ggml.c 662 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. // #define GGML_CROSS_ENTROPY_EXP_FP16
  106. // #define GGML_FLASH_ATTN_EXP_FP16
  107. #define GGML_SOFT_MAX_UNROLL 4
  108. #define GGML_VEC_DOT_UNROLL 2
  109. //
  110. // logging
  111. //
  112. #if (GGML_DEBUG >= 1)
  113. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  114. #else
  115. #define GGML_PRINT_DEBUG(...)
  116. #endif
  117. #if (GGML_DEBUG >= 5)
  118. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  119. #else
  120. #define GGML_PRINT_DEBUG_5(...)
  121. #endif
  122. #if (GGML_DEBUG >= 10)
  123. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  124. #else
  125. #define GGML_PRINT_DEBUG_10(...)
  126. #endif
  127. #define GGML_PRINT(...) printf(__VA_ARGS__)
  128. #ifdef GGML_USE_ACCELERATE
  129. // uncomment to use vDSP for soft max computation
  130. // note: not sure if it is actually faster
  131. //#define GGML_SOFT_MAX_ACCELERATE
  132. #endif
  133. //
  134. // logging
  135. //
  136. #if (GGML_DEBUG >= 1)
  137. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG(...)
  140. #endif
  141. #if (GGML_DEBUG >= 5)
  142. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_5(...)
  145. #endif
  146. #if (GGML_DEBUG >= 10)
  147. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG_10(...)
  150. #endif
  151. #define GGML_PRINT(...) printf(__VA_ARGS__)
  152. //
  153. // end of logging block
  154. //
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. void * aligned_memory = NULL;
  161. #ifdef GGML_USE_METAL
  162. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  163. #else
  164. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  165. #endif
  166. if (result != 0) {
  167. // Handle allocation failure
  168. const char *error_desc = "unknown allocation error";
  169. switch (result) {
  170. case EINVAL:
  171. error_desc = "invalid alignment value";
  172. break;
  173. case ENOMEM:
  174. error_desc = "insufficient memory";
  175. break;
  176. }
  177. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #if defined(GGML_BLAS_USE_MKL)
  209. #include <mkl.h>
  210. #else
  211. #include <cblas.h>
  212. #endif
  213. #elif defined(GGML_USE_CUBLAS)
  214. #include "ggml-cuda.h"
  215. #elif defined(GGML_USE_CLBLAST)
  216. #include "ggml-opencl.h"
  217. #endif
  218. #undef MIN
  219. #undef MAX
  220. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  221. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  222. // floating point type used to accumulate sums
  223. typedef double ggml_float;
  224. // 16-bit float
  225. // on Arm, we use __fp16
  226. // on x86, we use uint16_t
  227. #ifdef __ARM_NEON
  228. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  229. //
  230. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  231. //
  232. #include <arm_neon.h>
  233. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  234. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  235. #define GGML_FP16_TO_FP32(x) ((float) (x))
  236. #define GGML_FP32_TO_FP16(x) (x)
  237. #else
  238. #ifdef __wasm_simd128__
  239. #include <wasm_simd128.h>
  240. #else
  241. #ifdef __POWER9_VECTOR__
  242. #include <altivec.h>
  243. #undef bool
  244. #define bool _Bool
  245. #else
  246. #if defined(_MSC_VER) || defined(__MINGW32__)
  247. #include <intrin.h>
  248. #else
  249. #if !defined(__riscv)
  250. #include <immintrin.h>
  251. #endif
  252. #endif
  253. #endif
  254. #endif
  255. #ifdef __F16C__
  256. #ifdef _MSC_VER
  257. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  258. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  259. #else
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  262. #endif
  263. #elif defined(__POWER9_VECTOR__)
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  266. /* the inline asm below is about 12% faster than the lookup method */
  267. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  268. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  269. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  270. register float f;
  271. register double d;
  272. __asm__(
  273. "mtfprd %0,%2\n"
  274. "xscvhpdp %0,%0\n"
  275. "frsp %1,%0\n" :
  276. /* temp */ "=d"(d),
  277. /* out */ "=f"(f):
  278. /* in */ "r"(h));
  279. return f;
  280. }
  281. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  282. register double d;
  283. register ggml_fp16_t r;
  284. __asm__( /* xscvdphp can work on double or single precision */
  285. "xscvdphp %0,%2\n"
  286. "mffprd %1,%0\n" :
  287. /* temp */ "=d"(d),
  288. /* out */ "=r"(r):
  289. /* in */ "f"(f));
  290. return r;
  291. }
  292. #else
  293. // FP16 <-> FP32
  294. // ref: https://github.com/Maratyszcza/FP16
  295. static inline float fp32_from_bits(uint32_t w) {
  296. union {
  297. uint32_t as_bits;
  298. float as_value;
  299. } fp32;
  300. fp32.as_bits = w;
  301. return fp32.as_value;
  302. }
  303. static inline uint32_t fp32_to_bits(float f) {
  304. union {
  305. float as_value;
  306. uint32_t as_bits;
  307. } fp32;
  308. fp32.as_value = f;
  309. return fp32.as_bits;
  310. }
  311. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  312. const uint32_t w = (uint32_t) h << 16;
  313. const uint32_t sign = w & UINT32_C(0x80000000);
  314. const uint32_t two_w = w + w;
  315. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  316. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  317. const float exp_scale = 0x1.0p-112f;
  318. #else
  319. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  320. #endif
  321. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  322. const uint32_t magic_mask = UINT32_C(126) << 23;
  323. const float magic_bias = 0.5f;
  324. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  325. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  326. const uint32_t result = sign |
  327. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  328. return fp32_from_bits(result);
  329. }
  330. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  331. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  332. const float scale_to_inf = 0x1.0p+112f;
  333. const float scale_to_zero = 0x1.0p-110f;
  334. #else
  335. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  336. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  337. #endif
  338. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  339. const uint32_t w = fp32_to_bits(f);
  340. const uint32_t shl1_w = w + w;
  341. const uint32_t sign = w & UINT32_C(0x80000000);
  342. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  343. if (bias < UINT32_C(0x71000000)) {
  344. bias = UINT32_C(0x71000000);
  345. }
  346. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  347. const uint32_t bits = fp32_to_bits(base);
  348. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  349. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  350. const uint32_t nonsign = exp_bits + mantissa_bits;
  351. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  352. }
  353. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  354. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  355. #endif // __F16C__
  356. #endif // __ARM_NEON
  357. //
  358. // global data
  359. //
  360. // precomputed gelu table for f16 (128 KB)
  361. static ggml_fp16_t table_gelu_f16[1 << 16];
  362. // precomputed quick gelu table for f16 (128 KB)
  363. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  364. // precomputed silu table for f16 (128 KB)
  365. static ggml_fp16_t table_silu_f16[1 << 16];
  366. // precomputed exp table for f16 (128 KB)
  367. static ggml_fp16_t table_exp_f16[1 << 16];
  368. // precomputed f32 table for f16 (256 KB)
  369. static float table_f32_f16[1 << 16];
  370. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  371. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  372. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  373. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  374. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  375. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  376. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  377. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  378. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  379. // precomputed tables for expanding 8bits to 8 bytes:
  380. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  381. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  382. #endif
  383. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  384. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  385. // This is also true for POWER9.
  386. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  387. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  388. uint16_t s;
  389. memcpy(&s, &f, sizeof(uint16_t));
  390. return table_f32_f16[s];
  391. }
  392. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  393. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  394. #endif
  395. // note: do not use these inside ggml.c
  396. // these are meant to be used via the ggml.h API
  397. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  398. return (float) GGML_FP16_TO_FP32(x);
  399. }
  400. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  401. return GGML_FP32_TO_FP16(x);
  402. }
  403. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  404. for (int i = 0; i < n; i++) {
  405. y[i] = GGML_FP16_TO_FP32(x[i]);
  406. }
  407. }
  408. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  409. int i = 0;
  410. #if defined(__F16C__)
  411. for (; i + 7 < n; i += 8) {
  412. __m256 x_vec = _mm256_loadu_ps(x + i);
  413. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  414. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  415. }
  416. for(; i + 3 < n; i += 4) {
  417. __m128 x_vec = _mm_loadu_ps(x + i);
  418. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  419. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  420. }
  421. #endif
  422. for (; i < n; i++) {
  423. y[i] = GGML_FP32_TO_FP16(x[i]);
  424. }
  425. }
  426. //
  427. // timing
  428. //
  429. #if defined(_MSC_VER) || defined(__MINGW32__)
  430. static int64_t timer_freq, timer_start;
  431. void ggml_time_init(void) {
  432. LARGE_INTEGER t;
  433. QueryPerformanceFrequency(&t);
  434. timer_freq = t.QuadPart;
  435. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  436. // and the uptime is high enough.
  437. // We subtract the program start time to reduce the likelihood of that happening.
  438. QueryPerformanceCounter(&t);
  439. timer_start = t.QuadPart;
  440. }
  441. int64_t ggml_time_ms(void) {
  442. LARGE_INTEGER t;
  443. QueryPerformanceCounter(&t);
  444. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  445. }
  446. int64_t ggml_time_us(void) {
  447. LARGE_INTEGER t;
  448. QueryPerformanceCounter(&t);
  449. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  450. }
  451. #else
  452. void ggml_time_init(void) {}
  453. int64_t ggml_time_ms(void) {
  454. struct timespec ts;
  455. clock_gettime(CLOCK_MONOTONIC, &ts);
  456. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  457. }
  458. int64_t ggml_time_us(void) {
  459. struct timespec ts;
  460. clock_gettime(CLOCK_MONOTONIC, &ts);
  461. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  462. }
  463. #endif
  464. int64_t ggml_cycles(void) {
  465. return clock();
  466. }
  467. int64_t ggml_cycles_per_ms(void) {
  468. return CLOCKS_PER_SEC/1000;
  469. }
  470. #ifdef GGML_PERF
  471. #define ggml_perf_time_ms() ggml_time_ms()
  472. #define ggml_perf_time_us() ggml_time_us()
  473. #define ggml_perf_cycles() ggml_cycles()
  474. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  475. #else
  476. #define ggml_perf_time_ms() 0
  477. #define ggml_perf_time_us() 0
  478. #define ggml_perf_cycles() 0
  479. #define ggml_perf_cycles_per_ms() 0
  480. #endif
  481. //
  482. // cache line
  483. //
  484. #if defined(__cpp_lib_hardware_interference_size)
  485. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  486. #else
  487. #if defined(__POWER9_VECTOR__)
  488. #define CACHE_LINE_SIZE 128
  489. #else
  490. #define CACHE_LINE_SIZE 64
  491. #endif
  492. #endif
  493. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  494. //
  495. // quantization
  496. //
  497. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  498. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  499. // multiply int8_t, add results pairwise twice
  500. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  501. // Get absolute values of x vectors
  502. const __m128i ax = _mm_sign_epi8(x, x);
  503. // Sign the values of the y vectors
  504. const __m128i sy = _mm_sign_epi8(y, x);
  505. // Perform multiplication and create 16-bit values
  506. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  507. const __m128i ones = _mm_set1_epi16(1);
  508. return _mm_madd_epi16(ones, dot);
  509. }
  510. #if __AVX__ || __AVX2__ || __AVX512F__
  511. // horizontally add 8 floats
  512. static inline float hsum_float_8(const __m256 x) {
  513. __m128 res = _mm256_extractf128_ps(x, 1);
  514. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  515. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  516. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  517. return _mm_cvtss_f32(res);
  518. }
  519. // horizontally add 8 int32_t
  520. static inline int hsum_i32_8(const __m256i a) {
  521. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  522. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  523. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  524. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  525. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  526. }
  527. // horizontally add 4 int32_t
  528. static inline int hsum_i32_4(const __m128i a) {
  529. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  530. const __m128i sum64 = _mm_add_epi32(hi64, a);
  531. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  532. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  533. }
  534. #if defined(__AVX2__) || defined(__AVX512F__)
  535. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  536. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  537. uint32_t x32;
  538. memcpy(&x32, x, sizeof(uint32_t));
  539. const __m256i shuf_mask = _mm256_set_epi64x(
  540. 0x0303030303030303, 0x0202020202020202,
  541. 0x0101010101010101, 0x0000000000000000);
  542. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  543. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  544. bytes = _mm256_or_si256(bytes, bit_mask);
  545. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  546. }
  547. // Unpack 32 4-bit fields into 32 bytes
  548. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  549. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  550. {
  551. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  552. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  553. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  554. return _mm256_and_si256(lowMask, bytes);
  555. }
  556. // add int16_t pairwise and return as float vector
  557. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  558. const __m256i ones = _mm256_set1_epi16(1);
  559. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  560. return _mm256_cvtepi32_ps(summed_pairs);
  561. }
  562. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  563. #if __AVXVNNI__
  564. const __m256i zero = _mm256_setzero_si256();
  565. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  566. return _mm256_cvtepi32_ps(summed_pairs);
  567. #else
  568. // Perform multiplication and create 16-bit values
  569. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  570. return sum_i16_pairs_float(dot);
  571. #endif
  572. }
  573. // multiply int8_t, add results pairwise twice and return as float vector
  574. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  575. #if __AVXVNNIINT8__
  576. const __m256i zero = _mm256_setzero_si256();
  577. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  578. return _mm256_cvtepi32_ps(summed_pairs);
  579. #else
  580. // Get absolute values of x vectors
  581. const __m256i ax = _mm256_sign_epi8(x, x);
  582. // Sign the values of the y vectors
  583. const __m256i sy = _mm256_sign_epi8(y, x);
  584. return mul_sum_us8_pairs_float(ax, sy);
  585. #endif
  586. }
  587. static inline __m128i packNibbles( __m256i bytes )
  588. {
  589. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  590. #if __AVX512F__
  591. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  592. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  593. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  594. #else
  595. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  596. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  597. __m256i low = _mm256_and_si256( lowByte, bytes );
  598. high = _mm256_srli_epi16( high, 4 );
  599. bytes = _mm256_or_si256( low, high );
  600. // Compress uint16_t lanes into bytes
  601. __m128i r0 = _mm256_castsi256_si128( bytes );
  602. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  603. return _mm_packus_epi16( r0, r1 );
  604. #endif
  605. }
  606. #elif defined(__AVX__)
  607. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  608. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  609. uint32_t x32;
  610. memcpy(&x32, x, sizeof(uint32_t));
  611. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  612. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  613. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  614. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  615. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  616. bytesl = _mm_or_si128(bytesl, bit_mask);
  617. bytesh = _mm_or_si128(bytesh, bit_mask);
  618. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  619. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  620. return MM256_SET_M128I(bytesh, bytesl);
  621. }
  622. // Unpack 32 4-bit fields into 32 bytes
  623. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  624. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  625. {
  626. // Load 16 bytes from memory
  627. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  628. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  629. const __m128i lowMask = _mm_set1_epi8(0xF);
  630. tmpl = _mm_and_si128(lowMask, tmpl);
  631. tmph = _mm_and_si128(lowMask, tmph);
  632. return MM256_SET_M128I(tmph, tmpl);
  633. }
  634. // add int16_t pairwise and return as float vector
  635. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  636. const __m128i ones = _mm_set1_epi16(1);
  637. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  638. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  639. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  640. return _mm256_cvtepi32_ps(summed_pairs);
  641. }
  642. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  643. const __m128i axl = _mm256_castsi256_si128(ax);
  644. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  645. const __m128i syl = _mm256_castsi256_si128(sy);
  646. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  647. // Perform multiplication and create 16-bit values
  648. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  649. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  650. return sum_i16_pairs_float(doth, dotl);
  651. }
  652. // multiply int8_t, add results pairwise twice and return as float vector
  653. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  654. const __m128i xl = _mm256_castsi256_si128(x);
  655. const __m128i xh = _mm256_extractf128_si256(x, 1);
  656. const __m128i yl = _mm256_castsi256_si128(y);
  657. const __m128i yh = _mm256_extractf128_si256(y, 1);
  658. // Get absolute values of x vectors
  659. const __m128i axl = _mm_sign_epi8(xl, xl);
  660. const __m128i axh = _mm_sign_epi8(xh, xh);
  661. // Sign the values of the y vectors
  662. const __m128i syl = _mm_sign_epi8(yl, xl);
  663. const __m128i syh = _mm_sign_epi8(yh, xh);
  664. // Perform multiplication and create 16-bit values
  665. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  666. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  667. return sum_i16_pairs_float(doth, dotl);
  668. }
  669. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  670. {
  671. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  672. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  673. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  674. __m128i low = _mm_and_si128( lowByte, bytes1 );
  675. high = _mm_srli_epi16( high, 4 );
  676. bytes1 = _mm_or_si128( low, high );
  677. high = _mm_andnot_si128( lowByte, bytes2 );
  678. low = _mm_and_si128( lowByte, bytes2 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes2 = _mm_or_si128( low, high );
  681. return _mm_packus_epi16( bytes1, bytes2);
  682. }
  683. #endif
  684. #elif defined(__SSSE3__)
  685. // horizontally add 4x4 floats
  686. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  687. __m128 res_0 =_mm_hadd_ps(a, b);
  688. __m128 res_1 =_mm_hadd_ps(c, d);
  689. __m128 res =_mm_hadd_ps(res_0, res_1);
  690. res =_mm_hadd_ps(res, res);
  691. res =_mm_hadd_ps(res, res);
  692. return _mm_cvtss_f32(res);
  693. }
  694. #endif // __AVX__ || __AVX2__ || __AVX512F__
  695. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  696. #if defined(__ARM_NEON)
  697. #if !defined(__aarch64__)
  698. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  699. return
  700. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  701. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  702. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  703. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  704. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  705. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  706. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  707. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  708. }
  709. inline static int16_t vaddvq_s8(int8x16_t v) {
  710. return
  711. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  712. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  713. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  714. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  715. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  716. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  717. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  718. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  719. }
  720. inline static int32_t vaddvq_s16(int16x8_t v) {
  721. return
  722. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  723. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  724. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  725. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  726. }
  727. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  728. return
  729. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  730. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  731. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  732. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  733. }
  734. inline static int32_t vaddvq_s32(int32x4_t v) {
  735. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  736. }
  737. inline static float vaddvq_f32(float32x4_t v) {
  738. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  739. }
  740. inline static float vminvq_f32(float32x4_t v) {
  741. return
  742. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  743. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  744. }
  745. inline static float vmaxvq_f32(float32x4_t v) {
  746. return
  747. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  748. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  749. }
  750. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  751. int32x4_t res;
  752. res[0] = roundf(vgetq_lane_f32(v, 0));
  753. res[1] = roundf(vgetq_lane_f32(v, 1));
  754. res[2] = roundf(vgetq_lane_f32(v, 2));
  755. res[3] = roundf(vgetq_lane_f32(v, 3));
  756. return res;
  757. }
  758. #endif
  759. #endif
  760. #define QK4_0 32
  761. typedef struct {
  762. ggml_fp16_t d; // delta
  763. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  764. } block_q4_0;
  765. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  766. #define QK4_1 32
  767. typedef struct {
  768. ggml_fp16_t d; // delta
  769. ggml_fp16_t m; // min
  770. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  771. } block_q4_1;
  772. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  773. #define QK5_0 32
  774. typedef struct {
  775. ggml_fp16_t d; // delta
  776. uint8_t qh[4]; // 5-th bit of quants
  777. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  778. } block_q5_0;
  779. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  780. #define QK5_1 32
  781. typedef struct {
  782. ggml_fp16_t d; // delta
  783. ggml_fp16_t m; // min
  784. uint8_t qh[4]; // 5-th bit of quants
  785. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  786. } block_q5_1;
  787. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  788. #define QK8_0 32
  789. typedef struct {
  790. ggml_fp16_t d; // delta
  791. int8_t qs[QK8_0]; // quants
  792. } block_q8_0;
  793. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  794. #define QK8_1 32
  795. typedef struct {
  796. float d; // delta
  797. float s; // d * sum(qs[i])
  798. int8_t qs[QK8_1]; // quants
  799. } block_q8_1;
  800. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  801. // reference implementation for deterministic creation of model files
  802. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  803. static const int qk = QK4_0;
  804. assert(k % qk == 0);
  805. const int nb = k / qk;
  806. for (int i = 0; i < nb; i++) {
  807. float amax = 0.0f; // absolute max
  808. float max = 0.0f;
  809. for (int j = 0; j < qk; j++) {
  810. const float v = x[i*qk + j];
  811. if (amax < fabsf(v)) {
  812. amax = fabsf(v);
  813. max = v;
  814. }
  815. }
  816. const float d = max / -8;
  817. const float id = d ? 1.0f/d : 0.0f;
  818. y[i].d = GGML_FP32_TO_FP16(d);
  819. for (int j = 0; j < qk/2; ++j) {
  820. const float x0 = x[i*qk + 0 + j]*id;
  821. const float x1 = x[i*qk + qk/2 + j]*id;
  822. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  823. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  824. y[i].qs[j] = xi0;
  825. y[i].qs[j] |= xi1 << 4;
  826. }
  827. }
  828. }
  829. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  830. quantize_row_q4_0_reference(x, y, k);
  831. }
  832. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  833. const int qk = QK4_1;
  834. assert(k % qk == 0);
  835. const int nb = k / qk;
  836. for (int i = 0; i < nb; i++) {
  837. float min = FLT_MAX;
  838. float max = -FLT_MAX;
  839. for (int j = 0; j < qk; j++) {
  840. const float v = x[i*qk + j];
  841. if (v < min) min = v;
  842. if (v > max) max = v;
  843. }
  844. const float d = (max - min) / ((1 << 4) - 1);
  845. const float id = d ? 1.0f/d : 0.0f;
  846. y[i].d = GGML_FP32_TO_FP16(d);
  847. y[i].m = GGML_FP32_TO_FP16(min);
  848. for (int j = 0; j < qk/2; ++j) {
  849. const float x0 = (x[i*qk + 0 + j] - min)*id;
  850. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  851. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  852. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  853. y[i].qs[j] = xi0;
  854. y[i].qs[j] |= xi1 << 4;
  855. }
  856. }
  857. }
  858. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  859. quantize_row_q4_1_reference(x, y, k);
  860. }
  861. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  862. static const int qk = QK5_0;
  863. assert(k % qk == 0);
  864. const int nb = k / qk;
  865. for (int i = 0; i < nb; i++) {
  866. float amax = 0.0f; // absolute max
  867. float max = 0.0f;
  868. for (int j = 0; j < qk; j++) {
  869. const float v = x[i*qk + j];
  870. if (amax < fabsf(v)) {
  871. amax = fabsf(v);
  872. max = v;
  873. }
  874. }
  875. const float d = max / -16;
  876. const float id = d ? 1.0f/d : 0.0f;
  877. y[i].d = GGML_FP32_TO_FP16(d);
  878. uint32_t qh = 0;
  879. for (int j = 0; j < qk/2; ++j) {
  880. const float x0 = x[i*qk + 0 + j]*id;
  881. const float x1 = x[i*qk + qk/2 + j]*id;
  882. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  883. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  884. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  885. // get the 5-th bit and store it in qh at the right position
  886. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  887. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  888. }
  889. memcpy(&y[i].qh, &qh, sizeof(qh));
  890. }
  891. }
  892. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  893. quantize_row_q5_0_reference(x, y, k);
  894. }
  895. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  896. const int qk = QK5_1;
  897. assert(k % qk == 0);
  898. const int nb = k / qk;
  899. for (int i = 0; i < nb; i++) {
  900. float min = FLT_MAX;
  901. float max = -FLT_MAX;
  902. for (int j = 0; j < qk; j++) {
  903. const float v = x[i*qk + j];
  904. if (v < min) min = v;
  905. if (v > max) max = v;
  906. }
  907. const float d = (max - min) / ((1 << 5) - 1);
  908. const float id = d ? 1.0f/d : 0.0f;
  909. y[i].d = GGML_FP32_TO_FP16(d);
  910. y[i].m = GGML_FP32_TO_FP16(min);
  911. uint32_t qh = 0;
  912. for (int j = 0; j < qk/2; ++j) {
  913. const float x0 = (x[i*qk + 0 + j] - min)*id;
  914. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  915. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  916. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  917. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  918. // get the 5-th bit and store it in qh at the right position
  919. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  920. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  921. }
  922. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  923. }
  924. }
  925. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  926. quantize_row_q5_1_reference(x, y, k);
  927. }
  928. // reference implementation for deterministic creation of model files
  929. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  930. assert(k % QK8_0 == 0);
  931. const int nb = k / QK8_0;
  932. for (int i = 0; i < nb; i++) {
  933. float amax = 0.0f; // absolute max
  934. for (int j = 0; j < QK8_0; j++) {
  935. const float v = x[i*QK8_0 + j];
  936. amax = MAX(amax, fabsf(v));
  937. }
  938. const float d = amax / ((1 << 7) - 1);
  939. const float id = d ? 1.0f/d : 0.0f;
  940. y[i].d = GGML_FP32_TO_FP16(d);
  941. for (int j = 0; j < QK8_0; ++j) {
  942. const float x0 = x[i*QK8_0 + j]*id;
  943. y[i].qs[j] = roundf(x0);
  944. }
  945. }
  946. }
  947. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  948. assert(QK8_0 == 32);
  949. assert(k % QK8_0 == 0);
  950. const int nb = k / QK8_0;
  951. block_q8_0 * restrict y = vy;
  952. #if defined(__ARM_NEON)
  953. for (int i = 0; i < nb; i++) {
  954. float32x4_t srcv [8];
  955. float32x4_t asrcv[8];
  956. float32x4_t amaxv[8];
  957. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  958. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  959. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  960. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  961. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  962. const float amax = vmaxvq_f32(amaxv[0]);
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = GGML_FP32_TO_FP16(d);
  966. for (int j = 0; j < 8; j++) {
  967. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  968. const int32x4_t vi = vcvtnq_s32_f32(v);
  969. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  970. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  971. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  972. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  973. }
  974. }
  975. #elif defined(__wasm_simd128__)
  976. for (int i = 0; i < nb; i++) {
  977. v128_t srcv [8];
  978. v128_t asrcv[8];
  979. v128_t amaxv[8];
  980. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  981. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  982. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  983. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  984. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  985. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  986. wasm_f32x4_extract_lane(amaxv[0], 1)),
  987. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  988. wasm_f32x4_extract_lane(amaxv[0], 3)));
  989. const float d = amax / ((1 << 7) - 1);
  990. const float id = d ? 1.0f/d : 0.0f;
  991. y[i].d = GGML_FP32_TO_FP16(d);
  992. for (int j = 0; j < 8; j++) {
  993. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  994. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  995. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  996. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  997. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  998. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  999. }
  1000. }
  1001. #elif defined(__AVX2__) || defined(__AVX__)
  1002. for (int i = 0; i < nb; i++) {
  1003. // Load elements into 4 AVX vectors
  1004. __m256 v0 = _mm256_loadu_ps( x );
  1005. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1006. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1007. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1008. x += 32;
  1009. // Compute max(abs(e)) for the block
  1010. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1011. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1012. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1013. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1014. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1015. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1016. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1017. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1018. const float maxScalar = _mm_cvtss_f32( max4 );
  1019. // Quantize these floats
  1020. const float d = maxScalar / 127.f;
  1021. y[i].d = GGML_FP32_TO_FP16(d);
  1022. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1023. const __m256 mul = _mm256_set1_ps( id );
  1024. // Apply the multiplier
  1025. v0 = _mm256_mul_ps( v0, mul );
  1026. v1 = _mm256_mul_ps( v1, mul );
  1027. v2 = _mm256_mul_ps( v2, mul );
  1028. v3 = _mm256_mul_ps( v3, mul );
  1029. // Round to nearest integer
  1030. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1031. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1032. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1033. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1034. // Convert floats to integers
  1035. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1036. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1037. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1038. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1039. #if defined(__AVX2__)
  1040. // Convert int32 to int16
  1041. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1042. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1043. // Convert int16 to int8
  1044. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1045. // We got our precious signed bytes, but the order is now wrong
  1046. // These AVX2 pack instructions process 16-byte pieces independently
  1047. // The following instruction is fixing the order
  1048. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1049. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1050. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1051. #else
  1052. // Since we don't have in AVX some necessary functions,
  1053. // we split the registers in half and call AVX2 analogs from SSE
  1054. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1055. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1056. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1057. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1058. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1059. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1060. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1061. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1062. // Convert int32 to int16
  1063. ni0 = _mm_packs_epi32( ni0, ni1 );
  1064. ni2 = _mm_packs_epi32( ni2, ni3 );
  1065. ni4 = _mm_packs_epi32( ni4, ni5 );
  1066. ni6 = _mm_packs_epi32( ni6, ni7 );
  1067. // Convert int16 to int8
  1068. ni0 = _mm_packs_epi16( ni0, ni2 );
  1069. ni4 = _mm_packs_epi16( ni4, ni6 );
  1070. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1071. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1072. #endif
  1073. }
  1074. #else
  1075. // scalar
  1076. quantize_row_q8_0_reference(x, y, k);
  1077. #endif
  1078. }
  1079. // reference implementation for deterministic creation of model files
  1080. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1081. assert(QK8_1 == 32);
  1082. assert(k % QK8_1 == 0);
  1083. const int nb = k / QK8_1;
  1084. for (int i = 0; i < nb; i++) {
  1085. float amax = 0.0f; // absolute max
  1086. for (int j = 0; j < QK8_1; j++) {
  1087. const float v = x[i*QK8_1 + j];
  1088. amax = MAX(amax, fabsf(v));
  1089. }
  1090. const float d = amax / ((1 << 7) - 1);
  1091. const float id = d ? 1.0f/d : 0.0f;
  1092. y[i].d = d;
  1093. int sum = 0;
  1094. for (int j = 0; j < QK8_1/2; ++j) {
  1095. const float v0 = x[i*QK8_1 + j]*id;
  1096. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1097. y[i].qs[ j] = roundf(v0);
  1098. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1099. sum += y[i].qs[ j];
  1100. sum += y[i].qs[QK8_1/2 + j];
  1101. }
  1102. y[i].s = sum*d;
  1103. }
  1104. }
  1105. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1106. assert(k % QK8_1 == 0);
  1107. const int nb = k / QK8_1;
  1108. block_q8_1 * restrict y = vy;
  1109. #if defined(__ARM_NEON)
  1110. for (int i = 0; i < nb; i++) {
  1111. float32x4_t srcv [8];
  1112. float32x4_t asrcv[8];
  1113. float32x4_t amaxv[8];
  1114. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1115. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1116. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1117. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1118. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1119. const float amax = vmaxvq_f32(amaxv[0]);
  1120. const float d = amax / ((1 << 7) - 1);
  1121. const float id = d ? 1.0f/d : 0.0f;
  1122. y[i].d = d;
  1123. int32x4_t accv = vdupq_n_s32(0);
  1124. for (int j = 0; j < 8; j++) {
  1125. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1126. const int32x4_t vi = vcvtnq_s32_f32(v);
  1127. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1128. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1129. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1130. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1131. accv = vaddq_s32(accv, vi);
  1132. }
  1133. y[i].s = d * vaddvq_s32(accv);
  1134. }
  1135. #elif defined(__wasm_simd128__)
  1136. for (int i = 0; i < nb; i++) {
  1137. v128_t srcv [8];
  1138. v128_t asrcv[8];
  1139. v128_t amaxv[8];
  1140. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1141. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1142. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1143. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1144. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1145. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1146. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1147. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1148. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1149. const float d = amax / ((1 << 7) - 1);
  1150. const float id = d ? 1.0f/d : 0.0f;
  1151. y[i].d = d;
  1152. v128_t accv = wasm_i32x4_splat(0);
  1153. for (int j = 0; j < 8; j++) {
  1154. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1155. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1156. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1157. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1158. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1159. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1160. accv = wasm_i32x4_add(accv, vi);
  1161. }
  1162. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1163. wasm_i32x4_extract_lane(accv, 1) +
  1164. wasm_i32x4_extract_lane(accv, 2) +
  1165. wasm_i32x4_extract_lane(accv, 3));
  1166. }
  1167. #elif defined(__AVX2__) || defined(__AVX__)
  1168. for (int i = 0; i < nb; i++) {
  1169. // Load elements into 4 AVX vectors
  1170. __m256 v0 = _mm256_loadu_ps( x );
  1171. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1172. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1173. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1174. x += 32;
  1175. // Compute max(abs(e)) for the block
  1176. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1177. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1178. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1179. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1180. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1181. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1182. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1183. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1184. const float maxScalar = _mm_cvtss_f32( max4 );
  1185. // Quantize these floats
  1186. const float d = maxScalar / 127.f;
  1187. y[i].d = d;
  1188. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1189. const __m256 mul = _mm256_set1_ps( id );
  1190. // Apply the multiplier
  1191. v0 = _mm256_mul_ps( v0, mul );
  1192. v1 = _mm256_mul_ps( v1, mul );
  1193. v2 = _mm256_mul_ps( v2, mul );
  1194. v3 = _mm256_mul_ps( v3, mul );
  1195. // Round to nearest integer
  1196. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1197. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1198. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1199. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1200. // Convert floats to integers
  1201. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1202. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1203. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1204. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1205. #if defined(__AVX2__)
  1206. // Compute the sum of the quants and set y[i].s
  1207. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1208. // Convert int32 to int16
  1209. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1210. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1211. // Convert int16 to int8
  1212. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1213. // We got our precious signed bytes, but the order is now wrong
  1214. // These AVX2 pack instructions process 16-byte pieces independently
  1215. // The following instruction is fixing the order
  1216. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1217. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1218. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1219. #else
  1220. // Since we don't have in AVX some necessary functions,
  1221. // we split the registers in half and call AVX2 analogs from SSE
  1222. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1223. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1224. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1225. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1226. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1227. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1228. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1229. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1230. // Compute the sum of the quants and set y[i].s
  1231. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1232. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1233. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1234. // Convert int32 to int16
  1235. ni0 = _mm_packs_epi32( ni0, ni1 );
  1236. ni2 = _mm_packs_epi32( ni2, ni3 );
  1237. ni4 = _mm_packs_epi32( ni4, ni5 );
  1238. ni6 = _mm_packs_epi32( ni6, ni7 );
  1239. // Convert int16 to int8
  1240. ni0 = _mm_packs_epi16( ni0, ni2 );
  1241. ni4 = _mm_packs_epi16( ni4, ni6 );
  1242. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1243. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1244. #endif
  1245. }
  1246. #else
  1247. // scalar
  1248. quantize_row_q8_1_reference(x, y, k);
  1249. #endif
  1250. }
  1251. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1252. static const int qk = QK4_0;
  1253. assert(k % qk == 0);
  1254. const int nb = k / qk;
  1255. for (int i = 0; i < nb; i++) {
  1256. const float d = GGML_FP16_TO_FP32(x[i].d);
  1257. for (int j = 0; j < qk/2; ++j) {
  1258. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1259. const int x1 = (x[i].qs[j] >> 4) - 8;
  1260. y[i*qk + j + 0 ] = x0*d;
  1261. y[i*qk + j + qk/2] = x1*d;
  1262. }
  1263. }
  1264. }
  1265. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1266. static const int qk = QK4_1;
  1267. assert(k % qk == 0);
  1268. const int nb = k / qk;
  1269. for (int i = 0; i < nb; i++) {
  1270. const float d = GGML_FP16_TO_FP32(x[i].d);
  1271. const float m = GGML_FP16_TO_FP32(x[i].m);
  1272. for (int j = 0; j < qk/2; ++j) {
  1273. const int x0 = (x[i].qs[j] & 0x0F);
  1274. const int x1 = (x[i].qs[j] >> 4);
  1275. y[i*qk + j + 0 ] = x0*d + m;
  1276. y[i*qk + j + qk/2] = x1*d + m;
  1277. }
  1278. }
  1279. }
  1280. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1281. static const int qk = QK5_0;
  1282. assert(k % qk == 0);
  1283. const int nb = k / qk;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. uint32_t qh;
  1287. memcpy(&qh, x[i].qh, sizeof(qh));
  1288. for (int j = 0; j < qk/2; ++j) {
  1289. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1290. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1291. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1292. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1293. y[i*qk + j + 0 ] = x0*d;
  1294. y[i*qk + j + qk/2] = x1*d;
  1295. }
  1296. }
  1297. }
  1298. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1299. static const int qk = QK5_1;
  1300. assert(k % qk == 0);
  1301. const int nb = k / qk;
  1302. for (int i = 0; i < nb; i++) {
  1303. const float d = GGML_FP16_TO_FP32(x[i].d);
  1304. const float m = GGML_FP16_TO_FP32(x[i].m);
  1305. uint32_t qh;
  1306. memcpy(&qh, x[i].qh, sizeof(qh));
  1307. for (int j = 0; j < qk/2; ++j) {
  1308. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1309. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1310. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1311. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1312. y[i*qk + j + 0 ] = x0*d + m;
  1313. y[i*qk + j + qk/2] = x1*d + m;
  1314. }
  1315. }
  1316. }
  1317. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1318. static const int qk = QK8_0;
  1319. assert(k % qk == 0);
  1320. const int nb = k / qk;
  1321. const block_q8_0 * restrict x = vx;
  1322. for (int i = 0; i < nb; i++) {
  1323. const float d = GGML_FP16_TO_FP32(x[i].d);
  1324. for (int j = 0; j < qk; ++j) {
  1325. y[i*qk + j] = x[i].qs[j]*d;
  1326. }
  1327. }
  1328. }
  1329. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1330. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1331. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1332. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1333. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1334. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1337. [GGML_TYPE_I8] = {
  1338. .type_name = "i8",
  1339. .blck_size = 1,
  1340. .type_size = sizeof(int8_t),
  1341. .is_quantized = false,
  1342. },
  1343. [GGML_TYPE_I16] = {
  1344. .type_name = "i16",
  1345. .blck_size = 1,
  1346. .type_size = sizeof(int16_t),
  1347. .is_quantized = false,
  1348. },
  1349. [GGML_TYPE_I32] = {
  1350. .type_name = "i32",
  1351. .blck_size = 1,
  1352. .type_size = sizeof(int32_t),
  1353. .is_quantized = false,
  1354. },
  1355. [GGML_TYPE_F32] = {
  1356. .type_name = "f32",
  1357. .blck_size = 1,
  1358. .type_size = sizeof(float),
  1359. .is_quantized = false,
  1360. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1361. .vec_dot_type = GGML_TYPE_F32,
  1362. },
  1363. [GGML_TYPE_F16] = {
  1364. .type_name = "f16",
  1365. .blck_size = 1,
  1366. .type_size = sizeof(ggml_fp16_t),
  1367. .is_quantized = false,
  1368. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1369. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1370. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1371. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1372. .vec_dot_type = GGML_TYPE_F16,
  1373. },
  1374. [GGML_TYPE_Q4_0] = {
  1375. .type_name = "q4_0",
  1376. .blck_size = QK4_0,
  1377. .type_size = sizeof(block_q4_0),
  1378. .is_quantized = true,
  1379. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1380. .from_float = quantize_row_q4_0,
  1381. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1382. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1383. .vec_dot_type = GGML_TYPE_Q8_0,
  1384. },
  1385. [GGML_TYPE_Q4_1] = {
  1386. .type_name = "q4_1",
  1387. .blck_size = QK4_1,
  1388. .type_size = sizeof(block_q4_1),
  1389. .is_quantized = true,
  1390. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1391. .from_float = quantize_row_q4_1,
  1392. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1393. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1394. .vec_dot_type = GGML_TYPE_Q8_1,
  1395. },
  1396. [GGML_TYPE_Q5_0] = {
  1397. .type_name = "q5_0",
  1398. .blck_size = QK5_0,
  1399. .type_size = sizeof(block_q5_0),
  1400. .is_quantized = true,
  1401. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1402. .from_float = quantize_row_q5_0,
  1403. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1404. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1405. .vec_dot_type = GGML_TYPE_Q8_0,
  1406. },
  1407. [GGML_TYPE_Q5_1] = {
  1408. .type_name = "q5_1",
  1409. .blck_size = QK5_1,
  1410. .type_size = sizeof(block_q5_1),
  1411. .is_quantized = true,
  1412. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1413. .from_float = quantize_row_q5_1,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1415. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1416. .vec_dot_type = GGML_TYPE_Q8_1,
  1417. },
  1418. [GGML_TYPE_Q8_0] = {
  1419. .type_name = "q8_0",
  1420. .blck_size = QK8_0,
  1421. .type_size = sizeof(block_q8_0),
  1422. .is_quantized = true,
  1423. .to_float = dequantize_row_q8_0,
  1424. .from_float = quantize_row_q8_0,
  1425. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1426. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1427. .vec_dot_type = GGML_TYPE_Q8_0,
  1428. },
  1429. [GGML_TYPE_Q8_1] = {
  1430. .type_name = "q8_1",
  1431. .blck_size = QK8_1,
  1432. .type_size = sizeof(block_q8_1),
  1433. .is_quantized = true,
  1434. .from_float = quantize_row_q8_1,
  1435. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1436. .vec_dot_type = GGML_TYPE_Q8_1,
  1437. },
  1438. #ifdef GGML_USE_K_QUANTS
  1439. [GGML_TYPE_Q2_K] = {
  1440. .type_name = "q2_K",
  1441. .blck_size = QK_K,
  1442. .type_size = sizeof(block_q2_K),
  1443. .is_quantized = true,
  1444. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1445. .from_float = quantize_row_q2_K,
  1446. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1447. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1448. .vec_dot_type = GGML_TYPE_Q8_K,
  1449. },
  1450. [GGML_TYPE_Q3_K] = {
  1451. .type_name = "q3_K",
  1452. .blck_size = QK_K,
  1453. .type_size = sizeof(block_q3_K),
  1454. .is_quantized = true,
  1455. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1456. .from_float = quantize_row_q3_K,
  1457. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1458. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1459. .vec_dot_type = GGML_TYPE_Q8_K,
  1460. },
  1461. [GGML_TYPE_Q4_K] = {
  1462. .type_name = "q4_K",
  1463. .blck_size = QK_K,
  1464. .type_size = sizeof(block_q4_K),
  1465. .is_quantized = true,
  1466. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1467. .from_float = quantize_row_q4_K,
  1468. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1469. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1470. .vec_dot_type = GGML_TYPE_Q8_K,
  1471. },
  1472. [GGML_TYPE_Q5_K] = {
  1473. .type_name = "q5_K",
  1474. .blck_size = QK_K,
  1475. .type_size = sizeof(block_q5_K),
  1476. .is_quantized = true,
  1477. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1478. .from_float = quantize_row_q5_K,
  1479. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1480. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1481. .vec_dot_type = GGML_TYPE_Q8_K,
  1482. },
  1483. [GGML_TYPE_Q6_K] = {
  1484. .type_name = "q6_K",
  1485. .blck_size = QK_K,
  1486. .type_size = sizeof(block_q6_K),
  1487. .is_quantized = true,
  1488. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1489. .from_float = quantize_row_q6_K,
  1490. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1491. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1492. .vec_dot_type = GGML_TYPE_Q8_K,
  1493. },
  1494. [GGML_TYPE_Q8_K] = {
  1495. .type_name = "q8_K",
  1496. .blck_size = QK_K,
  1497. .type_size = sizeof(block_q8_K),
  1498. .is_quantized = true,
  1499. .from_float = quantize_row_q8_K,
  1500. }
  1501. #endif
  1502. };
  1503. // For internal test use
  1504. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1505. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1506. return type_traits[type];
  1507. }
  1508. //
  1509. // simd mappings
  1510. //
  1511. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1512. // we then implement the fundamental computation operations below using only these macros
  1513. // adding support for new architectures requires to define the corresponding SIMD macros
  1514. //
  1515. // GGML_F32_STEP / GGML_F16_STEP
  1516. // number of elements to process in a single step
  1517. //
  1518. // GGML_F32_EPR / GGML_F16_EPR
  1519. // number of elements to fit in a single register
  1520. //
  1521. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1522. #define GGML_SIMD
  1523. // F32 NEON
  1524. #define GGML_F32_STEP 16
  1525. #define GGML_F32_EPR 4
  1526. #define GGML_F32x4 float32x4_t
  1527. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1528. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1529. #define GGML_F32x4_LOAD vld1q_f32
  1530. #define GGML_F32x4_STORE vst1q_f32
  1531. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1532. #define GGML_F32x4_ADD vaddq_f32
  1533. #define GGML_F32x4_MUL vmulq_f32
  1534. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1535. #define GGML_F32x4_REDUCE(res, x) \
  1536. { \
  1537. int offset = GGML_F32_ARR >> 1; \
  1538. for (int i = 0; i < offset; ++i) { \
  1539. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1540. } \
  1541. offset >>= 1; \
  1542. for (int i = 0; i < offset; ++i) { \
  1543. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1544. } \
  1545. offset >>= 1; \
  1546. for (int i = 0; i < offset; ++i) { \
  1547. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1548. } \
  1549. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1550. }
  1551. #define GGML_F32_VEC GGML_F32x4
  1552. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1553. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1554. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1555. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1556. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1557. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1558. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1559. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1560. // F16 NEON
  1561. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1562. #define GGML_F16_STEP 32
  1563. #define GGML_F16_EPR 8
  1564. #define GGML_F16x8 float16x8_t
  1565. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1566. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1567. #define GGML_F16x8_LOAD vld1q_f16
  1568. #define GGML_F16x8_STORE vst1q_f16
  1569. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1570. #define GGML_F16x8_ADD vaddq_f16
  1571. #define GGML_F16x8_MUL vmulq_f16
  1572. #define GGML_F16x8_REDUCE(res, x) \
  1573. { \
  1574. int offset = GGML_F16_ARR >> 1; \
  1575. for (int i = 0; i < offset; ++i) { \
  1576. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1577. } \
  1578. offset >>= 1; \
  1579. for (int i = 0; i < offset; ++i) { \
  1580. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1581. } \
  1582. offset >>= 1; \
  1583. for (int i = 0; i < offset; ++i) { \
  1584. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1585. } \
  1586. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1587. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1588. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1589. }
  1590. #define GGML_F16_VEC GGML_F16x8
  1591. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1592. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1593. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1594. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1595. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1596. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1597. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1598. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1599. #else
  1600. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1601. // and take advantage of the vcvt_ functions to convert to/from FP16
  1602. #define GGML_F16_STEP 16
  1603. #define GGML_F16_EPR 4
  1604. #define GGML_F32Cx4 float32x4_t
  1605. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1606. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1607. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1608. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1609. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1610. #define GGML_F32Cx4_ADD vaddq_f32
  1611. #define GGML_F32Cx4_MUL vmulq_f32
  1612. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1613. #define GGML_F16_VEC GGML_F32Cx4
  1614. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1615. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1616. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1617. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1618. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1619. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1620. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1621. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1622. #endif
  1623. #elif defined(__AVX__)
  1624. #define GGML_SIMD
  1625. // F32 AVX
  1626. #define GGML_F32_STEP 32
  1627. #define GGML_F32_EPR 8
  1628. #define GGML_F32x8 __m256
  1629. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1630. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1631. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1632. #define GGML_F32x8_STORE _mm256_storeu_ps
  1633. #if defined(__FMA__)
  1634. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1635. #else
  1636. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1637. #endif
  1638. #define GGML_F32x8_ADD _mm256_add_ps
  1639. #define GGML_F32x8_MUL _mm256_mul_ps
  1640. #define GGML_F32x8_REDUCE(res, x) \
  1641. { \
  1642. int offset = GGML_F32_ARR >> 1; \
  1643. for (int i = 0; i < offset; ++i) { \
  1644. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1645. } \
  1646. offset >>= 1; \
  1647. for (int i = 0; i < offset; ++i) { \
  1648. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1649. } \
  1650. offset >>= 1; \
  1651. for (int i = 0; i < offset; ++i) { \
  1652. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1653. } \
  1654. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1655. _mm256_extractf128_ps(x[0], 1)); \
  1656. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1657. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1658. }
  1659. // TODO: is this optimal ?
  1660. #define GGML_F32_VEC GGML_F32x8
  1661. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1662. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1663. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1664. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1665. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1666. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1667. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1668. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1669. // F16 AVX
  1670. #define GGML_F16_STEP 32
  1671. #define GGML_F16_EPR 8
  1672. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1673. #define GGML_F32Cx8 __m256
  1674. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1675. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1676. #if defined(__F16C__)
  1677. // the _mm256_cvt intrinsics require F16C
  1678. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1679. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1680. #else
  1681. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1682. float tmp[8];
  1683. for (int i = 0; i < 8; i++) {
  1684. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1685. }
  1686. return _mm256_loadu_ps(tmp);
  1687. }
  1688. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1689. float arr[8];
  1690. _mm256_storeu_ps(arr, y);
  1691. for (int i = 0; i < 8; i++)
  1692. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1693. }
  1694. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1695. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1696. #endif
  1697. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1698. #define GGML_F32Cx8_ADD _mm256_add_ps
  1699. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1700. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1701. #define GGML_F16_VEC GGML_F32Cx8
  1702. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1703. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1704. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1705. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1706. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1707. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1708. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1709. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1710. #elif defined(__POWER9_VECTOR__)
  1711. #define GGML_SIMD
  1712. // F32 POWER9
  1713. #define GGML_F32_STEP 32
  1714. #define GGML_F32_EPR 4
  1715. #define GGML_F32x4 vector float
  1716. #define GGML_F32x4_ZERO 0.0f
  1717. #define GGML_F32x4_SET1 vec_splats
  1718. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1719. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1720. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1721. #define GGML_F32x4_ADD vec_add
  1722. #define GGML_F32x4_MUL vec_mul
  1723. #define GGML_F32x4_REDUCE(res, x) \
  1724. { \
  1725. int offset = GGML_F32_ARR >> 1; \
  1726. for (int i = 0; i < offset; ++i) { \
  1727. x[i] = vec_add(x[i], x[offset+i]); \
  1728. } \
  1729. offset >>= 1; \
  1730. for (int i = 0; i < offset; ++i) { \
  1731. x[i] = vec_add(x[i], x[offset+i]); \
  1732. } \
  1733. offset >>= 1; \
  1734. for (int i = 0; i < offset; ++i) { \
  1735. x[i] = vec_add(x[i], x[offset+i]); \
  1736. } \
  1737. res = vec_extract(x[0], 0) + \
  1738. vec_extract(x[0], 1) + \
  1739. vec_extract(x[0], 2) + \
  1740. vec_extract(x[0], 3); \
  1741. }
  1742. #define GGML_F32_VEC GGML_F32x4
  1743. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1744. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1745. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1746. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1747. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1748. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1749. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1750. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1751. // F16 POWER9
  1752. #define GGML_F16_STEP GGML_F32_STEP
  1753. #define GGML_F16_EPR GGML_F32_EPR
  1754. #define GGML_F16_VEC GGML_F32x4
  1755. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1756. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1757. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1758. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1759. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1760. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1761. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1762. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1763. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1764. #define GGML_F16_VEC_STORE(p, r, i) \
  1765. if (i & 0x1) \
  1766. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1767. r[i - GGML_ENDIAN_BYTE(0)]), \
  1768. 0, p - GGML_F16_EPR)
  1769. #elif defined(__wasm_simd128__)
  1770. #define GGML_SIMD
  1771. // F32 WASM
  1772. #define GGML_F32_STEP 16
  1773. #define GGML_F32_EPR 4
  1774. #define GGML_F32x4 v128_t
  1775. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1776. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1777. #define GGML_F32x4_LOAD wasm_v128_load
  1778. #define GGML_F32x4_STORE wasm_v128_store
  1779. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1780. #define GGML_F32x4_ADD wasm_f32x4_add
  1781. #define GGML_F32x4_MUL wasm_f32x4_mul
  1782. #define GGML_F32x4_REDUCE(res, x) \
  1783. { \
  1784. int offset = GGML_F32_ARR >> 1; \
  1785. for (int i = 0; i < offset; ++i) { \
  1786. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1787. } \
  1788. offset >>= 1; \
  1789. for (int i = 0; i < offset; ++i) { \
  1790. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1791. } \
  1792. offset >>= 1; \
  1793. for (int i = 0; i < offset; ++i) { \
  1794. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1795. } \
  1796. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1797. wasm_f32x4_extract_lane(x[0], 1) + \
  1798. wasm_f32x4_extract_lane(x[0], 2) + \
  1799. wasm_f32x4_extract_lane(x[0], 3); \
  1800. }
  1801. #define GGML_F32_VEC GGML_F32x4
  1802. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1803. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1804. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1805. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1806. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1807. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1808. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1809. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1810. // F16 WASM
  1811. #define GGML_F16_STEP 16
  1812. #define GGML_F16_EPR 4
  1813. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1814. float tmp[4];
  1815. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1816. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1817. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1818. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1819. return wasm_v128_load(tmp);
  1820. }
  1821. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1822. float tmp[4];
  1823. wasm_v128_store(tmp, x);
  1824. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1825. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1826. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1827. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1828. }
  1829. #define GGML_F16x4 v128_t
  1830. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1831. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1832. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1833. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1834. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1835. #define GGML_F16x4_ADD wasm_f32x4_add
  1836. #define GGML_F16x4_MUL wasm_f32x4_mul
  1837. #define GGML_F16x4_REDUCE(res, x) \
  1838. { \
  1839. int offset = GGML_F16_ARR >> 1; \
  1840. for (int i = 0; i < offset; ++i) { \
  1841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1842. } \
  1843. offset >>= 1; \
  1844. for (int i = 0; i < offset; ++i) { \
  1845. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1846. } \
  1847. offset >>= 1; \
  1848. for (int i = 0; i < offset; ++i) { \
  1849. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1850. } \
  1851. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1852. wasm_f32x4_extract_lane(x[0], 1) + \
  1853. wasm_f32x4_extract_lane(x[0], 2) + \
  1854. wasm_f32x4_extract_lane(x[0], 3); \
  1855. }
  1856. #define GGML_F16_VEC GGML_F16x4
  1857. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1858. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1859. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1860. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1861. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1862. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1863. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1864. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1865. #elif defined(__SSE3__)
  1866. #define GGML_SIMD
  1867. // F32 SSE
  1868. #define GGML_F32_STEP 32
  1869. #define GGML_F32_EPR 4
  1870. #define GGML_F32x4 __m128
  1871. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1872. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1873. #define GGML_F32x4_LOAD _mm_loadu_ps
  1874. #define GGML_F32x4_STORE _mm_storeu_ps
  1875. #if defined(__FMA__)
  1876. // TODO: Does this work?
  1877. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1878. #else
  1879. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1880. #endif
  1881. #define GGML_F32x4_ADD _mm_add_ps
  1882. #define GGML_F32x4_MUL _mm_mul_ps
  1883. #define GGML_F32x4_REDUCE(res, x) \
  1884. { \
  1885. int offset = GGML_F32_ARR >> 1; \
  1886. for (int i = 0; i < offset; ++i) { \
  1887. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1888. } \
  1889. offset >>= 1; \
  1890. for (int i = 0; i < offset; ++i) { \
  1891. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1892. } \
  1893. offset >>= 1; \
  1894. for (int i = 0; i < offset; ++i) { \
  1895. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1896. } \
  1897. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1898. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1899. }
  1900. // TODO: is this optimal ?
  1901. #define GGML_F32_VEC GGML_F32x4
  1902. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1903. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1904. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1905. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1906. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1907. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1908. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1909. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1910. // F16 SSE
  1911. #define GGML_F16_STEP 32
  1912. #define GGML_F16_EPR 4
  1913. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1914. float tmp[4];
  1915. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1916. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1917. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1918. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1919. return _mm_loadu_ps(tmp);
  1920. }
  1921. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1922. float arr[4];
  1923. _mm_storeu_ps(arr, y);
  1924. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1925. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1926. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1927. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1928. }
  1929. #define GGML_F32Cx4 __m128
  1930. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1931. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1932. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1933. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1934. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1935. #define GGML_F32Cx4_ADD _mm_add_ps
  1936. #define GGML_F32Cx4_MUL _mm_mul_ps
  1937. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1938. #define GGML_F16_VEC GGML_F32Cx4
  1939. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1940. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1941. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1942. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1943. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1944. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1945. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1946. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1947. #endif
  1948. // GGML_F32_ARR / GGML_F16_ARR
  1949. // number of registers to use per step
  1950. #ifdef GGML_SIMD
  1951. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1952. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1953. #endif
  1954. //
  1955. // fundamental operations
  1956. //
  1957. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1958. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1959. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1960. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1961. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1962. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1963. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1964. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1965. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1966. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1967. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1968. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1969. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1970. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1971. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1972. #ifdef GGML_SIMD
  1973. float sumf = 0.0f;
  1974. const int np = (n & ~(GGML_F32_STEP - 1));
  1975. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1976. GGML_F32_VEC ax[GGML_F32_ARR];
  1977. GGML_F32_VEC ay[GGML_F32_ARR];
  1978. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1979. for (int j = 0; j < GGML_F32_ARR; j++) {
  1980. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1981. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1982. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1983. }
  1984. }
  1985. // reduce sum0..sum3 to sum0
  1986. GGML_F32_VEC_REDUCE(sumf, sum);
  1987. // leftovers
  1988. for (int i = np; i < n; ++i) {
  1989. sumf += x[i]*y[i];
  1990. }
  1991. #else
  1992. // scalar
  1993. ggml_float sumf = 0.0;
  1994. for (int i = 0; i < n; ++i) {
  1995. sumf += (ggml_float)(x[i]*y[i]);
  1996. }
  1997. #endif
  1998. *s = sumf;
  1999. }
  2000. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2001. ggml_float sumf = 0.0;
  2002. #if defined(GGML_SIMD)
  2003. const int np = (n & ~(GGML_F16_STEP - 1));
  2004. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2005. GGML_F16_VEC ax[GGML_F16_ARR];
  2006. GGML_F16_VEC ay[GGML_F16_ARR];
  2007. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2008. for (int j = 0; j < GGML_F16_ARR; j++) {
  2009. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2010. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2011. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2012. }
  2013. }
  2014. // reduce sum0..sum3 to sum0
  2015. GGML_F16_VEC_REDUCE(sumf, sum);
  2016. // leftovers
  2017. for (int i = np; i < n; ++i) {
  2018. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2019. }
  2020. #else
  2021. for (int i = 0; i < n; ++i) {
  2022. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2023. }
  2024. #endif
  2025. *s = sumf;
  2026. }
  2027. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2028. const int qk = QK8_0;
  2029. const int nb = n / qk;
  2030. assert(n % qk == 0);
  2031. const block_q4_0 * restrict x = vx;
  2032. const block_q8_0 * restrict y = vy;
  2033. #if defined(__ARM_NEON)
  2034. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2035. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2036. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2037. for (int i = 0; i < nb; i += 2) {
  2038. const block_q4_0 * restrict x0 = &x[i + 0];
  2039. const block_q4_0 * restrict x1 = &x[i + 1];
  2040. const block_q8_0 * restrict y0 = &y[i + 0];
  2041. const block_q8_0 * restrict y1 = &y[i + 1];
  2042. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2043. const int8x16_t s8b = vdupq_n_s8(0x8);
  2044. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2045. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2046. // 4-bit -> 8-bit
  2047. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2048. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2049. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2050. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2051. // sub 8
  2052. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2053. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2054. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2055. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2056. // load y
  2057. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2058. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2059. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2060. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2061. #if defined(__ARM_FEATURE_DOTPROD)
  2062. // dot product into int32x4_t
  2063. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2064. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2065. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2066. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2067. #else
  2068. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2069. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2070. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2071. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2072. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2073. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2074. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2075. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2076. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2077. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2078. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2079. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2080. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2081. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2082. #endif
  2083. }
  2084. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2085. #elif defined(__AVX2__)
  2086. // Initialize accumulator with zeros
  2087. __m256 acc = _mm256_setzero_ps();
  2088. // Main loop
  2089. for (int i = 0; i < nb; ++i) {
  2090. /* Compute combined scale for the block */
  2091. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2092. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2093. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2094. const __m256i off = _mm256_set1_epi8( 8 );
  2095. bx = _mm256_sub_epi8( bx, off );
  2096. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2097. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2098. /* Multiply q with scale and accumulate */
  2099. acc = _mm256_fmadd_ps( d, q, acc );
  2100. }
  2101. *s = hsum_float_8(acc);
  2102. #elif defined(__AVX__)
  2103. // Initialize accumulator with zeros
  2104. __m256 acc = _mm256_setzero_ps();
  2105. // Main loop
  2106. for (int i = 0; i < nb; ++i) {
  2107. // Compute combined scale for the block
  2108. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2109. const __m128i lowMask = _mm_set1_epi8(0xF);
  2110. const __m128i off = _mm_set1_epi8(8);
  2111. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2112. __m128i bx = _mm_and_si128(lowMask, tmp);
  2113. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2114. bx = _mm_sub_epi8(bx, off);
  2115. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2116. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2117. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2118. bx = _mm_sub_epi8(bx, off);
  2119. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2120. // Convert int32_t to float
  2121. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2122. // Apply the scale, and accumulate
  2123. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2124. }
  2125. *s = hsum_float_8(acc);
  2126. #elif defined(__SSSE3__)
  2127. // set constants
  2128. const __m128i lowMask = _mm_set1_epi8(0xF);
  2129. const __m128i off = _mm_set1_epi8(8);
  2130. // Initialize accumulator with zeros
  2131. __m128 acc_0 = _mm_setzero_ps();
  2132. __m128 acc_1 = _mm_setzero_ps();
  2133. __m128 acc_2 = _mm_setzero_ps();
  2134. __m128 acc_3 = _mm_setzero_ps();
  2135. // First round without accumulation
  2136. {
  2137. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2138. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2139. // Compute combined scale for the block 0 and 1
  2140. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2141. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2142. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2143. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2144. bx_0 = _mm_sub_epi8(bx_0, off);
  2145. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2146. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2147. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2148. bx_1 = _mm_sub_epi8(bx_1, off);
  2149. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2150. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2151. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2152. // Compute combined scale for the block 2 and 3
  2153. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2154. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2155. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2156. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2157. bx_2 = _mm_sub_epi8(bx_2, off);
  2158. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2159. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2160. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2161. bx_3 = _mm_sub_epi8(bx_3, off);
  2162. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2163. // Convert int32_t to float
  2164. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2165. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2166. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2167. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2168. // Apply the scale
  2169. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2170. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2171. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2172. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2173. }
  2174. // Main loop
  2175. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2176. for (int i = 2; i < nb; i+=2) {
  2177. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2178. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2179. // Compute combined scale for the block 0 and 1
  2180. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2181. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2182. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2183. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2184. bx_0 = _mm_sub_epi8(bx_0, off);
  2185. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2186. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2187. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2188. bx_1 = _mm_sub_epi8(bx_1, off);
  2189. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2190. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2191. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2192. // Compute combined scale for the block 2 and 3
  2193. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2194. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2195. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2196. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2197. bx_2 = _mm_sub_epi8(bx_2, off);
  2198. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2199. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2200. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2201. bx_3 = _mm_sub_epi8(bx_3, off);
  2202. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2203. // Convert int32_t to float
  2204. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2205. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2206. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2207. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2208. // Apply the scale
  2209. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2210. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2211. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2212. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2213. // Acummulate
  2214. acc_0 = _mm_add_ps(p0_d, acc_0);
  2215. acc_1 = _mm_add_ps(p1_d, acc_1);
  2216. acc_2 = _mm_add_ps(p2_d, acc_2);
  2217. acc_3 = _mm_add_ps(p3_d, acc_3);
  2218. }
  2219. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2220. #else
  2221. // scalar
  2222. float sumf = 0.0;
  2223. for (int i = 0; i < nb; i++) {
  2224. int sumi = 0;
  2225. for (int j = 0; j < qk/2; ++j) {
  2226. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2227. const int v1 = (x[i].qs[j] >> 4) - 8;
  2228. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2229. }
  2230. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2231. }
  2232. *s = sumf;
  2233. #endif
  2234. }
  2235. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2236. const int qk = QK8_1;
  2237. const int nb = n / qk;
  2238. assert(n % qk == 0);
  2239. const block_q4_1 * restrict x = vx;
  2240. const block_q8_1 * restrict y = vy;
  2241. // TODO: add WASM SIMD
  2242. #if defined(__ARM_NEON)
  2243. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2244. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2245. float summs = 0;
  2246. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2247. for (int i = 0; i < nb; i += 2) {
  2248. const block_q4_1 * restrict x0 = &x[i + 0];
  2249. const block_q4_1 * restrict x1 = &x[i + 1];
  2250. const block_q8_1 * restrict y0 = &y[i + 0];
  2251. const block_q8_1 * restrict y1 = &y[i + 1];
  2252. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2253. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2254. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2255. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2256. // 4-bit -> 8-bit
  2257. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2258. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2259. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2260. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2261. // load y
  2262. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2263. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2264. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2265. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2266. #if defined(__ARM_FEATURE_DOTPROD)
  2267. // dot product into int32x4_t
  2268. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2269. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2270. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2271. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2272. #else
  2273. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2274. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2275. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2276. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2277. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2278. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2279. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2280. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2281. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2282. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2283. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2284. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2285. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2286. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2287. #endif
  2288. }
  2289. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2290. #elif defined(__AVX2__) || defined(__AVX__)
  2291. // Initialize accumulator with zeros
  2292. __m256 acc = _mm256_setzero_ps();
  2293. float summs = 0;
  2294. // Main loop
  2295. for (int i = 0; i < nb; ++i) {
  2296. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2297. const float d1 = y[i].d;
  2298. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2299. const __m256 d0v = _mm256_set1_ps( d0 );
  2300. const __m256 d1v = _mm256_set1_ps( d1 );
  2301. // Compute combined scales
  2302. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2303. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2304. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2305. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2306. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2307. // Accumulate d0*d1*x*y
  2308. #if defined(__AVX2__)
  2309. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2310. #else
  2311. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2312. #endif
  2313. }
  2314. *s = hsum_float_8(acc) + summs;
  2315. #else
  2316. // scalar
  2317. float sumf = 0.0;
  2318. for (int i = 0; i < nb; i++) {
  2319. int sumi = 0;
  2320. for (int j = 0; j < qk/2; ++j) {
  2321. const int v0 = (x[i].qs[j] & 0x0F);
  2322. const int v1 = (x[i].qs[j] >> 4);
  2323. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2324. }
  2325. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2326. }
  2327. *s = sumf;
  2328. #endif
  2329. }
  2330. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2331. const int qk = QK8_0;
  2332. const int nb = n / qk;
  2333. assert(n % qk == 0);
  2334. assert(qk == QK5_0);
  2335. const block_q5_0 * restrict x = vx;
  2336. const block_q8_0 * restrict y = vy;
  2337. #if defined(__ARM_NEON)
  2338. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2339. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2340. uint32_t qh0;
  2341. uint32_t qh1;
  2342. uint64_t tmp0[4];
  2343. uint64_t tmp1[4];
  2344. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2345. for (int i = 0; i < nb; i += 2) {
  2346. const block_q5_0 * restrict x0 = &x[i];
  2347. const block_q5_0 * restrict x1 = &x[i + 1];
  2348. const block_q8_0 * restrict y0 = &y[i];
  2349. const block_q8_0 * restrict y1 = &y[i + 1];
  2350. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2351. // extract the 5th bit via lookup table ((!b) << 4)
  2352. memcpy(&qh0, x0->qh, sizeof(qh0));
  2353. memcpy(&qh1, x1->qh, sizeof(qh1));
  2354. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2355. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2356. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2357. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2358. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2359. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2360. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2361. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2362. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2363. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2364. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2365. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2366. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2367. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2368. // 4-bit -> 8-bit
  2369. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2370. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2371. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2372. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2373. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2374. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2375. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2376. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2377. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2378. // load y
  2379. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2380. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2381. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2382. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2383. #if defined(__ARM_FEATURE_DOTPROD)
  2384. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2385. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2386. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2387. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2388. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2389. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2390. #else
  2391. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2392. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2393. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2394. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2395. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2396. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2397. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2398. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2399. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2400. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2401. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2402. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2403. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2404. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2405. #endif
  2406. }
  2407. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2408. #elif defined(__wasm_simd128__)
  2409. v128_t sumv = wasm_f32x4_splat(0.0f);
  2410. uint32_t qh;
  2411. uint64_t tmp[4];
  2412. // TODO: check if unrolling this is better
  2413. for (int i = 0; i < nb; ++i) {
  2414. const block_q5_0 * restrict x0 = &x[i];
  2415. const block_q8_0 * restrict y0 = &y[i];
  2416. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2417. // extract the 5th bit
  2418. memcpy(&qh, x0->qh, sizeof(qh));
  2419. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2420. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2421. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2422. tmp[3] = table_b2b_1[(qh >> 24) ];
  2423. const v128_t qhl = wasm_v128_load(tmp + 0);
  2424. const v128_t qhh = wasm_v128_load(tmp + 2);
  2425. const v128_t v0 = wasm_v128_load(x0->qs);
  2426. // 4-bit -> 8-bit
  2427. const v128_t v0l = wasm_v128_and (v0, m4b);
  2428. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2429. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2430. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2431. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2432. // load y
  2433. const v128_t v1l = wasm_v128_load(y0->qs);
  2434. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2435. // int8x16 -> int16x8
  2436. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2437. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2438. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2439. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2440. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2441. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2442. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2443. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2444. // dot product
  2445. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2446. wasm_i32x4_add(
  2447. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2448. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2449. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2450. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2451. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2452. }
  2453. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2454. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2455. #elif defined(__AVX2__)
  2456. // Initialize accumulator with zeros
  2457. __m256 acc = _mm256_setzero_ps();
  2458. // Main loop
  2459. for (int i = 0; i < nb; i++) {
  2460. /* Compute combined scale for the block */
  2461. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2462. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2463. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2464. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2465. bx = _mm256_or_si256(bx, bxhi);
  2466. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2467. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2468. /* Multiply q with scale and accumulate */
  2469. acc = _mm256_fmadd_ps(d, q, acc);
  2470. }
  2471. *s = hsum_float_8(acc);
  2472. #elif defined(__AVX__)
  2473. // Initialize accumulator with zeros
  2474. __m256 acc = _mm256_setzero_ps();
  2475. __m128i mask = _mm_set1_epi8((char)0xF0);
  2476. // Main loop
  2477. for (int i = 0; i < nb; i++) {
  2478. /* Compute combined scale for the block */
  2479. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2480. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2481. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2482. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2483. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2484. bxhil = _mm_andnot_si128(bxhil, mask);
  2485. bxhih = _mm_andnot_si128(bxhih, mask);
  2486. __m128i bxl = _mm256_castsi256_si128(bx);
  2487. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2488. bxl = _mm_or_si128(bxl, bxhil);
  2489. bxh = _mm_or_si128(bxh, bxhih);
  2490. bx = MM256_SET_M128I(bxh, bxl);
  2491. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2492. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2493. /* Multiply q with scale and accumulate */
  2494. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2495. }
  2496. *s = hsum_float_8(acc);
  2497. #else
  2498. // scalar
  2499. float sumf = 0.0;
  2500. for (int i = 0; i < nb; i++) {
  2501. uint32_t qh;
  2502. memcpy(&qh, x[i].qh, sizeof(qh));
  2503. int sumi = 0;
  2504. for (int j = 0; j < qk/2; ++j) {
  2505. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2506. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2507. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2508. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2509. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2510. }
  2511. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2512. }
  2513. *s = sumf;
  2514. #endif
  2515. }
  2516. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2517. const int qk = QK8_1;
  2518. const int nb = n / qk;
  2519. assert(n % qk == 0);
  2520. assert(qk == QK5_1);
  2521. const block_q5_1 * restrict x = vx;
  2522. const block_q8_1 * restrict y = vy;
  2523. #if defined(__ARM_NEON)
  2524. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2525. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2526. float summs0 = 0.0f;
  2527. float summs1 = 0.0f;
  2528. uint32_t qh0;
  2529. uint32_t qh1;
  2530. uint64_t tmp0[4];
  2531. uint64_t tmp1[4];
  2532. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2533. for (int i = 0; i < nb; i += 2) {
  2534. const block_q5_1 * restrict x0 = &x[i];
  2535. const block_q5_1 * restrict x1 = &x[i + 1];
  2536. const block_q8_1 * restrict y0 = &y[i];
  2537. const block_q8_1 * restrict y1 = &y[i + 1];
  2538. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2539. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2540. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2541. // extract the 5th bit via lookup table ((b) << 4)
  2542. memcpy(&qh0, x0->qh, sizeof(qh0));
  2543. memcpy(&qh1, x1->qh, sizeof(qh1));
  2544. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2545. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2546. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2547. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2548. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2549. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2550. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2551. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2552. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2553. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2554. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2555. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2556. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2557. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2558. // 4-bit -> 8-bit
  2559. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2560. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2561. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2562. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2563. // add high bit
  2564. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2565. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2566. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2567. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2568. // load y
  2569. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2570. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2571. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2572. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2573. #if defined(__ARM_FEATURE_DOTPROD)
  2574. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2575. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2576. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2577. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2578. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2579. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2580. #else
  2581. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2582. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2583. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2584. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2585. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2586. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2587. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2588. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2589. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2590. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2591. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2592. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2593. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2594. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2595. #endif
  2596. }
  2597. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2598. #elif defined(__wasm_simd128__)
  2599. v128_t sumv = wasm_f32x4_splat(0.0f);
  2600. float summs = 0.0f;
  2601. uint32_t qh;
  2602. uint64_t tmp[4];
  2603. // TODO: check if unrolling this is better
  2604. for (int i = 0; i < nb; ++i) {
  2605. const block_q5_1 * restrict x0 = &x[i];
  2606. const block_q8_1 * restrict y0 = &y[i];
  2607. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2608. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2609. // extract the 5th bit
  2610. memcpy(&qh, x0->qh, sizeof(qh));
  2611. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2612. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2613. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2614. tmp[3] = table_b2b_0[(qh >> 24) ];
  2615. const v128_t qhl = wasm_v128_load(tmp + 0);
  2616. const v128_t qhh = wasm_v128_load(tmp + 2);
  2617. const v128_t v0 = wasm_v128_load(x0->qs);
  2618. // 4-bit -> 8-bit
  2619. const v128_t v0l = wasm_v128_and (v0, m4b);
  2620. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2621. // add high bit
  2622. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2623. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2624. // load y
  2625. const v128_t v1l = wasm_v128_load(y0->qs);
  2626. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2627. // int8x16 -> int16x8
  2628. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2629. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2630. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2631. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2632. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2633. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2634. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2635. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2636. // dot product
  2637. sumv = wasm_f32x4_add(sumv,
  2638. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2639. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2640. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2641. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2642. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2643. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2644. }
  2645. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2646. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2647. #elif defined(__AVX2__)
  2648. // Initialize accumulator with zeros
  2649. __m256 acc = _mm256_setzero_ps();
  2650. float summs = 0.0f;
  2651. // Main loop
  2652. for (int i = 0; i < nb; i++) {
  2653. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2654. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2655. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2656. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2657. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2658. bx = _mm256_or_si256(bx, bxhi);
  2659. const __m256 dy = _mm256_set1_ps(y[i].d);
  2660. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2661. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2662. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2663. }
  2664. *s = hsum_float_8(acc) + summs;
  2665. #elif defined(__AVX__)
  2666. // Initialize accumulator with zeros
  2667. __m256 acc = _mm256_setzero_ps();
  2668. __m128i mask = _mm_set1_epi8(0x10);
  2669. float summs = 0.0f;
  2670. // Main loop
  2671. for (int i = 0; i < nb; i++) {
  2672. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2673. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2674. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2675. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2676. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2677. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2678. bxhil = _mm_and_si128(bxhil, mask);
  2679. bxhih = _mm_and_si128(bxhih, mask);
  2680. __m128i bxl = _mm256_castsi256_si128(bx);
  2681. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2682. bxl = _mm_or_si128(bxl, bxhil);
  2683. bxh = _mm_or_si128(bxh, bxhih);
  2684. bx = MM256_SET_M128I(bxh, bxl);
  2685. const __m256 dy = _mm256_set1_ps(y[i].d);
  2686. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2687. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2688. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2689. }
  2690. *s = hsum_float_8(acc) + summs;
  2691. #else
  2692. // scalar
  2693. float sumf = 0.0;
  2694. for (int i = 0; i < nb; i++) {
  2695. uint32_t qh;
  2696. memcpy(&qh, x[i].qh, sizeof(qh));
  2697. int sumi = 0;
  2698. for (int j = 0; j < qk/2; ++j) {
  2699. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2700. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2701. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2702. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2703. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2704. }
  2705. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2706. }
  2707. *s = sumf;
  2708. #endif
  2709. }
  2710. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2711. const int qk = QK8_0;
  2712. const int nb = n / qk;
  2713. assert(n % qk == 0);
  2714. const block_q8_0 * restrict x = vx;
  2715. const block_q8_0 * restrict y = vy;
  2716. #if defined(__ARM_NEON)
  2717. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2718. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2719. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2720. for (int i = 0; i < nb; i += 2) {
  2721. const block_q8_0 * restrict x0 = &x[i + 0];
  2722. const block_q8_0 * restrict x1 = &x[i + 1];
  2723. const block_q8_0 * restrict y0 = &y[i + 0];
  2724. const block_q8_0 * restrict y1 = &y[i + 1];
  2725. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2726. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2727. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2728. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2729. // load y
  2730. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2731. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2732. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2733. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2734. #if defined(__ARM_FEATURE_DOTPROD)
  2735. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2736. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2737. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2738. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2739. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2740. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2741. #else
  2742. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2743. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2744. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2745. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2746. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2747. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2748. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2749. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2750. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2751. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2752. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2753. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2754. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2755. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2756. #endif
  2757. }
  2758. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2759. #elif defined(__AVX2__) || defined(__AVX__)
  2760. // Initialize accumulator with zeros
  2761. __m256 acc = _mm256_setzero_ps();
  2762. // Main loop
  2763. for (int i = 0; i < nb; ++i) {
  2764. // Compute combined scale for the block
  2765. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2766. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2767. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2768. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2769. // Multiply q with scale and accumulate
  2770. #if defined(__AVX2__)
  2771. acc = _mm256_fmadd_ps( d, q, acc );
  2772. #else
  2773. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2774. #endif
  2775. }
  2776. *s = hsum_float_8(acc);
  2777. #else
  2778. // scalar
  2779. float sumf = 0.0;
  2780. for (int i = 0; i < nb; i++) {
  2781. int sumi = 0;
  2782. for (int j = 0; j < qk; j++) {
  2783. sumi += x[i].qs[j]*y[i].qs[j];
  2784. }
  2785. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2786. }
  2787. *s = sumf;
  2788. #endif
  2789. }
  2790. // compute GGML_VEC_DOT_UNROLL dot products at once
  2791. // xs - x row stride in bytes
  2792. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2793. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2794. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2795. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2796. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2797. }
  2798. #if defined(GGML_SIMD)
  2799. const int np = (n & ~(GGML_F16_STEP - 1));
  2800. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2801. GGML_F16_VEC ax[GGML_F16_ARR];
  2802. GGML_F16_VEC ay[GGML_F16_ARR];
  2803. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2804. for (int j = 0; j < GGML_F16_ARR; j++) {
  2805. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2806. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2807. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2808. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2809. }
  2810. }
  2811. }
  2812. // reduce sum0..sum3 to sum0
  2813. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2814. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2815. }
  2816. // leftovers
  2817. for (int i = np; i < n; ++i) {
  2818. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2819. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2820. }
  2821. }
  2822. #else
  2823. for (int i = 0; i < n; ++i) {
  2824. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2825. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2826. }
  2827. }
  2828. #endif
  2829. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2830. s[i] = sumf[i];
  2831. }
  2832. }
  2833. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2834. #if defined(GGML_SIMD)
  2835. const int np = (n & ~(GGML_F32_STEP - 1));
  2836. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2837. GGML_F32_VEC ax[GGML_F32_ARR];
  2838. GGML_F32_VEC ay[GGML_F32_ARR];
  2839. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2840. for (int j = 0; j < GGML_F32_ARR; j++) {
  2841. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2842. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2843. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2844. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2845. }
  2846. }
  2847. // leftovers
  2848. for (int i = np; i < n; ++i) {
  2849. y[i] += x[i]*v;
  2850. }
  2851. #else
  2852. // scalar
  2853. for (int i = 0; i < n; ++i) {
  2854. y[i] += x[i]*v;
  2855. }
  2856. #endif
  2857. }
  2858. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2859. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2860. #if defined(GGML_USE_ACCELERATE)
  2861. vDSP_vsmul(y, 1, &v, y, 1, n);
  2862. #elif defined(GGML_SIMD)
  2863. const int np = (n & ~(GGML_F32_STEP - 1));
  2864. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2865. GGML_F32_VEC ay[GGML_F32_ARR];
  2866. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2867. for (int j = 0; j < GGML_F32_ARR; j++) {
  2868. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2869. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2870. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2871. }
  2872. }
  2873. // leftovers
  2874. for (int i = np; i < n; ++i) {
  2875. y[i] *= v;
  2876. }
  2877. #else
  2878. // scalar
  2879. for (int i = 0; i < n; ++i) {
  2880. y[i] *= v;
  2881. }
  2882. #endif
  2883. }
  2884. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2885. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2886. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2887. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2888. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2889. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2890. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2891. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2892. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2893. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2894. static const float GELU_COEF_A = 0.044715f;
  2895. static const float GELU_QUICK_COEF = -1.702f;
  2896. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2897. inline static float ggml_gelu_f32(float x) {
  2898. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2899. }
  2900. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2901. const uint16_t * i16 = (const uint16_t *) x;
  2902. for (int i = 0; i < n; ++i) {
  2903. y[i] = table_gelu_f16[i16[i]];
  2904. }
  2905. }
  2906. #ifdef GGML_GELU_FP16
  2907. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2908. uint16_t t;
  2909. for (int i = 0; i < n; ++i) {
  2910. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2911. memcpy(&t, &fp16, sizeof(uint16_t));
  2912. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2913. }
  2914. }
  2915. #else
  2916. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2917. for (int i = 0; i < n; ++i) {
  2918. y[i] = ggml_gelu_f32(x[i]);
  2919. }
  2920. }
  2921. #endif
  2922. inline static float ggml_gelu_quick_f32(float x) {
  2923. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2924. }
  2925. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2926. // const uint16_t * i16 = (const uint16_t *) x;
  2927. // for (int i = 0; i < n; ++i) {
  2928. // y[i] = table_gelu_quick_f16[i16[i]];
  2929. // }
  2930. //}
  2931. #ifdef GGML_GELU_QUICK_FP16
  2932. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2933. uint16_t t;
  2934. for (int i = 0; i < n; ++i) {
  2935. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2936. memcpy(&t, &fp16, sizeof(uint16_t));
  2937. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2938. }
  2939. }
  2940. #else
  2941. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2942. for (int i = 0; i < n; ++i) {
  2943. y[i] = ggml_gelu_quick_f32(x[i]);
  2944. }
  2945. }
  2946. #endif
  2947. // Sigmoid Linear Unit (SiLU) function
  2948. inline static float ggml_silu_f32(float x) {
  2949. return x/(1.0f + expf(-x));
  2950. }
  2951. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2952. // const uint16_t * i16 = (const uint16_t *) x;
  2953. // for (int i = 0; i < n; ++i) {
  2954. // y[i] = table_silu_f16[i16[i]];
  2955. // }
  2956. //}
  2957. #ifdef GGML_SILU_FP16
  2958. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2959. uint16_t t;
  2960. for (int i = 0; i < n; ++i) {
  2961. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2962. memcpy(&t, &fp16, sizeof(uint16_t));
  2963. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2964. }
  2965. }
  2966. #else
  2967. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2968. for (int i = 0; i < n; ++i) {
  2969. y[i] = ggml_silu_f32(x[i]);
  2970. }
  2971. }
  2972. #endif
  2973. inline static float ggml_silu_backward_f32(float x, float dy) {
  2974. const float s = 1.0f/(1.0f + expf(-x));
  2975. return dy*s*(1.0f + x*(1.0f - s));
  2976. }
  2977. #ifdef GGML_SILU_FP16
  2978. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2979. for (int i = 0; i < n; ++i) {
  2980. // we did not use x[i] to compute forward silu but its f16 equivalent
  2981. // take derivative at f16 of x[i]:
  2982. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2983. float usedx = GGML_FP16_TO_FP32(fp16);
  2984. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2985. }
  2986. }
  2987. #else
  2988. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2989. for (int i = 0; i < n; ++i) {
  2990. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2991. }
  2992. }
  2993. #endif
  2994. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2995. #ifndef GGML_USE_ACCELERATE
  2996. ggml_float sum = 0.0;
  2997. for (int i = 0; i < n; ++i) {
  2998. sum += (ggml_float)x[i];
  2999. }
  3000. *s = sum;
  3001. #else
  3002. vDSP_sve(x, 1, s, n);
  3003. #endif
  3004. }
  3005. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3006. ggml_float sum = 0.0;
  3007. for (int i = 0; i < n; ++i) {
  3008. sum += (ggml_float)x[i];
  3009. }
  3010. *s = sum;
  3011. }
  3012. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3013. float sum = 0.0f;
  3014. for (int i = 0; i < n; ++i) {
  3015. sum += GGML_FP16_TO_FP32(x[i]);
  3016. }
  3017. *s = sum;
  3018. }
  3019. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3020. #ifndef GGML_USE_ACCELERATE
  3021. float max = -INFINITY;
  3022. for (int i = 0; i < n; ++i) {
  3023. max = MAX(max, x[i]);
  3024. }
  3025. *s = max;
  3026. #else
  3027. vDSP_maxv(x, 1, s, n);
  3028. #endif
  3029. }
  3030. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3031. ggml_vec_norm_f32(n, s, x);
  3032. *s = 1.f/(*s);
  3033. }
  3034. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3035. float max = -INFINITY;
  3036. int idx = 0;
  3037. for (int i = 0; i < n; ++i) {
  3038. max = MAX(max, x[i]);
  3039. if (max == x[i]) { idx = i; }
  3040. }
  3041. *s = idx;
  3042. }
  3043. //
  3044. // data types
  3045. //
  3046. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3047. "NONE",
  3048. "DUP",
  3049. "ADD",
  3050. "ADD1",
  3051. "ACC",
  3052. "SUB",
  3053. "MUL",
  3054. "DIV",
  3055. "SQR",
  3056. "SQRT",
  3057. "LOG",
  3058. "SUM",
  3059. "SUM_ROWS",
  3060. "MEAN",
  3061. "ARGMAX",
  3062. "REPEAT",
  3063. "REPEAT_BACK",
  3064. "CONCAT",
  3065. "SILU_BACK",
  3066. "NORM",
  3067. "RMS_NORM",
  3068. "RMS_NORM_BACK",
  3069. "GROUP_NORM",
  3070. "MUL_MAT",
  3071. "OUT_PROD",
  3072. "SCALE",
  3073. "SET",
  3074. "CPY",
  3075. "CONT",
  3076. "RESHAPE",
  3077. "VIEW",
  3078. "PERMUTE",
  3079. "TRANSPOSE",
  3080. "GET_ROWS",
  3081. "GET_ROWS_BACK",
  3082. "DIAG",
  3083. "DIAG_MASK_INF",
  3084. "DIAG_MASK_ZERO",
  3085. "SOFT_MAX",
  3086. "SOFT_MAX_BACK",
  3087. "ROPE",
  3088. "ROPE_BACK",
  3089. "ALIBI",
  3090. "CLAMP",
  3091. "CONV_1D",
  3092. "CONV_2D",
  3093. "CONV_TRANSPOSE_2D",
  3094. "POOL_1D",
  3095. "POOL_2D",
  3096. "UPSCALE",
  3097. "FLASH_ATTN",
  3098. "FLASH_FF",
  3099. "FLASH_ATTN_BACK",
  3100. "WIN_PART",
  3101. "WIN_UNPART",
  3102. "GET_REL_POS",
  3103. "ADD_REL_POS",
  3104. "UNARY",
  3105. "MAP_UNARY",
  3106. "MAP_BINARY",
  3107. "MAP_CUSTOM1_F32",
  3108. "MAP_CUSTOM2_F32",
  3109. "MAP_CUSTOM3_F32",
  3110. "MAP_CUSTOM1",
  3111. "MAP_CUSTOM2",
  3112. "MAP_CUSTOM3",
  3113. "CROSS_ENTROPY_LOSS",
  3114. "CROSS_ENTROPY_LOSS_BACK",
  3115. };
  3116. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3117. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3118. "none",
  3119. "x",
  3120. "x+y",
  3121. "x+y",
  3122. "view(x,nb,offset)+=y->x",
  3123. "x-y",
  3124. "x*y",
  3125. "x/y",
  3126. "x^2",
  3127. "√x",
  3128. "log(x)",
  3129. "Σx",
  3130. "Σx_k",
  3131. "Σx/n",
  3132. "argmax(x)",
  3133. "repeat(x)",
  3134. "repeat_back(x)",
  3135. "concat(x, y)",
  3136. "silu_back(x)",
  3137. "norm(x)",
  3138. "rms_norm(x)",
  3139. "rms_norm_back(x)",
  3140. "group_norm(x)",
  3141. "X*Y",
  3142. "X*Y",
  3143. "x*v",
  3144. "y-\\>view(x)",
  3145. "x-\\>y",
  3146. "cont(x)",
  3147. "reshape(x)",
  3148. "view(x)",
  3149. "permute(x)",
  3150. "transpose(x)",
  3151. "get_rows(x)",
  3152. "get_rows_back(x)",
  3153. "diag(x)",
  3154. "diag_mask_inf(x)",
  3155. "diag_mask_zero(x)",
  3156. "soft_max(x)",
  3157. "soft_max_back(x)",
  3158. "rope(x)",
  3159. "rope_back(x)",
  3160. "alibi(x)",
  3161. "clamp(x)",
  3162. "conv_1d(x)",
  3163. "conv_2d(x)",
  3164. "conv_transpose_2d(x)",
  3165. "pool_1d(x)",
  3166. "pool_2d(x)",
  3167. "upscale(x)",
  3168. "flash_attn(x)",
  3169. "flash_ff(x)",
  3170. "flash_attn_back(x)",
  3171. "win_part(x)",
  3172. "win_unpart(x)",
  3173. "get_rel_pos(x)",
  3174. "add_rel_pos(x)",
  3175. "unary(x)",
  3176. "f(x)",
  3177. "f(x,y)",
  3178. "custom_f32(x)",
  3179. "custom_f32(x,y)",
  3180. "custom_f32(x,y,z)",
  3181. "custom(x)",
  3182. "custom(x,y)",
  3183. "custom(x,y,z)",
  3184. "cross_entropy_loss(x,y)",
  3185. "cross_entropy_loss_back(x,y)",
  3186. };
  3187. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3188. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3189. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3190. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3191. // WARN:
  3192. // Mis-confguration can lead to problem that's hard to reason about:
  3193. // * At best it crash or talks nosense.
  3194. // * At worst it talks slightly difference but hard to perceive.
  3195. //
  3196. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3197. // Take care about compile options (e.g., GGML_USE_xxx).
  3198. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3199. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3200. static void ggml_setup_op_has_task_pass(void) {
  3201. { // INIT
  3202. bool * p = GGML_OP_HAS_INIT;
  3203. p[GGML_OP_ACC ] = true;
  3204. p[GGML_OP_MUL_MAT ] = true;
  3205. p[GGML_OP_OUT_PROD ] = true;
  3206. p[GGML_OP_SET ] = true;
  3207. p[GGML_OP_GET_ROWS_BACK ] = true;
  3208. p[GGML_OP_DIAG_MASK_INF ] = true;
  3209. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3210. p[GGML_OP_CONV_1D ] = true;
  3211. p[GGML_OP_CONV_2D ] = true;
  3212. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3213. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3214. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3215. p[GGML_OP_ADD_REL_POS ] = true;
  3216. }
  3217. { // FINALIZE
  3218. bool * p = GGML_OP_HAS_FINALIZE;
  3219. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3220. }
  3221. }
  3222. //
  3223. // ggml context
  3224. //
  3225. struct ggml_context {
  3226. size_t mem_size;
  3227. void * mem_buffer;
  3228. bool mem_buffer_owned;
  3229. bool no_alloc;
  3230. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3231. int n_objects;
  3232. struct ggml_object * objects_begin;
  3233. struct ggml_object * objects_end;
  3234. struct ggml_scratch scratch;
  3235. struct ggml_scratch scratch_save;
  3236. };
  3237. struct ggml_context_container {
  3238. bool used;
  3239. struct ggml_context context;
  3240. };
  3241. //
  3242. // NUMA support
  3243. //
  3244. #define GGML_NUMA_MAX_NODES 8
  3245. #define GGML_NUMA_MAX_CPUS 512
  3246. struct ggml_numa_node {
  3247. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3248. uint32_t n_cpus;
  3249. };
  3250. struct ggml_numa_nodes {
  3251. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3252. uint32_t n_nodes;
  3253. uint32_t total_cpus; // hardware threads on system
  3254. };
  3255. //
  3256. // ggml state
  3257. //
  3258. struct ggml_state {
  3259. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3260. struct ggml_numa_nodes numa;
  3261. };
  3262. // global state
  3263. static struct ggml_state g_state;
  3264. static atomic_int g_state_barrier = 0;
  3265. // barrier via spin lock
  3266. inline static void ggml_critical_section_start(void) {
  3267. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3268. while (processing > 0) {
  3269. // wait for other threads to finish
  3270. atomic_fetch_sub(&g_state_barrier, 1);
  3271. sched_yield(); // TODO: reconsider this
  3272. processing = atomic_fetch_add(&g_state_barrier, 1);
  3273. }
  3274. }
  3275. // TODO: make this somehow automatically executed
  3276. // some sort of "sentry" mechanism
  3277. inline static void ggml_critical_section_end(void) {
  3278. atomic_fetch_sub(&g_state_barrier, 1);
  3279. }
  3280. void ggml_numa_init(void) {
  3281. if (g_state.numa.n_nodes > 0) {
  3282. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3283. return;
  3284. }
  3285. #ifdef __linux__
  3286. struct stat st;
  3287. char path[256];
  3288. int rv;
  3289. // enumerate nodes
  3290. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3291. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3292. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3293. if (stat(path, &st) != 0) { break; }
  3294. ++g_state.numa.n_nodes;
  3295. }
  3296. // enumerate CPUs
  3297. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3298. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3299. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3300. if (stat(path, &st) != 0) { break; }
  3301. ++g_state.numa.total_cpus;
  3302. }
  3303. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3304. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3305. g_state.numa.n_nodes = 0;
  3306. return;
  3307. }
  3308. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3309. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3310. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3311. node->n_cpus = 0;
  3312. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3313. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3314. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3315. if (stat(path, &st) == 0) {
  3316. node->cpus[node->n_cpus++] = c;
  3317. GGML_PRINT_DEBUG(" %u", c);
  3318. }
  3319. }
  3320. GGML_PRINT_DEBUG("\n");
  3321. }
  3322. if (ggml_is_numa()) {
  3323. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3324. if (fptr != NULL) {
  3325. char buf[42];
  3326. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3327. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3328. }
  3329. fclose(fptr);
  3330. }
  3331. }
  3332. #else
  3333. // TODO
  3334. #endif
  3335. }
  3336. bool ggml_is_numa(void) {
  3337. return g_state.numa.n_nodes > 1;
  3338. }
  3339. ////////////////////////////////////////////////////////////////////////////////
  3340. void ggml_print_object(const struct ggml_object * obj) {
  3341. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3342. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3343. }
  3344. void ggml_print_objects(const struct ggml_context * ctx) {
  3345. struct ggml_object * obj = ctx->objects_begin;
  3346. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3347. while (obj != NULL) {
  3348. ggml_print_object(obj);
  3349. obj = obj->next;
  3350. }
  3351. GGML_PRINT("%s: --- end ---\n", __func__);
  3352. }
  3353. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3354. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3355. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3356. }
  3357. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3358. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3359. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3360. }
  3361. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3362. size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
  3363. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3364. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3365. }
  3366. return nbytes;
  3367. }
  3368. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3369. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3370. }
  3371. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3372. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3373. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3374. }
  3375. int ggml_blck_size(enum ggml_type type) {
  3376. return type_traits[type].blck_size;
  3377. }
  3378. size_t ggml_type_size(enum ggml_type type) {
  3379. return type_traits[type].type_size;
  3380. }
  3381. float ggml_type_sizef(enum ggml_type type) {
  3382. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3383. }
  3384. const char * ggml_type_name(enum ggml_type type) {
  3385. return type_traits[type].type_name;
  3386. }
  3387. bool ggml_is_quantized(enum ggml_type type) {
  3388. return type_traits[type].is_quantized;
  3389. }
  3390. const char * ggml_op_name(enum ggml_op op) {
  3391. return GGML_OP_NAME[op];
  3392. }
  3393. const char * ggml_op_symbol(enum ggml_op op) {
  3394. return GGML_OP_SYMBOL[op];
  3395. }
  3396. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3397. return ggml_type_size(tensor->type);
  3398. }
  3399. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3402. }
  3403. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3404. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3405. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3406. }
  3407. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3410. }
  3411. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3412. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3413. return (t0->ne[0] == t1->ne[0]) &&
  3414. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3415. (t1->ne[3]%t0->ne[3] == 0);
  3416. }
  3417. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3418. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3419. return
  3420. (t0->ne[1] == t1->ne[1]) &&
  3421. (t0->ne[2] == t1->ne[2]) &&
  3422. (t0->ne[3] == t1->ne[3]);
  3423. }
  3424. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3425. enum ggml_type wtype = GGML_TYPE_COUNT;
  3426. switch (ftype) {
  3427. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3428. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3429. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3430. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3431. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3432. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3433. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3434. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3435. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3436. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3437. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3438. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3439. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3440. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3441. }
  3442. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3443. return wtype;
  3444. }
  3445. size_t ggml_tensor_overhead(void) {
  3446. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3447. }
  3448. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3449. return tensor->nb[0] > tensor->nb[1];
  3450. }
  3451. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3452. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3453. return
  3454. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3455. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3456. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3457. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3458. }
  3459. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3460. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3461. return
  3462. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3463. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3464. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3465. }
  3466. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3467. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3468. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3469. }
  3470. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3471. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3472. return
  3473. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3474. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3475. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3476. }
  3477. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3478. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3479. return
  3480. (t0->ne[0] == t1->ne[0] ) &&
  3481. (t0->ne[1] == t1->ne[1] ) &&
  3482. (t0->ne[2] == t1->ne[2] ) &&
  3483. (t0->ne[3] == t1->ne[3] );
  3484. }
  3485. // check if t1 can be represented as a repeatition of t0
  3486. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3487. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3488. return
  3489. (t1->ne[0]%t0->ne[0] == 0) &&
  3490. (t1->ne[1]%t0->ne[1] == 0) &&
  3491. (t1->ne[2]%t0->ne[2] == 0) &&
  3492. (t1->ne[3]%t0->ne[3] == 0);
  3493. }
  3494. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3495. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3496. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3497. }
  3498. static inline int ggml_up32(int n) {
  3499. return (n + 31) & ~31;
  3500. }
  3501. //static inline int ggml_up64(int n) {
  3502. // return (n + 63) & ~63;
  3503. //}
  3504. static inline int ggml_up(int n, int m) {
  3505. // assert m is a power of 2
  3506. GGML_ASSERT((m & (m - 1)) == 0);
  3507. return (n + m - 1) & ~(m - 1);
  3508. }
  3509. // assert that pointer is aligned to GGML_MEM_ALIGN
  3510. #define ggml_assert_aligned(ptr) \
  3511. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3512. ////////////////////////////////////////////////////////////////////////////////
  3513. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3514. // make this function thread safe
  3515. ggml_critical_section_start();
  3516. static bool is_first_call = true;
  3517. if (is_first_call) {
  3518. // initialize time system (required on Windows)
  3519. ggml_time_init();
  3520. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3521. {
  3522. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3523. ggml_fp16_t ii;
  3524. for (int i = 0; i < (1 << 16); ++i) {
  3525. uint16_t ui = i;
  3526. memcpy(&ii, &ui, sizeof(ii));
  3527. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3528. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3529. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3530. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3531. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3532. }
  3533. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3534. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3535. }
  3536. // initialize g_state
  3537. {
  3538. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3539. g_state = (struct ggml_state) {
  3540. /*.contexts =*/ { { 0 } },
  3541. /*.numa =*/ {
  3542. .n_nodes = 0,
  3543. .total_cpus = 0,
  3544. },
  3545. };
  3546. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3547. g_state.contexts[i].used = false;
  3548. }
  3549. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3550. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3551. }
  3552. #if defined(GGML_USE_CUBLAS)
  3553. ggml_init_cublas();
  3554. #elif defined(GGML_USE_CLBLAST)
  3555. ggml_cl_init();
  3556. #endif
  3557. ggml_setup_op_has_task_pass();
  3558. is_first_call = false;
  3559. }
  3560. // find non-used context in g_state
  3561. struct ggml_context * ctx = NULL;
  3562. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3563. if (!g_state.contexts[i].used) {
  3564. g_state.contexts[i].used = true;
  3565. ctx = &g_state.contexts[i].context;
  3566. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3567. break;
  3568. }
  3569. }
  3570. if (ctx == NULL) {
  3571. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3572. ggml_critical_section_end();
  3573. return NULL;
  3574. }
  3575. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3576. *ctx = (struct ggml_context) {
  3577. /*.mem_size =*/ mem_size,
  3578. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3579. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3580. /*.no_alloc =*/ params.no_alloc,
  3581. /*.no_alloc_save =*/ params.no_alloc,
  3582. /*.n_objects =*/ 0,
  3583. /*.objects_begin =*/ NULL,
  3584. /*.objects_end =*/ NULL,
  3585. /*.scratch =*/ { 0, 0, NULL, },
  3586. /*.scratch_save =*/ { 0, 0, NULL, },
  3587. };
  3588. GGML_ASSERT(ctx->mem_buffer != NULL);
  3589. ggml_assert_aligned(ctx->mem_buffer);
  3590. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3591. ggml_critical_section_end();
  3592. return ctx;
  3593. }
  3594. void ggml_free(struct ggml_context * ctx) {
  3595. // make this function thread safe
  3596. ggml_critical_section_start();
  3597. bool found = false;
  3598. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3599. if (&g_state.contexts[i].context == ctx) {
  3600. g_state.contexts[i].used = false;
  3601. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3602. __func__, i, ggml_used_mem(ctx));
  3603. if (ctx->mem_buffer_owned) {
  3604. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3605. }
  3606. found = true;
  3607. break;
  3608. }
  3609. }
  3610. if (!found) {
  3611. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3612. }
  3613. ggml_critical_section_end();
  3614. }
  3615. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3616. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3617. }
  3618. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3619. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3620. ctx->scratch = scratch;
  3621. return result;
  3622. }
  3623. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3624. return ctx->no_alloc;
  3625. }
  3626. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3627. ctx->no_alloc = no_alloc;
  3628. }
  3629. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3630. return ctx->mem_buffer;
  3631. }
  3632. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3633. return ctx->mem_size;
  3634. }
  3635. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3636. size_t max_size = 0;
  3637. struct ggml_object * obj = ctx->objects_begin;
  3638. while (obj != NULL) {
  3639. if (obj->type == GGML_OBJECT_TENSOR) {
  3640. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3641. const size_t size = ggml_nbytes(tensor);
  3642. if (max_size < size) {
  3643. max_size = size;
  3644. }
  3645. }
  3646. obj = obj->next;
  3647. }
  3648. return max_size;
  3649. }
  3650. // IMPORTANT:
  3651. // when creating "opt" tensors, always save and load the scratch buffer
  3652. // this is an error prone process, but it is necessary to support inplace
  3653. // operators when using scratch buffers
  3654. // TODO: implement a better way
  3655. static void ggml_scratch_save(struct ggml_context * ctx) {
  3656. // this is needed to allow opt tensors to store their data
  3657. // TODO: again, need to find a better way
  3658. ctx->no_alloc_save = ctx->no_alloc;
  3659. ctx->no_alloc = false;
  3660. ctx->scratch_save = ctx->scratch;
  3661. ctx->scratch.data = NULL;
  3662. }
  3663. static void ggml_scratch_load(struct ggml_context * ctx) {
  3664. ctx->no_alloc = ctx->no_alloc_save;
  3665. ctx->scratch = ctx->scratch_save;
  3666. }
  3667. ////////////////////////////////////////////////////////////////////////////////
  3668. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3669. // always insert objects at the end of the context's memory pool
  3670. struct ggml_object * obj_cur = ctx->objects_end;
  3671. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3672. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3673. const size_t cur_end = cur_offs + cur_size;
  3674. // align to GGML_MEM_ALIGN
  3675. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3676. char * const mem_buffer = ctx->mem_buffer;
  3677. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3678. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3679. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3680. __func__, cur_end + size_needed, ctx->mem_size);
  3681. assert(false);
  3682. return NULL;
  3683. }
  3684. *obj_new = (struct ggml_object) {
  3685. .offs = cur_end + GGML_OBJECT_SIZE,
  3686. .size = size_needed,
  3687. .next = NULL,
  3688. .type = type,
  3689. };
  3690. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3691. if (obj_cur != NULL) {
  3692. obj_cur->next = obj_new;
  3693. } else {
  3694. // this is the first object in this context
  3695. ctx->objects_begin = obj_new;
  3696. }
  3697. ctx->objects_end = obj_new;
  3698. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3699. return obj_new;
  3700. }
  3701. static struct ggml_tensor * ggml_new_tensor_impl(
  3702. struct ggml_context * ctx,
  3703. enum ggml_type type,
  3704. int n_dims,
  3705. const int64_t * ne,
  3706. struct ggml_tensor * view_src,
  3707. size_t view_offs) {
  3708. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3709. // find the base tensor and absolute offset
  3710. if (view_src != NULL && view_src->view_src != NULL) {
  3711. view_offs += view_src->view_offs;
  3712. view_src = view_src->view_src;
  3713. }
  3714. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3715. for (int i = 1; i < n_dims; i++) {
  3716. data_size *= ne[i];
  3717. }
  3718. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3719. void * data = view_src != NULL ? view_src->data : NULL;
  3720. if (data != NULL) {
  3721. data = (char *) data + view_offs;
  3722. }
  3723. size_t obj_alloc_size = 0;
  3724. if (view_src == NULL && ctx->no_alloc == false) {
  3725. if (ctx->scratch.data != NULL) {
  3726. // allocate tensor data in the scratch buffer
  3727. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3728. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3729. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3730. assert(false);
  3731. return NULL;
  3732. }
  3733. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3734. ctx->scratch.offs += data_size;
  3735. } else {
  3736. // allocate tensor data in the context's memory pool
  3737. obj_alloc_size = data_size;
  3738. }
  3739. }
  3740. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3741. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3742. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3743. *result = (struct ggml_tensor) {
  3744. /*.type =*/ type,
  3745. /*.backend =*/ GGML_BACKEND_CPU,
  3746. /*.n_dims =*/ n_dims,
  3747. /*.ne =*/ { 1, 1, 1, 1 },
  3748. /*.nb =*/ { 0, 0, 0, 0 },
  3749. /*.op =*/ GGML_OP_NONE,
  3750. /*.op_params =*/ { 0 },
  3751. /*.is_param =*/ false,
  3752. /*.grad =*/ NULL,
  3753. /*.src =*/ { NULL },
  3754. /*.perf_runs =*/ 0,
  3755. /*.perf_cycles =*/ 0,
  3756. /*.perf_time_us =*/ 0,
  3757. /*.view_src =*/ view_src,
  3758. /*.view_offs =*/ view_offs,
  3759. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3760. /*.name =*/ { 0 },
  3761. /*.extra =*/ NULL,
  3762. /*.padding =*/ { 0 },
  3763. };
  3764. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3765. //ggml_assert_aligned(result->data);
  3766. for (int i = 0; i < n_dims; i++) {
  3767. result->ne[i] = ne[i];
  3768. }
  3769. result->nb[0] = ggml_type_size(type);
  3770. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3771. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3772. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3773. }
  3774. ctx->n_objects++;
  3775. return result;
  3776. }
  3777. struct ggml_tensor * ggml_new_tensor(
  3778. struct ggml_context * ctx,
  3779. enum ggml_type type,
  3780. int n_dims,
  3781. const int64_t * ne) {
  3782. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3783. }
  3784. struct ggml_tensor * ggml_new_tensor_1d(
  3785. struct ggml_context * ctx,
  3786. enum ggml_type type,
  3787. int64_t ne0) {
  3788. return ggml_new_tensor(ctx, type, 1, &ne0);
  3789. }
  3790. struct ggml_tensor * ggml_new_tensor_2d(
  3791. struct ggml_context * ctx,
  3792. enum ggml_type type,
  3793. int64_t ne0,
  3794. int64_t ne1) {
  3795. const int64_t ne[2] = { ne0, ne1 };
  3796. return ggml_new_tensor(ctx, type, 2, ne);
  3797. }
  3798. struct ggml_tensor * ggml_new_tensor_3d(
  3799. struct ggml_context * ctx,
  3800. enum ggml_type type,
  3801. int64_t ne0,
  3802. int64_t ne1,
  3803. int64_t ne2) {
  3804. const int64_t ne[3] = { ne0, ne1, ne2 };
  3805. return ggml_new_tensor(ctx, type, 3, ne);
  3806. }
  3807. struct ggml_tensor * ggml_new_tensor_4d(
  3808. struct ggml_context * ctx,
  3809. enum ggml_type type,
  3810. int64_t ne0,
  3811. int64_t ne1,
  3812. int64_t ne2,
  3813. int64_t ne3) {
  3814. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3815. return ggml_new_tensor(ctx, type, 4, ne);
  3816. }
  3817. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3818. ggml_scratch_save(ctx);
  3819. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3820. ggml_scratch_load(ctx);
  3821. ggml_set_i32(result, value);
  3822. return result;
  3823. }
  3824. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3825. ggml_scratch_save(ctx);
  3826. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3827. ggml_scratch_load(ctx);
  3828. ggml_set_f32(result, value);
  3829. return result;
  3830. }
  3831. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3832. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  3833. }
  3834. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3835. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3836. assert(params_size <= GGML_MAX_OP_PARAMS);
  3837. memcpy(tensor->op_params, params, params_size);
  3838. }
  3839. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3840. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3841. return ((const int32_t *)(tensor->op_params))[i];
  3842. }
  3843. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3844. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3845. ((int32_t *)(tensor->op_params))[i] = value;
  3846. }
  3847. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3848. memset(tensor->data, 0, ggml_nbytes(tensor));
  3849. return tensor;
  3850. }
  3851. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3852. const int n = ggml_nrows(tensor);
  3853. const int nc = tensor->ne[0];
  3854. const size_t n1 = tensor->nb[1];
  3855. char * const data = tensor->data;
  3856. switch (tensor->type) {
  3857. case GGML_TYPE_I8:
  3858. {
  3859. assert(tensor->nb[0] == sizeof(int8_t));
  3860. for (int i = 0; i < n; i++) {
  3861. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3862. }
  3863. } break;
  3864. case GGML_TYPE_I16:
  3865. {
  3866. assert(tensor->nb[0] == sizeof(int16_t));
  3867. for (int i = 0; i < n; i++) {
  3868. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3869. }
  3870. } break;
  3871. case GGML_TYPE_I32:
  3872. {
  3873. assert(tensor->nb[0] == sizeof(int32_t));
  3874. for (int i = 0; i < n; i++) {
  3875. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3876. }
  3877. } break;
  3878. case GGML_TYPE_F16:
  3879. {
  3880. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3881. for (int i = 0; i < n; i++) {
  3882. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3883. }
  3884. } break;
  3885. case GGML_TYPE_F32:
  3886. {
  3887. assert(tensor->nb[0] == sizeof(float));
  3888. for (int i = 0; i < n; i++) {
  3889. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3890. }
  3891. } break;
  3892. default:
  3893. {
  3894. GGML_ASSERT(false);
  3895. } break;
  3896. }
  3897. return tensor;
  3898. }
  3899. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3900. const int n = ggml_nrows(tensor);
  3901. const int nc = tensor->ne[0];
  3902. const size_t n1 = tensor->nb[1];
  3903. char * const data = tensor->data;
  3904. switch (tensor->type) {
  3905. case GGML_TYPE_I8:
  3906. {
  3907. assert(tensor->nb[0] == sizeof(int8_t));
  3908. for (int i = 0; i < n; i++) {
  3909. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3910. }
  3911. } break;
  3912. case GGML_TYPE_I16:
  3913. {
  3914. assert(tensor->nb[0] == sizeof(int16_t));
  3915. for (int i = 0; i < n; i++) {
  3916. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3917. }
  3918. } break;
  3919. case GGML_TYPE_I32:
  3920. {
  3921. assert(tensor->nb[0] == sizeof(int32_t));
  3922. for (int i = 0; i < n; i++) {
  3923. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3924. }
  3925. } break;
  3926. case GGML_TYPE_F16:
  3927. {
  3928. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3929. for (int i = 0; i < n; i++) {
  3930. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3931. }
  3932. } break;
  3933. case GGML_TYPE_F32:
  3934. {
  3935. assert(tensor->nb[0] == sizeof(float));
  3936. for (int i = 0; i < n; i++) {
  3937. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3938. }
  3939. } break;
  3940. default:
  3941. {
  3942. GGML_ASSERT(false);
  3943. } break;
  3944. }
  3945. return tensor;
  3946. }
  3947. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3948. switch (tensor->type) {
  3949. case GGML_TYPE_I8:
  3950. {
  3951. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3952. return ((int8_t *)(tensor->data))[i];
  3953. } break;
  3954. case GGML_TYPE_I16:
  3955. {
  3956. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3957. return ((int16_t *)(tensor->data))[i];
  3958. } break;
  3959. case GGML_TYPE_I32:
  3960. {
  3961. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3962. return ((int32_t *)(tensor->data))[i];
  3963. } break;
  3964. case GGML_TYPE_F16:
  3965. {
  3966. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3967. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3968. } break;
  3969. case GGML_TYPE_F32:
  3970. {
  3971. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3972. return ((float *)(tensor->data))[i];
  3973. } break;
  3974. default:
  3975. {
  3976. GGML_ASSERT(false);
  3977. } break;
  3978. }
  3979. return 0.0f;
  3980. }
  3981. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3982. switch (tensor->type) {
  3983. case GGML_TYPE_I8:
  3984. {
  3985. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3986. ((int8_t *)(tensor->data))[i] = value;
  3987. } break;
  3988. case GGML_TYPE_I16:
  3989. {
  3990. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3991. ((int16_t *)(tensor->data))[i] = value;
  3992. } break;
  3993. case GGML_TYPE_I32:
  3994. {
  3995. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3996. ((int32_t *)(tensor->data))[i] = value;
  3997. } break;
  3998. case GGML_TYPE_F16:
  3999. {
  4000. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4001. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4002. } break;
  4003. case GGML_TYPE_F32:
  4004. {
  4005. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4006. ((float *)(tensor->data))[i] = value;
  4007. } break;
  4008. default:
  4009. {
  4010. GGML_ASSERT(false);
  4011. } break;
  4012. }
  4013. }
  4014. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4015. switch (tensor->type) {
  4016. case GGML_TYPE_I8:
  4017. {
  4018. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4019. return ((int8_t *)(tensor->data))[i];
  4020. } break;
  4021. case GGML_TYPE_I16:
  4022. {
  4023. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4024. return ((int16_t *)(tensor->data))[i];
  4025. } break;
  4026. case GGML_TYPE_I32:
  4027. {
  4028. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4029. return ((int32_t *)(tensor->data))[i];
  4030. } break;
  4031. case GGML_TYPE_F16:
  4032. {
  4033. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4034. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4035. } break;
  4036. case GGML_TYPE_F32:
  4037. {
  4038. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4039. return ((float *)(tensor->data))[i];
  4040. } break;
  4041. default:
  4042. {
  4043. GGML_ASSERT(false);
  4044. } break;
  4045. }
  4046. return 0.0f;
  4047. }
  4048. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4049. switch (tensor->type) {
  4050. case GGML_TYPE_I8:
  4051. {
  4052. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4053. ((int8_t *)(tensor->data))[i] = value;
  4054. } break;
  4055. case GGML_TYPE_I16:
  4056. {
  4057. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4058. ((int16_t *)(tensor->data))[i] = value;
  4059. } break;
  4060. case GGML_TYPE_I32:
  4061. {
  4062. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4063. ((int32_t *)(tensor->data))[i] = value;
  4064. } break;
  4065. case GGML_TYPE_F16:
  4066. {
  4067. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4068. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4069. } break;
  4070. case GGML_TYPE_F32:
  4071. {
  4072. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4073. ((float *)(tensor->data))[i] = value;
  4074. } break;
  4075. default:
  4076. {
  4077. GGML_ASSERT(false);
  4078. } break;
  4079. }
  4080. }
  4081. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4082. return tensor->data;
  4083. }
  4084. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4085. assert(tensor->type == GGML_TYPE_F32);
  4086. return (float *)(tensor->data);
  4087. }
  4088. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4089. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4090. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4091. }
  4092. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4093. return tensor->name;
  4094. }
  4095. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4096. strncpy(tensor->name, name, sizeof(tensor->name));
  4097. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4098. return tensor;
  4099. }
  4100. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4101. va_list args;
  4102. va_start(args, fmt);
  4103. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4104. va_end(args);
  4105. return tensor;
  4106. }
  4107. struct ggml_tensor * ggml_view_tensor(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * src) {
  4110. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4111. ggml_format_name(result, "%s (view)", src->name);
  4112. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4113. result->nb[i] = src->nb[i];
  4114. }
  4115. return result;
  4116. }
  4117. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4118. struct ggml_object * obj = ctx->objects_begin;
  4119. char * const mem_buffer = ctx->mem_buffer;
  4120. while (obj != NULL) {
  4121. if (obj->type == GGML_OBJECT_TENSOR) {
  4122. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4123. if (strcmp(cur->name, name) == 0) {
  4124. return cur;
  4125. }
  4126. }
  4127. obj = obj->next;
  4128. }
  4129. return NULL;
  4130. }
  4131. ////////////////////////////////////////////////////////////////////////////////
  4132. // ggml_dup
  4133. static struct ggml_tensor * ggml_dup_impl(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. bool inplace) {
  4137. bool is_node = false;
  4138. if (!inplace && (a->grad)) {
  4139. is_node = true;
  4140. }
  4141. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4142. result->op = GGML_OP_DUP;
  4143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4144. result->src[0] = a;
  4145. return result;
  4146. }
  4147. struct ggml_tensor * ggml_dup(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a) {
  4150. return ggml_dup_impl(ctx, a, false);
  4151. }
  4152. struct ggml_tensor * ggml_dup_inplace(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a) {
  4155. return ggml_dup_impl(ctx, a, true);
  4156. }
  4157. // ggml_add
  4158. static struct ggml_tensor * ggml_add_impl(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b,
  4162. bool inplace) {
  4163. // TODO: support less-strict constraint
  4164. // GGML_ASSERT(ggml_can_repeat(b, a));
  4165. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4166. bool is_node = false;
  4167. if (!inplace && (a->grad || b->grad)) {
  4168. // TODO: support backward pass for broadcasting
  4169. GGML_ASSERT(ggml_are_same_shape(a, b));
  4170. is_node = true;
  4171. }
  4172. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4173. result->op = GGML_OP_ADD;
  4174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4175. result->src[0] = a;
  4176. result->src[1] = b;
  4177. return result;
  4178. }
  4179. struct ggml_tensor * ggml_add(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. struct ggml_tensor * b) {
  4183. return ggml_add_impl(ctx, a, b, false);
  4184. }
  4185. struct ggml_tensor * ggml_add_inplace(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. struct ggml_tensor * b) {
  4189. return ggml_add_impl(ctx, a, b, true);
  4190. }
  4191. // ggml_add1
  4192. static struct ggml_tensor * ggml_add1_impl(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * b,
  4196. bool inplace) {
  4197. GGML_ASSERT(ggml_is_scalar(b));
  4198. GGML_ASSERT(ggml_is_padded_1d(a));
  4199. bool is_node = false;
  4200. if (a->grad || b->grad) {
  4201. is_node = true;
  4202. }
  4203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4204. result->op = GGML_OP_ADD1;
  4205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. result->src[0] = a;
  4207. result->src[1] = b;
  4208. return result;
  4209. }
  4210. struct ggml_tensor * ggml_add1(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a,
  4213. struct ggml_tensor * b) {
  4214. return ggml_add1_impl(ctx, a, b, false);
  4215. }
  4216. struct ggml_tensor * ggml_add1_inplace(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. struct ggml_tensor * b) {
  4220. return ggml_add1_impl(ctx, a, b, true);
  4221. }
  4222. // ggml_acc
  4223. static struct ggml_tensor * ggml_acc_impl(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. size_t nb1,
  4228. size_t nb2,
  4229. size_t nb3,
  4230. size_t offset,
  4231. bool inplace) {
  4232. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4233. GGML_ASSERT(ggml_is_contiguous(a));
  4234. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4235. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4236. bool is_node = false;
  4237. if (!inplace && (a->grad || b->grad)) {
  4238. is_node = true;
  4239. }
  4240. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4241. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4242. ggml_set_op_params(result, params, sizeof(params));
  4243. result->op = GGML_OP_ACC;
  4244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4245. result->src[0] = a;
  4246. result->src[1] = b;
  4247. return result;
  4248. }
  4249. struct ggml_tensor * ggml_acc(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. struct ggml_tensor * b,
  4253. size_t nb1,
  4254. size_t nb2,
  4255. size_t nb3,
  4256. size_t offset) {
  4257. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4258. }
  4259. struct ggml_tensor * ggml_acc_inplace(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b,
  4263. size_t nb1,
  4264. size_t nb2,
  4265. size_t nb3,
  4266. size_t offset) {
  4267. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4268. }
  4269. // ggml_sub
  4270. static struct ggml_tensor * ggml_sub_impl(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. struct ggml_tensor * b,
  4274. bool inplace) {
  4275. GGML_ASSERT(ggml_are_same_shape(a, b));
  4276. bool is_node = false;
  4277. if (!inplace && (a->grad || b->grad)) {
  4278. is_node = true;
  4279. }
  4280. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4281. result->op = GGML_OP_SUB;
  4282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4283. result->src[0] = a;
  4284. result->src[1] = b;
  4285. return result;
  4286. }
  4287. struct ggml_tensor * ggml_sub(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. struct ggml_tensor * b) {
  4291. return ggml_sub_impl(ctx, a, b, false);
  4292. }
  4293. struct ggml_tensor * ggml_sub_inplace(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b) {
  4297. return ggml_sub_impl(ctx, a, b, true);
  4298. }
  4299. // ggml_mul
  4300. static struct ggml_tensor * ggml_mul_impl(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. struct ggml_tensor * b,
  4304. bool inplace) {
  4305. // TODO: support less-strict constraint
  4306. // GGML_ASSERT(ggml_can_repeat(b, a));
  4307. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4308. bool is_node = false;
  4309. if (!inplace && (a->grad || b->grad)) {
  4310. // TODO: support backward pass for broadcasting
  4311. GGML_ASSERT(ggml_are_same_shape(a, b));
  4312. is_node = true;
  4313. }
  4314. if (inplace) {
  4315. GGML_ASSERT(is_node == false);
  4316. }
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_MUL;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = b;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_mul(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b) {
  4328. return ggml_mul_impl(ctx, a, b, false);
  4329. }
  4330. struct ggml_tensor * ggml_mul_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. return ggml_mul_impl(ctx, a, b, true);
  4335. }
  4336. // ggml_div
  4337. static struct ggml_tensor * ggml_div_impl(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. bool inplace) {
  4342. GGML_ASSERT(ggml_are_same_shape(a, b));
  4343. bool is_node = false;
  4344. if (!inplace && (a->grad || b->grad)) {
  4345. is_node = true;
  4346. }
  4347. if (inplace) {
  4348. GGML_ASSERT(is_node == false);
  4349. }
  4350. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4351. result->op = GGML_OP_DIV;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src[0] = a;
  4354. result->src[1] = b;
  4355. return result;
  4356. }
  4357. struct ggml_tensor * ggml_div(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b) {
  4361. return ggml_div_impl(ctx, a, b, false);
  4362. }
  4363. struct ggml_tensor * ggml_div_inplace(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. struct ggml_tensor * b) {
  4367. return ggml_div_impl(ctx, a, b, true);
  4368. }
  4369. // ggml_sqr
  4370. static struct ggml_tensor * ggml_sqr_impl(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. bool inplace) {
  4374. bool is_node = false;
  4375. if (!inplace && (a->grad)) {
  4376. is_node = true;
  4377. }
  4378. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4379. result->op = GGML_OP_SQR;
  4380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4381. result->src[0] = a;
  4382. return result;
  4383. }
  4384. struct ggml_tensor * ggml_sqr(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a) {
  4387. return ggml_sqr_impl(ctx, a, false);
  4388. }
  4389. struct ggml_tensor * ggml_sqr_inplace(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a) {
  4392. return ggml_sqr_impl(ctx, a, true);
  4393. }
  4394. // ggml_sqrt
  4395. static struct ggml_tensor * ggml_sqrt_impl(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. bool inplace) {
  4399. bool is_node = false;
  4400. if (!inplace && (a->grad)) {
  4401. is_node = true;
  4402. }
  4403. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4404. result->op = GGML_OP_SQRT;
  4405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4406. result->src[0] = a;
  4407. return result;
  4408. }
  4409. struct ggml_tensor * ggml_sqrt(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a) {
  4412. return ggml_sqrt_impl(ctx, a, false);
  4413. }
  4414. struct ggml_tensor * ggml_sqrt_inplace(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. return ggml_sqrt_impl(ctx, a, true);
  4418. }
  4419. // ggml_log
  4420. static struct ggml_tensor * ggml_log_impl(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. bool inplace) {
  4424. bool is_node = false;
  4425. if (!inplace && (a->grad)) {
  4426. is_node = true;
  4427. }
  4428. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4429. result->op = GGML_OP_LOG;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src[0] = a;
  4432. return result;
  4433. }
  4434. struct ggml_tensor * ggml_log(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a) {
  4437. return ggml_log_impl(ctx, a, false);
  4438. }
  4439. struct ggml_tensor * ggml_log_inplace(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a) {
  4442. return ggml_log_impl(ctx, a, true);
  4443. }
  4444. // ggml_sum
  4445. struct ggml_tensor * ggml_sum(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. bool is_node = false;
  4449. if (a->grad) {
  4450. is_node = true;
  4451. }
  4452. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4453. result->op = GGML_OP_SUM;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src[0] = a;
  4456. return result;
  4457. }
  4458. // ggml_sum_rows
  4459. struct ggml_tensor * ggml_sum_rows(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a) {
  4462. bool is_node = false;
  4463. if (a->grad) {
  4464. is_node = true;
  4465. }
  4466. int64_t ne[4] = {1,1,1,1};
  4467. for (int i=1; i<a->n_dims; ++i) {
  4468. ne[i] = a->ne[i];
  4469. }
  4470. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4471. result->op = GGML_OP_SUM_ROWS;
  4472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4473. result->src[0] = a;
  4474. return result;
  4475. }
  4476. // ggml_mean
  4477. struct ggml_tensor * ggml_mean(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a) {
  4480. bool is_node = false;
  4481. if (a->grad) {
  4482. GGML_ASSERT(false); // TODO: implement
  4483. is_node = true;
  4484. }
  4485. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4486. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4487. result->op = GGML_OP_MEAN;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src[0] = a;
  4490. return result;
  4491. }
  4492. // ggml_argmax
  4493. struct ggml_tensor * ggml_argmax(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a) {
  4496. GGML_ASSERT(ggml_is_matrix(a));
  4497. bool is_node = false;
  4498. if (a->grad) {
  4499. GGML_ASSERT(false);
  4500. is_node = true;
  4501. }
  4502. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4503. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4504. result->op = GGML_OP_ARGMAX;
  4505. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4506. result->src[0] = a;
  4507. return result;
  4508. }
  4509. // ggml_repeat
  4510. struct ggml_tensor * ggml_repeat(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. struct ggml_tensor * b) {
  4514. GGML_ASSERT(ggml_can_repeat(a, b));
  4515. bool is_node = false;
  4516. if (a->grad) {
  4517. is_node = true;
  4518. }
  4519. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4520. result->op = GGML_OP_REPEAT;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. result->src[1] = b;
  4524. return result;
  4525. }
  4526. // ggml_repeat_back
  4527. struct ggml_tensor * ggml_repeat_back(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. struct ggml_tensor * b) {
  4531. GGML_ASSERT(ggml_can_repeat(b, a));
  4532. bool is_node = false;
  4533. if (a->grad) {
  4534. is_node = true;
  4535. }
  4536. if (ggml_are_same_shape(a, b) && !is_node) {
  4537. return a;
  4538. }
  4539. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4540. result->op = GGML_OP_REPEAT_BACK;
  4541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4542. result->src[0] = a;
  4543. result->src[1] = b;
  4544. return result;
  4545. }
  4546. // ggml_concat
  4547. struct ggml_tensor * ggml_concat(
  4548. struct ggml_context* ctx,
  4549. struct ggml_tensor* a,
  4550. struct ggml_tensor* b) {
  4551. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4552. bool is_node = false;
  4553. if (a->grad || b->grad) {
  4554. is_node = true;
  4555. }
  4556. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4557. result->op = GGML_OP_CONCAT;
  4558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4559. result->src[0] = a;
  4560. result->src[1] = b;
  4561. return result;
  4562. }
  4563. // ggml_abs
  4564. struct ggml_tensor * ggml_abs(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4568. }
  4569. struct ggml_tensor * ggml_abs_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4573. }
  4574. // ggml_sgn
  4575. struct ggml_tensor * ggml_sgn(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a) {
  4578. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4579. }
  4580. struct ggml_tensor * ggml_sgn_inplace(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a) {
  4583. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4584. }
  4585. // ggml_neg
  4586. struct ggml_tensor * ggml_neg(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a) {
  4589. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4590. }
  4591. struct ggml_tensor * ggml_neg_inplace(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a) {
  4594. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4595. }
  4596. // ggml_step
  4597. struct ggml_tensor * ggml_step(
  4598. struct ggml_context * ctx,
  4599. struct ggml_tensor * a) {
  4600. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4601. }
  4602. struct ggml_tensor * ggml_step_inplace(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a) {
  4605. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4606. }
  4607. // ggml_tanh
  4608. struct ggml_tensor * ggml_tanh(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a) {
  4611. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4612. }
  4613. struct ggml_tensor * ggml_tanh_inplace(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a) {
  4616. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4617. }
  4618. // ggml_elu
  4619. struct ggml_tensor * ggml_elu(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a) {
  4622. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4623. }
  4624. struct ggml_tensor * ggml_elu_inplace(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a) {
  4627. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4628. }
  4629. // ggml_relu
  4630. struct ggml_tensor * ggml_relu(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a) {
  4633. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4634. }
  4635. struct ggml_tensor * ggml_relu_inplace(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a) {
  4638. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4639. }
  4640. // ggml_gelu
  4641. struct ggml_tensor * ggml_gelu(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a) {
  4644. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4645. }
  4646. struct ggml_tensor * ggml_gelu_inplace(
  4647. struct ggml_context * ctx,
  4648. struct ggml_tensor * a) {
  4649. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4650. }
  4651. // ggml_gelu_quick
  4652. struct ggml_tensor * ggml_gelu_quick(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a) {
  4655. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4656. }
  4657. struct ggml_tensor * ggml_gelu_quick_inplace(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a) {
  4660. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4661. }
  4662. // ggml_silu
  4663. struct ggml_tensor * ggml_silu(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a) {
  4666. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4667. }
  4668. struct ggml_tensor * ggml_silu_inplace(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a) {
  4671. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4672. }
  4673. // ggml_silu_back
  4674. struct ggml_tensor * ggml_silu_back(
  4675. struct ggml_context * ctx,
  4676. struct ggml_tensor * a,
  4677. struct ggml_tensor * b) {
  4678. bool is_node = false;
  4679. if (a->grad || b->grad) {
  4680. // TODO: implement backward
  4681. is_node = true;
  4682. }
  4683. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4684. result->op = GGML_OP_SILU_BACK;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = a;
  4687. result->src[1] = b;
  4688. return result;
  4689. }
  4690. // ggml_norm
  4691. static struct ggml_tensor * ggml_norm_impl(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. float eps,
  4695. bool inplace) {
  4696. bool is_node = false;
  4697. if (!inplace && (a->grad)) {
  4698. GGML_ASSERT(false); // TODO: implement backward
  4699. is_node = true;
  4700. }
  4701. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4702. ggml_set_op_params(result, &eps, sizeof(eps));
  4703. result->op = GGML_OP_NORM;
  4704. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4705. result->src[0] = a;
  4706. return result;
  4707. }
  4708. struct ggml_tensor * ggml_norm(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. float eps) {
  4712. return ggml_norm_impl(ctx, a, eps, false);
  4713. }
  4714. struct ggml_tensor * ggml_norm_inplace(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. float eps) {
  4718. return ggml_norm_impl(ctx, a, eps, true);
  4719. }
  4720. // ggml_rms_norm
  4721. static struct ggml_tensor * ggml_rms_norm_impl(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. float eps,
  4725. bool inplace) {
  4726. bool is_node = false;
  4727. if (!inplace && (a->grad)) {
  4728. is_node = true;
  4729. }
  4730. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4731. ggml_set_op_params(result, &eps, sizeof(eps));
  4732. result->op = GGML_OP_RMS_NORM;
  4733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4734. result->src[0] = a;
  4735. return result;
  4736. }
  4737. struct ggml_tensor * ggml_rms_norm(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. float eps) {
  4741. return ggml_rms_norm_impl(ctx, a, eps, false);
  4742. }
  4743. struct ggml_tensor * ggml_rms_norm_inplace(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. float eps) {
  4747. return ggml_rms_norm_impl(ctx, a, eps, true);
  4748. }
  4749. // ggml_rms_norm_back
  4750. struct ggml_tensor * ggml_rms_norm_back(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b,
  4754. float eps) {
  4755. bool is_node = false;
  4756. if (a->grad) {
  4757. // TODO: implement backward
  4758. is_node = true;
  4759. }
  4760. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4761. ggml_set_op_params(result, &eps, sizeof(eps));
  4762. result->op = GGML_OP_RMS_NORM_BACK;
  4763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4764. result->src[0] = a;
  4765. result->src[1] = b;
  4766. return result;
  4767. }
  4768. // ggml_group_norm
  4769. static struct ggml_tensor * ggml_group_norm_impl(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int n_groups,
  4773. bool inplace) {
  4774. bool is_node = false;
  4775. if (!inplace && (a->grad)) {
  4776. GGML_ASSERT(false); // TODO: implement backward
  4777. is_node = true;
  4778. }
  4779. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4780. result->op = GGML_OP_GROUP_NORM;
  4781. result->op_params[0] = n_groups;
  4782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4783. result->src[0] = a;
  4784. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4785. return result;
  4786. }
  4787. struct ggml_tensor * ggml_group_norm(
  4788. struct ggml_context * ctx,
  4789. struct ggml_tensor * a,
  4790. int n_groups) {
  4791. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4792. }
  4793. struct ggml_tensor * ggml_group_norm_inplace(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. int n_groups) {
  4797. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4798. }
  4799. // ggml_mul_mat
  4800. struct ggml_tensor * ggml_mul_mat(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. struct ggml_tensor * b) {
  4804. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4805. GGML_ASSERT(!ggml_is_transposed(a));
  4806. bool is_node = false;
  4807. if (a->grad || b->grad) {
  4808. is_node = true;
  4809. }
  4810. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4811. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4812. result->op = GGML_OP_MUL_MAT;
  4813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4814. result->src[0] = a;
  4815. result->src[1] = b;
  4816. return result;
  4817. }
  4818. // ggml_out_prod
  4819. struct ggml_tensor * ggml_out_prod(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b) {
  4823. GGML_ASSERT(ggml_can_out_prod(a, b));
  4824. GGML_ASSERT(!ggml_is_transposed(a));
  4825. bool is_node = false;
  4826. if (a->grad || b->grad) {
  4827. is_node = true;
  4828. }
  4829. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4830. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4831. result->op = GGML_OP_OUT_PROD;
  4832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4833. result->src[0] = a;
  4834. result->src[1] = b;
  4835. return result;
  4836. }
  4837. // ggml_scale
  4838. static struct ggml_tensor * ggml_scale_impl(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. struct ggml_tensor * b,
  4842. bool inplace) {
  4843. GGML_ASSERT(ggml_is_scalar(b));
  4844. GGML_ASSERT(ggml_is_padded_1d(a));
  4845. bool is_node = false;
  4846. if (a->grad || b->grad) {
  4847. is_node = true;
  4848. }
  4849. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4850. result->op = GGML_OP_SCALE;
  4851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4852. result->src[0] = a;
  4853. result->src[1] = b;
  4854. return result;
  4855. }
  4856. struct ggml_tensor * ggml_scale(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. struct ggml_tensor * b) {
  4860. return ggml_scale_impl(ctx, a, b, false);
  4861. }
  4862. struct ggml_tensor * ggml_scale_inplace(
  4863. struct ggml_context * ctx,
  4864. struct ggml_tensor * a,
  4865. struct ggml_tensor * b) {
  4866. return ggml_scale_impl(ctx, a, b, true);
  4867. }
  4868. // ggml_set
  4869. static struct ggml_tensor * ggml_set_impl(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a,
  4872. struct ggml_tensor * b,
  4873. size_t nb1,
  4874. size_t nb2,
  4875. size_t nb3,
  4876. size_t offset,
  4877. bool inplace) {
  4878. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4879. bool is_node = false;
  4880. if (a->grad || b->grad) {
  4881. is_node = true;
  4882. }
  4883. // make a view of the destination
  4884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4885. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4886. ggml_set_op_params(result, params, sizeof(params));
  4887. result->op = GGML_OP_SET;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. result->src[1] = b;
  4891. return result;
  4892. }
  4893. struct ggml_tensor * ggml_set(
  4894. struct ggml_context * ctx,
  4895. struct ggml_tensor * a,
  4896. struct ggml_tensor * b,
  4897. size_t nb1,
  4898. size_t nb2,
  4899. size_t nb3,
  4900. size_t offset) {
  4901. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4902. }
  4903. struct ggml_tensor * ggml_set_inplace(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. struct ggml_tensor * b,
  4907. size_t nb1,
  4908. size_t nb2,
  4909. size_t nb3,
  4910. size_t offset) {
  4911. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4912. }
  4913. struct ggml_tensor * ggml_set_1d(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. struct ggml_tensor * b,
  4917. size_t offset) {
  4918. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4919. }
  4920. struct ggml_tensor * ggml_set_1d_inplace(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. struct ggml_tensor * b,
  4924. size_t offset) {
  4925. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4926. }
  4927. struct ggml_tensor * ggml_set_2d(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. struct ggml_tensor * b,
  4931. size_t nb1,
  4932. size_t offset) {
  4933. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4934. }
  4935. struct ggml_tensor * ggml_set_2d_inplace(
  4936. struct ggml_context * ctx,
  4937. struct ggml_tensor * a,
  4938. struct ggml_tensor * b,
  4939. size_t nb1,
  4940. size_t offset) {
  4941. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4942. }
  4943. // ggml_cpy
  4944. static struct ggml_tensor * ggml_cpy_impl(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. bool inplace) {
  4949. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4950. bool is_node = false;
  4951. if (!inplace && (a->grad || b->grad)) {
  4952. is_node = true;
  4953. }
  4954. // make a view of the destination
  4955. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4956. if (strlen(b->name) > 0) {
  4957. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4958. } else {
  4959. ggml_format_name(result, "%s (copy)", a->name);
  4960. }
  4961. result->op = GGML_OP_CPY;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. result->src[1] = b;
  4965. return result;
  4966. }
  4967. struct ggml_tensor * ggml_cpy(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b) {
  4971. return ggml_cpy_impl(ctx, a, b, false);
  4972. }
  4973. struct ggml_tensor * ggml_cpy_inplace(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. struct ggml_tensor * b) {
  4977. return ggml_cpy_impl(ctx, a, b, true);
  4978. }
  4979. // ggml_cont
  4980. static struct ggml_tensor * ggml_cont_impl(
  4981. struct ggml_context * ctx,
  4982. struct ggml_tensor * a,
  4983. bool inplace) {
  4984. bool is_node = false;
  4985. if (!inplace && a->grad) {
  4986. is_node = true;
  4987. }
  4988. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4989. ggml_format_name(result, "%s (cont)", a->name);
  4990. result->op = GGML_OP_CONT;
  4991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4992. result->src[0] = a;
  4993. return result;
  4994. }
  4995. struct ggml_tensor * ggml_cont(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a) {
  4998. return ggml_cont_impl(ctx, a, false);
  4999. }
  5000. struct ggml_tensor * ggml_cont_inplace(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a) {
  5003. return ggml_cont_impl(ctx, a, true);
  5004. }
  5005. // ggml_reshape
  5006. struct ggml_tensor * ggml_reshape(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. struct ggml_tensor * b) {
  5010. GGML_ASSERT(ggml_is_contiguous(a));
  5011. GGML_ASSERT(ggml_is_contiguous(b));
  5012. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5013. bool is_node = false;
  5014. if (a->grad) {
  5015. is_node = true;
  5016. }
  5017. if (b->grad) {
  5018. // gradient propagation is not supported
  5019. //GGML_ASSERT(false);
  5020. }
  5021. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5022. ggml_format_name(result, "%s (reshaped)", a->name);
  5023. result->op = GGML_OP_RESHAPE;
  5024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5025. result->src[0] = a;
  5026. return result;
  5027. }
  5028. struct ggml_tensor * ggml_reshape_1d(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. int64_t ne0) {
  5032. GGML_ASSERT(ggml_is_contiguous(a));
  5033. GGML_ASSERT(ggml_nelements(a) == ne0);
  5034. bool is_node = false;
  5035. if (a->grad) {
  5036. is_node = true;
  5037. }
  5038. const int64_t ne[1] = { ne0 };
  5039. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5040. ggml_format_name(result, "%s (reshaped)", a->name);
  5041. result->op = GGML_OP_RESHAPE;
  5042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5043. result->src[0] = a;
  5044. return result;
  5045. }
  5046. struct ggml_tensor * ggml_reshape_2d(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. int64_t ne0,
  5050. int64_t ne1) {
  5051. GGML_ASSERT(ggml_is_contiguous(a));
  5052. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5053. bool is_node = false;
  5054. if (a->grad) {
  5055. is_node = true;
  5056. }
  5057. const int64_t ne[2] = { ne0, ne1 };
  5058. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5059. ggml_format_name(result, "%s (reshaped)", a->name);
  5060. result->op = GGML_OP_RESHAPE;
  5061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5062. result->src[0] = a;
  5063. return result;
  5064. }
  5065. struct ggml_tensor * ggml_reshape_3d(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. int64_t ne0,
  5069. int64_t ne1,
  5070. int64_t ne2) {
  5071. GGML_ASSERT(ggml_is_contiguous(a));
  5072. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5073. bool is_node = false;
  5074. if (a->grad) {
  5075. is_node = true;
  5076. }
  5077. const int64_t ne[3] = { ne0, ne1, ne2 };
  5078. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5079. ggml_format_name(result, "%s (reshaped)", a->name);
  5080. result->op = GGML_OP_RESHAPE;
  5081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5082. result->src[0] = a;
  5083. return result;
  5084. }
  5085. struct ggml_tensor * ggml_reshape_4d(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. int64_t ne0,
  5089. int64_t ne1,
  5090. int64_t ne2,
  5091. int64_t ne3) {
  5092. GGML_ASSERT(ggml_is_contiguous(a));
  5093. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5094. bool is_node = false;
  5095. if (a->grad) {
  5096. is_node = true;
  5097. }
  5098. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5099. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5100. ggml_format_name(result, "%s (reshaped)", a->name);
  5101. result->op = GGML_OP_RESHAPE;
  5102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5103. result->src[0] = a;
  5104. return result;
  5105. }
  5106. static struct ggml_tensor * ggml_view_impl(
  5107. struct ggml_context * ctx,
  5108. struct ggml_tensor * a,
  5109. int n_dims,
  5110. const int64_t * ne,
  5111. size_t offset) {
  5112. bool is_node = false;
  5113. if (a->grad) {
  5114. is_node = true;
  5115. }
  5116. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5117. ggml_format_name(result, "%s (view)", a->name);
  5118. ggml_set_op_params(result, &offset, sizeof(offset));
  5119. result->op = GGML_OP_VIEW;
  5120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5121. result->src[0] = a;
  5122. return result;
  5123. }
  5124. // ggml_view_1d
  5125. struct ggml_tensor * ggml_view_1d(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. int64_t ne0,
  5129. size_t offset) {
  5130. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5131. return result;
  5132. }
  5133. // ggml_view_2d
  5134. struct ggml_tensor * ggml_view_2d(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. int64_t ne0,
  5138. int64_t ne1,
  5139. size_t nb1,
  5140. size_t offset) {
  5141. const int64_t ne[2] = { ne0, ne1 };
  5142. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5143. result->nb[1] = nb1;
  5144. result->nb[2] = result->nb[1]*ne1;
  5145. result->nb[3] = result->nb[2];
  5146. return result;
  5147. }
  5148. // ggml_view_3d
  5149. struct ggml_tensor * ggml_view_3d(
  5150. struct ggml_context * ctx,
  5151. struct ggml_tensor * a,
  5152. int64_t ne0,
  5153. int64_t ne1,
  5154. int64_t ne2,
  5155. size_t nb1,
  5156. size_t nb2,
  5157. size_t offset) {
  5158. const int64_t ne[3] = { ne0, ne1, ne2 };
  5159. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5160. result->nb[1] = nb1;
  5161. result->nb[2] = nb2;
  5162. result->nb[3] = result->nb[2]*ne2;
  5163. return result;
  5164. }
  5165. // ggml_view_4d
  5166. struct ggml_tensor * ggml_view_4d(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. int64_t ne0,
  5170. int64_t ne1,
  5171. int64_t ne2,
  5172. int64_t ne3,
  5173. size_t nb1,
  5174. size_t nb2,
  5175. size_t nb3,
  5176. size_t offset) {
  5177. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5178. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5179. result->nb[1] = nb1;
  5180. result->nb[2] = nb2;
  5181. result->nb[3] = nb3;
  5182. return result;
  5183. }
  5184. // ggml_permute
  5185. struct ggml_tensor * ggml_permute(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. int axis0,
  5189. int axis1,
  5190. int axis2,
  5191. int axis3) {
  5192. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5193. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5194. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5195. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5196. GGML_ASSERT(axis0 != axis1);
  5197. GGML_ASSERT(axis0 != axis2);
  5198. GGML_ASSERT(axis0 != axis3);
  5199. GGML_ASSERT(axis1 != axis2);
  5200. GGML_ASSERT(axis1 != axis3);
  5201. GGML_ASSERT(axis2 != axis3);
  5202. bool is_node = false;
  5203. if (a->grad) {
  5204. is_node = true;
  5205. }
  5206. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5207. ggml_format_name(result, "%s (permuted)", a->name);
  5208. int ne[GGML_MAX_DIMS];
  5209. int nb[GGML_MAX_DIMS];
  5210. ne[axis0] = a->ne[0];
  5211. ne[axis1] = a->ne[1];
  5212. ne[axis2] = a->ne[2];
  5213. ne[axis3] = a->ne[3];
  5214. nb[axis0] = a->nb[0];
  5215. nb[axis1] = a->nb[1];
  5216. nb[axis2] = a->nb[2];
  5217. nb[axis3] = a->nb[3];
  5218. result->ne[0] = ne[0];
  5219. result->ne[1] = ne[1];
  5220. result->ne[2] = ne[2];
  5221. result->ne[3] = ne[3];
  5222. result->nb[0] = nb[0];
  5223. result->nb[1] = nb[1];
  5224. result->nb[2] = nb[2];
  5225. result->nb[3] = nb[3];
  5226. result->op = GGML_OP_PERMUTE;
  5227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5228. result->src[0] = a;
  5229. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5230. ggml_set_op_params(result, params, sizeof(params));
  5231. return result;
  5232. }
  5233. // ggml_transpose
  5234. struct ggml_tensor * ggml_transpose(
  5235. struct ggml_context * ctx,
  5236. struct ggml_tensor * a) {
  5237. bool is_node = false;
  5238. if (a->grad) {
  5239. is_node = true;
  5240. }
  5241. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5242. ggml_format_name(result, "%s (transposed)", a->name);
  5243. result->ne[0] = a->ne[1];
  5244. result->ne[1] = a->ne[0];
  5245. result->nb[0] = a->nb[1];
  5246. result->nb[1] = a->nb[0];
  5247. result->op = GGML_OP_TRANSPOSE;
  5248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5249. result->src[0] = a;
  5250. return result;
  5251. }
  5252. // ggml_get_rows
  5253. struct ggml_tensor * ggml_get_rows(
  5254. struct ggml_context * ctx,
  5255. struct ggml_tensor * a,
  5256. struct ggml_tensor * b) {
  5257. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5258. bool is_node = false;
  5259. if (a->grad || b->grad) {
  5260. is_node = true;
  5261. }
  5262. // TODO: implement non F32 return
  5263. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5264. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5265. result->op = GGML_OP_GET_ROWS;
  5266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5267. result->src[0] = a;
  5268. result->src[1] = b;
  5269. return result;
  5270. }
  5271. // ggml_get_rows_back
  5272. struct ggml_tensor * ggml_get_rows_back(
  5273. struct ggml_context * ctx,
  5274. struct ggml_tensor * a,
  5275. struct ggml_tensor * b,
  5276. struct ggml_tensor * c) {
  5277. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5278. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5279. bool is_node = false;
  5280. if (a->grad || b->grad) {
  5281. is_node = true;
  5282. }
  5283. // TODO: implement non F32 return
  5284. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5285. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5286. result->op = GGML_OP_GET_ROWS_BACK;
  5287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5288. result->src[0] = a;
  5289. result->src[1] = b;
  5290. result->src[2] = c;
  5291. return result;
  5292. }
  5293. // ggml_diag
  5294. struct ggml_tensor * ggml_diag(
  5295. struct ggml_context * ctx,
  5296. struct ggml_tensor * a) {
  5297. GGML_ASSERT(a->ne[1] == 1);
  5298. bool is_node = false;
  5299. if (a->grad) {
  5300. is_node = true;
  5301. }
  5302. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5303. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5304. result->op = GGML_OP_DIAG;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. return result;
  5308. }
  5309. // ggml_diag_mask_inf
  5310. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. int n_past,
  5314. bool inplace) {
  5315. bool is_node = false;
  5316. if (a->grad) {
  5317. is_node = true;
  5318. }
  5319. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5320. int32_t params[] = { n_past };
  5321. ggml_set_op_params(result, params, sizeof(params));
  5322. result->op = GGML_OP_DIAG_MASK_INF;
  5323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5324. result->src[0] = a;
  5325. return result;
  5326. }
  5327. struct ggml_tensor * ggml_diag_mask_inf(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. int n_past) {
  5331. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5332. }
  5333. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5334. struct ggml_context * ctx,
  5335. struct ggml_tensor * a,
  5336. int n_past) {
  5337. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5338. }
  5339. // ggml_diag_mask_zero
  5340. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. int n_past,
  5344. bool inplace) {
  5345. bool is_node = false;
  5346. if (a->grad) {
  5347. is_node = true;
  5348. }
  5349. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5350. int32_t params[] = { n_past };
  5351. ggml_set_op_params(result, params, sizeof(params));
  5352. result->op = GGML_OP_DIAG_MASK_ZERO;
  5353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5354. result->src[0] = a;
  5355. return result;
  5356. }
  5357. struct ggml_tensor * ggml_diag_mask_zero(
  5358. struct ggml_context * ctx,
  5359. struct ggml_tensor * a,
  5360. int n_past) {
  5361. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5362. }
  5363. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5364. struct ggml_context * ctx,
  5365. struct ggml_tensor * a,
  5366. int n_past) {
  5367. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5368. }
  5369. // ggml_soft_max
  5370. static struct ggml_tensor * ggml_soft_max_impl(
  5371. struct ggml_context * ctx,
  5372. struct ggml_tensor * a,
  5373. bool inplace) {
  5374. bool is_node = false;
  5375. if (a->grad) {
  5376. is_node = true;
  5377. }
  5378. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5379. result->op = GGML_OP_SOFT_MAX;
  5380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5381. result->src[0] = a;
  5382. return result;
  5383. }
  5384. struct ggml_tensor * ggml_soft_max(
  5385. struct ggml_context * ctx,
  5386. struct ggml_tensor * a) {
  5387. return ggml_soft_max_impl(ctx, a, false);
  5388. }
  5389. struct ggml_tensor * ggml_soft_max_inplace(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a) {
  5392. return ggml_soft_max_impl(ctx, a, true);
  5393. }
  5394. // ggml_soft_max_back
  5395. static struct ggml_tensor * ggml_soft_max_back_impl(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. struct ggml_tensor * b,
  5399. bool inplace) {
  5400. bool is_node = false;
  5401. if (a->grad || b->grad) {
  5402. is_node = true; // TODO : implement backward pass
  5403. }
  5404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5405. result->op = GGML_OP_SOFT_MAX_BACK;
  5406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5407. result->src[0] = a;
  5408. result->src[1] = b;
  5409. return result;
  5410. }
  5411. struct ggml_tensor * ggml_soft_max_back(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b) {
  5415. return ggml_soft_max_back_impl(ctx, a, b, false);
  5416. }
  5417. struct ggml_tensor * ggml_soft_max_back_inplace(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a,
  5420. struct ggml_tensor * b) {
  5421. return ggml_soft_max_back_impl(ctx, a, b, true);
  5422. }
  5423. // ggml_rope
  5424. static struct ggml_tensor * ggml_rope_impl(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a,
  5427. int n_past,
  5428. int n_dims,
  5429. int mode,
  5430. int n_ctx,
  5431. float freq_base,
  5432. float freq_scale,
  5433. float xpos_base,
  5434. bool xpos_down,
  5435. bool inplace) {
  5436. GGML_ASSERT(n_past >= 0);
  5437. bool is_node = false;
  5438. if (a->grad) {
  5439. is_node = true;
  5440. }
  5441. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5442. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5443. memcpy(params + 4, &freq_base, sizeof(float));
  5444. memcpy(params + 5, &freq_scale, sizeof(float));
  5445. memcpy(params + 6, &xpos_base, sizeof(float));
  5446. memcpy(params + 7, &xpos_down, sizeof(bool));
  5447. ggml_set_op_params(result, params, sizeof(params));
  5448. result->op = GGML_OP_ROPE;
  5449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5450. result->src[0] = a;
  5451. return result;
  5452. }
  5453. struct ggml_tensor * ggml_rope(
  5454. struct ggml_context * ctx,
  5455. struct ggml_tensor * a,
  5456. int n_past,
  5457. int n_dims,
  5458. int mode,
  5459. int n_ctx) {
  5460. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5461. }
  5462. struct ggml_tensor * ggml_rope_inplace(
  5463. struct ggml_context * ctx,
  5464. struct ggml_tensor * a,
  5465. int n_past,
  5466. int n_dims,
  5467. int mode,
  5468. int n_ctx) {
  5469. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5470. }
  5471. struct ggml_tensor * ggml_rope_custom(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. int n_past,
  5475. int n_dims,
  5476. int mode,
  5477. int n_ctx,
  5478. float freq_base,
  5479. float freq_scale) {
  5480. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5481. }
  5482. struct ggml_tensor * ggml_rope_custom_inplace(
  5483. struct ggml_context * ctx,
  5484. struct ggml_tensor * a,
  5485. int n_past,
  5486. int n_dims,
  5487. int mode,
  5488. int n_ctx,
  5489. float freq_base,
  5490. float freq_scale) {
  5491. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5492. }
  5493. struct ggml_tensor * ggml_rope_xpos_inplace(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. int n_past,
  5497. int n_dims,
  5498. float base,
  5499. bool down) {
  5500. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5501. }
  5502. // ggml_rope_back
  5503. struct ggml_tensor * ggml_rope_back(
  5504. struct ggml_context * ctx,
  5505. struct ggml_tensor * a,
  5506. int n_past,
  5507. int n_dims,
  5508. int mode,
  5509. int n_ctx,
  5510. float freq_base,
  5511. float freq_scale,
  5512. float xpos_base,
  5513. bool xpos_down) {
  5514. GGML_ASSERT(n_past >= 0);
  5515. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5516. bool is_node = false;
  5517. if (a->grad) {
  5518. is_node = false; // TODO: implement backward
  5519. }
  5520. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5521. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5522. memcpy(params + 4, &freq_base, sizeof(float));
  5523. memcpy(params + 5, &freq_scale, sizeof(float));
  5524. memcpy(params + 6, &xpos_base, sizeof(float));
  5525. memcpy(params + 7, &xpos_down, sizeof(bool));
  5526. ggml_set_op_params(result, params, sizeof(params));
  5527. result->op = GGML_OP_ROPE_BACK;
  5528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5529. result->src[0] = a;
  5530. return result;
  5531. }
  5532. // ggml_alibi
  5533. struct ggml_tensor * ggml_alibi(
  5534. struct ggml_context * ctx,
  5535. struct ggml_tensor * a,
  5536. int n_past,
  5537. int n_head,
  5538. float bias_max) {
  5539. GGML_ASSERT(n_past >= 0);
  5540. bool is_node = false;
  5541. if (a->grad) {
  5542. GGML_ASSERT(false); // TODO: implement backward
  5543. is_node = true;
  5544. }
  5545. // TODO: when implement backward, fix this:
  5546. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5547. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5548. int32_t op_params[3] = { n_past, n_head };
  5549. memcpy(op_params + 2, &bias_max, sizeof(float));
  5550. ggml_set_op_params(result, op_params, sizeof(op_params));
  5551. result->op = GGML_OP_ALIBI;
  5552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5553. result->src[0] = a;
  5554. return result;
  5555. }
  5556. // ggml_clamp
  5557. struct ggml_tensor * ggml_clamp(
  5558. struct ggml_context * ctx,
  5559. struct ggml_tensor * a,
  5560. float min,
  5561. float max) {
  5562. bool is_node = false;
  5563. if (a->grad) {
  5564. GGML_ASSERT(false); // TODO: implement backward
  5565. is_node = true;
  5566. }
  5567. // TODO: when implement backward, fix this:
  5568. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5569. float params[] = { min, max };
  5570. ggml_set_op_params(result, params, sizeof(params));
  5571. result->op = GGML_OP_CLAMP;
  5572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5573. result->src[0] = a;
  5574. return result;
  5575. }
  5576. // ggml_conv_1d
  5577. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5578. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5579. }
  5580. GGML_API struct ggml_tensor * ggml_conv_1d(
  5581. struct ggml_context * ctx,
  5582. struct ggml_tensor * a,
  5583. struct ggml_tensor * b,
  5584. int s0,
  5585. int p0,
  5586. int d0) {
  5587. GGML_ASSERT(ggml_is_matrix(b));
  5588. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5589. bool is_node = false;
  5590. if (a->grad || b->grad) {
  5591. GGML_ASSERT(false); // TODO: implement backward
  5592. is_node = true;
  5593. }
  5594. const int64_t ne[4] = {
  5595. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5596. a->ne[2], 1, 1,
  5597. };
  5598. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5599. int32_t params[] = { s0, p0, d0 };
  5600. ggml_set_op_params(result, params, sizeof(params));
  5601. result->op = GGML_OP_CONV_1D;
  5602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5603. result->src[0] = a;
  5604. result->src[1] = b;
  5605. return result;
  5606. }
  5607. // ggml_conv_1d_ph
  5608. struct ggml_tensor* ggml_conv_1d_ph(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. struct ggml_tensor * b,
  5612. int s,
  5613. int d) {
  5614. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5615. }
  5616. // ggml_conv_2d
  5617. struct ggml_tensor * ggml_conv_2d(
  5618. struct ggml_context * ctx,
  5619. struct ggml_tensor * a,
  5620. struct ggml_tensor * b,
  5621. int s0,
  5622. int s1,
  5623. int p0,
  5624. int p1,
  5625. int d0,
  5626. int d1) {
  5627. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5628. bool is_node = false;
  5629. if (a->grad || b->grad) {
  5630. GGML_ASSERT(false); // TODO: implement backward
  5631. is_node = true;
  5632. }
  5633. const int64_t ne[4] = {
  5634. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5635. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5636. a->ne[3], b->ne[3],
  5637. };
  5638. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5639. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5640. ggml_set_op_params(result, params, sizeof(params));
  5641. result->op = GGML_OP_CONV_2D;
  5642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5643. result->src[0] = a;
  5644. result->src[1] = b;
  5645. return result;
  5646. }
  5647. // ggml_conv_2d_sk_p0
  5648. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a,
  5651. struct ggml_tensor * b) {
  5652. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5653. }
  5654. // ggml_conv_2d_s1_ph
  5655. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5656. struct ggml_context * ctx,
  5657. struct ggml_tensor * a,
  5658. struct ggml_tensor * b) {
  5659. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5660. }
  5661. // ggml_conv_transpose_2d_p0
  5662. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5663. return (ins - 1) * s - 2 * p + ks;
  5664. }
  5665. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. struct ggml_tensor * b,
  5669. int stride) {
  5670. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5671. bool is_node = false;
  5672. if (a->grad || b->grad) {
  5673. GGML_ASSERT(false); // TODO: implement backward
  5674. is_node = true;
  5675. }
  5676. const int64_t ne[4] = {
  5677. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5678. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5679. a->ne[2], b->ne[3],
  5680. };
  5681. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5682. ggml_set_op_params_i32(result, 0, stride);
  5683. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5685. result->src[0] = a;
  5686. result->src[1] = b;
  5687. return result;
  5688. }
  5689. // ggml_pool_*
  5690. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5691. return (ins + 2 * p - ks) / s + 1;
  5692. }
  5693. // ggml_pool_1d
  5694. struct ggml_tensor * ggml_pool_1d(
  5695. struct ggml_context * ctx,
  5696. struct ggml_tensor * a,
  5697. enum ggml_op_pool op,
  5698. int k0,
  5699. int s0,
  5700. int p0) {
  5701. bool is_node = false;
  5702. if (a->grad) {
  5703. GGML_ASSERT(false); // TODO: implement backward
  5704. is_node = true;
  5705. }
  5706. const int64_t ne[3] = {
  5707. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5708. a->ne[1],
  5709. };
  5710. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5711. int32_t params[] = { op, k0, s0, p0 };
  5712. ggml_set_op_params(result, params, sizeof(params));
  5713. result->op = GGML_OP_POOL_1D;
  5714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5715. result->src[0] = a;
  5716. return result;
  5717. }
  5718. // ggml_pool_2d
  5719. struct ggml_tensor * ggml_pool_2d(
  5720. struct ggml_context * ctx,
  5721. struct ggml_tensor * a,
  5722. enum ggml_op_pool op,
  5723. int k0,
  5724. int k1,
  5725. int s0,
  5726. int s1,
  5727. int p0,
  5728. int p1) {
  5729. bool is_node = false;
  5730. if (a->grad) {
  5731. GGML_ASSERT(false); // TODO: implement backward
  5732. is_node = true;
  5733. }
  5734. const int64_t ne[3] = {
  5735. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5736. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5737. a->ne[2],
  5738. };
  5739. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5740. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5741. ggml_set_op_params(result, params, sizeof(params));
  5742. result->op = GGML_OP_POOL_2D;
  5743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5744. result->src[0] = a;
  5745. return result;
  5746. }
  5747. // ggml_upscale
  5748. static struct ggml_tensor * ggml_upscale_impl(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. int scale_factor) {
  5752. bool is_node = false;
  5753. if (a->grad) {
  5754. GGML_ASSERT(false); // TODO: implement backward
  5755. is_node = true;
  5756. }
  5757. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5758. a->ne[0] * scale_factor,
  5759. a->ne[1] * scale_factor,
  5760. a->ne[2], a->ne[3]);
  5761. result->op = GGML_OP_UPSCALE;
  5762. result->op_params[0] = scale_factor;
  5763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5764. result->src[0] = a;
  5765. result->src[1] = NULL;
  5766. return result;
  5767. }
  5768. struct ggml_tensor * ggml_upscale(
  5769. struct ggml_context * ctx,
  5770. struct ggml_tensor * a,
  5771. int scale_factor) {
  5772. return ggml_upscale_impl(ctx, a, scale_factor);
  5773. }
  5774. // ggml_flash_attn
  5775. struct ggml_tensor * ggml_flash_attn(
  5776. struct ggml_context * ctx,
  5777. struct ggml_tensor * q,
  5778. struct ggml_tensor * k,
  5779. struct ggml_tensor * v,
  5780. bool masked) {
  5781. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5782. // TODO: check if vT can be multiplied by (k*qT)
  5783. bool is_node = false;
  5784. if (q->grad || k->grad || v->grad) {
  5785. is_node = true;
  5786. }
  5787. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5788. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5789. int32_t t = masked ? 1 : 0;
  5790. ggml_set_op_params(result, &t, sizeof(t));
  5791. result->op = GGML_OP_FLASH_ATTN;
  5792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5793. result->src[0] = q;
  5794. result->src[1] = k;
  5795. result->src[2] = v;
  5796. return result;
  5797. }
  5798. // ggml_flash_ff
  5799. struct ggml_tensor * ggml_flash_ff(
  5800. struct ggml_context * ctx,
  5801. struct ggml_tensor * a,
  5802. struct ggml_tensor * b0,
  5803. struct ggml_tensor * b1,
  5804. struct ggml_tensor * c0,
  5805. struct ggml_tensor * c1) {
  5806. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5807. // TODO: more checks
  5808. bool is_node = false;
  5809. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5810. is_node = true;
  5811. }
  5812. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5813. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5814. result->op = GGML_OP_FLASH_FF;
  5815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5816. result->src[0] = a;
  5817. result->src[1] = b0;
  5818. result->src[2] = b1;
  5819. result->src[3] = c0;
  5820. result->src[4] = c1;
  5821. return result;
  5822. }
  5823. // ggml_flash_attn_back
  5824. struct ggml_tensor * ggml_flash_attn_back(
  5825. struct ggml_context * ctx,
  5826. struct ggml_tensor * q,
  5827. struct ggml_tensor * k,
  5828. struct ggml_tensor * v,
  5829. struct ggml_tensor * d,
  5830. bool masked) {
  5831. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5832. // TODO: check if vT can be multiplied by (k*qT)
  5833. // d shape [D,N,ne2,ne3]
  5834. // q shape [D,N,ne2,ne3]
  5835. // k shape [D,M,ne2,ne3]
  5836. // v shape [M,D,ne2,ne3]
  5837. const int64_t D = q->ne[0];
  5838. const int64_t N = q->ne[1];
  5839. const int64_t M = k->ne[1];
  5840. const int64_t ne2 = q->ne[2];
  5841. const int64_t ne3 = q->ne[3];
  5842. GGML_ASSERT(k->ne[0] == D);
  5843. GGML_ASSERT(v->ne[0] == M);
  5844. GGML_ASSERT(v->ne[1] == D);
  5845. GGML_ASSERT(d->ne[0] == D);
  5846. GGML_ASSERT(d->ne[1] == N);
  5847. GGML_ASSERT(k->ne[2] == ne2);
  5848. GGML_ASSERT(k->ne[3] == ne3);
  5849. GGML_ASSERT(v->ne[2] == ne2);
  5850. GGML_ASSERT(v->ne[3] == ne3);
  5851. GGML_ASSERT(d->ne[2] == ne2);
  5852. GGML_ASSERT(d->ne[3] == ne3);
  5853. bool is_node = false;
  5854. if (q->grad || k->grad || v->grad) {
  5855. // when using this operation (in backwards pass) these grads are set.
  5856. // we don't want to create (big) grad of our result, so is_node is false.
  5857. is_node = false;
  5858. }
  5859. // store gradients of q, k and v as continuous tensors concatenated in result.
  5860. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5861. // gradq->data = result->data
  5862. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5863. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5864. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5865. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5866. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5867. int32_t masked_i = masked ? 1 : 0;
  5868. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5869. result->op = GGML_OP_FLASH_ATTN_BACK;
  5870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5871. result->src[0] = q;
  5872. result->src[1] = k;
  5873. result->src[2] = v;
  5874. result->src[3] = d;
  5875. return result;
  5876. }
  5877. // ggml_win_part
  5878. struct ggml_tensor * ggml_win_part(
  5879. struct ggml_context * ctx,
  5880. struct ggml_tensor * a,
  5881. int w) {
  5882. GGML_ASSERT(a->ne[3] == 1);
  5883. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5884. bool is_node = false;
  5885. if (a->grad) {
  5886. GGML_ASSERT(false); // TODO: implement backward
  5887. is_node = true;
  5888. }
  5889. // padding
  5890. const int px = (w - a->ne[1]%w)%w;
  5891. const int py = (w - a->ne[2]%w)%w;
  5892. const int npx = (px + a->ne[1])/w;
  5893. const int npy = (py + a->ne[2])/w;
  5894. const int np = npx*npy;
  5895. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5896. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5897. int32_t params[] = { npx, npy, w };
  5898. ggml_set_op_params(result, params, sizeof(params));
  5899. result->op = GGML_OP_WIN_PART;
  5900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5901. result->src[0] = a;
  5902. return result;
  5903. }
  5904. // ggml_win_unpart
  5905. struct ggml_tensor * ggml_win_unpart(
  5906. struct ggml_context * ctx,
  5907. struct ggml_tensor * a,
  5908. int w0,
  5909. int h0,
  5910. int w) {
  5911. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5912. bool is_node = false;
  5913. if (a->grad) {
  5914. GGML_ASSERT(false); // TODO: implement backward
  5915. is_node = true;
  5916. }
  5917. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5918. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5919. int32_t params[] = { w };
  5920. ggml_set_op_params(result, params, sizeof(params));
  5921. result->op = GGML_OP_WIN_UNPART;
  5922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5923. result->src[0] = a;
  5924. return result;
  5925. }
  5926. // ggml_get_rel_pos
  5927. struct ggml_tensor * ggml_get_rel_pos(
  5928. struct ggml_context * ctx,
  5929. struct ggml_tensor * a,
  5930. int qh,
  5931. int kh) {
  5932. GGML_ASSERT(qh == kh);
  5933. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5934. bool is_node = false;
  5935. if (a->grad) {
  5936. GGML_ASSERT(false); // TODO: implement backward
  5937. is_node = true;
  5938. }
  5939. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5940. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5941. result->op = GGML_OP_GET_REL_POS;
  5942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5943. result->src[0] = a;
  5944. result->src[1] = NULL;
  5945. return result;
  5946. }
  5947. // ggml_add_rel_pos
  5948. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5949. struct ggml_context * ctx,
  5950. struct ggml_tensor * a,
  5951. struct ggml_tensor * pw,
  5952. struct ggml_tensor * ph,
  5953. bool inplace) {
  5954. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5955. GGML_ASSERT(ggml_is_contiguous(a));
  5956. GGML_ASSERT(ggml_is_contiguous(pw));
  5957. GGML_ASSERT(ggml_is_contiguous(ph));
  5958. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5959. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5960. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5961. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5962. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5963. bool is_node = false;
  5964. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5965. is_node = true;
  5966. }
  5967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5968. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5969. result->op = GGML_OP_ADD_REL_POS;
  5970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5971. result->src[0] = a;
  5972. result->src[1] = pw;
  5973. result->src[2] = ph;
  5974. return result;
  5975. }
  5976. struct ggml_tensor * ggml_add_rel_pos(
  5977. struct ggml_context * ctx,
  5978. struct ggml_tensor * a,
  5979. struct ggml_tensor * pw,
  5980. struct ggml_tensor * ph) {
  5981. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5982. }
  5983. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5984. struct ggml_context * ctx,
  5985. struct ggml_tensor * a,
  5986. struct ggml_tensor * pw,
  5987. struct ggml_tensor * ph) {
  5988. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5989. }
  5990. // gmml_unary
  5991. static struct ggml_tensor * ggml_unary_impl(
  5992. struct ggml_context * ctx,
  5993. struct ggml_tensor * a,
  5994. enum ggml_unary_op op,
  5995. bool inplace) {
  5996. bool is_node = false;
  5997. if (!inplace && (a->grad)) {
  5998. is_node = true;
  5999. }
  6000. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6001. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6002. result->op = GGML_OP_UNARY;
  6003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6004. result->src[0] = a;
  6005. return result;
  6006. }
  6007. struct ggml_tensor * ggml_unary(
  6008. struct ggml_context * ctx,
  6009. struct ggml_tensor * a,
  6010. enum ggml_unary_op op) {
  6011. return ggml_unary_impl(ctx, a, op, false);
  6012. }
  6013. struct ggml_tensor * ggml_unary_inplace(
  6014. struct ggml_context * ctx,
  6015. struct ggml_tensor * a,
  6016. enum ggml_unary_op op) {
  6017. return ggml_unary_impl(ctx, a, op, true);
  6018. }
  6019. // ggml_map_unary
  6020. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * a,
  6023. const ggml_unary_op_f32_t fun,
  6024. bool inplace) {
  6025. bool is_node = false;
  6026. if (!inplace && a->grad) {
  6027. is_node = true;
  6028. }
  6029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6030. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6031. result->op = GGML_OP_MAP_UNARY;
  6032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6033. result->src[0] = a;
  6034. return result;
  6035. }
  6036. struct ggml_tensor * ggml_map_unary_f32(
  6037. struct ggml_context * ctx,
  6038. struct ggml_tensor * a,
  6039. const ggml_unary_op_f32_t fun) {
  6040. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6041. }
  6042. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6043. struct ggml_context * ctx,
  6044. struct ggml_tensor * a,
  6045. const ggml_unary_op_f32_t fun) {
  6046. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6047. }
  6048. // ggml_map_binary
  6049. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6050. struct ggml_context * ctx,
  6051. struct ggml_tensor * a,
  6052. struct ggml_tensor * b,
  6053. const ggml_binary_op_f32_t fun,
  6054. bool inplace) {
  6055. GGML_ASSERT(ggml_are_same_shape(a, b));
  6056. bool is_node = false;
  6057. if (!inplace && (a->grad || b->grad)) {
  6058. is_node = true;
  6059. }
  6060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6061. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6062. result->op = GGML_OP_MAP_BINARY;
  6063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6064. result->src[0] = a;
  6065. result->src[1] = b;
  6066. return result;
  6067. }
  6068. struct ggml_tensor * ggml_map_binary_f32(
  6069. struct ggml_context * ctx,
  6070. struct ggml_tensor * a,
  6071. struct ggml_tensor * b,
  6072. const ggml_binary_op_f32_t fun) {
  6073. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6074. }
  6075. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6076. struct ggml_context * ctx,
  6077. struct ggml_tensor * a,
  6078. struct ggml_tensor * b,
  6079. const ggml_binary_op_f32_t fun) {
  6080. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6081. }
  6082. // ggml_map_custom1_f32
  6083. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6084. struct ggml_context * ctx,
  6085. struct ggml_tensor * a,
  6086. const ggml_custom1_op_f32_t fun,
  6087. bool inplace) {
  6088. bool is_node = false;
  6089. if (!inplace && a->grad) {
  6090. is_node = true;
  6091. }
  6092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6093. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6094. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6096. result->src[0] = a;
  6097. return result;
  6098. }
  6099. struct ggml_tensor * ggml_map_custom1_f32(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. const ggml_custom1_op_f32_t fun) {
  6103. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6104. }
  6105. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. const ggml_custom1_op_f32_t fun) {
  6109. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6110. }
  6111. // ggml_map_custom2_f32
  6112. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6113. struct ggml_context * ctx,
  6114. struct ggml_tensor * a,
  6115. struct ggml_tensor * b,
  6116. const ggml_custom2_op_f32_t fun,
  6117. bool inplace) {
  6118. bool is_node = false;
  6119. if (!inplace && (a->grad || b->grad)) {
  6120. is_node = true;
  6121. }
  6122. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6123. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6124. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6126. result->src[0] = a;
  6127. result->src[1] = b;
  6128. return result;
  6129. }
  6130. struct ggml_tensor * ggml_map_custom2_f32(
  6131. struct ggml_context * ctx,
  6132. struct ggml_tensor * a,
  6133. struct ggml_tensor * b,
  6134. const ggml_custom2_op_f32_t fun) {
  6135. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6136. }
  6137. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6138. struct ggml_context * ctx,
  6139. struct ggml_tensor * a,
  6140. struct ggml_tensor * b,
  6141. const ggml_custom2_op_f32_t fun) {
  6142. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6143. }
  6144. // ggml_map_custom3_f32
  6145. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6146. struct ggml_context * ctx,
  6147. struct ggml_tensor * a,
  6148. struct ggml_tensor * b,
  6149. struct ggml_tensor * c,
  6150. const ggml_custom3_op_f32_t fun,
  6151. bool inplace) {
  6152. bool is_node = false;
  6153. if (!inplace && (a->grad || b->grad || c->grad)) {
  6154. is_node = true;
  6155. }
  6156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6157. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6158. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6160. result->src[0] = a;
  6161. result->src[1] = b;
  6162. result->src[2] = c;
  6163. return result;
  6164. }
  6165. struct ggml_tensor * ggml_map_custom3_f32(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. struct ggml_tensor * b,
  6169. struct ggml_tensor * c,
  6170. const ggml_custom3_op_f32_t fun) {
  6171. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6172. }
  6173. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6174. struct ggml_context * ctx,
  6175. struct ggml_tensor * a,
  6176. struct ggml_tensor * b,
  6177. struct ggml_tensor * c,
  6178. const ggml_custom3_op_f32_t fun) {
  6179. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6180. }
  6181. // ggml_map_custom1
  6182. struct ggml_map_custom1_op_params {
  6183. ggml_custom1_op_t fun;
  6184. int n_tasks;
  6185. void * userdata;
  6186. };
  6187. static struct ggml_tensor * ggml_map_custom1_impl(
  6188. struct ggml_context * ctx,
  6189. struct ggml_tensor * a,
  6190. const ggml_custom1_op_t fun,
  6191. int n_tasks,
  6192. void * userdata,
  6193. bool inplace) {
  6194. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6195. bool is_node = false;
  6196. if (!inplace && a->grad) {
  6197. is_node = true;
  6198. }
  6199. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6200. struct ggml_map_custom1_op_params params = {
  6201. /*.fun =*/ fun,
  6202. /*.n_tasks =*/ n_tasks,
  6203. /*.userdata =*/ userdata
  6204. };
  6205. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6206. result->op = GGML_OP_MAP_CUSTOM1;
  6207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6208. result->src[0] = a;
  6209. return result;
  6210. }
  6211. struct ggml_tensor * ggml_map_custom1(
  6212. struct ggml_context * ctx,
  6213. struct ggml_tensor * a,
  6214. const ggml_custom1_op_t fun,
  6215. int n_tasks,
  6216. void * userdata) {
  6217. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6218. }
  6219. struct ggml_tensor * ggml_map_custom1_inplace(
  6220. struct ggml_context * ctx,
  6221. struct ggml_tensor * a,
  6222. const ggml_custom1_op_t fun,
  6223. int n_tasks,
  6224. void * userdata) {
  6225. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6226. }
  6227. // ggml_map_custom2
  6228. struct ggml_map_custom2_op_params {
  6229. ggml_custom2_op_t fun;
  6230. int n_tasks;
  6231. void * userdata;
  6232. };
  6233. static struct ggml_tensor * ggml_map_custom2_impl(
  6234. struct ggml_context * ctx,
  6235. struct ggml_tensor * a,
  6236. struct ggml_tensor * b,
  6237. const ggml_custom2_op_t fun,
  6238. int n_tasks,
  6239. void * userdata,
  6240. bool inplace) {
  6241. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6242. bool is_node = false;
  6243. if (!inplace && (a->grad || b->grad)) {
  6244. is_node = true;
  6245. }
  6246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6247. struct ggml_map_custom2_op_params params = {
  6248. /*.fun =*/ fun,
  6249. /*.n_tasks =*/ n_tasks,
  6250. /*.userdata =*/ userdata
  6251. };
  6252. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6253. result->op = GGML_OP_MAP_CUSTOM2;
  6254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6255. result->src[0] = a;
  6256. result->src[1] = b;
  6257. return result;
  6258. }
  6259. struct ggml_tensor * ggml_map_custom2(
  6260. struct ggml_context * ctx,
  6261. struct ggml_tensor * a,
  6262. struct ggml_tensor * b,
  6263. const ggml_custom2_op_t fun,
  6264. int n_tasks,
  6265. void * userdata) {
  6266. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6267. }
  6268. struct ggml_tensor * ggml_map_custom2_inplace(
  6269. struct ggml_context * ctx,
  6270. struct ggml_tensor * a,
  6271. struct ggml_tensor * b,
  6272. const ggml_custom2_op_t fun,
  6273. int n_tasks,
  6274. void * userdata) {
  6275. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6276. }
  6277. // ggml_map_custom3
  6278. struct ggml_map_custom3_op_params {
  6279. ggml_custom3_op_t fun;
  6280. int n_tasks;
  6281. void * userdata;
  6282. };
  6283. static struct ggml_tensor * ggml_map_custom3_impl(
  6284. struct ggml_context * ctx,
  6285. struct ggml_tensor * a,
  6286. struct ggml_tensor * b,
  6287. struct ggml_tensor * c,
  6288. const ggml_custom3_op_t fun,
  6289. int n_tasks,
  6290. void * userdata,
  6291. bool inplace) {
  6292. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6293. bool is_node = false;
  6294. if (!inplace && (a->grad || b->grad || c->grad)) {
  6295. is_node = true;
  6296. }
  6297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6298. struct ggml_map_custom3_op_params params = {
  6299. /*.fun =*/ fun,
  6300. /*.n_tasks =*/ n_tasks,
  6301. /*.userdata =*/ userdata
  6302. };
  6303. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6304. result->op = GGML_OP_MAP_CUSTOM3;
  6305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6306. result->src[0] = a;
  6307. result->src[1] = b;
  6308. result->src[2] = c;
  6309. return result;
  6310. }
  6311. struct ggml_tensor * ggml_map_custom3(
  6312. struct ggml_context * ctx,
  6313. struct ggml_tensor * a,
  6314. struct ggml_tensor * b,
  6315. struct ggml_tensor * c,
  6316. const ggml_custom3_op_t fun,
  6317. int n_tasks,
  6318. void * userdata) {
  6319. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6320. }
  6321. struct ggml_tensor * ggml_map_custom3_inplace(
  6322. struct ggml_context * ctx,
  6323. struct ggml_tensor * a,
  6324. struct ggml_tensor * b,
  6325. struct ggml_tensor * c,
  6326. const ggml_custom3_op_t fun,
  6327. int n_tasks,
  6328. void * userdata) {
  6329. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6330. }
  6331. // ggml_cross_entropy_loss
  6332. struct ggml_tensor * ggml_cross_entropy_loss(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. struct ggml_tensor * b) {
  6336. GGML_ASSERT(ggml_are_same_shape(a, b));
  6337. bool is_node = false;
  6338. if (a->grad || b->grad) {
  6339. is_node = true;
  6340. }
  6341. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6342. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6344. result->src[0] = a;
  6345. result->src[1] = b;
  6346. return result;
  6347. }
  6348. // ggml_cross_entropy_loss_back
  6349. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6350. struct ggml_context * ctx,
  6351. struct ggml_tensor * a,
  6352. struct ggml_tensor * b,
  6353. struct ggml_tensor * c) {
  6354. GGML_ASSERT(ggml_are_same_shape(a, b));
  6355. GGML_ASSERT(ggml_is_scalar(c));
  6356. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6357. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6358. result->grad = NULL;
  6359. result->src[0] = a;
  6360. result->src[1] = b;
  6361. result->src[2] = c;
  6362. return result;
  6363. }
  6364. ////////////////////////////////////////////////////////////////////////////////
  6365. void ggml_set_param(
  6366. struct ggml_context * ctx,
  6367. struct ggml_tensor * tensor) {
  6368. tensor->is_param = true;
  6369. GGML_ASSERT(tensor->grad == NULL);
  6370. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6371. }
  6372. // ggml_compute_forward_dup
  6373. static void ggml_compute_forward_dup_same_cont(
  6374. const struct ggml_compute_params * params,
  6375. const struct ggml_tensor * src0,
  6376. struct ggml_tensor * dst) {
  6377. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6378. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6379. GGML_ASSERT(src0->type == dst->type);
  6380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6381. return;
  6382. }
  6383. const size_t nb00 = src0->nb[0];
  6384. const size_t nb0 = dst->nb[0];
  6385. const int ith = params->ith; // thread index
  6386. const int nth = params->nth; // number of threads
  6387. // parallelize by elements
  6388. const int ne = ggml_nelements(dst);
  6389. const int dr = (ne + nth - 1) / nth;
  6390. const int ie0 = dr * ith;
  6391. const int ie1 = MIN(ie0 + dr, ne);
  6392. if (ie0 < ie1) {
  6393. memcpy(
  6394. ((char *) dst->data + ie0*nb0),
  6395. ((char *) src0->data + ie0*nb00),
  6396. (ie1 - ie0) * ggml_type_size(src0->type));
  6397. }
  6398. }
  6399. static void ggml_compute_forward_dup_f16(
  6400. const struct ggml_compute_params * params,
  6401. const struct ggml_tensor * src0,
  6402. struct ggml_tensor * dst) {
  6403. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6404. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6405. return;
  6406. }
  6407. GGML_TENSOR_UNARY_OP_LOCALS;
  6408. const int ith = params->ith; // thread index
  6409. const int nth = params->nth; // number of threads
  6410. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6411. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6412. return;
  6413. }
  6414. // parallelize by rows
  6415. const int nr = ne01;
  6416. // number of rows per thread
  6417. const int dr = (nr + nth - 1) / nth;
  6418. // row range for this thread
  6419. const int ir0 = dr * ith;
  6420. const int ir1 = MIN(ir0 + dr, nr);
  6421. if (src0->type == dst->type &&
  6422. ne00 == ne0 &&
  6423. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6424. // copy by rows
  6425. const size_t rs = ne00*nb00;
  6426. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6427. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6428. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6429. memcpy(
  6430. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6431. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6432. rs);
  6433. }
  6434. }
  6435. }
  6436. return;
  6437. }
  6438. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6439. if (ggml_is_contiguous(dst)) {
  6440. if (nb00 == sizeof(ggml_fp16_t)) {
  6441. if (dst->type == GGML_TYPE_F16) {
  6442. size_t id = 0;
  6443. const size_t rs = ne00 * nb00;
  6444. char * dst_ptr = (char *) dst->data;
  6445. for (int i03 = 0; i03 < ne03; i03++) {
  6446. for (int i02 = 0; i02 < ne02; i02++) {
  6447. id += rs * ir0;
  6448. for (int i01 = ir0; i01 < ir1; i01++) {
  6449. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6450. memcpy(dst_ptr + id, src0_ptr, rs);
  6451. id += rs;
  6452. }
  6453. id += rs * (ne01 - ir1);
  6454. }
  6455. }
  6456. } else if (dst->type == GGML_TYPE_F32) {
  6457. size_t id = 0;
  6458. float * dst_ptr = (float *) dst->data;
  6459. for (int i03 = 0; i03 < ne03; i03++) {
  6460. for (int i02 = 0; i02 < ne02; i02++) {
  6461. id += ne00 * ir0;
  6462. for (int i01 = ir0; i01 < ir1; i01++) {
  6463. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6464. for (int i00 = 0; i00 < ne00; i00++) {
  6465. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6466. id++;
  6467. }
  6468. }
  6469. id += ne00 * (ne01 - ir1);
  6470. }
  6471. }
  6472. } else if (type_traits[dst->type].from_float) {
  6473. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6474. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6475. size_t id = 0;
  6476. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6477. char * dst_ptr = (char *) dst->data;
  6478. for (int i03 = 0; i03 < ne03; i03++) {
  6479. for (int i02 = 0; i02 < ne02; i02++) {
  6480. id += rs * ir0;
  6481. for (int i01 = ir0; i01 < ir1; i01++) {
  6482. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6483. for (int i00 = 0; i00 < ne00; i00++) {
  6484. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6485. }
  6486. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6487. id += rs;
  6488. }
  6489. id += rs * (ne01 - ir1);
  6490. }
  6491. }
  6492. } else {
  6493. GGML_ASSERT(false); // TODO: implement
  6494. }
  6495. } else {
  6496. //printf("%s: this is not optimal - fix me\n", __func__);
  6497. if (dst->type == GGML_TYPE_F32) {
  6498. size_t id = 0;
  6499. float * dst_ptr = (float *) dst->data;
  6500. for (int i03 = 0; i03 < ne03; i03++) {
  6501. for (int i02 = 0; i02 < ne02; i02++) {
  6502. id += ne00 * ir0;
  6503. for (int i01 = ir0; i01 < ir1; i01++) {
  6504. for (int i00 = 0; i00 < ne00; i00++) {
  6505. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6506. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6507. id++;
  6508. }
  6509. }
  6510. id += ne00 * (ne01 - ir1);
  6511. }
  6512. }
  6513. } else if (dst->type == GGML_TYPE_F16) {
  6514. size_t id = 0;
  6515. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6516. for (int i03 = 0; i03 < ne03; i03++) {
  6517. for (int i02 = 0; i02 < ne02; i02++) {
  6518. id += ne00 * ir0;
  6519. for (int i01 = ir0; i01 < ir1; i01++) {
  6520. for (int i00 = 0; i00 < ne00; i00++) {
  6521. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6522. dst_ptr[id] = *src0_ptr;
  6523. id++;
  6524. }
  6525. }
  6526. id += ne00 * (ne01 - ir1);
  6527. }
  6528. }
  6529. } else {
  6530. GGML_ASSERT(false); // TODO: implement
  6531. }
  6532. }
  6533. return;
  6534. }
  6535. // dst counters
  6536. int64_t i10 = 0;
  6537. int64_t i11 = 0;
  6538. int64_t i12 = 0;
  6539. int64_t i13 = 0;
  6540. if (dst->type == GGML_TYPE_F16) {
  6541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6543. i10 += ne00 * ir0;
  6544. while (i10 >= ne0) {
  6545. i10 -= ne0;
  6546. if (++i11 == ne1) {
  6547. i11 = 0;
  6548. if (++i12 == ne2) {
  6549. i12 = 0;
  6550. if (++i13 == ne3) {
  6551. i13 = 0;
  6552. }
  6553. }
  6554. }
  6555. }
  6556. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6557. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6558. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6559. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6560. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6561. if (++i10 == ne00) {
  6562. i10 = 0;
  6563. if (++i11 == ne01) {
  6564. i11 = 0;
  6565. if (++i12 == ne02) {
  6566. i12 = 0;
  6567. if (++i13 == ne03) {
  6568. i13 = 0;
  6569. }
  6570. }
  6571. }
  6572. }
  6573. }
  6574. }
  6575. i10 += ne00 * (ne01 - ir1);
  6576. while (i10 >= ne0) {
  6577. i10 -= ne0;
  6578. if (++i11 == ne1) {
  6579. i11 = 0;
  6580. if (++i12 == ne2) {
  6581. i12 = 0;
  6582. if (++i13 == ne3) {
  6583. i13 = 0;
  6584. }
  6585. }
  6586. }
  6587. }
  6588. }
  6589. }
  6590. } else if (dst->type == GGML_TYPE_F32) {
  6591. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6592. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6593. i10 += ne00 * ir0;
  6594. while (i10 >= ne0) {
  6595. i10 -= ne0;
  6596. if (++i11 == ne1) {
  6597. i11 = 0;
  6598. if (++i12 == ne2) {
  6599. i12 = 0;
  6600. if (++i13 == ne3) {
  6601. i13 = 0;
  6602. }
  6603. }
  6604. }
  6605. }
  6606. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6607. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6608. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6609. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6610. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6611. if (++i10 == ne0) {
  6612. i10 = 0;
  6613. if (++i11 == ne1) {
  6614. i11 = 0;
  6615. if (++i12 == ne2) {
  6616. i12 = 0;
  6617. if (++i13 == ne3) {
  6618. i13 = 0;
  6619. }
  6620. }
  6621. }
  6622. }
  6623. }
  6624. }
  6625. i10 += ne00 * (ne01 - ir1);
  6626. while (i10 >= ne0) {
  6627. i10 -= ne0;
  6628. if (++i11 == ne1) {
  6629. i11 = 0;
  6630. if (++i12 == ne2) {
  6631. i12 = 0;
  6632. if (++i13 == ne3) {
  6633. i13 = 0;
  6634. }
  6635. }
  6636. }
  6637. }
  6638. }
  6639. }
  6640. } else {
  6641. GGML_ASSERT(false); // TODO: implement
  6642. }
  6643. }
  6644. static void ggml_compute_forward_dup_f32(
  6645. const struct ggml_compute_params * params,
  6646. const struct ggml_tensor * src0,
  6647. struct ggml_tensor * dst) {
  6648. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6650. return;
  6651. }
  6652. GGML_TENSOR_UNARY_OP_LOCALS;
  6653. const int ith = params->ith; // thread index
  6654. const int nth = params->nth; // number of threads
  6655. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6656. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6657. return;
  6658. }
  6659. // parallelize by rows
  6660. const int nr = ne01;
  6661. // number of rows per thread
  6662. const int dr = (nr + nth - 1) / nth;
  6663. // row range for this thread
  6664. const int ir0 = dr * ith;
  6665. const int ir1 = MIN(ir0 + dr, nr);
  6666. if (src0->type == dst->type &&
  6667. ne00 == ne0 &&
  6668. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6669. // copy by rows
  6670. const size_t rs = ne00*nb00;
  6671. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6672. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6673. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6674. memcpy(
  6675. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6676. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6677. rs);
  6678. }
  6679. }
  6680. }
  6681. return;
  6682. }
  6683. if (ggml_is_contiguous(dst)) {
  6684. // TODO: simplify
  6685. if (nb00 == sizeof(float)) {
  6686. if (dst->type == GGML_TYPE_F32) {
  6687. size_t id = 0;
  6688. const size_t rs = ne00 * nb00;
  6689. char * dst_ptr = (char *) dst->data;
  6690. for (int i03 = 0; i03 < ne03; i03++) {
  6691. for (int i02 = 0; i02 < ne02; i02++) {
  6692. id += rs * ir0;
  6693. for (int i01 = ir0; i01 < ir1; i01++) {
  6694. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6695. memcpy(dst_ptr + id, src0_ptr, rs);
  6696. id += rs;
  6697. }
  6698. id += rs * (ne01 - ir1);
  6699. }
  6700. }
  6701. } else if (type_traits[dst->type].from_float) {
  6702. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6703. size_t id = 0;
  6704. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6705. char * dst_ptr = (char *) dst->data;
  6706. for (int i03 = 0; i03 < ne03; i03++) {
  6707. for (int i02 = 0; i02 < ne02; i02++) {
  6708. id += rs * ir0;
  6709. for (int i01 = ir0; i01 < ir1; i01++) {
  6710. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6711. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6712. id += rs;
  6713. }
  6714. id += rs * (ne01 - ir1);
  6715. }
  6716. }
  6717. } else {
  6718. GGML_ASSERT(false); // TODO: implement
  6719. }
  6720. } else {
  6721. //printf("%s: this is not optimal - fix me\n", __func__);
  6722. if (dst->type == GGML_TYPE_F32) {
  6723. size_t id = 0;
  6724. float * dst_ptr = (float *) dst->data;
  6725. for (int i03 = 0; i03 < ne03; i03++) {
  6726. for (int i02 = 0; i02 < ne02; i02++) {
  6727. id += ne00 * ir0;
  6728. for (int i01 = ir0; i01 < ir1; i01++) {
  6729. for (int i00 = 0; i00 < ne00; i00++) {
  6730. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6731. dst_ptr[id] = *src0_ptr;
  6732. id++;
  6733. }
  6734. }
  6735. id += ne00 * (ne01 - ir1);
  6736. }
  6737. }
  6738. } else if (dst->type == GGML_TYPE_F16) {
  6739. size_t id = 0;
  6740. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6741. for (int i03 = 0; i03 < ne03; i03++) {
  6742. for (int i02 = 0; i02 < ne02; i02++) {
  6743. id += ne00 * ir0;
  6744. for (int i01 = ir0; i01 < ir1; i01++) {
  6745. for (int i00 = 0; i00 < ne00; i00++) {
  6746. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6747. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6748. id++;
  6749. }
  6750. }
  6751. id += ne00 * (ne01 - ir1);
  6752. }
  6753. }
  6754. } else {
  6755. GGML_ASSERT(false); // TODO: implement
  6756. }
  6757. }
  6758. return;
  6759. }
  6760. // dst counters
  6761. int64_t i10 = 0;
  6762. int64_t i11 = 0;
  6763. int64_t i12 = 0;
  6764. int64_t i13 = 0;
  6765. if (dst->type == GGML_TYPE_F32) {
  6766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6768. i10 += ne00 * ir0;
  6769. while (i10 >= ne0) {
  6770. i10 -= ne0;
  6771. if (++i11 == ne1) {
  6772. i11 = 0;
  6773. if (++i12 == ne2) {
  6774. i12 = 0;
  6775. if (++i13 == ne3) {
  6776. i13 = 0;
  6777. }
  6778. }
  6779. }
  6780. }
  6781. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6782. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6783. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6784. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6785. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6786. if (++i10 == ne0) {
  6787. i10 = 0;
  6788. if (++i11 == ne1) {
  6789. i11 = 0;
  6790. if (++i12 == ne2) {
  6791. i12 = 0;
  6792. if (++i13 == ne3) {
  6793. i13 = 0;
  6794. }
  6795. }
  6796. }
  6797. }
  6798. }
  6799. }
  6800. i10 += ne00 * (ne01 - ir1);
  6801. while (i10 >= ne0) {
  6802. i10 -= ne0;
  6803. if (++i11 == ne1) {
  6804. i11 = 0;
  6805. if (++i12 == ne2) {
  6806. i12 = 0;
  6807. if (++i13 == ne3) {
  6808. i13 = 0;
  6809. }
  6810. }
  6811. }
  6812. }
  6813. }
  6814. }
  6815. } else if (dst->type == GGML_TYPE_F16) {
  6816. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6817. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6818. i10 += ne00 * ir0;
  6819. while (i10 >= ne0) {
  6820. i10 -= ne0;
  6821. if (++i11 == ne1) {
  6822. i11 = 0;
  6823. if (++i12 == ne2) {
  6824. i12 = 0;
  6825. if (++i13 == ne3) {
  6826. i13 = 0;
  6827. }
  6828. }
  6829. }
  6830. }
  6831. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6832. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6833. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6834. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6835. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6836. if (++i10 == ne0) {
  6837. i10 = 0;
  6838. if (++i11 == ne1) {
  6839. i11 = 0;
  6840. if (++i12 == ne2) {
  6841. i12 = 0;
  6842. if (++i13 == ne3) {
  6843. i13 = 0;
  6844. }
  6845. }
  6846. }
  6847. }
  6848. }
  6849. }
  6850. i10 += ne00 * (ne01 - ir1);
  6851. while (i10 >= ne0) {
  6852. i10 -= ne0;
  6853. if (++i11 == ne1) {
  6854. i11 = 0;
  6855. if (++i12 == ne2) {
  6856. i12 = 0;
  6857. if (++i13 == ne3) {
  6858. i13 = 0;
  6859. }
  6860. }
  6861. }
  6862. }
  6863. }
  6864. }
  6865. } else {
  6866. GGML_ASSERT(false); // TODO: implement
  6867. }
  6868. }
  6869. static void ggml_compute_forward_dup(
  6870. const struct ggml_compute_params * params,
  6871. const struct ggml_tensor * src0,
  6872. struct ggml_tensor * dst) {
  6873. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6874. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6875. return;
  6876. }
  6877. switch (src0->type) {
  6878. case GGML_TYPE_F16:
  6879. {
  6880. ggml_compute_forward_dup_f16(params, src0, dst);
  6881. } break;
  6882. case GGML_TYPE_F32:
  6883. {
  6884. ggml_compute_forward_dup_f32(params, src0, dst);
  6885. } break;
  6886. default:
  6887. {
  6888. GGML_ASSERT(false);
  6889. } break;
  6890. }
  6891. }
  6892. // ggml_compute_forward_add
  6893. static void ggml_compute_forward_add_f32(
  6894. const struct ggml_compute_params * params,
  6895. const struct ggml_tensor * src0,
  6896. const struct ggml_tensor * src1,
  6897. struct ggml_tensor * dst) {
  6898. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6900. return;
  6901. }
  6902. const int ith = params->ith;
  6903. const int nth = params->nth;
  6904. const int nr = ggml_nrows(src0);
  6905. GGML_TENSOR_BINARY_OP_LOCALS;
  6906. GGML_ASSERT( nb0 == sizeof(float));
  6907. GGML_ASSERT(nb00 == sizeof(float));
  6908. // rows per thread
  6909. const int dr = (nr + nth - 1)/nth;
  6910. // row range for this thread
  6911. const int ir0 = dr*ith;
  6912. const int ir1 = MIN(ir0 + dr, nr);
  6913. if (nb10 == sizeof(float)) {
  6914. for (int ir = ir0; ir < ir1; ++ir) {
  6915. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6916. const int64_t i03 = ir/(ne02*ne01);
  6917. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6918. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6919. const int64_t i13 = i03 % ne13;
  6920. const int64_t i12 = i02 % ne12;
  6921. const int64_t i11 = i01 % ne11;
  6922. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6923. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6924. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6925. #ifdef GGML_USE_ACCELERATE
  6926. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6927. #else
  6928. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6929. #endif
  6930. // }
  6931. // }
  6932. }
  6933. } else {
  6934. // src1 is not contiguous
  6935. for (int ir = ir0; ir < ir1; ++ir) {
  6936. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6937. const int64_t i03 = ir/(ne02*ne01);
  6938. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6939. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6940. const int64_t i13 = i03 % ne13;
  6941. const int64_t i12 = i02 % ne12;
  6942. const int64_t i11 = i01 % ne11;
  6943. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6944. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6945. for (int i0 = 0; i0 < ne0; i0++) {
  6946. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6947. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6948. }
  6949. }
  6950. }
  6951. }
  6952. static void ggml_compute_forward_add_f16_f32(
  6953. const struct ggml_compute_params * params,
  6954. const struct ggml_tensor * src0,
  6955. const struct ggml_tensor * src1,
  6956. struct ggml_tensor * dst) {
  6957. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6959. return;
  6960. }
  6961. const int ith = params->ith;
  6962. const int nth = params->nth;
  6963. const int nr = ggml_nrows(src0);
  6964. GGML_TENSOR_BINARY_OP_LOCALS;
  6965. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6966. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6967. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6968. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6969. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6970. // rows per thread
  6971. const int dr = (nr + nth - 1)/nth;
  6972. // row range for this thread
  6973. const int ir0 = dr*ith;
  6974. const int ir1 = MIN(ir0 + dr, nr);
  6975. if (nb10 == sizeof(float)) {
  6976. for (int ir = ir0; ir < ir1; ++ir) {
  6977. // src0, src1 and dst are same shape => same indices
  6978. const int i3 = ir/(ne2*ne1);
  6979. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6980. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6981. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6982. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6983. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6984. for (int i = 0; i < ne0; i++) {
  6985. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6986. }
  6987. }
  6988. }
  6989. else {
  6990. // src1 is not contiguous
  6991. GGML_ASSERT(false);
  6992. }
  6993. }
  6994. static void ggml_compute_forward_add_f16_f16(
  6995. const struct ggml_compute_params * params,
  6996. const struct ggml_tensor * src0,
  6997. const struct ggml_tensor * src1,
  6998. struct ggml_tensor * dst) {
  6999. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7001. return;
  7002. }
  7003. const int ith = params->ith;
  7004. const int nth = params->nth;
  7005. const int nr = ggml_nrows(src0);
  7006. GGML_TENSOR_BINARY_OP_LOCALS;
  7007. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7008. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7009. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7010. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7011. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7012. // rows per thread
  7013. const int dr = (nr + nth - 1)/nth;
  7014. // row range for this thread
  7015. const int ir0 = dr*ith;
  7016. const int ir1 = MIN(ir0 + dr, nr);
  7017. if (nb10 == sizeof(ggml_fp16_t)) {
  7018. for (int ir = ir0; ir < ir1; ++ir) {
  7019. // src0, src1 and dst are same shape => same indices
  7020. const int i3 = ir/(ne2*ne1);
  7021. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7022. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7023. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7024. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7025. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7026. for (int i = 0; i < ne0; i++) {
  7027. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7028. }
  7029. }
  7030. }
  7031. else {
  7032. // src1 is not contiguous
  7033. GGML_ASSERT(false);
  7034. }
  7035. }
  7036. static void ggml_compute_forward_add_q_f32(
  7037. const struct ggml_compute_params * params,
  7038. const struct ggml_tensor * src0,
  7039. const struct ggml_tensor * src1,
  7040. struct ggml_tensor * dst) {
  7041. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7043. return;
  7044. }
  7045. const int nr = ggml_nrows(src0);
  7046. GGML_TENSOR_BINARY_OP_LOCALS;
  7047. const int ith = params->ith;
  7048. const int nth = params->nth;
  7049. const enum ggml_type type = src0->type;
  7050. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7051. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7052. // we don't support permuted src0 or src1
  7053. GGML_ASSERT(nb00 == ggml_type_size(type));
  7054. GGML_ASSERT(nb10 == sizeof(float));
  7055. // dst cannot be transposed or permuted
  7056. GGML_ASSERT(nb0 <= nb1);
  7057. GGML_ASSERT(nb1 <= nb2);
  7058. GGML_ASSERT(nb2 <= nb3);
  7059. GGML_ASSERT(ggml_is_quantized(src0->type));
  7060. GGML_ASSERT(dst->type == src0->type);
  7061. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7062. // rows per thread
  7063. const int dr = (nr + nth - 1)/nth;
  7064. // row range for this thread
  7065. const int ir0 = dr*ith;
  7066. const int ir1 = MIN(ir0 + dr, nr);
  7067. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7068. for (int ir = ir0; ir < ir1; ++ir) {
  7069. // src0 indices
  7070. const int i03 = ir/(ne02*ne01);
  7071. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7072. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7073. // src1 and dst are same shape as src0 => same indices
  7074. const int i13 = i03;
  7075. const int i12 = i02;
  7076. const int i11 = i01;
  7077. const int i3 = i03;
  7078. const int i2 = i02;
  7079. const int i1 = i01;
  7080. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7081. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7082. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7083. assert(ne00 % 32 == 0);
  7084. // unquantize row from src0 to temp buffer
  7085. dequantize_row_q(src0_row, wdata, ne00);
  7086. // add src1
  7087. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7088. // quantize row to dst
  7089. quantize_row_q(wdata, dst_row, ne00);
  7090. }
  7091. }
  7092. static void ggml_compute_forward_add(
  7093. const struct ggml_compute_params * params,
  7094. const struct ggml_tensor * src0,
  7095. const struct ggml_tensor * src1,
  7096. struct ggml_tensor * dst) {
  7097. switch (src0->type) {
  7098. case GGML_TYPE_F32:
  7099. {
  7100. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7101. } break;
  7102. case GGML_TYPE_F16:
  7103. {
  7104. if (src1->type == GGML_TYPE_F16) {
  7105. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7106. }
  7107. else if (src1->type == GGML_TYPE_F32) {
  7108. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7109. }
  7110. else {
  7111. GGML_ASSERT(false);
  7112. }
  7113. } break;
  7114. case GGML_TYPE_Q4_0:
  7115. case GGML_TYPE_Q4_1:
  7116. case GGML_TYPE_Q5_0:
  7117. case GGML_TYPE_Q5_1:
  7118. case GGML_TYPE_Q8_0:
  7119. case GGML_TYPE_Q2_K:
  7120. case GGML_TYPE_Q3_K:
  7121. case GGML_TYPE_Q4_K:
  7122. case GGML_TYPE_Q5_K:
  7123. case GGML_TYPE_Q6_K:
  7124. {
  7125. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7126. } break;
  7127. default:
  7128. {
  7129. GGML_ASSERT(false);
  7130. } break;
  7131. }
  7132. }
  7133. // ggml_compute_forward_add1
  7134. static void ggml_compute_forward_add1_f32(
  7135. const struct ggml_compute_params * params,
  7136. const struct ggml_tensor * src0,
  7137. const struct ggml_tensor * src1,
  7138. struct ggml_tensor * dst) {
  7139. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7140. GGML_ASSERT(ggml_is_scalar(src1));
  7141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7142. return;
  7143. }
  7144. const int ith = params->ith;
  7145. const int nth = params->nth;
  7146. const int nr = ggml_nrows(src0);
  7147. GGML_TENSOR_UNARY_OP_LOCALS;
  7148. GGML_ASSERT( nb0 == sizeof(float));
  7149. GGML_ASSERT(nb00 == sizeof(float));
  7150. // rows per thread
  7151. const int dr = (nr + nth - 1)/nth;
  7152. // row range for this thread
  7153. const int ir0 = dr*ith;
  7154. const int ir1 = MIN(ir0 + dr, nr);
  7155. for (int ir = ir0; ir < ir1; ++ir) {
  7156. // src0 and dst are same shape => same indices
  7157. const int i3 = ir/(ne2*ne1);
  7158. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7159. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7160. #ifdef GGML_USE_ACCELERATE
  7161. UNUSED(ggml_vec_add1_f32);
  7162. vDSP_vadd(
  7163. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7164. (float *) ((char *) src1->data), 0,
  7165. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7166. ne0);
  7167. #else
  7168. ggml_vec_add1_f32(ne0,
  7169. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7170. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7171. *(float *) src1->data);
  7172. #endif
  7173. }
  7174. }
  7175. static void ggml_compute_forward_add1_f16_f32(
  7176. const struct ggml_compute_params * params,
  7177. const struct ggml_tensor * src0,
  7178. const struct ggml_tensor * src1,
  7179. struct ggml_tensor * dst) {
  7180. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7181. GGML_ASSERT(ggml_is_scalar(src1));
  7182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7183. return;
  7184. }
  7185. // scalar to add
  7186. const float v = *(float *) src1->data;
  7187. const int ith = params->ith;
  7188. const int nth = params->nth;
  7189. const int nr = ggml_nrows(src0);
  7190. GGML_TENSOR_UNARY_OP_LOCALS;
  7191. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7192. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7193. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7194. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7195. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7196. // rows per thread
  7197. const int dr = (nr + nth - 1)/nth;
  7198. // row range for this thread
  7199. const int ir0 = dr*ith;
  7200. const int ir1 = MIN(ir0 + dr, nr);
  7201. for (int ir = ir0; ir < ir1; ++ir) {
  7202. // src0 and dst are same shape => same indices
  7203. const int i3 = ir/(ne2*ne1);
  7204. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7205. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7206. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7207. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7208. for (int i = 0; i < ne0; i++) {
  7209. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7210. }
  7211. }
  7212. }
  7213. static void ggml_compute_forward_add1_f16_f16(
  7214. const struct ggml_compute_params * params,
  7215. const struct ggml_tensor * src0,
  7216. const struct ggml_tensor * src1,
  7217. struct ggml_tensor * dst) {
  7218. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7219. GGML_ASSERT(ggml_is_scalar(src1));
  7220. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7221. return;
  7222. }
  7223. // scalar to add
  7224. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7225. const int ith = params->ith;
  7226. const int nth = params->nth;
  7227. const int nr = ggml_nrows(src0);
  7228. GGML_TENSOR_UNARY_OP_LOCALS;
  7229. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7230. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7231. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7232. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7233. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7234. // rows per thread
  7235. const int dr = (nr + nth - 1)/nth;
  7236. // row range for this thread
  7237. const int ir0 = dr*ith;
  7238. const int ir1 = MIN(ir0 + dr, nr);
  7239. for (int ir = ir0; ir < ir1; ++ir) {
  7240. // src0 and dst are same shape => same indices
  7241. const int i3 = ir/(ne2*ne1);
  7242. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7243. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7244. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7245. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7246. for (int i = 0; i < ne0; i++) {
  7247. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7248. }
  7249. }
  7250. }
  7251. static void ggml_compute_forward_add1_q_f32(
  7252. const struct ggml_compute_params * params,
  7253. const struct ggml_tensor * src0,
  7254. const struct ggml_tensor * src1,
  7255. struct ggml_tensor * dst) {
  7256. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7257. GGML_ASSERT(ggml_is_scalar(src1));
  7258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7259. return;
  7260. }
  7261. // scalar to add
  7262. const float v = *(float *) src1->data;
  7263. const int ith = params->ith;
  7264. const int nth = params->nth;
  7265. const int nr = ggml_nrows(src0);
  7266. GGML_TENSOR_UNARY_OP_LOCALS;
  7267. const enum ggml_type type = src0->type;
  7268. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7269. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7270. // we don't support permuted src0
  7271. GGML_ASSERT(nb00 == ggml_type_size(type));
  7272. // dst cannot be transposed or permuted
  7273. GGML_ASSERT(nb0 <= nb1);
  7274. GGML_ASSERT(nb1 <= nb2);
  7275. GGML_ASSERT(nb2 <= nb3);
  7276. GGML_ASSERT(ggml_is_quantized(src0->type));
  7277. GGML_ASSERT(dst->type == src0->type);
  7278. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7279. // rows per thread
  7280. const int dr = (nr + nth - 1)/nth;
  7281. // row range for this thread
  7282. const int ir0 = dr*ith;
  7283. const int ir1 = MIN(ir0 + dr, nr);
  7284. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7285. for (int ir = ir0; ir < ir1; ++ir) {
  7286. // src0 and dst are same shape => same indices
  7287. const int i3 = ir/(ne2*ne1);
  7288. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7289. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7290. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7291. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7292. assert(ne0 % 32 == 0);
  7293. // unquantize row from src0 to temp buffer
  7294. dequantize_row_q(src0_row, wdata, ne0);
  7295. // add src1
  7296. ggml_vec_acc1_f32(ne0, wdata, v);
  7297. // quantize row to dst
  7298. quantize_row_q(wdata, dst_row, ne0);
  7299. }
  7300. }
  7301. static void ggml_compute_forward_add1(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. const struct ggml_tensor * src1,
  7305. struct ggml_tensor * dst) {
  7306. switch (src0->type) {
  7307. case GGML_TYPE_F32:
  7308. {
  7309. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7310. } break;
  7311. case GGML_TYPE_F16:
  7312. {
  7313. if (src1->type == GGML_TYPE_F16) {
  7314. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7315. }
  7316. else if (src1->type == GGML_TYPE_F32) {
  7317. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7318. }
  7319. else {
  7320. GGML_ASSERT(false);
  7321. }
  7322. } break;
  7323. case GGML_TYPE_Q4_0:
  7324. case GGML_TYPE_Q4_1:
  7325. case GGML_TYPE_Q5_0:
  7326. case GGML_TYPE_Q5_1:
  7327. case GGML_TYPE_Q8_0:
  7328. case GGML_TYPE_Q8_1:
  7329. case GGML_TYPE_Q2_K:
  7330. case GGML_TYPE_Q3_K:
  7331. case GGML_TYPE_Q4_K:
  7332. case GGML_TYPE_Q5_K:
  7333. case GGML_TYPE_Q6_K:
  7334. {
  7335. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7336. } break;
  7337. default:
  7338. {
  7339. GGML_ASSERT(false);
  7340. } break;
  7341. }
  7342. }
  7343. // ggml_compute_forward_acc
  7344. static void ggml_compute_forward_acc_f32(
  7345. const struct ggml_compute_params * params,
  7346. const struct ggml_tensor * src0,
  7347. const struct ggml_tensor * src1,
  7348. struct ggml_tensor * dst) {
  7349. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7350. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7351. // view src0 and dst with these strides and data offset inbytes during acc
  7352. // nb0 is implicitely element_size because src0 and dst are contiguous
  7353. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7354. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7355. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7356. size_t offset = ((int32_t *) dst->op_params)[3];
  7357. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7358. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7359. // memcpy needs to be synchronized across threads to avoid race conditions.
  7360. // => do it in INIT phase
  7361. memcpy(
  7362. ((char *) dst->data),
  7363. ((char *) src0->data),
  7364. ggml_nbytes(dst));
  7365. }
  7366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7367. return;
  7368. }
  7369. const int ith = params->ith;
  7370. const int nth = params->nth;
  7371. const int nr = ggml_nrows(src1);
  7372. const int nc = src1->ne[0];
  7373. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7374. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7375. // src0 and dst as viewed during acc
  7376. const size_t nb0 = ggml_element_size(src0);
  7377. const size_t nb00 = nb0;
  7378. const size_t nb01 = nb1;
  7379. const size_t nb02 = nb2;
  7380. const size_t nb03 = nb3;
  7381. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7382. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7383. GGML_ASSERT(nb10 == sizeof(float));
  7384. // rows per thread
  7385. const int dr = (nr + nth - 1)/nth;
  7386. // row range for this thread
  7387. const int ir0 = dr*ith;
  7388. const int ir1 = MIN(ir0 + dr, nr);
  7389. for (int ir = ir0; ir < ir1; ++ir) {
  7390. // src0 and dst are viewed with shape of src1 and offset
  7391. // => same indices
  7392. const int i3 = ir/(ne12*ne11);
  7393. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7394. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7395. #ifdef GGML_USE_ACCELERATE
  7396. vDSP_vadd(
  7397. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7398. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7399. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7400. #else
  7401. ggml_vec_add_f32(nc,
  7402. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7403. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7404. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7405. #endif
  7406. }
  7407. }
  7408. static void ggml_compute_forward_acc(
  7409. const struct ggml_compute_params * params,
  7410. const struct ggml_tensor * src0,
  7411. const struct ggml_tensor * src1,
  7412. struct ggml_tensor * dst) {
  7413. switch (src0->type) {
  7414. case GGML_TYPE_F32:
  7415. {
  7416. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7417. } break;
  7418. case GGML_TYPE_F16:
  7419. case GGML_TYPE_Q4_0:
  7420. case GGML_TYPE_Q4_1:
  7421. case GGML_TYPE_Q5_0:
  7422. case GGML_TYPE_Q5_1:
  7423. case GGML_TYPE_Q8_0:
  7424. case GGML_TYPE_Q8_1:
  7425. case GGML_TYPE_Q2_K:
  7426. case GGML_TYPE_Q3_K:
  7427. case GGML_TYPE_Q4_K:
  7428. case GGML_TYPE_Q5_K:
  7429. case GGML_TYPE_Q6_K:
  7430. default:
  7431. {
  7432. GGML_ASSERT(false);
  7433. } break;
  7434. }
  7435. }
  7436. // ggml_compute_forward_sub
  7437. static void ggml_compute_forward_sub_f32(
  7438. const struct ggml_compute_params * params,
  7439. const struct ggml_tensor * src0,
  7440. const struct ggml_tensor * src1,
  7441. struct ggml_tensor * dst) {
  7442. assert(params->ith == 0);
  7443. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7444. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7445. return;
  7446. }
  7447. const int nr = ggml_nrows(src0);
  7448. GGML_TENSOR_BINARY_OP_LOCALS;
  7449. GGML_ASSERT( nb0 == sizeof(float));
  7450. GGML_ASSERT(nb00 == sizeof(float));
  7451. if (nb10 == sizeof(float)) {
  7452. for (int ir = 0; ir < nr; ++ir) {
  7453. // src0, src1 and dst are same shape => same indices
  7454. const int i3 = ir/(ne2*ne1);
  7455. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7456. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7457. #ifdef GGML_USE_ACCELERATE
  7458. vDSP_vsub(
  7459. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7460. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7461. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7462. ne0);
  7463. #else
  7464. ggml_vec_sub_f32(ne0,
  7465. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7466. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7467. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7468. #endif
  7469. // }
  7470. // }
  7471. }
  7472. } else {
  7473. // src1 is not contiguous
  7474. for (int ir = 0; ir < nr; ++ir) {
  7475. // src0, src1 and dst are same shape => same indices
  7476. const int i3 = ir/(ne2*ne1);
  7477. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7478. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7479. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7480. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7481. for (int i0 = 0; i0 < ne0; i0++) {
  7482. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7483. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7484. }
  7485. }
  7486. }
  7487. }
  7488. static void ggml_compute_forward_sub(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. const struct ggml_tensor * src1,
  7492. struct ggml_tensor * dst) {
  7493. switch (src0->type) {
  7494. case GGML_TYPE_F32:
  7495. {
  7496. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7497. } break;
  7498. default:
  7499. {
  7500. GGML_ASSERT(false);
  7501. } break;
  7502. }
  7503. }
  7504. // ggml_compute_forward_mul
  7505. static void ggml_compute_forward_mul_f32(
  7506. const struct ggml_compute_params * params,
  7507. const struct ggml_tensor * src0,
  7508. const struct ggml_tensor * src1,
  7509. struct ggml_tensor * dst) {
  7510. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7512. return;
  7513. }
  7514. const int ith = params->ith;
  7515. const int nth = params->nth;
  7516. #ifdef GGML_USE_CLBLAST
  7517. if (src1->backend == GGML_BACKEND_GPU) {
  7518. if (ith == 0) {
  7519. ggml_cl_mul(src0, src1, dst);
  7520. }
  7521. return;
  7522. }
  7523. #endif
  7524. const int64_t nr = ggml_nrows(src0);
  7525. GGML_TENSOR_BINARY_OP_LOCALS;
  7526. GGML_ASSERT( nb0 == sizeof(float));
  7527. GGML_ASSERT(nb00 == sizeof(float));
  7528. GGML_ASSERT(ne00 == ne10);
  7529. if (nb10 == sizeof(float)) {
  7530. for (int64_t ir = ith; ir < nr; ir += nth) {
  7531. // src0 and dst are same shape => same indices
  7532. const int64_t i03 = ir/(ne02*ne01);
  7533. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7534. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7535. const int64_t i13 = i03 % ne13;
  7536. const int64_t i12 = i02 % ne12;
  7537. const int64_t i11 = i01 % ne11;
  7538. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7539. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7540. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7541. #ifdef GGML_USE_ACCELERATE
  7542. UNUSED(ggml_vec_mul_f32);
  7543. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7544. #else
  7545. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7546. #endif
  7547. // }
  7548. // }
  7549. }
  7550. } else {
  7551. // src1 is not contiguous
  7552. for (int64_t ir = ith; ir < nr; ir += nth) {
  7553. // src0 and dst are same shape => same indices
  7554. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7555. const int64_t i03 = ir/(ne02*ne01);
  7556. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7557. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7558. const int64_t i13 = i03 % ne13;
  7559. const int64_t i12 = i02 % ne12;
  7560. const int64_t i11 = i01 % ne11;
  7561. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7562. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7563. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7564. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7565. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7566. }
  7567. }
  7568. }
  7569. }
  7570. static void ggml_compute_forward_mul(
  7571. const struct ggml_compute_params * params,
  7572. const struct ggml_tensor * src0,
  7573. const struct ggml_tensor * src1,
  7574. struct ggml_tensor * dst) {
  7575. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7576. switch (src0->type) {
  7577. case GGML_TYPE_F32:
  7578. {
  7579. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7580. } break;
  7581. default:
  7582. {
  7583. GGML_ASSERT(false);
  7584. } break;
  7585. }
  7586. }
  7587. // ggml_compute_forward_div
  7588. static void ggml_compute_forward_div_f32(
  7589. const struct ggml_compute_params * params,
  7590. const struct ggml_tensor * src0,
  7591. const struct ggml_tensor * src1,
  7592. struct ggml_tensor * dst) {
  7593. assert(params->ith == 0);
  7594. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7596. return;
  7597. }
  7598. const int nr = ggml_nrows(src0);
  7599. GGML_TENSOR_BINARY_OP_LOCALS;
  7600. GGML_ASSERT( nb0 == sizeof(float));
  7601. GGML_ASSERT(nb00 == sizeof(float));
  7602. if (nb10 == sizeof(float)) {
  7603. for (int ir = 0; ir < nr; ++ir) {
  7604. // src0, src1 and dst are same shape => same indices
  7605. const int i3 = ir/(ne2*ne1);
  7606. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7607. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7608. #ifdef GGML_USE_ACCELERATE
  7609. UNUSED(ggml_vec_div_f32);
  7610. vDSP_vdiv(
  7611. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7612. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7613. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7614. ne0);
  7615. #else
  7616. ggml_vec_div_f32(ne0,
  7617. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7618. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7619. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7620. #endif
  7621. // }
  7622. // }
  7623. }
  7624. } else {
  7625. // src1 is not contiguous
  7626. for (int ir = 0; ir < nr; ++ir) {
  7627. // src0, src1 and dst are same shape => same indices
  7628. const int i3 = ir/(ne2*ne1);
  7629. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7630. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7631. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7632. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7633. for (int i0 = 0; i0 < ne0; i0++) {
  7634. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7635. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7636. }
  7637. }
  7638. }
  7639. }
  7640. static void ggml_compute_forward_div(
  7641. const struct ggml_compute_params * params,
  7642. const struct ggml_tensor * src0,
  7643. const struct ggml_tensor * src1,
  7644. struct ggml_tensor * dst) {
  7645. switch (src0->type) {
  7646. case GGML_TYPE_F32:
  7647. {
  7648. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7649. } break;
  7650. default:
  7651. {
  7652. GGML_ASSERT(false);
  7653. } break;
  7654. }
  7655. }
  7656. // ggml_compute_forward_sqr
  7657. static void ggml_compute_forward_sqr_f32(
  7658. const struct ggml_compute_params * params,
  7659. const struct ggml_tensor * src0,
  7660. struct ggml_tensor * dst) {
  7661. assert(params->ith == 0);
  7662. assert(ggml_are_same_shape(src0, dst));
  7663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7664. return;
  7665. }
  7666. const int n = ggml_nrows(src0);
  7667. const int nc = src0->ne[0];
  7668. assert( dst->nb[0] == sizeof(float));
  7669. assert(src0->nb[0] == sizeof(float));
  7670. for (int i = 0; i < n; i++) {
  7671. ggml_vec_sqr_f32(nc,
  7672. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7673. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7674. }
  7675. }
  7676. static void ggml_compute_forward_sqr(
  7677. const struct ggml_compute_params * params,
  7678. const struct ggml_tensor * src0,
  7679. struct ggml_tensor * dst) {
  7680. switch (src0->type) {
  7681. case GGML_TYPE_F32:
  7682. {
  7683. ggml_compute_forward_sqr_f32(params, src0, dst);
  7684. } break;
  7685. default:
  7686. {
  7687. GGML_ASSERT(false);
  7688. } break;
  7689. }
  7690. }
  7691. // ggml_compute_forward_sqrt
  7692. static void ggml_compute_forward_sqrt_f32(
  7693. const struct ggml_compute_params * params,
  7694. const struct ggml_tensor * src0,
  7695. struct ggml_tensor * dst) {
  7696. assert(params->ith == 0);
  7697. assert(ggml_are_same_shape(src0, dst));
  7698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7699. return;
  7700. }
  7701. const int n = ggml_nrows(src0);
  7702. const int nc = src0->ne[0];
  7703. assert( dst->nb[0] == sizeof(float));
  7704. assert(src0->nb[0] == sizeof(float));
  7705. for (int i = 0; i < n; i++) {
  7706. ggml_vec_sqrt_f32(nc,
  7707. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7708. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7709. }
  7710. }
  7711. static void ggml_compute_forward_sqrt(
  7712. const struct ggml_compute_params * params,
  7713. const struct ggml_tensor * src0,
  7714. struct ggml_tensor * dst) {
  7715. switch (src0->type) {
  7716. case GGML_TYPE_F32:
  7717. {
  7718. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7719. } break;
  7720. default:
  7721. {
  7722. GGML_ASSERT(false);
  7723. } break;
  7724. }
  7725. }
  7726. // ggml_compute_forward_log
  7727. static void ggml_compute_forward_log_f32(
  7728. const struct ggml_compute_params * params,
  7729. const struct ggml_tensor * src0,
  7730. struct ggml_tensor * dst) {
  7731. GGML_ASSERT(params->ith == 0);
  7732. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7733. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7734. return;
  7735. }
  7736. const int n = ggml_nrows(src0);
  7737. const int nc = src0->ne[0];
  7738. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7739. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7740. for (int i = 0; i < n; i++) {
  7741. ggml_vec_log_f32(nc,
  7742. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7743. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7744. }
  7745. }
  7746. static void ggml_compute_forward_log(
  7747. const struct ggml_compute_params * params,
  7748. const struct ggml_tensor * src0,
  7749. struct ggml_tensor * dst) {
  7750. switch (src0->type) {
  7751. case GGML_TYPE_F32:
  7752. {
  7753. ggml_compute_forward_log_f32(params, src0, dst);
  7754. } break;
  7755. default:
  7756. {
  7757. GGML_ASSERT(false);
  7758. } break;
  7759. }
  7760. }
  7761. // ggml_compute_forward_sum
  7762. static void ggml_compute_forward_sum_f32(
  7763. const struct ggml_compute_params * params,
  7764. const struct ggml_tensor * src0,
  7765. struct ggml_tensor * dst) {
  7766. assert(params->ith == 0);
  7767. assert(ggml_is_scalar(dst));
  7768. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7769. return;
  7770. }
  7771. assert(ggml_is_scalar(dst));
  7772. assert(src0->nb[0] == sizeof(float));
  7773. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7774. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7775. ggml_float sum = 0;
  7776. ggml_float row_sum = 0;
  7777. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7778. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7779. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7780. ggml_vec_sum_f32_ggf(ne00,
  7781. &row_sum,
  7782. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7783. sum += row_sum;
  7784. }
  7785. }
  7786. }
  7787. ((float *) dst->data)[0] = sum;
  7788. }
  7789. static void ggml_compute_forward_sum_f16(
  7790. const struct ggml_compute_params * params,
  7791. const struct ggml_tensor * src0,
  7792. struct ggml_tensor * dst) {
  7793. assert(params->ith == 0);
  7794. assert(ggml_is_scalar(dst));
  7795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7796. return;
  7797. }
  7798. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7799. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7800. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7801. float sum = 0;
  7802. float row_sum = 0;
  7803. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7804. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7805. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7806. ggml_vec_sum_f16_ggf(ne00,
  7807. &row_sum,
  7808. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7809. sum += row_sum;
  7810. }
  7811. }
  7812. }
  7813. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7814. }
  7815. static void ggml_compute_forward_sum(
  7816. const struct ggml_compute_params * params,
  7817. const struct ggml_tensor * src0,
  7818. struct ggml_tensor * dst) {
  7819. switch (src0->type) {
  7820. case GGML_TYPE_F32:
  7821. {
  7822. ggml_compute_forward_sum_f32(params, src0, dst);
  7823. } break;
  7824. case GGML_TYPE_F16:
  7825. {
  7826. ggml_compute_forward_sum_f16(params, src0, dst);
  7827. } break;
  7828. default:
  7829. {
  7830. GGML_ASSERT(false);
  7831. } break;
  7832. }
  7833. }
  7834. // ggml_compute_forward_sum_rows
  7835. static void ggml_compute_forward_sum_rows_f32(
  7836. const struct ggml_compute_params * params,
  7837. const struct ggml_tensor * src0,
  7838. struct ggml_tensor * dst) {
  7839. GGML_ASSERT(params->ith == 0);
  7840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7841. return;
  7842. }
  7843. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7844. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7845. GGML_TENSOR_UNARY_OP_LOCALS;
  7846. GGML_ASSERT(ne0 == 1);
  7847. GGML_ASSERT(ne1 == ne01);
  7848. GGML_ASSERT(ne2 == ne02);
  7849. GGML_ASSERT(ne3 == ne03);
  7850. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7851. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7852. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7853. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7854. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7855. float row_sum = 0;
  7856. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7857. dst_row[0] = row_sum;
  7858. }
  7859. }
  7860. }
  7861. }
  7862. static void ggml_compute_forward_sum_rows(
  7863. const struct ggml_compute_params * params,
  7864. const struct ggml_tensor * src0,
  7865. struct ggml_tensor * dst) {
  7866. switch (src0->type) {
  7867. case GGML_TYPE_F32:
  7868. {
  7869. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7870. } break;
  7871. default:
  7872. {
  7873. GGML_ASSERT(false);
  7874. } break;
  7875. }
  7876. }
  7877. // ggml_compute_forward_mean
  7878. static void ggml_compute_forward_mean_f32(
  7879. const struct ggml_compute_params * params,
  7880. const struct ggml_tensor * src0,
  7881. struct ggml_tensor * dst) {
  7882. assert(params->ith == 0);
  7883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7884. return;
  7885. }
  7886. assert(src0->nb[0] == sizeof(float));
  7887. GGML_TENSOR_UNARY_OP_LOCALS;
  7888. assert(ne0 == 1);
  7889. assert(ne1 == ne01);
  7890. assert(ne2 == ne02);
  7891. assert(ne3 == ne03);
  7892. UNUSED(ne0);
  7893. UNUSED(ne1);
  7894. UNUSED(ne2);
  7895. UNUSED(ne3);
  7896. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7897. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7898. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7899. ggml_vec_sum_f32(ne00,
  7900. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7901. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7902. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7903. }
  7904. }
  7905. }
  7906. }
  7907. static void ggml_compute_forward_mean(
  7908. const struct ggml_compute_params * params,
  7909. const struct ggml_tensor * src0,
  7910. struct ggml_tensor * dst) {
  7911. switch (src0->type) {
  7912. case GGML_TYPE_F32:
  7913. {
  7914. ggml_compute_forward_mean_f32(params, src0, dst);
  7915. } break;
  7916. default:
  7917. {
  7918. GGML_ASSERT(false);
  7919. } break;
  7920. }
  7921. }
  7922. // ggml_compute_forward_argmax
  7923. static void ggml_compute_forward_argmax_f32(
  7924. const struct ggml_compute_params * params,
  7925. const struct ggml_tensor * src0,
  7926. struct ggml_tensor * dst) {
  7927. assert(params->ith == 0);
  7928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7929. return;
  7930. }
  7931. assert(src0->nb[0] == sizeof(float));
  7932. assert(dst->nb[0] == sizeof(float));
  7933. const int64_t ne00 = src0->ne[0];
  7934. const int64_t ne01 = src0->ne[1];
  7935. const size_t nb01 = src0->nb[1];
  7936. const size_t nb0 = dst->nb[0];
  7937. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7938. float * src = (float *) ((char *) src0->data + i1*nb01);
  7939. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7940. int v = 0;
  7941. ggml_vec_argmax_f32(ne00, &v, src);
  7942. dst_[0] = v;
  7943. }
  7944. }
  7945. static void ggml_compute_forward_argmax(
  7946. const struct ggml_compute_params * params,
  7947. const struct ggml_tensor * src0,
  7948. struct ggml_tensor * dst) {
  7949. switch (src0->type) {
  7950. case GGML_TYPE_F32:
  7951. {
  7952. ggml_compute_forward_argmax_f32(params, src0, dst);
  7953. } break;
  7954. default:
  7955. {
  7956. GGML_ASSERT(false);
  7957. } break;
  7958. }
  7959. }
  7960. // ggml_compute_forward_repeat
  7961. static void ggml_compute_forward_repeat_f32(
  7962. const struct ggml_compute_params * params,
  7963. const struct ggml_tensor * src0,
  7964. struct ggml_tensor * dst) {
  7965. GGML_ASSERT(params->ith == 0);
  7966. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7967. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7968. return;
  7969. }
  7970. GGML_TENSOR_UNARY_OP_LOCALS;
  7971. // guaranteed to be an integer due to the check in ggml_can_repeat
  7972. const int nr0 = (int)(ne0/ne00);
  7973. const int nr1 = (int)(ne1/ne01);
  7974. const int nr2 = (int)(ne2/ne02);
  7975. const int nr3 = (int)(ne3/ne03);
  7976. // TODO: support for transposed / permuted tensors
  7977. GGML_ASSERT(nb0 == sizeof(float));
  7978. GGML_ASSERT(nb00 == sizeof(float));
  7979. // TODO: maybe this is not optimal?
  7980. for (int i3 = 0; i3 < nr3; i3++) {
  7981. for (int k3 = 0; k3 < ne03; k3++) {
  7982. for (int i2 = 0; i2 < nr2; i2++) {
  7983. for (int k2 = 0; k2 < ne02; k2++) {
  7984. for (int i1 = 0; i1 < nr1; i1++) {
  7985. for (int k1 = 0; k1 < ne01; k1++) {
  7986. for (int i0 = 0; i0 < nr0; i0++) {
  7987. ggml_vec_cpy_f32(ne00,
  7988. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7989. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7990. }
  7991. }
  7992. }
  7993. }
  7994. }
  7995. }
  7996. }
  7997. }
  7998. static void ggml_compute_forward_repeat(
  7999. const struct ggml_compute_params * params,
  8000. const struct ggml_tensor * src0,
  8001. struct ggml_tensor * dst) {
  8002. switch (src0->type) {
  8003. case GGML_TYPE_F32:
  8004. {
  8005. ggml_compute_forward_repeat_f32(params, src0, dst);
  8006. } break;
  8007. default:
  8008. {
  8009. GGML_ASSERT(false);
  8010. } break;
  8011. }
  8012. }
  8013. // ggml_compute_forward_repeat_back
  8014. static void ggml_compute_forward_repeat_back_f32(
  8015. const struct ggml_compute_params * params,
  8016. const struct ggml_tensor * src0,
  8017. struct ggml_tensor * dst) {
  8018. GGML_ASSERT(params->ith == 0);
  8019. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8021. return;
  8022. }
  8023. GGML_TENSOR_UNARY_OP_LOCALS;
  8024. // guaranteed to be an integer due to the check in ggml_can_repeat
  8025. const int nr0 = (int)(ne00/ne0);
  8026. const int nr1 = (int)(ne01/ne1);
  8027. const int nr2 = (int)(ne02/ne2);
  8028. const int nr3 = (int)(ne03/ne3);
  8029. // TODO: support for transposed / permuted tensors
  8030. GGML_ASSERT(nb0 == sizeof(float));
  8031. GGML_ASSERT(nb00 == sizeof(float));
  8032. if (ggml_is_contiguous(dst)) {
  8033. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8034. } else {
  8035. for (int k3 = 0; k3 < ne3; k3++) {
  8036. for (int k2 = 0; k2 < ne2; k2++) {
  8037. for (int k1 = 0; k1 < ne1; k1++) {
  8038. ggml_vec_set_f32(ne0,
  8039. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8040. 0);
  8041. }
  8042. }
  8043. }
  8044. }
  8045. // TODO: maybe this is not optimal?
  8046. for (int i3 = 0; i3 < nr3; i3++) {
  8047. for (int k3 = 0; k3 < ne3; k3++) {
  8048. for (int i2 = 0; i2 < nr2; i2++) {
  8049. for (int k2 = 0; k2 < ne2; k2++) {
  8050. for (int i1 = 0; i1 < nr1; i1++) {
  8051. for (int k1 = 0; k1 < ne1; k1++) {
  8052. for (int i0 = 0; i0 < nr0; i0++) {
  8053. ggml_vec_acc_f32(ne0,
  8054. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8055. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8056. }
  8057. }
  8058. }
  8059. }
  8060. }
  8061. }
  8062. }
  8063. }
  8064. static void ggml_compute_forward_repeat_back(
  8065. const struct ggml_compute_params * params,
  8066. const struct ggml_tensor * src0,
  8067. struct ggml_tensor * dst) {
  8068. switch (src0->type) {
  8069. case GGML_TYPE_F32:
  8070. {
  8071. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8072. } break;
  8073. default:
  8074. {
  8075. GGML_ASSERT(false);
  8076. } break;
  8077. }
  8078. }
  8079. // ggml_compute_forward_concat
  8080. static void ggml_compute_forward_concat_f32(
  8081. const struct ggml_compute_params * params,
  8082. const struct ggml_tensor * src0,
  8083. const struct ggml_tensor * src1,
  8084. struct ggml_tensor * dst) {
  8085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8086. return;
  8087. }
  8088. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8089. const int ith = params->ith;
  8090. GGML_TENSOR_BINARY_OP_LOCALS;
  8091. // TODO: support for transposed / permuted tensors
  8092. GGML_ASSERT(nb0 == sizeof(float));
  8093. GGML_ASSERT(nb00 == sizeof(float));
  8094. GGML_ASSERT(nb10 == sizeof(float));
  8095. for (int i3 = 0; i3 < ne3; i3++) {
  8096. for (int i2 = ith; i2 < ne2; i2++) {
  8097. if (i2 < ne02) { // src0
  8098. for (int i1 = 0; i1 < ne1; i1++) {
  8099. for (int i0 = 0; i0 < ne0; i0++) {
  8100. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8101. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8102. *y = *x;
  8103. }
  8104. }
  8105. } // src1
  8106. else {
  8107. for (int i1 = 0; i1 < ne1; i1++) {
  8108. for (int i0 = 0; i0 < ne0; i0++) {
  8109. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8110. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8111. *y = *x;
  8112. }
  8113. }
  8114. }
  8115. }
  8116. }
  8117. }
  8118. static void ggml_compute_forward_concat(
  8119. const struct ggml_compute_params* params,
  8120. const struct ggml_tensor* src0,
  8121. const struct ggml_tensor* src1,
  8122. struct ggml_tensor* dst) {
  8123. switch (src0->type) {
  8124. case GGML_TYPE_F32:
  8125. {
  8126. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8127. } break;
  8128. default:
  8129. {
  8130. GGML_ASSERT(false);
  8131. } break;
  8132. }
  8133. }
  8134. // ggml_compute_forward_abs
  8135. static void ggml_compute_forward_abs_f32(
  8136. const struct ggml_compute_params * params,
  8137. const struct ggml_tensor * src0,
  8138. struct ggml_tensor * dst) {
  8139. assert(params->ith == 0);
  8140. assert(ggml_are_same_shape(src0, dst));
  8141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8142. return;
  8143. }
  8144. const int n = ggml_nrows(src0);
  8145. const int nc = src0->ne[0];
  8146. assert(dst->nb[0] == sizeof(float));
  8147. assert(src0->nb[0] == sizeof(float));
  8148. for (int i = 0; i < n; i++) {
  8149. ggml_vec_abs_f32(nc,
  8150. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8151. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8152. }
  8153. }
  8154. static void ggml_compute_forward_abs(
  8155. const struct ggml_compute_params * params,
  8156. const struct ggml_tensor * src0,
  8157. struct ggml_tensor * dst) {
  8158. switch (src0->type) {
  8159. case GGML_TYPE_F32:
  8160. {
  8161. ggml_compute_forward_abs_f32(params, src0, dst);
  8162. } break;
  8163. default:
  8164. {
  8165. GGML_ASSERT(false);
  8166. } break;
  8167. }
  8168. }
  8169. // ggml_compute_forward_sgn
  8170. static void ggml_compute_forward_sgn_f32(
  8171. const struct ggml_compute_params * params,
  8172. const struct ggml_tensor * src0,
  8173. struct ggml_tensor * dst) {
  8174. assert(params->ith == 0);
  8175. assert(ggml_are_same_shape(src0, dst));
  8176. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8177. return;
  8178. }
  8179. const int n = ggml_nrows(src0);
  8180. const int nc = src0->ne[0];
  8181. assert(dst->nb[0] == sizeof(float));
  8182. assert(src0->nb[0] == sizeof(float));
  8183. for (int i = 0; i < n; i++) {
  8184. ggml_vec_sgn_f32(nc,
  8185. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8186. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8187. }
  8188. }
  8189. static void ggml_compute_forward_sgn(
  8190. const struct ggml_compute_params * params,
  8191. const struct ggml_tensor * src0,
  8192. struct ggml_tensor * dst) {
  8193. switch (src0->type) {
  8194. case GGML_TYPE_F32:
  8195. {
  8196. ggml_compute_forward_sgn_f32(params, src0, dst);
  8197. } break;
  8198. default:
  8199. {
  8200. GGML_ASSERT(false);
  8201. } break;
  8202. }
  8203. }
  8204. // ggml_compute_forward_neg
  8205. static void ggml_compute_forward_neg_f32(
  8206. const struct ggml_compute_params * params,
  8207. const struct ggml_tensor * src0,
  8208. struct ggml_tensor * dst) {
  8209. assert(params->ith == 0);
  8210. assert(ggml_are_same_shape(src0, dst));
  8211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8212. return;
  8213. }
  8214. const int n = ggml_nrows(src0);
  8215. const int nc = src0->ne[0];
  8216. assert(dst->nb[0] == sizeof(float));
  8217. assert(src0->nb[0] == sizeof(float));
  8218. for (int i = 0; i < n; i++) {
  8219. ggml_vec_neg_f32(nc,
  8220. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8221. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8222. }
  8223. }
  8224. static void ggml_compute_forward_neg(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0,
  8227. struct ggml_tensor * dst) {
  8228. switch (src0->type) {
  8229. case GGML_TYPE_F32:
  8230. {
  8231. ggml_compute_forward_neg_f32(params, src0, dst);
  8232. } break;
  8233. default:
  8234. {
  8235. GGML_ASSERT(false);
  8236. } break;
  8237. }
  8238. }
  8239. // ggml_compute_forward_step
  8240. static void ggml_compute_forward_step_f32(
  8241. const struct ggml_compute_params * params,
  8242. const struct ggml_tensor * src0,
  8243. struct ggml_tensor * dst) {
  8244. assert(params->ith == 0);
  8245. assert(ggml_are_same_shape(src0, dst));
  8246. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8247. return;
  8248. }
  8249. const int n = ggml_nrows(src0);
  8250. const int nc = src0->ne[0];
  8251. assert(dst->nb[0] == sizeof(float));
  8252. assert(src0->nb[0] == sizeof(float));
  8253. for (int i = 0; i < n; i++) {
  8254. ggml_vec_step_f32(nc,
  8255. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8256. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8257. }
  8258. }
  8259. static void ggml_compute_forward_step(
  8260. const struct ggml_compute_params * params,
  8261. const struct ggml_tensor * src0,
  8262. struct ggml_tensor * dst) {
  8263. switch (src0->type) {
  8264. case GGML_TYPE_F32:
  8265. {
  8266. ggml_compute_forward_step_f32(params, src0, dst);
  8267. } break;
  8268. default:
  8269. {
  8270. GGML_ASSERT(false);
  8271. } break;
  8272. }
  8273. }
  8274. // ggml_compute_forward_tanh
  8275. static void ggml_compute_forward_tanh_f32(
  8276. const struct ggml_compute_params * params,
  8277. const struct ggml_tensor * src0,
  8278. struct ggml_tensor * dst) {
  8279. assert(params->ith == 0);
  8280. assert(ggml_are_same_shape(src0, dst));
  8281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8282. return;
  8283. }
  8284. const int n = ggml_nrows(src0);
  8285. const int nc = src0->ne[0];
  8286. assert(dst->nb[0] == sizeof(float));
  8287. assert(src0->nb[0] == sizeof(float));
  8288. for (int i = 0; i < n; i++) {
  8289. ggml_vec_tanh_f32(nc,
  8290. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8291. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8292. }
  8293. }
  8294. static void ggml_compute_forward_tanh(
  8295. const struct ggml_compute_params * params,
  8296. const struct ggml_tensor * src0,
  8297. struct ggml_tensor * dst) {
  8298. switch (src0->type) {
  8299. case GGML_TYPE_F32:
  8300. {
  8301. ggml_compute_forward_tanh_f32(params, src0, dst);
  8302. } break;
  8303. default:
  8304. {
  8305. GGML_ASSERT(false);
  8306. } break;
  8307. }
  8308. }
  8309. // ggml_compute_forward_elu
  8310. static void ggml_compute_forward_elu_f32(
  8311. const struct ggml_compute_params * params,
  8312. const struct ggml_tensor * src0,
  8313. struct ggml_tensor * dst) {
  8314. assert(params->ith == 0);
  8315. assert(ggml_are_same_shape(src0, dst));
  8316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8317. return;
  8318. }
  8319. const int n = ggml_nrows(src0);
  8320. const int nc = src0->ne[0];
  8321. assert(dst->nb[0] == sizeof(float));
  8322. assert(src0->nb[0] == sizeof(float));
  8323. for (int i = 0; i < n; i++) {
  8324. ggml_vec_elu_f32(nc,
  8325. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8326. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8327. }
  8328. }
  8329. static void ggml_compute_forward_elu(
  8330. const struct ggml_compute_params * params,
  8331. const struct ggml_tensor * src0,
  8332. struct ggml_tensor * dst) {
  8333. switch (src0->type) {
  8334. case GGML_TYPE_F32:
  8335. {
  8336. ggml_compute_forward_elu_f32(params, src0, dst);
  8337. } break;
  8338. default:
  8339. {
  8340. GGML_ASSERT(false);
  8341. } break;
  8342. }
  8343. }
  8344. // ggml_compute_forward_relu
  8345. static void ggml_compute_forward_relu_f32(
  8346. const struct ggml_compute_params * params,
  8347. const struct ggml_tensor * src0,
  8348. struct ggml_tensor * dst) {
  8349. assert(params->ith == 0);
  8350. assert(ggml_are_same_shape(src0, dst));
  8351. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8352. return;
  8353. }
  8354. const int n = ggml_nrows(src0);
  8355. const int nc = src0->ne[0];
  8356. assert(dst->nb[0] == sizeof(float));
  8357. assert(src0->nb[0] == sizeof(float));
  8358. for (int i = 0; i < n; i++) {
  8359. ggml_vec_relu_f32(nc,
  8360. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8361. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8362. }
  8363. }
  8364. static void ggml_compute_forward_relu(
  8365. const struct ggml_compute_params * params,
  8366. const struct ggml_tensor * src0,
  8367. struct ggml_tensor * dst) {
  8368. switch (src0->type) {
  8369. case GGML_TYPE_F32:
  8370. {
  8371. ggml_compute_forward_relu_f32(params, src0, dst);
  8372. } break;
  8373. default:
  8374. {
  8375. GGML_ASSERT(false);
  8376. } break;
  8377. }
  8378. }
  8379. // ggml_compute_forward_gelu
  8380. static void ggml_compute_forward_gelu_f32(
  8381. const struct ggml_compute_params * params,
  8382. const struct ggml_tensor * src0,
  8383. struct ggml_tensor * dst) {
  8384. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8385. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8386. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8388. return;
  8389. }
  8390. const int ith = params->ith;
  8391. const int nth = params->nth;
  8392. const int nc = src0->ne[0];
  8393. const int nr = ggml_nrows(src0);
  8394. // rows per thread
  8395. const int dr = (nr + nth - 1)/nth;
  8396. // row range for this thread
  8397. const int ir0 = dr*ith;
  8398. const int ir1 = MIN(ir0 + dr, nr);
  8399. for (int i1 = ir0; i1 < ir1; i1++) {
  8400. ggml_vec_gelu_f32(nc,
  8401. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8402. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8403. #ifndef NDEBUG
  8404. for (int k = 0; k < nc; k++) {
  8405. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8406. UNUSED(x);
  8407. assert(!isnan(x));
  8408. assert(!isinf(x));
  8409. }
  8410. #endif
  8411. }
  8412. }
  8413. static void ggml_compute_forward_gelu(
  8414. const struct ggml_compute_params * params,
  8415. const struct ggml_tensor * src0,
  8416. struct ggml_tensor * dst) {
  8417. switch (src0->type) {
  8418. case GGML_TYPE_F32:
  8419. {
  8420. ggml_compute_forward_gelu_f32(params, src0, dst);
  8421. } break;
  8422. default:
  8423. {
  8424. GGML_ASSERT(false);
  8425. } break;
  8426. }
  8427. }
  8428. // ggml_compute_forward_gelu_quick
  8429. static void ggml_compute_forward_gelu_quick_f32(
  8430. const struct ggml_compute_params * params,
  8431. const struct ggml_tensor * src0,
  8432. struct ggml_tensor * dst) {
  8433. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8434. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8435. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8437. return;
  8438. }
  8439. const int ith = params->ith;
  8440. const int nth = params->nth;
  8441. const int nc = src0->ne[0];
  8442. const int nr = ggml_nrows(src0);
  8443. // rows per thread
  8444. const int dr = (nr + nth - 1)/nth;
  8445. // row range for this thread
  8446. const int ir0 = dr*ith;
  8447. const int ir1 = MIN(ir0 + dr, nr);
  8448. for (int i1 = ir0; i1 < ir1; i1++) {
  8449. ggml_vec_gelu_quick_f32(nc,
  8450. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8451. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8452. #ifndef NDEBUG
  8453. for (int k = 0; k < nc; k++) {
  8454. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8455. UNUSED(x);
  8456. assert(!isnan(x));
  8457. assert(!isinf(x));
  8458. }
  8459. #endif
  8460. }
  8461. }
  8462. static void ggml_compute_forward_gelu_quick(
  8463. const struct ggml_compute_params * params,
  8464. const struct ggml_tensor * src0,
  8465. struct ggml_tensor * dst) {
  8466. switch (src0->type) {
  8467. case GGML_TYPE_F32:
  8468. {
  8469. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8470. } break;
  8471. default:
  8472. {
  8473. GGML_ASSERT(false);
  8474. } break;
  8475. }
  8476. }
  8477. // ggml_compute_forward_silu
  8478. static void ggml_compute_forward_silu_f32(
  8479. const struct ggml_compute_params * params,
  8480. const struct ggml_tensor * src0,
  8481. struct ggml_tensor * dst) {
  8482. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8483. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8484. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8486. return;
  8487. }
  8488. const int ith = params->ith;
  8489. const int nth = params->nth;
  8490. const int nc = src0->ne[0];
  8491. const int nr = ggml_nrows(src0);
  8492. // rows per thread
  8493. const int dr = (nr + nth - 1)/nth;
  8494. // row range for this thread
  8495. const int ir0 = dr*ith;
  8496. const int ir1 = MIN(ir0 + dr, nr);
  8497. for (int i1 = ir0; i1 < ir1; i1++) {
  8498. ggml_vec_silu_f32(nc,
  8499. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8500. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8501. #ifndef NDEBUG
  8502. for (int k = 0; k < nc; k++) {
  8503. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8504. UNUSED(x);
  8505. assert(!isnan(x));
  8506. assert(!isinf(x));
  8507. }
  8508. #endif
  8509. }
  8510. }
  8511. static void ggml_compute_forward_silu(
  8512. const struct ggml_compute_params * params,
  8513. const struct ggml_tensor * src0,
  8514. struct ggml_tensor * dst) {
  8515. switch (src0->type) {
  8516. case GGML_TYPE_F32:
  8517. {
  8518. ggml_compute_forward_silu_f32(params, src0, dst);
  8519. } break;
  8520. default:
  8521. {
  8522. GGML_ASSERT(false);
  8523. } break;
  8524. }
  8525. }
  8526. // ggml_compute_forward_silu_back
  8527. static void ggml_compute_forward_silu_back_f32(
  8528. const struct ggml_compute_params * params,
  8529. const struct ggml_tensor * src0,
  8530. const struct ggml_tensor * grad,
  8531. struct ggml_tensor * dst) {
  8532. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8533. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8534. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8535. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8536. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8538. return;
  8539. }
  8540. const int ith = params->ith;
  8541. const int nth = params->nth;
  8542. const int nc = src0->ne[0];
  8543. const int nr = ggml_nrows(src0);
  8544. // rows per thread
  8545. const int dr = (nr + nth - 1)/nth;
  8546. // row range for this thread
  8547. const int ir0 = dr*ith;
  8548. const int ir1 = MIN(ir0 + dr, nr);
  8549. for (int i1 = ir0; i1 < ir1; i1++) {
  8550. ggml_vec_silu_backward_f32(nc,
  8551. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8552. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8553. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8554. #ifndef NDEBUG
  8555. for (int k = 0; k < nc; k++) {
  8556. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8557. UNUSED(x);
  8558. assert(!isnan(x));
  8559. assert(!isinf(x));
  8560. }
  8561. #endif
  8562. }
  8563. }
  8564. static void ggml_compute_forward_silu_back(
  8565. const struct ggml_compute_params * params,
  8566. const struct ggml_tensor * src0,
  8567. const struct ggml_tensor * grad,
  8568. struct ggml_tensor * dst) {
  8569. switch (src0->type) {
  8570. case GGML_TYPE_F32:
  8571. {
  8572. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8573. } break;
  8574. default:
  8575. {
  8576. GGML_ASSERT(false);
  8577. } break;
  8578. }
  8579. }
  8580. // ggml_compute_forward_norm
  8581. static void ggml_compute_forward_norm_f32(
  8582. const struct ggml_compute_params * params,
  8583. const struct ggml_tensor * src0,
  8584. struct ggml_tensor * dst) {
  8585. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8587. return;
  8588. }
  8589. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8590. const int ith = params->ith;
  8591. const int nth = params->nth;
  8592. GGML_TENSOR_UNARY_OP_LOCALS;
  8593. float eps;
  8594. memcpy(&eps, dst->op_params, sizeof(float));
  8595. // TODO: optimize
  8596. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8597. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8598. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8599. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8600. ggml_float sum = 0.0;
  8601. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8602. sum += (ggml_float)x[i00];
  8603. }
  8604. float mean = sum/ne00;
  8605. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8606. ggml_float sum2 = 0.0;
  8607. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8608. float v = x[i00] - mean;
  8609. y[i00] = v;
  8610. sum2 += (ggml_float)(v*v);
  8611. }
  8612. float variance = sum2/ne00;
  8613. const float scale = 1.0f/sqrtf(variance + eps);
  8614. ggml_vec_scale_f32(ne00, y, scale);
  8615. }
  8616. }
  8617. }
  8618. }
  8619. static void ggml_compute_forward_norm(
  8620. const struct ggml_compute_params * params,
  8621. const struct ggml_tensor * src0,
  8622. struct ggml_tensor * dst) {
  8623. switch (src0->type) {
  8624. case GGML_TYPE_F32:
  8625. {
  8626. ggml_compute_forward_norm_f32(params, src0, dst);
  8627. } break;
  8628. default:
  8629. {
  8630. GGML_ASSERT(false);
  8631. } break;
  8632. }
  8633. }
  8634. // ggml_compute_forward_group_rms_norm
  8635. static void ggml_compute_forward_rms_norm_f32(
  8636. const struct ggml_compute_params * params,
  8637. const struct ggml_tensor * src0,
  8638. struct ggml_tensor * dst) {
  8639. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8641. return;
  8642. }
  8643. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8644. const int ith = params->ith;
  8645. const int nth = params->nth;
  8646. GGML_TENSOR_UNARY_OP_LOCALS;
  8647. float eps;
  8648. memcpy(&eps, dst->op_params, sizeof(float));
  8649. // TODO: optimize
  8650. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8651. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8652. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8653. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8654. ggml_float sum = 0.0;
  8655. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8656. sum += (ggml_float)(x[i00] * x[i00]);
  8657. }
  8658. const float mean = sum/ne00;
  8659. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8660. memcpy(y, x, ne00 * sizeof(float));
  8661. // for (int i00 = 0; i00 < ne00; i00++) {
  8662. // y[i00] = x[i00];
  8663. // }
  8664. const float scale = 1.0f/sqrtf(mean + eps);
  8665. ggml_vec_scale_f32(ne00, y, scale);
  8666. }
  8667. }
  8668. }
  8669. }
  8670. static void ggml_compute_forward_rms_norm(
  8671. const struct ggml_compute_params * params,
  8672. const struct ggml_tensor * src0,
  8673. struct ggml_tensor * dst) {
  8674. switch (src0->type) {
  8675. case GGML_TYPE_F32:
  8676. {
  8677. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8678. } break;
  8679. default:
  8680. {
  8681. GGML_ASSERT(false);
  8682. } break;
  8683. }
  8684. }
  8685. static void ggml_compute_forward_rms_norm_back_f32(
  8686. const struct ggml_compute_params * params,
  8687. const struct ggml_tensor * src0,
  8688. const struct ggml_tensor * src1,
  8689. struct ggml_tensor * dst) {
  8690. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8692. return;
  8693. }
  8694. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8695. const int ith = params->ith;
  8696. const int nth = params->nth;
  8697. GGML_TENSOR_BINARY_OP_LOCALS;
  8698. float eps;
  8699. memcpy(&eps, dst->op_params, sizeof(float));
  8700. // TODO: optimize
  8701. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8702. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8703. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8704. // src1 is same shape as src0 => same indices
  8705. const int64_t i11 = i01;
  8706. const int64_t i12 = i02;
  8707. const int64_t i13 = i03;
  8708. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8709. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8710. ggml_float sum_xx = 0.0;
  8711. ggml_float sum_xdz = 0.0;
  8712. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8713. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8714. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8715. }
  8716. //const float mean = (float)(sum_xx)/ne00;
  8717. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8718. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8719. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8720. // we could cache rms from forward pass to improve performance.
  8721. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8722. //const float rms = sqrtf(mean_eps);
  8723. const float rrms = 1.0f / sqrtf(mean_eps);
  8724. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8725. {
  8726. // z = rms_norm(x)
  8727. //
  8728. // rms_norm(src0) =
  8729. // scale(
  8730. // src0,
  8731. // div(
  8732. // 1,
  8733. // sqrt(
  8734. // add(
  8735. // scale(
  8736. // sum(
  8737. // sqr(
  8738. // src0)),
  8739. // (1.0/N)),
  8740. // eps))));
  8741. // postorder:
  8742. // ## op args grad
  8743. // 00 param src0 grad[#00]
  8744. // 01 const 1
  8745. // 02 sqr (#00) grad[#02]
  8746. // 03 sum (#02) grad[#03]
  8747. // 04 const 1/N
  8748. // 05 scale (#03, #04) grad[#05]
  8749. // 06 const eps
  8750. // 07 add (#05, #06) grad[#07]
  8751. // 08 sqrt (#07) grad[#08]
  8752. // 09 div (#01,#08) grad[#09]
  8753. // 10 scale (#00,#09) grad[#10]
  8754. //
  8755. // backward pass, given grad[#10]
  8756. // #10: scale
  8757. // grad[#00] += scale(grad[#10],#09)
  8758. // grad[#09] += sum(mul(grad[#10],#00))
  8759. // #09: div
  8760. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8761. // #08: sqrt
  8762. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8763. // #07: add
  8764. // grad[#05] += grad[#07]
  8765. // #05: scale
  8766. // grad[#03] += scale(grad[#05],#04)
  8767. // #03: sum
  8768. // grad[#02] += repeat(grad[#03], #02)
  8769. // #02:
  8770. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8771. //
  8772. // substitute and simplify:
  8773. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8774. // grad[#02] = repeat(grad[#03], #02)
  8775. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8776. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8777. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8778. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8779. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8780. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8781. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8782. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8783. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8784. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8785. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8786. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8787. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8788. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8789. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8790. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8791. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8792. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8793. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8794. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8795. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8796. // a = b*c + d*e
  8797. // a = b*c*f/f + d*e*f/f
  8798. // a = (b*c*f + d*e*f)*(1/f)
  8799. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8800. // a = (b + d*e/c)*c
  8801. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8802. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8803. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8804. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8805. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8806. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8807. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8808. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8809. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8810. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8811. }
  8812. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8813. // post-order:
  8814. // dx := x
  8815. // dx := scale(dx,-mean_xdz/mean_eps)
  8816. // dx := add(dx, dz)
  8817. // dx := scale(dx, rrms)
  8818. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8819. ggml_vec_cpy_f32 (ne00, dx, x);
  8820. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8821. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8822. ggml_vec_acc_f32 (ne00, dx, dz);
  8823. ggml_vec_scale_f32(ne00, dx, rrms);
  8824. }
  8825. }
  8826. }
  8827. }
  8828. static void ggml_compute_forward_rms_norm_back(
  8829. const struct ggml_compute_params * params,
  8830. const struct ggml_tensor * src0,
  8831. const struct ggml_tensor * src1,
  8832. struct ggml_tensor * dst) {
  8833. switch (src0->type) {
  8834. case GGML_TYPE_F32:
  8835. {
  8836. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8837. } break;
  8838. default:
  8839. {
  8840. GGML_ASSERT(false);
  8841. } break;
  8842. }
  8843. }
  8844. // ggml_compute_forward_group_norm
  8845. static void ggml_compute_forward_group_norm_f32(
  8846. const struct ggml_compute_params * params,
  8847. const struct ggml_tensor * src0,
  8848. struct ggml_tensor * dst) {
  8849. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8851. return;
  8852. }
  8853. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8854. const int ith = params->ith;
  8855. const int nth = params->nth;
  8856. GGML_TENSOR_UNARY_OP_LOCALS;
  8857. const float eps = 1e-6f; // TODO: make this a parameter
  8858. // TODO: optimize
  8859. int n_channels = src0->ne[2];
  8860. int n_groups = dst->op_params[0];
  8861. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8862. for (int i = ith; i < n_groups; i+=nth) {
  8863. int start = i * n_channels_per_group;
  8864. int end = start + n_channels_per_group;
  8865. if (end > n_channels) {
  8866. end = n_channels;
  8867. }
  8868. int step = end - start;
  8869. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8870. ggml_float sum = 0.0;
  8871. for (int64_t i02 = start; i02 < end; i02++) {
  8872. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8873. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8874. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8875. sum += (ggml_float)x[i00];
  8876. }
  8877. }
  8878. }
  8879. float mean = sum / (ne00 * ne01 * step);
  8880. ggml_float sum2 = 0.0;
  8881. for (int64_t i02 = start; i02 < end; i02++) {
  8882. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8883. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8884. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8885. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8886. float v = x[i00] - mean;
  8887. y[i00] = v;
  8888. sum2 += (ggml_float)(v * v);
  8889. }
  8890. }
  8891. }
  8892. float variance = sum2 / (ne00 * ne01 * step);
  8893. const float scale = 1.0f / sqrtf(variance + eps);
  8894. for (int64_t i02 = start; i02 < end; i02++) {
  8895. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8896. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8897. ggml_vec_scale_f32(ne00, y, scale);
  8898. }
  8899. }
  8900. }
  8901. }
  8902. }
  8903. static void ggml_compute_forward_group_norm(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. struct ggml_tensor * dst) {
  8907. switch (src0->type) {
  8908. case GGML_TYPE_F32:
  8909. {
  8910. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8911. } break;
  8912. default:
  8913. {
  8914. GGML_ASSERT(false);
  8915. } break;
  8916. }
  8917. }
  8918. // ggml_compute_forward_mul_mat
  8919. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8920. // helper function to determine if it is better to use BLAS or not
  8921. // for large matrices, BLAS is faster
  8922. static bool ggml_compute_forward_mul_mat_use_blas(
  8923. const struct ggml_tensor * src0,
  8924. const struct ggml_tensor * src1,
  8925. struct ggml_tensor * dst) {
  8926. //const int64_t ne00 = src0->ne[0];
  8927. //const int64_t ne01 = src0->ne[1];
  8928. const int64_t ne10 = src1->ne[0];
  8929. const int64_t ne0 = dst->ne[0];
  8930. const int64_t ne1 = dst->ne[1];
  8931. // TODO: find the optimal values for these
  8932. if (ggml_is_contiguous(src0) &&
  8933. ggml_is_contiguous(src1) &&
  8934. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8935. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8936. return true;
  8937. }
  8938. return false;
  8939. }
  8940. #endif
  8941. static void ggml_compute_forward_mul_mat(
  8942. const struct ggml_compute_params * params,
  8943. const struct ggml_tensor * src0,
  8944. const struct ggml_tensor * src1,
  8945. struct ggml_tensor * dst) {
  8946. int64_t t0 = ggml_perf_time_us();
  8947. UNUSED(t0);
  8948. GGML_TENSOR_BINARY_OP_LOCALS;
  8949. const int ith = params->ith;
  8950. const int nth = params->nth;
  8951. const enum ggml_type type = src0->type;
  8952. const bool src1_cont = ggml_is_contiguous(src1);
  8953. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8954. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8955. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8956. GGML_ASSERT(ne0 == ne01);
  8957. GGML_ASSERT(ne1 == ne11);
  8958. GGML_ASSERT(ne2 == ne12);
  8959. GGML_ASSERT(ne3 == ne13);
  8960. // we don't support permuted src0 or src1
  8961. GGML_ASSERT(nb00 == ggml_type_size(type));
  8962. GGML_ASSERT(nb10 == sizeof(float));
  8963. // dst cannot be transposed or permuted
  8964. GGML_ASSERT(nb0 == sizeof(float));
  8965. GGML_ASSERT(nb0 <= nb1);
  8966. GGML_ASSERT(nb1 <= nb2);
  8967. GGML_ASSERT(nb2 <= nb3);
  8968. // broadcast factors
  8969. const int64_t r2 = ne12/ne02;
  8970. const int64_t r3 = ne13/ne03;
  8971. // nb01 >= nb00 - src0 is not transposed
  8972. // compute by src0 rows
  8973. #if defined(GGML_USE_CLBLAST)
  8974. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8975. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8976. // ref: https://github.com/ggerganov/ggml/pull/224
  8977. GGML_ASSERT(ne02 == ne12);
  8978. GGML_ASSERT(ne03 == ne13);
  8979. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8980. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8981. }
  8982. return;
  8983. }
  8984. #endif
  8985. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8986. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8987. if (params->ith != 0) {
  8988. return;
  8989. }
  8990. if (params->type == GGML_TASK_INIT) {
  8991. return;
  8992. }
  8993. if (params->type == GGML_TASK_FINALIZE) {
  8994. return;
  8995. }
  8996. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8997. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8998. // broadcast src0 into src1 across 2nd,3rd dimension
  8999. const int64_t i03 = i13/r3;
  9000. const int64_t i02 = i12/r2;
  9001. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9002. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9003. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9004. if (type != GGML_TYPE_F32) {
  9005. float * const wdata = params->wdata;
  9006. ggml_to_float_t const to_float = type_traits[type].to_float;
  9007. size_t id = 0;
  9008. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9009. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9010. id += ne00;
  9011. }
  9012. assert(id*sizeof(float) <= params->wsize);
  9013. x = wdata;
  9014. }
  9015. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9016. ne11, ne01, ne10,
  9017. 1.0f, y, ne10,
  9018. x, ne00,
  9019. 0.0f, d, ne01);
  9020. }
  9021. }
  9022. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9023. return;
  9024. }
  9025. #endif
  9026. if (params->type == GGML_TASK_INIT) {
  9027. if (src1->type != vec_dot_type) {
  9028. char * wdata = params->wdata;
  9029. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9030. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9031. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9032. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9033. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9034. wdata += row_size;
  9035. }
  9036. }
  9037. }
  9038. }
  9039. return;
  9040. }
  9041. if (params->type == GGML_TASK_FINALIZE) {
  9042. return;
  9043. }
  9044. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9045. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9046. const int64_t nr0 = ne01; // src0 rows
  9047. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9048. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9049. // distribute the thread work across the inner or outer loop based on which one is larger
  9050. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9051. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9052. const int64_t ith0 = ith % nth0;
  9053. const int64_t ith1 = ith / nth0;
  9054. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9055. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9056. const int64_t ir010 = dr0*ith0;
  9057. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9058. const int64_t ir110 = dr1*ith1;
  9059. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9060. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9061. // threads with no work simply yield (not sure if it helps)
  9062. if (ir010 >= ir011 || ir110 >= ir111) {
  9063. sched_yield();
  9064. return;
  9065. }
  9066. assert(ne12 % ne02 == 0);
  9067. assert(ne13 % ne03 == 0);
  9068. // block-tiling attempt
  9069. const int64_t blck_0 = 16;
  9070. const int64_t blck_1 = 16;
  9071. // attempt to reduce false-sharing (does not seem to make a difference)
  9072. float tmp[16];
  9073. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9074. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9075. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9076. const int64_t i13 = (ir1/(ne12*ne11));
  9077. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9078. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9079. // broadcast src0 into src1
  9080. const int64_t i03 = i13/r3;
  9081. const int64_t i02 = i12/r2;
  9082. const int64_t i1 = i11;
  9083. const int64_t i2 = i12;
  9084. const int64_t i3 = i13;
  9085. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9086. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9087. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9088. // the original src1 data pointer, so we should index using the indices directly
  9089. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9090. const char * src1_col = (const char *) wdata +
  9091. (src1_cont || src1->type != vec_dot_type
  9092. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9093. : (i11*nb11 + i12*nb12 + i13*nb13));
  9094. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9095. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9096. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9097. //}
  9098. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9099. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9100. }
  9101. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9102. }
  9103. }
  9104. }
  9105. }
  9106. // ggml_compute_forward_out_prod
  9107. static void ggml_compute_forward_out_prod_f32(
  9108. const struct ggml_compute_params * params,
  9109. const struct ggml_tensor * src0,
  9110. const struct ggml_tensor * src1,
  9111. struct ggml_tensor * dst) {
  9112. int64_t t0 = ggml_perf_time_us();
  9113. UNUSED(t0);
  9114. GGML_TENSOR_BINARY_OP_LOCALS;
  9115. const int ith = params->ith;
  9116. const int nth = params->nth;
  9117. GGML_ASSERT(ne02 == ne12);
  9118. GGML_ASSERT(ne03 == ne13);
  9119. GGML_ASSERT(ne2 == ne12);
  9120. GGML_ASSERT(ne3 == ne13);
  9121. // we don't support permuted src0 or src1
  9122. GGML_ASSERT(nb00 == sizeof(float));
  9123. // dst cannot be transposed or permuted
  9124. GGML_ASSERT(nb0 == sizeof(float));
  9125. // GGML_ASSERT(nb0 <= nb1);
  9126. // GGML_ASSERT(nb1 <= nb2);
  9127. // GGML_ASSERT(nb2 <= nb3);
  9128. GGML_ASSERT(ne0 == ne00);
  9129. GGML_ASSERT(ne1 == ne10);
  9130. GGML_ASSERT(ne2 == ne02);
  9131. GGML_ASSERT(ne3 == ne03);
  9132. // nb01 >= nb00 - src0 is not transposed
  9133. // compute by src0 rows
  9134. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9135. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9136. if (params->type == GGML_TASK_INIT) {
  9137. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9138. return;
  9139. }
  9140. if (params->type == GGML_TASK_FINALIZE) {
  9141. return;
  9142. }
  9143. // parallelize by last three dimensions
  9144. // total rows in dst
  9145. const int64_t nr = ne1*ne2*ne3;
  9146. // rows per thread
  9147. const int64_t dr = (nr + nth - 1)/nth;
  9148. // row range for this thread
  9149. const int64_t ir0 = dr*ith;
  9150. const int64_t ir1 = MIN(ir0 + dr, nr);
  9151. // dst[:,:,:,:] = 0
  9152. // for i2,i3:
  9153. // for i1:
  9154. // for i01:
  9155. // for i0:
  9156. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9157. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9158. // dst indices
  9159. const int64_t i3 = ir/(ne2*ne1);
  9160. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9161. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9162. const int64_t i02 = i2;
  9163. const int64_t i03 = i3;
  9164. //const int64_t i10 = i1;
  9165. const int64_t i12 = i2;
  9166. const int64_t i13 = i3;
  9167. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9168. const int64_t i11 = i01;
  9169. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9170. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9171. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9172. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9173. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9174. // d[i0] += s0[i0] * s1[i1];
  9175. // }
  9176. }
  9177. }
  9178. //int64_t t1 = ggml_perf_time_us();
  9179. //static int64_t acc = 0;
  9180. //acc += t1 - t0;
  9181. //if (t1 - t0 > 10) {
  9182. // printf("\n");
  9183. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9184. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9185. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9186. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9187. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9188. //}
  9189. }
  9190. static void ggml_compute_forward_out_prod(
  9191. const struct ggml_compute_params * params,
  9192. const struct ggml_tensor * src0,
  9193. const struct ggml_tensor * src1,
  9194. struct ggml_tensor * dst) {
  9195. switch (src0->type) {
  9196. case GGML_TYPE_Q4_0:
  9197. case GGML_TYPE_Q4_1:
  9198. case GGML_TYPE_Q5_0:
  9199. case GGML_TYPE_Q5_1:
  9200. case GGML_TYPE_Q8_0:
  9201. case GGML_TYPE_Q8_1:
  9202. {
  9203. GGML_ASSERT(false); // todo
  9204. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9205. } break;
  9206. case GGML_TYPE_F16:
  9207. {
  9208. GGML_ASSERT(false); // todo
  9209. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9210. } break;
  9211. case GGML_TYPE_F32:
  9212. {
  9213. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9214. } break;
  9215. default:
  9216. {
  9217. GGML_ASSERT(false);
  9218. } break;
  9219. }
  9220. }
  9221. // ggml_compute_forward_scale
  9222. static void ggml_compute_forward_scale_f32(
  9223. const struct ggml_compute_params * params,
  9224. const struct ggml_tensor * src0,
  9225. const struct ggml_tensor * src1,
  9226. struct ggml_tensor * dst) {
  9227. GGML_ASSERT(ggml_is_contiguous(src0));
  9228. GGML_ASSERT(ggml_is_contiguous(dst));
  9229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9230. GGML_ASSERT(ggml_is_scalar(src1));
  9231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9232. return;
  9233. }
  9234. // scale factor
  9235. const float v = *(float *) src1->data;
  9236. const int ith = params->ith;
  9237. const int nth = params->nth;
  9238. const int nc = src0->ne[0];
  9239. const int nr = ggml_nrows(src0);
  9240. // rows per thread
  9241. const int dr = (nr + nth - 1)/nth;
  9242. // row range for this thread
  9243. const int ir0 = dr*ith;
  9244. const int ir1 = MIN(ir0 + dr, nr);
  9245. const size_t nb01 = src0->nb[1];
  9246. const size_t nb1 = dst->nb[1];
  9247. for (int i1 = ir0; i1 < ir1; i1++) {
  9248. if (dst->data != src0->data) {
  9249. // src0 is same shape as dst => same indices
  9250. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9251. }
  9252. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9253. }
  9254. }
  9255. static void ggml_compute_forward_scale(
  9256. const struct ggml_compute_params * params,
  9257. const struct ggml_tensor * src0,
  9258. const struct ggml_tensor * src1,
  9259. struct ggml_tensor * dst) {
  9260. switch (src0->type) {
  9261. case GGML_TYPE_F32:
  9262. {
  9263. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9264. } break;
  9265. default:
  9266. {
  9267. GGML_ASSERT(false);
  9268. } break;
  9269. }
  9270. }
  9271. // ggml_compute_forward_set
  9272. static void ggml_compute_forward_set_f32(
  9273. const struct ggml_compute_params * params,
  9274. const struct ggml_tensor * src0,
  9275. const struct ggml_tensor * src1,
  9276. struct ggml_tensor * dst) {
  9277. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9278. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9279. // view src0 and dst with these strides and data offset inbytes during set
  9280. // nb0 is implicitely element_size because src0 and dst are contiguous
  9281. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9282. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9283. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9284. size_t offset = ((int32_t *) dst->op_params)[3];
  9285. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9286. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9287. // memcpy needs to be synchronized across threads to avoid race conditions.
  9288. // => do it in INIT phase
  9289. memcpy(
  9290. ((char *) dst->data),
  9291. ((char *) src0->data),
  9292. ggml_nbytes(dst));
  9293. }
  9294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9295. return;
  9296. }
  9297. const int ith = params->ith;
  9298. const int nth = params->nth;
  9299. const int nr = ggml_nrows(src1);
  9300. const int nc = src1->ne[0];
  9301. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9302. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9303. // src0 and dst as viewed during set
  9304. const size_t nb0 = ggml_element_size(src0);
  9305. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9306. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9307. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9308. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9309. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9310. GGML_ASSERT(nb10 == sizeof(float));
  9311. // rows per thread
  9312. const int dr = (nr + nth - 1)/nth;
  9313. // row range for this thread
  9314. const int ir0 = dr*ith;
  9315. const int ir1 = MIN(ir0 + dr, nr);
  9316. for (int ir = ir0; ir < ir1; ++ir) {
  9317. // src0 and dst are viewed with shape of src1 and offset
  9318. // => same indices
  9319. const int i3 = ir/(ne12*ne11);
  9320. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9321. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9322. ggml_vec_cpy_f32(nc,
  9323. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9324. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9325. }
  9326. }
  9327. static void ggml_compute_forward_set(
  9328. const struct ggml_compute_params * params,
  9329. const struct ggml_tensor * src0,
  9330. const struct ggml_tensor * src1,
  9331. struct ggml_tensor * dst) {
  9332. switch (src0->type) {
  9333. case GGML_TYPE_F32:
  9334. {
  9335. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9336. } break;
  9337. case GGML_TYPE_F16:
  9338. case GGML_TYPE_Q4_0:
  9339. case GGML_TYPE_Q4_1:
  9340. case GGML_TYPE_Q5_0:
  9341. case GGML_TYPE_Q5_1:
  9342. case GGML_TYPE_Q8_0:
  9343. case GGML_TYPE_Q8_1:
  9344. case GGML_TYPE_Q2_K:
  9345. case GGML_TYPE_Q3_K:
  9346. case GGML_TYPE_Q4_K:
  9347. case GGML_TYPE_Q5_K:
  9348. case GGML_TYPE_Q6_K:
  9349. default:
  9350. {
  9351. GGML_ASSERT(false);
  9352. } break;
  9353. }
  9354. }
  9355. // ggml_compute_forward_cpy
  9356. static void ggml_compute_forward_cpy(
  9357. const struct ggml_compute_params * params,
  9358. const struct ggml_tensor * src0,
  9359. struct ggml_tensor * dst) {
  9360. ggml_compute_forward_dup(params, src0, dst);
  9361. }
  9362. // ggml_compute_forward_cont
  9363. static void ggml_compute_forward_cont(
  9364. const struct ggml_compute_params * params,
  9365. const struct ggml_tensor * src0,
  9366. struct ggml_tensor * dst) {
  9367. ggml_compute_forward_dup(params, src0, dst);
  9368. }
  9369. // ggml_compute_forward_reshape
  9370. static void ggml_compute_forward_reshape(
  9371. const struct ggml_compute_params * params,
  9372. const struct ggml_tensor * src0,
  9373. struct ggml_tensor * dst) {
  9374. // NOP
  9375. UNUSED(params);
  9376. UNUSED(src0);
  9377. UNUSED(dst);
  9378. }
  9379. // ggml_compute_forward_view
  9380. static void ggml_compute_forward_view(
  9381. const struct ggml_compute_params * params,
  9382. const struct ggml_tensor * src0) {
  9383. // NOP
  9384. UNUSED(params);
  9385. UNUSED(src0);
  9386. }
  9387. // ggml_compute_forward_permute
  9388. static void ggml_compute_forward_permute(
  9389. const struct ggml_compute_params * params,
  9390. const struct ggml_tensor * src0) {
  9391. // NOP
  9392. UNUSED(params);
  9393. UNUSED(src0);
  9394. }
  9395. // ggml_compute_forward_transpose
  9396. static void ggml_compute_forward_transpose(
  9397. const struct ggml_compute_params * params,
  9398. const struct ggml_tensor * src0) {
  9399. // NOP
  9400. UNUSED(params);
  9401. UNUSED(src0);
  9402. }
  9403. // ggml_compute_forward_get_rows
  9404. static void ggml_compute_forward_get_rows_q(
  9405. const struct ggml_compute_params * params,
  9406. const struct ggml_tensor * src0,
  9407. const struct ggml_tensor * src1,
  9408. struct ggml_tensor * dst) {
  9409. assert(params->ith == 0);
  9410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9411. return;
  9412. }
  9413. const int nc = src0->ne[0];
  9414. const int nr = ggml_nelements(src1);
  9415. const enum ggml_type type = src0->type;
  9416. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9417. assert( dst->ne[0] == nc);
  9418. assert( dst->ne[1] == nr);
  9419. assert(src0->nb[0] == ggml_type_size(type));
  9420. for (int i = 0; i < nr; ++i) {
  9421. const int r = ((int32_t *) src1->data)[i];
  9422. dequantize_row_q(
  9423. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9424. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9425. }
  9426. }
  9427. static void ggml_compute_forward_get_rows_f16(
  9428. const struct ggml_compute_params * params,
  9429. const struct ggml_tensor * src0,
  9430. const struct ggml_tensor * src1,
  9431. struct ggml_tensor * dst) {
  9432. assert(params->ith == 0);
  9433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9434. return;
  9435. }
  9436. const int nc = src0->ne[0];
  9437. const int nr = ggml_nelements(src1);
  9438. assert( dst->ne[0] == nc);
  9439. assert( dst->ne[1] == nr);
  9440. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9441. for (int i = 0; i < nr; ++i) {
  9442. const int r = ((int32_t *) src1->data)[i];
  9443. for (int j = 0; j < nc; ++j) {
  9444. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9445. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9446. }
  9447. }
  9448. }
  9449. static void ggml_compute_forward_get_rows_f32(
  9450. const struct ggml_compute_params * params,
  9451. const struct ggml_tensor * src0,
  9452. const struct ggml_tensor * src1,
  9453. struct ggml_tensor * dst) {
  9454. assert(params->ith == 0);
  9455. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9456. return;
  9457. }
  9458. const int nc = src0->ne[0];
  9459. const int nr = ggml_nelements(src1);
  9460. assert( dst->ne[0] == nc);
  9461. assert( dst->ne[1] == nr);
  9462. assert(src0->nb[0] == sizeof(float));
  9463. for (int i = 0; i < nr; ++i) {
  9464. const int r = ((int32_t *) src1->data)[i];
  9465. ggml_vec_cpy_f32(nc,
  9466. (float *) ((char *) dst->data + i*dst->nb[1]),
  9467. (float *) ((char *) src0->data + r*src0->nb[1]));
  9468. }
  9469. }
  9470. static void ggml_compute_forward_get_rows(
  9471. const struct ggml_compute_params * params,
  9472. const struct ggml_tensor * src0,
  9473. const struct ggml_tensor * src1,
  9474. struct ggml_tensor * dst) {
  9475. switch (src0->type) {
  9476. case GGML_TYPE_Q4_0:
  9477. case GGML_TYPE_Q4_1:
  9478. case GGML_TYPE_Q5_0:
  9479. case GGML_TYPE_Q5_1:
  9480. case GGML_TYPE_Q8_0:
  9481. case GGML_TYPE_Q8_1:
  9482. case GGML_TYPE_Q2_K:
  9483. case GGML_TYPE_Q3_K:
  9484. case GGML_TYPE_Q4_K:
  9485. case GGML_TYPE_Q5_K:
  9486. case GGML_TYPE_Q6_K:
  9487. {
  9488. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9489. } break;
  9490. case GGML_TYPE_F16:
  9491. {
  9492. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9493. } break;
  9494. case GGML_TYPE_F32:
  9495. {
  9496. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9497. } break;
  9498. default:
  9499. {
  9500. GGML_ASSERT(false);
  9501. } break;
  9502. }
  9503. //static bool first = true;
  9504. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9505. //if (first) {
  9506. // first = false;
  9507. //} else {
  9508. // for (int k = 0; k < dst->ne[1]; ++k) {
  9509. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9510. // for (int i = 0; i < 16; ++i) {
  9511. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9512. // }
  9513. // printf("\n");
  9514. // }
  9515. // printf("\n");
  9516. // }
  9517. // printf("\n");
  9518. // exit(0);
  9519. //}
  9520. }
  9521. // ggml_compute_forward_get_rows_back
  9522. static void ggml_compute_forward_get_rows_back_f32_f16(
  9523. const struct ggml_compute_params * params,
  9524. const struct ggml_tensor * src0,
  9525. const struct ggml_tensor * src1,
  9526. const struct ggml_tensor * opt0,
  9527. struct ggml_tensor * dst) {
  9528. GGML_ASSERT(params->ith == 0);
  9529. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9530. GGML_ASSERT(ggml_is_contiguous(opt0));
  9531. GGML_ASSERT(ggml_is_contiguous(dst));
  9532. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9534. return;
  9535. }
  9536. const int nc = src0->ne[0];
  9537. const int nr = ggml_nelements(src1);
  9538. GGML_ASSERT( dst->ne[0] == nc);
  9539. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9540. for (int i = 0; i < nr; ++i) {
  9541. const int r = ((int32_t *) src1->data)[i];
  9542. for (int j = 0; j < nc; ++j) {
  9543. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9544. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9545. }
  9546. }
  9547. }
  9548. static void ggml_compute_forward_get_rows_back_f32(
  9549. const struct ggml_compute_params * params,
  9550. const struct ggml_tensor * src0,
  9551. const struct ggml_tensor * src1,
  9552. const struct ggml_tensor * opt0,
  9553. struct ggml_tensor * dst) {
  9554. GGML_ASSERT(params->ith == 0);
  9555. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9556. GGML_ASSERT(ggml_is_contiguous(opt0));
  9557. GGML_ASSERT(ggml_is_contiguous(dst));
  9558. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9559. if (params->type == GGML_TASK_INIT) {
  9560. memset(dst->data, 0, ggml_nbytes(dst));
  9561. }
  9562. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9563. return;
  9564. }
  9565. const int nc = src0->ne[0];
  9566. const int nr = ggml_nelements(src1);
  9567. GGML_ASSERT( dst->ne[0] == nc);
  9568. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9569. for (int i = 0; i < nr; ++i) {
  9570. const int r = ((int32_t *) src1->data)[i];
  9571. ggml_vec_add_f32(nc,
  9572. (float *) ((char *) dst->data + r*dst->nb[1]),
  9573. (float *) ((char *) dst->data + r*dst->nb[1]),
  9574. (float *) ((char *) src0->data + i*src0->nb[1]));
  9575. }
  9576. }
  9577. static void ggml_compute_forward_get_rows_back(
  9578. const struct ggml_compute_params * params,
  9579. const struct ggml_tensor * src0,
  9580. const struct ggml_tensor * src1,
  9581. const struct ggml_tensor * opt0,
  9582. struct ggml_tensor * dst) {
  9583. switch (src0->type) {
  9584. case GGML_TYPE_F16:
  9585. {
  9586. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9587. } break;
  9588. case GGML_TYPE_F32:
  9589. {
  9590. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9591. } break;
  9592. default:
  9593. {
  9594. GGML_ASSERT(false);
  9595. } break;
  9596. }
  9597. //static bool first = true;
  9598. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9599. //if (first) {
  9600. // first = false;
  9601. //} else {
  9602. // for (int k = 0; k < dst->ne[1]; ++k) {
  9603. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9604. // for (int i = 0; i < 16; ++i) {
  9605. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9606. // }
  9607. // printf("\n");
  9608. // }
  9609. // printf("\n");
  9610. // }
  9611. // printf("\n");
  9612. // exit(0);
  9613. //}
  9614. }
  9615. // ggml_compute_forward_diag
  9616. static void ggml_compute_forward_diag_f32(
  9617. const struct ggml_compute_params * params,
  9618. const struct ggml_tensor * src0,
  9619. struct ggml_tensor * dst) {
  9620. GGML_ASSERT(params->ith == 0);
  9621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9622. return;
  9623. }
  9624. // TODO: handle transposed/permuted matrices
  9625. GGML_TENSOR_UNARY_OP_LOCALS;
  9626. GGML_ASSERT(ne00 == ne0);
  9627. GGML_ASSERT(ne00 == ne1);
  9628. GGML_ASSERT(ne01 == 1);
  9629. GGML_ASSERT(ne02 == ne2);
  9630. GGML_ASSERT(ne03 == ne3);
  9631. GGML_ASSERT(nb00 == sizeof(float));
  9632. GGML_ASSERT(nb0 == sizeof(float));
  9633. for (int i3 = 0; i3 < ne3; i3++) {
  9634. for (int i2 = 0; i2 < ne2; i2++) {
  9635. for (int i1 = 0; i1 < ne1; i1++) {
  9636. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9637. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9638. for (int i0 = 0; i0 < i1; i0++) {
  9639. d[i0] = 0;
  9640. }
  9641. d[i1] = s[i1];
  9642. for (int i0 = i1+1; i0 < ne0; i0++) {
  9643. d[i0] = 0;
  9644. }
  9645. }
  9646. }
  9647. }
  9648. }
  9649. static void ggml_compute_forward_diag(
  9650. const struct ggml_compute_params * params,
  9651. const struct ggml_tensor * src0,
  9652. struct ggml_tensor * dst) {
  9653. switch (src0->type) {
  9654. case GGML_TYPE_F32:
  9655. {
  9656. ggml_compute_forward_diag_f32(params, src0, dst);
  9657. } break;
  9658. default:
  9659. {
  9660. GGML_ASSERT(false);
  9661. } break;
  9662. }
  9663. }
  9664. // ggml_compute_forward_diag_mask_inf
  9665. static void ggml_compute_forward_diag_mask_f32(
  9666. const struct ggml_compute_params * params,
  9667. const struct ggml_tensor * src0,
  9668. struct ggml_tensor * dst,
  9669. const float value) {
  9670. const int ith = params->ith;
  9671. const int nth = params->nth;
  9672. const int n_past = ((int32_t *) dst->op_params)[0];
  9673. const bool inplace = src0->data == dst->data;
  9674. GGML_ASSERT(n_past >= 0);
  9675. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9676. // memcpy needs to be synchronized across threads to avoid race conditions.
  9677. // => do it in INIT phase
  9678. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9679. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9680. memcpy(
  9681. ((char *) dst->data),
  9682. ((char *) src0->data),
  9683. ggml_nbytes(dst));
  9684. }
  9685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9686. return;
  9687. }
  9688. // TODO: handle transposed/permuted matrices
  9689. const int n = ggml_nrows(src0);
  9690. const int nc = src0->ne[0];
  9691. const int nr = src0->ne[1];
  9692. const int nz = n/nr;
  9693. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9694. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9695. for (int k = 0; k < nz; k++) {
  9696. for (int j = ith; j < nr; j += nth) {
  9697. for (int i = n_past; i < nc; i++) {
  9698. if (i > n_past + j) {
  9699. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9700. }
  9701. }
  9702. }
  9703. }
  9704. }
  9705. static void ggml_compute_forward_diag_mask_inf(
  9706. const struct ggml_compute_params * params,
  9707. const struct ggml_tensor * src0,
  9708. struct ggml_tensor * dst) {
  9709. switch (src0->type) {
  9710. case GGML_TYPE_F32:
  9711. {
  9712. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9713. } break;
  9714. default:
  9715. {
  9716. GGML_ASSERT(false);
  9717. } break;
  9718. }
  9719. }
  9720. static void ggml_compute_forward_diag_mask_zero(
  9721. const struct ggml_compute_params * params,
  9722. const struct ggml_tensor * src0,
  9723. struct ggml_tensor * dst) {
  9724. switch (src0->type) {
  9725. case GGML_TYPE_F32:
  9726. {
  9727. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9728. } break;
  9729. default:
  9730. {
  9731. GGML_ASSERT(false);
  9732. } break;
  9733. }
  9734. }
  9735. // ggml_compute_forward_soft_max
  9736. static void ggml_compute_forward_soft_max_f32(
  9737. const struct ggml_compute_params * params,
  9738. const struct ggml_tensor * src0,
  9739. struct ggml_tensor * dst) {
  9740. GGML_ASSERT(ggml_is_contiguous(src0));
  9741. GGML_ASSERT(ggml_is_contiguous(dst));
  9742. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9744. return;
  9745. }
  9746. // TODO: handle transposed/permuted matrices
  9747. const int ith = params->ith;
  9748. const int nth = params->nth;
  9749. const int nc = src0->ne[0];
  9750. const int nr = ggml_nrows(src0);
  9751. // rows per thread
  9752. const int dr = (nr + nth - 1)/nth;
  9753. // row range for this thread
  9754. const int ir0 = dr*ith;
  9755. const int ir1 = MIN(ir0 + dr, nr);
  9756. for (int i1 = ir0; i1 < ir1; i1++) {
  9757. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9758. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9759. #ifndef NDEBUG
  9760. for (int i = 0; i < nc; ++i) {
  9761. //printf("p[%d] = %f\n", i, p[i]);
  9762. assert(!isnan(sp[i]));
  9763. }
  9764. #endif
  9765. float max = -INFINITY;
  9766. ggml_vec_max_f32(nc, &max, sp);
  9767. ggml_float sum = 0.0;
  9768. uint16_t scvt;
  9769. for (int i = 0; i < nc; i++) {
  9770. if (sp[i] == -INFINITY) {
  9771. dp[i] = 0.0f;
  9772. } else {
  9773. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9774. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9775. memcpy(&scvt, &s, sizeof(scvt));
  9776. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9777. sum += (ggml_float)val;
  9778. dp[i] = val;
  9779. }
  9780. }
  9781. assert(sum > 0.0);
  9782. sum = 1.0/sum;
  9783. ggml_vec_scale_f32(nc, dp, sum);
  9784. #ifndef NDEBUG
  9785. for (int i = 0; i < nc; ++i) {
  9786. assert(!isnan(dp[i]));
  9787. assert(!isinf(dp[i]));
  9788. }
  9789. #endif
  9790. }
  9791. }
  9792. static void ggml_compute_forward_soft_max(
  9793. const struct ggml_compute_params * params,
  9794. const struct ggml_tensor * src0,
  9795. struct ggml_tensor * dst) {
  9796. switch (src0->type) {
  9797. case GGML_TYPE_F32:
  9798. {
  9799. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9800. } break;
  9801. default:
  9802. {
  9803. GGML_ASSERT(false);
  9804. } break;
  9805. }
  9806. }
  9807. // ggml_compute_forward_soft_max_back
  9808. static void ggml_compute_forward_soft_max_back_f32(
  9809. const struct ggml_compute_params * params,
  9810. const struct ggml_tensor * src0,
  9811. const struct ggml_tensor * src1,
  9812. struct ggml_tensor * dst) {
  9813. GGML_ASSERT(ggml_is_contiguous(src0));
  9814. GGML_ASSERT(ggml_is_contiguous(src1));
  9815. GGML_ASSERT(ggml_is_contiguous(dst));
  9816. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9817. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9819. return;
  9820. }
  9821. // TODO: handle transposed/permuted matrices
  9822. const int ith = params->ith;
  9823. const int nth = params->nth;
  9824. const int nc = src0->ne[0];
  9825. const int nr = ggml_nrows(src0);
  9826. // rows per thread
  9827. const int dr = (nr + nth - 1)/nth;
  9828. // row range for this thread
  9829. const int ir0 = dr*ith;
  9830. const int ir1 = MIN(ir0 + dr, nr);
  9831. for (int i1 = ir0; i1 < ir1; i1++) {
  9832. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9833. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9834. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9835. #ifndef NDEBUG
  9836. for (int i = 0; i < nc; ++i) {
  9837. //printf("p[%d] = %f\n", i, p[i]);
  9838. assert(!isnan(dy[i]));
  9839. assert(!isnan(y[i]));
  9840. }
  9841. #endif
  9842. // Jii = yi - yi*yi
  9843. // Jij = -yi*yj
  9844. // J = diag(y)-y.T*y
  9845. // dx = J * dy
  9846. // dxk = sum_i(Jki * dyi)
  9847. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9848. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9849. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9850. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9851. // dxk = -yk * dot(y, dy) + yk*dyk
  9852. // dxk = yk * (- dot(y, dy) + dyk)
  9853. // dxk = yk * (dyk - dot(y, dy))
  9854. //
  9855. // post-order:
  9856. // dot_y_dy := dot(y, dy)
  9857. // dx := dy
  9858. // dx := dx - dot_y_dy
  9859. // dx := dx * y
  9860. // linear runtime, no additional memory
  9861. float dot_y_dy = 0;
  9862. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9863. ggml_vec_cpy_f32 (nc, dx, dy);
  9864. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9865. ggml_vec_mul_f32 (nc, dx, dx, y);
  9866. #ifndef NDEBUG
  9867. for (int i = 0; i < nc; ++i) {
  9868. assert(!isnan(dx[i]));
  9869. assert(!isinf(dx[i]));
  9870. }
  9871. #endif
  9872. }
  9873. }
  9874. static void ggml_compute_forward_soft_max_back(
  9875. const struct ggml_compute_params * params,
  9876. const struct ggml_tensor * src0,
  9877. const struct ggml_tensor * src1,
  9878. struct ggml_tensor * dst) {
  9879. switch (src0->type) {
  9880. case GGML_TYPE_F32:
  9881. {
  9882. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9883. } break;
  9884. default:
  9885. {
  9886. GGML_ASSERT(false);
  9887. } break;
  9888. }
  9889. }
  9890. // ggml_compute_forward_alibi
  9891. static void ggml_compute_forward_alibi_f32(
  9892. const struct ggml_compute_params * params,
  9893. const struct ggml_tensor * src0,
  9894. struct ggml_tensor * dst) {
  9895. assert(params->ith == 0);
  9896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9897. return;
  9898. }
  9899. const int n_past = ((int32_t *) dst->op_params)[0];
  9900. const int n_head = ((int32_t *) dst->op_params)[1];
  9901. float max_bias;
  9902. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9903. assert(n_past >= 0);
  9904. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9905. const int ne1 = src0->ne[1]; // seq_len_without_past
  9906. const int ne2 = src0->ne[2]; // n_head -> this is k
  9907. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9908. const int n = ggml_nrows(src0);
  9909. const int ne2_ne3 = n/ne1; // ne2*ne3
  9910. const int nb0 = src0->nb[0];
  9911. const int nb1 = src0->nb[1];
  9912. const int nb2 = src0->nb[2];
  9913. //const int nb3 = src0->nb[3];
  9914. GGML_ASSERT(nb0 == sizeof(float));
  9915. GGML_ASSERT(ne1 + n_past == ne0);
  9916. GGML_ASSERT(n_head == ne2);
  9917. // add alibi to src0 (KQ_scaled)
  9918. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9919. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9920. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9921. for (int i = 0; i < ne0; i++) {
  9922. for (int j = 0; j < ne1; j++) {
  9923. for (int k = 0; k < ne2_ne3; k++) {
  9924. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9925. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9926. // TODO: k*nb2 or k*nb3
  9927. float m_k;
  9928. if (k < n_heads_log2_floor) {
  9929. m_k = powf(m0, k + 1);
  9930. } else {
  9931. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9932. }
  9933. pdst[0] = i * m_k + src[0];
  9934. }
  9935. }
  9936. }
  9937. }
  9938. static void ggml_compute_forward_alibi_f16(
  9939. const struct ggml_compute_params * params,
  9940. const struct ggml_tensor * src0,
  9941. struct ggml_tensor * dst) {
  9942. assert(params->ith == 0);
  9943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9944. return;
  9945. }
  9946. const int n_past = ((int32_t *) dst->op_params)[0];
  9947. const int n_head = ((int32_t *) dst->op_params)[1];
  9948. float max_bias;
  9949. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9950. assert(n_past >= 0);
  9951. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9952. const int ne1 = src0->ne[1]; // seq_len_without_past
  9953. const int ne2 = src0->ne[2]; // n_head -> this is k
  9954. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9955. const int n = ggml_nrows(src0);
  9956. const int ne2_ne3 = n/ne1; // ne2*ne3
  9957. const int nb0 = src0->nb[0];
  9958. const int nb1 = src0->nb[1];
  9959. const int nb2 = src0->nb[2];
  9960. //const int nb3 = src0->nb[3];
  9961. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9962. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9963. GGML_ASSERT(n_head == ne2);
  9964. // add alibi to src0 (KQ_scaled)
  9965. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9966. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9967. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9968. for (int i = 0; i < ne0; i++) {
  9969. for (int j = 0; j < ne1; j++) {
  9970. for (int k = 0; k < ne2_ne3; k++) {
  9971. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9972. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9973. // TODO: k*nb2 or k*nb3
  9974. float m_k;
  9975. if (k < n_heads_log2_floor) {
  9976. m_k = powf(m0, k + 1);
  9977. } else {
  9978. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9979. }
  9980. // we return F32
  9981. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9982. }
  9983. }
  9984. }
  9985. }
  9986. static void ggml_compute_forward_alibi(
  9987. const struct ggml_compute_params * params,
  9988. const struct ggml_tensor * src0,
  9989. struct ggml_tensor * dst) {
  9990. switch (src0->type) {
  9991. case GGML_TYPE_F16:
  9992. {
  9993. ggml_compute_forward_alibi_f16(params, src0, dst);
  9994. } break;
  9995. case GGML_TYPE_F32:
  9996. {
  9997. ggml_compute_forward_alibi_f32(params, src0, dst);
  9998. } break;
  9999. case GGML_TYPE_Q4_0:
  10000. case GGML_TYPE_Q4_1:
  10001. case GGML_TYPE_Q5_0:
  10002. case GGML_TYPE_Q5_1:
  10003. case GGML_TYPE_Q8_0:
  10004. case GGML_TYPE_Q8_1:
  10005. case GGML_TYPE_Q2_K:
  10006. case GGML_TYPE_Q3_K:
  10007. case GGML_TYPE_Q4_K:
  10008. case GGML_TYPE_Q5_K:
  10009. case GGML_TYPE_Q6_K:
  10010. case GGML_TYPE_Q8_K:
  10011. case GGML_TYPE_I8:
  10012. case GGML_TYPE_I16:
  10013. case GGML_TYPE_I32:
  10014. case GGML_TYPE_COUNT:
  10015. {
  10016. GGML_ASSERT(false);
  10017. } break;
  10018. }
  10019. }
  10020. // ggml_compute_forward_clamp
  10021. static void ggml_compute_forward_clamp_f32(
  10022. const struct ggml_compute_params * params,
  10023. const struct ggml_tensor * src0,
  10024. struct ggml_tensor * dst) {
  10025. assert(params->ith == 0);
  10026. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10027. return;
  10028. }
  10029. float min;
  10030. float max;
  10031. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10032. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10033. const int ith = params->ith;
  10034. const int nth = params->nth;
  10035. const int n = ggml_nrows(src0);
  10036. const int nc = src0->ne[0];
  10037. const size_t nb00 = src0->nb[0];
  10038. const size_t nb01 = src0->nb[1];
  10039. const size_t nb0 = dst->nb[0];
  10040. const size_t nb1 = dst->nb[1];
  10041. GGML_ASSERT( nb0 == sizeof(float));
  10042. GGML_ASSERT(nb00 == sizeof(float));
  10043. for (int j = ith; j < n; j += nth) {
  10044. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10045. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10046. for (int i = 0; i < nc; i++) {
  10047. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10048. }
  10049. }
  10050. }
  10051. static void ggml_compute_forward_clamp(
  10052. const struct ggml_compute_params * params,
  10053. const struct ggml_tensor * src0,
  10054. struct ggml_tensor * dst) {
  10055. switch (src0->type) {
  10056. case GGML_TYPE_F32:
  10057. {
  10058. ggml_compute_forward_clamp_f32(params, src0, dst);
  10059. } break;
  10060. case GGML_TYPE_F16:
  10061. case GGML_TYPE_Q4_0:
  10062. case GGML_TYPE_Q4_1:
  10063. case GGML_TYPE_Q5_0:
  10064. case GGML_TYPE_Q5_1:
  10065. case GGML_TYPE_Q8_0:
  10066. case GGML_TYPE_Q8_1:
  10067. case GGML_TYPE_Q2_K:
  10068. case GGML_TYPE_Q3_K:
  10069. case GGML_TYPE_Q4_K:
  10070. case GGML_TYPE_Q5_K:
  10071. case GGML_TYPE_Q6_K:
  10072. case GGML_TYPE_Q8_K:
  10073. case GGML_TYPE_I8:
  10074. case GGML_TYPE_I16:
  10075. case GGML_TYPE_I32:
  10076. case GGML_TYPE_COUNT:
  10077. {
  10078. GGML_ASSERT(false);
  10079. } break;
  10080. }
  10081. }
  10082. // ggml_compute_forward_rope
  10083. static void ggml_compute_forward_rope_f32(
  10084. const struct ggml_compute_params * params,
  10085. const struct ggml_tensor * src0,
  10086. struct ggml_tensor * dst) {
  10087. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10088. return;
  10089. }
  10090. float freq_base;
  10091. float freq_scale;
  10092. // these two only relevant for xPos RoPE:
  10093. float xpos_base;
  10094. bool xpos_down;
  10095. const int n_past = ((int32_t *) dst->op_params)[0];
  10096. const int n_dims = ((int32_t *) dst->op_params)[1];
  10097. const int mode = ((int32_t *) dst->op_params)[2];
  10098. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10099. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10100. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10101. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10102. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10103. assert(n_past >= 0);
  10104. GGML_TENSOR_UNARY_OP_LOCALS;
  10105. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10106. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10107. GGML_ASSERT(nb00 == sizeof(float));
  10108. const int ith = params->ith;
  10109. const int nth = params->nth;
  10110. const int nr = ggml_nrows(dst);
  10111. GGML_ASSERT(n_dims <= ne0);
  10112. GGML_ASSERT(n_dims % 2 == 0);
  10113. // rows per thread
  10114. const int dr = (nr + nth - 1)/nth;
  10115. // row range for this thread
  10116. const int ir0 = dr*ith;
  10117. const int ir1 = MIN(ir0 + dr, nr);
  10118. // row index used to determine which thread to use
  10119. int ir = 0;
  10120. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10121. const bool is_neox = mode & 2;
  10122. const bool is_glm = mode & 4;
  10123. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10124. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10125. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10126. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10127. if (ir++ < ir0) continue;
  10128. if (ir > ir1) break;
  10129. float theta = freq_scale * (float)p;
  10130. if (is_glm) {
  10131. theta = MIN(p, n_ctx - 2);
  10132. float block_theta = MAX(p - (n_ctx - 2), 0);
  10133. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10134. const float cos_theta = cosf(theta);
  10135. const float sin_theta = sinf(theta);
  10136. const float cos_block_theta = cosf(block_theta);
  10137. const float sin_block_theta = sinf(block_theta);
  10138. theta *= theta_scale;
  10139. block_theta *= theta_scale;
  10140. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10141. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10142. const float x0 = src[0];
  10143. const float x1 = src[n_dims/2];
  10144. const float x2 = src[n_dims];
  10145. const float x3 = src[n_dims/2*3];
  10146. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10147. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10148. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10149. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10150. }
  10151. } else if (!is_neox) {
  10152. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10153. const float cos_theta = cosf(theta);
  10154. const float sin_theta = sinf(theta);
  10155. // zeta scaling for xPos only:
  10156. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10157. if (xpos_down) zeta = 1.0f / zeta;
  10158. theta *= theta_scale;
  10159. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10160. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10161. const float x0 = src[0];
  10162. const float x1 = src[1];
  10163. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10164. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10165. }
  10166. } else {
  10167. // TODO: this might be wrong for ne0 != n_dims - need double check
  10168. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10169. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10170. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10171. const float cos_theta = cosf(theta);
  10172. const float sin_theta = sinf(theta);
  10173. theta *= theta_scale;
  10174. const int64_t i0 = ib*n_dims + ic/2;
  10175. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10176. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10177. const float x0 = src[0];
  10178. const float x1 = src[n_dims/2];
  10179. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10180. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10181. }
  10182. }
  10183. }
  10184. }
  10185. }
  10186. }
  10187. }
  10188. static void ggml_compute_forward_rope_f16(
  10189. const struct ggml_compute_params * params,
  10190. const struct ggml_tensor * src0,
  10191. struct ggml_tensor * dst) {
  10192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10193. return;
  10194. }
  10195. float freq_base;
  10196. float freq_scale;
  10197. const int n_past = ((int32_t *) dst->op_params)[0];
  10198. const int n_dims = ((int32_t *) dst->op_params)[1];
  10199. const int mode = ((int32_t *) dst->op_params)[2];
  10200. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10201. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10202. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10203. assert(n_past >= 0);
  10204. GGML_TENSOR_UNARY_OP_LOCALS;
  10205. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10206. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10207. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10208. const int ith = params->ith;
  10209. const int nth = params->nth;
  10210. const int nr = ggml_nrows(dst);
  10211. GGML_ASSERT(n_dims <= ne0);
  10212. GGML_ASSERT(n_dims % 2 == 0);
  10213. // rows per thread
  10214. const int dr = (nr + nth - 1)/nth;
  10215. // row range for this thread
  10216. const int ir0 = dr*ith;
  10217. const int ir1 = MIN(ir0 + dr, nr);
  10218. // row index used to determine which thread to use
  10219. int ir = 0;
  10220. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10221. const bool is_neox = mode & 2;
  10222. const bool is_glm = mode & 4;
  10223. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10224. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10225. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10226. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10227. if (ir++ < ir0) continue;
  10228. if (ir > ir1) break;
  10229. float theta = freq_scale * (float)p;
  10230. if (is_glm) {
  10231. theta = MIN(p, n_ctx - 2);
  10232. float block_theta = MAX(p - (n_ctx - 2), 0);
  10233. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10234. const float cos_theta = cosf(theta);
  10235. const float sin_theta = sinf(theta);
  10236. const float cos_block_theta = cosf(block_theta);
  10237. const float sin_block_theta = sinf(block_theta);
  10238. theta *= theta_scale;
  10239. block_theta *= theta_scale;
  10240. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10241. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10242. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10243. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10244. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10245. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10246. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10247. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10248. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10249. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10250. }
  10251. } if (!is_neox) {
  10252. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10253. const float cos_theta = cosf(theta);
  10254. const float sin_theta = sinf(theta);
  10255. theta *= theta_scale;
  10256. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10257. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10258. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10259. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10260. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10261. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10262. }
  10263. } else {
  10264. // TODO: this might be wrong for ne0 != n_dims - need double check
  10265. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10266. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10267. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10268. const float cos_theta = cosf(theta);
  10269. const float sin_theta = sinf(theta);
  10270. theta *= theta_scale;
  10271. const int64_t i0 = ib*n_dims + ic/2;
  10272. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10273. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10274. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10275. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10276. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10277. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10278. }
  10279. }
  10280. }
  10281. }
  10282. }
  10283. }
  10284. }
  10285. static void ggml_compute_forward_rope(
  10286. const struct ggml_compute_params * params,
  10287. const struct ggml_tensor * src0,
  10288. struct ggml_tensor * dst) {
  10289. switch (src0->type) {
  10290. case GGML_TYPE_F16:
  10291. {
  10292. ggml_compute_forward_rope_f16(params, src0, dst);
  10293. } break;
  10294. case GGML_TYPE_F32:
  10295. {
  10296. ggml_compute_forward_rope_f32(params, src0, dst);
  10297. } break;
  10298. default:
  10299. {
  10300. GGML_ASSERT(false);
  10301. } break;
  10302. }
  10303. }
  10304. // ggml_compute_forward_rope_back
  10305. static void ggml_compute_forward_rope_back_f32(
  10306. const struct ggml_compute_params * params,
  10307. const struct ggml_tensor * src0,
  10308. struct ggml_tensor * dst) {
  10309. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10310. return;
  10311. }
  10312. // y = rope(x, src1)
  10313. // dx = rope_back(dy, src1)
  10314. // src0 is dy, src1 contains options
  10315. float freq_base;
  10316. float freq_scale;
  10317. // these two only relevant for xPos RoPE:
  10318. float xpos_base;
  10319. bool xpos_down;
  10320. const int n_past = ((int32_t *) dst->op_params)[0];
  10321. const int n_dims = ((int32_t *) dst->op_params)[1];
  10322. const int mode = ((int32_t *) dst->op_params)[2];
  10323. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10324. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10325. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10326. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10327. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10328. assert(n_past >= 0);
  10329. GGML_TENSOR_UNARY_OP_LOCALS;
  10330. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10331. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10332. assert(nb0 == sizeof(float));
  10333. const int ith = params->ith;
  10334. const int nth = params->nth;
  10335. const int nr = ggml_nrows(dst);
  10336. // rows per thread
  10337. const int dr = (nr + nth - 1)/nth;
  10338. // row range for this thread
  10339. const int ir0 = dr*ith;
  10340. const int ir1 = MIN(ir0 + dr, nr);
  10341. // row index used to determine which thread to use
  10342. int ir = 0;
  10343. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10344. const bool is_neox = mode & 2;
  10345. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10346. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10347. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10348. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10349. if (ir++ < ir0) continue;
  10350. if (ir > ir1) break;
  10351. float theta = freq_scale * (float)p;
  10352. if (!is_neox) {
  10353. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10354. const float cos_theta = cosf(theta);
  10355. const float sin_theta = sinf(theta);
  10356. // zeta scaling for xPos only:
  10357. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10358. if (xpos_down) zeta = 1.0f / zeta;
  10359. theta *= theta_scale;
  10360. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10361. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10362. const float dy0 = dy[0];
  10363. const float dy1 = dy[1];
  10364. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10365. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10366. }
  10367. } else {
  10368. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10369. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10370. const float cos_theta = cosf(theta);
  10371. const float sin_theta = sinf(theta);
  10372. theta *= theta_scale;
  10373. const int64_t i0 = ib*n_dims + ic/2;
  10374. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10375. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10376. const float dy0 = dy[0];
  10377. const float dy1 = dy[n_dims/2];
  10378. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10379. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10380. }
  10381. }
  10382. }
  10383. }
  10384. }
  10385. }
  10386. }
  10387. static void ggml_compute_forward_rope_back_f16(
  10388. const struct ggml_compute_params * params,
  10389. const struct ggml_tensor * src0,
  10390. struct ggml_tensor * dst) {
  10391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10392. return;
  10393. }
  10394. // y = rope(x, src1)
  10395. // dx = rope_back(dy, src1)
  10396. // src0 is dy, src1 contains options
  10397. const int n_past = ((int32_t *) dst->op_params)[0];
  10398. const int n_dims = ((int32_t *) dst->op_params)[1];
  10399. const int mode = ((int32_t *) dst->op_params)[2];
  10400. assert(n_past >= 0);
  10401. GGML_TENSOR_UNARY_OP_LOCALS;
  10402. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10403. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10404. assert(nb0 == sizeof(ggml_fp16_t));
  10405. const int ith = params->ith;
  10406. const int nth = params->nth;
  10407. const int nr = ggml_nrows(dst);
  10408. // rows per thread
  10409. const int dr = (nr + nth - 1)/nth;
  10410. // row range for this thread
  10411. const int ir0 = dr*ith;
  10412. const int ir1 = MIN(ir0 + dr, nr);
  10413. // row index used to determine which thread to use
  10414. int ir = 0;
  10415. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10416. const bool is_neox = mode & 2;
  10417. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10418. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10419. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10420. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10421. if (ir++ < ir0) continue;
  10422. if (ir > ir1) break;
  10423. float theta = (float)p;
  10424. if (!is_neox) {
  10425. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10426. const float cos_theta = cosf(theta);
  10427. const float sin_theta = sinf(theta);
  10428. theta *= theta_scale;
  10429. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10430. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10431. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10432. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10433. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10434. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10435. }
  10436. } else {
  10437. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10438. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10439. const float cos_theta = cosf(theta);
  10440. const float sin_theta = sinf(theta);
  10441. theta *= theta_scale;
  10442. const int64_t i0 = ib*n_dims + ic/2;
  10443. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10444. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10445. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10446. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10447. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10448. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10449. }
  10450. }
  10451. }
  10452. }
  10453. }
  10454. }
  10455. }
  10456. static void ggml_compute_forward_rope_back(
  10457. const struct ggml_compute_params * params,
  10458. const struct ggml_tensor * src0,
  10459. struct ggml_tensor * dst) {
  10460. switch (src0->type) {
  10461. case GGML_TYPE_F16:
  10462. {
  10463. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10464. } break;
  10465. case GGML_TYPE_F32:
  10466. {
  10467. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10468. } break;
  10469. default:
  10470. {
  10471. GGML_ASSERT(false);
  10472. } break;
  10473. }
  10474. }
  10475. // ggml_compute_forward_conv_1d
  10476. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10477. const struct ggml_compute_params * params,
  10478. const struct ggml_tensor * src0,
  10479. const struct ggml_tensor * src1,
  10480. struct ggml_tensor * dst) {
  10481. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10482. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10483. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10484. int64_t t0 = ggml_perf_time_us();
  10485. UNUSED(t0);
  10486. GGML_TENSOR_BINARY_OP_LOCALS;
  10487. const int ith = params->ith;
  10488. const int nth = params->nth;
  10489. const int nk = ne00;
  10490. const int nh = nk/2;
  10491. const int ew0 = ggml_up32(ne01);
  10492. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10493. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10494. GGML_ASSERT(nb10 == sizeof(float));
  10495. if (params->type == GGML_TASK_INIT) {
  10496. // TODO: fix this memset (wsize is overestimated)
  10497. memset(params->wdata, 0, params->wsize);
  10498. // prepare kernel data (src0)
  10499. {
  10500. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10501. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10502. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10503. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10504. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10505. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10506. dst_data[i00*ew0 + i01] = src[i00];
  10507. }
  10508. }
  10509. }
  10510. }
  10511. // prepare source data (src1)
  10512. {
  10513. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10514. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10515. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10516. ggml_fp16_t * dst_data = wdata;
  10517. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10518. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10519. }
  10520. }
  10521. }
  10522. return;
  10523. }
  10524. if (params->type == GGML_TASK_FINALIZE) {
  10525. return;
  10526. }
  10527. // total rows in dst
  10528. const int nr = ne02;
  10529. // rows per thread
  10530. const int dr = (nr + nth - 1)/nth;
  10531. // row range for this thread
  10532. const int ir0 = dr*ith;
  10533. const int ir1 = MIN(ir0 + dr, nr);
  10534. for (int i1 = ir0; i1 < ir1; i1++) {
  10535. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10536. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10537. dst_data[i0] = 0;
  10538. for (int k = -nh; k <= nh; k++) {
  10539. float v = 0.0f;
  10540. ggml_vec_dot_f16(ew0, &v,
  10541. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10542. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10543. dst_data[i0] += v;
  10544. }
  10545. }
  10546. }
  10547. }
  10548. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10549. const struct ggml_compute_params * params,
  10550. const struct ggml_tensor * src0,
  10551. const struct ggml_tensor * src1,
  10552. struct ggml_tensor * dst) {
  10553. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10554. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10555. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10556. int64_t t0 = ggml_perf_time_us();
  10557. UNUSED(t0);
  10558. GGML_TENSOR_BINARY_OP_LOCALS;
  10559. const int ith = params->ith;
  10560. const int nth = params->nth;
  10561. const int nk = ne00;
  10562. const int nh = nk/2;
  10563. const int ew0 = ggml_up32(ne01);
  10564. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10565. GGML_ASSERT(nb00 == sizeof(float));
  10566. GGML_ASSERT(nb10 == sizeof(float));
  10567. if (params->type == GGML_TASK_INIT) {
  10568. // TODO: fix this memset (wsize is overestimated)
  10569. memset(params->wdata, 0, params->wsize);
  10570. // prepare kernel data (src0)
  10571. {
  10572. float * const wdata = (float *) params->wdata + 0;
  10573. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10574. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10575. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10576. float * dst_data = wdata + i02*ew0*ne00;
  10577. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10578. dst_data[i00*ew0 + i01] = src[i00];
  10579. }
  10580. }
  10581. }
  10582. }
  10583. // prepare source data (src1)
  10584. {
  10585. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10586. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10587. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10588. float * dst_data = wdata;
  10589. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10590. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10591. }
  10592. }
  10593. }
  10594. return;
  10595. }
  10596. if (params->type == GGML_TASK_FINALIZE) {
  10597. return;
  10598. }
  10599. // total rows in dst
  10600. const int nr = ne02;
  10601. // rows per thread
  10602. const int dr = (nr + nth - 1)/nth;
  10603. // row range for this thread
  10604. const int ir0 = dr*ith;
  10605. const int ir1 = MIN(ir0 + dr, nr);
  10606. for (int i1 = ir0; i1 < ir1; i1++) {
  10607. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10608. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10609. dst_data[i0] = 0;
  10610. for (int k = -nh; k <= nh; k++) {
  10611. float v = 0.0f;
  10612. ggml_vec_dot_f32(ew0, &v,
  10613. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10614. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10615. dst_data[i0] += v;
  10616. }
  10617. }
  10618. }
  10619. }
  10620. static void ggml_compute_forward_conv_1d_s1_ph(
  10621. const struct ggml_compute_params * params,
  10622. const struct ggml_tensor * src0,
  10623. const struct ggml_tensor * src1,
  10624. struct ggml_tensor * dst) {
  10625. switch (src0->type) {
  10626. case GGML_TYPE_F16:
  10627. {
  10628. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10629. } break;
  10630. case GGML_TYPE_F32:
  10631. {
  10632. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10633. } break;
  10634. default:
  10635. {
  10636. GGML_ASSERT(false);
  10637. } break;
  10638. }
  10639. }
  10640. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10641. const struct ggml_compute_params * params,
  10642. const struct ggml_tensor * src0,
  10643. const struct ggml_tensor * src1,
  10644. struct ggml_tensor * dst) {
  10645. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10646. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10647. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10648. int64_t t0 = ggml_perf_time_us();
  10649. UNUSED(t0);
  10650. GGML_TENSOR_BINARY_OP_LOCALS;
  10651. const int ith = params->ith;
  10652. const int nth = params->nth;
  10653. const int nk = ne00;
  10654. const int nh = nk/2;
  10655. const int ew0 = ggml_up32(ne01);
  10656. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10657. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10658. GGML_ASSERT(nb10 == sizeof(float));
  10659. if (params->type == GGML_TASK_INIT) {
  10660. // TODO: fix this memset (wsize is overestimated)
  10661. memset(params->wdata, 0, params->wsize);
  10662. // prepare kernel data (src0)
  10663. {
  10664. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10665. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10666. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10667. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10668. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10669. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10670. dst_data[i00*ew0 + i01] = src[i00];
  10671. }
  10672. }
  10673. }
  10674. }
  10675. // prepare source data (src1)
  10676. {
  10677. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10678. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10679. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10680. ggml_fp16_t * dst_data = wdata;
  10681. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10682. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10683. }
  10684. }
  10685. }
  10686. return;
  10687. }
  10688. if (params->type == GGML_TASK_FINALIZE) {
  10689. return;
  10690. }
  10691. // total rows in dst
  10692. const int nr = ne02;
  10693. // rows per thread
  10694. const int dr = (nr + nth - 1)/nth;
  10695. // row range for this thread
  10696. const int ir0 = dr*ith;
  10697. const int ir1 = MIN(ir0 + dr, nr);
  10698. for (int i1 = ir0; i1 < ir1; i1++) {
  10699. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10700. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10701. dst_data[i0/2] = 0;
  10702. for (int k = -nh; k <= nh; k++) {
  10703. float v = 0.0f;
  10704. ggml_vec_dot_f16(ew0, &v,
  10705. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10706. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10707. dst_data[i0/2] += v;
  10708. }
  10709. }
  10710. }
  10711. }
  10712. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10713. const struct ggml_compute_params * params,
  10714. const struct ggml_tensor * src0,
  10715. const struct ggml_tensor * src1,
  10716. struct ggml_tensor * dst) {
  10717. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10718. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10719. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10720. int64_t t0 = ggml_perf_time_us();
  10721. UNUSED(t0);
  10722. GGML_TENSOR_BINARY_OP_LOCALS;
  10723. const int ith = params->ith;
  10724. const int nth = params->nth;
  10725. const int nk = ne00;
  10726. const int nh = nk/2;
  10727. const int ew0 = ggml_up32(ne01);
  10728. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10729. GGML_ASSERT(nb00 == sizeof(float));
  10730. GGML_ASSERT(nb10 == sizeof(float));
  10731. if (params->type == GGML_TASK_INIT) {
  10732. // TODO: fix this memset (wsize is overestimated)
  10733. memset(params->wdata, 0, params->wsize);
  10734. // prepare kernel data (src0)
  10735. {
  10736. float * const wdata = (float *) params->wdata + 0;
  10737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10738. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10739. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10740. float * dst_data = wdata + i02*ew0*ne00;
  10741. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10742. dst_data[i00*ew0 + i01] = src[i00];
  10743. }
  10744. }
  10745. }
  10746. }
  10747. // prepare source data (src1)
  10748. {
  10749. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10750. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10751. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10752. float * dst_data = wdata;
  10753. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10754. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10755. }
  10756. }
  10757. }
  10758. return;
  10759. }
  10760. if (params->type == GGML_TASK_FINALIZE) {
  10761. return;
  10762. }
  10763. // total rows in dst
  10764. const int nr = ne02;
  10765. // rows per thread
  10766. const int dr = (nr + nth - 1)/nth;
  10767. // row range for this thread
  10768. const int ir0 = dr*ith;
  10769. const int ir1 = MIN(ir0 + dr, nr);
  10770. for (int i1 = ir0; i1 < ir1; i1++) {
  10771. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10772. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10773. dst_data[i0/2] = 0;
  10774. for (int k = -nh; k <= nh; k++) {
  10775. float v = 0.0f;
  10776. ggml_vec_dot_f32(ew0, &v,
  10777. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10778. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10779. dst_data[i0/2] += v;
  10780. }
  10781. }
  10782. }
  10783. }
  10784. static void ggml_compute_forward_conv_1d_s2_ph(
  10785. const struct ggml_compute_params * params,
  10786. const struct ggml_tensor * src0,
  10787. const struct ggml_tensor * src1,
  10788. struct ggml_tensor * dst) {
  10789. switch (src0->type) {
  10790. case GGML_TYPE_F16:
  10791. {
  10792. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10793. } break;
  10794. case GGML_TYPE_F32:
  10795. {
  10796. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10797. } break;
  10798. default:
  10799. {
  10800. GGML_ASSERT(false);
  10801. } break;
  10802. }
  10803. }
  10804. // ggml_compute_forward_conv_1d
  10805. static void ggml_compute_forward_conv_1d(
  10806. const struct ggml_compute_params * params,
  10807. const struct ggml_tensor * src0,
  10808. const struct ggml_tensor * src1,
  10809. struct ggml_tensor * dst) {
  10810. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10811. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10812. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10813. GGML_ASSERT(d0 == 1); // dilation not supported
  10814. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10815. if (s0 == 1) {
  10816. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10817. } else if (s0 == 2) {
  10818. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10819. } else {
  10820. GGML_ASSERT(false); // only stride 1 and 2 supported
  10821. };
  10822. }
  10823. // ggml_compute_forward_conv_2d
  10824. static void ggml_compute_forward_conv_2d_f16_f32(
  10825. const struct ggml_compute_params * params,
  10826. const struct ggml_tensor * src0,
  10827. const struct ggml_tensor * src1,
  10828. struct ggml_tensor * dst) {
  10829. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10830. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10831. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10832. int64_t t0 = ggml_perf_time_us();
  10833. UNUSED(t0);
  10834. GGML_TENSOR_BINARY_OP_LOCALS;
  10835. const int ith = params->ith;
  10836. const int nth = params->nth;
  10837. const int nk0 = ne00;
  10838. const int nk1 = ne01;
  10839. // size of the convolution row - the kernel size unrolled across all channels
  10840. const int ew0 = nk0*nk1*ne02;
  10841. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10842. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10843. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10844. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10845. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10846. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10847. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10848. GGML_ASSERT(nb10 == sizeof(float));
  10849. if (params->type == GGML_TASK_INIT) {
  10850. memset(params->wdata, 0, params->wsize);
  10851. // prepare source data (src1)
  10852. {
  10853. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10854. for (int i12 = 0; i12 < ne12; i12++) {
  10855. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10856. ggml_fp16_t * dst_data = wdata;
  10857. for (int i1 = 0; i1 < ne1; i1++) {
  10858. for (int i0 = 0; i0 < ne0; i0++) {
  10859. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10860. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10861. const int idx0 = i0*s0 + ik0*d0 - p0;
  10862. const int idx1 = i1*s1 + ik1*d1 - p1;
  10863. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10864. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10865. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10866. }
  10867. }
  10868. }
  10869. }
  10870. }
  10871. }
  10872. }
  10873. return;
  10874. }
  10875. if (params->type == GGML_TASK_FINALIZE) {
  10876. return;
  10877. }
  10878. // total patches in dst
  10879. const int np = ne2;
  10880. // patches per thread
  10881. const int dp = (np + nth - 1)/nth;
  10882. // patch range for this thread
  10883. const int ip0 = dp*ith;
  10884. const int ip1 = MIN(ip0 + dp, np);
  10885. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10886. for (int i3 = 0; i3 < ne3; i3++) {
  10887. for (int i2 = ip0; i2 < ip1; i2++) {
  10888. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10889. for (int i1 = 0; i1 < ne1; ++i1) {
  10890. for (int i0 = 0; i0 < ne0; ++i0) {
  10891. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10892. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10893. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10894. }
  10895. }
  10896. }
  10897. }
  10898. }
  10899. static void ggml_compute_forward_conv_2d(
  10900. const struct ggml_compute_params * params,
  10901. const struct ggml_tensor * src0,
  10902. const struct ggml_tensor * src1,
  10903. struct ggml_tensor * dst) {
  10904. switch (src0->type) {
  10905. case GGML_TYPE_F16:
  10906. {
  10907. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10908. } break;
  10909. case GGML_TYPE_F32:
  10910. {
  10911. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10912. GGML_ASSERT(false);
  10913. } break;
  10914. default:
  10915. {
  10916. GGML_ASSERT(false);
  10917. } break;
  10918. }
  10919. }
  10920. // ggml_compute_forward_conv_transpose_2d
  10921. static void ggml_compute_forward_conv_transpose_2d(
  10922. const struct ggml_compute_params * params,
  10923. const struct ggml_tensor * src0,
  10924. const struct ggml_tensor * src1,
  10925. struct ggml_tensor * dst) {
  10926. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10927. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10928. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10929. int64_t t0 = ggml_perf_time_us();
  10930. UNUSED(t0);
  10931. GGML_TENSOR_BINARY_OP_LOCALS;
  10932. const int ith = params->ith;
  10933. const int nth = params->nth;
  10934. const int nk = ne00*ne01*ne02*ne03;
  10935. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10936. GGML_ASSERT(nb10 == sizeof(float));
  10937. if (params->type == GGML_TASK_INIT) {
  10938. memset(params->wdata, 0, params->wsize);
  10939. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10940. {
  10941. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10944. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10945. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10946. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10947. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10948. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10949. }
  10950. }
  10951. }
  10952. }
  10953. }
  10954. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10955. {
  10956. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10957. for (int i12 = 0; i12 < ne12; i12++) {
  10958. for (int i11 = 0; i11 < ne11; i11++) {
  10959. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10960. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10961. for (int i10 = 0; i10 < ne10; i10++) {
  10962. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10963. }
  10964. }
  10965. }
  10966. }
  10967. return;
  10968. }
  10969. if (params->type == GGML_TASK_FINALIZE) {
  10970. return;
  10971. }
  10972. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10973. // total patches in dst
  10974. const int np = ne2;
  10975. // patches per thread
  10976. const int dp = (np + nth - 1)/nth;
  10977. // patch range for this thread
  10978. const int ip0 = dp*ith;
  10979. const int ip1 = MIN(ip0 + dp, np);
  10980. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10981. ggml_fp16_t * const wdata_src = wdata + nk;
  10982. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10983. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10984. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10985. for (int i11 = 0; i11 < ne11; i11++) {
  10986. for (int i10 = 0; i10 < ne10; i10++) {
  10987. const int i1n = i11*ne10*ne12 + i10*ne12;
  10988. for (int i01 = 0; i01 < ne01; i01++) {
  10989. for (int i00 = 0; i00 < ne00; i00++) {
  10990. float v = 0;
  10991. ggml_vec_dot_f16(ne03, &v,
  10992. wdata_src + i1n,
  10993. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10994. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10995. }
  10996. }
  10997. }
  10998. }
  10999. }
  11000. }
  11001. // ggml_compute_forward_pool_1d_sk_p0
  11002. static void ggml_compute_forward_pool_1d_sk_p0(
  11003. const struct ggml_compute_params * params,
  11004. const enum ggml_op_pool op,
  11005. const struct ggml_tensor * src,
  11006. const int k,
  11007. struct ggml_tensor * dst) {
  11008. assert(src->type == GGML_TYPE_F32);
  11009. assert(params->ith == 0);
  11010. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11011. return;
  11012. }
  11013. const char * cdata = (const char *)src->data;
  11014. const char * const data_end = cdata + ggml_nbytes(src);
  11015. float * drow = (float *)dst->data;
  11016. const int64_t rs = dst->ne[0];
  11017. while (cdata < data_end) {
  11018. const float * const srow = (const float *)cdata;
  11019. int j = 0;
  11020. for (int64_t i = 0; i < rs; ++i) {
  11021. switch (op) {
  11022. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11023. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11024. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11025. }
  11026. for (int ki = 0; ki < k; ++ki) {
  11027. switch (op) {
  11028. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11029. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11030. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11031. }
  11032. ++j;
  11033. }
  11034. switch (op) {
  11035. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11036. case GGML_OP_POOL_MAX: break;
  11037. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11038. }
  11039. }
  11040. cdata += src->nb[1];
  11041. drow += rs;
  11042. }
  11043. }
  11044. // ggml_compute_forward_pool_1d
  11045. static void ggml_compute_forward_pool_1d(
  11046. const struct ggml_compute_params * params,
  11047. const struct ggml_tensor * src0,
  11048. struct ggml_tensor * dst) {
  11049. const int32_t * opts = (const int32_t *)dst->op_params;
  11050. enum ggml_op_pool op = opts[0];
  11051. const int k0 = opts[1];
  11052. const int s0 = opts[2];
  11053. const int p0 = opts[3];
  11054. GGML_ASSERT(p0 == 0); // padding not supported
  11055. GGML_ASSERT(k0 == s0); // only s = k supported
  11056. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11057. }
  11058. // ggml_compute_forward_pool_2d_sk_p0
  11059. static void ggml_compute_forward_pool_2d_sk_p0(
  11060. const struct ggml_compute_params * params,
  11061. const enum ggml_op_pool op,
  11062. const struct ggml_tensor * src,
  11063. const int k0,
  11064. const int k1,
  11065. struct ggml_tensor * dst) {
  11066. assert(src->type == GGML_TYPE_F32);
  11067. assert(params->ith == 0);
  11068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11069. return;
  11070. }
  11071. const char * cdata = (const char*)src->data;
  11072. const char * const data_end = cdata + ggml_nbytes(src);
  11073. const int64_t px = dst->ne[0];
  11074. const int64_t py = dst->ne[1];
  11075. const int64_t pa = px * py;
  11076. float * dplane = (float *)dst->data;
  11077. const int ka = k0 * k1;
  11078. while (cdata < data_end) {
  11079. for (int oy = 0; oy < py; ++oy) {
  11080. float * const drow = dplane + oy * px;
  11081. for (int ox = 0; ox < px; ++ox) {
  11082. float * const out = drow + ox;
  11083. switch (op) {
  11084. case GGML_OP_POOL_AVG: *out = 0; break;
  11085. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11086. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11087. }
  11088. const int ix = ox * k0;
  11089. const int iy = oy * k1;
  11090. for (int ky = 0; ky < k1; ++ky) {
  11091. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11092. for (int kx = 0; kx < k0; ++kx) {
  11093. int j = ix + kx;
  11094. switch (op) {
  11095. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11096. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11097. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11098. }
  11099. }
  11100. }
  11101. switch (op) {
  11102. case GGML_OP_POOL_AVG: *out /= ka; break;
  11103. case GGML_OP_POOL_MAX: break;
  11104. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11105. }
  11106. }
  11107. }
  11108. cdata += src->nb[2];
  11109. dplane += pa;
  11110. }
  11111. }
  11112. // ggml_compute_forward_pool_2d
  11113. static void ggml_compute_forward_pool_2d(
  11114. const struct ggml_compute_params * params,
  11115. const struct ggml_tensor * src0,
  11116. struct ggml_tensor * dst) {
  11117. const int32_t * opts = (const int32_t *)dst->op_params;
  11118. enum ggml_op_pool op = opts[0];
  11119. const int k0 = opts[1];
  11120. const int k1 = opts[2];
  11121. const int s0 = opts[3];
  11122. const int s1 = opts[4];
  11123. const int p0 = opts[5];
  11124. const int p1 = opts[6];
  11125. GGML_ASSERT(p0 == 0);
  11126. GGML_ASSERT(p1 == 0); // padding not supported
  11127. GGML_ASSERT(k0 == s0);
  11128. GGML_ASSERT(k1 == s1); // only s = k supported
  11129. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11130. }
  11131. // ggml_compute_forward_upscale
  11132. static void ggml_compute_forward_upscale_f32(
  11133. const struct ggml_compute_params * params,
  11134. const struct ggml_tensor * src0,
  11135. struct ggml_tensor * dst) {
  11136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11137. return;
  11138. }
  11139. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11140. const int ith = params->ith;
  11141. GGML_TENSOR_UNARY_OP_LOCALS;
  11142. const int scale_factor = dst->op_params[0];
  11143. // TODO: optimize
  11144. for (int i03 = 0; i03 < ne03; i03++) {
  11145. for (int i02 = ith; i02 < ne02; i02++) {
  11146. for (int m = 0; m < dst->ne[1]; m++) {
  11147. int i01 = m / scale_factor;
  11148. for (int n = 0; n < dst->ne[0]; n++) {
  11149. int i00 = n / scale_factor;
  11150. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11151. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11152. *y = *x;
  11153. }
  11154. }
  11155. }
  11156. }
  11157. }
  11158. static void ggml_compute_forward_upscale(
  11159. const struct ggml_compute_params * params,
  11160. const struct ggml_tensor * src0,
  11161. struct ggml_tensor * dst) {
  11162. switch (src0->type) {
  11163. case GGML_TYPE_F32:
  11164. {
  11165. ggml_compute_forward_upscale_f32(params, src0, dst);
  11166. } break;
  11167. default:
  11168. {
  11169. GGML_ASSERT(false);
  11170. } break;
  11171. }
  11172. }
  11173. // ggml_compute_forward_flash_attn
  11174. static void ggml_compute_forward_flash_attn_f32(
  11175. const struct ggml_compute_params * params,
  11176. const struct ggml_tensor * q,
  11177. const struct ggml_tensor * k,
  11178. const struct ggml_tensor * v,
  11179. const bool masked,
  11180. struct ggml_tensor * dst) {
  11181. int64_t t0 = ggml_perf_time_us();
  11182. UNUSED(t0);
  11183. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11184. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11185. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11186. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11187. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11188. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11189. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11190. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11191. const int ith = params->ith;
  11192. const int nth = params->nth;
  11193. const int64_t D = neq0;
  11194. const int64_t N = neq1;
  11195. const int64_t P = nek1 - N;
  11196. const int64_t M = P + N;
  11197. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11198. GGML_ASSERT(ne0 == D);
  11199. GGML_ASSERT(ne1 == N);
  11200. GGML_ASSERT(P >= 0);
  11201. GGML_ASSERT(nbq0 == sizeof(float));
  11202. GGML_ASSERT(nbk0 == sizeof(float));
  11203. GGML_ASSERT(nbv0 == sizeof(float));
  11204. GGML_ASSERT(neq0 == D);
  11205. GGML_ASSERT(nek0 == D);
  11206. GGML_ASSERT(nev1 == D);
  11207. GGML_ASSERT(neq1 == N);
  11208. GGML_ASSERT(nek1 == N + P);
  11209. GGML_ASSERT(nev1 == D);
  11210. // dst cannot be transposed or permuted
  11211. GGML_ASSERT(nb0 == sizeof(float));
  11212. GGML_ASSERT(nb0 <= nb1);
  11213. GGML_ASSERT(nb1 <= nb2);
  11214. GGML_ASSERT(nb2 <= nb3);
  11215. if (params->type == GGML_TASK_INIT) {
  11216. return;
  11217. }
  11218. if (params->type == GGML_TASK_FINALIZE) {
  11219. return;
  11220. }
  11221. // parallelize by q rows using ggml_vec_dot_f32
  11222. // total rows in q
  11223. const int nr = neq1*neq2*neq3;
  11224. // rows per thread
  11225. const int dr = (nr + nth - 1)/nth;
  11226. // row range for this thread
  11227. const int ir0 = dr*ith;
  11228. const int ir1 = MIN(ir0 + dr, nr);
  11229. const float scale = 1.0f/sqrtf(D);
  11230. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11231. for (int ir = ir0; ir < ir1; ++ir) {
  11232. // q indices
  11233. const int iq3 = ir/(neq2*neq1);
  11234. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11235. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11236. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11237. for (int i = M; i < Mup; ++i) {
  11238. S[i] = -INFINITY;
  11239. }
  11240. for (int64_t ic = 0; ic < nek1; ++ic) {
  11241. // k indices
  11242. const int ik3 = iq3;
  11243. const int ik2 = iq2;
  11244. const int ik1 = ic;
  11245. // S indices
  11246. const int i1 = ik1;
  11247. ggml_vec_dot_f32(neq0,
  11248. S + i1,
  11249. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11250. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11251. }
  11252. // scale
  11253. ggml_vec_scale_f32(nek1, S, scale);
  11254. if (masked) {
  11255. for (int64_t i = P; i < M; i++) {
  11256. if (i > P + iq1) {
  11257. S[i] = -INFINITY;
  11258. }
  11259. }
  11260. }
  11261. // softmax
  11262. {
  11263. float max = -INFINITY;
  11264. ggml_vec_max_f32(M, &max, S);
  11265. ggml_float sum = 0.0;
  11266. {
  11267. #ifdef GGML_SOFT_MAX_ACCELERATE
  11268. max = -max;
  11269. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11270. vvexpf(S, S, &Mup);
  11271. ggml_vec_sum_f32(Mup, &sum, S);
  11272. #else
  11273. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11274. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11275. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11276. float * SS = S + i;
  11277. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11278. if (SS[j] == -INFINITY) {
  11279. SS[j] = 0.0f;
  11280. } else {
  11281. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11282. const float val = expf(SS[j] - max);
  11283. #else
  11284. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11285. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11286. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11287. #endif
  11288. sump[j] += (ggml_float)val;
  11289. SS[j] = val;
  11290. }
  11291. }
  11292. }
  11293. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11294. sum += sump[i];
  11295. }
  11296. #endif
  11297. }
  11298. assert(sum > 0.0);
  11299. sum = 1.0/sum;
  11300. ggml_vec_scale_f32(M, S, sum);
  11301. #ifndef NDEBUG
  11302. for (int i = 0; i < M; ++i) {
  11303. assert(!isnan(S[i]));
  11304. assert(!isinf(S[i]));
  11305. }
  11306. #endif
  11307. }
  11308. for (int64_t ic = 0; ic < nev1; ++ic) {
  11309. // dst indices
  11310. const int i1 = iq1;
  11311. const int i2 = iq2;
  11312. const int i3 = iq3;
  11313. ggml_vec_dot_f32(nek1,
  11314. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11315. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11316. S);
  11317. }
  11318. }
  11319. }
  11320. static void ggml_compute_forward_flash_attn_f16(
  11321. const struct ggml_compute_params * params,
  11322. const struct ggml_tensor * q,
  11323. const struct ggml_tensor * k,
  11324. const struct ggml_tensor * v,
  11325. const bool masked,
  11326. struct ggml_tensor * dst) {
  11327. int64_t t0 = ggml_perf_time_us();
  11328. UNUSED(t0);
  11329. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11330. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11331. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11332. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11333. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11334. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11335. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11336. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11337. const int ith = params->ith;
  11338. const int nth = params->nth;
  11339. const int64_t D = neq0;
  11340. const int64_t N = neq1;
  11341. const int64_t P = nek1 - N;
  11342. const int64_t M = P + N;
  11343. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11344. GGML_ASSERT(ne0 == D);
  11345. GGML_ASSERT(ne1 == N);
  11346. GGML_ASSERT(P >= 0);
  11347. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11348. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11349. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11350. GGML_ASSERT(neq0 == D);
  11351. GGML_ASSERT(nek0 == D);
  11352. GGML_ASSERT(nev1 == D);
  11353. GGML_ASSERT(neq1 == N);
  11354. GGML_ASSERT(nek1 == N + P);
  11355. GGML_ASSERT(nev1 == D);
  11356. // dst cannot be transposed or permuted
  11357. GGML_ASSERT(nb0 == sizeof(float));
  11358. GGML_ASSERT(nb0 <= nb1);
  11359. GGML_ASSERT(nb1 <= nb2);
  11360. GGML_ASSERT(nb2 <= nb3);
  11361. if (params->type == GGML_TASK_INIT) {
  11362. return;
  11363. }
  11364. if (params->type == GGML_TASK_FINALIZE) {
  11365. return;
  11366. }
  11367. // parallelize by q rows using ggml_vec_dot_f32
  11368. // total rows in q
  11369. const int nr = neq1*neq2*neq3;
  11370. // rows per thread
  11371. const int dr = (nr + nth - 1)/nth;
  11372. // row range for this thread
  11373. const int ir0 = dr*ith;
  11374. const int ir1 = MIN(ir0 + dr, nr);
  11375. const float scale = 1.0f/sqrtf(D);
  11376. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11377. for (int ir = ir0; ir < ir1; ++ir) {
  11378. // q indices
  11379. const int iq3 = ir/(neq2*neq1);
  11380. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11381. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11382. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11383. for (int i = M; i < Mup; ++i) {
  11384. S[i] = -INFINITY;
  11385. }
  11386. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11387. for (int64_t ic = 0; ic < nek1; ++ic) {
  11388. // k indices
  11389. const int ik3 = iq3;
  11390. const int ik2 = iq2;
  11391. const int ik1 = ic;
  11392. // S indices
  11393. const int i1 = ik1;
  11394. ggml_vec_dot_f16(neq0,
  11395. S + i1,
  11396. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11397. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11398. }
  11399. } else {
  11400. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11401. // k indices
  11402. const int ik3 = iq3;
  11403. const int ik2 = iq2;
  11404. const int ik1 = ic;
  11405. // S indices
  11406. const int i1 = ik1;
  11407. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11408. S + i1,
  11409. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11410. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11411. }
  11412. }
  11413. // scale
  11414. ggml_vec_scale_f32(nek1, S, scale);
  11415. if (masked) {
  11416. for (int64_t i = P; i < M; i++) {
  11417. if (i > P + iq1) {
  11418. S[i] = -INFINITY;
  11419. }
  11420. }
  11421. }
  11422. // softmax
  11423. {
  11424. float max = -INFINITY;
  11425. ggml_vec_max_f32(M, &max, S);
  11426. ggml_float sum = 0.0;
  11427. {
  11428. #ifdef GGML_SOFT_MAX_ACCELERATE
  11429. max = -max;
  11430. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11431. vvexpf(S, S, &Mup);
  11432. ggml_vec_sum_f32(Mup, &sum, S);
  11433. #else
  11434. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11435. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11436. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11437. float * SS = S + i;
  11438. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11439. if (SS[j] == -INFINITY) {
  11440. SS[j] = 0.0f;
  11441. } else {
  11442. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11443. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11444. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11445. sump[j] += (ggml_float)val;
  11446. SS[j] = val;
  11447. }
  11448. }
  11449. }
  11450. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11451. sum += sump[i];
  11452. }
  11453. #endif
  11454. }
  11455. assert(sum > 0.0);
  11456. sum = 1.0/sum;
  11457. ggml_vec_scale_f32(M, S, sum);
  11458. #ifndef NDEBUG
  11459. for (int i = 0; i < M; ++i) {
  11460. assert(!isnan(S[i]));
  11461. assert(!isinf(S[i]));
  11462. }
  11463. #endif
  11464. }
  11465. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11466. for (int64_t i = 0; i < M; i++) {
  11467. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11468. }
  11469. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11470. for (int64_t ic = 0; ic < nev1; ++ic) {
  11471. // dst indices
  11472. const int i1 = iq1;
  11473. const int i2 = iq2;
  11474. const int i3 = iq3;
  11475. ggml_vec_dot_f16(nek1,
  11476. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11477. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11478. S16);
  11479. }
  11480. } else {
  11481. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11482. // dst indices
  11483. const int i1 = iq1;
  11484. const int i2 = iq2;
  11485. const int i3 = iq3;
  11486. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11487. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11488. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11489. S16);
  11490. }
  11491. }
  11492. }
  11493. }
  11494. static void ggml_compute_forward_flash_attn(
  11495. const struct ggml_compute_params * params,
  11496. const struct ggml_tensor * q,
  11497. const struct ggml_tensor * k,
  11498. const struct ggml_tensor * v,
  11499. const bool masked,
  11500. struct ggml_tensor * dst) {
  11501. switch (q->type) {
  11502. case GGML_TYPE_F16:
  11503. {
  11504. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11505. } break;
  11506. case GGML_TYPE_F32:
  11507. {
  11508. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11509. } break;
  11510. default:
  11511. {
  11512. GGML_ASSERT(false);
  11513. } break;
  11514. }
  11515. }
  11516. // ggml_compute_forward_flash_ff
  11517. static void ggml_compute_forward_flash_ff_f16(
  11518. const struct ggml_compute_params * params,
  11519. const struct ggml_tensor * a, // F16
  11520. const struct ggml_tensor * b0, // F16 fc_w
  11521. const struct ggml_tensor * b1, // F32 fc_b
  11522. const struct ggml_tensor * c0, // F16 proj_w
  11523. const struct ggml_tensor * c1, // F32 proj_b
  11524. struct ggml_tensor * dst) {
  11525. int64_t t0 = ggml_perf_time_us();
  11526. UNUSED(t0);
  11527. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11528. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11529. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11530. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11531. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11532. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11533. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11534. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11535. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11536. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11537. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11538. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11539. const int ith = params->ith;
  11540. const int nth = params->nth;
  11541. const int64_t D = nea0;
  11542. //const int64_t N = nea1;
  11543. const int64_t M = neb01;
  11544. GGML_ASSERT(ne0 == nea0);
  11545. GGML_ASSERT(ne1 == nea1);
  11546. GGML_ASSERT(ne2 == nea2);
  11547. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11548. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11549. GGML_ASSERT(nbb10 == sizeof(float));
  11550. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11551. GGML_ASSERT(nbc10 == sizeof(float));
  11552. GGML_ASSERT(neb00 == D);
  11553. GGML_ASSERT(neb01 == M);
  11554. GGML_ASSERT(neb10 == M);
  11555. GGML_ASSERT(neb11 == 1);
  11556. GGML_ASSERT(nec00 == M);
  11557. GGML_ASSERT(nec01 == D);
  11558. GGML_ASSERT(nec10 == D);
  11559. GGML_ASSERT(nec11 == 1);
  11560. // dst cannot be transposed or permuted
  11561. GGML_ASSERT(nb0 == sizeof(float));
  11562. GGML_ASSERT(nb0 <= nb1);
  11563. GGML_ASSERT(nb1 <= nb2);
  11564. GGML_ASSERT(nb2 <= nb3);
  11565. if (params->type == GGML_TASK_INIT) {
  11566. return;
  11567. }
  11568. if (params->type == GGML_TASK_FINALIZE) {
  11569. return;
  11570. }
  11571. // parallelize by a rows using ggml_vec_dot_f32
  11572. // total rows in a
  11573. const int nr = nea1*nea2*nea3;
  11574. // rows per thread
  11575. const int dr = (nr + nth - 1)/nth;
  11576. // row range for this thread
  11577. const int ir0 = dr*ith;
  11578. const int ir1 = MIN(ir0 + dr, nr);
  11579. for (int ir = ir0; ir < ir1; ++ir) {
  11580. // a indices
  11581. const int ia3 = ir/(nea2*nea1);
  11582. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11583. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11584. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11585. for (int64_t ic = 0; ic < neb01; ++ic) {
  11586. // b0 indices
  11587. const int ib03 = ia3;
  11588. const int ib02 = ia2;
  11589. const int ib01 = ic;
  11590. // S indices
  11591. const int i1 = ib01;
  11592. ggml_vec_dot_f16(nea0,
  11593. S + i1,
  11594. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11595. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11596. }
  11597. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11598. //ggml_vec_gelu_f32(neb01, S, S);
  11599. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11600. for (int64_t i = 0; i < M; i++) {
  11601. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11602. }
  11603. ggml_vec_gelu_f16(neb01, S16, S16);
  11604. {
  11605. // dst indices
  11606. const int i1 = ia1;
  11607. const int i2 = ia2;
  11608. const int i3 = ia3;
  11609. for (int64_t ic = 0; ic < nec01; ++ic) {
  11610. ggml_vec_dot_f16(neb01,
  11611. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11612. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11613. S16);
  11614. }
  11615. ggml_vec_add_f32(nec01,
  11616. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11617. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11618. (float *) c1->data);
  11619. }
  11620. }
  11621. }
  11622. static void ggml_compute_forward_flash_ff(
  11623. const struct ggml_compute_params * params,
  11624. const struct ggml_tensor * a,
  11625. const struct ggml_tensor * b0,
  11626. const struct ggml_tensor * b1,
  11627. const struct ggml_tensor * c0,
  11628. const struct ggml_tensor * c1,
  11629. struct ggml_tensor * dst) {
  11630. switch (b0->type) {
  11631. case GGML_TYPE_F16:
  11632. {
  11633. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11634. } break;
  11635. case GGML_TYPE_F32:
  11636. {
  11637. GGML_ASSERT(false); // TODO
  11638. } break;
  11639. default:
  11640. {
  11641. GGML_ASSERT(false);
  11642. } break;
  11643. }
  11644. }
  11645. // ggml_compute_forward_flash_attn_back
  11646. static void ggml_compute_forward_flash_attn_back_f32(
  11647. const struct ggml_compute_params * params,
  11648. const struct ggml_tensor * q,
  11649. const struct ggml_tensor * k,
  11650. const struct ggml_tensor * v,
  11651. const struct ggml_tensor * d,
  11652. const bool masked,
  11653. struct ggml_tensor * dst) {
  11654. int64_t t0 = ggml_perf_time_us();
  11655. UNUSED(t0);
  11656. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11657. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11658. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11659. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11660. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11661. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11662. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11663. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11664. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11665. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11666. const int ith = params->ith;
  11667. const int nth = params->nth;
  11668. const int64_t D = neq0;
  11669. const int64_t N = neq1;
  11670. const int64_t P = nek1 - N;
  11671. const int64_t M = P + N;
  11672. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11673. const int mxDM = MAX(D, Mup);
  11674. // GGML_ASSERT(ne0 == D);
  11675. // GGML_ASSERT(ne1 == N);
  11676. GGML_ASSERT(P >= 0);
  11677. GGML_ASSERT(nbq0 == sizeof(float));
  11678. GGML_ASSERT(nbk0 == sizeof(float));
  11679. GGML_ASSERT(nbv0 == sizeof(float));
  11680. GGML_ASSERT(neq0 == D);
  11681. GGML_ASSERT(nek0 == D);
  11682. GGML_ASSERT(nev1 == D);
  11683. GGML_ASSERT(ned0 == D);
  11684. GGML_ASSERT(neq1 == N);
  11685. GGML_ASSERT(nek1 == N + P);
  11686. GGML_ASSERT(nev1 == D);
  11687. GGML_ASSERT(ned1 == N);
  11688. // dst cannot be transposed or permuted
  11689. GGML_ASSERT(nb0 == sizeof(float));
  11690. GGML_ASSERT(nb0 <= nb1);
  11691. GGML_ASSERT(nb1 <= nb2);
  11692. GGML_ASSERT(nb2 <= nb3);
  11693. if (params->type == GGML_TASK_INIT) {
  11694. if (ith == 0) {
  11695. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11696. }
  11697. return;
  11698. }
  11699. if (params->type == GGML_TASK_FINALIZE) {
  11700. return;
  11701. }
  11702. // parallelize by q rows using ggml_vec_dot_f32
  11703. // total rows in q
  11704. const int nr = neq2*neq3;
  11705. // rows per thread
  11706. const int dr = (nr + nth - 1)/nth;
  11707. // row range for this thread
  11708. const int ir0 = dr*ith;
  11709. const int ir1 = MIN(ir0 + dr, nr);
  11710. const float scale = 1.0f/sqrtf(D);
  11711. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11712. for (int ir = ir0; ir < ir1; ++ir) {
  11713. // q indices
  11714. const int iq3 = ir/(neq2);
  11715. const int iq2 = ir - iq3*neq2;
  11716. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11717. // not sure about CACHE_LINE_SIZE_F32..
  11718. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11719. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11720. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11721. for (int i = M; i < Mup; ++i) {
  11722. S[i] = -INFINITY;
  11723. }
  11724. for (int64_t ic = 0; ic < nek1; ++ic) {
  11725. // k indices
  11726. const int ik3 = iq3;
  11727. const int ik2 = iq2;
  11728. const int ik1 = ic;
  11729. // S indices
  11730. const int i1 = ik1;
  11731. ggml_vec_dot_f32(neq0,
  11732. S + i1,
  11733. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11734. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11735. }
  11736. // scale
  11737. ggml_vec_scale_f32(nek1, S, scale);
  11738. if (masked) {
  11739. for (int64_t i = P; i < M; i++) {
  11740. if (i > P + iq1) {
  11741. S[i] = -INFINITY;
  11742. }
  11743. }
  11744. }
  11745. // softmax
  11746. {
  11747. float max = -INFINITY;
  11748. ggml_vec_max_f32(M, &max, S);
  11749. ggml_float sum = 0.0;
  11750. {
  11751. #ifdef GGML_SOFT_MAX_ACCELERATE
  11752. max = -max;
  11753. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11754. vvexpf(SM, SM, &Mup);
  11755. ggml_vec_sum_f32(Mup, &sum, SM);
  11756. #else
  11757. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11758. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11759. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11760. float * SR = S + i;
  11761. float * SW = SM + i;
  11762. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11763. if (SR[j] == -INFINITY) {
  11764. SW[j] = 0.0f;
  11765. } else {
  11766. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11767. const float val = expf(SR[j] - max);
  11768. #else
  11769. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11770. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11771. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11772. #endif
  11773. sump[j] += (ggml_float)val;
  11774. SW[j] = val;
  11775. }
  11776. }
  11777. }
  11778. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11779. sum += sump[i];
  11780. }
  11781. #endif
  11782. }
  11783. assert(sum > 0.0);
  11784. sum = 1.0/sum;
  11785. ggml_vec_scale_f32(M, SM, sum);
  11786. }
  11787. // step-by-step explanation
  11788. {
  11789. // forward-process shape grads from backward process
  11790. // parallel_for iq2,iq3:
  11791. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11792. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11793. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11794. // for iq1:
  11795. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11796. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11797. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11798. // S0 = -Inf [D,1,1,1]
  11799. // ~S1[i] = dot(kcur[:D,i], qcur)
  11800. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11801. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11802. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11803. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11804. // ~S5[i] = dot(vcur[:,i], S4)
  11805. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11806. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11807. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11808. // dst backward-/ grad[dst] = d
  11809. //
  11810. // output gradients with their dependencies:
  11811. //
  11812. // grad[kcur] = grad[S1].T @ qcur
  11813. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11814. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11815. // grad[S4] = grad[S5] @ vcur
  11816. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11817. // grad[qcur] = grad[S1] @ kcur
  11818. // grad[vcur] = grad[S5].T @ S4
  11819. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11820. //
  11821. // in post-order:
  11822. //
  11823. // S1 = qcur @ kcur.T
  11824. // S2 = S1 * scale
  11825. // S3 = diag_mask_inf(S2, P)
  11826. // S4 = softmax(S3)
  11827. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11828. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11829. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11830. // grad[qcur] = grad[S1] @ kcur
  11831. // grad[kcur] = grad[S1].T @ qcur
  11832. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11833. //
  11834. // using less variables (SM=S4):
  11835. //
  11836. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11837. // SM = softmax(S)
  11838. // S = d[:D,iq1,iq2,iq3] @ vcur
  11839. // dot_SM_gradSM = dot(SM, S)
  11840. // S = SM * (S - dot(SM, S))
  11841. // S = diag_mask_zero(S, P) * scale
  11842. //
  11843. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11844. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11845. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11846. }
  11847. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11848. // S = d[:D,iq1,iq2,iq3] @ vcur
  11849. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11850. ggml_vec_set_f32(M, S, 0);
  11851. for (int64_t ic = 0; ic < D; ++ic) {
  11852. // dst indices
  11853. const int i1 = iq1;
  11854. const int i2 = iq2;
  11855. const int i3 = iq3;
  11856. ggml_vec_mad_f32(M,
  11857. S,
  11858. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11859. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11860. }
  11861. // S = SM * (S - dot(SM, S))
  11862. float dot_SM_gradSM = 0;
  11863. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11864. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11865. ggml_vec_mul_f32 (M, S, S, SM);
  11866. // S = diag_mask_zero(S, P) * scale
  11867. if (masked) {
  11868. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11869. // S[i] = 0;
  11870. // }
  11871. for (int64_t i = P; i < M; i++) {
  11872. if (i > P + iq1) {
  11873. S[i] = 0;
  11874. }
  11875. }
  11876. }
  11877. ggml_vec_scale_f32(M, S, scale);
  11878. void * grad_q = (char *) dst->data;
  11879. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11880. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11881. const size_t nbgq1 = nb0*neq0;
  11882. const size_t nbgq2 = nb0*neq0*neq1;
  11883. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11884. const size_t nbgk1 = nb0*nek0;
  11885. const size_t nbgk2 = nb0*nek0*nek1;
  11886. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11887. const size_t nbgv1 = nb0*nev0;
  11888. const size_t nbgv2 = nb0*nev0*nev1;
  11889. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11890. // S shape [M,1]
  11891. // SM shape [M,1]
  11892. // kcur shape [D,M]
  11893. // qcur shape [D,1]
  11894. // vcur shape [M,D]
  11895. //
  11896. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11897. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11898. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11899. //
  11900. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11901. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11902. for (int64_t ic = 0; ic < M; ++ic) {
  11903. // dst indices
  11904. const int i1 = iq1;
  11905. const int i2 = iq2;
  11906. const int i3 = iq3;
  11907. ggml_vec_mad_f32(D,
  11908. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11909. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11910. S[ic]);
  11911. }
  11912. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11913. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11914. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11915. for (int64_t ic = 0; ic < M; ++ic) {
  11916. // dst indices
  11917. const int i1 = iq1;
  11918. const int i2 = iq2;
  11919. const int i3 = iq3;
  11920. // ggml_vec_set_f32(D,
  11921. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11922. // 0);
  11923. ggml_vec_mad_f32(D,
  11924. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11925. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11926. S[ic]);
  11927. }
  11928. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11929. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11930. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11931. for (int64_t ic = 0; ic < D; ++ic) {
  11932. // dst indices
  11933. const int i1 = iq1;
  11934. const int i2 = iq2;
  11935. const int i3 = iq3;
  11936. // ggml_vec_set_f32(M,
  11937. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11938. // 0);
  11939. ggml_vec_mad_f32(M,
  11940. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11941. SM,
  11942. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11943. }
  11944. }
  11945. }
  11946. }
  11947. static void ggml_compute_forward_flash_attn_back(
  11948. const struct ggml_compute_params * params,
  11949. const struct ggml_tensor * q,
  11950. const struct ggml_tensor * k,
  11951. const struct ggml_tensor * v,
  11952. const struct ggml_tensor * d,
  11953. const bool masked,
  11954. struct ggml_tensor * dst) {
  11955. switch (q->type) {
  11956. case GGML_TYPE_F32:
  11957. {
  11958. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11959. } break;
  11960. default:
  11961. {
  11962. GGML_ASSERT(false);
  11963. } break;
  11964. }
  11965. }
  11966. // ggml_compute_forward_win_part
  11967. static void ggml_compute_forward_win_part_f32(
  11968. const struct ggml_compute_params * params,
  11969. const struct ggml_tensor * src0,
  11970. struct ggml_tensor * dst) {
  11971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11972. return;
  11973. }
  11974. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11975. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11976. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11977. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11978. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11979. assert(ne00 == ne0);
  11980. assert(ne3 == nep0*nep1);
  11981. // TODO: optimize / multi-thread
  11982. for (int py = 0; py < nep1; ++py) {
  11983. for (int px = 0; px < nep0; ++px) {
  11984. const int64_t i3 = py*nep0 + px;
  11985. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11986. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11987. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11988. const int64_t i02 = py*w + i2;
  11989. const int64_t i01 = px*w + i1;
  11990. const int64_t i00 = i0;
  11991. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11992. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11993. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11994. ((float *) dst->data)[i] = 0.0f;
  11995. } else {
  11996. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11997. }
  11998. }
  11999. }
  12000. }
  12001. }
  12002. }
  12003. }
  12004. static void ggml_compute_forward_win_part(
  12005. const struct ggml_compute_params * params,
  12006. const struct ggml_tensor * src0,
  12007. struct ggml_tensor * dst) {
  12008. switch (src0->type) {
  12009. case GGML_TYPE_F32:
  12010. {
  12011. ggml_compute_forward_win_part_f32(params, src0, dst);
  12012. } break;
  12013. default:
  12014. {
  12015. GGML_ASSERT(false);
  12016. } break;
  12017. }
  12018. }
  12019. // ggml_compute_forward_win_unpart
  12020. static void ggml_compute_forward_win_unpart_f32(
  12021. const struct ggml_compute_params * params,
  12022. const struct ggml_tensor * src0,
  12023. struct ggml_tensor * dst) {
  12024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12025. return;
  12026. }
  12027. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12028. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12029. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12030. // padding
  12031. const int px = (w - ne1%w)%w;
  12032. //const int py = (w - ne2%w)%w;
  12033. const int npx = (px + ne1)/w;
  12034. //const int npy = (py + ne2)/w;
  12035. assert(ne0 == ne00);
  12036. // TODO: optimize / multi-thread
  12037. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12038. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12039. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12040. const int ip2 = i2/w;
  12041. const int ip1 = i1/w;
  12042. const int64_t i02 = i2%w;
  12043. const int64_t i01 = i1%w;
  12044. const int64_t i00 = i0;
  12045. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12046. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12047. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12048. }
  12049. }
  12050. }
  12051. }
  12052. static void ggml_compute_forward_win_unpart(
  12053. const struct ggml_compute_params * params,
  12054. const struct ggml_tensor * src0,
  12055. struct ggml_tensor * dst) {
  12056. switch (src0->type) {
  12057. case GGML_TYPE_F32:
  12058. {
  12059. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12060. } break;
  12061. default:
  12062. {
  12063. GGML_ASSERT(false);
  12064. } break;
  12065. }
  12066. }
  12067. //gmml_compute_forward_unary
  12068. static void ggml_compute_forward_unary(
  12069. const struct ggml_compute_params * params,
  12070. const struct ggml_tensor * src0,
  12071. struct ggml_tensor * dst) {
  12072. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12073. switch (op) {
  12074. case GGML_UNARY_OP_ABS:
  12075. {
  12076. ggml_compute_forward_abs(params, src0, dst);
  12077. } break;
  12078. case GGML_UNARY_OP_SGN:
  12079. {
  12080. ggml_compute_forward_sgn(params, src0, dst);
  12081. } break;
  12082. case GGML_UNARY_OP_NEG:
  12083. {
  12084. ggml_compute_forward_neg(params, src0, dst);
  12085. } break;
  12086. case GGML_UNARY_OP_STEP:
  12087. {
  12088. ggml_compute_forward_step(params, src0, dst);
  12089. } break;
  12090. case GGML_UNARY_OP_TANH:
  12091. {
  12092. ggml_compute_forward_tanh(params, src0, dst);
  12093. } break;
  12094. case GGML_UNARY_OP_ELU:
  12095. {
  12096. ggml_compute_forward_elu(params, src0, dst);
  12097. } break;
  12098. case GGML_UNARY_OP_RELU:
  12099. {
  12100. ggml_compute_forward_relu(params, src0, dst);
  12101. } break;
  12102. case GGML_UNARY_OP_GELU:
  12103. {
  12104. ggml_compute_forward_gelu(params, src0, dst);
  12105. } break;
  12106. case GGML_UNARY_OP_GELU_QUICK:
  12107. {
  12108. ggml_compute_forward_gelu_quick(params, src0, dst);
  12109. } break;
  12110. case GGML_UNARY_OP_SILU:
  12111. {
  12112. ggml_compute_forward_silu(params, src0, dst);
  12113. } break;
  12114. default:
  12115. {
  12116. GGML_ASSERT(false);
  12117. } break;
  12118. }
  12119. }
  12120. // ggml_compute_forward_get_rel_pos
  12121. static void ggml_compute_forward_get_rel_pos_f16(
  12122. const struct ggml_compute_params * params,
  12123. const struct ggml_tensor * src0,
  12124. struct ggml_tensor * dst) {
  12125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12126. return;
  12127. }
  12128. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12129. GGML_TENSOR_UNARY_OP_LOCALS;
  12130. const int64_t w = ne1;
  12131. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12132. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12133. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12134. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12135. const int64_t pos = (w - i1 - 1) + i2;
  12136. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12137. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12138. }
  12139. }
  12140. }
  12141. }
  12142. static void ggml_compute_forward_get_rel_pos(
  12143. const struct ggml_compute_params * params,
  12144. const struct ggml_tensor * src0,
  12145. struct ggml_tensor * dst) {
  12146. switch (src0->type) {
  12147. case GGML_TYPE_F16:
  12148. {
  12149. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12150. } break;
  12151. default:
  12152. {
  12153. GGML_ASSERT(false);
  12154. } break;
  12155. }
  12156. }
  12157. // ggml_compute_forward_add_rel_pos
  12158. static void ggml_compute_forward_add_rel_pos_f32(
  12159. const struct ggml_compute_params * params,
  12160. const struct ggml_tensor * src0,
  12161. const struct ggml_tensor * src1,
  12162. const struct ggml_tensor * src2,
  12163. struct ggml_tensor * dst) {
  12164. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12165. if (!inplace && params->type == GGML_TASK_INIT) {
  12166. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12167. return;
  12168. }
  12169. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12170. return;
  12171. }
  12172. int64_t t0 = ggml_perf_time_us();
  12173. UNUSED(t0);
  12174. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12175. float * src1_data = (float *) src1->data;
  12176. float * src2_data = (float *) src2->data;
  12177. float * dst_data = (float *) dst->data;
  12178. const int64_t ne10 = src1->ne[0];
  12179. const int64_t ne11 = src1->ne[1];
  12180. const int64_t ne12 = src1->ne[2];
  12181. const int64_t ne13 = src1->ne[3];
  12182. const int ith = params->ith;
  12183. const int nth = params->nth;
  12184. // total patches in dst
  12185. const int np = ne13;
  12186. // patches per thread
  12187. const int dp = (np + nth - 1)/nth;
  12188. // patch range for this thread
  12189. const int ip0 = dp*ith;
  12190. const int ip1 = MIN(ip0 + dp, np);
  12191. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12192. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12193. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12194. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12195. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12196. const int64_t jp0 = jp1 + i10;
  12197. const float src1_e = src1_data[jp0];
  12198. const float src2_e = src2_data[jp0];
  12199. const int64_t jdh = jp0 * ne10;
  12200. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12201. for (int64_t j = 0; j < ne10; ++j) {
  12202. dst_data[jdh + j ] += src2_e;
  12203. dst_data[jdw + j*ne10] += src1_e;
  12204. }
  12205. }
  12206. }
  12207. }
  12208. }
  12209. }
  12210. static void ggml_compute_forward_add_rel_pos(
  12211. const struct ggml_compute_params * params,
  12212. const struct ggml_tensor * src0,
  12213. const struct ggml_tensor * src1,
  12214. const struct ggml_tensor * src2,
  12215. struct ggml_tensor * dst) {
  12216. switch (src0->type) {
  12217. case GGML_TYPE_F32:
  12218. {
  12219. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12220. } break;
  12221. default:
  12222. {
  12223. GGML_ASSERT(false);
  12224. } break;
  12225. }
  12226. }
  12227. // ggml_compute_forward_map_unary
  12228. static void ggml_compute_forward_map_unary_f32(
  12229. const struct ggml_compute_params * params,
  12230. const struct ggml_tensor * src0,
  12231. struct ggml_tensor * dst,
  12232. const ggml_unary_op_f32_t fun) {
  12233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12235. return;
  12236. }
  12237. const int n = ggml_nrows(src0);
  12238. const int nc = src0->ne[0];
  12239. assert( dst->nb[0] == sizeof(float));
  12240. assert(src0->nb[0] == sizeof(float));
  12241. for (int i = 0; i < n; i++) {
  12242. fun(nc,
  12243. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12244. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12245. }
  12246. }
  12247. static void ggml_compute_forward_map_unary(
  12248. const struct ggml_compute_params * params,
  12249. const struct ggml_tensor * src0,
  12250. struct ggml_tensor * dst,
  12251. const ggml_unary_op_f32_t fun) {
  12252. switch (src0->type) {
  12253. case GGML_TYPE_F32:
  12254. {
  12255. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12256. } break;
  12257. default:
  12258. {
  12259. GGML_ASSERT(false);
  12260. } break;
  12261. }
  12262. }
  12263. // ggml_compute_forward_map_binary
  12264. static void ggml_compute_forward_map_binary_f32(
  12265. const struct ggml_compute_params * params,
  12266. const struct ggml_tensor * src0,
  12267. const struct ggml_tensor * src1,
  12268. struct ggml_tensor * dst,
  12269. const ggml_binary_op_f32_t fun) {
  12270. assert(params->ith == 0);
  12271. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12272. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12273. return;
  12274. }
  12275. const int n = ggml_nrows(src0);
  12276. const int nc = src0->ne[0];
  12277. assert( dst->nb[0] == sizeof(float));
  12278. assert(src0->nb[0] == sizeof(float));
  12279. assert(src1->nb[0] == sizeof(float));
  12280. for (int i = 0; i < n; i++) {
  12281. fun(nc,
  12282. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12283. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12284. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12285. }
  12286. }
  12287. static void ggml_compute_forward_map_binary(
  12288. const struct ggml_compute_params * params,
  12289. const struct ggml_tensor * src0,
  12290. const struct ggml_tensor * src1,
  12291. struct ggml_tensor * dst,
  12292. const ggml_binary_op_f32_t fun) {
  12293. switch (src0->type) {
  12294. case GGML_TYPE_F32:
  12295. {
  12296. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12297. } break;
  12298. default:
  12299. {
  12300. GGML_ASSERT(false);
  12301. } break;
  12302. }
  12303. }
  12304. // ggml_compute_forward_map_custom1
  12305. static void ggml_compute_forward_map_custom1_f32(
  12306. const struct ggml_compute_params * params,
  12307. const struct ggml_tensor * a,
  12308. struct ggml_tensor * dst,
  12309. const ggml_custom1_op_f32_t fun) {
  12310. assert(params->ith == 0);
  12311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12312. return;
  12313. }
  12314. fun(dst, a);
  12315. }
  12316. // ggml_compute_forward_map_custom2
  12317. static void ggml_compute_forward_map_custom2_f32(
  12318. const struct ggml_compute_params * params,
  12319. const struct ggml_tensor * a,
  12320. const struct ggml_tensor * b,
  12321. struct ggml_tensor * dst,
  12322. const ggml_custom2_op_f32_t fun) {
  12323. assert(params->ith == 0);
  12324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12325. return;
  12326. }
  12327. fun(dst, a, b);
  12328. }
  12329. // ggml_compute_forward_map_custom3
  12330. static void ggml_compute_forward_map_custom3_f32(
  12331. const struct ggml_compute_params * params,
  12332. const struct ggml_tensor * a,
  12333. const struct ggml_tensor * b,
  12334. const struct ggml_tensor * c,
  12335. struct ggml_tensor * dst,
  12336. const ggml_custom3_op_f32_t fun) {
  12337. assert(params->ith == 0);
  12338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12339. return;
  12340. }
  12341. fun(dst, a, b, c);
  12342. }
  12343. // ggml_compute_forward_map_custom1
  12344. static void ggml_compute_forward_map_custom1(
  12345. const struct ggml_compute_params * params,
  12346. const struct ggml_tensor * a,
  12347. struct ggml_tensor * dst) {
  12348. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12349. return;
  12350. }
  12351. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12352. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12353. }
  12354. // ggml_compute_forward_map_custom2
  12355. static void ggml_compute_forward_map_custom2(
  12356. const struct ggml_compute_params * params,
  12357. const struct ggml_tensor * a,
  12358. const struct ggml_tensor * b,
  12359. struct ggml_tensor * dst) {
  12360. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12361. return;
  12362. }
  12363. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12364. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12365. }
  12366. // ggml_compute_forward_map_custom3
  12367. static void ggml_compute_forward_map_custom3(
  12368. const struct ggml_compute_params * params,
  12369. const struct ggml_tensor * a,
  12370. const struct ggml_tensor * b,
  12371. const struct ggml_tensor * c,
  12372. struct ggml_tensor * dst) {
  12373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12374. return;
  12375. }
  12376. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12377. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12378. }
  12379. // ggml_compute_forward_cross_entropy_loss
  12380. static void ggml_compute_forward_cross_entropy_loss_f32(
  12381. const struct ggml_compute_params * params,
  12382. const struct ggml_tensor * src0,
  12383. const struct ggml_tensor * src1,
  12384. struct ggml_tensor * dst) {
  12385. GGML_ASSERT(ggml_is_contiguous(src0));
  12386. GGML_ASSERT(ggml_is_contiguous(src1));
  12387. GGML_ASSERT(ggml_is_scalar(dst));
  12388. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12389. const int ith = params->ith;
  12390. const int nth = params->nth;
  12391. float * sums = (float *) params->wdata;
  12392. // TODO: handle transposed/permuted matrices
  12393. const int nc = src0->ne[0];
  12394. const int nr = ggml_nrows(src0);
  12395. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12396. if (params->type == GGML_TASK_INIT) {
  12397. if (ith == 0) {
  12398. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12399. }
  12400. return;
  12401. }
  12402. if (params->type == GGML_TASK_FINALIZE) {
  12403. if (ith == 0) {
  12404. float * dp = (float *) dst->data;
  12405. ggml_vec_sum_f32(nth, dp, sums);
  12406. dp[0] *= -1.0f / (float) nr;
  12407. }
  12408. return;
  12409. }
  12410. const double eps = 1e-9;
  12411. // rows per thread
  12412. const int dr = (nr + nth - 1)/nth;
  12413. // row range for this thread
  12414. const int ir0 = dr*ith;
  12415. const int ir1 = MIN(ir0 + dr, nr);
  12416. for (int i1 = ir0; i1 < ir1; i1++) {
  12417. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12418. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12419. float * st = ((float *) params->wdata) + nth + ith*nc;
  12420. #ifndef NDEBUG
  12421. for (int i = 0; i < nc; ++i) {
  12422. //printf("p[%d] = %f\n", i, p[i]);
  12423. assert(!isnan(s0[i]));
  12424. assert(!isnan(s1[i]));
  12425. }
  12426. #endif
  12427. // soft_max
  12428. ggml_float sum = 0.0;
  12429. {
  12430. float max = -INFINITY;
  12431. ggml_vec_max_f32(nc, &max, s0);
  12432. uint16_t scvt; UNUSED(scvt);
  12433. for (int i = 0; i < nc; i++) {
  12434. if (s0[i] == -INFINITY) {
  12435. st[i] = 0.0f;
  12436. } else {
  12437. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12438. const float s = s0[i] - max;
  12439. const float val = expf(s);
  12440. #else
  12441. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12442. memcpy(&scvt, &s, sizeof(scvt));
  12443. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12444. #endif
  12445. sum += (ggml_float)val;
  12446. st[i] = val;
  12447. }
  12448. }
  12449. assert(sum > 0.0);
  12450. // sum = 1.0/sum;
  12451. }
  12452. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12453. sum = (1.0 - eps) / sum;
  12454. ggml_vec_scale_f32(nc, st, sum);
  12455. ggml_vec_add1_f32(nc, st, st, eps);
  12456. ggml_vec_log_f32(nc, st, st);
  12457. ggml_vec_mul_f32(nc, st, st, s1);
  12458. float st_sum = 0;
  12459. ggml_vec_sum_f32(nc, &st_sum, st);
  12460. sums[ith] += st_sum;
  12461. #ifndef NDEBUG
  12462. for (int i = 0; i < nc; ++i) {
  12463. assert(!isnan(st[i]));
  12464. assert(!isinf(st[i]));
  12465. }
  12466. #endif
  12467. }
  12468. }
  12469. static void ggml_compute_forward_cross_entropy_loss(
  12470. const struct ggml_compute_params * params,
  12471. const struct ggml_tensor * src0,
  12472. const struct ggml_tensor * src1,
  12473. struct ggml_tensor * dst) {
  12474. switch (src0->type) {
  12475. case GGML_TYPE_F32:
  12476. {
  12477. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12478. } break;
  12479. default:
  12480. {
  12481. GGML_ASSERT(false);
  12482. } break;
  12483. }
  12484. }
  12485. // ggml_compute_forward_cross_entropy_loss_back
  12486. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12487. const struct ggml_compute_params * params,
  12488. const struct ggml_tensor * src0,
  12489. const struct ggml_tensor * src1,
  12490. const struct ggml_tensor * opt0,
  12491. struct ggml_tensor * dst) {
  12492. GGML_ASSERT(ggml_is_contiguous(dst));
  12493. GGML_ASSERT(ggml_is_contiguous(src0));
  12494. GGML_ASSERT(ggml_is_contiguous(src1));
  12495. GGML_ASSERT(ggml_is_contiguous(opt0));
  12496. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12497. const int64_t ith = params->ith;
  12498. const int64_t nth = params->nth;
  12499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12500. return;
  12501. }
  12502. const double eps = 1e-9;
  12503. // TODO: handle transposed/permuted matrices
  12504. const int64_t nc = src0->ne[0];
  12505. const int64_t nr = ggml_nrows(src0);
  12506. // rows per thread
  12507. const int64_t dr = (nr + nth - 1)/nth;
  12508. // row range for this thread
  12509. const int64_t ir0 = dr*ith;
  12510. const int64_t ir1 = MIN(ir0 + dr, nr);
  12511. float * d = (float *) opt0->data;
  12512. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12513. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12514. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12515. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12516. #ifndef NDEBUG
  12517. for (int i = 0; i < nc; ++i) {
  12518. //printf("p[%d] = %f\n", i, p[i]);
  12519. assert(!isnan(s0[i]));
  12520. assert(!isnan(s1[i]));
  12521. }
  12522. #endif
  12523. // soft_max
  12524. ggml_float sum = 0.0;
  12525. {
  12526. float max = -INFINITY;
  12527. ggml_vec_max_f32(nc, &max, s0);
  12528. uint16_t scvt; UNUSED(scvt);
  12529. for (int i = 0; i < nc; i++) {
  12530. if (s0[i] == -INFINITY) {
  12531. ds0[i] = 0.0f;
  12532. } else {
  12533. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12534. const float s = s0[i] - max;
  12535. const float val = expf(s);
  12536. #else
  12537. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12538. memcpy(&scvt, &s, sizeof(scvt));
  12539. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12540. #endif
  12541. sum += (ggml_float)val;
  12542. ds0[i] = val;
  12543. }
  12544. }
  12545. assert(sum > 0.0);
  12546. sum = (1.0 - eps)/sum;
  12547. }
  12548. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12549. ggml_vec_scale_f32(nc, ds0, sum);
  12550. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12551. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12552. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12553. #ifndef NDEBUG
  12554. for (int i = 0; i < nc; ++i) {
  12555. assert(!isnan(ds0[i]));
  12556. assert(!isinf(ds0[i]));
  12557. }
  12558. #endif
  12559. }
  12560. }
  12561. static void ggml_compute_forward_cross_entropy_loss_back(
  12562. const struct ggml_compute_params * params,
  12563. const struct ggml_tensor * src0,
  12564. const struct ggml_tensor * src1,
  12565. const struct ggml_tensor * opt0,
  12566. struct ggml_tensor * dst) {
  12567. switch (src0->type) {
  12568. case GGML_TYPE_F32:
  12569. {
  12570. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12571. } break;
  12572. default:
  12573. {
  12574. GGML_ASSERT(false);
  12575. } break;
  12576. }
  12577. }
  12578. /////////////////////////////////
  12579. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12580. GGML_ASSERT(params);
  12581. #ifdef GGML_USE_CUBLAS
  12582. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12583. if (skip_cpu) {
  12584. return;
  12585. }
  12586. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12587. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12588. #endif // GGML_USE_CUBLAS
  12589. switch (tensor->op) {
  12590. case GGML_OP_DUP:
  12591. {
  12592. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12593. } break;
  12594. case GGML_OP_ADD:
  12595. {
  12596. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12597. } break;
  12598. case GGML_OP_ADD1:
  12599. {
  12600. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12601. } break;
  12602. case GGML_OP_ACC:
  12603. {
  12604. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12605. } break;
  12606. case GGML_OP_SUB:
  12607. {
  12608. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12609. } break;
  12610. case GGML_OP_MUL:
  12611. {
  12612. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12613. } break;
  12614. case GGML_OP_DIV:
  12615. {
  12616. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12617. } break;
  12618. case GGML_OP_SQR:
  12619. {
  12620. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12621. } break;
  12622. case GGML_OP_SQRT:
  12623. {
  12624. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12625. } break;
  12626. case GGML_OP_LOG:
  12627. {
  12628. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12629. } break;
  12630. case GGML_OP_SUM:
  12631. {
  12632. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12633. } break;
  12634. case GGML_OP_SUM_ROWS:
  12635. {
  12636. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12637. } break;
  12638. case GGML_OP_MEAN:
  12639. {
  12640. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12641. } break;
  12642. case GGML_OP_ARGMAX:
  12643. {
  12644. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12645. } break;
  12646. case GGML_OP_REPEAT:
  12647. {
  12648. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12649. } break;
  12650. case GGML_OP_REPEAT_BACK:
  12651. {
  12652. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12653. } break;
  12654. case GGML_OP_CONCAT:
  12655. {
  12656. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12657. } break;
  12658. case GGML_OP_SILU_BACK:
  12659. {
  12660. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12661. } break;
  12662. case GGML_OP_NORM:
  12663. {
  12664. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12665. } break;
  12666. case GGML_OP_RMS_NORM:
  12667. {
  12668. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12669. } break;
  12670. case GGML_OP_RMS_NORM_BACK:
  12671. {
  12672. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12673. } break;
  12674. case GGML_OP_GROUP_NORM:
  12675. {
  12676. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12677. } break;
  12678. case GGML_OP_MUL_MAT:
  12679. {
  12680. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12681. } break;
  12682. case GGML_OP_OUT_PROD:
  12683. {
  12684. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12685. } break;
  12686. case GGML_OP_SCALE:
  12687. {
  12688. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12689. } break;
  12690. case GGML_OP_SET:
  12691. {
  12692. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12693. } break;
  12694. case GGML_OP_CPY:
  12695. {
  12696. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12697. } break;
  12698. case GGML_OP_CONT:
  12699. {
  12700. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12701. } break;
  12702. case GGML_OP_RESHAPE:
  12703. {
  12704. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12705. } break;
  12706. case GGML_OP_VIEW:
  12707. {
  12708. ggml_compute_forward_view(params, tensor->src[0]);
  12709. } break;
  12710. case GGML_OP_PERMUTE:
  12711. {
  12712. ggml_compute_forward_permute(params, tensor->src[0]);
  12713. } break;
  12714. case GGML_OP_TRANSPOSE:
  12715. {
  12716. ggml_compute_forward_transpose(params, tensor->src[0]);
  12717. } break;
  12718. case GGML_OP_GET_ROWS:
  12719. {
  12720. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12721. } break;
  12722. case GGML_OP_GET_ROWS_BACK:
  12723. {
  12724. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12725. } break;
  12726. case GGML_OP_DIAG:
  12727. {
  12728. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12729. } break;
  12730. case GGML_OP_DIAG_MASK_INF:
  12731. {
  12732. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12733. } break;
  12734. case GGML_OP_DIAG_MASK_ZERO:
  12735. {
  12736. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12737. } break;
  12738. case GGML_OP_SOFT_MAX:
  12739. {
  12740. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12741. } break;
  12742. case GGML_OP_SOFT_MAX_BACK:
  12743. {
  12744. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12745. } break;
  12746. case GGML_OP_ROPE:
  12747. {
  12748. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12749. } break;
  12750. case GGML_OP_ROPE_BACK:
  12751. {
  12752. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12753. } break;
  12754. case GGML_OP_ALIBI:
  12755. {
  12756. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12757. } break;
  12758. case GGML_OP_CLAMP:
  12759. {
  12760. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12761. } break;
  12762. case GGML_OP_CONV_1D:
  12763. {
  12764. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12765. } break;
  12766. case GGML_OP_CONV_2D:
  12767. {
  12768. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12769. } break;
  12770. case GGML_OP_CONV_TRANSPOSE_2D:
  12771. {
  12772. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12773. } break;
  12774. case GGML_OP_POOL_1D:
  12775. {
  12776. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12777. } break;
  12778. case GGML_OP_POOL_2D:
  12779. {
  12780. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12781. } break;
  12782. case GGML_OP_UPSCALE:
  12783. {
  12784. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12785. } break;
  12786. case GGML_OP_FLASH_ATTN:
  12787. {
  12788. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12789. GGML_ASSERT(t == 0 || t == 1);
  12790. const bool masked = t != 0;
  12791. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12792. } break;
  12793. case GGML_OP_FLASH_FF:
  12794. {
  12795. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12796. } break;
  12797. case GGML_OP_FLASH_ATTN_BACK:
  12798. {
  12799. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12800. GGML_ASSERT(t == 0 || t == 1);
  12801. bool masked = t != 0;
  12802. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12803. } break;
  12804. case GGML_OP_WIN_PART:
  12805. {
  12806. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12807. } break;
  12808. case GGML_OP_WIN_UNPART:
  12809. {
  12810. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12811. } break;
  12812. case GGML_OP_UNARY:
  12813. {
  12814. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12815. } break;
  12816. case GGML_OP_GET_REL_POS:
  12817. {
  12818. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12819. } break;
  12820. case GGML_OP_ADD_REL_POS:
  12821. {
  12822. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12823. } break;
  12824. case GGML_OP_MAP_UNARY:
  12825. {
  12826. ggml_unary_op_f32_t fun;
  12827. memcpy(&fun, tensor->op_params, sizeof(fun));
  12828. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12829. }
  12830. break;
  12831. case GGML_OP_MAP_BINARY:
  12832. {
  12833. ggml_binary_op_f32_t fun;
  12834. memcpy(&fun, tensor->op_params, sizeof(fun));
  12835. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12836. }
  12837. break;
  12838. case GGML_OP_MAP_CUSTOM1_F32:
  12839. {
  12840. ggml_custom1_op_f32_t fun;
  12841. memcpy(&fun, tensor->op_params, sizeof(fun));
  12842. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12843. }
  12844. break;
  12845. case GGML_OP_MAP_CUSTOM2_F32:
  12846. {
  12847. ggml_custom2_op_f32_t fun;
  12848. memcpy(&fun, tensor->op_params, sizeof(fun));
  12849. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12850. }
  12851. break;
  12852. case GGML_OP_MAP_CUSTOM3_F32:
  12853. {
  12854. ggml_custom3_op_f32_t fun;
  12855. memcpy(&fun, tensor->op_params, sizeof(fun));
  12856. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12857. }
  12858. break;
  12859. case GGML_OP_MAP_CUSTOM1:
  12860. {
  12861. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12862. }
  12863. break;
  12864. case GGML_OP_MAP_CUSTOM2:
  12865. {
  12866. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12867. }
  12868. break;
  12869. case GGML_OP_MAP_CUSTOM3:
  12870. {
  12871. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12872. }
  12873. break;
  12874. case GGML_OP_CROSS_ENTROPY_LOSS:
  12875. {
  12876. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12877. }
  12878. break;
  12879. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12880. {
  12881. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12882. }
  12883. break;
  12884. case GGML_OP_NONE:
  12885. {
  12886. // nop
  12887. } break;
  12888. case GGML_OP_COUNT:
  12889. {
  12890. GGML_ASSERT(false);
  12891. } break;
  12892. }
  12893. }
  12894. ////////////////////////////////////////////////////////////////////////////////
  12895. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12896. struct ggml_tensor * src0 = tensor->src[0];
  12897. struct ggml_tensor * src1 = tensor->src[1];
  12898. switch (tensor->op) {
  12899. case GGML_OP_DUP:
  12900. {
  12901. if (src0->grad) {
  12902. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12903. }
  12904. } break;
  12905. case GGML_OP_ADD:
  12906. {
  12907. if (src0->grad) {
  12908. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12909. }
  12910. if (src1->grad) {
  12911. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12912. }
  12913. } break;
  12914. case GGML_OP_ADD1:
  12915. {
  12916. if (src0->grad) {
  12917. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12918. }
  12919. if (src1->grad) {
  12920. src1->grad = ggml_add_impl(ctx,
  12921. src1->grad,
  12922. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12923. inplace);
  12924. }
  12925. } break;
  12926. case GGML_OP_ACC:
  12927. {
  12928. if (src0->grad) {
  12929. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12930. }
  12931. if (src1->grad) {
  12932. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12933. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12934. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12935. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12936. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12937. tensor->grad,
  12938. src1->grad->ne[0],
  12939. src1->grad->ne[1],
  12940. src1->grad->ne[2],
  12941. src1->grad->ne[3],
  12942. nb1, nb2, nb3, offset);
  12943. src1->grad =
  12944. ggml_add_impl(ctx,
  12945. src1->grad,
  12946. ggml_reshape(ctx,
  12947. ggml_cont(ctx, tensor_grad_view),
  12948. src1->grad),
  12949. inplace);
  12950. }
  12951. } break;
  12952. case GGML_OP_SUB:
  12953. {
  12954. if (src0->grad) {
  12955. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12956. }
  12957. if (src1->grad) {
  12958. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12959. }
  12960. } break;
  12961. case GGML_OP_MUL:
  12962. {
  12963. if (src0->grad) {
  12964. src0->grad =
  12965. ggml_add_impl(ctx,
  12966. src0->grad,
  12967. ggml_mul(ctx, src1, tensor->grad),
  12968. inplace);
  12969. }
  12970. if (src1->grad) {
  12971. src1->grad =
  12972. ggml_add_impl(ctx,
  12973. src1->grad,
  12974. ggml_mul(ctx, src0, tensor->grad),
  12975. inplace);
  12976. }
  12977. } break;
  12978. case GGML_OP_DIV:
  12979. {
  12980. if (src0->grad) {
  12981. src0->grad =
  12982. ggml_add_impl(ctx,
  12983. src0->grad,
  12984. ggml_div(ctx, tensor->grad, src1),
  12985. inplace);
  12986. }
  12987. if (src1->grad) {
  12988. src1->grad =
  12989. ggml_sub_impl(ctx,
  12990. src1->grad,
  12991. ggml_mul(ctx,
  12992. tensor->grad,
  12993. ggml_div(ctx, tensor, src1)),
  12994. inplace);
  12995. }
  12996. } break;
  12997. case GGML_OP_SQR:
  12998. {
  12999. if (src0->grad) {
  13000. src0->grad =
  13001. ggml_add_impl(ctx,
  13002. src0->grad,
  13003. ggml_scale(ctx,
  13004. ggml_mul(ctx, src0, tensor->grad),
  13005. ggml_new_f32(ctx, 2.0f)),
  13006. inplace);
  13007. }
  13008. } break;
  13009. case GGML_OP_SQRT:
  13010. {
  13011. if (src0->grad) {
  13012. src0->grad =
  13013. ggml_add_impl(ctx,
  13014. src0->grad,
  13015. ggml_scale(ctx,
  13016. ggml_div(ctx,
  13017. tensor->grad,
  13018. tensor),
  13019. ggml_new_f32(ctx, 0.5f)),
  13020. inplace);
  13021. }
  13022. } break;
  13023. case GGML_OP_LOG:
  13024. {
  13025. if (src0->grad) {
  13026. src0->grad =
  13027. ggml_add_impl(ctx,
  13028. src0->grad,
  13029. ggml_div(ctx,
  13030. tensor->grad,
  13031. src0),
  13032. inplace);
  13033. }
  13034. } break;
  13035. case GGML_OP_SUM:
  13036. {
  13037. if (src0->grad) {
  13038. src0->grad =
  13039. ggml_add1_impl(ctx,
  13040. src0->grad,
  13041. tensor->grad,
  13042. inplace);
  13043. }
  13044. } break;
  13045. case GGML_OP_SUM_ROWS:
  13046. {
  13047. if (src0->grad) {
  13048. src0->grad =
  13049. ggml_add_impl(ctx,
  13050. src0->grad,
  13051. ggml_repeat(ctx,
  13052. tensor->grad,
  13053. src0->grad),
  13054. inplace);
  13055. }
  13056. } break;
  13057. case GGML_OP_MEAN:
  13058. case GGML_OP_ARGMAX:
  13059. {
  13060. GGML_ASSERT(false); // TODO: implement
  13061. } break;
  13062. case GGML_OP_REPEAT:
  13063. {
  13064. // necessary for llama
  13065. if (src0->grad) {
  13066. src0->grad = ggml_add_impl(ctx,
  13067. src0->grad,
  13068. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13069. inplace);
  13070. }
  13071. } break;
  13072. case GGML_OP_REPEAT_BACK:
  13073. {
  13074. if (src0->grad) {
  13075. // TODO: test this
  13076. src0->grad = ggml_add_impl(ctx,
  13077. src0->grad,
  13078. ggml_repeat(ctx, tensor->grad, src0->grad),
  13079. inplace);
  13080. }
  13081. } break;
  13082. case GGML_OP_CONCAT:
  13083. {
  13084. GGML_ASSERT(false); // TODO: implement
  13085. } break;
  13086. case GGML_OP_SILU_BACK:
  13087. {
  13088. GGML_ASSERT(false); // TODO: not implemented
  13089. } break;
  13090. case GGML_OP_NORM:
  13091. {
  13092. GGML_ASSERT(false); // TODO: not implemented
  13093. } break;
  13094. case GGML_OP_RMS_NORM:
  13095. {
  13096. // necessary for llama
  13097. if (src0->grad) {
  13098. float eps;
  13099. memcpy(&eps, tensor->op_params, sizeof(float));
  13100. src0->grad = ggml_add_impl(ctx,
  13101. src0->grad,
  13102. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13103. inplace);
  13104. }
  13105. } break;
  13106. case GGML_OP_RMS_NORM_BACK:
  13107. {
  13108. GGML_ASSERT(false); // TODO: not implemented
  13109. } break;
  13110. case GGML_OP_GROUP_NORM:
  13111. {
  13112. GGML_ASSERT(false); // TODO: not implemented
  13113. } break;
  13114. case GGML_OP_MUL_MAT:
  13115. {
  13116. // https://cs231n.github.io/optimization-2/#staged
  13117. // # forward pass
  13118. // s0 = np.random.randn(5, 10)
  13119. // s1 = np.random.randn(10, 3)
  13120. // t = s0.dot(s1)
  13121. // # now suppose we had the gradient on t from above in the circuit
  13122. // dt = np.random.randn(*t.shape) # same shape as t
  13123. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13124. // ds1 = t.T.dot(dt)
  13125. // tensor.shape [m,p]
  13126. // src0.shape [n,m]
  13127. // src1.shape [n,p]
  13128. // necessary for llama
  13129. if (src0->grad) {
  13130. src0->grad =
  13131. ggml_add_impl(ctx,
  13132. src0->grad,
  13133. ggml_out_prod(ctx, // [n,m]
  13134. src1, // [n,p]
  13135. tensor->grad), // [m,p]
  13136. inplace);
  13137. }
  13138. if (src1->grad) {
  13139. src1->grad =
  13140. ggml_add_impl(ctx,
  13141. src1->grad,
  13142. // ggml_mul_mat(ctx, // [n,p]
  13143. // ggml_cont(ctx, // [m,n]
  13144. // ggml_transpose(ctx, src0)), // [m,n]
  13145. // tensor->grad), // [m,p]
  13146. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13147. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13148. // // and then use ggml_out_prod
  13149. ggml_out_prod(ctx, // [n,p]
  13150. src0, // [n,m]
  13151. ggml_transpose(ctx, // [p,m]
  13152. tensor->grad)), // [m,p]
  13153. inplace);
  13154. }
  13155. } break;
  13156. case GGML_OP_OUT_PROD:
  13157. {
  13158. GGML_ASSERT(false); // TODO: not implemented
  13159. } break;
  13160. case GGML_OP_SCALE:
  13161. {
  13162. // necessary for llama
  13163. if (src0->grad) {
  13164. src0->grad =
  13165. ggml_add_impl(ctx,
  13166. src0->grad,
  13167. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13168. inplace);
  13169. }
  13170. if (src1->grad) {
  13171. src1->grad =
  13172. ggml_add_impl(ctx,
  13173. src1->grad,
  13174. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13175. inplace);
  13176. }
  13177. } break;
  13178. case GGML_OP_SET:
  13179. {
  13180. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13181. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13182. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13183. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13184. struct ggml_tensor * tensor_grad_view = NULL;
  13185. if (src0->grad || src1->grad) {
  13186. GGML_ASSERT(src0->type == tensor->type);
  13187. GGML_ASSERT(tensor->grad->type == tensor->type);
  13188. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13189. tensor_grad_view = ggml_view_4d(ctx,
  13190. tensor->grad,
  13191. src1->grad->ne[0],
  13192. src1->grad->ne[1],
  13193. src1->grad->ne[2],
  13194. src1->grad->ne[3],
  13195. nb1, nb2, nb3, offset);
  13196. }
  13197. if (src0->grad) {
  13198. src0->grad = ggml_add_impl(ctx,
  13199. src0->grad,
  13200. ggml_acc_impl(ctx,
  13201. tensor->grad,
  13202. ggml_neg(ctx, tensor_grad_view),
  13203. nb1, nb2, nb3, offset, false),
  13204. inplace);
  13205. }
  13206. if (src1->grad) {
  13207. src1->grad =
  13208. ggml_add_impl(ctx,
  13209. src1->grad,
  13210. ggml_reshape(ctx,
  13211. ggml_cont(ctx, tensor_grad_view),
  13212. src1->grad),
  13213. inplace);
  13214. }
  13215. } break;
  13216. case GGML_OP_CPY:
  13217. {
  13218. // necessary for llama
  13219. // cpy overwrites value of src1 by src0 and returns view(src1)
  13220. // the overwriting is mathematically equivalent to:
  13221. // tensor = src0 * 1 + src1 * 0
  13222. if (src0->grad) {
  13223. // dsrc0 = dtensor * 1
  13224. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13225. }
  13226. if (src1->grad) {
  13227. // dsrc1 = dtensor * 0 -> noop
  13228. }
  13229. } break;
  13230. case GGML_OP_CONT:
  13231. {
  13232. // same as cpy
  13233. if (src0->grad) {
  13234. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13235. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13236. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13237. }
  13238. } break;
  13239. case GGML_OP_RESHAPE:
  13240. {
  13241. // necessary for llama
  13242. if (src0->grad) {
  13243. src0->grad =
  13244. ggml_add_impl(ctx, src0->grad,
  13245. ggml_reshape(ctx, tensor->grad, src0->grad),
  13246. inplace);
  13247. }
  13248. } break;
  13249. case GGML_OP_VIEW:
  13250. {
  13251. // necessary for llama
  13252. if (src0->grad) {
  13253. size_t offset;
  13254. memcpy(&offset, tensor->op_params, sizeof(offset));
  13255. size_t nb1 = tensor->nb[1];
  13256. size_t nb2 = tensor->nb[2];
  13257. size_t nb3 = tensor->nb[3];
  13258. if (src0->type != src0->grad->type) {
  13259. // gradient is typically F32, but src0 could be other type
  13260. size_t ng = ggml_element_size(src0->grad);
  13261. size_t n0 = ggml_element_size(src0);
  13262. GGML_ASSERT(offset % n0 == 0);
  13263. GGML_ASSERT(nb1 % n0 == 0);
  13264. GGML_ASSERT(nb2 % n0 == 0);
  13265. GGML_ASSERT(nb3 % n0 == 0);
  13266. offset = (offset / n0) * ng;
  13267. nb1 = (nb1 / n0) * ng;
  13268. nb2 = (nb2 / n0) * ng;
  13269. nb3 = (nb3 / n0) * ng;
  13270. }
  13271. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13272. }
  13273. } break;
  13274. case GGML_OP_PERMUTE:
  13275. {
  13276. // necessary for llama
  13277. if (src0->grad) {
  13278. int32_t * axes = (int32_t *) tensor->op_params;
  13279. int axis0 = axes[0] & 0x3;
  13280. int axis1 = axes[1] & 0x3;
  13281. int axis2 = axes[2] & 0x3;
  13282. int axis3 = axes[3] & 0x3;
  13283. int axes_backward[4] = {0,0,0,0};
  13284. axes_backward[axis0] = 0;
  13285. axes_backward[axis1] = 1;
  13286. axes_backward[axis2] = 2;
  13287. axes_backward[axis3] = 3;
  13288. src0->grad =
  13289. ggml_add_impl(ctx, src0->grad,
  13290. ggml_permute(ctx,
  13291. tensor->grad,
  13292. axes_backward[0],
  13293. axes_backward[1],
  13294. axes_backward[2],
  13295. axes_backward[3]),
  13296. inplace);
  13297. }
  13298. } break;
  13299. case GGML_OP_TRANSPOSE:
  13300. {
  13301. // necessary for llama
  13302. if (src0->grad) {
  13303. src0->grad =
  13304. ggml_add_impl(ctx, src0->grad,
  13305. ggml_transpose(ctx, tensor->grad),
  13306. inplace);
  13307. }
  13308. } break;
  13309. case GGML_OP_GET_ROWS:
  13310. {
  13311. // necessary for llama (only for tokenizer)
  13312. if (src0->grad) {
  13313. src0->grad =
  13314. ggml_add_impl(ctx, src0->grad,
  13315. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13316. inplace);
  13317. }
  13318. if (src1->grad) {
  13319. // noop
  13320. }
  13321. } break;
  13322. case GGML_OP_GET_ROWS_BACK:
  13323. {
  13324. GGML_ASSERT(false); // TODO: not implemented
  13325. } break;
  13326. case GGML_OP_DIAG:
  13327. {
  13328. GGML_ASSERT(false); // TODO: not implemented
  13329. } break;
  13330. case GGML_OP_DIAG_MASK_INF:
  13331. {
  13332. // necessary for llama
  13333. if (src0->grad) {
  13334. const int n_past = ((int32_t *) tensor->op_params)[0];
  13335. src0->grad =
  13336. ggml_add_impl(ctx, src0->grad,
  13337. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13338. inplace);
  13339. }
  13340. } break;
  13341. case GGML_OP_DIAG_MASK_ZERO:
  13342. {
  13343. // necessary for llama
  13344. if (src0->grad) {
  13345. const int n_past = ((int32_t *) tensor->op_params)[0];
  13346. src0->grad =
  13347. ggml_add_impl(ctx, src0->grad,
  13348. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13349. inplace);
  13350. }
  13351. } break;
  13352. case GGML_OP_SOFT_MAX:
  13353. {
  13354. // necessary for llama
  13355. if (src0->grad) {
  13356. src0->grad =
  13357. ggml_add_impl(ctx, src0->grad,
  13358. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13359. inplace);
  13360. }
  13361. } break;
  13362. case GGML_OP_SOFT_MAX_BACK:
  13363. {
  13364. GGML_ASSERT(false); // TODO: not implemented
  13365. } break;
  13366. case GGML_OP_ROPE:
  13367. {
  13368. // necessary for llama
  13369. if (src0->grad) {
  13370. const int n_past = ((int32_t *) tensor->op_params)[0];
  13371. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13372. const int mode = ((int32_t *) tensor->op_params)[2];
  13373. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13374. float freq_base;
  13375. float freq_scale;
  13376. float xpos_base;
  13377. bool xpos_down;
  13378. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13379. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13380. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13381. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13382. src0->grad = ggml_add_impl(ctx,
  13383. src0->grad,
  13384. ggml_rope_back(ctx,
  13385. tensor->grad,
  13386. n_past,
  13387. n_dims,
  13388. mode,
  13389. n_ctx,
  13390. freq_base,
  13391. freq_scale,
  13392. xpos_base,
  13393. xpos_down),
  13394. inplace);
  13395. }
  13396. } break;
  13397. case GGML_OP_ROPE_BACK:
  13398. {
  13399. if (src0->grad) {
  13400. const int n_past = ((int32_t *) tensor->op_params)[0];
  13401. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13402. const int mode = ((int32_t *) tensor->op_params)[2];
  13403. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13404. float freq_base;
  13405. float freq_scale;
  13406. float xpos_base;
  13407. bool xpos_down;
  13408. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13409. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13410. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13411. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13412. src0->grad = ggml_add_impl(ctx,
  13413. src0->grad,
  13414. ggml_rope_impl(ctx,
  13415. tensor->grad,
  13416. n_past,
  13417. n_dims,
  13418. mode,
  13419. n_ctx,
  13420. freq_base,
  13421. freq_scale,
  13422. xpos_base,
  13423. xpos_down,
  13424. false),
  13425. inplace);
  13426. }
  13427. } break;
  13428. case GGML_OP_ALIBI:
  13429. {
  13430. GGML_ASSERT(false); // TODO: not implemented
  13431. } break;
  13432. case GGML_OP_CLAMP:
  13433. {
  13434. GGML_ASSERT(false); // TODO: not implemented
  13435. } break;
  13436. case GGML_OP_CONV_1D:
  13437. {
  13438. GGML_ASSERT(false); // TODO: not implemented
  13439. } break;
  13440. case GGML_OP_CONV_2D:
  13441. {
  13442. GGML_ASSERT(false); // TODO: not implemented
  13443. } break;
  13444. case GGML_OP_CONV_TRANSPOSE_2D:
  13445. {
  13446. GGML_ASSERT(false); // TODO: not implemented
  13447. } break;
  13448. case GGML_OP_POOL_1D:
  13449. {
  13450. GGML_ASSERT(false); // TODO: not implemented
  13451. } break;
  13452. case GGML_OP_POOL_2D:
  13453. {
  13454. GGML_ASSERT(false); // TODO: not implemented
  13455. } break;
  13456. case GGML_OP_UPSCALE:
  13457. {
  13458. GGML_ASSERT(false); // TODO: not implemented
  13459. } break;
  13460. case GGML_OP_FLASH_ATTN:
  13461. {
  13462. struct ggml_tensor * flash_grad = NULL;
  13463. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13464. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13465. GGML_ASSERT(t == 0 || t == 1);
  13466. bool masked = t != 0;
  13467. flash_grad =
  13468. ggml_flash_attn_back(ctx,
  13469. src0,
  13470. src1,
  13471. tensor->src[2],
  13472. tensor->grad,
  13473. masked);
  13474. }
  13475. if (src0->grad) {
  13476. struct ggml_tensor * grad_q = NULL;
  13477. const size_t nb0 = flash_grad->nb[0];
  13478. const size_t offset = 0;
  13479. switch(src0->n_dims) {
  13480. case 2:
  13481. {
  13482. grad_q = ggml_view_2d(ctx,
  13483. flash_grad,
  13484. src0->ne[0],
  13485. src0->ne[1],
  13486. nb0*src0->ne[0],
  13487. offset);
  13488. } break;
  13489. case 3:
  13490. {
  13491. grad_q = ggml_view_3d(ctx,
  13492. flash_grad,
  13493. src0->ne[0],
  13494. src0->ne[1],
  13495. src0->ne[2],
  13496. nb0*src0->ne[0],
  13497. nb0*src0->ne[0]*src0->ne[1],
  13498. offset);
  13499. } break;
  13500. case 4:
  13501. {
  13502. grad_q = ggml_view_4d(ctx,
  13503. flash_grad,
  13504. src0->ne[0],
  13505. src0->ne[1],
  13506. src0->ne[2],
  13507. src0->ne[3],
  13508. nb0*src0->ne[0],
  13509. nb0*src0->ne[0]*src0->ne[1],
  13510. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13511. offset);
  13512. } break;
  13513. }
  13514. src0->grad = ggml_add_impl(ctx,
  13515. src0->grad,
  13516. grad_q,
  13517. inplace);
  13518. }
  13519. if (src1->grad) {
  13520. struct ggml_tensor * grad_k = NULL;
  13521. const size_t nb0 = flash_grad->nb[0];
  13522. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13523. switch(src1->n_dims) {
  13524. case 2:
  13525. {
  13526. grad_k = ggml_view_2d(ctx,
  13527. flash_grad,
  13528. src1->ne[0],
  13529. src1->ne[1],
  13530. nb0*src1->ne[0],
  13531. offset);
  13532. } break;
  13533. case 3:
  13534. {
  13535. grad_k = ggml_view_3d(ctx,
  13536. flash_grad,
  13537. src1->ne[0],
  13538. src1->ne[1],
  13539. src1->ne[2],
  13540. nb0*src1->ne[0],
  13541. nb0*src1->ne[0]*src1->ne[1],
  13542. offset);
  13543. } break;
  13544. case 4:
  13545. {
  13546. grad_k = ggml_view_4d(ctx,
  13547. flash_grad,
  13548. src1->ne[0],
  13549. src1->ne[1],
  13550. src1->ne[2],
  13551. src1->ne[3],
  13552. nb0*src1->ne[0],
  13553. nb0*src1->ne[0]*src1->ne[1],
  13554. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13555. offset);
  13556. } break;
  13557. }
  13558. src1->grad = ggml_add_impl(ctx,
  13559. src1->grad,
  13560. grad_k,
  13561. inplace);
  13562. }
  13563. struct ggml_tensor * opt0 = tensor->src[2];
  13564. if (opt0->grad) {
  13565. struct ggml_tensor * grad_v = NULL;
  13566. const size_t nb0 = flash_grad->nb[0];
  13567. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13568. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13569. switch(opt0->n_dims) {
  13570. case 2:
  13571. {
  13572. grad_v = ggml_view_2d(ctx,
  13573. flash_grad,
  13574. opt0->ne[0],
  13575. opt0->ne[1],
  13576. nb0*opt0->ne[0],
  13577. offset);
  13578. } break;
  13579. case 3:
  13580. {
  13581. grad_v = ggml_view_3d(ctx,
  13582. flash_grad,
  13583. opt0->ne[0],
  13584. opt0->ne[1],
  13585. opt0->ne[2],
  13586. nb0*opt0->ne[0],
  13587. nb0*opt0->ne[0]*opt0->ne[1],
  13588. offset);
  13589. } break;
  13590. case 4:
  13591. {
  13592. grad_v = ggml_view_4d(ctx,
  13593. flash_grad,
  13594. opt0->ne[0],
  13595. opt0->ne[1],
  13596. opt0->ne[2],
  13597. opt0->ne[3],
  13598. nb0*opt0->ne[0],
  13599. nb0*opt0->ne[0]*opt0->ne[1],
  13600. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13601. offset);
  13602. } break;
  13603. }
  13604. opt0->grad = ggml_add_impl(ctx,
  13605. opt0->grad,
  13606. grad_v,
  13607. inplace);
  13608. }
  13609. } break;
  13610. case GGML_OP_FLASH_FF:
  13611. {
  13612. GGML_ASSERT(false); // not supported
  13613. } break;
  13614. case GGML_OP_FLASH_ATTN_BACK:
  13615. {
  13616. GGML_ASSERT(false); // not supported
  13617. } break;
  13618. case GGML_OP_WIN_PART:
  13619. case GGML_OP_WIN_UNPART:
  13620. case GGML_OP_UNARY:
  13621. {
  13622. switch (ggml_get_unary_op(tensor)) {
  13623. case GGML_UNARY_OP_ABS:
  13624. {
  13625. if (src0->grad) {
  13626. src0->grad =
  13627. ggml_add_impl(ctx,
  13628. src0->grad,
  13629. ggml_mul(ctx,
  13630. ggml_sgn(ctx, src0),
  13631. tensor->grad),
  13632. inplace);
  13633. }
  13634. } break;
  13635. case GGML_UNARY_OP_SGN:
  13636. {
  13637. if (src0->grad) {
  13638. // noop
  13639. }
  13640. } break;
  13641. case GGML_UNARY_OP_NEG:
  13642. {
  13643. if (src0->grad) {
  13644. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13645. }
  13646. } break;
  13647. case GGML_UNARY_OP_STEP:
  13648. {
  13649. if (src0->grad) {
  13650. // noop
  13651. }
  13652. } break;
  13653. case GGML_UNARY_OP_TANH:
  13654. {
  13655. GGML_ASSERT(false); // TODO: not implemented
  13656. } break;
  13657. case GGML_UNARY_OP_ELU:
  13658. {
  13659. GGML_ASSERT(false); // TODO: not implemented
  13660. } break;
  13661. case GGML_UNARY_OP_RELU:
  13662. {
  13663. if (src0->grad) {
  13664. src0->grad = ggml_add_impl(ctx,
  13665. src0->grad,
  13666. ggml_mul(ctx,
  13667. ggml_step(ctx, src0),
  13668. tensor->grad),
  13669. inplace);
  13670. }
  13671. } break;
  13672. case GGML_UNARY_OP_GELU:
  13673. {
  13674. GGML_ASSERT(false); // TODO: not implemented
  13675. } break;
  13676. case GGML_UNARY_OP_GELU_QUICK:
  13677. {
  13678. GGML_ASSERT(false); // TODO: not implemented
  13679. } break;
  13680. case GGML_UNARY_OP_SILU:
  13681. {
  13682. // necessary for llama
  13683. if (src0->grad) {
  13684. src0->grad = ggml_add_impl(ctx,
  13685. src0->grad,
  13686. ggml_silu_back(ctx, src0, tensor->grad),
  13687. inplace);
  13688. }
  13689. } break;
  13690. default:
  13691. GGML_ASSERT(false);
  13692. }
  13693. } break;
  13694. case GGML_OP_GET_REL_POS:
  13695. case GGML_OP_ADD_REL_POS:
  13696. case GGML_OP_MAP_UNARY:
  13697. case GGML_OP_MAP_BINARY:
  13698. case GGML_OP_MAP_CUSTOM1_F32:
  13699. case GGML_OP_MAP_CUSTOM2_F32:
  13700. case GGML_OP_MAP_CUSTOM3_F32:
  13701. case GGML_OP_MAP_CUSTOM1:
  13702. case GGML_OP_MAP_CUSTOM2:
  13703. case GGML_OP_MAP_CUSTOM3:
  13704. {
  13705. GGML_ASSERT(false); // not supported
  13706. } break;
  13707. case GGML_OP_CROSS_ENTROPY_LOSS:
  13708. {
  13709. if (src0->grad) {
  13710. src0->grad = ggml_add_impl(ctx,
  13711. src0->grad,
  13712. ggml_cross_entropy_loss_back(ctx,
  13713. src0,
  13714. src1,
  13715. tensor->grad),
  13716. inplace);
  13717. }
  13718. } break;
  13719. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13720. {
  13721. GGML_ASSERT(false); // not supported
  13722. } break;
  13723. case GGML_OP_NONE:
  13724. {
  13725. // nop
  13726. } break;
  13727. case GGML_OP_COUNT:
  13728. {
  13729. GGML_ASSERT(false);
  13730. } break;
  13731. }
  13732. }
  13733. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13734. static size_t hash(void * p) {
  13735. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13736. }
  13737. static bool hash_insert(void * hash_table[], void * p) {
  13738. size_t h = hash(p);
  13739. // linear probing
  13740. size_t i = h;
  13741. while (hash_table[i] != NULL && hash_table[i] != p) {
  13742. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13743. if (i == h) {
  13744. // hash table is full
  13745. GGML_ASSERT(false);
  13746. }
  13747. }
  13748. if (hash_table[i] == p) {
  13749. return true;
  13750. }
  13751. // insert
  13752. hash_table[i] = p;
  13753. return false;
  13754. }
  13755. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13756. if (node->grad == NULL) {
  13757. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13758. // it can also happen during forward pass, if the user performs computations with constants
  13759. if (node->op != GGML_OP_NONE) {
  13760. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13761. }
  13762. }
  13763. // check if already visited
  13764. if (hash_insert(cgraph->visited_hash_table, node)) {
  13765. return;
  13766. }
  13767. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13768. if (node->src[i]) {
  13769. ggml_visit_parents(cgraph, node->src[i]);
  13770. }
  13771. }
  13772. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13773. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13774. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13775. if (strlen(node->name) == 0) {
  13776. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13777. }
  13778. cgraph->leafs[cgraph->n_leafs] = node;
  13779. cgraph->n_leafs++;
  13780. } else {
  13781. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13782. if (strlen(node->name) == 0) {
  13783. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13784. }
  13785. cgraph->nodes[cgraph->n_nodes] = node;
  13786. cgraph->grads[cgraph->n_nodes] = node->grad;
  13787. cgraph->n_nodes++;
  13788. }
  13789. }
  13790. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13791. if (!expand) {
  13792. cgraph->n_nodes = 0;
  13793. cgraph->n_leafs = 0;
  13794. }
  13795. const int n0 = cgraph->n_nodes;
  13796. UNUSED(n0);
  13797. ggml_visit_parents(cgraph, tensor);
  13798. const int n_new = cgraph->n_nodes - n0;
  13799. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13800. if (n_new > 0) {
  13801. // the last added node should always be starting point
  13802. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13803. }
  13804. }
  13805. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13806. ggml_build_forward_impl(cgraph, tensor, true);
  13807. }
  13808. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13809. struct ggml_cgraph result = {
  13810. /*.n_nodes =*/ 0,
  13811. /*.n_leafs =*/ 0,
  13812. /*.nodes =*/ { NULL },
  13813. /*.grads =*/ { NULL },
  13814. /*.leafs =*/ { NULL },
  13815. /*.hash_table =*/ { NULL },
  13816. /*.perf_runs =*/ 0,
  13817. /*.perf_cycles =*/ 0,
  13818. /*.perf_time_us =*/ 0,
  13819. };
  13820. ggml_build_forward_impl(&result, tensor, false);
  13821. return result;
  13822. }
  13823. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13824. GGML_ASSERT(gf->n_nodes > 0);
  13825. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13826. if (keep) {
  13827. for (int i = 0; i < gf->n_nodes; i++) {
  13828. struct ggml_tensor * node = gf->nodes[i];
  13829. if (node->grad) {
  13830. node->grad = ggml_dup_tensor(ctx, node);
  13831. gf->grads[i] = node->grad;
  13832. }
  13833. }
  13834. }
  13835. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13836. struct ggml_tensor * node = gf->nodes[i];
  13837. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13838. if (node->grad) {
  13839. ggml_compute_backward(ctx, node, keep);
  13840. }
  13841. }
  13842. for (int i = 0; i < gf->n_nodes; i++) {
  13843. struct ggml_tensor * node = gf->nodes[i];
  13844. if (node->is_param) {
  13845. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13846. ggml_build_forward_expand(gb, node->grad);
  13847. }
  13848. }
  13849. }
  13850. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13851. struct ggml_cgraph result = *gf;
  13852. ggml_build_backward_expand(ctx, gf, &result, keep);
  13853. return result;
  13854. }
  13855. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13856. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13857. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13858. *cgraph = (struct ggml_cgraph) {
  13859. /*.n_nodes =*/ 0,
  13860. /*.n_leafs =*/ 0,
  13861. /*.nodes =*/ { NULL },
  13862. /*.grads =*/ { NULL },
  13863. /*.leafs =*/ { NULL },
  13864. /*.hash_table =*/ { NULL },
  13865. /*.perf_runs =*/ 0,
  13866. /*.perf_cycles =*/ 0,
  13867. /*.perf_time_us =*/ 0,
  13868. };
  13869. return cgraph;
  13870. }
  13871. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13872. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13873. ggml_build_forward_impl(cgraph, tensor, false);
  13874. return cgraph;
  13875. }
  13876. size_t ggml_graph_overhead(void) {
  13877. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13878. }
  13879. //
  13880. // thread data
  13881. //
  13882. // synchronization is done via busy loops
  13883. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13884. //
  13885. #ifdef __APPLE__
  13886. //#include <os/lock.h>
  13887. //
  13888. //typedef os_unfair_lock ggml_lock_t;
  13889. //
  13890. //#define ggml_lock_init(x) UNUSED(x)
  13891. //#define ggml_lock_destroy(x) UNUSED(x)
  13892. //#define ggml_lock_lock os_unfair_lock_lock
  13893. //#define ggml_lock_unlock os_unfair_lock_unlock
  13894. //
  13895. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13896. typedef int ggml_lock_t;
  13897. #define ggml_lock_init(x) UNUSED(x)
  13898. #define ggml_lock_destroy(x) UNUSED(x)
  13899. #define ggml_lock_lock(x) UNUSED(x)
  13900. #define ggml_lock_unlock(x) UNUSED(x)
  13901. #define GGML_LOCK_INITIALIZER 0
  13902. typedef pthread_t ggml_thread_t;
  13903. #define ggml_thread_create pthread_create
  13904. #define ggml_thread_join pthread_join
  13905. #else
  13906. //typedef pthread_spinlock_t ggml_lock_t;
  13907. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13908. //#define ggml_lock_destroy pthread_spin_destroy
  13909. //#define ggml_lock_lock pthread_spin_lock
  13910. //#define ggml_lock_unlock pthread_spin_unlock
  13911. typedef int ggml_lock_t;
  13912. #define ggml_lock_init(x) UNUSED(x)
  13913. #define ggml_lock_destroy(x) UNUSED(x)
  13914. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13915. #define ggml_lock_lock(x) _mm_pause()
  13916. #else
  13917. #define ggml_lock_lock(x) UNUSED(x)
  13918. #endif
  13919. #define ggml_lock_unlock(x) UNUSED(x)
  13920. #define GGML_LOCK_INITIALIZER 0
  13921. typedef pthread_t ggml_thread_t;
  13922. #define ggml_thread_create pthread_create
  13923. #define ggml_thread_join pthread_join
  13924. #endif
  13925. // Android's libc implementation "bionic" does not support setting affinity
  13926. #if defined(__linux__) && !defined(__BIONIC__)
  13927. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13928. if (!ggml_is_numa()) {
  13929. return;
  13930. }
  13931. // run thread on node_num thread_n / (threads per node)
  13932. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13933. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13934. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13935. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13936. CPU_ZERO_S(setsize, cpus);
  13937. for (size_t i = 0; i < node->n_cpus; ++i) {
  13938. CPU_SET_S(node->cpus[i], setsize, cpus);
  13939. }
  13940. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13941. if (rv) {
  13942. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13943. strerror(rv));
  13944. }
  13945. CPU_FREE(cpus);
  13946. }
  13947. static void clear_numa_thread_affinity(void) {
  13948. if (!ggml_is_numa()) {
  13949. return;
  13950. }
  13951. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13952. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13953. CPU_ZERO_S(setsize, cpus);
  13954. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13955. CPU_SET_S(i, setsize, cpus);
  13956. }
  13957. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13958. if (rv) {
  13959. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13960. strerror(rv));
  13961. }
  13962. CPU_FREE(cpus);
  13963. }
  13964. #else
  13965. // TODO: Windows etc.
  13966. // (the linux implementation may also work on BSD, someone should test)
  13967. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13968. static void clear_numa_thread_affinity(void) {}
  13969. #endif
  13970. struct ggml_compute_state_shared {
  13971. const struct ggml_cgraph * cgraph;
  13972. const struct ggml_cplan * cplan;
  13973. int64_t perf_node_start_cycles;
  13974. int64_t perf_node_start_time_us;
  13975. const int n_threads;
  13976. // synchronization primitives
  13977. atomic_int n_active; // num active threads
  13978. atomic_int node_n; // active graph node
  13979. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13980. void * abort_callback_data;
  13981. };
  13982. struct ggml_compute_state {
  13983. ggml_thread_t thrd;
  13984. int ith;
  13985. struct ggml_compute_state_shared * shared;
  13986. };
  13987. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13988. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13989. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13990. node->perf_runs++;
  13991. node->perf_cycles += cycles_cur;
  13992. node->perf_time_us += time_us_cur;
  13993. }
  13994. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13995. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13996. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13997. const struct ggml_cplan * cplan = state->shared->cplan;
  13998. const int * n_tasks_arr = cplan->n_tasks;
  13999. const int n_threads = state->shared->n_threads;
  14000. set_numa_thread_affinity(state->ith, n_threads);
  14001. int node_n = -1;
  14002. while (true) {
  14003. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14004. state->shared->node_n += 1;
  14005. return (thread_ret_t) GGML_EXIT_ABORTED;
  14006. }
  14007. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14008. // all other threads are finished and spinning
  14009. // do finalize and init here so we don't have synchronize again
  14010. struct ggml_compute_params params = {
  14011. /*.type =*/ GGML_TASK_FINALIZE,
  14012. /*.ith =*/ 0,
  14013. /*.nth =*/ 0,
  14014. /*.wsize =*/ cplan->work_size,
  14015. /*.wdata =*/ cplan->work_data,
  14016. };
  14017. if (node_n != -1) {
  14018. /* FINALIZE */
  14019. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14020. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14021. params.nth = n_tasks_arr[node_n];
  14022. ggml_compute_forward(&params, node);
  14023. }
  14024. ggml_graph_compute_perf_stats_node(node, state->shared);
  14025. }
  14026. // distribute new work or execute it direct if 1T
  14027. while (++node_n < cgraph->n_nodes) {
  14028. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14029. struct ggml_tensor * node = cgraph->nodes[node_n];
  14030. const int n_tasks = n_tasks_arr[node_n];
  14031. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14032. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14033. params.nth = n_tasks;
  14034. /* INIT */
  14035. if (GGML_OP_HAS_INIT[node->op]) {
  14036. params.type = GGML_TASK_INIT;
  14037. ggml_compute_forward(&params, node);
  14038. }
  14039. if (n_tasks == 1) {
  14040. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14041. // they do something more efficient than spinning (?)
  14042. params.type = GGML_TASK_COMPUTE;
  14043. ggml_compute_forward(&params, node);
  14044. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14045. params.type = GGML_TASK_FINALIZE;
  14046. ggml_compute_forward(&params, node);
  14047. }
  14048. ggml_graph_compute_perf_stats_node(node, state->shared);
  14049. } else {
  14050. break;
  14051. }
  14052. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14053. break;
  14054. }
  14055. }
  14056. atomic_store(&state->shared->n_active, n_threads);
  14057. atomic_store(&state->shared->node_n, node_n);
  14058. } else {
  14059. // wait for other threads to finish
  14060. const int last = node_n;
  14061. do {
  14062. //sched_yield();
  14063. node_n = atomic_load(&state->shared->node_n);
  14064. } while (node_n == last);
  14065. }
  14066. // check if we should stop
  14067. if (node_n >= cgraph->n_nodes) break;
  14068. /* COMPUTE */
  14069. struct ggml_tensor * node = cgraph->nodes[node_n];
  14070. const int n_tasks = n_tasks_arr[node_n];
  14071. struct ggml_compute_params params = {
  14072. /*.type =*/ GGML_TASK_COMPUTE,
  14073. /*.ith =*/ state->ith,
  14074. /*.nth =*/ n_tasks,
  14075. /*.wsize =*/ cplan->work_size,
  14076. /*.wdata =*/ cplan->work_data,
  14077. };
  14078. if (state->ith < n_tasks) {
  14079. ggml_compute_forward(&params, node);
  14080. }
  14081. }
  14082. return GGML_EXIT_SUCCESS;
  14083. }
  14084. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14085. if (n_threads <= 0) {
  14086. n_threads = GGML_DEFAULT_N_THREADS;
  14087. }
  14088. size_t work_size = 0;
  14089. struct ggml_cplan cplan;
  14090. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14091. // thread scheduling for the different operations + work buffer size estimation
  14092. for (int i = 0; i < cgraph->n_nodes; i++) {
  14093. int n_tasks = 1;
  14094. struct ggml_tensor * node = cgraph->nodes[i];
  14095. switch (node->op) {
  14096. case GGML_OP_CPY:
  14097. case GGML_OP_DUP:
  14098. {
  14099. n_tasks = n_threads;
  14100. size_t cur = 0;
  14101. if (ggml_is_quantized(node->type)) {
  14102. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14103. }
  14104. work_size = MAX(work_size, cur);
  14105. } break;
  14106. case GGML_OP_ADD:
  14107. case GGML_OP_ADD1:
  14108. {
  14109. n_tasks = n_threads;
  14110. size_t cur = 0;
  14111. if (ggml_is_quantized(node->src[0]->type)) {
  14112. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14113. }
  14114. work_size = MAX(work_size, cur);
  14115. } break;
  14116. case GGML_OP_ACC:
  14117. {
  14118. n_tasks = n_threads;
  14119. size_t cur = 0;
  14120. if (ggml_is_quantized(node->src[0]->type)) {
  14121. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14122. }
  14123. work_size = MAX(work_size, cur);
  14124. } break;
  14125. case GGML_OP_SUB:
  14126. case GGML_OP_DIV:
  14127. case GGML_OP_SQR:
  14128. case GGML_OP_SQRT:
  14129. case GGML_OP_LOG:
  14130. case GGML_OP_SUM:
  14131. case GGML_OP_SUM_ROWS:
  14132. case GGML_OP_MEAN:
  14133. case GGML_OP_ARGMAX:
  14134. case GGML_OP_REPEAT:
  14135. case GGML_OP_REPEAT_BACK:
  14136. {
  14137. n_tasks = 1;
  14138. } break;
  14139. case GGML_OP_UNARY:
  14140. {
  14141. switch (ggml_get_unary_op(node)) {
  14142. case GGML_UNARY_OP_ABS:
  14143. case GGML_UNARY_OP_SGN:
  14144. case GGML_UNARY_OP_NEG:
  14145. case GGML_UNARY_OP_STEP:
  14146. case GGML_UNARY_OP_TANH:
  14147. case GGML_UNARY_OP_ELU:
  14148. case GGML_UNARY_OP_RELU:
  14149. {
  14150. n_tasks = 1;
  14151. } break;
  14152. case GGML_UNARY_OP_GELU:
  14153. case GGML_UNARY_OP_GELU_QUICK:
  14154. case GGML_UNARY_OP_SILU:
  14155. {
  14156. n_tasks = n_threads;
  14157. } break;
  14158. }
  14159. } break;
  14160. case GGML_OP_SILU_BACK:
  14161. case GGML_OP_MUL:
  14162. case GGML_OP_NORM:
  14163. case GGML_OP_RMS_NORM:
  14164. case GGML_OP_RMS_NORM_BACK:
  14165. case GGML_OP_GROUP_NORM:
  14166. {
  14167. n_tasks = n_threads;
  14168. } break;
  14169. case GGML_OP_CONCAT:
  14170. case GGML_OP_MUL_MAT:
  14171. case GGML_OP_OUT_PROD:
  14172. {
  14173. n_tasks = n_threads;
  14174. // TODO: use different scheduling for different matrix sizes
  14175. //const int nr0 = ggml_nrows(node->src[0]);
  14176. //const int nr1 = ggml_nrows(node->src[1]);
  14177. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14178. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14179. size_t cur = 0;
  14180. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14181. #if defined(GGML_USE_CUBLAS)
  14182. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14183. n_tasks = 1; // TODO: this actually is doing nothing
  14184. // the threads are still spinning
  14185. } else
  14186. #elif defined(GGML_USE_CLBLAST)
  14187. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14188. n_tasks = 1; // TODO: this actually is doing nothing
  14189. // the threads are still spinning
  14190. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14191. } else
  14192. #endif
  14193. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14194. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14195. n_tasks = 1; // TODO: this actually is doing nothing
  14196. // the threads are still spinning
  14197. if (node->src[0]->type != GGML_TYPE_F32) {
  14198. // here we need memory just for single 2D matrix from src0
  14199. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14200. }
  14201. } else
  14202. #endif
  14203. if (node->src[1]->type != vec_dot_type) {
  14204. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14205. } else {
  14206. cur = 0;
  14207. }
  14208. work_size = MAX(work_size, cur);
  14209. } break;
  14210. case GGML_OP_SCALE:
  14211. {
  14212. n_tasks = 1;
  14213. } break;
  14214. case GGML_OP_SET:
  14215. case GGML_OP_CONT:
  14216. case GGML_OP_RESHAPE:
  14217. case GGML_OP_VIEW:
  14218. case GGML_OP_PERMUTE:
  14219. case GGML_OP_TRANSPOSE:
  14220. case GGML_OP_GET_ROWS:
  14221. case GGML_OP_GET_ROWS_BACK:
  14222. case GGML_OP_DIAG:
  14223. {
  14224. n_tasks = 1;
  14225. } break;
  14226. case GGML_OP_DIAG_MASK_ZERO:
  14227. case GGML_OP_DIAG_MASK_INF:
  14228. case GGML_OP_SOFT_MAX:
  14229. case GGML_OP_SOFT_MAX_BACK:
  14230. case GGML_OP_ROPE:
  14231. case GGML_OP_ROPE_BACK:
  14232. case GGML_OP_ADD_REL_POS:
  14233. {
  14234. n_tasks = n_threads;
  14235. } break;
  14236. case GGML_OP_ALIBI:
  14237. {
  14238. n_tasks = 1; //TODO
  14239. } break;
  14240. case GGML_OP_CLAMP:
  14241. {
  14242. n_tasks = 1; //TODO
  14243. } break;
  14244. case GGML_OP_CONV_1D:
  14245. {
  14246. n_tasks = n_threads;
  14247. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14248. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14249. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14250. size_t cur = 0;
  14251. const int nk = node->src[0]->ne[0];
  14252. if (node->src[0]->type == GGML_TYPE_F16 &&
  14253. node->src[1]->type == GGML_TYPE_F32) {
  14254. cur = sizeof(ggml_fp16_t)*(
  14255. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14256. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14257. );
  14258. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14259. node->src[1]->type == GGML_TYPE_F32) {
  14260. cur = sizeof(float)*(
  14261. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14262. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14263. );
  14264. } else {
  14265. GGML_ASSERT(false);
  14266. }
  14267. work_size = MAX(work_size, cur);
  14268. } break;
  14269. case GGML_OP_CONV_2D:
  14270. {
  14271. n_tasks = n_threads;
  14272. const int64_t ne00 = node->src[0]->ne[0]; // W
  14273. const int64_t ne01 = node->src[0]->ne[1]; // H
  14274. const int64_t ne02 = node->src[0]->ne[2]; // C
  14275. const int64_t ne03 = node->src[0]->ne[3]; // N
  14276. const int64_t ne10 = node->src[1]->ne[0]; // W
  14277. const int64_t ne11 = node->src[1]->ne[1]; // H
  14278. const int64_t ne12 = node->src[1]->ne[2]; // C
  14279. const int64_t ne0 = node->ne[0];
  14280. const int64_t ne1 = node->ne[1];
  14281. const int64_t ne2 = node->ne[2];
  14282. const int64_t nk = ne00*ne01;
  14283. const int64_t ew0 = nk * ne02;
  14284. UNUSED(ne03);
  14285. UNUSED(ne2);
  14286. size_t cur = 0;
  14287. if (node->src[0]->type == GGML_TYPE_F16 &&
  14288. node->src[1]->type == GGML_TYPE_F32) {
  14289. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14290. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14291. node->src[1]->type == GGML_TYPE_F32) {
  14292. cur = sizeof(float)* (ne10*ne11*ne12);
  14293. } else {
  14294. GGML_ASSERT(false);
  14295. }
  14296. work_size = MAX(work_size, cur);
  14297. } break;
  14298. case GGML_OP_CONV_TRANSPOSE_2D:
  14299. {
  14300. n_tasks = n_threads;
  14301. const int64_t ne00 = node->src[0]->ne[0]; // W
  14302. const int64_t ne01 = node->src[0]->ne[1]; // H
  14303. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14304. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14305. const int64_t ne10 = node->src[1]->ne[0]; // W
  14306. const int64_t ne11 = node->src[1]->ne[1]; // H
  14307. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14308. size_t cur = 0;
  14309. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14310. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14311. work_size = MAX(work_size, cur);
  14312. } break;
  14313. case GGML_OP_POOL_1D:
  14314. case GGML_OP_POOL_2D:
  14315. {
  14316. n_tasks = 1;
  14317. } break;
  14318. case GGML_OP_UPSCALE:
  14319. {
  14320. n_tasks = n_threads;
  14321. } break;
  14322. case GGML_OP_FLASH_ATTN:
  14323. {
  14324. n_tasks = n_threads;
  14325. size_t cur = 0;
  14326. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14327. if (node->src[1]->type == GGML_TYPE_F32) {
  14328. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14329. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14330. }
  14331. if (node->src[1]->type == GGML_TYPE_F16) {
  14332. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14333. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14334. }
  14335. work_size = MAX(work_size, cur);
  14336. } break;
  14337. case GGML_OP_FLASH_FF:
  14338. {
  14339. n_tasks = n_threads;
  14340. size_t cur = 0;
  14341. if (node->src[1]->type == GGML_TYPE_F32) {
  14342. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14343. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14344. }
  14345. if (node->src[1]->type == GGML_TYPE_F16) {
  14346. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14347. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14348. }
  14349. work_size = MAX(work_size, cur);
  14350. } break;
  14351. case GGML_OP_FLASH_ATTN_BACK:
  14352. {
  14353. n_tasks = n_threads;
  14354. size_t cur = 0;
  14355. const int64_t D = node->src[0]->ne[0];
  14356. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14357. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14358. if (node->src[1]->type == GGML_TYPE_F32) {
  14359. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14360. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14361. }
  14362. if (node->src[1]->type == GGML_TYPE_F16) {
  14363. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14364. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14365. }
  14366. work_size = MAX(work_size, cur);
  14367. } break;
  14368. case GGML_OP_WIN_PART:
  14369. case GGML_OP_WIN_UNPART:
  14370. case GGML_OP_GET_REL_POS:
  14371. case GGML_OP_MAP_UNARY:
  14372. case GGML_OP_MAP_BINARY:
  14373. case GGML_OP_MAP_CUSTOM1_F32:
  14374. case GGML_OP_MAP_CUSTOM2_F32:
  14375. case GGML_OP_MAP_CUSTOM3_F32:
  14376. {
  14377. n_tasks = 1;
  14378. } break;
  14379. case GGML_OP_MAP_CUSTOM1:
  14380. {
  14381. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14382. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14383. n_tasks = n_threads;
  14384. } else {
  14385. n_tasks = MIN(p->n_tasks, n_threads);
  14386. }
  14387. } break;
  14388. case GGML_OP_MAP_CUSTOM2:
  14389. {
  14390. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14391. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14392. n_tasks = n_threads;
  14393. } else {
  14394. n_tasks = MIN(p->n_tasks, n_threads);
  14395. }
  14396. } break;
  14397. case GGML_OP_MAP_CUSTOM3:
  14398. {
  14399. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14400. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14401. n_tasks = n_threads;
  14402. } else {
  14403. n_tasks = MIN(p->n_tasks, n_threads);
  14404. }
  14405. } break;
  14406. case GGML_OP_CROSS_ENTROPY_LOSS:
  14407. {
  14408. n_tasks = n_threads;
  14409. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14410. work_size = MAX(work_size, cur);
  14411. } break;
  14412. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14413. {
  14414. n_tasks = n_threads;
  14415. } break;
  14416. case GGML_OP_NONE:
  14417. {
  14418. n_tasks = 1;
  14419. } break;
  14420. case GGML_OP_COUNT:
  14421. {
  14422. GGML_ASSERT(false);
  14423. } break;
  14424. }
  14425. cplan.n_tasks[i] = n_tasks;
  14426. }
  14427. if (work_size > 0) {
  14428. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14429. }
  14430. cplan.n_threads = n_threads;
  14431. cplan.work_size = work_size;
  14432. cplan.work_data = NULL;
  14433. return cplan;
  14434. }
  14435. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14436. {
  14437. GGML_ASSERT(cplan);
  14438. GGML_ASSERT(cplan->n_threads > 0);
  14439. if (cplan->work_size > 0) {
  14440. GGML_ASSERT(cplan->work_data);
  14441. }
  14442. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14443. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14444. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14445. }
  14446. }
  14447. }
  14448. const int n_threads = cplan->n_threads;
  14449. struct ggml_compute_state_shared state_shared = {
  14450. /*.cgraph =*/ cgraph,
  14451. /*.cgraph_plan =*/ cplan,
  14452. /*.perf_node_start_cycles =*/ 0,
  14453. /*.perf_node_start_time_us =*/ 0,
  14454. /*.n_threads =*/ n_threads,
  14455. /*.n_active =*/ n_threads,
  14456. /*.node_n =*/ -1,
  14457. /*.abort_callback =*/ NULL,
  14458. /*.abort_callback_data =*/ NULL,
  14459. };
  14460. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14461. // create thread pool
  14462. if (n_threads > 1) {
  14463. for (int j = 1; j < n_threads; ++j) {
  14464. workers[j] = (struct ggml_compute_state) {
  14465. .thrd = 0,
  14466. .ith = j,
  14467. .shared = &state_shared,
  14468. };
  14469. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14470. GGML_ASSERT(rc == 0);
  14471. UNUSED(rc);
  14472. }
  14473. }
  14474. workers[0].ith = 0;
  14475. workers[0].shared = &state_shared;
  14476. const int64_t perf_start_cycles = ggml_perf_cycles();
  14477. const int64_t perf_start_time_us = ggml_perf_time_us();
  14478. // this is a work thread too
  14479. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14480. // don't leave affinity set on the main thread
  14481. clear_numa_thread_affinity();
  14482. // join or kill thread pool
  14483. if (n_threads > 1) {
  14484. for (int j = 1; j < n_threads; j++) {
  14485. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14486. GGML_ASSERT(rc == 0);
  14487. }
  14488. }
  14489. // performance stats (graph)
  14490. {
  14491. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14492. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14493. cgraph->perf_runs++;
  14494. cgraph->perf_cycles += perf_cycles_cur;
  14495. cgraph->perf_time_us += perf_time_us_cur;
  14496. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14497. __func__, cgraph->perf_runs,
  14498. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14499. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14500. (double) perf_time_us_cur / 1000.0,
  14501. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14502. }
  14503. return compute_status;
  14504. }
  14505. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14506. for (int i = 0; i < cgraph->n_nodes; i++) {
  14507. struct ggml_tensor * grad = cgraph->grads[i];
  14508. if (grad) {
  14509. ggml_set_zero(grad);
  14510. }
  14511. }
  14512. }
  14513. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14514. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14515. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14516. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14517. ggml_graph_compute(cgraph, &cplan);
  14518. }
  14519. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14520. for (int i = 0; i < cgraph->n_leafs; i++) {
  14521. struct ggml_tensor * leaf = cgraph->leafs[i];
  14522. if (strcmp(leaf->name, name) == 0) {
  14523. return leaf;
  14524. }
  14525. }
  14526. for (int i = 0; i < cgraph->n_nodes; i++) {
  14527. struct ggml_tensor * node = cgraph->nodes[i];
  14528. if (strcmp(node->name, name) == 0) {
  14529. return node;
  14530. }
  14531. }
  14532. return NULL;
  14533. }
  14534. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14535. const int64_t * ne = tensor->ne;
  14536. const size_t * nb = tensor->nb;
  14537. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14538. ggml_type_name(tensor->type),
  14539. ggml_op_name (tensor->op),
  14540. tensor->n_dims,
  14541. ne[0], ne[1], ne[2], ne[3],
  14542. nb[0], nb[1], nb[2], nb[3],
  14543. tensor->data,
  14544. tensor->name);
  14545. }
  14546. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14547. const int64_t * ne = tensor->ne;
  14548. const size_t * nb = tensor->nb;
  14549. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14550. arg,
  14551. ggml_type_name(tensor->type),
  14552. ggml_op_name (tensor->op),
  14553. tensor->n_dims,
  14554. ne[0], ne[1], ne[2], ne[3],
  14555. nb[0], nb[1], nb[2], nb[3],
  14556. tensor->data,
  14557. tensor->name);
  14558. }
  14559. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14560. uint64_t size_eval = 0;
  14561. // compute size of intermediate results
  14562. // TODO: does not take into account scratch buffers !!!!
  14563. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14564. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14565. }
  14566. // print
  14567. {
  14568. FILE * fout = stdout;
  14569. fprintf(fout, "\n");
  14570. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14571. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14572. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14573. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14574. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14575. // header
  14576. fprintf(fout, "\n");
  14577. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14578. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14579. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14580. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14581. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14582. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14583. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14584. }
  14585. // header
  14586. fprintf(fout, "\n");
  14587. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14588. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14589. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14590. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14591. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14592. if (cgraph->nodes[i]->src[j]) {
  14593. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14594. }
  14595. }
  14596. fprintf(fout, "\n");
  14597. }
  14598. fprintf(fout, "\n");
  14599. }
  14600. // write binary data
  14601. {
  14602. FILE * fout = fopen(fname, "wb");
  14603. if (!fout) {
  14604. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14605. return;
  14606. }
  14607. // header
  14608. {
  14609. const uint32_t magic = GGML_FILE_MAGIC;
  14610. const uint32_t version = GGML_FILE_VERSION;
  14611. const uint32_t n_leafs = cgraph->n_leafs;
  14612. const uint32_t nodes = cgraph->n_nodes;
  14613. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14614. fwrite(&version, sizeof(uint32_t), 1, fout);
  14615. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14616. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14617. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14618. }
  14619. // leafs
  14620. {
  14621. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14622. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14623. const uint32_t type = tensor->type;
  14624. const uint32_t op = tensor->op;
  14625. const uint32_t n_dims = tensor->n_dims;
  14626. fwrite(&type, sizeof(uint32_t), 1, fout);
  14627. fwrite(&op, sizeof(uint32_t), 1, fout);
  14628. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14629. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14630. const uint64_t ne = tensor->ne[j];
  14631. const uint64_t nb = tensor->nb[j];
  14632. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14633. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14634. }
  14635. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14636. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14637. // dump the data
  14638. // TODO: pad this to 32 byte boundary
  14639. {
  14640. const size_t size = ggml_nbytes(tensor);
  14641. fwrite(tensor->data, sizeof(char), size, fout);
  14642. }
  14643. }
  14644. }
  14645. // nodes
  14646. {
  14647. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14648. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14649. const uint32_t type = tensor->type;
  14650. const uint32_t op = tensor->op;
  14651. const uint32_t n_dims = tensor->n_dims;
  14652. fwrite(&type, sizeof(uint32_t), 1, fout);
  14653. fwrite(&op, sizeof(uint32_t), 1, fout);
  14654. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14655. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14656. const uint64_t ne = tensor->ne[j];
  14657. const uint64_t nb = tensor->nb[j];
  14658. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14659. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14660. }
  14661. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14662. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14663. // output the op arguments
  14664. {
  14665. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14666. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14667. args[j] = tensor->src[j];
  14668. }
  14669. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14670. if (args[j]) {
  14671. int32_t idx = -1;
  14672. // check if leaf
  14673. {
  14674. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14675. if (args[j] == cgraph->leafs[k]) {
  14676. idx = k;
  14677. break;
  14678. }
  14679. }
  14680. }
  14681. // check if node
  14682. if (idx == -1) {
  14683. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14684. if (args[j] == cgraph->nodes[k]) {
  14685. idx = GGML_MAX_NODES + k;
  14686. break;
  14687. }
  14688. }
  14689. }
  14690. if (idx == -1) {
  14691. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14692. return;
  14693. }
  14694. fwrite(&idx, sizeof(int32_t), 1, fout);
  14695. } else {
  14696. const int32_t nul = -1;
  14697. fwrite(&nul, sizeof(int32_t), 1, fout);
  14698. }
  14699. }
  14700. }
  14701. }
  14702. }
  14703. fclose(fout);
  14704. }
  14705. }
  14706. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14707. assert(*ctx_data == NULL);
  14708. assert(*ctx_eval == NULL);
  14709. struct ggml_cgraph result = { 0 };
  14710. struct ggml_tensor * data = NULL;
  14711. // read file into data
  14712. {
  14713. FILE * fin = fopen(fname, "rb");
  14714. if (!fin) {
  14715. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14716. return result;
  14717. }
  14718. size_t fsize = 0;
  14719. fseek(fin, 0, SEEK_END);
  14720. fsize = ftell(fin);
  14721. fseek(fin, 0, SEEK_SET);
  14722. // create the data context
  14723. {
  14724. const size_t overhead = 1*ggml_tensor_overhead();
  14725. struct ggml_init_params params = {
  14726. .mem_size = fsize + overhead,
  14727. .mem_buffer = NULL,
  14728. .no_alloc = false,
  14729. };
  14730. *ctx_data = ggml_init(params);
  14731. if (!*ctx_data) {
  14732. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14733. fclose(fin);
  14734. return result;
  14735. }
  14736. }
  14737. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14738. {
  14739. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14740. if (ret != fsize) {
  14741. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14742. fclose(fin);
  14743. return result;
  14744. }
  14745. }
  14746. fclose(fin);
  14747. }
  14748. // populate result
  14749. {
  14750. char * ptr = (char *) data->data;
  14751. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14752. if (magic != GGML_FILE_MAGIC) {
  14753. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14754. return result;
  14755. }
  14756. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14757. if (version != GGML_FILE_VERSION) {
  14758. fprintf(stderr, "%s: invalid version number\n", __func__);
  14759. return result;
  14760. }
  14761. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14762. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14763. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14764. result.n_leafs = n_leafs;
  14765. result.n_nodes = n_nodes;
  14766. // create the data context
  14767. {
  14768. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14769. struct ggml_init_params params = {
  14770. .mem_size = size_eval + overhead,
  14771. .mem_buffer = NULL,
  14772. .no_alloc = true,
  14773. };
  14774. *ctx_eval = ggml_init(params);
  14775. if (!*ctx_eval) {
  14776. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14777. return result;
  14778. }
  14779. }
  14780. // leafs
  14781. {
  14782. uint32_t type;
  14783. uint32_t op;
  14784. uint32_t n_dims;
  14785. for (uint32_t i = 0; i < n_leafs; ++i) {
  14786. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14787. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14788. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14789. int64_t ne[GGML_MAX_DIMS];
  14790. size_t nb[GGML_MAX_DIMS];
  14791. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14792. uint64_t ne_cur;
  14793. uint64_t nb_cur;
  14794. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14795. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14796. ne[j] = ne_cur;
  14797. nb[j] = nb_cur;
  14798. }
  14799. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14800. tensor->op = (enum ggml_op) op;
  14801. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14802. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14803. tensor->data = (void *) ptr;
  14804. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14805. tensor->nb[j] = nb[j];
  14806. }
  14807. result.leafs[i] = tensor;
  14808. ptr += ggml_nbytes(tensor);
  14809. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14810. }
  14811. }
  14812. ggml_set_no_alloc(*ctx_eval, false);
  14813. // nodes
  14814. {
  14815. uint32_t type;
  14816. uint32_t op;
  14817. uint32_t n_dims;
  14818. for (uint32_t i = 0; i < n_nodes; ++i) {
  14819. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14820. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14821. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14822. enum ggml_op eop = (enum ggml_op) op;
  14823. int64_t ne[GGML_MAX_DIMS];
  14824. size_t nb[GGML_MAX_DIMS];
  14825. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14826. uint64_t ne_cur;
  14827. uint64_t nb_cur;
  14828. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14829. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14830. ne[j] = ne_cur;
  14831. nb[j] = nb_cur;
  14832. }
  14833. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14834. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14835. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14836. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14837. // parse args
  14838. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14839. const int32_t arg_idx = ptr_arg_idx[j];
  14840. if (arg_idx == -1) {
  14841. continue;
  14842. }
  14843. if (arg_idx < GGML_MAX_NODES) {
  14844. args[j] = result.leafs[arg_idx];
  14845. } else {
  14846. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14847. }
  14848. }
  14849. // create the tensor
  14850. // "view" operations are handled differently
  14851. // TODO: handle inplace ops - currently a copy is always made
  14852. struct ggml_tensor * tensor = NULL;
  14853. switch (eop) {
  14854. // TODO: implement other view ops
  14855. case GGML_OP_RESHAPE:
  14856. {
  14857. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14858. } break;
  14859. case GGML_OP_VIEW:
  14860. {
  14861. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14862. size_t offs;
  14863. memcpy(&offs, ptr_op_params, sizeof(offs));
  14864. tensor->data = ((char *) tensor->data) + offs;
  14865. } break;
  14866. case GGML_OP_TRANSPOSE:
  14867. {
  14868. tensor = ggml_transpose(*ctx_eval, args[0]);
  14869. } break;
  14870. case GGML_OP_PERMUTE:
  14871. {
  14872. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14873. } break;
  14874. default:
  14875. {
  14876. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14877. tensor->op = eop;
  14878. } break;
  14879. }
  14880. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14881. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14882. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14883. tensor->nb[j] = nb[j];
  14884. }
  14885. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14886. tensor->src[j] = args[j];
  14887. }
  14888. result.nodes[i] = tensor;
  14889. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14890. }
  14891. }
  14892. }
  14893. return result;
  14894. }
  14895. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14896. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14897. GGML_PRINT("=== GRAPH ===\n");
  14898. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14899. for (int i = 0; i < cgraph->n_nodes; i++) {
  14900. struct ggml_tensor * node = cgraph->nodes[i];
  14901. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14902. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14903. i,
  14904. node->ne[0], node->ne[1], node->ne[2],
  14905. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14906. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14907. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14908. (double) node->perf_time_us / 1000.0,
  14909. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14910. }
  14911. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14912. for (int i = 0; i < cgraph->n_leafs; i++) {
  14913. struct ggml_tensor * node = cgraph->leafs[i];
  14914. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14915. i,
  14916. node->ne[0], node->ne[1],
  14917. ggml_op_name(node->op));
  14918. }
  14919. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14920. if (perf_total_per_op_us[i] == 0) {
  14921. continue;
  14922. }
  14923. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14924. }
  14925. GGML_PRINT("========================================\n");
  14926. }
  14927. // check if node is part of the graph
  14928. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14929. if (cgraph == NULL) {
  14930. return true;
  14931. }
  14932. for (int i = 0; i < cgraph->n_nodes; i++) {
  14933. if (cgraph->nodes[i] == node) {
  14934. return true;
  14935. }
  14936. }
  14937. return false;
  14938. }
  14939. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14940. for (int i = 0; i < cgraph->n_nodes; i++) {
  14941. struct ggml_tensor * parent = cgraph->nodes[i];
  14942. if (parent->grad == node) {
  14943. return parent;
  14944. }
  14945. }
  14946. return NULL;
  14947. }
  14948. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14949. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14950. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14951. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14952. gparent0 ? (void *) gparent0 : (void *) parent,
  14953. gparent0 ? "g" : "x",
  14954. gparent ? (void *) gparent : (void *) node,
  14955. gparent ? "g" : "x",
  14956. gparent ? "empty" : "vee",
  14957. gparent ? "dashed" : "solid",
  14958. label);
  14959. }
  14960. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14961. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14962. (void *) parent, "x",
  14963. (void *) node, "x",
  14964. label);
  14965. }
  14966. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14967. char color[16];
  14968. FILE * fp = fopen(filename, "w");
  14969. GGML_ASSERT(fp);
  14970. fprintf(fp, "digraph G {\n");
  14971. fprintf(fp, " newrank = true;\n");
  14972. fprintf(fp, " rankdir = LR;\n");
  14973. for (int i = 0; i < gb->n_nodes; i++) {
  14974. struct ggml_tensor * node = gb->nodes[i];
  14975. if (ggml_graph_get_parent(gb, node) != NULL) {
  14976. continue;
  14977. }
  14978. if (node->is_param) {
  14979. snprintf(color, sizeof(color), "yellow");
  14980. } else if (node->grad) {
  14981. if (ggml_graph_find(gf, node)) {
  14982. snprintf(color, sizeof(color), "green");
  14983. } else {
  14984. snprintf(color, sizeof(color), "lightblue");
  14985. }
  14986. } else {
  14987. snprintf(color, sizeof(color), "white");
  14988. }
  14989. fprintf(fp, " \"%p\" [ "
  14990. "style = filled; fillcolor = %s; shape = record; "
  14991. "label=\"",
  14992. (void *) node, color);
  14993. if (strlen(node->name) > 0) {
  14994. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14995. } else {
  14996. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14997. }
  14998. if (node->n_dims == 2) {
  14999. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15000. } else {
  15001. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15002. }
  15003. if (node->grad) {
  15004. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15005. } else {
  15006. fprintf(fp, "\"; ]\n");
  15007. }
  15008. }
  15009. for (int i = 0; i < gb->n_leafs; i++) {
  15010. struct ggml_tensor * node = gb->leafs[i];
  15011. snprintf(color, sizeof(color), "pink");
  15012. fprintf(fp, " \"%p\" [ "
  15013. "style = filled; fillcolor = %s; shape = record; "
  15014. "label=\"<x>",
  15015. (void *) node, color);
  15016. if (strlen(node->name) > 0) {
  15017. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15018. } else {
  15019. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15020. }
  15021. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15022. if (ggml_nelements(node) < 5) {
  15023. fprintf(fp, " | (");
  15024. for (int j = 0; j < ggml_nelements(node); j++) {
  15025. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15026. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15027. }
  15028. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15029. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15030. }
  15031. else {
  15032. fprintf(fp, "#");
  15033. }
  15034. if (j < ggml_nelements(node) - 1) {
  15035. fprintf(fp, ", ");
  15036. }
  15037. }
  15038. fprintf(fp, ")");
  15039. }
  15040. fprintf(fp, "\"; ]\n");
  15041. }
  15042. for (int i = 0; i < gb->n_nodes; i++) {
  15043. struct ggml_tensor * node = gb->nodes[i];
  15044. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15045. if (node->src[j]) {
  15046. char label[16];
  15047. snprintf(label, sizeof(label), "src %d", j);
  15048. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15049. }
  15050. }
  15051. }
  15052. for (int i = 0; i < gb->n_leafs; i++) {
  15053. struct ggml_tensor * node = gb->leafs[i];
  15054. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15055. if (node->src[j]) {
  15056. char label[16];
  15057. snprintf(label, sizeof(label), "src %d", j);
  15058. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15059. }
  15060. }
  15061. }
  15062. fprintf(fp, "}\n");
  15063. fclose(fp);
  15064. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15065. }
  15066. ////////////////////////////////////////////////////////////////////////////////
  15067. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15068. int i = 0;
  15069. for (int p = 0; p < np; ++p) {
  15070. const int64_t ne = ggml_nelements(ps[p]) ;
  15071. // TODO: add function to set tensor from array
  15072. for (int64_t j = 0; j < ne; ++j) {
  15073. ggml_set_f32_1d(ps[p], j, x[i++]);
  15074. }
  15075. }
  15076. }
  15077. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15078. int i = 0;
  15079. for (int p = 0; p < np; ++p) {
  15080. const int64_t ne = ggml_nelements(ps[p]) ;
  15081. // TODO: add function to get all elements at once
  15082. for (int64_t j = 0; j < ne; ++j) {
  15083. x[i++] = ggml_get_f32_1d(ps[p], j);
  15084. }
  15085. }
  15086. }
  15087. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15088. int i = 0;
  15089. for (int p = 0; p < np; ++p) {
  15090. const int64_t ne = ggml_nelements(ps[p]) ;
  15091. // TODO: add function to get all elements at once
  15092. for (int64_t j = 0; j < ne; ++j) {
  15093. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15094. }
  15095. }
  15096. }
  15097. //
  15098. // ADAM
  15099. //
  15100. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15101. //
  15102. static enum ggml_opt_result ggml_opt_adam(
  15103. struct ggml_context * ctx,
  15104. struct ggml_opt_context * opt,
  15105. struct ggml_opt_params params,
  15106. struct ggml_tensor * f,
  15107. struct ggml_cgraph * gf,
  15108. struct ggml_cgraph * gb,
  15109. ggml_opt_callback callback,
  15110. void * callback_data) {
  15111. GGML_ASSERT(ggml_is_scalar(f));
  15112. // these will store the parameters we want to optimize
  15113. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15114. int np = 0;
  15115. int64_t nx = 0;
  15116. for (int i = 0; i < gf->n_nodes; ++i) {
  15117. if (gf->nodes[i]->is_param) {
  15118. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15119. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15120. ps[np++] = gf->nodes[i];
  15121. nx += ggml_nelements(gf->nodes[i]);
  15122. }
  15123. }
  15124. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15125. int iter = opt->iter;
  15126. ggml_opt_init(opt->ctx, opt, params, nx);
  15127. opt->iter = iter;
  15128. }
  15129. // constants
  15130. float sched = params.adam.sched;
  15131. const float alpha = params.adam.alpha;
  15132. const float decay = params.adam.decay * alpha;
  15133. const float beta1 = params.adam.beta1;
  15134. const float beta2 = params.adam.beta2;
  15135. const float eps = params.adam.eps;
  15136. const float gclip = params.adam.gclip;
  15137. const int decay_min_ndim = params.adam.decay_min_ndim;
  15138. float * m = opt->adam.m->data; // first moment
  15139. float * v = opt->adam.v->data; // second moment
  15140. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15141. if (callback) {
  15142. callback(callback_data, &sched);
  15143. }
  15144. // compute the function value
  15145. ggml_graph_reset (gf);
  15146. ggml_set_f32 (f->grad, 1.0f);
  15147. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15148. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15149. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15150. ggml_graph_compute(gb, &cplan);
  15151. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15152. opt->adam.fx_best = opt->adam.fx_prev;
  15153. if (pf) {
  15154. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15155. }
  15156. opt->loss_before = opt->adam.fx_prev;
  15157. opt->loss_after = opt->adam.fx_prev;
  15158. // initialize
  15159. if (opt->just_initialized) {
  15160. opt->adam.n_no_improvement = 0;
  15161. opt->just_initialized = false;
  15162. }
  15163. float * fx_best = &opt->adam.fx_best;
  15164. float * fx_prev = &opt->adam.fx_prev;
  15165. int * n_no_improvement = &opt->adam.n_no_improvement;
  15166. int iter0 = opt->iter;
  15167. // run the optimizer
  15168. for (int t = 0; t < params.adam.n_iter; ++t) {
  15169. opt->iter = iter0 + t + 1;
  15170. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15171. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15172. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15173. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15174. for (int i = 0; i < np; ++i) {
  15175. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15176. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15177. }
  15178. const int64_t t_start_wall = ggml_time_us();
  15179. const int64_t t_start_cpu = ggml_cycles();
  15180. UNUSED(t_start_wall);
  15181. UNUSED(t_start_cpu);
  15182. {
  15183. float gnorm = 1.0f;
  15184. if (gclip > 0.0f) {
  15185. // gradient clipping
  15186. ggml_float sum = 0.0;
  15187. for (int p = 0; p < np; ++p) {
  15188. const int64_t ne = ggml_nelements(ps[p]);
  15189. for (int64_t j = 0; j < ne; ++j) {
  15190. float g = ggml_get_f32_1d(ps[p]->grad, j);
  15191. sum += (ggml_float)(g*g);
  15192. }
  15193. }
  15194. ggml_float norm = sqrt(sum);
  15195. if (norm > (ggml_float) gclip) {
  15196. gnorm = (float) ((ggml_float) gclip / norm);
  15197. }
  15198. }
  15199. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15200. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15201. int64_t i = 0;
  15202. for (int p = 0; p < np; ++p) {
  15203. const int64_t ne = ggml_nelements(ps[p]);
  15204. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15205. for (int64_t j = 0; j < ne; ++j) {
  15206. float x = ggml_get_f32_1d(ps[p], j);
  15207. float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
  15208. m[i] = m[i]*beta1 + g*(1.0f - beta1);
  15209. v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
  15210. float mh = m[i]*beta1h;
  15211. float vh = v[i]*beta2h;
  15212. vh = sqrtf(vh) + eps;
  15213. x = x*(1.0f - p_decay) - mh/vh;
  15214. ggml_set_f32_1d(ps[p], j, x);
  15215. ++i;
  15216. }
  15217. }
  15218. }
  15219. if (callback) {
  15220. callback(callback_data, &sched);
  15221. }
  15222. ggml_graph_reset (gf);
  15223. ggml_set_f32 (f->grad, 1.0f);
  15224. ggml_graph_compute(gb, &cplan);
  15225. const float fx = ggml_get_f32_1d(f, 0);
  15226. opt->loss_after = fx;
  15227. // check convergence
  15228. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15229. GGML_PRINT_DEBUG("converged\n");
  15230. return GGML_OPT_OK;
  15231. }
  15232. // delta-based convergence test
  15233. if (pf != NULL) {
  15234. // need at least params.past iterations to start checking for convergence
  15235. if (params.past <= iter0 + t) {
  15236. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15237. if (fabsf(rate) < params.delta) {
  15238. return GGML_OPT_OK;
  15239. }
  15240. }
  15241. pf[(iter0 + t)%params.past] = fx;
  15242. }
  15243. // check for improvement
  15244. if (params.max_no_improvement > 0) {
  15245. if (fx_best[0] > fx) {
  15246. fx_best[0] = fx;
  15247. n_no_improvement[0] = 0;
  15248. } else {
  15249. ++n_no_improvement[0];
  15250. if (n_no_improvement[0] >= params.max_no_improvement) {
  15251. return GGML_OPT_OK;
  15252. }
  15253. }
  15254. }
  15255. fx_prev[0] = fx;
  15256. {
  15257. const int64_t t_end_cpu = ggml_cycles();
  15258. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15259. UNUSED(t_end_cpu);
  15260. const int64_t t_end_wall = ggml_time_us();
  15261. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15262. UNUSED(t_end_wall);
  15263. }
  15264. }
  15265. return GGML_OPT_DID_NOT_CONVERGE;
  15266. }
  15267. //
  15268. // L-BFGS
  15269. //
  15270. // the L-BFGS implementation below is based on the following implementation:
  15271. //
  15272. // https://github.com/chokkan/liblbfgs
  15273. //
  15274. struct ggml_lbfgs_iteration_data {
  15275. float alpha;
  15276. float ys;
  15277. float * s;
  15278. float * y;
  15279. };
  15280. static enum ggml_opt_result linesearch_backtracking(
  15281. const struct ggml_opt_params * params,
  15282. int nx,
  15283. float * x,
  15284. float * fx,
  15285. float * g,
  15286. float * d,
  15287. float * step,
  15288. const float * xp,
  15289. struct ggml_tensor * f,
  15290. struct ggml_cgraph * gf,
  15291. struct ggml_cgraph * gb,
  15292. struct ggml_cplan * cplan,
  15293. const int np,
  15294. struct ggml_tensor * ps[],
  15295. ggml_opt_callback callback,
  15296. void * callback_data) {
  15297. int count = 0;
  15298. float width = 0.0f;
  15299. float dg = 0.0f;
  15300. float finit = 0.0f;
  15301. float dginit = 0.0f;
  15302. float dgtest = 0.0f;
  15303. const float dec = 0.5f;
  15304. const float inc = 2.1f;
  15305. if (*step <= 0.f) {
  15306. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15307. }
  15308. // compute the initial gradient in the search direction
  15309. ggml_vec_dot_f32(nx, &dginit, g, d);
  15310. // make sure that d points to a descent direction
  15311. if (0 < dginit) {
  15312. return GGML_LINESEARCH_FAIL;
  15313. }
  15314. // initialize local variables
  15315. finit = *fx;
  15316. dgtest = params->lbfgs.ftol*dginit;
  15317. while (true) {
  15318. if (callback) {
  15319. // LBFG-S does not support learning rate -> ignore learning schedule
  15320. float sched = 0;
  15321. callback(callback_data, &sched);
  15322. }
  15323. ggml_vec_cpy_f32(nx, x, xp);
  15324. ggml_vec_mad_f32(nx, x, d, *step);
  15325. // evaluate the function and gradient values
  15326. {
  15327. ggml_opt_set_params(np, ps, x);
  15328. ggml_graph_reset (gf);
  15329. ggml_set_f32 (f->grad, 1.0f);
  15330. ggml_graph_compute(gb, cplan);
  15331. ggml_opt_get_grad(np, ps, g);
  15332. *fx = ggml_get_f32_1d(f, 0);
  15333. }
  15334. ++count;
  15335. if (*fx > finit + (*step)*dgtest) {
  15336. width = dec;
  15337. } else {
  15338. // Armijo condition is satisfied
  15339. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15340. return count;
  15341. }
  15342. ggml_vec_dot_f32(nx, &dg, g, d);
  15343. // check the Wolfe condition
  15344. if (dg < params->lbfgs.wolfe * dginit) {
  15345. width = inc;
  15346. } else {
  15347. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15348. // regular Wolfe conditions
  15349. return count;
  15350. }
  15351. if(dg > -params->lbfgs.wolfe*dginit) {
  15352. width = dec;
  15353. } else {
  15354. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15355. return count;
  15356. }
  15357. return count;
  15358. }
  15359. }
  15360. if (*step < params->lbfgs.min_step) {
  15361. return GGML_LINESEARCH_MINIMUM_STEP;
  15362. }
  15363. if (*step > params->lbfgs.max_step) {
  15364. return GGML_LINESEARCH_MAXIMUM_STEP;
  15365. }
  15366. if (params->lbfgs.max_linesearch <= count) {
  15367. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15368. }
  15369. (*step) *= width;
  15370. }
  15371. return GGML_LINESEARCH_FAIL;
  15372. }
  15373. static enum ggml_opt_result ggml_opt_lbfgs(
  15374. struct ggml_context * ctx,
  15375. struct ggml_opt_context * opt,
  15376. struct ggml_opt_params params,
  15377. struct ggml_tensor * f,
  15378. struct ggml_cgraph * gf,
  15379. struct ggml_cgraph * gb,
  15380. ggml_opt_callback callback,
  15381. void * callback_data) {
  15382. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15383. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15384. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15385. return GGML_OPT_INVALID_WOLFE;
  15386. }
  15387. }
  15388. const int m = params.lbfgs.m;
  15389. // these will store the parameters we want to optimize
  15390. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15391. int np = 0;
  15392. int nx = 0;
  15393. for (int i = 0; i < gf->n_nodes; ++i) {
  15394. if (gf->nodes[i]->is_param) {
  15395. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15396. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15397. ps[np++] = gf->nodes[i];
  15398. nx += ggml_nelements(gf->nodes[i]);
  15399. }
  15400. }
  15401. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15402. int iter = opt->iter;
  15403. ggml_opt_init(ctx, opt, params, nx);
  15404. opt->iter = iter;
  15405. }
  15406. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15407. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15408. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15409. float * x = opt->lbfgs.x->data; // current parameters
  15410. float * xp = opt->lbfgs.xp->data; // previous parameters
  15411. float * g = opt->lbfgs.g->data; // current gradient
  15412. float * gp = opt->lbfgs.gp->data; // previous gradient
  15413. float * d = opt->lbfgs.d->data; // search direction
  15414. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15415. float fx = 0.0f; // cost function value
  15416. float xnorm = 0.0f; // ||x||
  15417. float gnorm = 0.0f; // ||g||
  15418. // initialize x from the graph nodes
  15419. ggml_opt_get_params(np, ps, x);
  15420. // the L-BFGS memory
  15421. float * lm_alpha = opt->lbfgs.lmal->data;
  15422. float * lm_ys = opt->lbfgs.lmys->data;
  15423. float * lm_s = opt->lbfgs.lms->data;
  15424. float * lm_y = opt->lbfgs.lmy->data;
  15425. if (callback) {
  15426. // LBFG-S does not support learning rate -> ignore learning schedule
  15427. float sched = 0;
  15428. callback(callback_data, &sched);
  15429. }
  15430. // evaluate the function value and its gradient
  15431. {
  15432. ggml_opt_set_params(np, ps, x);
  15433. ggml_graph_reset (gf);
  15434. ggml_set_f32 (f->grad, 1.0f);
  15435. ggml_graph_compute(gb, &cplan);
  15436. ggml_opt_get_grad(np, ps, g);
  15437. fx = ggml_get_f32_1d(f, 0);
  15438. opt->loss_before = fx;
  15439. opt->loss_after = fx;
  15440. }
  15441. // search direction = -gradient
  15442. ggml_vec_neg_f32(nx, d, g);
  15443. // ||x||, ||g||
  15444. ggml_vec_norm_f32(nx, &xnorm, x);
  15445. ggml_vec_norm_f32(nx, &gnorm, g);
  15446. if (xnorm < 1.0f) {
  15447. xnorm = 1.0f;
  15448. }
  15449. // already optimized
  15450. if (gnorm/xnorm <= params.lbfgs.eps) {
  15451. return GGML_OPT_OK;
  15452. }
  15453. if (opt->just_initialized) {
  15454. if (pf) {
  15455. pf[0] = fx;
  15456. }
  15457. opt->lbfgs.fx_best = fx;
  15458. // initial step
  15459. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15460. opt->lbfgs.j = 0;
  15461. opt->lbfgs.k = 1;
  15462. opt->lbfgs.end = 0;
  15463. opt->lbfgs.n_no_improvement = 0;
  15464. opt->just_initialized = false;
  15465. }
  15466. float * fx_best = &opt->lbfgs.fx_best;
  15467. float * step = &opt->lbfgs.step;
  15468. int * j = &opt->lbfgs.j;
  15469. int * k = &opt->lbfgs.k;
  15470. int * end = &opt->lbfgs.end;
  15471. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15472. int ls = 0;
  15473. int bound = 0;
  15474. float ys = 0.0f;
  15475. float yy = 0.0f;
  15476. float beta = 0.0f;
  15477. int it = 0;
  15478. while (true) {
  15479. // store the current position and gradient vectors
  15480. ggml_vec_cpy_f32(nx, xp, x);
  15481. ggml_vec_cpy_f32(nx, gp, g);
  15482. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
  15483. if (ls < 0) {
  15484. // linesearch failed - go back to the previous point and return
  15485. ggml_vec_cpy_f32(nx, x, xp);
  15486. ggml_vec_cpy_f32(nx, g, gp);
  15487. return ls;
  15488. }
  15489. opt->loss_after = fx;
  15490. ggml_vec_norm_f32(nx, &xnorm, x);
  15491. ggml_vec_norm_f32(nx, &gnorm, g);
  15492. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15493. if (xnorm < 1.0f) {
  15494. xnorm = 1.0f;
  15495. }
  15496. if (gnorm/xnorm <= params.lbfgs.eps) {
  15497. // converged
  15498. return GGML_OPT_OK;
  15499. }
  15500. // delta-based convergence test
  15501. if (pf != NULL) {
  15502. // need at least params.past iterations to start checking for convergence
  15503. if (params.past <= k[0]) {
  15504. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15505. if (fabsf(rate) < params.delta) {
  15506. return GGML_OPT_OK;
  15507. }
  15508. }
  15509. pf[k[0]%params.past] = fx;
  15510. }
  15511. // check for improvement
  15512. if (params.max_no_improvement > 0) {
  15513. if (fx < fx_best[0]) {
  15514. fx_best[0] = fx;
  15515. n_no_improvement[0] = 0;
  15516. } else {
  15517. n_no_improvement[0]++;
  15518. if (n_no_improvement[0] >= params.max_no_improvement) {
  15519. return GGML_OPT_OK;
  15520. }
  15521. }
  15522. }
  15523. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15524. // reached the maximum number of iterations
  15525. return GGML_OPT_DID_NOT_CONVERGE;
  15526. }
  15527. // update vectors s and y:
  15528. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15529. // y_{k+1} = g_{k+1} - g_{k}.
  15530. //
  15531. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15532. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15533. // compute scalars ys and yy:
  15534. // ys = y^t \cdot s -> 1 / \rho.
  15535. // yy = y^t \cdot y.
  15536. //
  15537. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15538. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15539. lm_ys[end[0]] = ys;
  15540. // find new search direction
  15541. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15542. bound = (m <= k[0]) ? m : k[0];
  15543. k[0]++;
  15544. it++;
  15545. end[0] = (end[0] + 1)%m;
  15546. // initialize search direction with -g
  15547. ggml_vec_neg_f32(nx, d, g);
  15548. j[0] = end[0];
  15549. for (int i = 0; i < bound; ++i) {
  15550. j[0] = (j[0] + m - 1) % m;
  15551. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15552. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15553. lm_alpha[j[0]] /= lm_ys[j[0]];
  15554. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15555. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15556. }
  15557. ggml_vec_scale_f32(nx, d, ys/yy);
  15558. for (int i = 0; i < bound; ++i) {
  15559. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15560. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15561. beta /= lm_ys[j[0]];
  15562. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15563. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15564. j[0] = (j[0] + 1)%m;
  15565. }
  15566. step[0] = 1.0;
  15567. }
  15568. return GGML_OPT_DID_NOT_CONVERGE;
  15569. }
  15570. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15571. struct ggml_opt_params result;
  15572. switch (type) {
  15573. case GGML_OPT_ADAM:
  15574. {
  15575. result = (struct ggml_opt_params) {
  15576. .type = GGML_OPT_ADAM,
  15577. .n_threads = 1,
  15578. .past = 0,
  15579. .delta = 1e-5f,
  15580. .max_no_improvement = 100,
  15581. .print_forward_graph = true,
  15582. .print_backward_graph = true,
  15583. .adam = {
  15584. .n_iter = 10000,
  15585. .sched = 1.000f,
  15586. .decay = 0.0f,
  15587. .decay_min_ndim = 2,
  15588. .alpha = 0.001f,
  15589. .beta1 = 0.9f,
  15590. .beta2 = 0.999f,
  15591. .eps = 1e-8f,
  15592. .eps_f = 1e-5f,
  15593. .eps_g = 1e-3f,
  15594. .gclip = 0.0f,
  15595. },
  15596. };
  15597. } break;
  15598. case GGML_OPT_LBFGS:
  15599. {
  15600. result = (struct ggml_opt_params) {
  15601. .type = GGML_OPT_LBFGS,
  15602. .n_threads = 1,
  15603. .past = 0,
  15604. .delta = 1e-5f,
  15605. .max_no_improvement = 0,
  15606. .print_forward_graph = true,
  15607. .print_backward_graph = true,
  15608. .lbfgs = {
  15609. .m = 6,
  15610. .n_iter = 100,
  15611. .max_linesearch = 20,
  15612. .eps = 1e-5f,
  15613. .ftol = 1e-4f,
  15614. .wolfe = 0.9f,
  15615. .min_step = 1e-20f,
  15616. .max_step = 1e+20f,
  15617. .linesearch = GGML_LINESEARCH_DEFAULT,
  15618. },
  15619. };
  15620. } break;
  15621. }
  15622. return result;
  15623. }
  15624. GGML_API void ggml_opt_init(
  15625. struct ggml_context * ctx,
  15626. struct ggml_opt_context * opt,
  15627. struct ggml_opt_params params,
  15628. int64_t nx) {
  15629. opt->ctx = ctx;
  15630. opt->params = params;
  15631. opt->iter = 0;
  15632. opt->nx = nx;
  15633. opt->just_initialized = true;
  15634. switch (opt->params.type) {
  15635. case GGML_OPT_ADAM:
  15636. {
  15637. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15638. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15639. opt->adam.pf = params.past > 0
  15640. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15641. : NULL;
  15642. ggml_set_zero(opt->adam.m);
  15643. ggml_set_zero(opt->adam.v);
  15644. if (opt->adam.pf) {
  15645. ggml_set_zero(opt->adam.pf);
  15646. }
  15647. } break;
  15648. case GGML_OPT_LBFGS:
  15649. {
  15650. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15651. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15652. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15653. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15654. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15655. opt->lbfgs.pf = params.past > 0
  15656. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15657. : NULL;
  15658. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15659. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15660. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15661. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15662. ggml_set_zero(opt->lbfgs.x);
  15663. ggml_set_zero(opt->lbfgs.xp);
  15664. ggml_set_zero(opt->lbfgs.g);
  15665. ggml_set_zero(opt->lbfgs.gp);
  15666. ggml_set_zero(opt->lbfgs.d);
  15667. if (opt->lbfgs.pf) {
  15668. ggml_set_zero(opt->lbfgs.pf);
  15669. }
  15670. ggml_set_zero(opt->lbfgs.lmal);
  15671. ggml_set_zero(opt->lbfgs.lmys);
  15672. ggml_set_zero(opt->lbfgs.lms);
  15673. ggml_set_zero(opt->lbfgs.lmy);
  15674. } break;
  15675. }
  15676. }
  15677. enum ggml_opt_result ggml_opt(
  15678. struct ggml_context * ctx,
  15679. struct ggml_opt_params params,
  15680. struct ggml_tensor * f) {
  15681. bool free_ctx = false;
  15682. if (ctx == NULL) {
  15683. struct ggml_init_params params_ctx = {
  15684. .mem_size = 16*1024*1024,
  15685. .mem_buffer = NULL,
  15686. .no_alloc = false,
  15687. };
  15688. ctx = ggml_init(params_ctx);
  15689. if (ctx == NULL) {
  15690. return GGML_OPT_NO_CONTEXT;
  15691. }
  15692. free_ctx = true;
  15693. }
  15694. enum ggml_opt_result result = GGML_OPT_OK;
  15695. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15696. ggml_opt_init(ctx, opt, params, 0);
  15697. result = ggml_opt_resume(ctx, opt, f);
  15698. if (free_ctx) {
  15699. ggml_free(ctx);
  15700. }
  15701. return result;
  15702. }
  15703. enum ggml_opt_result ggml_opt_resume(
  15704. struct ggml_context * ctx,
  15705. struct ggml_opt_context * opt,
  15706. struct ggml_tensor * f) {
  15707. // build forward + backward compute graphs
  15708. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15709. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15710. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15711. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15712. *gf = ggml_build_forward (f);
  15713. *gb = ggml_build_backward(ctx, gf, true);
  15714. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15715. }
  15716. enum ggml_opt_result ggml_opt_resume_g(
  15717. struct ggml_context * ctx,
  15718. struct ggml_opt_context * opt,
  15719. struct ggml_tensor * f,
  15720. struct ggml_cgraph * gf,
  15721. struct ggml_cgraph * gb,
  15722. ggml_opt_callback callback,
  15723. void * callback_data) {
  15724. // build forward + backward compute graphs
  15725. enum ggml_opt_result result = GGML_OPT_OK;
  15726. switch (opt->params.type) {
  15727. case GGML_OPT_ADAM:
  15728. {
  15729. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15730. } break;
  15731. case GGML_OPT_LBFGS:
  15732. {
  15733. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15734. } break;
  15735. }
  15736. if (opt->params.print_forward_graph) {
  15737. ggml_graph_print (gf);
  15738. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15739. }
  15740. if (opt->params.print_backward_graph) {
  15741. ggml_graph_print (gb);
  15742. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15743. }
  15744. return result;
  15745. }
  15746. ////////////////////////////////////////////////////////////////////////////////
  15747. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15748. assert(k % QK4_0 == 0);
  15749. const int nb = k / QK4_0;
  15750. for (int b = 0; b < n; b += k) {
  15751. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15752. quantize_row_q4_0_reference(src + b, y, k);
  15753. for (int i = 0; i < nb; i++) {
  15754. for (int j = 0; j < QK4_0; j += 2) {
  15755. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15756. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15757. hist[vi0]++;
  15758. hist[vi1]++;
  15759. }
  15760. }
  15761. }
  15762. return (n/QK4_0*sizeof(block_q4_0));
  15763. }
  15764. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15765. assert(k % QK4_1 == 0);
  15766. const int nb = k / QK4_1;
  15767. for (int b = 0; b < n; b += k) {
  15768. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15769. quantize_row_q4_1_reference(src + b, y, k);
  15770. for (int i = 0; i < nb; i++) {
  15771. for (int j = 0; j < QK4_1; j += 2) {
  15772. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15773. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15774. hist[vi0]++;
  15775. hist[vi1]++;
  15776. }
  15777. }
  15778. }
  15779. return (n/QK4_1*sizeof(block_q4_1));
  15780. }
  15781. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15782. assert(k % QK5_0 == 0);
  15783. const int nb = k / QK5_0;
  15784. for (int b = 0; b < n; b += k) {
  15785. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15786. quantize_row_q5_0_reference(src + b, y, k);
  15787. for (int i = 0; i < nb; i++) {
  15788. uint32_t qh;
  15789. memcpy(&qh, &y[i].qh, sizeof(qh));
  15790. for (int j = 0; j < QK5_0; j += 2) {
  15791. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15792. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15793. // cast to 16 bins
  15794. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15795. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15796. hist[vi0]++;
  15797. hist[vi1]++;
  15798. }
  15799. }
  15800. }
  15801. return (n/QK5_0*sizeof(block_q5_0));
  15802. }
  15803. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15804. assert(k % QK5_1 == 0);
  15805. const int nb = k / QK5_1;
  15806. for (int b = 0; b < n; b += k) {
  15807. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15808. quantize_row_q5_1_reference(src + b, y, k);
  15809. for (int i = 0; i < nb; i++) {
  15810. uint32_t qh;
  15811. memcpy(&qh, &y[i].qh, sizeof(qh));
  15812. for (int j = 0; j < QK5_1; j += 2) {
  15813. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15814. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15815. // cast to 16 bins
  15816. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15817. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15818. hist[vi0]++;
  15819. hist[vi1]++;
  15820. }
  15821. }
  15822. }
  15823. return (n/QK5_1*sizeof(block_q5_1));
  15824. }
  15825. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15826. assert(k % QK8_0 == 0);
  15827. const int nb = k / QK8_0;
  15828. for (int b = 0; b < n; b += k) {
  15829. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15830. quantize_row_q8_0_reference(src + b, y, k);
  15831. for (int i = 0; i < nb; i++) {
  15832. for (int j = 0; j < QK8_0; ++j) {
  15833. const int8_t vi = y[i].qs[j];
  15834. hist[vi/16 + 8]++;
  15835. }
  15836. }
  15837. }
  15838. return (n/QK8_0*sizeof(block_q8_0));
  15839. }
  15840. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15841. size_t result = 0;
  15842. switch (type) {
  15843. case GGML_TYPE_Q4_0:
  15844. {
  15845. GGML_ASSERT(start % QK4_0 == 0);
  15846. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15847. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15848. } break;
  15849. case GGML_TYPE_Q4_1:
  15850. {
  15851. GGML_ASSERT(start % QK4_1 == 0);
  15852. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15853. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15854. } break;
  15855. case GGML_TYPE_Q5_0:
  15856. {
  15857. GGML_ASSERT(start % QK5_0 == 0);
  15858. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15859. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15860. } break;
  15861. case GGML_TYPE_Q5_1:
  15862. {
  15863. GGML_ASSERT(start % QK5_1 == 0);
  15864. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15865. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15866. } break;
  15867. case GGML_TYPE_Q8_0:
  15868. {
  15869. GGML_ASSERT(start % QK8_0 == 0);
  15870. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15871. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15872. } break;
  15873. #ifdef GGML_USE_K_QUANTS
  15874. case GGML_TYPE_Q2_K:
  15875. {
  15876. GGML_ASSERT(start % QK_K == 0);
  15877. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15878. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15879. } break;
  15880. case GGML_TYPE_Q3_K:
  15881. {
  15882. GGML_ASSERT(start % QK_K == 0);
  15883. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15884. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15885. } break;
  15886. case GGML_TYPE_Q4_K:
  15887. {
  15888. GGML_ASSERT(start % QK_K == 0);
  15889. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15890. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15891. } break;
  15892. case GGML_TYPE_Q5_K:
  15893. {
  15894. GGML_ASSERT(start % QK_K == 0);
  15895. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15896. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15897. } break;
  15898. case GGML_TYPE_Q6_K:
  15899. {
  15900. GGML_ASSERT(start % QK_K == 0);
  15901. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15902. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15903. } break;
  15904. #endif
  15905. case GGML_TYPE_F16:
  15906. {
  15907. int elemsize = sizeof(ggml_fp16_t);
  15908. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15909. result = n * elemsize;
  15910. } break;
  15911. case GGML_TYPE_F32:
  15912. {
  15913. int elemsize = sizeof(float);
  15914. result = n * elemsize;
  15915. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15916. } break;
  15917. default:
  15918. assert(false);
  15919. }
  15920. return result;
  15921. }
  15922. ////////////////////////////////////////////////////////////////////////////////
  15923. struct gguf_str {
  15924. uint64_t n; // GGUFv2
  15925. char * data;
  15926. };
  15927. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15928. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15929. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15930. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15931. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15932. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15933. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15934. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15935. [GGUF_TYPE_BOOL] = sizeof(bool),
  15936. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15937. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15938. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15939. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15940. [GGUF_TYPE_ARRAY] = 0, // undefined
  15941. };
  15942. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15943. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15944. [GGUF_TYPE_UINT8] = "u8",
  15945. [GGUF_TYPE_INT8] = "i8",
  15946. [GGUF_TYPE_UINT16] = "u16",
  15947. [GGUF_TYPE_INT16] = "i16",
  15948. [GGUF_TYPE_UINT32] = "u32",
  15949. [GGUF_TYPE_INT32] = "i32",
  15950. [GGUF_TYPE_FLOAT32] = "f32",
  15951. [GGUF_TYPE_BOOL] = "bool",
  15952. [GGUF_TYPE_STRING] = "str",
  15953. [GGUF_TYPE_ARRAY] = "arr",
  15954. [GGUF_TYPE_UINT64] = "u64",
  15955. [GGUF_TYPE_INT64] = "i64",
  15956. [GGUF_TYPE_FLOAT64] = "f64",
  15957. };
  15958. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15959. union gguf_value {
  15960. uint8_t uint8;
  15961. int8_t int8;
  15962. uint16_t uint16;
  15963. int16_t int16;
  15964. uint32_t uint32;
  15965. int32_t int32;
  15966. float float32;
  15967. uint64_t uint64;
  15968. int64_t int64;
  15969. double float64;
  15970. bool bool_;
  15971. struct gguf_str str;
  15972. struct {
  15973. enum gguf_type type;
  15974. uint64_t n; // GGUFv2
  15975. void * data;
  15976. } arr;
  15977. };
  15978. struct gguf_kv {
  15979. struct gguf_str key;
  15980. enum gguf_type type;
  15981. union gguf_value value;
  15982. };
  15983. struct gguf_header {
  15984. uint32_t magic;
  15985. uint32_t version;
  15986. uint64_t n_tensors; // GGUFv2
  15987. uint64_t n_kv; // GGUFv2
  15988. };
  15989. struct gguf_tensor_info {
  15990. struct gguf_str name;
  15991. uint32_t n_dims;
  15992. uint64_t ne[GGML_MAX_DIMS];
  15993. enum ggml_type type;
  15994. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15995. // for writing API
  15996. const void * data;
  15997. size_t size;
  15998. };
  15999. struct gguf_context {
  16000. struct gguf_header header;
  16001. struct gguf_kv * kv;
  16002. struct gguf_tensor_info * infos;
  16003. size_t alignment;
  16004. size_t offset; // offset of `data` from beginning of file
  16005. size_t size; // size of `data` in bytes
  16006. //uint8_t * padding;
  16007. void * data;
  16008. };
  16009. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16010. const size_t n = fread(dst, 1, size, file);
  16011. *offset += n;
  16012. return n == size;
  16013. }
  16014. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16015. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16016. p->n = 0;
  16017. p->data = NULL;
  16018. bool ok = true;
  16019. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16020. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16021. return ok;
  16022. }
  16023. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16024. p->n = 0;
  16025. p->data = NULL;
  16026. bool ok = true;
  16027. uint32_t n = 0;
  16028. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16029. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16030. return ok;
  16031. }
  16032. struct gguf_context * gguf_init_empty(void) {
  16033. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16034. ctx->header.magic = GGUF_MAGIC;
  16035. ctx->header.version = GGUF_VERSION;
  16036. ctx->header.n_tensors = 0;
  16037. ctx->header.n_kv = 0;
  16038. ctx->kv = NULL;
  16039. ctx->infos = NULL;
  16040. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16041. ctx->offset = 0;
  16042. ctx->size = 0;
  16043. ctx->data = NULL;
  16044. return ctx;
  16045. }
  16046. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16047. FILE * file = fopen(fname, "rb");
  16048. if (!file) {
  16049. return NULL;
  16050. }
  16051. // offset from start of file
  16052. size_t offset = 0;
  16053. uint32_t magic = 0;
  16054. // check the magic before making allocations
  16055. {
  16056. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16057. if (magic != GGUF_MAGIC) {
  16058. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16059. fclose(file);
  16060. return NULL;
  16061. }
  16062. }
  16063. bool ok = true;
  16064. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16065. // read the header
  16066. {
  16067. ctx->header.magic = magic;
  16068. ctx->kv = NULL;
  16069. ctx->infos = NULL;
  16070. ctx->data = NULL;
  16071. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16072. if (ctx->header.version == 1) {
  16073. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16074. uint32_t n_tensors = 0;
  16075. uint32_t n_kv = 0;
  16076. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16077. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16078. ctx->header.n_tensors = n_tensors;
  16079. ctx->header.n_kv = n_kv;
  16080. } else {
  16081. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16082. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16083. }
  16084. if (!ok) {
  16085. fprintf(stderr, "%s: failed to read header\n", __func__);
  16086. fclose(file);
  16087. gguf_free(ctx);
  16088. return NULL;
  16089. }
  16090. }
  16091. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16092. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16093. if (ctx->header.version == 1) {
  16094. gguf_fread_str = gguf_fread_str_v1;
  16095. }
  16096. // read the kv pairs
  16097. {
  16098. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16099. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16100. struct gguf_kv * kv = &ctx->kv[i];
  16101. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16102. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16103. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16104. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16105. switch (kv->type) {
  16106. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16107. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16108. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16109. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16110. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16111. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16112. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16113. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16114. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16115. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16116. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16117. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16118. case GGUF_TYPE_ARRAY:
  16119. {
  16120. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16121. if (ctx->header.version == 1) {
  16122. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16123. uint32_t n = 0;
  16124. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16125. kv->value.arr.n = n;
  16126. } else {
  16127. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16128. }
  16129. switch (kv->value.arr.type) {
  16130. case GGUF_TYPE_UINT8:
  16131. case GGUF_TYPE_INT8:
  16132. case GGUF_TYPE_UINT16:
  16133. case GGUF_TYPE_INT16:
  16134. case GGUF_TYPE_UINT32:
  16135. case GGUF_TYPE_INT32:
  16136. case GGUF_TYPE_FLOAT32:
  16137. case GGUF_TYPE_UINT64:
  16138. case GGUF_TYPE_INT64:
  16139. case GGUF_TYPE_FLOAT64:
  16140. case GGUF_TYPE_BOOL:
  16141. {
  16142. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16143. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16144. } break;
  16145. case GGUF_TYPE_STRING:
  16146. {
  16147. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16148. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16149. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16150. }
  16151. } break;
  16152. case GGUF_TYPE_ARRAY:
  16153. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16154. };
  16155. } break;
  16156. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16157. };
  16158. if (!ok) {
  16159. break;
  16160. }
  16161. }
  16162. if (!ok) {
  16163. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16164. fclose(file);
  16165. gguf_free(ctx);
  16166. return NULL;
  16167. }
  16168. }
  16169. // read the tensor infos
  16170. {
  16171. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16172. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16173. struct gguf_tensor_info * info = &ctx->infos[i];
  16174. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16175. info->ne[j] = 1;
  16176. }
  16177. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16178. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16179. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16180. if (ctx->header.version == 1) {
  16181. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16182. uint32_t t = 0;
  16183. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16184. info->ne[j] = t;
  16185. } else {
  16186. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16187. }
  16188. }
  16189. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16190. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16191. if (!ok) {
  16192. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16193. fclose(file);
  16194. gguf_free(ctx);
  16195. return NULL;
  16196. }
  16197. }
  16198. }
  16199. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16200. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16201. if (alignment_idx != -1) {
  16202. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16203. }
  16204. // we require the data section to be aligned, so take into account any padding
  16205. {
  16206. const size_t offset_pad = offset % ctx->alignment;
  16207. if (offset_pad != 0) {
  16208. offset += ctx->alignment - offset_pad;
  16209. fseek(file, offset, SEEK_SET);
  16210. }
  16211. }
  16212. // store the current file offset - this is where the data section starts
  16213. ctx->offset = offset;
  16214. // compute the total size of the data section, taking into account the alignment
  16215. {
  16216. ctx->size = 0;
  16217. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16218. struct gguf_tensor_info * info = &ctx->infos[i];
  16219. const int64_t ne =
  16220. (int64_t) info->ne[0] *
  16221. (int64_t) info->ne[1] *
  16222. (int64_t) info->ne[2] *
  16223. (int64_t) info->ne[3];
  16224. if (ne % ggml_blck_size(info->type) != 0) {
  16225. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16226. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16227. fclose(file);
  16228. gguf_free(ctx);
  16229. return NULL;
  16230. }
  16231. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16232. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16233. }
  16234. }
  16235. // load the tensor data only if requested
  16236. if (params.ctx != NULL) {
  16237. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16238. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16239. // the ggml_tensor structs to the appropriate locations in the binary blob
  16240. // compute the exact size needed for the new ggml_context
  16241. const size_t mem_size =
  16242. params.no_alloc ?
  16243. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16244. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16245. struct ggml_init_params pdata = {
  16246. .mem_size = mem_size,
  16247. .mem_buffer = NULL,
  16248. .no_alloc = params.no_alloc,
  16249. };
  16250. *params.ctx = ggml_init(pdata);
  16251. struct ggml_context * ctx_data = *params.ctx;
  16252. struct ggml_tensor * data = NULL;
  16253. if (params.no_alloc == false) {
  16254. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16255. ok = ok && data != NULL;
  16256. // read the binary blob with the tensor data
  16257. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16258. if (!ok) {
  16259. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16260. fclose(file);
  16261. ggml_free(ctx_data);
  16262. gguf_free(ctx);
  16263. return NULL;
  16264. }
  16265. ctx->data = data->data;
  16266. }
  16267. ggml_set_no_alloc(ctx_data, true);
  16268. // create the tensors
  16269. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16270. const int64_t ne[GGML_MAX_DIMS] = {
  16271. ctx->infos[i].ne[0],
  16272. ctx->infos[i].ne[1],
  16273. ctx->infos[i].ne[2],
  16274. ctx->infos[i].ne[3],
  16275. };
  16276. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16277. ok = ok && cur != NULL;
  16278. ggml_set_name(cur, ctx->infos[i].name.data);
  16279. if (!ok) {
  16280. break;
  16281. }
  16282. // point the data member to the appropriate location in the binary blob using the tensor infos
  16283. if (params.no_alloc == false) {
  16284. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16285. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16286. }
  16287. }
  16288. if (!ok) {
  16289. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16290. fclose(file);
  16291. ggml_free(ctx_data);
  16292. gguf_free(ctx);
  16293. return NULL;
  16294. }
  16295. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16296. }
  16297. fclose(file);
  16298. return ctx;
  16299. }
  16300. void gguf_free(struct gguf_context * ctx) {
  16301. if (ctx == NULL) {
  16302. return;
  16303. }
  16304. if (ctx->kv) {
  16305. // free string memory - not great..
  16306. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16307. struct gguf_kv * kv = &ctx->kv[i];
  16308. if (kv->key.data) {
  16309. free(kv->key.data);
  16310. }
  16311. if (kv->type == GGUF_TYPE_STRING) {
  16312. if (kv->value.str.data) {
  16313. free(kv->value.str.data);
  16314. }
  16315. }
  16316. if (kv->type == GGUF_TYPE_ARRAY) {
  16317. if (kv->value.arr.data) {
  16318. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16319. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16320. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16321. if (str->data) {
  16322. free(str->data);
  16323. }
  16324. }
  16325. }
  16326. free(kv->value.arr.data);
  16327. }
  16328. }
  16329. }
  16330. free(ctx->kv);
  16331. }
  16332. if (ctx->infos) {
  16333. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16334. struct gguf_tensor_info * info = &ctx->infos[i];
  16335. if (info->name.data) {
  16336. free(info->name.data);
  16337. }
  16338. }
  16339. free(ctx->infos);
  16340. }
  16341. GGML_ALIGNED_FREE(ctx);
  16342. }
  16343. const char * gguf_type_name(enum gguf_type type) {
  16344. return GGUF_TYPE_NAME[type];
  16345. }
  16346. int gguf_get_version(struct gguf_context * ctx) {
  16347. return ctx->header.version;
  16348. }
  16349. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16350. return ctx->alignment;
  16351. }
  16352. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16353. return ctx->offset;
  16354. }
  16355. void * gguf_get_data(struct gguf_context * ctx) {
  16356. return ctx->data;
  16357. }
  16358. int gguf_get_n_kv(struct gguf_context * ctx) {
  16359. return ctx->header.n_kv;
  16360. }
  16361. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16362. // return -1 if key not found
  16363. int keyfound = -1;
  16364. const int n_kv = gguf_get_n_kv(ctx);
  16365. for (int i = 0; i < n_kv; ++i) {
  16366. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16367. keyfound = i;
  16368. break;
  16369. }
  16370. }
  16371. return keyfound;
  16372. }
  16373. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16374. return ctx->kv[i].key.data;
  16375. }
  16376. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16377. return ctx->kv[i].type;
  16378. }
  16379. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16380. return ctx->kv[i].value.arr.type;
  16381. }
  16382. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16383. return ctx->kv[i].value.arr.data;
  16384. }
  16385. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16386. struct gguf_kv * kv = &ctx->kv[key_id];
  16387. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16388. return str->data;
  16389. }
  16390. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16391. return ctx->kv[i].value.arr.n;
  16392. }
  16393. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16394. return ctx->kv[i].value.uint8;
  16395. }
  16396. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16397. return ctx->kv[i].value.int8;
  16398. }
  16399. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16400. return ctx->kv[i].value.uint16;
  16401. }
  16402. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16403. return ctx->kv[i].value.int16;
  16404. }
  16405. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16406. return ctx->kv[i].value.uint32;
  16407. }
  16408. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16409. return ctx->kv[i].value.int32;
  16410. }
  16411. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16412. return ctx->kv[i].value.float32;
  16413. }
  16414. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16415. return ctx->kv[i].value.uint64;
  16416. }
  16417. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16418. return ctx->kv[i].value.int64;
  16419. }
  16420. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16421. return ctx->kv[i].value.float64;
  16422. }
  16423. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16424. return ctx->kv[i].value.bool_;
  16425. }
  16426. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16427. return ctx->kv[i].value.str.data;
  16428. }
  16429. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16430. return ctx->header.n_tensors;
  16431. }
  16432. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16433. // return -1 if tensor not found
  16434. int tensorfound = -1;
  16435. const int n_tensors = gguf_get_n_tensors(ctx);
  16436. for (int i = 0; i < n_tensors; ++i) {
  16437. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16438. tensorfound = i;
  16439. break;
  16440. }
  16441. }
  16442. return tensorfound;
  16443. }
  16444. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16445. return ctx->infos[i].offset;
  16446. }
  16447. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16448. return ctx->infos[i].name.data;
  16449. }
  16450. // returns the index
  16451. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16452. const int idx = gguf_find_key(ctx, key);
  16453. if (idx >= 0) {
  16454. return idx;
  16455. }
  16456. const int n_kv = gguf_get_n_kv(ctx);
  16457. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16458. ctx->kv[n_kv].key.n = strlen(key);
  16459. ctx->kv[n_kv].key.data = strdup(key);
  16460. ctx->header.n_kv++;
  16461. return n_kv;
  16462. }
  16463. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16464. const int idx = gguf_get_or_add_key(ctx, key);
  16465. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16466. ctx->kv[idx].value.uint8 = val;
  16467. }
  16468. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16469. const int idx = gguf_get_or_add_key(ctx, key);
  16470. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16471. ctx->kv[idx].value.int8 = val;
  16472. }
  16473. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16474. const int idx = gguf_get_or_add_key(ctx, key);
  16475. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16476. ctx->kv[idx].value.uint16 = val;
  16477. }
  16478. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16479. const int idx = gguf_get_or_add_key(ctx, key);
  16480. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16481. ctx->kv[idx].value.int16 = val;
  16482. }
  16483. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16484. const int idx = gguf_get_or_add_key(ctx, key);
  16485. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16486. ctx->kv[idx].value.uint32 = val;
  16487. }
  16488. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16489. const int idx = gguf_get_or_add_key(ctx, key);
  16490. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16491. ctx->kv[idx].value.int32 = val;
  16492. }
  16493. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16494. const int idx = gguf_get_or_add_key(ctx, key);
  16495. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16496. ctx->kv[idx].value.float32 = val;
  16497. }
  16498. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16499. const int idx = gguf_get_or_add_key(ctx, key);
  16500. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16501. ctx->kv[idx].value.uint64 = val;
  16502. }
  16503. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16504. const int idx = gguf_get_or_add_key(ctx, key);
  16505. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16506. ctx->kv[idx].value.int64 = val;
  16507. }
  16508. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16509. const int idx = gguf_get_or_add_key(ctx, key);
  16510. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16511. ctx->kv[idx].value.float64 = val;
  16512. }
  16513. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16514. const int idx = gguf_get_or_add_key(ctx, key);
  16515. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16516. ctx->kv[idx].value.bool_ = val;
  16517. }
  16518. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16519. const int idx = gguf_get_or_add_key(ctx, key);
  16520. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16521. ctx->kv[idx].value.str.n = strlen(val);
  16522. ctx->kv[idx].value.str.data = strdup(val);
  16523. }
  16524. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16525. const int idx = gguf_get_or_add_key(ctx, key);
  16526. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16527. ctx->kv[idx].value.arr.type = type;
  16528. ctx->kv[idx].value.arr.n = n;
  16529. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16530. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16531. }
  16532. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16533. const int idx = gguf_get_or_add_key(ctx, key);
  16534. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16535. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16536. ctx->kv[idx].value.arr.n = n;
  16537. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16538. for (int i = 0; i < n; i++) {
  16539. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16540. str->n = strlen(data[i]);
  16541. str->data = strdup(data[i]);
  16542. }
  16543. }
  16544. // set or add KV pairs from another context
  16545. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16546. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16547. switch (src->kv[i].type) {
  16548. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16549. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16550. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16551. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16552. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16553. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16554. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16555. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16556. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16557. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16558. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16559. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16560. case GGUF_TYPE_ARRAY:
  16561. {
  16562. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16563. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16564. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16565. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16566. }
  16567. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16568. free(data);
  16569. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16570. GGML_ASSERT(false && "nested arrays not supported");
  16571. } else {
  16572. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16573. }
  16574. } break;
  16575. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16576. }
  16577. }
  16578. }
  16579. void gguf_add_tensor(
  16580. struct gguf_context * ctx,
  16581. const struct ggml_tensor * tensor) {
  16582. const int idx = ctx->header.n_tensors;
  16583. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16584. ctx->infos[idx].name.n = strlen(tensor->name);
  16585. ctx->infos[idx].name.data = strdup(tensor->name);
  16586. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16587. ctx->infos[idx].ne[i] = 1;
  16588. }
  16589. ctx->infos[idx].n_dims = tensor->n_dims;
  16590. for (int i = 0; i < tensor->n_dims; i++) {
  16591. ctx->infos[idx].ne[i] = tensor->ne[i];
  16592. }
  16593. ctx->infos[idx].type = tensor->type;
  16594. ctx->infos[idx].offset = 0;
  16595. ctx->infos[idx].data = tensor->data;
  16596. ctx->infos[idx].size = ggml_nbytes(tensor);
  16597. if (ctx->header.n_tensors > 0) {
  16598. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16599. }
  16600. ctx->header.n_tensors++;
  16601. }
  16602. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16603. const int idx = gguf_find_tensor(ctx, name);
  16604. if (idx < 0) {
  16605. GGML_ASSERT(false && "tensor not found");
  16606. }
  16607. ctx->infos[idx].type = type;
  16608. }
  16609. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16610. const int idx = gguf_find_tensor(ctx, name);
  16611. if (idx < 0) {
  16612. GGML_ASSERT(false && "tensor not found");
  16613. }
  16614. ctx->infos[idx].data = data;
  16615. ctx->infos[idx].size = size;
  16616. // update offsets
  16617. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16618. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16619. }
  16620. }
  16621. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16622. // fwrite(&val->n, sizeof(val->n), 1, file);
  16623. // fwrite(val->data, sizeof(char), val->n, file);
  16624. //}
  16625. //
  16626. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16627. // fwrite(val, sizeof(char), size, file);
  16628. //}
  16629. struct gguf_buf {
  16630. void * data;
  16631. size_t size;
  16632. size_t offset;
  16633. };
  16634. static struct gguf_buf gguf_buf_init(size_t size) {
  16635. struct gguf_buf buf = {
  16636. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16637. /*buf.size =*/ size,
  16638. /*buf.offset =*/ 0,
  16639. };
  16640. return buf;
  16641. }
  16642. static void gguf_buf_free(struct gguf_buf buf) {
  16643. if (buf.data) {
  16644. free(buf.data);
  16645. }
  16646. }
  16647. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16648. if (buf->offset + size > buf->size) {
  16649. buf->size = 1.5*(buf->offset + size);
  16650. if (buf->data) {
  16651. buf->data = realloc(buf->data, buf->size);
  16652. }
  16653. }
  16654. }
  16655. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16656. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16657. if (buf->data) {
  16658. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16659. }
  16660. buf->offset += sizeof(val->n);
  16661. if (buf->data) {
  16662. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16663. }
  16664. buf->offset += val->n;
  16665. }
  16666. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16667. gguf_buf_grow(buf, el_size);
  16668. if (buf->data) {
  16669. memcpy((char *) buf->data + buf->offset, val, el_size);
  16670. }
  16671. buf->offset += el_size;
  16672. }
  16673. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16674. // write header
  16675. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16676. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16677. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16678. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16679. // write key-value pairs
  16680. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16681. struct gguf_kv * kv = &ctx->kv[i];
  16682. gguf_bwrite_str(buf, &kv->key);
  16683. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16684. switch (kv->type) {
  16685. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16686. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16687. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16688. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16689. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16690. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16691. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16692. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16693. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16694. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16695. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16696. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16697. case GGUF_TYPE_ARRAY:
  16698. {
  16699. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16700. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16701. switch (kv->value.arr.type) {
  16702. case GGUF_TYPE_UINT8:
  16703. case GGUF_TYPE_INT8:
  16704. case GGUF_TYPE_UINT16:
  16705. case GGUF_TYPE_INT16:
  16706. case GGUF_TYPE_UINT32:
  16707. case GGUF_TYPE_INT32:
  16708. case GGUF_TYPE_FLOAT32:
  16709. case GGUF_TYPE_UINT64:
  16710. case GGUF_TYPE_INT64:
  16711. case GGUF_TYPE_FLOAT64:
  16712. case GGUF_TYPE_BOOL:
  16713. {
  16714. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16715. } break;
  16716. case GGUF_TYPE_STRING:
  16717. {
  16718. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16719. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16720. }
  16721. } break;
  16722. case GGUF_TYPE_ARRAY:
  16723. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16724. };
  16725. } break;
  16726. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16727. };
  16728. }
  16729. // write tensor infos
  16730. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16731. struct gguf_tensor_info * info = &ctx->infos[i];
  16732. gguf_bwrite_str(buf, &info->name);
  16733. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16734. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16735. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16736. }
  16737. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16738. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16739. }
  16740. // we require the data section to be aligned, so take into account any padding
  16741. {
  16742. const size_t offset = buf->offset;
  16743. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16744. if (offset_pad != offset) {
  16745. uint8_t pad = 0;
  16746. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16747. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16748. }
  16749. }
  16750. }
  16751. if (only_meta) {
  16752. return;
  16753. }
  16754. size_t offset = 0;
  16755. // write tensor data
  16756. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16757. struct gguf_tensor_info * info = &ctx->infos[i];
  16758. const size_t size = info->size;
  16759. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16760. gguf_bwrite_el(buf, info->data, size);
  16761. if (size_pad != size) {
  16762. uint8_t pad = 0;
  16763. for (size_t j = 0; j < size_pad - size; ++j) {
  16764. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16765. }
  16766. }
  16767. GGML_ASSERT(offset == info->offset);
  16768. offset += size_pad;
  16769. }
  16770. }
  16771. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16772. FILE * file = fopen(fname, "wb");
  16773. if (!file) {
  16774. GGML_ASSERT(false && "failed to open file for writing");
  16775. }
  16776. struct gguf_buf buf = gguf_buf_init(16*1024);
  16777. gguf_write_to_buf(ctx, &buf, only_meta);
  16778. fwrite(buf.data, 1, buf.offset, file);
  16779. gguf_buf_free(buf);
  16780. fclose(file);
  16781. }
  16782. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16783. // no allocs - only compute size
  16784. struct gguf_buf buf = gguf_buf_init(0);
  16785. gguf_write_to_buf(ctx, &buf, true);
  16786. return buf.offset;
  16787. }
  16788. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16789. struct gguf_buf buf = gguf_buf_init(16*1024);
  16790. gguf_write_to_buf(ctx, &buf, true);
  16791. memcpy(data, buf.data, buf.offset);
  16792. gguf_buf_free(buf);
  16793. }
  16794. ////////////////////////////////////////////////////////////////////////////////
  16795. int ggml_cpu_has_avx(void) {
  16796. #if defined(__AVX__)
  16797. return 1;
  16798. #else
  16799. return 0;
  16800. #endif
  16801. }
  16802. int ggml_cpu_has_avx2(void) {
  16803. #if defined(__AVX2__)
  16804. return 1;
  16805. #else
  16806. return 0;
  16807. #endif
  16808. }
  16809. int ggml_cpu_has_avx512(void) {
  16810. #if defined(__AVX512F__)
  16811. return 1;
  16812. #else
  16813. return 0;
  16814. #endif
  16815. }
  16816. int ggml_cpu_has_avx512_vbmi(void) {
  16817. #if defined(__AVX512VBMI__)
  16818. return 1;
  16819. #else
  16820. return 0;
  16821. #endif
  16822. }
  16823. int ggml_cpu_has_avx512_vnni(void) {
  16824. #if defined(__AVX512VNNI__)
  16825. return 1;
  16826. #else
  16827. return 0;
  16828. #endif
  16829. }
  16830. int ggml_cpu_has_fma(void) {
  16831. #if defined(__FMA__)
  16832. return 1;
  16833. #else
  16834. return 0;
  16835. #endif
  16836. }
  16837. int ggml_cpu_has_neon(void) {
  16838. #if defined(__ARM_NEON)
  16839. return 1;
  16840. #else
  16841. return 0;
  16842. #endif
  16843. }
  16844. int ggml_cpu_has_arm_fma(void) {
  16845. #if defined(__ARM_FEATURE_FMA)
  16846. return 1;
  16847. #else
  16848. return 0;
  16849. #endif
  16850. }
  16851. int ggml_cpu_has_f16c(void) {
  16852. #if defined(__F16C__)
  16853. return 1;
  16854. #else
  16855. return 0;
  16856. #endif
  16857. }
  16858. int ggml_cpu_has_fp16_va(void) {
  16859. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16860. return 1;
  16861. #else
  16862. return 0;
  16863. #endif
  16864. }
  16865. int ggml_cpu_has_wasm_simd(void) {
  16866. #if defined(__wasm_simd128__)
  16867. return 1;
  16868. #else
  16869. return 0;
  16870. #endif
  16871. }
  16872. int ggml_cpu_has_blas(void) {
  16873. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16874. return 1;
  16875. #else
  16876. return 0;
  16877. #endif
  16878. }
  16879. int ggml_cpu_has_cublas(void) {
  16880. #if defined(GGML_USE_CUBLAS)
  16881. return 1;
  16882. #else
  16883. return 0;
  16884. #endif
  16885. }
  16886. int ggml_cpu_has_clblast(void) {
  16887. #if defined(GGML_USE_CLBLAST)
  16888. return 1;
  16889. #else
  16890. return 0;
  16891. #endif
  16892. }
  16893. int ggml_cpu_has_gpublas(void) {
  16894. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16895. }
  16896. int ggml_cpu_has_sse3(void) {
  16897. #if defined(__SSE3__)
  16898. return 1;
  16899. #else
  16900. return 0;
  16901. #endif
  16902. }
  16903. int ggml_cpu_has_ssse3(void) {
  16904. #if defined(__SSSE3__)
  16905. return 1;
  16906. #else
  16907. return 0;
  16908. #endif
  16909. }
  16910. int ggml_cpu_has_vsx(void) {
  16911. #if defined(__POWER9_VECTOR__)
  16912. return 1;
  16913. #else
  16914. return 0;
  16915. #endif
  16916. }
  16917. ////////////////////////////////////////////////////////////////////////////////