10695. }
  10696. llama_sample_softmax(ctx, candidates);
  10697. const int64_t t_start_sample_us = ggml_time_us();
  10698. // Compute the cumulative probabilities
  10699. float cum_sum = 0.0f;
  10700. size_t last_idx = candidates->size;
  10701. for (size_t i = 0; i < candidates->size; ++i) {
  10702. cum_sum += candidates->data[i].p;
  10703. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10704. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10705. if (cum_sum >= p && i + 1 >= min_keep) {
  10706. last_idx = i + 1;
  10707. break;
  10708. }
  10709. }
  10710. // Resize the output vector to keep only the top-p tokens
  10711. candidates->size = last_idx;
  10712. if (ctx) {
  10713. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10714. }
  10715. }
  10716. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10717. if (p <= 0.0f || !candidates->size) {
  10718. return;
  10719. }
  10720. const int64_t t_start_sample_us = ggml_time_us();
  10721. bool min_p_applied = false;
  10722. // if the candidates aren't sorted, try the unsorted implementation first
  10723. if (!candidates->sorted) {
  10724. std::vector<llama_token_data> filtered_tokens;
  10725. float max_logit = -FLT_MAX;
  10726. for (size_t i = 0; i < candidates->size; ++i) {
  10727. max_logit = std::max(max_logit, candidates->data[i].logit);
  10728. }
  10729. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10730. for (size_t i = 0; i < candidates->size; ++i) {
  10731. if (candidates->data[i].logit >= min_logit) {
  10732. filtered_tokens.push_back(candidates->data[i]);
  10733. }
  10734. }
  10735. // if we have enough values the operation was a success
  10736. if (filtered_tokens.size() >= min_keep) {
  10737. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10738. candidates->size = filtered_tokens.size();
  10739. min_p_applied = true;
  10740. }
  10741. }
  10742. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10743. if (!min_p_applied) {
  10744. // Sort the logits in descending order
  10745. if (!candidates->sorted) {
  10746. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10747. return a.logit > b.logit;
  10748. });
  10749. candidates->sorted = true;
  10750. }
  10751. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10752. size_t i = 1; // first token always matches
  10753. for (; i < candidates->size; ++i) {
  10754. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10755. break; // prob too small
  10756. }
  10757. }
  10758. // Resize the output vector to keep only the matching tokens
  10759. candidates->size = i;
  10760. }
  10761. if (ctx) {
  10762. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10763. }
  10764. }
  10765. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10766. if (z >= 1.0f || candidates->size <= 2) {
  10767. return;
  10768. }
  10769. llama_sample_softmax(nullptr, candidates);
  10770. const int64_t t_start_sample_us = ggml_time_us();
  10771. // Compute the first and second derivatives
  10772. std::vector<float> first_derivatives(candidates->size - 1);
  10773. std::vector<float> second_derivatives(candidates->size - 2);
  10774. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10775. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  10776. }
  10777. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10778. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  10779. }
  10780. // Calculate absolute value of second derivatives
  10781. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10782. second_derivatives[i] = std::abs(second_derivatives[i]);
  10783. }
  10784. // Normalize the second derivatives
  10785. {
  10786. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  10787. if (second_derivatives_sum > 1e-6f) {
  10788. for (float & value : second_derivatives) {
  10789. value /= second_derivatives_sum;
  10790. }
  10791. } else {
  10792. for (float & value : second_derivatives) {
  10793. value = 1.0f / second_derivatives.size();
  10794. }
  10795. }
  10796. }
  10797. float cum_sum = 0.0f;
  10798. size_t last_idx = candidates->size;
  10799. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10800. cum_sum += second_derivatives[i];
  10801. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  10802. if (cum_sum > z && i >= min_keep) {
  10803. last_idx = i;
  10804. break;
  10805. }
  10806. }
  10807. // Resize the output vector to keep only the tokens above the tail location
  10808. candidates->size = last_idx;
  10809. if (ctx) {
  10810. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10811. }
  10812. }
  10813. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10814. // Reference implementation:
  10815. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  10816. if (p >= 1.0f) {
  10817. return;
  10818. }
  10819. // Compute the softmax of logits and calculate entropy
  10820. llama_sample_softmax(nullptr, candidates);
  10821. const int64_t t_start_sample_us = ggml_time_us();
  10822. float entropy = 0.0f;
  10823. for (size_t i = 0; i < candidates->size; ++i) {
  10824. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  10825. }
  10826. // Compute the absolute difference between negative log probability and entropy for each candidate
  10827. std::vector<float> shifted_scores;
  10828. for (size_t i = 0; i < candidates->size; ++i) {
  10829. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  10830. shifted_scores.push_back(shifted_score);
  10831. }
  10832. // Sort tokens based on the shifted_scores and their corresponding indices
  10833. std::vector<size_t> indices(candidates->size);
  10834. std::iota(indices.begin(), indices.end(), 0);
  10835. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  10836. return shifted_scores[a] < shifted_scores[b];
  10837. });
  10838. // Compute the cumulative probabilities
  10839. float cum_sum = 0.0f;
  10840. size_t last_idx = indices.size();
  10841. for (size_t i = 0; i < indices.size(); ++i) {
  10842. size_t idx = indices[i];
  10843. cum_sum += candidates->data[idx].p;
  10844. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  10845. if (cum_sum > p && i >= min_keep - 1) {
  10846. last_idx = i + 1;
  10847. break;
  10848. }
  10849. }
  10850. // Resize the output vector to keep only the locally typical tokens
  10851. std::vector<llama_token_data> new_candidates;
  10852. for (size_t i = 0; i < last_idx; ++i) {
  10853. size_t idx = indices[i];
  10854. new_candidates.push_back(candidates->data[idx]);
  10855. }
  10856. // Replace the data in candidates with the new_candidates data
  10857. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  10858. candidates->size = new_candidates.size();
  10859. candidates->sorted = false;
  10860. if (ctx) {
  10861. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10862. }
  10863. }
  10864. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  10865. const int64_t t_start_sample_us = ggml_time_us();
  10866. // no need to do anything if there is only one (or zero) candidates
  10867. if(candidates_p->size <= 1) {
  10868. return;
  10869. }
  10870. // Calculate maximum possible entropy
  10871. float max_entropy = -logf(1.0f / candidates_p->size);
  10872. llama_sample_softmax(nullptr, candidates_p);
  10873. // Calculate entropy of the softmax probabilities
  10874. float entropy = 0.0f;
  10875. for (size_t i = 0; i < candidates_p->size; ++i) {
  10876. float prob = candidates_p->data[i].p;
  10877. if (prob > 0.0f) { // Ensure no log(0)
  10878. entropy -= prob * logf(prob);
  10879. }
  10880. }
  10881. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  10882. float normalized_entropy = entropy / max_entropy;
  10883. // Map the normalized entropy to the desired temperature range using the power function
  10884. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  10885. #ifdef DEBUG
  10886. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  10887. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  10888. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  10889. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  10890. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  10891. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  10892. #endif
  10893. // Apply the dynamically calculated temperature scaling
  10894. for (size_t i = 0; i < candidates_p->size; ++i) {
  10895. candidates_p->data[i].logit /= dyn_temp;
  10896. }
  10897. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  10898. double max_l_double = candidates_p->data[0].logit;
  10899. double cum_sum_double = 0.0;
  10900. for (size_t i = 0; i < candidates_p->size; ++i) {
  10901. double p = exp(candidates_p->data[i].logit - max_l_double);
  10902. candidates_p->data[i].p = p; // Store the scaled probability
  10903. cum_sum_double += p;
  10904. }
  10905. for (size_t i = 0; i < candidates_p->size; ++i) {
  10906. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  10907. }
  10908. #ifdef DEBUG
  10909. // Print the updated top 25 probabilities after temperature scaling
  10910. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  10911. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  10912. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  10913. }
  10914. #endif
  10915. if (ctx) {
  10916. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10917. }
  10918. }
  10919. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  10920. const int64_t t_start_sample_us = ggml_time_us();
  10921. for (size_t i = 0; i < candidates_p->size; ++i) {
  10922. candidates_p->data[i].logit /= temp;
  10923. }
  10924. if (ctx) {
  10925. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10926. }
  10927. }
  10928. void llama_sample_repetition_penalties(
  10929. struct llama_context * ctx,
  10930. llama_token_data_array * candidates,
  10931. const llama_token * last_tokens,
  10932. size_t penalty_last_n,
  10933. float penalty_repeat,
  10934. float penalty_freq,
  10935. float penalty_present) {
  10936. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  10937. return;
  10938. }
  10939. const int64_t t_start_sample_us = ggml_time_us();
  10940. // Create a frequency map to count occurrences of each token in last_tokens
  10941. std::unordered_map<llama_token, int> token_count;
  10942. for (size_t i = 0; i < penalty_last_n; ++i) {
  10943. token_count[last_tokens[i]]++;
  10944. }
  10945. // Apply frequency and presence penalties to the candidates
  10946. for (size_t i = 0; i < candidates->size; ++i) {
  10947. const auto token_iter = token_count.find(candidates->data[i].id);
  10948. if (token_iter == token_count.end()) {
  10949. continue;
  10950. }
  10951. const int count = token_iter->second;
  10952. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  10953. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  10954. if (candidates->data[i].logit <= 0) {
  10955. candidates->data[i].logit *= penalty_repeat;
  10956. } else {
  10957. candidates->data[i].logit /= penalty_repeat;
  10958. }
  10959. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  10960. }
  10961. candidates->sorted = false;
  10962. if (ctx) {
  10963. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10964. }
  10965. }
  10966. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  10967. GGML_ASSERT(ctx);
  10968. const int64_t t_start_sample_us = ggml_time_us();
  10969. bool allow_eos = false;
  10970. for (const auto & stack : grammar->stacks) {
  10971. if (stack.empty()) {
  10972. allow_eos = true;
  10973. break;
  10974. }
  10975. }
  10976. const llama_token eos = llama_token_eos(&ctx->model);
  10977. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  10978. candidates_decoded.reserve(candidates->size);
  10979. std::vector<llama_grammar_candidate> candidates_grammar;
  10980. candidates_grammar.reserve(candidates->size);
  10981. for (size_t i = 0; i < candidates->size; ++i) {
  10982. const llama_token id = candidates->data[i].id;
  10983. const std::string piece = llama_token_to_piece(ctx, id);
  10984. if (id == eos) {
  10985. if (!allow_eos) {
  10986. candidates->data[i].logit = -INFINITY;
  10987. }
  10988. } else if (piece.empty() || piece[0] == 0) {
  10989. candidates->data[i].logit = -INFINITY;
  10990. } else {
  10991. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  10992. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  10993. }
  10994. }
  10995. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  10996. for (const auto & reject : rejects) {
  10997. candidates->data[reject.index].logit = -INFINITY;
  10998. }
  10999. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11000. }
  11001. static void llama_log_softmax(float * array, size_t size) {
  11002. float max_l = *std::max_element(array, array + size);
  11003. float sum = 0.f;
  11004. for (size_t i = 0; i < size; ++i) {
  11005. float p = expf(array[i] - max_l);
  11006. sum += p;
  11007. array[i] = p;
  11008. }
  11009. for (size_t i = 0; i < size; ++i) {
  11010. array[i] = logf(array[i] / sum);
  11011. }
  11012. }
  11013. void llama_sample_apply_guidance(
  11014. struct llama_context * ctx,
  11015. float * logits,
  11016. float * logits_guidance,
  11017. float scale) {
  11018. GGML_ASSERT(ctx);
  11019. const auto t_start_sample_us = ggml_time_us();
  11020. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11021. llama_log_softmax(logits, n_vocab);
  11022. llama_log_softmax(logits_guidance, n_vocab);
  11023. for (int i = 0; i < n_vocab; ++i) {
  11024. auto & l = logits[i];
  11025. const auto & g = logits_guidance[i];
  11026. l = scale * (l - g) + g;
  11027. }
  11028. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11029. }
  11030. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11031. GGML_ASSERT(ctx);
  11032. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11033. int64_t t_start_sample_us;
  11034. t_start_sample_us = ggml_time_us();
  11035. llama_sample_softmax(nullptr, candidates);
  11036. // Estimate s_hat using the most probable m tokens
  11037. float s_hat = 0.0;
  11038. float sum_ti_bi = 0.0;
  11039. float sum_ti_sq = 0.0;
  11040. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11041. float t_i = logf(float(i + 2) / float(i + 1));
  11042. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11043. sum_ti_bi += t_i * b_i;
  11044. sum_ti_sq += t_i * t_i;
  11045. }
  11046. s_hat = sum_ti_bi / sum_ti_sq;
  11047. // Compute k from the estimated s_hat and target surprise value
  11048. float epsilon_hat = s_hat - 1;
  11049. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11050. // Sample the next word X using top-k sampling
  11051. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11052. if (ctx) {
  11053. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11054. }
  11055. llama_token X = llama_sample_token(ctx, candidates);
  11056. t_start_sample_us = ggml_time_us();
  11057. // Compute error as the difference between observed surprise and target surprise value
  11058. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11059. return candidate.id == X;
  11060. }));
  11061. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11062. float e = observed_surprise - tau;
  11063. // Update mu using the learning rate and error
  11064. *mu = *mu - eta * e;
  11065. if (ctx) {
  11066. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11067. }
  11068. return X;
  11069. }
  11070. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11071. int64_t t_start_sample_us;
  11072. t_start_sample_us = ggml_time_us();
  11073. llama_sample_softmax(ctx, candidates);
  11074. // Truncate the words with surprise values greater than mu
  11075. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11076. return -log2f(candidate.p) > *mu;
  11077. }));
  11078. if (candidates->size == 0) {
  11079. candidates->size = 1;
  11080. }
  11081. if (ctx) {
  11082. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11083. }
  11084. // Normalize the probabilities of the remaining words
  11085. llama_sample_softmax(ctx, candidates);
  11086. // Sample the next word X from the remaining words
  11087. llama_token X = llama_sample_token(ctx, candidates);
  11088. t_start_sample_us = ggml_time_us();
  11089. // Compute error as the difference between observed surprise and target surprise value
  11090. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11091. return candidate.id == X;
  11092. }));
  11093. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11094. float e = observed_surprise - tau;
  11095. // Update mu using the learning rate and error
  11096. *mu = *mu - eta * e;
  11097. if (ctx) {
  11098. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11099. }
  11100. return X;
  11101. }
  11102. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11103. const int64_t t_start_sample_us = ggml_time_us();
  11104. // Find max element
  11105. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11106. return a.logit < b.logit;
  11107. });
  11108. llama_token result = max_iter->id;
  11109. if (ctx) {
  11110. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11111. ctx->n_sample++;
  11112. }
  11113. return result;
  11114. }
  11115. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11116. GGML_ASSERT(ctx);
  11117. const int64_t t_start_sample_us = ggml_time_us();
  11118. llama_sample_softmax(nullptr, candidates);
  11119. std::vector<float> probs;
  11120. probs.reserve(candidates->size);
  11121. for (size_t i = 0; i < candidates->size; ++i) {
  11122. probs.push_back(candidates->data[i].p);
  11123. }
  11124. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11125. auto & rng = ctx->rng;
  11126. int idx = dist(rng);
  11127. llama_token result = candidates->data[idx].id;
  11128. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11129. ctx->n_sample++;
  11130. return result;
  11131. }
  11132. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11133. const int64_t t_start_sample_us = ggml_time_us();
  11134. if (token == llama_token_eos(&ctx->model)) {
  11135. for (const auto & stack : grammar->stacks) {
  11136. if (stack.empty()) {
  11137. return;
  11138. }
  11139. }
  11140. GGML_ASSERT(false);
  11141. }
  11142. const std::string piece = llama_token_to_piece(ctx, token);
  11143. // Note terminating 0 in decoded string
  11144. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11145. const auto & code_points = decoded.first;
  11146. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11147. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11148. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11149. grammar->stacks = tmp_new_stacks;
  11150. }
  11151. grammar->partial_utf8 = decoded.second;
  11152. GGML_ASSERT(!grammar->stacks.empty());
  11153. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11154. }
  11155. //
  11156. // Beam search
  11157. //
  11158. struct llama_beam {
  11159. std::vector<llama_token> tokens;
  11160. float p; // Cumulative beam probability (renormalized relative to all beams)
  11161. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11162. // Sort beams by probability. In case of ties, prefer beams at eob.
  11163. bool operator<(const llama_beam & rhs) const {
  11164. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11165. }
  11166. // Shift off first n tokens and discard them.
  11167. void shift_tokens(const size_t n) {
  11168. if (n) {
  11169. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11170. tokens.resize(tokens.size() - n);
  11171. }
  11172. }
  11173. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11174. };
  11175. // A struct for calculating logit-related info.
  11176. struct llama_logit_info {
  11177. const float * const logits;
  11178. const int n_vocab;
  11179. const float max_l;
  11180. const float normalizer;
  11181. struct sum_exp {
  11182. float max_l;
  11183. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11184. };
  11185. llama_logit_info(llama_context * ctx)
  11186. : logits(llama_get_logits(ctx))
  11187. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11188. , max_l(*std::max_element(logits, logits + n_vocab))
  11189. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11190. { }
  11191. llama_token_data get_token_data(const llama_token token_id) const {
  11192. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11193. return {token_id, logits[token_id], p};
  11194. }
  11195. // Return top k token_data by logit.
  11196. std::vector<llama_token_data> top_k(size_t k) {
  11197. std::vector<llama_token_data> min_heap; // min-heap by logit
  11198. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11199. min_heap.reserve(k_min);
  11200. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11201. min_heap.push_back(get_token_data(token_id));
  11202. }
  11203. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11204. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11205. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11206. if (min_heap.front().logit < logits[token_id]) {
  11207. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11208. min_heap.back().id = token_id;
  11209. min_heap.back().logit = logits[token_id];
  11210. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11211. }
  11212. }
  11213. return min_heap;
  11214. }
  11215. float probability_from_logit(float logit) const {
  11216. return normalizer * std::exp(logit - max_l);
  11217. }
  11218. };
  11219. struct llama_beam_search_data {
  11220. llama_context * ctx;
  11221. size_t n_beams;
  11222. int n_past;
  11223. int n_predict;
  11224. std::vector<llama_beam> beams;
  11225. std::vector<llama_beam> next_beams;
  11226. // Re-calculated on each loop iteration
  11227. size_t common_prefix_length;
  11228. // Used to communicate to/from callback on beams state.
  11229. std::vector<llama_beam_view> beam_views;
  11230. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11231. : ctx(ctx)
  11232. , n_beams(n_beams)
  11233. , n_past(n_past)
  11234. , n_predict(n_predict)
  11235. , beam_views(n_beams) {
  11236. beams.reserve(n_beams);
  11237. next_beams.reserve(n_beams);
  11238. }
  11239. // Collapse beams to a single beam given by index.
  11240. void collapse_beams(const size_t beam_idx) {
  11241. if (0u < beam_idx) {
  11242. std::swap(beams[0], beams[beam_idx]);
  11243. }
  11244. beams.resize(1);
  11245. }
  11246. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11247. // The repetitive patterns below reflect the 2 stages of heaps:
  11248. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11249. // * If the heap is full and a new element is found that should be included, pop the
  11250. // least element to the back(), replace it with the new, then push it into the heap.
  11251. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11252. // Min-heaps use a greater-than comparator.
  11253. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11254. if (beam.eob) {
  11255. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11256. if (next_beams.size() < n_beams) {
  11257. next_beams.push_back(std::move(beam));
  11258. if (next_beams.size() == n_beams) {
  11259. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11260. }
  11261. } else if (next_beams.front().p < beam.p) {
  11262. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11263. next_beams.back() = std::move(beam);
  11264. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11265. }
  11266. } else {
  11267. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11268. if (!beam.tokens.empty()) {
  11269. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11270. }
  11271. llama_logit_info logit_info(ctx);
  11272. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11273. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11274. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11275. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11276. size_t i=0;
  11277. if (next_beams.size() < n_beams) {
  11278. for (; next_beams.size() < n_beams ; ++i) {
  11279. llama_beam next_beam = beam;
  11280. next_beam.tokens.push_back(next_tokens[i].id);
  11281. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11282. next_beams.push_back(std::move(next_beam));
  11283. }
  11284. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11285. } else {
  11286. for (; next_beams.front().p == 0.0f ; ++i) {
  11287. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11288. next_beams.back() = beam;
  11289. next_beams.back().tokens.push_back(next_tokens[i].id);
  11290. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11291. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11292. }
  11293. }
  11294. for (; i < n_beams ; ++i) {
  11295. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11296. if (next_beams.front().p < next_p) {
  11297. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11298. next_beams.back() = beam;
  11299. next_beams.back().tokens.push_back(next_tokens[i].id);
  11300. next_beams.back().p = next_p;
  11301. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11302. }
  11303. }
  11304. }
  11305. }
  11306. // Find common_prefix_length based on beams.
  11307. // Requires beams is not empty.
  11308. size_t find_common_prefix_length() {
  11309. size_t common_prefix_length = beams[0].tokens.size();
  11310. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11311. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11312. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11313. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11314. common_prefix_length = j;
  11315. break;
  11316. }
  11317. }
  11318. }
  11319. return common_prefix_length;
  11320. }
  11321. // Construct beams_state to send back to caller via the callback function.
  11322. // Side effect: set common_prefix_length = find_common_prefix_length();
  11323. llama_beams_state get_beams_state(const bool last_call) {
  11324. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11325. beam_views[i] = beams[i].view();
  11326. }
  11327. common_prefix_length = find_common_prefix_length();
  11328. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11329. }
  11330. // Loop:
  11331. // * while i < n_predict, AND
  11332. // * any of the beams have not yet reached end-of-beam (eob), AND
  11333. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11334. // (since all other beam probabilities can only decrease)
  11335. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11336. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11337. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11338. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11339. !beams[top_beam_index()].eob ; ++i) {
  11340. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11341. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11342. if (common_prefix_length) {
  11343. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11344. n_past += common_prefix_length;
  11345. }
  11346. // Zero-out next_beam probabilities to place them last in following min-heap.
  11347. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11348. for (llama_beam & beam : beams) {
  11349. beam.shift_tokens(common_prefix_length);
  11350. fill_next_beams_by_top_probabilities(beam);
  11351. }
  11352. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11353. beams.swap(next_beams);
  11354. renormalize_beam_probabilities(beams);
  11355. }
  11356. collapse_beams(top_beam_index());
  11357. callback(callback_data, get_beams_state(true));
  11358. }
  11359. // As beams grow, the cumulative probabilities decrease.
  11360. // Renormalize them to avoid floating point underflow.
  11361. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11362. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11363. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11364. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11365. }
  11366. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11367. size_t top_beam_index() {
  11368. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11369. }
  11370. // Copy (p,eob) for each beam which may have been changed by the callback.
  11371. void update_beams_from_beam_views() {
  11372. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11373. beams[i].p = beam_views[i].p;
  11374. beams[i].eob = beam_views[i].eob;
  11375. }
  11376. }
  11377. };
  11378. void llama_beam_search(llama_context * ctx,
  11379. llama_beam_search_callback_fn_t callback, void * callback_data,
  11380. size_t n_beams, int n_past, int n_predict) {
  11381. assert(ctx);
  11382. const int64_t t_start_sample_us = ggml_time_us();
  11383. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11384. beam_search_data.loop(callback, callback_data);
  11385. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11386. ctx->n_sample++;
  11387. }
  11388. //
  11389. // quantization
  11390. //
  11391. struct quantize_state_internal {
  11392. const llama_model & model;
  11393. const llama_model_quantize_params * params;
  11394. int n_attention_wv = 0;
  11395. int n_ffn_down = 0;
  11396. int n_ffn_gate = 0;
  11397. int n_ffn_up = 0;
  11398. int i_attention_wv = 0;
  11399. int i_ffn_down = 0;
  11400. int i_ffn_gate = 0;
  11401. int i_ffn_up = 0;
  11402. int n_k_quantized = 0;
  11403. int n_fallback = 0;
  11404. bool has_imatrix = false;
  11405. // used to figure out if a model shares tok_embd with the output weight
  11406. bool has_output = false;
  11407. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11408. : model(model)
  11409. , params(params)
  11410. {}
  11411. };
  11412. static void llama_tensor_dequantize_internal(
  11413. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11414. const size_t nelements, const int nthread
  11415. ) {
  11416. if (output.size() < nelements) {
  11417. output.resize(nelements);
  11418. }
  11419. float * f32_output = (float *) output.data();
  11420. ggml_type_traits_t qtype;
  11421. if (ggml_is_quantized(tensor->type)) {
  11422. qtype = ggml_internal_get_type_traits(tensor->type);
  11423. if (qtype.to_float == NULL) {
  11424. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11425. }
  11426. } else if (tensor->type != GGML_TYPE_F16) {
  11427. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11428. }
  11429. if (nthread < 2) {
  11430. if (tensor->type == GGML_TYPE_F16) {
  11431. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11432. } else if (ggml_is_quantized(tensor->type)) {
  11433. qtype.to_float(tensor->data, f32_output, nelements);
  11434. } else {
  11435. GGML_ASSERT(false); // unreachable
  11436. }
  11437. return;
  11438. }
  11439. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  11440. size_t block_size_bytes = ggml_type_size(tensor->type);
  11441. GGML_ASSERT(nelements % block_size == 0);
  11442. size_t nblocks = nelements / block_size;
  11443. size_t blocks_per_thread = nblocks / nthread;
  11444. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11445. size_t in_buff_offs = 0;
  11446. size_t out_buff_offs = 0;
  11447. for (int tnum = 0; tnum < nthread; tnum++) {
  11448. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11449. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11450. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11451. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11452. if (typ == GGML_TYPE_F16) {
  11453. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11454. } else {
  11455. qtype.to_float(inbuf, outbuf, nels);
  11456. }
  11457. };
  11458. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11459. in_buff_offs += thr_block_bytes;
  11460. out_buff_offs += thr_elems;
  11461. }
  11462. for (auto & w : workers) { w.join(); }
  11463. workers.clear();
  11464. }
  11465. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11466. const std::string name = ggml_get_name(tensor);
  11467. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11468. const llm_arch arch = qs.model.arch;
  11469. const auto tn = LLM_TN(arch);
  11470. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11471. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11472. };
  11473. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11474. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11475. if (n_expert > 1) {
  11476. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11477. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11478. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11479. // tensor name.
  11480. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11481. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11482. }
  11483. if (i_layer < 0 || i_layer >= n_layer) {
  11484. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11485. }
  11486. }
  11487. return std::make_pair(i_layer, n_layer);
  11488. };
  11489. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11490. // with the quantization of the output tensor
  11491. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11492. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11493. new_type = qs.params->output_tensor_type;
  11494. } else {
  11495. int nx = tensor->ne[0];
  11496. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11497. new_type = GGML_TYPE_Q8_0;
  11498. }
  11499. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11500. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11501. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11502. new_type = GGML_TYPE_Q5_K;
  11503. }
  11504. else if (new_type != GGML_TYPE_Q8_0) {
  11505. new_type = GGML_TYPE_Q6_K;
  11506. }
  11507. }
  11508. } else if (name == "token_embd.weight") {
  11509. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11510. new_type = qs.params->token_embedding_type;
  11511. } else {
  11512. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11513. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11514. new_type = GGML_TYPE_Q2_K;
  11515. }
  11516. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11517. new_type = GGML_TYPE_IQ3_S;
  11518. }
  11519. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11520. new_type = GGML_TYPE_IQ3_S;
  11521. }
  11522. }
  11523. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11524. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11525. if (name.find("attn_v.weight") != std::string::npos) {
  11526. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11527. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11528. ++qs.i_attention_wv;
  11529. }
  11530. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11531. new_type = GGML_TYPE_Q4_K;
  11532. }
  11533. else if (name.find("ffn_down") != std::string::npos) {
  11534. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11535. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11536. }
  11537. ++qs.i_ffn_down;
  11538. }
  11539. else if (name.find("attn_output.weight") != std::string::npos) {
  11540. if (qs.model.hparams.n_expert == 8) {
  11541. new_type = GGML_TYPE_Q5_K;
  11542. } else {
  11543. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11544. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11545. }
  11546. }
  11547. } else if (name.find("attn_v.weight") != std::string::npos) {
  11548. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11549. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11550. }
  11551. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11552. new_type = GGML_TYPE_Q4_K;
  11553. }
  11554. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11555. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11556. }
  11557. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11558. new_type = GGML_TYPE_Q4_K;
  11559. }
  11560. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11561. new_type = GGML_TYPE_Q4_K;
  11562. }
  11563. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11564. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11565. }
  11566. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11567. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11568. new_type = GGML_TYPE_Q5_K;
  11569. }
  11570. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11571. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11572. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11573. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11574. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11575. if (qs.model.type == MODEL_70B) {
  11576. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11577. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11578. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11579. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11580. }
  11581. if (qs.model.hparams.n_expert == 8) {
  11582. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11583. // TODO: explore better strategies
  11584. new_type = GGML_TYPE_Q8_0;
  11585. }
  11586. ++qs.i_attention_wv;
  11587. } else if (name.find("attn_k.weight") != std::string::npos) {
  11588. if (qs.model.hparams.n_expert == 8) {
  11589. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11590. // TODO: explore better strategies
  11591. new_type = GGML_TYPE_Q8_0;
  11592. }
  11593. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11594. new_type = GGML_TYPE_IQ3_XXS;
  11595. }
  11596. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11597. new_type = GGML_TYPE_IQ2_S;
  11598. }
  11599. } else if (name.find("attn_q.weight") != std::string::npos) {
  11600. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11601. new_type = GGML_TYPE_IQ3_XXS;
  11602. }
  11603. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11604. new_type = GGML_TYPE_IQ2_S;
  11605. }
  11606. } else if (name.find("ffn_down") != std::string::npos) {
  11607. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11608. int i_layer = info.first, n_layer = info.second;
  11609. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11610. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11611. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11612. }
  11613. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11614. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11615. }
  11616. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11617. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11618. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11619. : GGML_TYPE_Q3_K;
  11620. }
  11621. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11622. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11623. new_type = GGML_TYPE_Q4_K;
  11624. }
  11625. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11626. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11627. }
  11628. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11629. if (arch == LLM_ARCH_FALCON) {
  11630. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11631. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11632. } else {
  11633. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11634. }
  11635. }
  11636. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11637. new_type = GGML_TYPE_Q5_K;
  11638. }
  11639. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11640. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11641. new_type = GGML_TYPE_Q5_K;
  11642. }
  11643. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11644. && qs.has_imatrix && i_layer < n_layer/8) {
  11645. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11646. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11647. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11648. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11649. }
  11650. ++qs.i_ffn_down;
  11651. } else if (name.find("attn_output.weight") != std::string::npos) {
  11652. if (arch != LLM_ARCH_FALCON) {
  11653. if (qs.model.hparams.n_expert == 8) {
  11654. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11655. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11656. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11657. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11658. new_type = GGML_TYPE_Q5_K;
  11659. }
  11660. } else {
  11661. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11662. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11663. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11664. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11665. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11666. }
  11667. } else {
  11668. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11669. }
  11670. }
  11671. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11672. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11673. new_type = GGML_TYPE_Q4_K;
  11674. }
  11675. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11676. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11677. }
  11678. else if (name.find("ffn_gate") != std::string::npos) {
  11679. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11680. int i_layer = info.first, n_layer = info.second;
  11681. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11682. new_type = GGML_TYPE_IQ3_XXS;
  11683. }
  11684. ++qs.i_ffn_gate;
  11685. }
  11686. else if (name.find("ffn_up") != std::string::npos) {
  11687. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  11688. int i_layer = info.first, n_layer = info.second;
  11689. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11690. new_type = GGML_TYPE_IQ3_XXS;
  11691. }
  11692. ++qs.i_ffn_up;
  11693. }
  11694. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11695. //}
  11696. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11697. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11698. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11699. //}
  11700. // This can be used to reduce the size of the Q5_K_S model.
  11701. // The associated PPL increase is fully in line with the size reduction
  11702. //else {
  11703. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11704. //}
  11705. bool convert_incompatible_tensor = false;
  11706. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11707. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11708. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11709. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11710. new_type == GGML_TYPE_IQ1_M) {
  11711. int nx = tensor->ne[0];
  11712. int ny = tensor->ne[1];
  11713. if (nx % QK_K != 0) {
  11714. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11715. convert_incompatible_tensor = true;
  11716. } else {
  11717. ++qs.n_k_quantized;
  11718. }
  11719. }
  11720. if (convert_incompatible_tensor) {
  11721. switch (new_type) {
  11722. case GGML_TYPE_IQ2_XXS:
  11723. case GGML_TYPE_IQ2_XS:
  11724. case GGML_TYPE_IQ2_S:
  11725. case GGML_TYPE_IQ3_XXS:
  11726. case GGML_TYPE_IQ3_S:
  11727. case GGML_TYPE_IQ1_S:
  11728. case GGML_TYPE_IQ1_M:
  11729. case GGML_TYPE_Q2_K:
  11730. case GGML_TYPE_Q3_K:
  11731. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11732. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11733. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11734. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11735. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11736. }
  11737. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11738. ++qs.n_fallback;
  11739. }
  11740. return new_type;
  11741. }
  11742. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11743. std::mutex mutex;
  11744. int64_t counter = 0;
  11745. size_t new_size = 0;
  11746. if (nthread < 2) {
  11747. // single-thread
  11748. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11749. }
  11750. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  11751. nrows, n_per_row, imatrix]() {
  11752. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  11753. size_t local_size = 0;
  11754. while (true) {
  11755. std::unique_lock<std::mutex> lock(mutex);
  11756. int64_t first_row = counter; counter += nrows_per_chunk;
  11757. if (first_row >= nrows) {
  11758. if (local_size > 0) {
  11759. new_size += local_size;
  11760. }
  11761. break;
  11762. }
  11763. lock.unlock();
  11764. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11765. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11766. }
  11767. };
  11768. for (int it = 0; it < nthread - 1; ++it) {
  11769. workers.emplace_back(compute);
  11770. }
  11771. compute();
  11772. for (auto & w : workers) { w.join(); }
  11773. workers.clear();
  11774. return new_size;
  11775. }
  11776. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  11777. ggml_type default_type;
  11778. llama_ftype ftype = params->ftype;
  11779. switch (params->ftype) {
  11780. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  11781. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  11782. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  11783. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  11784. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  11785. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  11786. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  11787. // K-quants
  11788. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  11789. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  11790. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  11791. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  11792. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  11793. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  11794. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  11795. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  11796. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  11797. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  11798. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  11799. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  11800. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  11801. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  11802. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  11803. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  11804. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  11805. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  11806. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  11807. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  11808. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  11809. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  11810. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  11811. }
  11812. int nthread = params->nthread;
  11813. if (nthread <= 0) {
  11814. nthread = std::thread::hardware_concurrency();
  11815. }
  11816. // mmap consistently increases speed Linux, and also increases speed on Windows with
  11817. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  11818. #if defined(__linux__) || defined(_WIN32)
  11819. constexpr bool use_mmap = true;
  11820. #else
  11821. constexpr bool use_mmap = false;
  11822. #endif
  11823. llama_model_kv_override * kv_overrides = nullptr;
  11824. if (params->kv_overrides) {
  11825. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  11826. kv_overrides = v->data();
  11827. }
  11828. llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
  11829. ml.init_mappings(false); // no prefetching
  11830. llama_model model;
  11831. llm_load_arch(ml, model);
  11832. llm_load_hparams(ml, model);
  11833. struct quantize_state_internal qs(model, params);
  11834. if (params->only_copy) {
  11835. ftype = model.ftype;
  11836. }
  11837. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  11838. if (params->imatrix) {
  11839. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  11840. if (imatrix_data) {
  11841. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  11842. qs.has_imatrix = true;
  11843. }
  11844. }
  11845. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  11846. struct gguf_context * ctx_out = gguf_init_empty();
  11847. // copy the KV pairs from the input file
  11848. gguf_set_kv (ctx_out, ml.meta);
  11849. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  11850. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  11851. // Remove split metadata
  11852. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  11853. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  11854. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  11855. if (params->kv_overrides) {
  11856. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  11857. for (auto & o : overrides) {
  11858. if (o.key[0] == 0) break;
  11859. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  11860. gguf_set_val_f32(ctx_out, o.key, o.float_value);
  11861. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  11862. gguf_set_val_i32(ctx_out, o.key, o.int_value);
  11863. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  11864. gguf_set_val_bool(ctx_out, o.key, o.bool_value);
  11865. } else {
  11866. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  11867. }
  11868. }
  11869. }
  11870. for (int i = 0; i < ml.n_tensors; ++i) {
  11871. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11872. const std::string name = ggml_get_name(meta);
  11873. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11874. if (name.find("attn_v.weight") != std::string::npos ||
  11875. name.find("attn_qkv.weight") != std::string::npos) {
  11876. ++qs.n_attention_wv;
  11877. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  11878. qs.has_output = true;
  11879. }
  11880. }
  11881. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  11882. // sanity checks
  11883. //
  11884. // - qs.n_attention_wv == 0 for Mamba models
  11885. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  11886. //
  11887. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  11888. size_t total_size_org = 0;
  11889. size_t total_size_new = 0;
  11890. std::vector<std::thread> workers;
  11891. workers.reserve(nthread);
  11892. int idx = 0;
  11893. std::vector<no_init<uint8_t>> read_data;
  11894. std::vector<no_init<uint8_t>> work;
  11895. std::vector<no_init<float>> f32_conv_buf;
  11896. // populate the original tensors so we get an initial meta data
  11897. for (int i = 0; i < ml.n_tensors; ++i) {
  11898. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11899. gguf_add_tensor(ctx_out, meta);
  11900. }
  11901. std::ofstream fout(fname_out, std::ios::binary);
  11902. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  11903. const size_t meta_size = gguf_get_meta_size(ctx_out);
  11904. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  11905. // placeholder for the meta data
  11906. ::zeros(fout, meta_size);
  11907. const auto tn = LLM_TN(model.arch);
  11908. for (int i = 0; i < ml.n_tensors; ++i) {
  11909. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  11910. const std::string name = ggml_get_name(tensor);
  11911. if (!ml.use_mmap) {
  11912. if (read_data.size() < ggml_nbytes(tensor)) {
  11913. read_data.resize(ggml_nbytes(tensor));
  11914. }
  11915. tensor->data = read_data.data();
  11916. }
  11917. ml.load_data_for(tensor);
  11918. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  11919. ++idx, ml.n_tensors,
  11920. ggml_get_name(tensor),
  11921. llama_format_tensor_shape(tensor).c_str(),
  11922. ggml_type_name(tensor->type));
  11923. // This used to be a regex, but <regex> has an extreme cost to compile times.
  11924. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  11925. // quantize only 2D and 3D tensors (experts)
  11926. quantize &= (ggml_n_dims(tensor) >= 2);
  11927. // do not quantize norm tensors
  11928. quantize &= name.find("_norm.weight") == std::string::npos;
  11929. quantize &= params->quantize_output_tensor || name != "output.weight";
  11930. quantize &= !params->only_copy;
  11931. // do not quantize expert gating tensors
  11932. // NOTE: can't use LLM_TN here because the layer number is not known
  11933. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  11934. // do not quantize positional embeddings and token types (BERT)
  11935. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  11936. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  11937. // do not quantize Mamba's small yet 2D weights
  11938. // NOTE: can't use LLM_TN here because the layer number is not known
  11939. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  11940. quantize &= name.find("ssm_x.weight") == std::string::npos;
  11941. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  11942. enum ggml_type new_type;
  11943. void * new_data;
  11944. size_t new_size;
  11945. if (quantize) {
  11946. new_type = default_type;
  11947. // get more optimal quantization type based on the tensor shape, layer, etc.
  11948. if (!params->pure && ggml_is_quantized(default_type)) {
  11949. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  11950. }
  11951. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  11952. new_type = params->token_embedding_type;
  11953. }
  11954. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  11955. new_type = params->output_tensor_type;
  11956. }
  11957. // If we've decided to quantize to the same type the tensor is already
  11958. // in then there's nothing to do.
  11959. quantize = tensor->type != new_type;
  11960. }
  11961. if (!quantize) {
  11962. new_type = tensor->type;
  11963. new_data = tensor->data;
  11964. new_size = ggml_nbytes(tensor);
  11965. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  11966. } else {
  11967. const int64_t nelements = ggml_nelements(tensor);
  11968. const float * imatrix = nullptr;
  11969. if (imatrix_data) {
  11970. auto it = imatrix_data->find(tensor->name);
  11971. if (it == imatrix_data->end()) {
  11972. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  11973. } else {
  11974. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  11975. imatrix = it->second.data();
  11976. } else {
  11977. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  11978. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  11979. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  11980. // this is a significant error and it may be good idea to abort the process if this happens,
  11981. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  11982. // tok_embd should be ignored in this case, since it always causes this warning
  11983. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  11984. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  11985. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  11986. }
  11987. }
  11988. }
  11989. }
  11990. if ((new_type == GGML_TYPE_IQ2_XXS ||
  11991. new_type == GGML_TYPE_IQ2_XS ||
  11992. new_type == GGML_TYPE_IQ2_S ||
  11993. new_type == GGML_TYPE_IQ1_S ||
  11994. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  11995. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  11996. LLAMA_LOG_ERROR("\n\n============================================================\n");
  11997. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  11998. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  11999. LLAMA_LOG_ERROR("============================================================\n\n");
  12000. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12001. }
  12002. float * f32_data;
  12003. if (tensor->type == GGML_TYPE_F32) {
  12004. f32_data = (float *) tensor->data;
  12005. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12006. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12007. } else {
  12008. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12009. f32_data = (float *) f32_conv_buf.data();
  12010. }
  12011. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12012. fflush(stdout);
  12013. if (work.size() < (size_t)nelements * 4) {
  12014. work.resize(nelements * 4); // upper bound on size
  12015. }
  12016. new_data = work.data();
  12017. const int64_t n_per_row = tensor->ne[0];
  12018. const int64_t nrows = tensor->ne[1];
  12019. static const int64_t min_chunk_size = 32 * 512;
  12020. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12021. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12022. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12023. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12024. // quantize each expert separately since they have different importance matrices
  12025. new_size = 0;
  12026. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12027. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12028. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12029. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12030. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12031. }
  12032. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12033. }
  12034. total_size_org += ggml_nbytes(tensor);
  12035. total_size_new += new_size;
  12036. // update the gguf meta data as we go
  12037. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  12038. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  12039. // write tensor data + padding
  12040. fout.write((const char *) new_data, new_size);
  12041. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12042. }
  12043. // go back to beginning of file and write the updated meta data
  12044. {
  12045. fout.seekp(0);
  12046. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  12047. gguf_get_meta_data(ctx_out, data.data());
  12048. fout.write((const char *) data.data(), data.size());
  12049. }
  12050. fout.close();
  12051. gguf_free(ctx_out);
  12052. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12053. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12054. if (qs.n_fallback > 0) {
  12055. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12056. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12057. }
  12058. }
  12059. static int llama_apply_lora_from_file_internal(
  12060. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12061. ) {
  12062. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12063. const int64_t t_start_lora_us = ggml_time_us();
  12064. llama_file fin(path_lora, "rb");
  12065. // verify magic and version
  12066. {
  12067. uint32_t magic = fin.read_u32();
  12068. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12069. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12070. return 1;
  12071. }
  12072. uint32_t format_version = fin.read_u32();
  12073. if (format_version != 1) {
  12074. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12075. return 1;
  12076. }
  12077. }
  12078. int32_t lora_r = fin.read_u32();
  12079. int32_t lora_alpha = fin.read_u32();
  12080. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12081. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12082. // load base model
  12083. std::unique_ptr<llama_model_loader> ml;
  12084. if (path_base_model) {
  12085. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12086. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  12087. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12088. }
  12089. struct tensor_meta {
  12090. std::string name;
  12091. ggml_type type;
  12092. int32_t ne[2];
  12093. size_t offset;
  12094. };
  12095. std::map<std::string, tensor_meta> tensor_meta_map;
  12096. // load all tensor meta
  12097. while (true) {
  12098. if (fin.tell() == fin.size) {
  12099. // eof
  12100. break;
  12101. }
  12102. int32_t n_dims;
  12103. int32_t name_len;
  12104. int32_t ftype;
  12105. fin.read_raw(&n_dims, sizeof(n_dims));
  12106. fin.read_raw(&name_len, sizeof(name_len));
  12107. fin.read_raw(&ftype, sizeof(ftype));
  12108. if (n_dims != 1 && n_dims != 2) {
  12109. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12110. return 1;
  12111. }
  12112. int32_t ne[2] = { 1, 1 };
  12113. for (int i = 0; i < n_dims; ++i) {
  12114. fin.read_raw(&ne[i], sizeof(ne[i]));
  12115. }
  12116. std::string name;
  12117. {
  12118. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12119. char buf[GGML_MAX_NAME];
  12120. fin.read_raw(buf, name_len);
  12121. name = std::string(buf, name_len);
  12122. }
  12123. // check for lora suffix
  12124. std::string lora_suffix;
  12125. if (name.length() > 6) {
  12126. lora_suffix = name.substr(name.length() - 6);
  12127. }
  12128. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12129. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12130. return 1;
  12131. }
  12132. // tensor type
  12133. ggml_type wtype;
  12134. switch (ftype) {
  12135. case 0: wtype = GGML_TYPE_F32; break;
  12136. case 1: wtype = GGML_TYPE_F16; break;
  12137. default:
  12138. {
  12139. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12140. __func__, ftype);
  12141. return 1;
  12142. }
  12143. }
  12144. // data offset
  12145. size_t offset = fin.tell();
  12146. offset = (offset + 31) & -32;
  12147. // skip tensor data
  12148. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12149. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12150. }
  12151. bool warned = false;
  12152. int n_tensors = 0;
  12153. // apply
  12154. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12155. if (backend_cpu == nullptr) {
  12156. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12157. return 1;
  12158. }
  12159. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12160. std::vector<no_init<uint8_t>> read_buf;
  12161. for (const auto & it : model.tensors_by_name) {
  12162. const std::string & base_name = it.first;
  12163. ggml_tensor * model_t = it.second;
  12164. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12165. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12166. continue;
  12167. }
  12168. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12169. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12170. ggml_init_params lora_init_params = {
  12171. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12172. /* .mem_buffer */ nullptr,
  12173. /* .no_alloc */ true,
  12174. };
  12175. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12176. if (lora_ctx == nullptr) {
  12177. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12178. ggml_backend_free(backend_cpu);
  12179. return 1;
  12180. }
  12181. // create tensors
  12182. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12183. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12184. ggml_set_name(loraA, metaA.name.c_str());
  12185. ggml_set_name(loraB, metaB.name.c_str());
  12186. ggml_tensor * base_t;
  12187. if (ml) {
  12188. if (!ml->get_tensor_meta(base_name.c_str())) {
  12189. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12190. return 1;
  12191. }
  12192. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12193. } else {
  12194. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12195. }
  12196. ggml_set_name(base_t, base_name.c_str());
  12197. // allocate in backend buffer
  12198. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12199. if (lora_buf == nullptr) {
  12200. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12201. return 1;
  12202. }
  12203. // load tensor data
  12204. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12205. read_buf.resize(ggml_nbytes(tensor));
  12206. fin.seek(tensor_meta.offset, SEEK_SET);
  12207. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12208. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12209. };
  12210. load_tensor(metaA, loraA);
  12211. load_tensor(metaB, loraB);
  12212. // load base model tensor data
  12213. if (ml) {
  12214. ml->load_data_for(base_t);
  12215. } else {
  12216. ggml_backend_tensor_copy(model_t, base_t);
  12217. }
  12218. if (ggml_is_quantized(base_t->type) && !warned) {
  12219. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12220. "use a f16 or f32 base model with --lora-base\n", __func__);
  12221. warned = true;
  12222. }
  12223. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12224. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12225. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12226. ggml_free(lora_ctx);
  12227. ggml_backend_buffer_free(lora_buf);
  12228. ggml_backend_free(backend_cpu);
  12229. return 1;
  12230. }
  12231. auto build_lora_graph = [&]() {
  12232. // w = w + BA*s
  12233. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12234. ggml_set_name(BA, "BA");
  12235. if (scaling != 1.0f) {
  12236. BA = ggml_scale(lora_ctx, BA, scaling);
  12237. ggml_set_name(BA, "BA_scaled");
  12238. }
  12239. ggml_tensor * r;
  12240. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12241. ggml_set_name(r, "r_add");
  12242. if (base_t->type != model_t->type) {
  12243. // convert the result to the model type
  12244. r = ggml_cast(lora_ctx, r, model_t->type);
  12245. ggml_set_name(r, "r_cast");
  12246. }
  12247. return r;
  12248. };
  12249. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12250. ggml_tensor * r = build_lora_graph();
  12251. ggml_build_forward_expand(gf, r);
  12252. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12253. if (graph_buf == nullptr) {
  12254. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12255. ggml_free(lora_ctx);
  12256. ggml_backend_buffer_free(lora_buf);
  12257. ggml_backend_free(backend_cpu);
  12258. return 1;
  12259. }
  12260. ggml_backend_graph_compute(backend_cpu, gf);
  12261. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12262. #if 0
  12263. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12264. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12265. // sched compute
  12266. ggml_build_forward_expand(gf, build_graph());
  12267. ggml_backend_sched_init_measure(sched, gf);
  12268. // create the graph again, since the previous one was destroyed by the measure
  12269. ggml_graph_clear(gf);
  12270. ggml_build_forward_expand(gf, build_graph());
  12271. ggml_backend_sched_graph_compute(sched, gf);
  12272. ggml_backend_sched_free(sched);
  12273. #endif
  12274. ggml_backend_buffer_free(lora_buf);
  12275. ggml_backend_buffer_free(graph_buf);
  12276. ggml_free(lora_ctx);
  12277. n_tensors++;
  12278. if (n_tensors % 4 == 0) {
  12279. LLAMA_LOG_INFO(".");
  12280. }
  12281. }
  12282. ggml_backend_free(backend_cpu);
  12283. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12284. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12285. return 0;
  12286. }
  12287. //
  12288. // interface implementation
  12289. //
  12290. struct llama_model_params llama_model_default_params() {
  12291. struct llama_model_params result = {
  12292. /*.n_gpu_layers =*/ 0,
  12293. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12294. /*.main_gpu =*/ 0,
  12295. /*.tensor_split =*/ nullptr,
  12296. /*.progress_callback =*/ nullptr,
  12297. /*.progress_callback_user_data =*/ nullptr,
  12298. /*.kv_overrides =*/ nullptr,
  12299. /*.vocab_only =*/ false,
  12300. /*.use_mmap =*/ true,
  12301. /*.use_mlock =*/ false,
  12302. };
  12303. #ifdef GGML_USE_METAL
  12304. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12305. result.n_gpu_layers = 999;
  12306. #endif
  12307. return result;
  12308. }
  12309. struct llama_context_params llama_context_default_params() {
  12310. struct llama_context_params result = {
  12311. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12312. /*.n_ctx =*/ 512,
  12313. /*.n_batch =*/ 2048,
  12314. /*.n_ubatch =*/ 512,
  12315. /*.n_seq_max =*/ 1,
  12316. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12317. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12318. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12319. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12320. /*.rope_freq_base =*/ 0.0f,
  12321. /*.rope_freq_scale =*/ 0.0f,
  12322. /*.yarn_ext_factor =*/ -1.0f,
  12323. /*.yarn_attn_factor =*/ 1.0f,
  12324. /*.yarn_beta_fast =*/ 32.0f,
  12325. /*.yarn_beta_slow =*/ 1.0f,
  12326. /*.yarn_orig_ctx =*/ 0,
  12327. /*.defrag_thold =*/ -1.0f,
  12328. /*.cb_eval =*/ nullptr,
  12329. /*.cb_eval_user_data =*/ nullptr,
  12330. /*.type_k =*/ GGML_TYPE_F16,
  12331. /*.type_v =*/ GGML_TYPE_F16,
  12332. /*.logits_all =*/ false,
  12333. /*.embeddings =*/ false,
  12334. /*.offload_kqv =*/ true,
  12335. /*.abort_callback =*/ nullptr,
  12336. /*.abort_callback_data =*/ nullptr,
  12337. };
  12338. return result;
  12339. }
  12340. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12341. struct llama_model_quantize_params result = {
  12342. /*.nthread =*/ 0,
  12343. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12344. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12345. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12346. /*.allow_requantize =*/ false,
  12347. /*.quantize_output_tensor =*/ true,
  12348. /*.only_copy =*/ false,
  12349. /*.pure =*/ false,
  12350. /*.imatrix =*/ nullptr,
  12351. /*.kv_overrides =*/ nullptr,
  12352. };
  12353. return result;
  12354. }
  12355. size_t llama_max_devices(void) {
  12356. #if defined(GGML_USE_METAL)
  12357. return 1;
  12358. #elif defined(GGML_USE_CUDA)
  12359. return GGML_CUDA_MAX_DEVICES;
  12360. #elif defined(GGML_USE_SYCL)
  12361. return GGML_SYCL_MAX_DEVICES;
  12362. #elif defined(GGML_USE_VULKAN)
  12363. return GGML_VK_MAX_DEVICES;
  12364. #else
  12365. return 1;
  12366. #endif
  12367. }
  12368. bool llama_supports_mmap(void) {
  12369. return llama_mmap::SUPPORTED;
  12370. }
  12371. bool llama_supports_mlock(void) {
  12372. return llama_mlock::SUPPORTED;
  12373. }
  12374. bool llama_supports_gpu_offload(void) {
  12375. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12376. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12377. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12378. return true;
  12379. #else
  12380. return false;
  12381. #endif
  12382. }
  12383. void llama_backend_init(void) {
  12384. ggml_time_init();
  12385. // needed to initialize f16 tables
  12386. {
  12387. struct ggml_init_params params = { 0, NULL, false };
  12388. struct ggml_context * ctx = ggml_init(params);
  12389. ggml_free(ctx);
  12390. }
  12391. #ifdef GGML_USE_MPI
  12392. ggml_mpi_backend_init();
  12393. #endif
  12394. }
  12395. void llama_numa_init(enum ggml_numa_strategy numa) {
  12396. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12397. ggml_numa_init(numa);
  12398. }
  12399. }
  12400. void llama_backend_free(void) {
  12401. #ifdef GGML_USE_MPI
  12402. ggml_mpi_backend_free();
  12403. #endif
  12404. ggml_quantize_free();
  12405. }
  12406. int64_t llama_time_us(void) {
  12407. return ggml_time_us();
  12408. }
  12409. struct llama_model * llama_load_model_from_file(
  12410. const char * path_model,
  12411. struct llama_model_params params) {
  12412. ggml_time_init();
  12413. llama_model * model = new llama_model;
  12414. unsigned cur_percentage = 0;
  12415. if (params.progress_callback == NULL) {
  12416. params.progress_callback_user_data = &cur_percentage;
  12417. params.progress_callback = [](float progress, void * ctx) {
  12418. unsigned * cur_percentage_p = (unsigned *) ctx;
  12419. unsigned percentage = (unsigned) (100 * progress);
  12420. while (percentage > *cur_percentage_p) {
  12421. *cur_percentage_p = percentage;
  12422. LLAMA_LOG_INFO(".");
  12423. if (percentage >= 100) {
  12424. LLAMA_LOG_INFO("\n");
  12425. }
  12426. }
  12427. return true;
  12428. };
  12429. }
  12430. int status = llama_model_load(path_model, *model, params);
  12431. GGML_ASSERT(status <= 0);
  12432. if (status < 0) {
  12433. if (status == -1) {
  12434. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12435. } else if (status == -2) {
  12436. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12437. }
  12438. delete model;
  12439. return nullptr;
  12440. }
  12441. return model;
  12442. }
  12443. void llama_free_model(struct llama_model * model) {
  12444. delete model;
  12445. }
  12446. struct llama_context * llama_new_context_with_model(
  12447. struct llama_model * model,
  12448. struct llama_context_params params) {
  12449. if (!model) {
  12450. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12451. return nullptr;
  12452. }
  12453. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12454. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12455. return nullptr;
  12456. }
  12457. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12458. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12459. return nullptr;
  12460. }
  12461. llama_context * ctx = new llama_context(*model);
  12462. const auto & hparams = model->hparams;
  12463. auto & cparams = ctx->cparams;
  12464. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12465. cparams.n_threads = params.n_threads;
  12466. cparams.n_threads_batch = params.n_threads_batch;
  12467. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12468. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12469. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12470. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12471. cparams.defrag_thold = params.defrag_thold;
  12472. cparams.embeddings = params.embeddings;
  12473. cparams.offload_kqv = params.offload_kqv;
  12474. cparams.pooling_type = params.pooling_type;
  12475. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12476. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12477. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12478. // this is necessary due to kv_self.n being padded later during inference
  12479. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  12480. // with causal attention, the batch size is limited by the context size
  12481. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12482. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12483. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12484. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12485. hparams.n_ctx_train;
  12486. cparams.cb_eval = params.cb_eval;
  12487. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12488. auto rope_scaling_type = params.rope_scaling_type;
  12489. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12490. rope_scaling_type = hparams.rope_scaling_type_train;
  12491. }
  12492. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12493. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12494. }
  12495. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12496. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12497. }
  12498. cparams.causal_attn = hparams.causal_attn;
  12499. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12500. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12501. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12502. } else {
  12503. cparams.pooling_type = hparams.pooling_type;
  12504. }
  12505. }
  12506. if (params.seed == LLAMA_DEFAULT_SEED) {
  12507. params.seed = time(NULL);
  12508. }
  12509. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12510. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12511. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12512. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12513. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12514. ctx->abort_callback = params.abort_callback;
  12515. ctx->abort_callback_data = params.abort_callback_data;
  12516. ctx->rng = std::mt19937(params.seed);
  12517. ctx->logits_all = params.logits_all;
  12518. uint32_t kv_size = cparams.n_ctx;
  12519. ggml_type type_k = params.type_k;
  12520. ggml_type type_v = params.type_v;
  12521. // Mamba only needs a constant number of KV cache cells per sequence
  12522. if (model->arch == LLM_ARCH_MAMBA) {
  12523. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12524. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12525. // it's probably best to keep as much precision as possible for the states
  12526. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12527. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12528. }
  12529. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12530. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12531. if (!hparams.vocab_only) {
  12532. // initialize backends
  12533. #ifdef GGML_USE_METAL
  12534. if (model->n_gpu_layers > 0) {
  12535. ctx->backend_metal = ggml_backend_metal_init();
  12536. if (ctx->backend_metal == nullptr) {
  12537. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12538. llama_free(ctx);
  12539. return nullptr;
  12540. }
  12541. ctx->backends.push_back(ctx->backend_metal);
  12542. }
  12543. #elif defined(GGML_USE_CUDA)
  12544. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12545. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12546. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12547. if (backend == nullptr) {
  12548. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12549. llama_free(ctx);
  12550. return nullptr;
  12551. }
  12552. ctx->backends.push_back(backend);
  12553. } else {
  12554. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12555. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12556. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12557. if (backend == nullptr) {
  12558. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12559. llama_free(ctx);
  12560. return nullptr;
  12561. }
  12562. ctx->backends.push_back(backend);
  12563. }
  12564. }
  12565. #elif defined(GGML_USE_VULKAN)
  12566. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12567. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12568. llama_free(ctx);
  12569. return nullptr;
  12570. }
  12571. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12572. ggml_backend_t backend = ggml_backend_vk_init(0);
  12573. if (backend == nullptr) {
  12574. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12575. llama_free(ctx);
  12576. return nullptr;
  12577. }
  12578. ctx->backends.push_back(backend);
  12579. } else {
  12580. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12581. ggml_backend_t backend = ggml_backend_vk_init(device);
  12582. if (backend == nullptr) {
  12583. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12584. llama_free(ctx);
  12585. return nullptr;
  12586. }
  12587. ctx->backends.push_back(backend);
  12588. }
  12589. }
  12590. #elif defined(GGML_USE_SYCL)
  12591. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12592. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12593. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  12594. if (backend == nullptr) {
  12595. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  12596. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  12597. llama_free(ctx);
  12598. return nullptr;
  12599. }
  12600. ctx->backends.push_back(backend);
  12601. } else {
  12602. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  12603. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  12604. ggml_backend_t backend = ggml_backend_sycl_init(i);
  12605. if (backend == nullptr) {
  12606. int id_list[GGML_SYCL_MAX_DEVICES];
  12607. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  12608. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  12609. llama_free(ctx);
  12610. return nullptr;
  12611. }
  12612. ctx->backends.push_back(backend);
  12613. }
  12614. }
  12615. #elif defined(GGML_USE_KOMPUTE)
  12616. if (model->n_gpu_layers > 0) {
  12617. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  12618. if (backend == nullptr) {
  12619. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  12620. llama_free(ctx);
  12621. return nullptr;
  12622. }
  12623. ctx->backends.push_back(backend);
  12624. }
  12625. #endif
  12626. ctx->backend_cpu = ggml_backend_cpu_init();
  12627. if (ctx->backend_cpu == nullptr) {
  12628. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  12629. llama_free(ctx);
  12630. return nullptr;
  12631. }
  12632. ctx->backends.push_back(ctx->backend_cpu);
  12633. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  12634. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  12635. llama_free(ctx);
  12636. return nullptr;
  12637. }
  12638. {
  12639. size_t memory_size_k = 0;
  12640. size_t memory_size_v = 0;
  12641. for (auto & k : ctx->kv_self.k_l) {
  12642. memory_size_k += ggml_nbytes(k);
  12643. }
  12644. for (auto & v : ctx->kv_self.v_l) {
  12645. memory_size_v += ggml_nbytes(v);
  12646. }
  12647. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  12648. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  12649. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  12650. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  12651. }
  12652. // graph outputs buffer
  12653. {
  12654. // resized during inference when a batch uses more outputs
  12655. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  12656. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  12657. llama_free(ctx);
  12658. return nullptr;
  12659. }
  12660. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  12661. ggml_backend_buffer_name(ctx->buf_output),
  12662. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  12663. }
  12664. // scheduler and compute buffers
  12665. {
  12666. // buffer types used for the compute buffer of each backend
  12667. std::vector<ggml_backend_buffer_type_t> backend_buft;
  12668. for (auto * backend : ctx->backends) {
  12669. if (ggml_backend_is_cpu(backend)) {
  12670. // use host buffers for the CPU backend compute buffer
  12671. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  12672. } else {
  12673. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  12674. }
  12675. }
  12676. // buffer used to store the computation graph and the tensor meta data
  12677. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  12678. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  12679. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  12680. #ifndef GGML_USE_CUDA
  12681. // pipeline parallelism requires support for async compute and events
  12682. // currently this is only implemented in the CUDA backend
  12683. pipeline_parallel = false;
  12684. #endif
  12685. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  12686. if (pipeline_parallel) {
  12687. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  12688. }
  12689. // build worst-case graph
  12690. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  12691. int n_past = cparams.n_ctx - n_tokens;
  12692. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12693. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12694. // initialize scheduler with the worst-case graph
  12695. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  12696. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12697. llama_free(ctx);
  12698. return nullptr;
  12699. }
  12700. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12701. ggml_backend_t backend = ctx->backends[i];
  12702. ggml_backend_buffer_type_t buft = backend_buft[i];
  12703. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  12704. if (size > 1) {
  12705. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  12706. ggml_backend_buft_name(buft),
  12707. size / 1024.0 / 1024.0);
  12708. }
  12709. }
  12710. // note: the number of splits during measure is higher than during inference due to the kv shift
  12711. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  12712. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  12713. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  12714. }
  12715. }
  12716. #ifdef GGML_USE_MPI
  12717. ctx->ctx_mpi = ggml_mpi_init();
  12718. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  12719. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  12720. // TODO: needs fix after #3228
  12721. GGML_ASSERT(false && "not implemented");
  12722. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  12723. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  12724. llama_backend_free();
  12725. exit(1);
  12726. }
  12727. #endif
  12728. return ctx;
  12729. }
  12730. void llama_free(struct llama_context * ctx) {
  12731. delete ctx;
  12732. }
  12733. const llama_model * llama_get_model(const struct llama_context * ctx) {
  12734. return &ctx->model;
  12735. }
  12736. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  12737. return ctx->cparams.n_ctx;
  12738. }
  12739. uint32_t llama_n_batch(const struct llama_context * ctx) {
  12740. return ctx->cparams.n_batch;
  12741. }
  12742. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  12743. return ctx->cparams.n_ubatch;
  12744. }
  12745. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  12746. return ctx->kv_self.size;
  12747. }
  12748. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  12749. return model->vocab.type;
  12750. }
  12751. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  12752. switch (model->arch) {
  12753. // these models do not use RoPE
  12754. case LLM_ARCH_GPT2:
  12755. case LLM_ARCH_GPTJ:
  12756. case LLM_ARCH_GPTNEOX:
  12757. case LLM_ARCH_MPT:
  12758. case LLM_ARCH_REFACT:
  12759. case LLM_ARCH_BLOOM:
  12760. case LLM_ARCH_MAMBA:
  12761. return LLAMA_ROPE_TYPE_NONE;
  12762. // use what we call a normal RoPE, operating on pairs of consecutive head values
  12763. case LLM_ARCH_LLAMA:
  12764. case LLM_ARCH_BAICHUAN:
  12765. case LLM_ARCH_STARCODER:
  12766. case LLM_ARCH_PLAMO:
  12767. case LLM_ARCH_CODESHELL:
  12768. case LLM_ARCH_ORION:
  12769. case LLM_ARCH_INTERNLM2:
  12770. case LLM_ARCH_MINICPM:
  12771. case LLM_ARCH_XVERSE:
  12772. case LLM_ARCH_COMMAND_R:
  12773. case LLM_ARCH_OLMO:
  12774. return LLAMA_ROPE_TYPE_NORM;
  12775. // the pairs of head values are offset by n_rot/2
  12776. case LLM_ARCH_FALCON:
  12777. case LLM_ARCH_GROK:
  12778. case LLM_ARCH_DBRX:
  12779. case LLM_ARCH_PERSIMMON:
  12780. case LLM_ARCH_BERT:
  12781. case LLM_ARCH_NOMIC_BERT:
  12782. case LLM_ARCH_STABLELM:
  12783. case LLM_ARCH_QWEN:
  12784. case LLM_ARCH_QWEN2:
  12785. case LLM_ARCH_QWEN2MOE:
  12786. case LLM_ARCH_PHI2:
  12787. case LLM_ARCH_GEMMA:
  12788. case LLM_ARCH_STARCODER2:
  12789. return LLAMA_ROPE_TYPE_NEOX;
  12790. // all model arches should be listed explicitly here
  12791. case LLM_ARCH_UNKNOWN:
  12792. GGML_ASSERT(false && "unknown architecture");
  12793. break;
  12794. }
  12795. return LLAMA_ROPE_TYPE_NONE;
  12796. }
  12797. int32_t llama_n_vocab(const struct llama_model * model) {
  12798. return model->hparams.n_vocab;
  12799. }
  12800. int32_t llama_n_ctx_train(const struct llama_model * model) {
  12801. return model->hparams.n_ctx_train;
  12802. }
  12803. int32_t llama_n_embd(const struct llama_model * model) {
  12804. return model->hparams.n_embd;
  12805. }
  12806. int32_t llama_n_layer(const struct llama_model * model) {
  12807. return model->hparams.n_layer;
  12808. }
  12809. float llama_rope_freq_scale_train(const struct llama_model * model) {
  12810. return model->hparams.rope_freq_scale_train;
  12811. }
  12812. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  12813. const auto & it = model->gguf_kv.find(key);
  12814. if (it == model->gguf_kv.end()) {
  12815. if (buf_size > 0) {
  12816. buf[0] = '\0';
  12817. }
  12818. return -1;
  12819. }
  12820. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12821. }
  12822. int32_t llama_model_meta_count(const struct llama_model * model) {
  12823. return (int)model->gguf_kv.size();
  12824. }
  12825. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  12826. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12827. if (buf_size > 0) {
  12828. buf[0] = '\0';
  12829. }
  12830. return -1;
  12831. }
  12832. auto it = model->gguf_kv.begin();
  12833. std::advance(it, i);
  12834. return snprintf(buf, buf_size, "%s", it->first.c_str());
  12835. }
  12836. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  12837. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12838. if (buf_size > 0) {
  12839. buf[0] = '\0';
  12840. }
  12841. return -1;
  12842. }
  12843. auto it = model->gguf_kv.begin();
  12844. std::advance(it, i);
  12845. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12846. }
  12847. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  12848. return snprintf(buf, buf_size, "%s %s %s",
  12849. llama_model_arch_name(model->arch),
  12850. llama_model_type_name(model->type),
  12851. llama_model_ftype_name(model->ftype).c_str());
  12852. }
  12853. uint64_t llama_model_size(const struct llama_model * model) {
  12854. uint64_t size = 0;
  12855. for (const auto & it : model->tensors_by_name) {
  12856. size += ggml_nbytes(it.second);
  12857. }
  12858. return size;
  12859. }
  12860. uint64_t llama_model_n_params(const struct llama_model * model) {
  12861. uint64_t nparams = 0;
  12862. for (const auto & it : model->tensors_by_name) {
  12863. nparams += ggml_nelements(it.second);
  12864. }
  12865. return nparams;
  12866. }
  12867. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  12868. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  12869. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  12870. return it.first == name;
  12871. });
  12872. if (it == model->tensors_by_name.end()) {
  12873. return nullptr;
  12874. }
  12875. return it->second;
  12876. }
  12877. uint32_t llama_model_quantize(
  12878. const char * fname_inp,
  12879. const char * fname_out,
  12880. const llama_model_quantize_params * params) {
  12881. try {
  12882. llama_model_quantize_internal(fname_inp, fname_out, params);
  12883. return 0;
  12884. } catch (const std::exception & err) {
  12885. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  12886. return 1;
  12887. }
  12888. }
  12889. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  12890. try {
  12891. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  12892. } catch (const std::exception & err) {
  12893. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  12894. return 1;
  12895. }
  12896. }
  12897. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  12898. GGML_ASSERT(cvec.tensors.empty());
  12899. GGML_ASSERT(cvec.ctxs.empty());
  12900. GGML_ASSERT(cvec.bufs.empty());
  12901. // count layer buffer types
  12902. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  12903. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  12904. buft_layer_count[model.buft_layer[i].buft]++;
  12905. }
  12906. // allocate contexts
  12907. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  12908. for (auto & it : buft_layer_count) {
  12909. int n_layers = it.second;
  12910. struct ggml_init_params params = {
  12911. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  12912. /*.mem_buffer =*/ NULL,
  12913. /*.no_alloc =*/ true,
  12914. };
  12915. ggml_context * ctx = ggml_init(params);
  12916. if (!ctx) {
  12917. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  12918. return 1;
  12919. }
  12920. ctx_map[it.first] = ctx;
  12921. }
  12922. // make tensors
  12923. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  12924. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12925. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  12926. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  12927. cvec.tensors.push_back(tensor);
  12928. }
  12929. // allocate tensors / buffers and zero
  12930. for (auto it : ctx_map) {
  12931. ggml_backend_buffer_type_t buft = it.first;
  12932. ggml_context * ctx = it.second;
  12933. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  12934. if (!buf) {
  12935. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  12936. return false;
  12937. }
  12938. ggml_backend_buffer_clear(buf, 0);
  12939. cvec.ctxs.push_back(ctx);
  12940. cvec.bufs.push_back(buf);
  12941. }
  12942. return true;
  12943. }
  12944. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  12945. const llama_model & model = lctx->model;
  12946. llama_control_vector & cvec = lctx->cvec;
  12947. if (data == nullptr) {
  12948. // disable the current control vector (but leave allocated for later)
  12949. cvec.layer_start = -1;
  12950. cvec.layer_end = -1;
  12951. return 0;
  12952. }
  12953. if (n_embd != (int) model.hparams.n_embd) {
  12954. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  12955. return 1;
  12956. }
  12957. if (cvec.tensors.empty()) {
  12958. if (!llama_control_vector_init(cvec, model)) {
  12959. return 1;
  12960. }
  12961. }
  12962. cvec.layer_start = il_start;
  12963. cvec.layer_end = il_end;
  12964. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12965. assert(cvec.tensors[il] != nullptr);
  12966. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  12967. if (off + n_embd <= len) {
  12968. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  12969. }
  12970. }
  12971. return 0;
  12972. }
  12973. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  12974. struct llama_kv_cache_view result = {
  12975. /*.n_cells = */ 0,
  12976. /*.n_seq_max = */ n_seq_max,
  12977. /*.token_count = */ 0,
  12978. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  12979. /*.max_contiguous = */ 0,
  12980. /*.max_contiguous_idx = */ -1,
  12981. /*.cells = */ nullptr,
  12982. /*.cells_sequences = */ nullptr,
  12983. };
  12984. return result;
  12985. }
  12986. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  12987. if (view->cells != nullptr) {
  12988. free(view->cells);
  12989. view->cells = nullptr;
  12990. }
  12991. if (view->cells_sequences != nullptr) {
  12992. free(view->cells_sequences);
  12993. view->cells_sequences = nullptr;
  12994. }
  12995. }
  12996. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  12997. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  12998. view->n_cells = int32_t(ctx->kv_self.size);
  12999. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13000. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13001. view->cells = (struct llama_kv_cache_view_cell *)p;
  13002. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13003. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13004. view->cells_sequences = (llama_seq_id *)p;
  13005. }
  13006. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13007. llama_kv_cache_view_cell * c_curr = view->cells;
  13008. llama_seq_id * cs_curr = view->cells_sequences;
  13009. int32_t used_cells = 0;
  13010. int32_t token_count = 0;
  13011. int32_t curr_contig_idx = -1;
  13012. uint32_t max_contig = 0;
  13013. int32_t max_contig_idx = -1;
  13014. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13015. const size_t curr_size = kv_cells[i].seq_id.size();
  13016. token_count += curr_size;
  13017. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13018. if (curr_size > 0) {
  13019. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13020. max_contig = i - curr_contig_idx;
  13021. max_contig_idx = curr_contig_idx;
  13022. }
  13023. curr_contig_idx = -1;
  13024. } else if (curr_contig_idx < 0) {
  13025. curr_contig_idx = i;
  13026. }
  13027. int seq_idx = 0;
  13028. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13029. if (seq_idx >= view->n_seq_max) {
  13030. break;
  13031. }
  13032. cs_curr[seq_idx] = it;
  13033. seq_idx++;
  13034. }
  13035. if (seq_idx != 0) {
  13036. used_cells++;
  13037. }
  13038. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13039. cs_curr[seq_idx] = -1;
  13040. }
  13041. }
  13042. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13043. max_contig_idx = curr_contig_idx;
  13044. max_contig = kv_cells.size() - curr_contig_idx;
  13045. }
  13046. view->max_contiguous = max_contig;
  13047. view->max_contiguous_idx = max_contig_idx;
  13048. view->token_count = token_count;
  13049. view->used_cells = used_cells;
  13050. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13051. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13052. __func__, ctx->kv_self.used, used_cells);
  13053. }
  13054. }
  13055. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13056. int result = 0;
  13057. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13058. result += ctx->kv_self.cells[i].seq_id.size();
  13059. }
  13060. return result;
  13061. }
  13062. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13063. return ctx->kv_self.used;
  13064. }
  13065. void llama_kv_cache_clear(struct llama_context * ctx) {
  13066. llama_kv_cache_clear(ctx->kv_self);
  13067. }
  13068. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13069. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13070. }
  13071. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13072. if (seq_id_src == seq_id_dst) {
  13073. return;
  13074. }
  13075. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13076. }
  13077. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13078. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13079. }
  13080. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13081. if (delta == 0) {
  13082. return;
  13083. }
  13084. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13085. }
  13086. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13087. if (d == 1) {
  13088. return;
  13089. }
  13090. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13091. }
  13092. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13093. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13094. }
  13095. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13096. llama_kv_cache_defrag(ctx->kv_self);
  13097. }
  13098. void llama_kv_cache_update(struct llama_context * ctx) {
  13099. llama_kv_cache_update_internal(*ctx);
  13100. }
  13101. // deprecated
  13102. size_t llama_get_state_size(const struct llama_context * ctx) {
  13103. return llama_state_get_size(ctx);
  13104. }
  13105. // deprecated
  13106. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13107. return llama_state_get_data(ctx, dst);
  13108. }
  13109. // deprecated
  13110. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13111. return llama_state_set_data(ctx, src);
  13112. }
  13113. // deprecated
  13114. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13115. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13116. }
  13117. // deprecated
  13118. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13119. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13120. }
  13121. // Returns the *maximum* size of the state
  13122. size_t llama_state_get_size(const struct llama_context * ctx) {
  13123. const auto & cparams = ctx->cparams;
  13124. const auto & hparams = ctx->model.hparams;
  13125. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13126. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13127. const size_t s_rng_size = sizeof(size_t);
  13128. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13129. const size_t s_n_outputs = sizeof(size_t);
  13130. // assume worst case for outputs although only currently set ones are serialized
  13131. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13132. const size_t s_logits_size = sizeof(size_t);
  13133. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13134. const size_t s_embedding_size = sizeof(size_t);
  13135. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13136. const size_t s_kv_buf_size = sizeof(size_t);
  13137. const size_t s_kv_head = sizeof(uint32_t);
  13138. const size_t s_kv_size = sizeof(uint32_t);
  13139. const size_t s_kv_used = sizeof(uint32_t);
  13140. const size_t s_kv = ctx->kv_self.total_size();
  13141. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13142. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13143. const size_t s_total = (
  13144. + s_rng_size
  13145. + s_rng
  13146. + s_n_outputs
  13147. + s_output_pos
  13148. + s_logits_size
  13149. + s_logits
  13150. + s_embedding_size
  13151. + s_embedding
  13152. + s_kv_buf_size
  13153. + s_kv_head
  13154. + s_kv_size
  13155. + s_kv_used
  13156. + s_kv
  13157. + s_kv_cells
  13158. );
  13159. return s_total;
  13160. }
  13161. // llama_context_data
  13162. struct llama_data_context {
  13163. virtual void write(const void * src, size_t size) = 0;
  13164. virtual size_t get_size_written() = 0;
  13165. virtual ~llama_data_context() = default;
  13166. };
  13167. struct llama_data_buffer_context : llama_data_context {
  13168. uint8_t * ptr;
  13169. size_t size_written = 0;
  13170. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13171. void write(const void * src, size_t size) override {
  13172. memcpy(ptr, src, size);
  13173. ptr += size;
  13174. size_written += size;
  13175. }
  13176. size_t get_size_written() override {
  13177. return size_written;
  13178. }
  13179. };
  13180. struct llama_data_file_context : llama_data_context {
  13181. llama_file * file;
  13182. size_t size_written = 0;
  13183. llama_data_file_context(llama_file * f) : file(f) {}
  13184. void write(const void * src, size_t size) override {
  13185. file->write_raw(src, size);
  13186. size_written += size;
  13187. }
  13188. size_t get_size_written() override {
  13189. return size_written;
  13190. }
  13191. };
  13192. /** copy state data into either a buffer or file depending on the passed in context
  13193. *
  13194. * file context:
  13195. * llama_file file("/path", "wb");
  13196. * llama_data_file_context data_ctx(&file);
  13197. * llama_state_get_data(ctx, &data_ctx);
  13198. *
  13199. * buffer context:
  13200. * std::vector<uint8_t> buf(max_size, 0);
  13201. * llama_data_buffer_context data_ctx(&buf.data());
  13202. * llama_state_get_data(ctx, &data_ctx);
  13203. *
  13204. */
  13205. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13206. // copy rng
  13207. {
  13208. std::ostringstream rng_ss;
  13209. rng_ss << ctx->rng;
  13210. const std::string & rng_str = rng_ss.str();
  13211. const size_t rng_size = rng_str.size();
  13212. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13213. data_ctx->write(&rng_size, sizeof(rng_size));
  13214. data_ctx->write(rng_str.data(), rng_size);
  13215. }
  13216. // copy outputs
  13217. {
  13218. // Can't use ctx->n_outputs because it's not for the
  13219. // entire last batch when n_ubatch is smaller than n_batch
  13220. size_t n_outputs = 0;
  13221. // copy output ids
  13222. {
  13223. std::vector<int32_t> output_pos;
  13224. const size_t n_batch = ctx->cparams.n_batch;
  13225. const auto & output_ids = ctx->output_ids;
  13226. output_pos.resize(ctx->output_size);
  13227. // build a more compact representation of the output ids
  13228. for (size_t i = 0; i < n_batch; ++i) {
  13229. // map an output id to a position in the batch
  13230. int32_t pos = output_ids[i];
  13231. if (pos >= 0) {
  13232. if ((size_t) pos >= n_outputs) {
  13233. n_outputs = pos + 1;
  13234. }
  13235. GGML_ASSERT((size_t) pos < ctx->output_size);
  13236. output_pos[pos] = i;
  13237. }
  13238. }
  13239. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13240. if (n_outputs) {
  13241. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13242. }
  13243. }
  13244. // copy logits
  13245. {
  13246. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13247. data_ctx->write(&logits_size, sizeof(logits_size));
  13248. if (logits_size) {
  13249. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13250. }
  13251. }
  13252. // copy embeddings
  13253. {
  13254. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13255. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13256. if (embeddings_size) {
  13257. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13258. }
  13259. }
  13260. }
  13261. // copy kv cache
  13262. {
  13263. const auto & kv_self = ctx->kv_self;
  13264. const auto & hparams = ctx->model.hparams;
  13265. const uint32_t n_layer = hparams.n_layer;
  13266. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13267. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13268. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13269. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13270. const uint32_t kv_size = kv_self.size;
  13271. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13272. const uint32_t kv_used = kv_self.used;
  13273. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13274. data_ctx->write(&kv_head, sizeof(kv_head));
  13275. data_ctx->write(&kv_size, sizeof(kv_size));
  13276. data_ctx->write(&kv_used, sizeof(kv_used));
  13277. if (kv_buf_size) {
  13278. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13279. std::vector<uint8_t> tmp_buf;
  13280. for (int il = 0; il < (int) n_layer; ++il) {
  13281. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13282. tmp_buf.resize(k_size);
  13283. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13284. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13285. if (kv_self.recurrent) {
  13286. // v is contiguous for recurrent models
  13287. // TODO: use other tensors for state models than k and v
  13288. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13289. tmp_buf.resize(v_size);
  13290. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13291. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13292. continue;
  13293. }
  13294. // v is not contiguous, copy row by row
  13295. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13296. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13297. tmp_buf.resize(v_row_size);
  13298. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13299. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13300. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13301. }
  13302. }
  13303. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13304. }
  13305. for (uint32_t i = 0; i < kv_head; ++i) {
  13306. const auto & cell = kv_self.cells[i];
  13307. const llama_pos pos = cell.pos;
  13308. const size_t seq_id_size = cell.seq_id.size();
  13309. data_ctx->write(&pos, sizeof(pos));
  13310. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13311. for (auto seq_id : cell.seq_id) {
  13312. data_ctx->write(&seq_id, sizeof(seq_id));
  13313. }
  13314. }
  13315. }
  13316. }
  13317. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13318. llama_data_buffer_context data_ctx(dst);
  13319. llama_state_get_data_internal(ctx, &data_ctx);
  13320. return data_ctx.get_size_written();
  13321. }
  13322. // Sets the state reading from the specified source address
  13323. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13324. const uint8_t * inp = src;
  13325. // set rng
  13326. {
  13327. size_t rng_size;
  13328. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13329. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13330. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13331. std::istringstream rng_ss(rng_str);
  13332. rng_ss >> ctx->rng;
  13333. GGML_ASSERT(!rng_ss.fail());
  13334. }
  13335. // set output ids
  13336. {
  13337. size_t n_outputs;
  13338. std::vector<int32_t> output_pos;
  13339. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13340. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13341. if (n_outputs) {
  13342. output_pos.resize(n_outputs);
  13343. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13344. inp += n_outputs * sizeof(int32_t);
  13345. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13346. int32_t id = output_pos[i];
  13347. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13348. ctx->output_ids[id] = i;
  13349. }
  13350. ctx->n_outputs = n_outputs;
  13351. }
  13352. }
  13353. // set logits
  13354. {
  13355. size_t logits_size;
  13356. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13357. GGML_ASSERT(ctx->logits_size >= logits_size);
  13358. if (logits_size) {
  13359. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13360. inp += logits_size * sizeof(float);
  13361. }
  13362. }
  13363. // set embeddings
  13364. {
  13365. size_t embeddings_size;
  13366. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13367. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13368. if (embeddings_size) {
  13369. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13370. inp += embeddings_size * sizeof(float);
  13371. }
  13372. }
  13373. // set kv cache
  13374. {
  13375. const auto & kv_self = ctx->kv_self;
  13376. const auto & hparams = ctx->model.hparams;
  13377. const uint32_t n_layer = hparams.n_layer;
  13378. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13379. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13380. size_t kv_buf_size;
  13381. uint32_t kv_head;
  13382. uint32_t kv_size;
  13383. uint32_t kv_used;
  13384. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13385. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13386. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13387. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13388. if (kv_self.size != kv_size) {
  13389. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13390. GGML_ASSERT(kv_self.size >= kv_head);
  13391. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13392. __func__, kv_head, kv_size, kv_self.size);
  13393. }
  13394. if (kv_buf_size) {
  13395. const size_t pre_kv_buf_size = inp - src;
  13396. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13397. for (int il = 0; il < (int) n_layer; ++il) {
  13398. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13399. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13400. inp += k_size;
  13401. if (kv_self.recurrent) {
  13402. // v is contiguous for recurrent models
  13403. // TODO: use other tensors for state models than k and v
  13404. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13405. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13406. inp += v_size;
  13407. continue;
  13408. }
  13409. // v is not contiguous, copy row by row
  13410. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13411. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13412. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13413. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13414. inp += v_row_size;
  13415. }
  13416. }
  13417. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13418. }
  13419. llama_kv_cache_clear(ctx);
  13420. ctx->kv_self.head = kv_head;
  13421. ctx->kv_self.used = kv_used;
  13422. for (uint32_t i = 0; i < kv_head; ++i) {
  13423. llama_pos pos;
  13424. size_t seq_id_size;
  13425. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13426. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13427. ctx->kv_self.cells[i].pos = pos;
  13428. llama_seq_id seq_id;
  13429. for (size_t j = 0; j < seq_id_size; ++j) {
  13430. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13431. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13432. }
  13433. }
  13434. }
  13435. const size_t nread = inp - src;
  13436. const size_t max_size = llama_state_get_size(ctx);
  13437. GGML_ASSERT(nread <= max_size);
  13438. return nread;
  13439. }
  13440. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13441. llama_file file(path_session, "rb");
  13442. // sanity checks
  13443. {
  13444. const uint32_t magic = file.read_u32();
  13445. const uint32_t version = file.read_u32();
  13446. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13447. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13448. return false;
  13449. }
  13450. llama_hparams session_hparams;
  13451. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13452. if (session_hparams != ctx->model.hparams) {
  13453. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13454. return false;
  13455. }
  13456. }
  13457. // load the prompt
  13458. {
  13459. const uint32_t n_token_count = file.read_u32();
  13460. if (n_token_count > n_token_capacity) {
  13461. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13462. return false;
  13463. }
  13464. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13465. *n_token_count_out = n_token_count;
  13466. }
  13467. // restore the context state
  13468. {
  13469. const size_t n_state_size_cur = file.size - file.tell();
  13470. const size_t n_state_size_max = llama_state_get_size(ctx);
  13471. if (n_state_size_cur > n_state_size_max) {
  13472. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13473. return false;
  13474. }
  13475. std::vector<uint8_t> state_data(n_state_size_max);
  13476. file.read_raw(state_data.data(), n_state_size_cur);
  13477. llama_state_set_data(ctx, state_data.data());
  13478. }
  13479. return true;
  13480. }
  13481. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13482. try {
  13483. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13484. } catch (const std::exception & err) {
  13485. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13486. return false;
  13487. }
  13488. }
  13489. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13490. llama_file file(path_session, "wb");
  13491. file.write_u32(LLAMA_SESSION_MAGIC);
  13492. file.write_u32(LLAMA_SESSION_VERSION);
  13493. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13494. // save the prompt
  13495. file.write_u32((uint32_t) n_token_count);
  13496. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13497. // save the context state using stream saving
  13498. llama_data_file_context data_ctx(&file);
  13499. llama_state_get_data_internal(ctx, &data_ctx);
  13500. return true;
  13501. }
  13502. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13503. try {
  13504. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13505. } catch (const std::exception & err) {
  13506. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13507. return false;
  13508. }
  13509. }
  13510. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13511. // save the size of size_t as a uint32_t for safety check
  13512. const size_t size_t_size_size = sizeof(uint32_t);
  13513. // other values
  13514. const size_t s_cell_count_size = sizeof(uint32_t);
  13515. const size_t s_layer_count_size = sizeof(uint32_t);
  13516. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13517. size_t s_cell_count = 0;
  13518. size_t s_cell_data_size = 0;
  13519. const auto & kv_self = ctx->kv_self;
  13520. const auto & hparams = ctx->model.hparams;
  13521. const uint32_t n_layer = hparams.n_layer;
  13522. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13523. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13524. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13525. const auto & cell = kv_self.cells[i];
  13526. if (cell.seq_id.count(seq_id) > 0) {
  13527. ++s_cell_count;
  13528. s_cell_data_size += sizeof(llama_pos);
  13529. }
  13530. }
  13531. for (int il = 0; il < (int)n_layer; ++il) {
  13532. // types of keys and values
  13533. s_cell_data_size += sizeof(int32_t) * 2;
  13534. // k_size_row and v_size_el values of layer
  13535. s_cell_data_size += sizeof(size_t) * 2;
  13536. // keys
  13537. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13538. s_cell_data_size += k_size_row * s_cell_count;
  13539. // values (transposed)
  13540. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13541. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13542. }
  13543. const size_t s_total = (
  13544. size_t_size_size +
  13545. s_cell_count_size +
  13546. s_layer_count_size +
  13547. n_embd_v_gqa_size +
  13548. s_cell_data_size
  13549. );
  13550. return s_total;
  13551. }
  13552. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13553. const auto & kv_self = ctx->kv_self;
  13554. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13555. // Save the size of size_t as a uint32_t for safety check
  13556. const uint32_t size_t_size = sizeof(size_t);
  13557. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13558. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13559. uint32_t cell_count = 0;
  13560. // Count the number of cells with the specified seq_id
  13561. // Find all the ranges of cells with this seq id
  13562. {
  13563. uint32_t cell_range_begin = kv_self.size;
  13564. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13565. const auto & cell = kv_self.cells[i];
  13566. if (cell.has_seq_id(seq_id)) {
  13567. ++cell_count;
  13568. if (cell_range_begin == kv_self.size) {
  13569. cell_range_begin = i;
  13570. }
  13571. }
  13572. else {
  13573. if (cell_range_begin != kv_self.size) {
  13574. cell_ranges.push_back({ cell_range_begin, i });
  13575. cell_range_begin = kv_self.size;
  13576. }
  13577. }
  13578. }
  13579. if (cell_range_begin != kv_self.size) {
  13580. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  13581. }
  13582. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  13583. uint32_t cell_count_check = 0;
  13584. for (const auto & range : cell_ranges) {
  13585. cell_count_check += range.second - range.first;
  13586. }
  13587. GGML_ASSERT(cell_count == cell_count_check);
  13588. }
  13589. // Write the cell count
  13590. data_ctx.write(&cell_count, sizeof(cell_count));
  13591. const auto & hparams = ctx->model.hparams;
  13592. const uint32_t n_layer = hparams.n_layer;
  13593. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13594. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13595. // Write the layer count
  13596. data_ctx.write(&n_layer, sizeof(n_layer));
  13597. // Write n_embd_v_gqa
  13598. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  13599. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  13600. for (const auto & range : cell_ranges) {
  13601. for (uint32_t i = range.first; i < range.second; ++i) {
  13602. const auto & cell = kv_self.cells[i];
  13603. data_ctx.write(&cell.pos, sizeof(cell.pos));
  13604. }
  13605. }
  13606. // Iterate and write all the keys first, each row is a cell
  13607. // Get whole range at a time
  13608. std::vector<uint8_t> tmp_buf;
  13609. for (int il = 0; il < (int)n_layer; ++il) {
  13610. // Write key type
  13611. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13612. data_ctx.write(&k_type_i, sizeof(k_type_i));
  13613. // Write row size of key
  13614. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13615. data_ctx.write(&k_size_row, sizeof(k_size_row));
  13616. // Read each range of cells of k_size length each into tmp_buf and write out
  13617. for (const auto & range : cell_ranges) {
  13618. const size_t range_size = range.second - range.first;
  13619. tmp_buf.resize(range_size * k_size_row);
  13620. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  13621. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13622. }
  13623. }
  13624. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  13625. const uint32_t kv_size = kv_self.size;
  13626. for (int il = 0; il < (int)n_layer; ++il) {
  13627. // Write value type
  13628. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13629. data_ctx.write(&v_type_i, sizeof(v_type_i));
  13630. // Write element size
  13631. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13632. data_ctx.write(&v_size_el, sizeof(v_size_el));
  13633. // For each row, we get the element values of each cell
  13634. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13635. // Read each range of cells of v_size_el length each into tmp_buf and write out
  13636. for (const auto & range : cell_ranges) {
  13637. const size_t range_size = range.second - range.first;
  13638. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  13639. tmp_buf.resize(range_size * v_size_el);
  13640. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  13641. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13642. }
  13643. }
  13644. }
  13645. return data_ctx.get_size_written();
  13646. }
  13647. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  13648. llama_data_buffer_context data_ctx(dst);
  13649. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13650. }
  13651. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  13652. auto & kv_self = ctx->kv_self;
  13653. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13654. // Wipe the slot
  13655. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13656. const uint8_t * inp = src;
  13657. // Read size of size_t
  13658. uint32_t size_t_size;
  13659. memcpy(&size_t_size, inp, sizeof(size_t_size));
  13660. inp += sizeof(size_t_size);
  13661. if (size_t_size != sizeof(size_t)) {
  13662. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  13663. return 0;
  13664. }
  13665. // Read the cell count
  13666. uint32_t cell_count;
  13667. memcpy(&cell_count, inp, sizeof(cell_count));
  13668. inp += sizeof(cell_count);
  13669. // Read the layer count
  13670. uint32_t n_layer_ref;
  13671. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  13672. inp += sizeof(n_layer_ref);
  13673. // Read n_embd_v_gqa
  13674. uint32_t n_embd_v_gqa_ref;
  13675. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  13676. inp += sizeof(n_embd_v_gqa_ref);
  13677. // Sanity check model compatibility
  13678. const auto & hparams = ctx->model.hparams;
  13679. const uint32_t n_layer = hparams.n_layer;
  13680. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13681. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13682. if (n_layer != n_layer_ref) {
  13683. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  13684. return 0;
  13685. }
  13686. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  13687. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  13688. return 0;
  13689. }
  13690. // Allocate the new cells for the slot
  13691. if (cell_count) {
  13692. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  13693. batch.n_tokens = cell_count;
  13694. for (uint32_t i = 0; i < cell_count; ++i) {
  13695. llama_pos pos;
  13696. memcpy(&pos, inp, sizeof(pos));
  13697. inp += sizeof(pos);
  13698. batch.pos[i] = pos;
  13699. batch.n_seq_id[i] = 1;
  13700. batch.seq_id[i][0] = dest_seq_id;
  13701. }
  13702. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  13703. llama_batch_free(batch);
  13704. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  13705. return 0;
  13706. }
  13707. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  13708. // Assume that this is one contiguous block of cells
  13709. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  13710. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  13711. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  13712. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  13713. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  13714. // Cleanup
  13715. llama_batch_free(batch);
  13716. }
  13717. const uint32_t kv_size = kv_self.size;
  13718. const uint32_t kv_head = kv_self.head;
  13719. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  13720. for (int il = 0; il < (int)n_layer; ++il) {
  13721. // Read type of key
  13722. int32_t k_type_i_ref;
  13723. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  13724. inp += sizeof(k_type_i_ref);
  13725. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13726. if (k_type_i != k_type_i_ref) {
  13727. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13728. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  13729. return 0;
  13730. }
  13731. // Read row size of key
  13732. size_t k_size_row_ref;
  13733. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  13734. inp += sizeof(k_size_row_ref);
  13735. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13736. if (k_size_row != k_size_row_ref) {
  13737. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13738. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  13739. return 0;
  13740. }
  13741. if (cell_count) {
  13742. // Read and set the keys for the whole cell range
  13743. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  13744. inp += cell_count * k_size_row;
  13745. }
  13746. }
  13747. // For each layer, read the values for each cell (transposed)
  13748. for (int il = 0; il < (int)n_layer; ++il) {
  13749. // Read type of value
  13750. int32_t v_type_i_ref;
  13751. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  13752. inp += sizeof(v_type_i_ref);
  13753. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13754. if (v_type_i != v_type_i_ref) {
  13755. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13756. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  13757. return 0;
  13758. }
  13759. // Read element size of value
  13760. size_t v_size_el_ref;
  13761. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  13762. inp += sizeof(v_size_el_ref);
  13763. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13764. if (v_size_el != v_size_el_ref) {
  13765. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13766. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  13767. return 0;
  13768. }
  13769. if (cell_count) {
  13770. // For each row in the transposed matrix, read the values for the whole cell range
  13771. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13772. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  13773. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  13774. inp += cell_count * v_size_el;
  13775. }
  13776. }
  13777. }
  13778. const size_t nread = inp - src;
  13779. return nread;
  13780. }
  13781. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  13782. llama_file file(filepath, "wb");
  13783. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  13784. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  13785. // save the prompt
  13786. file.write_u32((uint32_t)n_token_count);
  13787. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13788. // save the context state using stream saving
  13789. llama_data_file_context data_ctx(&file);
  13790. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13791. const size_t res = file.tell();
  13792. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  13793. return res;
  13794. }
  13795. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13796. llama_file file(filepath, "rb");
  13797. // version checks
  13798. {
  13799. const uint32_t magic = file.read_u32();
  13800. const uint32_t version = file.read_u32();
  13801. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  13802. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  13803. return 0;
  13804. }
  13805. }
  13806. // load the prompt
  13807. {
  13808. const uint32_t n_token_count = file.read_u32();
  13809. if (n_token_count > n_token_capacity) {
  13810. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13811. return 0;
  13812. }
  13813. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13814. *n_token_count_out = n_token_count;
  13815. }
  13816. // restore the context state
  13817. {
  13818. const size_t state_size = file.size - file.tell();
  13819. std::vector<uint8_t> state_data(state_size);
  13820. file.read_raw(state_data.data(), state_size);
  13821. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  13822. if (!nread) {
  13823. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  13824. return 0;
  13825. }
  13826. GGML_ASSERT(nread <= state_size);
  13827. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  13828. }
  13829. return file.tell();
  13830. }
  13831. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  13832. try {
  13833. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  13834. } catch (const std::exception & err) {
  13835. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  13836. return 0;
  13837. }
  13838. }
  13839. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13840. try {
  13841. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  13842. } catch (const std::exception & err) {
  13843. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  13844. return 0;
  13845. }
  13846. }
  13847. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  13848. ctx->cparams.n_threads = n_threads;
  13849. ctx->cparams.n_threads_batch = n_threads_batch;
  13850. }
  13851. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  13852. ctx->abort_callback = abort_callback;
  13853. ctx->abort_callback_data = abort_callback_data;
  13854. }
  13855. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  13856. ctx->cparams.causal_attn = causal_attn;
  13857. }
  13858. struct llama_batch llama_batch_get_one(
  13859. llama_token * tokens,
  13860. int32_t n_tokens,
  13861. llama_pos pos_0,
  13862. llama_seq_id seq_id) {
  13863. return {
  13864. /*n_tokens =*/ n_tokens,
  13865. /*tokens =*/ tokens,
  13866. /*embd =*/ nullptr,
  13867. /*pos =*/ nullptr,
  13868. /*n_seq_id =*/ nullptr,
  13869. /*seq_id =*/ nullptr,
  13870. /*logits =*/ nullptr,
  13871. /*all_pos_0 =*/ pos_0,
  13872. /*all_pos_1 =*/ 1,
  13873. /*all_seq_id =*/ seq_id,
  13874. };
  13875. }
  13876. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  13877. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  13878. if (embd) {
  13879. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  13880. } else {
  13881. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  13882. }
  13883. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  13884. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  13885. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  13886. for (int i = 0; i < n_tokens_alloc; ++i) {
  13887. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  13888. }
  13889. batch.seq_id[n_tokens_alloc] = nullptr;
  13890. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  13891. return batch;
  13892. }
  13893. void llama_batch_free(struct llama_batch batch) {
  13894. if (batch.token) free(batch.token);
  13895. if (batch.embd) free(batch.embd);
  13896. if (batch.pos) free(batch.pos);
  13897. if (batch.n_seq_id) free(batch.n_seq_id);
  13898. if (batch.seq_id) {
  13899. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  13900. free(batch.seq_id[i]);
  13901. }
  13902. free(batch.seq_id);
  13903. }
  13904. if (batch.logits) free(batch.logits);
  13905. }
  13906. int32_t llama_decode(
  13907. struct llama_context * ctx,
  13908. struct llama_batch batch) {
  13909. const int ret = llama_decode_internal(*ctx, batch);
  13910. if (ret < 0) {
  13911. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  13912. }
  13913. return ret;
  13914. }
  13915. void llama_synchronize(struct llama_context * ctx) {
  13916. ggml_backend_sched_synchronize(ctx->sched);
  13917. // FIXME: if multiple single tokens are evaluated without a synchronization,
  13918. // the stats will be added to the prompt evaluation stats
  13919. // this should only happen when using batch size 1 to evaluate a batch
  13920. // add the evaluation to the stats
  13921. if (ctx->n_queued_tokens == 1) {
  13922. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  13923. ctx->n_eval++;
  13924. } else if (ctx->n_queued_tokens > 1) {
  13925. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  13926. ctx->n_p_eval += ctx->n_queued_tokens;
  13927. }
  13928. // get a more accurate load time, upon first eval
  13929. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  13930. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  13931. ctx->has_evaluated_once = true;
  13932. }
  13933. ctx->n_queued_tokens = 0;
  13934. ctx->t_compute_start_us = 0;
  13935. }
  13936. float * llama_get_logits(struct llama_context * ctx) {
  13937. llama_synchronize(ctx);
  13938. return ctx->logits;
  13939. }
  13940. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  13941. int32_t j = -1;
  13942. llama_synchronize(ctx);
  13943. try {
  13944. if (ctx->logits == nullptr) {
  13945. throw std::runtime_error("no logits");
  13946. }
  13947. if (i < 0) {
  13948. j = ctx->n_outputs + i;
  13949. if (j < 0) {
  13950. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  13951. }
  13952. } else if ((size_t) i >= ctx->output_ids.size()) {
  13953. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  13954. } else {
  13955. j = ctx->output_ids[i];
  13956. }
  13957. if (j < 0) {
  13958. throw std::runtime_error(format("batch.logits[%d] != true", i));
  13959. }
  13960. if (j >= ctx->n_outputs) {
  13961. // This should not happen
  13962. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  13963. }
  13964. return ctx->logits + j*ctx->model.hparams.n_vocab;
  13965. } catch (const std::exception & err) {
  13966. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  13967. #ifndef NDEBUG
  13968. GGML_ASSERT(false);
  13969. #endif
  13970. return nullptr;
  13971. }
  13972. }
  13973. float * llama_get_embeddings(struct llama_context * ctx) {
  13974. llama_synchronize(ctx);
  13975. return ctx->embd;
  13976. }
  13977. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  13978. int32_t j = -1;
  13979. llama_synchronize(ctx);
  13980. try {
  13981. if (ctx->embd == nullptr) {
  13982. throw std::runtime_error("no embeddings");
  13983. }
  13984. if (i < 0) {
  13985. j = ctx->n_outputs + i;
  13986. if (j < 0) {
  13987. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  13988. }
  13989. } else if ((size_t) i >= ctx->output_ids.size()) {
  13990. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  13991. } else {
  13992. j = ctx->output_ids[i];
  13993. }
  13994. if (j < 0) {
  13995. throw std::runtime_error(format("batch.logits[%d] != true", i));
  13996. }
  13997. if (j >= ctx->n_outputs) {
  13998. // This should not happen
  13999. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14000. }
  14001. return ctx->embd + j*ctx->model.hparams.n_embd;
  14002. } catch (const std::exception & err) {
  14003. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14004. #ifndef NDEBUG
  14005. GGML_ASSERT(false);
  14006. #endif
  14007. return nullptr;
  14008. }
  14009. }
  14010. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14011. llama_synchronize(ctx);
  14012. auto it = ctx->embd_seq.find(seq_id);
  14013. if (it == ctx->embd_seq.end()) {
  14014. return nullptr;
  14015. }
  14016. return it->second.data();
  14017. }
  14018. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14019. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14020. return model->vocab.id_to_token[token].text.c_str();
  14021. }
  14022. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14023. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14024. return model->vocab.id_to_token[token].score;
  14025. }
  14026. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14027. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14028. return model->vocab.id_to_token[token].type;
  14029. }
  14030. llama_token llama_token_bos(const struct llama_model * model) {
  14031. return model->vocab.special_bos_id;
  14032. }
  14033. llama_token llama_token_eos(const struct llama_model * model) {
  14034. return model->vocab.special_eos_id;
  14035. }
  14036. llama_token llama_token_cls(const struct llama_model * model) {
  14037. return model->vocab.special_cls_id;
  14038. }
  14039. llama_token llama_token_sep(const struct llama_model * model) {
  14040. return model->vocab.special_sep_id;
  14041. }
  14042. llama_token llama_token_nl(const struct llama_model * model) {
  14043. return model->vocab.linefeed_id;
  14044. }
  14045. int32_t llama_add_bos_token(const struct llama_model * model) {
  14046. return model->vocab.special_add_bos;
  14047. }
  14048. int32_t llama_add_eos_token(const struct llama_model * model) {
  14049. return model->vocab.special_add_eos;
  14050. }
  14051. llama_token llama_token_prefix(const struct llama_model * model) {
  14052. return model->vocab.special_prefix_id;
  14053. }
  14054. llama_token llama_token_middle(const struct llama_model * model) {
  14055. return model->vocab.special_middle_id;
  14056. }
  14057. llama_token llama_token_suffix(const struct llama_model * model) {
  14058. return model->vocab.special_suffix_id;
  14059. }
  14060. llama_token llama_token_eot(const struct llama_model * model) {
  14061. return model->vocab.special_eot_id;
  14062. }
  14063. int32_t llama_tokenize(
  14064. const struct llama_model * model,
  14065. const char * text,
  14066. int32_t text_len,
  14067. llama_token * tokens,
  14068. int32_t n_tokens_max,
  14069. bool add_special,
  14070. bool parse_special) {
  14071. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14072. if (n_tokens_max < (int) res.size()) {
  14073. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14074. return -((int) res.size());
  14075. }
  14076. for (size_t i = 0; i < res.size(); i++) {
  14077. tokens[i] = res[i];
  14078. }
  14079. return res.size();
  14080. }
  14081. static std::string llama_decode_text(const std::string & text) {
  14082. std::string decoded_text;
  14083. auto unicode_sequences = unicode_cpts_from_utf8(text);
  14084. for (auto & unicode_sequence : unicode_sequences) {
  14085. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  14086. }
  14087. return decoded_text;
  14088. }
  14089. // does not write null-terminator to buf
  14090. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
  14091. if (0 <= token && token < llama_n_vocab(model)) {
  14092. switch (llama_vocab_get_type(model->vocab)) {
  14093. case LLAMA_VOCAB_TYPE_WPM:
  14094. case LLAMA_VOCAB_TYPE_SPM: {
  14095. // NOTE: we accept all unsupported token types,
  14096. // suppressing them like CONTROL tokens.
  14097. if (llama_is_normal_token(model->vocab, token)) {
  14098. std::string result = model->vocab.id_to_token[token].text;
  14099. llama_unescape_whitespace(result);
  14100. if (length < (int) result.length()) {
  14101. return -(int) result.length();
  14102. }
  14103. memcpy(buf, result.c_str(), result.length());
  14104. return result.length();
  14105. } else if (llama_is_user_defined_token(model->vocab, token)) {
  14106. std::string result = model->vocab.id_to_token[token].text;
  14107. if (length < (int) result.length()) {
  14108. return -(int) result.length();
  14109. }
  14110. memcpy(buf, result.c_str(), result.length());
  14111. return result.length();
  14112. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14113. if (length < 3) {
  14114. return -3;
  14115. }
  14116. memcpy(buf, "\xe2\x96\x85", 3);
  14117. return 3;
  14118. } else if (llama_is_control_token(model->vocab, token)) {
  14119. ;
  14120. } else if (llama_is_byte_token(model->vocab, token)) {
  14121. if (length < 1) {
  14122. return -1;
  14123. }
  14124. buf[0] = llama_token_to_byte(model->vocab, token);
  14125. return 1;
  14126. }
  14127. break;
  14128. }
  14129. case LLAMA_VOCAB_TYPE_BPE: {
  14130. // NOTE: we accept all unsupported token types,
  14131. // suppressing them like CONTROL tokens.
  14132. if (llama_is_normal_token(model->vocab, token)) {
  14133. std::string result = model->vocab.id_to_token[token].text;
  14134. result = llama_decode_text(result);
  14135. if (length < (int) result.length()) {
  14136. return -(int) result.length();
  14137. }
  14138. memcpy(buf, result.c_str(), result.length());
  14139. return result.length();
  14140. } else if (llama_is_user_defined_token(model->vocab, token)) {
  14141. std::string result = model->vocab.id_to_token[token].text;
  14142. if (length < (int) result.length()) {
  14143. return -(int) result.length();
  14144. }
  14145. memcpy(buf, result.c_str(), result.length());
  14146. return result.length();
  14147. } else if (llama_is_control_token(model->vocab, token)) {
  14148. ;
  14149. }
  14150. break;
  14151. }
  14152. default:
  14153. GGML_ASSERT(false);
  14154. }
  14155. }
  14156. return 0;
  14157. }
  14158. // trim whitespace from the beginning and end of a string
  14159. static std::string trim(const std::string & str) {
  14160. size_t start = 0;
  14161. size_t end = str.size();
  14162. while (start < end && isspace(str[start])) {
  14163. start += 1;
  14164. }
  14165. while (end > start && isspace(str[end - 1])) {
  14166. end -= 1;
  14167. }
  14168. return str.substr(start, end - start);
  14169. }
  14170. // Simple version of "llama_apply_chat_template" that only works with strings
  14171. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14172. static int32_t llama_chat_apply_template_internal(
  14173. const std::string & tmpl,
  14174. const std::vector<const llama_chat_message *> & chat,
  14175. std::string & dest, bool add_ass) {
  14176. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14177. std::stringstream ss;
  14178. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14179. // chatml template
  14180. for (auto message : chat) {
  14181. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14182. }
  14183. if (add_ass) {
  14184. ss << "<|im_start|>assistant\n";
  14185. }
  14186. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14187. // llama2 template and its variants
  14188. // [variant] support system message
  14189. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14190. // [variant] space before + after response
  14191. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14192. // [variant] add BOS inside history
  14193. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14194. // [variant] trim spaces from the input message
  14195. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14196. // construct the prompt
  14197. bool is_inside_turn = true; // skip BOS at the beginning
  14198. ss << "[INST] ";
  14199. for (auto message : chat) {
  14200. std::string content = strip_message ? trim(message->content) : message->content;
  14201. std::string role(message->role);
  14202. if (!is_inside_turn) {
  14203. is_inside_turn = true;
  14204. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14205. }
  14206. if (role == "system") {
  14207. if (support_system_message) {
  14208. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14209. } else {
  14210. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14211. ss << content << "\n";
  14212. }
  14213. } else if (role == "user") {
  14214. ss << content << " [/INST]";
  14215. } else {
  14216. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14217. is_inside_turn = false;
  14218. }
  14219. }
  14220. // llama2 templates seem to not care about "add_generation_prompt"
  14221. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14222. // zephyr template
  14223. for (auto message : chat) {
  14224. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14225. }
  14226. if (add_ass) {
  14227. ss << "<|assistant|>\n";
  14228. }
  14229. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14230. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14231. for (auto message : chat) {
  14232. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14233. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14234. }
  14235. if (add_ass) {
  14236. ss << "<s>assistant\n";
  14237. }
  14238. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14239. // google/gemma-7b-it
  14240. std::string system_prompt = "";
  14241. for (auto message : chat) {
  14242. std::string role(message->role);
  14243. if (role == "system") {
  14244. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14245. system_prompt = trim(message->content);
  14246. continue;
  14247. }
  14248. // in gemma, "assistant" is "model"
  14249. role = role == "assistant" ? "model" : message->role;
  14250. ss << "<start_of_turn>" << role << "\n";
  14251. if (!system_prompt.empty() && role != "model") {
  14252. ss << system_prompt << "\n\n";
  14253. system_prompt = "";
  14254. }
  14255. ss << trim(message->content) << "<end_of_turn>\n";
  14256. }
  14257. if (add_ass) {
  14258. ss << "<start_of_turn>model\n";
  14259. }
  14260. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14261. // OrionStarAI/Orion-14B-Chat
  14262. std::string system_prompt = "";
  14263. for (auto message : chat) {
  14264. std::string role(message->role);
  14265. if (role == "system") {
  14266. // there is no system message support, we will merge it with user prompt
  14267. system_prompt = message->content;
  14268. continue;
  14269. } else if (role == "user") {
  14270. ss << "Human: ";
  14271. if (!system_prompt.empty()) {
  14272. ss << system_prompt << "\n\n";
  14273. system_prompt = "";
  14274. }
  14275. ss << message->content << "\n\nAssistant: </s>";
  14276. } else {
  14277. ss << message->content << "</s>";
  14278. }
  14279. }
  14280. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14281. // openchat/openchat-3.5-0106,
  14282. for (auto message : chat) {
  14283. std::string role(message->role);
  14284. if (role == "system") {
  14285. ss << message->content << "<|end_of_turn|>";
  14286. } else {
  14287. role[0] = toupper(role[0]);
  14288. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14289. }
  14290. }
  14291. if (add_ass) {
  14292. ss << "GPT4 Correct Assistant:";
  14293. }
  14294. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14295. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14296. for (auto message : chat) {
  14297. std::string role(message->role);
  14298. if (role == "system") {
  14299. // Orca-Vicuna variant uses a system prefix
  14300. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14301. ss << "SYSTEM: " << message->content << "\n";
  14302. } else {
  14303. ss << message->content << "\n\n";
  14304. }
  14305. } else if (role == "user") {
  14306. ss << "USER: " << message->content << "\n";
  14307. } else if (role == "assistant") {
  14308. ss << "ASSISTANT: " << message->content << "</s>\n";
  14309. }
  14310. }
  14311. if (add_ass) {
  14312. ss << "ASSISTANT:";
  14313. }
  14314. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14315. // deepseek-ai/deepseek-coder-33b-instruct
  14316. for (auto message : chat) {
  14317. std::string role(message->role);
  14318. if (role == "system") {
  14319. ss << message->content;
  14320. } else if (role == "user") {
  14321. ss << "### Instruction:\n" << message->content << "\n";
  14322. } else if (role == "assistant") {
  14323. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14324. }
  14325. }
  14326. if (add_ass) {
  14327. ss << "### Response:\n";
  14328. }
  14329. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14330. // CohereForAI/c4ai-command-r-plus
  14331. for (auto message : chat) {
  14332. std::string role(message->role);
  14333. if (role == "system") {
  14334. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14335. } else if (role == "user") {
  14336. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14337. } else if (role == "assistant") {
  14338. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14339. }
  14340. }
  14341. if (add_ass) {
  14342. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14343. }
  14344. } else {
  14345. // template not supported
  14346. return -1;
  14347. }
  14348. dest = ss.str();
  14349. return dest.size();
  14350. }
  14351. LLAMA_API int32_t llama_chat_apply_template(
  14352. const struct llama_model * model,
  14353. const char * tmpl,
  14354. const struct llama_chat_message * chat,
  14355. size_t n_msg,
  14356. bool add_ass,
  14357. char * buf,
  14358. int32_t length) {
  14359. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14360. if (tmpl == nullptr) {
  14361. GGML_ASSERT(model != nullptr);
  14362. // load template from model
  14363. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14364. std::string template_key = "tokenizer.chat_template";
  14365. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14366. if (res < 0) {
  14367. // worst case: there is no information about template, we will use chatml by default
  14368. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14369. } else {
  14370. curr_tmpl = std::string(model_template.data(), model_template.size());
  14371. }
  14372. }
  14373. // format the chat to string
  14374. std::vector<const llama_chat_message *> chat_vec;
  14375. chat_vec.resize(n_msg);
  14376. for (size_t i = 0; i < n_msg; i++) {
  14377. chat_vec[i] = &chat[i];
  14378. }
  14379. std::string formatted_chat;
  14380. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14381. if (res < 0) {
  14382. return res;
  14383. }
  14384. if (buf && length > 0) {
  14385. strncpy(buf, formatted_chat.c_str(), length);
  14386. }
  14387. return res;
  14388. }
  14389. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14390. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14391. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14392. return strlen(split_path);
  14393. }
  14394. return 0;
  14395. }
  14396. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14397. std::string str_split_path(split_path);
  14398. char postfix[32];
  14399. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14400. std::string str_postfix(postfix);
  14401. // check if dest ends with postfix
  14402. int size_prefix = str_split_path.size() - str_postfix.size();
  14403. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14404. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14405. return size_prefix;
  14406. }
  14407. return 0;
  14408. }
  14409. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14410. struct llama_timings result = {
  14411. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14412. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14413. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14414. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14415. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14416. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14417. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14418. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  14419. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14420. };
  14421. return result;
  14422. }
  14423. void llama_print_timings(struct llama_context * ctx) {
  14424. const llama_timings timings = llama_get_timings(ctx);
  14425. LLAMA_LOG_INFO("\n");
  14426. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14427. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14428. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14429. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14430. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14431. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14432. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14433. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14434. }
  14435. void llama_reset_timings(struct llama_context * ctx) {
  14436. ctx->t_start_us = ggml_time_us();
  14437. ctx->t_sample_us = ctx->n_sample = 0;
  14438. ctx->t_eval_us = ctx->n_eval = 0;
  14439. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14440. }
  14441. const char * llama_print_system_info(void) {
  14442. static std::string s;
  14443. s = "";
  14444. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14445. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14446. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14447. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14448. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14449. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14450. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14451. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14452. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14453. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14454. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14455. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14456. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14457. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14458. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14459. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14460. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14461. return s.c_str();
  14462. }
  14463. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14464. fprintf(stream, "\n");
  14465. fprintf(stream, "###########\n");
  14466. fprintf(stream, "# Timings #\n");
  14467. fprintf(stream, "###########\n");
  14468. fprintf(stream, "\n");
  14469. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14470. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14471. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14472. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14473. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14474. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14475. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14476. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14477. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14478. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14479. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14480. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14481. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14482. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14483. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14484. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14485. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14486. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14487. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14488. }
  14489. // For internal test use
  14490. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14491. struct llama_context * ctx
  14492. ) {
  14493. return ctx->model.tensors_by_name;
  14494. }
  14495. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  14496. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  14497. g_state.log_callback_user_data = user_data;
  14498. #ifdef GGML_USE_METAL
  14499. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  14500. #endif
  14501. }
  14502. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  14503. va_list args_copy;
  14504. va_copy(args_copy, args);
  14505. char buffer[128];
  14506. int len = vsnprintf(buffer, 128, format, args);
  14507. if (len < 128) {
  14508. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  14509. } else {
  14510. char* buffer2 = new char[len+1];
  14511. vsnprintf(buffer2, len+1, format, args_copy);
  14512. buffer2[len] = 0;
  14513. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  14514. delete[] buffer2;
  14515. }
  14516. va_end(args_copy);
  14517. }
  14518. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  14519. va_list args;
  14520. va_start(args, format);
  14521. llama_log_internal_v(level, format, args);
  14522. va_end(args);
  14523. }
  14524. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  14525. (void) level;
  14526. (void) user_data;
  14527. fputs(text, stderr);
  14528. fflush(stderr);
  14529. }