ggml.c 654 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_IQ2_XXS] = {
  513. .type_name = "iq2_xxs",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_iq2_xxs),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  518. .from_float = NULL,
  519. .from_float_reference = NULL,
  520. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_IQ2_XS] = {
  524. .type_name = "iq2_xs",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_iq2_xs),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  532. .vec_dot_type = GGML_TYPE_Q8_K,
  533. },
  534. [GGML_TYPE_Q8_K] = {
  535. .type_name = "q8_K",
  536. .blck_size = QK_K,
  537. .type_size = sizeof(block_q8_K),
  538. .is_quantized = true,
  539. .from_float = quantize_row_q8_K,
  540. }
  541. };
  542. // For internal test use
  543. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  544. GGML_ASSERT(type < GGML_TYPE_COUNT);
  545. return type_traits[type];
  546. }
  547. //
  548. // simd mappings
  549. //
  550. #if defined(__ARM_NEON)
  551. #if !defined(__aarch64__)
  552. // 64-bit compatibility
  553. inline static float vaddvq_f32(float32x4_t v) {
  554. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  555. }
  556. #endif
  557. #endif
  558. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  559. // we then implement the fundamental computation operations below using only these macros
  560. // adding support for new architectures requires to define the corresponding SIMD macros
  561. //
  562. // GGML_F32_STEP / GGML_F16_STEP
  563. // number of elements to process in a single step
  564. //
  565. // GGML_F32_EPR / GGML_F16_EPR
  566. // number of elements to fit in a single register
  567. //
  568. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  569. #define GGML_SIMD
  570. // F32 NEON
  571. #define GGML_F32_STEP 16
  572. #define GGML_F32_EPR 4
  573. #define GGML_F32x4 float32x4_t
  574. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  575. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  576. #define GGML_F32x4_LOAD vld1q_f32
  577. #define GGML_F32x4_STORE vst1q_f32
  578. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  579. #define GGML_F32x4_ADD vaddq_f32
  580. #define GGML_F32x4_MUL vmulq_f32
  581. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  582. #define GGML_F32x4_REDUCE(res, x) \
  583. { \
  584. int offset = GGML_F32_ARR >> 1; \
  585. for (int i = 0; i < offset; ++i) { \
  586. x[i] = vaddq_f32(x[i], x[offset+i]); \
  587. } \
  588. offset >>= 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  597. }
  598. #define GGML_F32_VEC GGML_F32x4
  599. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  600. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  601. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  602. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  603. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  604. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  605. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  606. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  607. // F16 NEON
  608. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  609. #define GGML_F16_STEP 32
  610. #define GGML_F16_EPR 8
  611. #define GGML_F16x8 float16x8_t
  612. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  613. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  614. #define GGML_F16x8_LOAD vld1q_f16
  615. #define GGML_F16x8_STORE vst1q_f16
  616. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  617. #define GGML_F16x8_ADD vaddq_f16
  618. #define GGML_F16x8_MUL vmulq_f16
  619. #define GGML_F16x8_REDUCE(res, x) \
  620. do { \
  621. int offset = GGML_F16_ARR >> 1; \
  622. for (int i = 0; i < offset; ++i) { \
  623. x[i] = vaddq_f16(x[i], x[offset+i]); \
  624. } \
  625. offset >>= 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  634. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  635. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  636. } while (0)
  637. #define GGML_F16_VEC GGML_F16x8
  638. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  639. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  640. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  641. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  642. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  643. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  644. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  645. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  646. #else
  647. // if FP16 vector arithmetic is not supported, we use FP32 instead
  648. // and take advantage of the vcvt_ functions to convert to/from FP16
  649. #define GGML_F16_STEP 16
  650. #define GGML_F16_EPR 4
  651. #define GGML_F32Cx4 float32x4_t
  652. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  653. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  654. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  655. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  656. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  657. #define GGML_F32Cx4_ADD vaddq_f32
  658. #define GGML_F32Cx4_MUL vmulq_f32
  659. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  660. #define GGML_F16_VEC GGML_F32Cx4
  661. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  662. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  663. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  664. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  665. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  666. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  667. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  668. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  669. #endif
  670. #elif defined(__AVX__)
  671. #define GGML_SIMD
  672. // F32 AVX
  673. #define GGML_F32_STEP 32
  674. #define GGML_F32_EPR 8
  675. #define GGML_F32x8 __m256
  676. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  677. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  678. #define GGML_F32x8_LOAD _mm256_loadu_ps
  679. #define GGML_F32x8_STORE _mm256_storeu_ps
  680. #if defined(__FMA__)
  681. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  682. #else
  683. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  684. #endif
  685. #define GGML_F32x8_ADD _mm256_add_ps
  686. #define GGML_F32x8_MUL _mm256_mul_ps
  687. #define GGML_F32x8_REDUCE(res, x) \
  688. do { \
  689. int offset = GGML_F32_ARR >> 1; \
  690. for (int i = 0; i < offset; ++i) { \
  691. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  692. } \
  693. offset >>= 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  702. _mm256_extractf128_ps(x[0], 1)); \
  703. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  704. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  705. } while (0)
  706. // TODO: is this optimal ?
  707. #define GGML_F32_VEC GGML_F32x8
  708. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  709. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  710. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  711. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  712. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  713. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  714. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  715. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  716. // F16 AVX
  717. #define GGML_F16_STEP 32
  718. #define GGML_F16_EPR 8
  719. // F16 arithmetic is not supported by AVX, so we use F32 instead
  720. #define GGML_F32Cx8 __m256
  721. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  722. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  723. #if defined(__F16C__)
  724. // the _mm256_cvt intrinsics require F16C
  725. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  726. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  727. #else
  728. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  729. float tmp[8];
  730. for (int i = 0; i < 8; i++) {
  731. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  732. }
  733. return _mm256_loadu_ps(tmp);
  734. }
  735. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  736. float arr[8];
  737. _mm256_storeu_ps(arr, y);
  738. for (int i = 0; i < 8; i++)
  739. x[i] = GGML_FP32_TO_FP16(arr[i]);
  740. }
  741. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  742. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  743. #endif
  744. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  745. #define GGML_F32Cx8_ADD _mm256_add_ps
  746. #define GGML_F32Cx8_MUL _mm256_mul_ps
  747. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  748. #define GGML_F16_VEC GGML_F32Cx8
  749. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  750. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  751. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  752. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  753. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  754. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  755. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  756. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  757. #elif defined(__POWER9_VECTOR__)
  758. #define GGML_SIMD
  759. // F32 POWER9
  760. #define GGML_F32_STEP 32
  761. #define GGML_F32_EPR 4
  762. #define GGML_F32x4 vector float
  763. #define GGML_F32x4_ZERO 0.0f
  764. #define GGML_F32x4_SET1 vec_splats
  765. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  766. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  767. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  768. #define GGML_F32x4_ADD vec_add
  769. #define GGML_F32x4_MUL vec_mul
  770. #define GGML_F32x4_REDUCE(res, x) \
  771. { \
  772. int offset = GGML_F32_ARR >> 1; \
  773. for (int i = 0; i < offset; ++i) { \
  774. x[i] = vec_add(x[i], x[offset+i]); \
  775. } \
  776. offset >>= 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. res = vec_extract(x[0], 0) + \
  785. vec_extract(x[0], 1) + \
  786. vec_extract(x[0], 2) + \
  787. vec_extract(x[0], 3); \
  788. }
  789. #define GGML_F32_VEC GGML_F32x4
  790. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  791. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  792. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  793. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  794. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  795. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  796. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  797. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  798. // F16 POWER9
  799. #define GGML_F16_STEP GGML_F32_STEP
  800. #define GGML_F16_EPR GGML_F32_EPR
  801. #define GGML_F16_VEC GGML_F32x4
  802. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  803. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  804. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  805. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  806. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  807. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  808. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  809. vec_extract_fp32_from_shortl(vec_xl(0, p))
  810. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  811. #define GGML_F16_VEC_STORE(p, r, i) \
  812. if (i & 0x1) \
  813. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  814. r[i - GGML_ENDIAN_BYTE(0)]), \
  815. 0, p - GGML_F16_EPR)
  816. #elif defined(__wasm_simd128__)
  817. #define GGML_SIMD
  818. // F32 WASM
  819. #define GGML_F32_STEP 16
  820. #define GGML_F32_EPR 4
  821. #define GGML_F32x4 v128_t
  822. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  823. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  824. #define GGML_F32x4_LOAD wasm_v128_load
  825. #define GGML_F32x4_STORE wasm_v128_store
  826. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  827. #define GGML_F32x4_ADD wasm_f32x4_add
  828. #define GGML_F32x4_MUL wasm_f32x4_mul
  829. #define GGML_F32x4_REDUCE(res, x) \
  830. { \
  831. int offset = GGML_F32_ARR >> 1; \
  832. for (int i = 0; i < offset; ++i) { \
  833. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  834. } \
  835. offset >>= 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. res = wasm_f32x4_extract_lane(x[0], 0) + \
  844. wasm_f32x4_extract_lane(x[0], 1) + \
  845. wasm_f32x4_extract_lane(x[0], 2) + \
  846. wasm_f32x4_extract_lane(x[0], 3); \
  847. }
  848. #define GGML_F32_VEC GGML_F32x4
  849. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  850. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  851. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  852. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  853. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  854. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  855. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  856. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  857. // F16 WASM
  858. #define GGML_F16_STEP 16
  859. #define GGML_F16_EPR 4
  860. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  861. float tmp[4];
  862. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  863. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  864. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  865. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  866. return wasm_v128_load(tmp);
  867. }
  868. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  869. float tmp[4];
  870. wasm_v128_store(tmp, x);
  871. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  872. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  873. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  874. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  875. }
  876. #define GGML_F16x4 v128_t
  877. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  878. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  879. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  880. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  881. #define GGML_F16x4_FMA GGML_F32x4_FMA
  882. #define GGML_F16x4_ADD wasm_f32x4_add
  883. #define GGML_F16x4_MUL wasm_f32x4_mul
  884. #define GGML_F16x4_REDUCE(res, x) \
  885. { \
  886. int offset = GGML_F16_ARR >> 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  889. } \
  890. offset >>= 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. res = wasm_f32x4_extract_lane(x[0], 0) + \
  899. wasm_f32x4_extract_lane(x[0], 1) + \
  900. wasm_f32x4_extract_lane(x[0], 2) + \
  901. wasm_f32x4_extract_lane(x[0], 3); \
  902. }
  903. #define GGML_F16_VEC GGML_F16x4
  904. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  905. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  906. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  907. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  908. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  909. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  910. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  911. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  912. #elif defined(__SSE3__)
  913. #define GGML_SIMD
  914. // F32 SSE
  915. #define GGML_F32_STEP 32
  916. #define GGML_F32_EPR 4
  917. #define GGML_F32x4 __m128
  918. #define GGML_F32x4_ZERO _mm_setzero_ps()
  919. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  920. #define GGML_F32x4_LOAD _mm_loadu_ps
  921. #define GGML_F32x4_STORE _mm_storeu_ps
  922. #if defined(__FMA__)
  923. // TODO: Does this work?
  924. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  925. #else
  926. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  927. #endif
  928. #define GGML_F32x4_ADD _mm_add_ps
  929. #define GGML_F32x4_MUL _mm_mul_ps
  930. #define GGML_F32x4_REDUCE(res, x) \
  931. { \
  932. int offset = GGML_F32_ARR >> 1; \
  933. for (int i = 0; i < offset; ++i) { \
  934. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  935. } \
  936. offset >>= 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  945. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  946. }
  947. // TODO: is this optimal ?
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 SSE
  958. #define GGML_F16_STEP 32
  959. #define GGML_F16_EPR 4
  960. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  961. float tmp[4];
  962. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  963. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  964. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  965. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  966. return _mm_loadu_ps(tmp);
  967. }
  968. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  969. float arr[4];
  970. _mm_storeu_ps(arr, y);
  971. x[0] = GGML_FP32_TO_FP16(arr[0]);
  972. x[1] = GGML_FP32_TO_FP16(arr[1]);
  973. x[2] = GGML_FP32_TO_FP16(arr[2]);
  974. x[3] = GGML_FP32_TO_FP16(arr[3]);
  975. }
  976. #define GGML_F32Cx4 __m128
  977. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  978. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  979. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  980. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  981. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  982. #define GGML_F32Cx4_ADD _mm_add_ps
  983. #define GGML_F32Cx4_MUL _mm_mul_ps
  984. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  985. #define GGML_F16_VEC GGML_F32Cx4
  986. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  987. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  988. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  989. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  990. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  991. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  992. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  993. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  994. #endif
  995. // GGML_F32_ARR / GGML_F16_ARR
  996. // number of registers to use per step
  997. #ifdef GGML_SIMD
  998. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  999. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1000. #endif
  1001. //
  1002. // fundamental operations
  1003. //
  1004. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1005. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1006. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1007. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1008. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1009. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1010. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1011. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1012. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1013. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1014. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1015. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1016. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1017. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1018. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1019. #ifdef GGML_SIMD
  1020. float sumf = 0.0f;
  1021. const int np = (n & ~(GGML_F32_STEP - 1));
  1022. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1023. GGML_F32_VEC ax[GGML_F32_ARR];
  1024. GGML_F32_VEC ay[GGML_F32_ARR];
  1025. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1026. for (int j = 0; j < GGML_F32_ARR; j++) {
  1027. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1028. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1029. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1030. }
  1031. }
  1032. // reduce sum0..sum3 to sum0
  1033. GGML_F32_VEC_REDUCE(sumf, sum);
  1034. // leftovers
  1035. for (int i = np; i < n; ++i) {
  1036. sumf += x[i]*y[i];
  1037. }
  1038. #else
  1039. // scalar
  1040. ggml_float sumf = 0.0;
  1041. for (int i = 0; i < n; ++i) {
  1042. sumf += (ggml_float)(x[i]*y[i]);
  1043. }
  1044. #endif
  1045. *s = sumf;
  1046. }
  1047. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1048. ggml_float sumf = 0.0;
  1049. #if defined(GGML_SIMD)
  1050. const int np = (n & ~(GGML_F16_STEP - 1));
  1051. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1052. GGML_F16_VEC ax[GGML_F16_ARR];
  1053. GGML_F16_VEC ay[GGML_F16_ARR];
  1054. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1055. for (int j = 0; j < GGML_F16_ARR; j++) {
  1056. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1057. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1058. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1059. }
  1060. }
  1061. // reduce sum0..sum3 to sum0
  1062. GGML_F16_VEC_REDUCE(sumf, sum);
  1063. // leftovers
  1064. for (int i = np; i < n; ++i) {
  1065. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1066. }
  1067. #else
  1068. for (int i = 0; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #endif
  1072. *s = sumf;
  1073. }
  1074. // compute GGML_VEC_DOT_UNROLL dot products at once
  1075. // xs - x row stride in bytes
  1076. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1077. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1078. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1079. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1080. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1081. }
  1082. #if defined(GGML_SIMD)
  1083. const int np = (n & ~(GGML_F16_STEP - 1));
  1084. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1085. GGML_F16_VEC ax[GGML_F16_ARR];
  1086. GGML_F16_VEC ay[GGML_F16_ARR];
  1087. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1088. for (int j = 0; j < GGML_F16_ARR; j++) {
  1089. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1090. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1091. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1092. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1093. }
  1094. }
  1095. }
  1096. // reduce sum0..sum3 to sum0
  1097. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1098. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1099. }
  1100. // leftovers
  1101. for (int i = np; i < n; ++i) {
  1102. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1103. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1104. }
  1105. }
  1106. #else
  1107. for (int i = 0; i < n; ++i) {
  1108. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1109. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1110. }
  1111. }
  1112. #endif
  1113. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1114. s[i] = sumf[i];
  1115. }
  1116. }
  1117. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1118. #if defined(GGML_SIMD)
  1119. const int np = (n & ~(GGML_F32_STEP - 1));
  1120. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1121. GGML_F32_VEC ax[GGML_F32_ARR];
  1122. GGML_F32_VEC ay[GGML_F32_ARR];
  1123. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1124. for (int j = 0; j < GGML_F32_ARR; j++) {
  1125. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1126. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1127. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1128. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1129. }
  1130. }
  1131. // leftovers
  1132. for (int i = np; i < n; ++i) {
  1133. y[i] += x[i]*v;
  1134. }
  1135. #else
  1136. // scalar
  1137. for (int i = 0; i < n; ++i) {
  1138. y[i] += x[i]*v;
  1139. }
  1140. #endif
  1141. }
  1142. // xs and vs are byte strides of x and v
  1143. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1144. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1145. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1146. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1147. x[i] = (const float *) ((const char *) xv + i*xs);
  1148. v[i] = (const float *) ((const char *) vv + i*vs);
  1149. }
  1150. #if defined(GGML_SIMD)
  1151. const int np = (n & ~(GGML_F32_STEP - 1));
  1152. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1153. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1154. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1155. }
  1156. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1157. GGML_F32_VEC ay[GGML_F32_ARR];
  1158. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1159. for (int j = 0; j < GGML_F32_ARR; j++) {
  1160. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1161. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1162. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1163. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1164. }
  1165. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1166. }
  1167. }
  1168. // leftovers
  1169. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1170. for (int i = np; i < n; ++i) {
  1171. y[i] += x[k][i]*v[k][0];
  1172. }
  1173. }
  1174. #else
  1175. // scalar
  1176. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1177. for (int i = 0; i < n; ++i) {
  1178. y[i] += x[k][i]*v[k][0];
  1179. }
  1180. }
  1181. #endif
  1182. }
  1183. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1184. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1185. #if defined(GGML_USE_ACCELERATE)
  1186. vDSP_vsmul(y, 1, &v, y, 1, n);
  1187. #elif defined(GGML_SIMD)
  1188. const int np = (n & ~(GGML_F32_STEP - 1));
  1189. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1190. GGML_F32_VEC ay[GGML_F32_ARR];
  1191. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1192. for (int j = 0; j < GGML_F32_ARR; j++) {
  1193. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1194. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1195. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1196. }
  1197. }
  1198. // leftovers
  1199. for (int i = np; i < n; ++i) {
  1200. y[i] *= v;
  1201. }
  1202. #else
  1203. // scalar
  1204. for (int i = 0; i < n; ++i) {
  1205. y[i] *= v;
  1206. }
  1207. #endif
  1208. }
  1209. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1210. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1211. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1212. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1213. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1214. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1215. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1216. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1217. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1218. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1219. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1220. // TODO: optimize performance
  1221. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1222. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1223. static const float GELU_COEF_A = 0.044715f;
  1224. static const float GELU_QUICK_COEF = -1.702f;
  1225. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1226. inline static float ggml_gelu_f32(float x) {
  1227. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1228. }
  1229. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. const uint16_t * i16 = (const uint16_t *) x;
  1231. for (int i = 0; i < n; ++i) {
  1232. y[i] = ggml_table_gelu_f16[i16[i]];
  1233. }
  1234. }
  1235. #ifdef GGML_GELU_FP16
  1236. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. inline static float ggml_gelu_quick_f32(float x) {
  1252. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1253. }
  1254. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1255. // const uint16_t * i16 = (const uint16_t *) x;
  1256. // for (int i = 0; i < n; ++i) {
  1257. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1258. // }
  1259. //}
  1260. #ifdef GGML_GELU_QUICK_FP16
  1261. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1262. uint16_t t;
  1263. for (int i = 0; i < n; ++i) {
  1264. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1265. memcpy(&t, &fp16, sizeof(uint16_t));
  1266. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1267. }
  1268. }
  1269. #else
  1270. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1271. for (int i = 0; i < n; ++i) {
  1272. y[i] = ggml_gelu_quick_f32(x[i]);
  1273. }
  1274. }
  1275. #endif
  1276. // Sigmoid Linear Unit (SiLU) function
  1277. inline static float ggml_silu_f32(float x) {
  1278. return x/(1.0f + expf(-x));
  1279. }
  1280. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1281. // const uint16_t * i16 = (const uint16_t *) x;
  1282. // for (int i = 0; i < n; ++i) {
  1283. // y[i] = ggml_table_silu_f16[i16[i]];
  1284. // }
  1285. //}
  1286. #ifdef GGML_SILU_FP16
  1287. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1288. uint16_t t;
  1289. for (int i = 0; i < n; ++i) {
  1290. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1291. memcpy(&t, &fp16, sizeof(uint16_t));
  1292. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1293. }
  1294. }
  1295. #else
  1296. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1297. for (int i = 0; i < n; ++i) {
  1298. y[i] = ggml_silu_f32(x[i]);
  1299. }
  1300. }
  1301. #endif
  1302. inline static float ggml_silu_backward_f32(float x, float dy) {
  1303. const float s = 1.0f/(1.0f + expf(-x));
  1304. return dy*s*(1.0f + x*(1.0f - s));
  1305. }
  1306. #ifdef GGML_SILU_FP16
  1307. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1308. for (int i = 0; i < n; ++i) {
  1309. // we did not use x[i] to compute forward silu but its f16 equivalent
  1310. // take derivative at f16 of x[i]:
  1311. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1312. float usedx = GGML_FP16_TO_FP32(fp16);
  1313. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1314. }
  1315. }
  1316. #else
  1317. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1318. for (int i = 0; i < n; ++i) {
  1319. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1320. }
  1321. }
  1322. #endif
  1323. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. ggml_float sum = 0.0;
  1326. for (int i = 0; i < n; ++i) {
  1327. sum += (ggml_float)x[i];
  1328. }
  1329. *s = sum;
  1330. #else
  1331. vDSP_sve(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1335. ggml_float sum = 0.0;
  1336. for (int i = 0; i < n; ++i) {
  1337. sum += (ggml_float)x[i];
  1338. }
  1339. *s = sum;
  1340. }
  1341. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1342. float sum = 0.0f;
  1343. for (int i = 0; i < n; ++i) {
  1344. sum += GGML_FP16_TO_FP32(x[i]);
  1345. }
  1346. *s = sum;
  1347. }
  1348. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1349. #ifndef GGML_USE_ACCELERATE
  1350. float max = -INFINITY;
  1351. for (int i = 0; i < n; ++i) {
  1352. max = MAX(max, x[i]);
  1353. }
  1354. *s = max;
  1355. #else
  1356. vDSP_maxv(x, 1, s, n);
  1357. #endif
  1358. }
  1359. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1360. ggml_vec_norm_f32(n, s, x);
  1361. *s = 1.f/(*s);
  1362. }
  1363. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1364. float max = -INFINITY;
  1365. int idx = 0;
  1366. for (int i = 0; i < n; ++i) {
  1367. max = MAX(max, x[i]);
  1368. if (max == x[i]) { idx = i; }
  1369. }
  1370. *s = idx;
  1371. }
  1372. //
  1373. // data types
  1374. //
  1375. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1376. "NONE",
  1377. "DUP",
  1378. "ADD",
  1379. "ADD1",
  1380. "ACC",
  1381. "SUB",
  1382. "MUL",
  1383. "DIV",
  1384. "SQR",
  1385. "SQRT",
  1386. "LOG",
  1387. "SUM",
  1388. "SUM_ROWS",
  1389. "MEAN",
  1390. "ARGMAX",
  1391. "REPEAT",
  1392. "REPEAT_BACK",
  1393. "CONCAT",
  1394. "SILU_BACK",
  1395. "NORM",
  1396. "RMS_NORM",
  1397. "RMS_NORM_BACK",
  1398. "GROUP_NORM",
  1399. "MUL_MAT",
  1400. "MUL_MAT_ID",
  1401. "OUT_PROD",
  1402. "SCALE",
  1403. "SET",
  1404. "CPY",
  1405. "CONT",
  1406. "RESHAPE",
  1407. "VIEW",
  1408. "PERMUTE",
  1409. "TRANSPOSE",
  1410. "GET_ROWS",
  1411. "GET_ROWS_BACK",
  1412. "DIAG",
  1413. "DIAG_MASK_INF",
  1414. "DIAG_MASK_ZERO",
  1415. "SOFT_MAX",
  1416. "SOFT_MAX_BACK",
  1417. "ROPE",
  1418. "ROPE_BACK",
  1419. "ALIBI",
  1420. "CLAMP",
  1421. "CONV_TRANSPOSE_1D",
  1422. "IM2COL",
  1423. "CONV_TRANSPOSE_2D",
  1424. "POOL_1D",
  1425. "POOL_2D",
  1426. "UPSCALE",
  1427. "PAD",
  1428. "ARGSORT",
  1429. "LEAKY_RELU",
  1430. "FLASH_ATTN",
  1431. "FLASH_FF",
  1432. "FLASH_ATTN_BACK",
  1433. "WIN_PART",
  1434. "WIN_UNPART",
  1435. "GET_REL_POS",
  1436. "ADD_REL_POS",
  1437. "UNARY",
  1438. "MAP_UNARY",
  1439. "MAP_BINARY",
  1440. "MAP_CUSTOM1_F32",
  1441. "MAP_CUSTOM2_F32",
  1442. "MAP_CUSTOM3_F32",
  1443. "MAP_CUSTOM1",
  1444. "MAP_CUSTOM2",
  1445. "MAP_CUSTOM3",
  1446. "CROSS_ENTROPY_LOSS",
  1447. "CROSS_ENTROPY_LOSS_BACK",
  1448. };
  1449. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1450. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1451. "none",
  1452. "x",
  1453. "x+y",
  1454. "x+y",
  1455. "view(x,nb,offset)+=y->x",
  1456. "x-y",
  1457. "x*y",
  1458. "x/y",
  1459. "x^2",
  1460. "√x",
  1461. "log(x)",
  1462. "Σx",
  1463. "Σx_k",
  1464. "Σx/n",
  1465. "argmax(x)",
  1466. "repeat(x)",
  1467. "repeat_back(x)",
  1468. "concat(x, y)",
  1469. "silu_back(x)",
  1470. "norm(x)",
  1471. "rms_norm(x)",
  1472. "rms_norm_back(x)",
  1473. "group_norm(x)",
  1474. "X*Y",
  1475. "X[i]*Y",
  1476. "X*Y",
  1477. "x*v",
  1478. "y-\\>view(x)",
  1479. "x-\\>y",
  1480. "cont(x)",
  1481. "reshape(x)",
  1482. "view(x)",
  1483. "permute(x)",
  1484. "transpose(x)",
  1485. "get_rows(x)",
  1486. "get_rows_back(x)",
  1487. "diag(x)",
  1488. "diag_mask_inf(x)",
  1489. "diag_mask_zero(x)",
  1490. "soft_max(x)",
  1491. "soft_max_back(x)",
  1492. "rope(x)",
  1493. "rope_back(x)",
  1494. "alibi(x)",
  1495. "clamp(x)",
  1496. "conv_transpose_1d(x)",
  1497. "im2col(x)",
  1498. "conv_transpose_2d(x)",
  1499. "pool_1d(x)",
  1500. "pool_2d(x)",
  1501. "upscale(x)",
  1502. "pad(x)",
  1503. "argsort(x)",
  1504. "leaky_relu(x)",
  1505. "flash_attn(x)",
  1506. "flash_ff(x)",
  1507. "flash_attn_back(x)",
  1508. "win_part(x)",
  1509. "win_unpart(x)",
  1510. "get_rel_pos(x)",
  1511. "add_rel_pos(x)",
  1512. "unary(x)",
  1513. "f(x)",
  1514. "f(x,y)",
  1515. "custom_f32(x)",
  1516. "custom_f32(x,y)",
  1517. "custom_f32(x,y,z)",
  1518. "custom(x)",
  1519. "custom(x,y)",
  1520. "custom(x,y,z)",
  1521. "cross_entropy_loss(x,y)",
  1522. "cross_entropy_loss_back(x,y)",
  1523. };
  1524. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1525. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1526. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1527. "ABS",
  1528. "SGN",
  1529. "NEG",
  1530. "STEP",
  1531. "TANH",
  1532. "ELU",
  1533. "RELU",
  1534. "GELU",
  1535. "GELU_QUICK",
  1536. "SILU",
  1537. "HARDSWISH",
  1538. "HARDSIGMOID",
  1539. };
  1540. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1541. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1542. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1543. // WARN:
  1544. // Mis-configuration can lead to problem that's hard to reason about:
  1545. // * At best it crash or talks nosense.
  1546. // * At worst it talks slightly difference but hard to perceive.
  1547. //
  1548. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1549. // Take care about compile options (e.g., GGML_USE_xxx).
  1550. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1551. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1552. static void ggml_setup_op_has_task_pass(void) {
  1553. { // INIT
  1554. bool * p = GGML_OP_HAS_INIT;
  1555. p[GGML_OP_ACC ] = true;
  1556. p[GGML_OP_MUL_MAT ] = true;
  1557. p[GGML_OP_MUL_MAT_ID ] = true;
  1558. p[GGML_OP_OUT_PROD ] = true;
  1559. p[GGML_OP_SET ] = true;
  1560. p[GGML_OP_GET_ROWS_BACK ] = true;
  1561. p[GGML_OP_DIAG_MASK_INF ] = true;
  1562. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1563. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1564. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1565. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1566. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1567. p[GGML_OP_ADD_REL_POS ] = true;
  1568. }
  1569. { // FINALIZE
  1570. bool * p = GGML_OP_HAS_FINALIZE;
  1571. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1572. }
  1573. }
  1574. //
  1575. // ggml context
  1576. //
  1577. struct ggml_context {
  1578. size_t mem_size;
  1579. void * mem_buffer;
  1580. bool mem_buffer_owned;
  1581. bool no_alloc;
  1582. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1583. int n_objects;
  1584. struct ggml_object * objects_begin;
  1585. struct ggml_object * objects_end;
  1586. struct ggml_scratch scratch;
  1587. struct ggml_scratch scratch_save;
  1588. };
  1589. struct ggml_context_container {
  1590. bool used;
  1591. struct ggml_context context;
  1592. };
  1593. //
  1594. // NUMA support
  1595. //
  1596. #define GGML_NUMA_MAX_NODES 8
  1597. #define GGML_NUMA_MAX_CPUS 512
  1598. struct ggml_numa_node {
  1599. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1600. uint32_t n_cpus;
  1601. };
  1602. struct ggml_numa_nodes {
  1603. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1604. uint32_t n_nodes;
  1605. uint32_t total_cpus; // hardware threads on system
  1606. };
  1607. //
  1608. // ggml state
  1609. //
  1610. struct ggml_state {
  1611. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1612. struct ggml_numa_nodes numa;
  1613. };
  1614. // global state
  1615. static struct ggml_state g_state;
  1616. static atomic_int g_state_barrier = 0;
  1617. // barrier via spin lock
  1618. inline static void ggml_critical_section_start(void) {
  1619. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1620. while (processing > 0) {
  1621. // wait for other threads to finish
  1622. atomic_fetch_sub(&g_state_barrier, 1);
  1623. sched_yield(); // TODO: reconsider this
  1624. processing = atomic_fetch_add(&g_state_barrier, 1);
  1625. }
  1626. }
  1627. // TODO: make this somehow automatically executed
  1628. // some sort of "sentry" mechanism
  1629. inline static void ggml_critical_section_end(void) {
  1630. atomic_fetch_sub(&g_state_barrier, 1);
  1631. }
  1632. void ggml_numa_init(void) {
  1633. if (g_state.numa.n_nodes > 0) {
  1634. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1635. return;
  1636. }
  1637. #ifdef __linux__
  1638. struct stat st;
  1639. char path[256];
  1640. int rv;
  1641. // enumerate nodes
  1642. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1643. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1644. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1645. if (stat(path, &st) != 0) { break; }
  1646. ++g_state.numa.n_nodes;
  1647. }
  1648. // enumerate CPUs
  1649. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1650. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1651. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1652. if (stat(path, &st) != 0) { break; }
  1653. ++g_state.numa.total_cpus;
  1654. }
  1655. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1656. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1657. g_state.numa.n_nodes = 0;
  1658. return;
  1659. }
  1660. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1661. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1662. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1663. node->n_cpus = 0;
  1664. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1665. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1666. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1667. if (stat(path, &st) == 0) {
  1668. node->cpus[node->n_cpus++] = c;
  1669. GGML_PRINT_DEBUG(" %u", c);
  1670. }
  1671. }
  1672. GGML_PRINT_DEBUG("\n");
  1673. }
  1674. if (ggml_is_numa()) {
  1675. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1676. if (fptr != NULL) {
  1677. char buf[42];
  1678. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1679. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1680. }
  1681. fclose(fptr);
  1682. }
  1683. }
  1684. #else
  1685. // TODO
  1686. #endif
  1687. }
  1688. bool ggml_is_numa(void) {
  1689. return g_state.numa.n_nodes > 1;
  1690. }
  1691. ////////////////////////////////////////////////////////////////////////////////
  1692. void ggml_print_object(const struct ggml_object * obj) {
  1693. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1694. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1695. }
  1696. void ggml_print_objects(const struct ggml_context * ctx) {
  1697. struct ggml_object * obj = ctx->objects_begin;
  1698. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1699. while (obj != NULL) {
  1700. ggml_print_object(obj);
  1701. obj = obj->next;
  1702. }
  1703. GGML_PRINT("%s: --- end ---\n", __func__);
  1704. }
  1705. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1707. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1708. }
  1709. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1711. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1712. }
  1713. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1714. size_t nbytes;
  1715. size_t blck_size = ggml_blck_size(tensor->type);
  1716. if (blck_size == 1) {
  1717. nbytes = ggml_type_size(tensor->type);
  1718. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1719. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1720. }
  1721. }
  1722. else {
  1723. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1724. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1725. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1726. }
  1727. }
  1728. return nbytes;
  1729. }
  1730. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1731. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1732. }
  1733. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1734. return type_traits[type].blck_size;
  1735. }
  1736. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1737. return type_traits[type].type_size;
  1738. }
  1739. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1740. assert(ne % ggml_blck_size(type) == 0);
  1741. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1742. }
  1743. double ggml_type_sizef(enum ggml_type type) {
  1744. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1745. }
  1746. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1747. return type_traits[type].type_name;
  1748. }
  1749. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1750. return type_traits[type].is_quantized;
  1751. }
  1752. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1753. return GGML_OP_NAME[op];
  1754. }
  1755. const char * ggml_op_symbol(enum ggml_op op) {
  1756. return GGML_OP_SYMBOL[op];
  1757. }
  1758. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1759. return GGML_UNARY_OP_NAME[op];
  1760. }
  1761. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1762. if (t->op == GGML_OP_UNARY) {
  1763. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1764. return ggml_unary_op_name(uop);
  1765. }
  1766. else {
  1767. return ggml_op_name(t->op);
  1768. }
  1769. }
  1770. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1771. return ggml_type_size(tensor->type);
  1772. }
  1773. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1774. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1775. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1776. }
  1777. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1778. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1779. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1780. }
  1781. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1783. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1784. }
  1785. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1786. return tensor->ne[3] == 1;
  1787. }
  1788. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1789. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1790. if (tensor->ne[i] > 1) {
  1791. return i + 1;
  1792. }
  1793. }
  1794. return 1;
  1795. }
  1796. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1797. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1798. return (t0->ne[0] == t1->ne[0]) &&
  1799. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1800. (t1->ne[3]%t0->ne[3] == 0);
  1801. }
  1802. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1803. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1804. return (t0->ne[1] == t1->ne[1]) &&
  1805. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1806. (t1->ne[3]%t0->ne[3] == 0);
  1807. }
  1808. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1809. enum ggml_type wtype = GGML_TYPE_COUNT;
  1810. switch (ftype) {
  1811. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1812. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1813. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1814. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1815. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1816. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1817. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1818. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1819. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1820. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1821. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1822. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1823. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1824. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1825. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1826. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1827. }
  1828. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1829. return wtype;
  1830. }
  1831. size_t ggml_tensor_overhead(void) {
  1832. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1833. }
  1834. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1835. return tensor->nb[0] > tensor->nb[1];
  1836. }
  1837. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1839. return
  1840. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1841. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1842. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1843. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1844. }
  1845. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1847. return
  1848. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1849. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1850. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1851. }
  1852. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1853. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1854. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1855. }
  1856. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1857. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1858. return
  1859. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1860. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1861. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1862. }
  1863. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1864. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1865. return
  1866. (t0->ne[0] == t1->ne[0] ) &&
  1867. (t0->ne[1] == t1->ne[1] ) &&
  1868. (t0->ne[2] == t1->ne[2] ) &&
  1869. (t0->ne[3] == t1->ne[3] );
  1870. }
  1871. // check if t1 can be represented as a repeatition of t0
  1872. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1873. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1874. return
  1875. (t1->ne[0]%t0->ne[0] == 0) &&
  1876. (t1->ne[1]%t0->ne[1] == 0) &&
  1877. (t1->ne[2]%t0->ne[2] == 0) &&
  1878. (t1->ne[3]%t0->ne[3] == 0);
  1879. }
  1880. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1881. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1882. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1883. }
  1884. static inline int ggml_up32(int n) {
  1885. return (n + 31) & ~31;
  1886. }
  1887. //static inline int ggml_up64(int n) {
  1888. // return (n + 63) & ~63;
  1889. //}
  1890. static inline int ggml_up(int n, int m) {
  1891. // assert m is a power of 2
  1892. GGML_ASSERT((m & (m - 1)) == 0);
  1893. return (n + m - 1) & ~(m - 1);
  1894. }
  1895. // assert that pointer is aligned to GGML_MEM_ALIGN
  1896. #define ggml_assert_aligned(ptr) \
  1897. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1898. ////////////////////////////////////////////////////////////////////////////////
  1899. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1900. // make this function thread safe
  1901. ggml_critical_section_start();
  1902. static bool is_first_call = true;
  1903. if (is_first_call) {
  1904. // initialize time system (required on Windows)
  1905. ggml_time_init();
  1906. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1907. {
  1908. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1909. ggml_fp16_t ii;
  1910. for (int i = 0; i < (1 << 16); ++i) {
  1911. uint16_t ui = i;
  1912. memcpy(&ii, &ui, sizeof(ii));
  1913. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1914. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1915. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1916. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1917. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1918. }
  1919. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1920. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1921. }
  1922. // initialize g_state
  1923. {
  1924. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1925. g_state = (struct ggml_state) {
  1926. /*.contexts =*/ { { 0 } },
  1927. /*.numa =*/ {
  1928. .n_nodes = 0,
  1929. .total_cpus = 0,
  1930. },
  1931. };
  1932. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1933. g_state.contexts[i].used = false;
  1934. }
  1935. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1936. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1937. }
  1938. #if defined(GGML_USE_CUBLAS)
  1939. ggml_init_cublas();
  1940. #elif defined(GGML_USE_CLBLAST)
  1941. ggml_cl_init();
  1942. #endif
  1943. ggml_setup_op_has_task_pass();
  1944. is_first_call = false;
  1945. }
  1946. // find non-used context in g_state
  1947. struct ggml_context * ctx = NULL;
  1948. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1949. if (!g_state.contexts[i].used) {
  1950. g_state.contexts[i].used = true;
  1951. ctx = &g_state.contexts[i].context;
  1952. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1953. break;
  1954. }
  1955. }
  1956. if (ctx == NULL) {
  1957. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1958. ggml_critical_section_end();
  1959. return NULL;
  1960. }
  1961. // allow to call ggml_init with 0 size
  1962. if (params.mem_size == 0) {
  1963. params.mem_size = GGML_MEM_ALIGN;
  1964. }
  1965. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1966. *ctx = (struct ggml_context) {
  1967. /*.mem_size =*/ mem_size,
  1968. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1969. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1970. /*.no_alloc =*/ params.no_alloc,
  1971. /*.no_alloc_save =*/ params.no_alloc,
  1972. /*.n_objects =*/ 0,
  1973. /*.objects_begin =*/ NULL,
  1974. /*.objects_end =*/ NULL,
  1975. /*.scratch =*/ { 0, 0, NULL, },
  1976. /*.scratch_save =*/ { 0, 0, NULL, },
  1977. };
  1978. GGML_ASSERT(ctx->mem_buffer != NULL);
  1979. ggml_assert_aligned(ctx->mem_buffer);
  1980. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1981. ggml_critical_section_end();
  1982. return ctx;
  1983. }
  1984. void ggml_free(struct ggml_context * ctx) {
  1985. if (ctx == NULL) {
  1986. return;
  1987. }
  1988. // make this function thread safe
  1989. ggml_critical_section_start();
  1990. bool found = false;
  1991. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1992. if (&g_state.contexts[i].context == ctx) {
  1993. g_state.contexts[i].used = false;
  1994. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1995. __func__, i, ggml_used_mem(ctx));
  1996. if (ctx->mem_buffer_owned) {
  1997. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1998. }
  1999. found = true;
  2000. break;
  2001. }
  2002. }
  2003. if (!found) {
  2004. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2005. }
  2006. ggml_critical_section_end();
  2007. }
  2008. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2009. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2010. }
  2011. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2012. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2013. ctx->scratch = scratch;
  2014. return result;
  2015. }
  2016. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2017. return ctx->no_alloc;
  2018. }
  2019. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2020. ctx->no_alloc = no_alloc;
  2021. }
  2022. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2023. return ctx->mem_buffer;
  2024. }
  2025. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2026. return ctx->mem_size;
  2027. }
  2028. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2029. size_t max_size = 0;
  2030. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2031. max_size = MAX(max_size, ggml_nbytes(tensor));
  2032. }
  2033. return max_size;
  2034. }
  2035. // IMPORTANT:
  2036. // when creating "opt" tensors, always save and load the scratch buffer
  2037. // this is an error prone process, but it is necessary to support inplace
  2038. // operators when using scratch buffers
  2039. // TODO: implement a better way
  2040. static void ggml_scratch_save(struct ggml_context * ctx) {
  2041. // this is needed to allow opt tensors to store their data
  2042. // TODO: again, need to find a better way
  2043. ctx->no_alloc_save = ctx->no_alloc;
  2044. ctx->no_alloc = false;
  2045. ctx->scratch_save = ctx->scratch;
  2046. ctx->scratch.data = NULL;
  2047. }
  2048. static void ggml_scratch_load(struct ggml_context * ctx) {
  2049. ctx->no_alloc = ctx->no_alloc_save;
  2050. ctx->scratch = ctx->scratch_save;
  2051. }
  2052. ////////////////////////////////////////////////////////////////////////////////
  2053. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2054. // always insert objects at the end of the context's memory pool
  2055. struct ggml_object * obj_cur = ctx->objects_end;
  2056. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2057. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2058. const size_t cur_end = cur_offs + cur_size;
  2059. // align to GGML_MEM_ALIGN
  2060. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2061. char * const mem_buffer = ctx->mem_buffer;
  2062. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2063. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2064. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2065. __func__, cur_end + size_needed, ctx->mem_size);
  2066. assert(false);
  2067. return NULL;
  2068. }
  2069. *obj_new = (struct ggml_object) {
  2070. .offs = cur_end + GGML_OBJECT_SIZE,
  2071. .size = size_needed,
  2072. .next = NULL,
  2073. .type = type,
  2074. };
  2075. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2076. if (obj_cur != NULL) {
  2077. obj_cur->next = obj_new;
  2078. } else {
  2079. // this is the first object in this context
  2080. ctx->objects_begin = obj_new;
  2081. }
  2082. ctx->objects_end = obj_new;
  2083. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2084. return obj_new;
  2085. }
  2086. static struct ggml_tensor * ggml_new_tensor_impl(
  2087. struct ggml_context * ctx,
  2088. enum ggml_type type,
  2089. int n_dims,
  2090. const int64_t * ne,
  2091. struct ggml_tensor * view_src,
  2092. size_t view_offs) {
  2093. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2094. // find the base tensor and absolute offset
  2095. if (view_src != NULL && view_src->view_src != NULL) {
  2096. view_offs += view_src->view_offs;
  2097. view_src = view_src->view_src;
  2098. }
  2099. size_t data_size = ggml_row_size(type, ne[0]);
  2100. for (int i = 1; i < n_dims; i++) {
  2101. data_size *= ne[i];
  2102. }
  2103. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2104. void * data = view_src != NULL ? view_src->data : NULL;
  2105. if (data != NULL) {
  2106. data = (char *) data + view_offs;
  2107. }
  2108. size_t obj_alloc_size = 0;
  2109. if (view_src == NULL && !ctx->no_alloc) {
  2110. if (ctx->scratch.data != NULL) {
  2111. // allocate tensor data in the scratch buffer
  2112. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2113. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2114. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2115. assert(false);
  2116. return NULL;
  2117. }
  2118. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2119. ctx->scratch.offs += data_size;
  2120. } else {
  2121. // allocate tensor data in the context's memory pool
  2122. obj_alloc_size = data_size;
  2123. }
  2124. }
  2125. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2126. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2127. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2128. *result = (struct ggml_tensor) {
  2129. /*.type =*/ type,
  2130. /*.backend =*/ GGML_BACKEND_CPU,
  2131. /*.buffer =*/ NULL,
  2132. /*.ne =*/ { 1, 1, 1, 1 },
  2133. /*.nb =*/ { 0, 0, 0, 0 },
  2134. /*.op =*/ GGML_OP_NONE,
  2135. /*.op_params =*/ { 0 },
  2136. /*.is_param =*/ false,
  2137. /*.grad =*/ NULL,
  2138. /*.src =*/ { NULL },
  2139. /*.perf_runs =*/ 0,
  2140. /*.perf_cycles =*/ 0,
  2141. /*.perf_time_us =*/ 0,
  2142. /*.view_src =*/ view_src,
  2143. /*.view_offs =*/ view_offs,
  2144. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2145. /*.name =*/ { 0 },
  2146. /*.extra =*/ NULL,
  2147. /*.padding =*/ { 0 },
  2148. };
  2149. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2150. //ggml_assert_aligned(result->data);
  2151. for (int i = 0; i < n_dims; i++) {
  2152. result->ne[i] = ne[i];
  2153. }
  2154. result->nb[0] = ggml_type_size(type);
  2155. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2156. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2157. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2158. }
  2159. ctx->n_objects++;
  2160. return result;
  2161. }
  2162. struct ggml_tensor * ggml_new_tensor(
  2163. struct ggml_context * ctx,
  2164. enum ggml_type type,
  2165. int n_dims,
  2166. const int64_t * ne) {
  2167. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2168. }
  2169. struct ggml_tensor * ggml_new_tensor_1d(
  2170. struct ggml_context * ctx,
  2171. enum ggml_type type,
  2172. int64_t ne0) {
  2173. return ggml_new_tensor(ctx, type, 1, &ne0);
  2174. }
  2175. struct ggml_tensor * ggml_new_tensor_2d(
  2176. struct ggml_context * ctx,
  2177. enum ggml_type type,
  2178. int64_t ne0,
  2179. int64_t ne1) {
  2180. const int64_t ne[2] = { ne0, ne1 };
  2181. return ggml_new_tensor(ctx, type, 2, ne);
  2182. }
  2183. struct ggml_tensor * ggml_new_tensor_3d(
  2184. struct ggml_context * ctx,
  2185. enum ggml_type type,
  2186. int64_t ne0,
  2187. int64_t ne1,
  2188. int64_t ne2) {
  2189. const int64_t ne[3] = { ne0, ne1, ne2 };
  2190. return ggml_new_tensor(ctx, type, 3, ne);
  2191. }
  2192. struct ggml_tensor * ggml_new_tensor_4d(
  2193. struct ggml_context * ctx,
  2194. enum ggml_type type,
  2195. int64_t ne0,
  2196. int64_t ne1,
  2197. int64_t ne2,
  2198. int64_t ne3) {
  2199. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2200. return ggml_new_tensor(ctx, type, 4, ne);
  2201. }
  2202. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2203. ggml_scratch_save(ctx);
  2204. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2205. ggml_scratch_load(ctx);
  2206. ggml_set_i32(result, value);
  2207. return result;
  2208. }
  2209. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2210. ggml_scratch_save(ctx);
  2211. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2212. ggml_scratch_load(ctx);
  2213. ggml_set_f32(result, value);
  2214. return result;
  2215. }
  2216. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2217. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2218. }
  2219. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2220. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2221. assert(params_size <= GGML_MAX_OP_PARAMS);
  2222. memcpy(tensor->op_params, params, params_size);
  2223. }
  2224. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2225. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2226. return ((const int32_t *)(tensor->op_params))[i];
  2227. }
  2228. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2229. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2230. ((int32_t *)(tensor->op_params))[i] = value;
  2231. }
  2232. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2233. memset(tensor->data, 0, ggml_nbytes(tensor));
  2234. return tensor;
  2235. }
  2236. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2237. const int n = ggml_nrows(tensor);
  2238. const int nc = tensor->ne[0];
  2239. const size_t n1 = tensor->nb[1];
  2240. char * const data = tensor->data;
  2241. switch (tensor->type) {
  2242. case GGML_TYPE_I8:
  2243. {
  2244. assert(tensor->nb[0] == sizeof(int8_t));
  2245. for (int i = 0; i < n; i++) {
  2246. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2247. }
  2248. } break;
  2249. case GGML_TYPE_I16:
  2250. {
  2251. assert(tensor->nb[0] == sizeof(int16_t));
  2252. for (int i = 0; i < n; i++) {
  2253. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2254. }
  2255. } break;
  2256. case GGML_TYPE_I32:
  2257. {
  2258. assert(tensor->nb[0] == sizeof(int32_t));
  2259. for (int i = 0; i < n; i++) {
  2260. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2261. }
  2262. } break;
  2263. case GGML_TYPE_F16:
  2264. {
  2265. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2266. for (int i = 0; i < n; i++) {
  2267. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2268. }
  2269. } break;
  2270. case GGML_TYPE_F32:
  2271. {
  2272. assert(tensor->nb[0] == sizeof(float));
  2273. for (int i = 0; i < n; i++) {
  2274. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2275. }
  2276. } break;
  2277. default:
  2278. {
  2279. GGML_ASSERT(false);
  2280. } break;
  2281. }
  2282. return tensor;
  2283. }
  2284. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2285. const int n = ggml_nrows(tensor);
  2286. const int nc = tensor->ne[0];
  2287. const size_t n1 = tensor->nb[1];
  2288. char * const data = tensor->data;
  2289. switch (tensor->type) {
  2290. case GGML_TYPE_I8:
  2291. {
  2292. assert(tensor->nb[0] == sizeof(int8_t));
  2293. for (int i = 0; i < n; i++) {
  2294. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2295. }
  2296. } break;
  2297. case GGML_TYPE_I16:
  2298. {
  2299. assert(tensor->nb[0] == sizeof(int16_t));
  2300. for (int i = 0; i < n; i++) {
  2301. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2302. }
  2303. } break;
  2304. case GGML_TYPE_I32:
  2305. {
  2306. assert(tensor->nb[0] == sizeof(int32_t));
  2307. for (int i = 0; i < n; i++) {
  2308. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2309. }
  2310. } break;
  2311. case GGML_TYPE_F16:
  2312. {
  2313. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2314. for (int i = 0; i < n; i++) {
  2315. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2316. }
  2317. } break;
  2318. case GGML_TYPE_F32:
  2319. {
  2320. assert(tensor->nb[0] == sizeof(float));
  2321. for (int i = 0; i < n; i++) {
  2322. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2323. }
  2324. } break;
  2325. default:
  2326. {
  2327. GGML_ASSERT(false);
  2328. } break;
  2329. }
  2330. return tensor;
  2331. }
  2332. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2333. const int64_t ne2 = tensor->ne[2];
  2334. const int64_t ne1 = tensor->ne[1];
  2335. const int64_t ne0 = tensor->ne[0];
  2336. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2337. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2338. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2339. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2340. if (i0) {
  2341. * i0 = i0_;
  2342. }
  2343. if (i1) {
  2344. * i1 = i1_;
  2345. }
  2346. if (i2) {
  2347. * i2 = i2_;
  2348. }
  2349. if (i3) {
  2350. * i3 = i3_;
  2351. }
  2352. }
  2353. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2354. if (!ggml_is_contiguous(tensor)) {
  2355. int64_t id[4] = { 0, 0, 0, 0 };
  2356. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2357. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2358. }
  2359. switch (tensor->type) {
  2360. case GGML_TYPE_I8:
  2361. {
  2362. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2363. return ((int8_t *)(tensor->data))[i];
  2364. }
  2365. case GGML_TYPE_I16:
  2366. {
  2367. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2368. return ((int16_t *)(tensor->data))[i];
  2369. }
  2370. case GGML_TYPE_I32:
  2371. {
  2372. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2373. return ((int32_t *)(tensor->data))[i];
  2374. }
  2375. case GGML_TYPE_F16:
  2376. {
  2377. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2378. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2379. }
  2380. case GGML_TYPE_F32:
  2381. {
  2382. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2383. return ((float *)(tensor->data))[i];
  2384. }
  2385. default:
  2386. {
  2387. GGML_ASSERT(false);
  2388. }
  2389. }
  2390. return 0.0f;
  2391. }
  2392. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2393. if (!ggml_is_contiguous(tensor)) {
  2394. int64_t id[4] = { 0, 0, 0, 0 };
  2395. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2396. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2397. return;
  2398. }
  2399. switch (tensor->type) {
  2400. case GGML_TYPE_I8:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2403. ((int8_t *)(tensor->data))[i] = value;
  2404. } break;
  2405. case GGML_TYPE_I16:
  2406. {
  2407. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2408. ((int16_t *)(tensor->data))[i] = value;
  2409. } break;
  2410. case GGML_TYPE_I32:
  2411. {
  2412. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2413. ((int32_t *)(tensor->data))[i] = value;
  2414. } break;
  2415. case GGML_TYPE_F16:
  2416. {
  2417. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2418. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2419. } break;
  2420. case GGML_TYPE_F32:
  2421. {
  2422. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2423. ((float *)(tensor->data))[i] = value;
  2424. } break;
  2425. default:
  2426. {
  2427. GGML_ASSERT(false);
  2428. } break;
  2429. }
  2430. }
  2431. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2432. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2433. switch (tensor->type) {
  2434. case GGML_TYPE_I8:
  2435. return ((int8_t *) data)[0];
  2436. case GGML_TYPE_I16:
  2437. return ((int16_t *) data)[0];
  2438. case GGML_TYPE_I32:
  2439. return ((int32_t *) data)[0];
  2440. case GGML_TYPE_F16:
  2441. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2442. case GGML_TYPE_F32:
  2443. return ((float *) data)[0];
  2444. default:
  2445. GGML_ASSERT(false);
  2446. }
  2447. return 0.0f;
  2448. }
  2449. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2450. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2451. switch (tensor->type) {
  2452. case GGML_TYPE_I8:
  2453. {
  2454. ((int8_t *)(data))[0] = value;
  2455. } break;
  2456. case GGML_TYPE_I16:
  2457. {
  2458. ((int16_t *)(data))[0] = value;
  2459. } break;
  2460. case GGML_TYPE_I32:
  2461. {
  2462. ((int32_t *)(data))[0] = value;
  2463. } break;
  2464. case GGML_TYPE_F16:
  2465. {
  2466. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2467. } break;
  2468. case GGML_TYPE_F32:
  2469. {
  2470. ((float *)(data))[0] = value;
  2471. } break;
  2472. default:
  2473. {
  2474. GGML_ASSERT(false);
  2475. } break;
  2476. }
  2477. }
  2478. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2479. if (!ggml_is_contiguous(tensor)) {
  2480. int64_t id[4] = { 0, 0, 0, 0 };
  2481. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2482. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2483. }
  2484. switch (tensor->type) {
  2485. case GGML_TYPE_I8:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2488. return ((int8_t *)(tensor->data))[i];
  2489. }
  2490. case GGML_TYPE_I16:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2493. return ((int16_t *)(tensor->data))[i];
  2494. }
  2495. case GGML_TYPE_I32:
  2496. {
  2497. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2498. return ((int32_t *)(tensor->data))[i];
  2499. }
  2500. case GGML_TYPE_F16:
  2501. {
  2502. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2503. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2504. }
  2505. case GGML_TYPE_F32:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2508. return ((float *)(tensor->data))[i];
  2509. }
  2510. default:
  2511. {
  2512. GGML_ASSERT(false);
  2513. }
  2514. }
  2515. return 0.0f;
  2516. }
  2517. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2518. if (!ggml_is_contiguous(tensor)) {
  2519. int64_t id[4] = { 0, 0, 0, 0 };
  2520. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2521. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2522. return;
  2523. }
  2524. switch (tensor->type) {
  2525. case GGML_TYPE_I8:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2528. ((int8_t *)(tensor->data))[i] = value;
  2529. } break;
  2530. case GGML_TYPE_I16:
  2531. {
  2532. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2533. ((int16_t *)(tensor->data))[i] = value;
  2534. } break;
  2535. case GGML_TYPE_I32:
  2536. {
  2537. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2538. ((int32_t *)(tensor->data))[i] = value;
  2539. } break;
  2540. case GGML_TYPE_F16:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2543. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2544. } break;
  2545. case GGML_TYPE_F32:
  2546. {
  2547. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2548. ((float *)(tensor->data))[i] = value;
  2549. } break;
  2550. default:
  2551. {
  2552. GGML_ASSERT(false);
  2553. } break;
  2554. }
  2555. }
  2556. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2557. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2558. switch (tensor->type) {
  2559. case GGML_TYPE_I8:
  2560. return ((int8_t *) data)[0];
  2561. case GGML_TYPE_I16:
  2562. return ((int16_t *) data)[0];
  2563. case GGML_TYPE_I32:
  2564. return ((int32_t *) data)[0];
  2565. case GGML_TYPE_F16:
  2566. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2567. case GGML_TYPE_F32:
  2568. return ((float *) data)[0];
  2569. default:
  2570. GGML_ASSERT(false);
  2571. }
  2572. return 0.0f;
  2573. }
  2574. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2575. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2576. switch (tensor->type) {
  2577. case GGML_TYPE_I8:
  2578. {
  2579. ((int8_t *)(data))[0] = value;
  2580. } break;
  2581. case GGML_TYPE_I16:
  2582. {
  2583. ((int16_t *)(data))[0] = value;
  2584. } break;
  2585. case GGML_TYPE_I32:
  2586. {
  2587. ((int32_t *)(data))[0] = value;
  2588. } break;
  2589. case GGML_TYPE_F16:
  2590. {
  2591. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2592. } break;
  2593. case GGML_TYPE_F32:
  2594. {
  2595. ((float *)(data))[0] = value;
  2596. } break;
  2597. default:
  2598. {
  2599. GGML_ASSERT(false);
  2600. } break;
  2601. }
  2602. }
  2603. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2604. return tensor->data;
  2605. }
  2606. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2607. assert(tensor->type == GGML_TYPE_F32);
  2608. return (float *)(tensor->data);
  2609. }
  2610. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2611. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2612. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2613. }
  2614. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2615. return tensor->name;
  2616. }
  2617. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2618. strncpy(tensor->name, name, sizeof(tensor->name));
  2619. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2620. return tensor;
  2621. }
  2622. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2623. va_list args;
  2624. va_start(args, fmt);
  2625. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2626. va_end(args);
  2627. return tensor;
  2628. }
  2629. struct ggml_tensor * ggml_view_tensor(
  2630. struct ggml_context * ctx,
  2631. struct ggml_tensor * src) {
  2632. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2633. ggml_format_name(result, "%s (view)", src->name);
  2634. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2635. result->nb[i] = src->nb[i];
  2636. }
  2637. return result;
  2638. }
  2639. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2640. struct ggml_object * obj = ctx->objects_begin;
  2641. char * const mem_buffer = ctx->mem_buffer;
  2642. while (obj != NULL) {
  2643. if (obj->type == GGML_OBJECT_TENSOR) {
  2644. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2645. }
  2646. obj = obj->next;
  2647. }
  2648. return NULL;
  2649. }
  2650. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2651. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2652. obj = obj->next;
  2653. char * const mem_buffer = ctx->mem_buffer;
  2654. while (obj != NULL) {
  2655. if (obj->type == GGML_OBJECT_TENSOR) {
  2656. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2657. }
  2658. obj = obj->next;
  2659. }
  2660. return NULL;
  2661. }
  2662. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2663. struct ggml_object * obj = ctx->objects_begin;
  2664. char * const mem_buffer = ctx->mem_buffer;
  2665. while (obj != NULL) {
  2666. if (obj->type == GGML_OBJECT_TENSOR) {
  2667. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2668. if (strcmp(cur->name, name) == 0) {
  2669. return cur;
  2670. }
  2671. }
  2672. obj = obj->next;
  2673. }
  2674. return NULL;
  2675. }
  2676. ////////////////////////////////////////////////////////////////////////////////
  2677. // ggml_dup
  2678. static struct ggml_tensor * ggml_dup_impl(
  2679. struct ggml_context * ctx,
  2680. struct ggml_tensor * a,
  2681. bool inplace) {
  2682. bool is_node = false;
  2683. if (!inplace && (a->grad)) {
  2684. is_node = true;
  2685. }
  2686. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2687. result->op = GGML_OP_DUP;
  2688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2689. result->src[0] = a;
  2690. return result;
  2691. }
  2692. struct ggml_tensor * ggml_dup(
  2693. struct ggml_context * ctx,
  2694. struct ggml_tensor * a) {
  2695. return ggml_dup_impl(ctx, a, false);
  2696. }
  2697. struct ggml_tensor * ggml_dup_inplace(
  2698. struct ggml_context * ctx,
  2699. struct ggml_tensor * a) {
  2700. return ggml_dup_impl(ctx, a, true);
  2701. }
  2702. // ggml_add
  2703. static struct ggml_tensor * ggml_add_impl(
  2704. struct ggml_context * ctx,
  2705. struct ggml_tensor * a,
  2706. struct ggml_tensor * b,
  2707. bool inplace) {
  2708. GGML_ASSERT(ggml_can_repeat(b, a));
  2709. bool is_node = false;
  2710. if (!inplace && (a->grad || b->grad)) {
  2711. // TODO: support backward pass for broadcasting
  2712. GGML_ASSERT(ggml_are_same_shape(a, b));
  2713. is_node = true;
  2714. }
  2715. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2716. result->op = GGML_OP_ADD;
  2717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2718. result->src[0] = a;
  2719. result->src[1] = b;
  2720. return result;
  2721. }
  2722. struct ggml_tensor * ggml_add(
  2723. struct ggml_context * ctx,
  2724. struct ggml_tensor * a,
  2725. struct ggml_tensor * b) {
  2726. return ggml_add_impl(ctx, a, b, false);
  2727. }
  2728. struct ggml_tensor * ggml_add_inplace(
  2729. struct ggml_context * ctx,
  2730. struct ggml_tensor * a,
  2731. struct ggml_tensor * b) {
  2732. return ggml_add_impl(ctx, a, b, true);
  2733. }
  2734. // ggml_add_cast
  2735. static struct ggml_tensor * ggml_add_cast_impl(
  2736. struct ggml_context * ctx,
  2737. struct ggml_tensor * a,
  2738. struct ggml_tensor * b,
  2739. enum ggml_type type) {
  2740. // TODO: support less-strict constraint
  2741. // GGML_ASSERT(ggml_can_repeat(b, a));
  2742. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2743. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2744. bool is_node = false;
  2745. if (a->grad || b->grad) {
  2746. // TODO: support backward pass for broadcasting
  2747. GGML_ASSERT(ggml_are_same_shape(a, b));
  2748. is_node = true;
  2749. }
  2750. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2751. result->op = GGML_OP_ADD;
  2752. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2753. result->src[0] = a;
  2754. result->src[1] = b;
  2755. return result;
  2756. }
  2757. struct ggml_tensor * ggml_add_cast(
  2758. struct ggml_context * ctx,
  2759. struct ggml_tensor * a,
  2760. struct ggml_tensor * b,
  2761. enum ggml_type type) {
  2762. return ggml_add_cast_impl(ctx, a, b, type);
  2763. }
  2764. // ggml_add1
  2765. static struct ggml_tensor * ggml_add1_impl(
  2766. struct ggml_context * ctx,
  2767. struct ggml_tensor * a,
  2768. struct ggml_tensor * b,
  2769. bool inplace) {
  2770. GGML_ASSERT(ggml_is_scalar(b));
  2771. GGML_ASSERT(ggml_is_padded_1d(a));
  2772. bool is_node = false;
  2773. if (a->grad || b->grad) {
  2774. is_node = true;
  2775. }
  2776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2777. result->op = GGML_OP_ADD1;
  2778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2779. result->src[0] = a;
  2780. result->src[1] = b;
  2781. return result;
  2782. }
  2783. struct ggml_tensor * ggml_add1(
  2784. struct ggml_context * ctx,
  2785. struct ggml_tensor * a,
  2786. struct ggml_tensor * b) {
  2787. return ggml_add1_impl(ctx, a, b, false);
  2788. }
  2789. struct ggml_tensor * ggml_add1_inplace(
  2790. struct ggml_context * ctx,
  2791. struct ggml_tensor * a,
  2792. struct ggml_tensor * b) {
  2793. return ggml_add1_impl(ctx, a, b, true);
  2794. }
  2795. // ggml_acc
  2796. static struct ggml_tensor * ggml_acc_impl(
  2797. struct ggml_context * ctx,
  2798. struct ggml_tensor * a,
  2799. struct ggml_tensor * b,
  2800. size_t nb1,
  2801. size_t nb2,
  2802. size_t nb3,
  2803. size_t offset,
  2804. bool inplace) {
  2805. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2806. GGML_ASSERT(ggml_is_contiguous(a));
  2807. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2808. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2809. bool is_node = false;
  2810. if (!inplace && (a->grad || b->grad)) {
  2811. is_node = true;
  2812. }
  2813. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2814. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2815. ggml_set_op_params(result, params, sizeof(params));
  2816. result->op = GGML_OP_ACC;
  2817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2818. result->src[0] = a;
  2819. result->src[1] = b;
  2820. return result;
  2821. }
  2822. struct ggml_tensor * ggml_acc(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * a,
  2825. struct ggml_tensor * b,
  2826. size_t nb1,
  2827. size_t nb2,
  2828. size_t nb3,
  2829. size_t offset) {
  2830. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2831. }
  2832. struct ggml_tensor * ggml_acc_inplace(
  2833. struct ggml_context * ctx,
  2834. struct ggml_tensor * a,
  2835. struct ggml_tensor * b,
  2836. size_t nb1,
  2837. size_t nb2,
  2838. size_t nb3,
  2839. size_t offset) {
  2840. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2841. }
  2842. // ggml_sub
  2843. static struct ggml_tensor * ggml_sub_impl(
  2844. struct ggml_context * ctx,
  2845. struct ggml_tensor * a,
  2846. struct ggml_tensor * b,
  2847. bool inplace) {
  2848. GGML_ASSERT(ggml_are_same_shape(a, b));
  2849. bool is_node = false;
  2850. if (!inplace && (a->grad || b->grad)) {
  2851. is_node = true;
  2852. }
  2853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2854. result->op = GGML_OP_SUB;
  2855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2856. result->src[0] = a;
  2857. result->src[1] = b;
  2858. return result;
  2859. }
  2860. struct ggml_tensor * ggml_sub(
  2861. struct ggml_context * ctx,
  2862. struct ggml_tensor * a,
  2863. struct ggml_tensor * b) {
  2864. return ggml_sub_impl(ctx, a, b, false);
  2865. }
  2866. struct ggml_tensor * ggml_sub_inplace(
  2867. struct ggml_context * ctx,
  2868. struct ggml_tensor * a,
  2869. struct ggml_tensor * b) {
  2870. return ggml_sub_impl(ctx, a, b, true);
  2871. }
  2872. // ggml_mul
  2873. static struct ggml_tensor * ggml_mul_impl(
  2874. struct ggml_context * ctx,
  2875. struct ggml_tensor * a,
  2876. struct ggml_tensor * b,
  2877. bool inplace) {
  2878. GGML_ASSERT(ggml_can_repeat(b, a));
  2879. bool is_node = false;
  2880. if (!inplace && (a->grad || b->grad)) {
  2881. // TODO: support backward pass for broadcasting
  2882. GGML_ASSERT(ggml_are_same_shape(a, b));
  2883. is_node = true;
  2884. }
  2885. if (inplace) {
  2886. GGML_ASSERT(!is_node);
  2887. }
  2888. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2889. result->op = GGML_OP_MUL;
  2890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2891. result->src[0] = a;
  2892. result->src[1] = b;
  2893. return result;
  2894. }
  2895. struct ggml_tensor * ggml_mul(
  2896. struct ggml_context * ctx,
  2897. struct ggml_tensor * a,
  2898. struct ggml_tensor * b) {
  2899. return ggml_mul_impl(ctx, a, b, false);
  2900. }
  2901. struct ggml_tensor * ggml_mul_inplace(
  2902. struct ggml_context * ctx,
  2903. struct ggml_tensor * a,
  2904. struct ggml_tensor * b) {
  2905. return ggml_mul_impl(ctx, a, b, true);
  2906. }
  2907. // ggml_div
  2908. static struct ggml_tensor * ggml_div_impl(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a,
  2911. struct ggml_tensor * b,
  2912. bool inplace) {
  2913. GGML_ASSERT(ggml_can_repeat(b, a));
  2914. bool is_node = false;
  2915. if (!inplace && (a->grad || b->grad)) {
  2916. is_node = true;
  2917. }
  2918. if (inplace) {
  2919. GGML_ASSERT(!is_node);
  2920. }
  2921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2922. result->op = GGML_OP_DIV;
  2923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2924. result->src[0] = a;
  2925. result->src[1] = b;
  2926. return result;
  2927. }
  2928. struct ggml_tensor * ggml_div(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a,
  2931. struct ggml_tensor * b) {
  2932. return ggml_div_impl(ctx, a, b, false);
  2933. }
  2934. struct ggml_tensor * ggml_div_inplace(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. struct ggml_tensor * b) {
  2938. return ggml_div_impl(ctx, a, b, true);
  2939. }
  2940. // ggml_sqr
  2941. static struct ggml_tensor * ggml_sqr_impl(
  2942. struct ggml_context * ctx,
  2943. struct ggml_tensor * a,
  2944. bool inplace) {
  2945. bool is_node = false;
  2946. if (!inplace && (a->grad)) {
  2947. is_node = true;
  2948. }
  2949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2950. result->op = GGML_OP_SQR;
  2951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2952. result->src[0] = a;
  2953. return result;
  2954. }
  2955. struct ggml_tensor * ggml_sqr(
  2956. struct ggml_context * ctx,
  2957. struct ggml_tensor * a) {
  2958. return ggml_sqr_impl(ctx, a, false);
  2959. }
  2960. struct ggml_tensor * ggml_sqr_inplace(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_sqr_impl(ctx, a, true);
  2964. }
  2965. // ggml_sqrt
  2966. static struct ggml_tensor * ggml_sqrt_impl(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a,
  2969. bool inplace) {
  2970. bool is_node = false;
  2971. if (!inplace && (a->grad)) {
  2972. is_node = true;
  2973. }
  2974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2975. result->op = GGML_OP_SQRT;
  2976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2977. result->src[0] = a;
  2978. return result;
  2979. }
  2980. struct ggml_tensor * ggml_sqrt(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a) {
  2983. return ggml_sqrt_impl(ctx, a, false);
  2984. }
  2985. struct ggml_tensor * ggml_sqrt_inplace(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_sqrt_impl(ctx, a, true);
  2989. }
  2990. // ggml_log
  2991. static struct ggml_tensor * ggml_log_impl(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a,
  2994. bool inplace) {
  2995. bool is_node = false;
  2996. if (!inplace && (a->grad)) {
  2997. is_node = true;
  2998. }
  2999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3000. result->op = GGML_OP_LOG;
  3001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3002. result->src[0] = a;
  3003. return result;
  3004. }
  3005. struct ggml_tensor * ggml_log(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_log_impl(ctx, a, false);
  3009. }
  3010. struct ggml_tensor * ggml_log_inplace(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. return ggml_log_impl(ctx, a, true);
  3014. }
  3015. // ggml_sum
  3016. struct ggml_tensor * ggml_sum(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a) {
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. is_node = true;
  3022. }
  3023. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3024. result->op = GGML_OP_SUM;
  3025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3026. result->src[0] = a;
  3027. return result;
  3028. }
  3029. // ggml_sum_rows
  3030. struct ggml_tensor * ggml_sum_rows(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a) {
  3033. bool is_node = false;
  3034. if (a->grad) {
  3035. is_node = true;
  3036. }
  3037. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3038. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3039. ne[i] = a->ne[i];
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3042. result->op = GGML_OP_SUM_ROWS;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_mean
  3048. struct ggml_tensor * ggml_mean(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a) {
  3051. bool is_node = false;
  3052. if (a->grad) {
  3053. GGML_ASSERT(false); // TODO: implement
  3054. is_node = true;
  3055. }
  3056. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3057. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3058. result->op = GGML_OP_MEAN;
  3059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3060. result->src[0] = a;
  3061. return result;
  3062. }
  3063. // ggml_argmax
  3064. struct ggml_tensor * ggml_argmax(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a) {
  3067. GGML_ASSERT(ggml_is_matrix(a));
  3068. bool is_node = false;
  3069. if (a->grad) {
  3070. GGML_ASSERT(false);
  3071. is_node = true;
  3072. }
  3073. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3074. result->op = GGML_OP_ARGMAX;
  3075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3076. result->src[0] = a;
  3077. return result;
  3078. }
  3079. // ggml_repeat
  3080. struct ggml_tensor * ggml_repeat(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a,
  3083. struct ggml_tensor * b) {
  3084. GGML_ASSERT(ggml_can_repeat(a, b));
  3085. bool is_node = false;
  3086. if (a->grad) {
  3087. is_node = true;
  3088. }
  3089. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3090. result->op = GGML_OP_REPEAT;
  3091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3092. result->src[0] = a;
  3093. return result;
  3094. }
  3095. // ggml_repeat_back
  3096. struct ggml_tensor * ggml_repeat_back(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a,
  3099. struct ggml_tensor * b) {
  3100. GGML_ASSERT(ggml_can_repeat(b, a));
  3101. bool is_node = false;
  3102. if (a->grad) {
  3103. is_node = true;
  3104. }
  3105. if (ggml_are_same_shape(a, b) && !is_node) {
  3106. return a;
  3107. }
  3108. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3109. result->op = GGML_OP_REPEAT_BACK;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src[0] = a;
  3112. return result;
  3113. }
  3114. // ggml_concat
  3115. struct ggml_tensor * ggml_concat(
  3116. struct ggml_context* ctx,
  3117. struct ggml_tensor* a,
  3118. struct ggml_tensor* b) {
  3119. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3120. bool is_node = false;
  3121. if (a->grad || b->grad) {
  3122. is_node = true;
  3123. }
  3124. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3125. result->op = GGML_OP_CONCAT;
  3126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3127. result->src[0] = a;
  3128. result->src[1] = b;
  3129. return result;
  3130. }
  3131. // ggml_abs
  3132. struct ggml_tensor * ggml_abs(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a) {
  3135. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3136. }
  3137. struct ggml_tensor * ggml_abs_inplace(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a) {
  3140. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3141. }
  3142. // ggml_sgn
  3143. struct ggml_tensor * ggml_sgn(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a) {
  3146. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3147. }
  3148. struct ggml_tensor * ggml_sgn_inplace(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a) {
  3151. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3152. }
  3153. // ggml_neg
  3154. struct ggml_tensor * ggml_neg(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a) {
  3157. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3158. }
  3159. struct ggml_tensor * ggml_neg_inplace(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a) {
  3162. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3163. }
  3164. // ggml_step
  3165. struct ggml_tensor * ggml_step(
  3166. struct ggml_context * ctx,
  3167. struct ggml_tensor * a) {
  3168. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3169. }
  3170. struct ggml_tensor * ggml_step_inplace(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a) {
  3173. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3174. }
  3175. // ggml_tanh
  3176. struct ggml_tensor * ggml_tanh(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a) {
  3179. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3180. }
  3181. struct ggml_tensor * ggml_tanh_inplace(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a) {
  3184. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3185. }
  3186. // ggml_elu
  3187. struct ggml_tensor * ggml_elu(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a) {
  3190. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3191. }
  3192. struct ggml_tensor * ggml_elu_inplace(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3196. }
  3197. // ggml_relu
  3198. struct ggml_tensor * ggml_relu(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a) {
  3201. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3202. }
  3203. struct ggml_tensor * ggml_relu_inplace(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a) {
  3206. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3207. }
  3208. // ggml_leaky_relu
  3209. struct ggml_tensor * ggml_leaky_relu(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3212. bool is_node = false;
  3213. if (!inplace && (a->grad)) {
  3214. is_node = true;
  3215. }
  3216. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3217. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3218. result->op = GGML_OP_LEAKY_RELU;
  3219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3220. result->src[0] = a;
  3221. return result;
  3222. }
  3223. // ggml_gelu
  3224. struct ggml_tensor * ggml_gelu(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a) {
  3227. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3228. }
  3229. struct ggml_tensor * ggml_gelu_inplace(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a) {
  3232. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3233. }
  3234. // ggml_gelu_quick
  3235. struct ggml_tensor * ggml_gelu_quick(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a) {
  3238. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3239. }
  3240. struct ggml_tensor * ggml_gelu_quick_inplace(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a) {
  3243. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3244. }
  3245. // ggml_silu
  3246. struct ggml_tensor * ggml_silu(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3250. }
  3251. struct ggml_tensor * ggml_silu_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3255. }
  3256. // ggml_silu_back
  3257. struct ggml_tensor * ggml_silu_back(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. struct ggml_tensor * b) {
  3261. bool is_node = false;
  3262. if (a->grad || b->grad) {
  3263. // TODO: implement backward
  3264. is_node = true;
  3265. }
  3266. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3267. result->op = GGML_OP_SILU_BACK;
  3268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3269. result->src[0] = a;
  3270. result->src[1] = b;
  3271. return result;
  3272. }
  3273. // ggml hardswish
  3274. struct ggml_tensor * ggml_hardswish(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3278. }
  3279. // ggml hardsigmoid
  3280. struct ggml_tensor * ggml_hardsigmoid(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a) {
  3283. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3284. }
  3285. // ggml_norm
  3286. static struct ggml_tensor * ggml_norm_impl(
  3287. struct ggml_context * ctx,
  3288. struct ggml_tensor * a,
  3289. float eps,
  3290. bool inplace) {
  3291. bool is_node = false;
  3292. if (!inplace && (a->grad)) {
  3293. GGML_ASSERT(false); // TODO: implement backward
  3294. is_node = true;
  3295. }
  3296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3297. ggml_set_op_params(result, &eps, sizeof(eps));
  3298. result->op = GGML_OP_NORM;
  3299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3300. result->src[0] = a;
  3301. return result;
  3302. }
  3303. struct ggml_tensor * ggml_norm(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a,
  3306. float eps) {
  3307. return ggml_norm_impl(ctx, a, eps, false);
  3308. }
  3309. struct ggml_tensor * ggml_norm_inplace(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a,
  3312. float eps) {
  3313. return ggml_norm_impl(ctx, a, eps, true);
  3314. }
  3315. // ggml_rms_norm
  3316. static struct ggml_tensor * ggml_rms_norm_impl(
  3317. struct ggml_context * ctx,
  3318. struct ggml_tensor * a,
  3319. float eps,
  3320. bool inplace) {
  3321. bool is_node = false;
  3322. if (!inplace && (a->grad)) {
  3323. is_node = true;
  3324. }
  3325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3326. ggml_set_op_params(result, &eps, sizeof(eps));
  3327. result->op = GGML_OP_RMS_NORM;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src[0] = a;
  3330. return result;
  3331. }
  3332. struct ggml_tensor * ggml_rms_norm(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. float eps) {
  3336. return ggml_rms_norm_impl(ctx, a, eps, false);
  3337. }
  3338. struct ggml_tensor * ggml_rms_norm_inplace(
  3339. struct ggml_context * ctx,
  3340. struct ggml_tensor * a,
  3341. float eps) {
  3342. return ggml_rms_norm_impl(ctx, a, eps, true);
  3343. }
  3344. // ggml_rms_norm_back
  3345. struct ggml_tensor * ggml_rms_norm_back(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. struct ggml_tensor * b,
  3349. float eps) {
  3350. bool is_node = false;
  3351. if (a->grad) {
  3352. // TODO: implement backward
  3353. is_node = true;
  3354. }
  3355. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3356. ggml_set_op_params(result, &eps, sizeof(eps));
  3357. result->op = GGML_OP_RMS_NORM_BACK;
  3358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3359. result->src[0] = a;
  3360. result->src[1] = b;
  3361. return result;
  3362. }
  3363. // ggml_group_norm
  3364. static struct ggml_tensor * ggml_group_norm_impl(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a,
  3367. int n_groups,
  3368. bool inplace) {
  3369. bool is_node = false;
  3370. if (!inplace && (a->grad)) {
  3371. GGML_ASSERT(false); // TODO: implement backward
  3372. is_node = true;
  3373. }
  3374. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3375. result->op_params[0] = n_groups;
  3376. result->op = GGML_OP_GROUP_NORM;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src[0] = a;
  3379. return result;
  3380. }
  3381. struct ggml_tensor * ggml_group_norm(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. int n_groups) {
  3385. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3386. }
  3387. struct ggml_tensor * ggml_group_norm_inplace(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a,
  3390. int n_groups) {
  3391. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3392. }
  3393. // ggml_mul_mat
  3394. struct ggml_tensor * ggml_mul_mat(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a,
  3397. struct ggml_tensor * b) {
  3398. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3399. GGML_ASSERT(!ggml_is_transposed(a));
  3400. bool is_node = false;
  3401. if (a->grad || b->grad) {
  3402. is_node = true;
  3403. }
  3404. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3406. result->op = GGML_OP_MUL_MAT;
  3407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3408. result->src[0] = a;
  3409. result->src[1] = b;
  3410. return result;
  3411. }
  3412. void ggml_mul_mat_set_prec(
  3413. struct ggml_tensor * a,
  3414. enum ggml_prec prec) {
  3415. const int32_t prec_i32 = (int32_t) prec;
  3416. ggml_set_op_params_i32(a, 0, prec_i32);
  3417. }
  3418. // ggml_mul_mat_id
  3419. struct ggml_tensor * ggml_mul_mat_id(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * const as[],
  3422. int n_as,
  3423. struct ggml_tensor * ids,
  3424. int id,
  3425. struct ggml_tensor * b) {
  3426. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3427. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3428. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3429. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3430. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3431. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3432. bool is_node = false;
  3433. if (as[0]->grad || b->grad) {
  3434. is_node = true;
  3435. }
  3436. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3437. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3438. ggml_set_op_params_i32(result, 0, id);
  3439. ggml_set_op_params_i32(result, 1, n_as);
  3440. result->op = GGML_OP_MUL_MAT_ID;
  3441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3442. result->src[0] = ids;
  3443. result->src[1] = b;
  3444. for (int i = 0; i < n_as; i++) {
  3445. struct ggml_tensor * a = as[i];
  3446. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3447. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3448. GGML_ASSERT(!ggml_is_transposed(a));
  3449. result->src[i + 2] = a;
  3450. }
  3451. return result;
  3452. }
  3453. // ggml_out_prod
  3454. struct ggml_tensor * ggml_out_prod(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b) {
  3458. GGML_ASSERT(ggml_can_out_prod(a, b));
  3459. GGML_ASSERT(!ggml_is_transposed(a));
  3460. bool is_node = false;
  3461. if (a->grad || b->grad) {
  3462. is_node = true;
  3463. }
  3464. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3465. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3466. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3467. result->op = GGML_OP_OUT_PROD;
  3468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3469. result->src[0] = a;
  3470. result->src[1] = b;
  3471. return result;
  3472. }
  3473. // ggml_scale
  3474. static struct ggml_tensor * ggml_scale_impl(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. float s,
  3478. bool inplace) {
  3479. GGML_ASSERT(ggml_is_padded_1d(a));
  3480. bool is_node = false;
  3481. if (a->grad) {
  3482. is_node = true;
  3483. }
  3484. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3485. ggml_set_op_params(result, &s, sizeof(s));
  3486. result->op = GGML_OP_SCALE;
  3487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3488. result->src[0] = a;
  3489. return result;
  3490. }
  3491. struct ggml_tensor * ggml_scale(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. float s) {
  3495. return ggml_scale_impl(ctx, a, s, false);
  3496. }
  3497. struct ggml_tensor * ggml_scale_inplace(
  3498. struct ggml_context * ctx,
  3499. struct ggml_tensor * a,
  3500. float s) {
  3501. return ggml_scale_impl(ctx, a, s, true);
  3502. }
  3503. // ggml_set
  3504. static struct ggml_tensor * ggml_set_impl(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b,
  3508. size_t nb1,
  3509. size_t nb2,
  3510. size_t nb3,
  3511. size_t offset,
  3512. bool inplace) {
  3513. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3514. bool is_node = false;
  3515. if (a->grad || b->grad) {
  3516. is_node = true;
  3517. }
  3518. // make a view of the destination
  3519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3520. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3521. ggml_set_op_params(result, params, sizeof(params));
  3522. result->op = GGML_OP_SET;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src[0] = a;
  3525. result->src[1] = b;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_set(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b,
  3532. size_t nb1,
  3533. size_t nb2,
  3534. size_t nb3,
  3535. size_t offset) {
  3536. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3537. }
  3538. struct ggml_tensor * ggml_set_inplace(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a,
  3541. struct ggml_tensor * b,
  3542. size_t nb1,
  3543. size_t nb2,
  3544. size_t nb3,
  3545. size_t offset) {
  3546. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3547. }
  3548. struct ggml_tensor * ggml_set_1d(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a,
  3551. struct ggml_tensor * b,
  3552. size_t offset) {
  3553. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3554. }
  3555. struct ggml_tensor * ggml_set_1d_inplace(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a,
  3558. struct ggml_tensor * b,
  3559. size_t offset) {
  3560. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3561. }
  3562. struct ggml_tensor * ggml_set_2d(
  3563. struct ggml_context * ctx,
  3564. struct ggml_tensor * a,
  3565. struct ggml_tensor * b,
  3566. size_t nb1,
  3567. size_t offset) {
  3568. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3569. }
  3570. struct ggml_tensor * ggml_set_2d_inplace(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b,
  3574. size_t nb1,
  3575. size_t offset) {
  3576. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3577. }
  3578. // ggml_cpy
  3579. static struct ggml_tensor * ggml_cpy_impl(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a,
  3582. struct ggml_tensor * b) {
  3583. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3584. bool is_node = false;
  3585. if (a->grad || b->grad) {
  3586. // inplace is false and either one have a grad
  3587. is_node = true;
  3588. }
  3589. // make a view of the destination
  3590. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3591. if (strlen(b->name) > 0) {
  3592. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3593. } else {
  3594. ggml_format_name(result, "%s (copy)", a->name);
  3595. }
  3596. result->op = GGML_OP_CPY;
  3597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3598. result->src[0] = a;
  3599. result->src[1] = b;
  3600. return result;
  3601. }
  3602. struct ggml_tensor * ggml_cpy(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a,
  3605. struct ggml_tensor * b) {
  3606. return ggml_cpy_impl(ctx, a, b);
  3607. }
  3608. struct ggml_tensor * ggml_cast(
  3609. struct ggml_context * ctx,
  3610. struct ggml_tensor * a,
  3611. enum ggml_type type) {
  3612. bool is_node = false;
  3613. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3614. ggml_format_name(result, "%s (copy)", a->name);
  3615. result->op = GGML_OP_CPY;
  3616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3617. result->src[0] = a;
  3618. result->src[1] = result;
  3619. return result;
  3620. }
  3621. // ggml_cont
  3622. static struct ggml_tensor * ggml_cont_impl(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a) {
  3625. bool is_node = false;
  3626. if (a->grad) {
  3627. is_node = true;
  3628. }
  3629. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3630. ggml_format_name(result, "%s (cont)", a->name);
  3631. result->op = GGML_OP_CONT;
  3632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3633. result->src[0] = a;
  3634. return result;
  3635. }
  3636. struct ggml_tensor * ggml_cont(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a) {
  3639. return ggml_cont_impl(ctx, a);
  3640. }
  3641. // make contiguous, with new shape
  3642. GGML_API struct ggml_tensor * ggml_cont_1d(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a,
  3645. int64_t ne0) {
  3646. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3647. }
  3648. GGML_API struct ggml_tensor * ggml_cont_2d(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a,
  3651. int64_t ne0,
  3652. int64_t ne1) {
  3653. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3654. }
  3655. GGML_API struct ggml_tensor * ggml_cont_3d(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * a,
  3658. int64_t ne0,
  3659. int64_t ne1,
  3660. int64_t ne2) {
  3661. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3662. }
  3663. struct ggml_tensor * ggml_cont_4d(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. int64_t ne0,
  3667. int64_t ne1,
  3668. int64_t ne2,
  3669. int64_t ne3) {
  3670. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3671. bool is_node = false;
  3672. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3673. ggml_format_name(result, "%s (cont)", a->name);
  3674. result->op = GGML_OP_CONT;
  3675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3676. result->src[0] = a;
  3677. return result;
  3678. }
  3679. // ggml_reshape
  3680. struct ggml_tensor * ggml_reshape(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a,
  3683. struct ggml_tensor * b) {
  3684. GGML_ASSERT(ggml_is_contiguous(a));
  3685. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3686. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3687. bool is_node = false;
  3688. if (a->grad) {
  3689. is_node = true;
  3690. }
  3691. if (b->grad) {
  3692. // gradient propagation is not supported
  3693. //GGML_ASSERT(false);
  3694. }
  3695. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3696. ggml_format_name(result, "%s (reshaped)", a->name);
  3697. result->op = GGML_OP_RESHAPE;
  3698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3699. result->src[0] = a;
  3700. return result;
  3701. }
  3702. struct ggml_tensor * ggml_reshape_1d(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. int64_t ne0) {
  3706. GGML_ASSERT(ggml_is_contiguous(a));
  3707. GGML_ASSERT(ggml_nelements(a) == ne0);
  3708. bool is_node = false;
  3709. if (a->grad) {
  3710. is_node = true;
  3711. }
  3712. const int64_t ne[1] = { ne0 };
  3713. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3714. ggml_format_name(result, "%s (reshaped)", a->name);
  3715. result->op = GGML_OP_RESHAPE;
  3716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3717. result->src[0] = a;
  3718. return result;
  3719. }
  3720. struct ggml_tensor * ggml_reshape_2d(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a,
  3723. int64_t ne0,
  3724. int64_t ne1) {
  3725. GGML_ASSERT(ggml_is_contiguous(a));
  3726. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3727. bool is_node = false;
  3728. if (a->grad) {
  3729. is_node = true;
  3730. }
  3731. const int64_t ne[2] = { ne0, ne1 };
  3732. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3733. ggml_format_name(result, "%s (reshaped)", a->name);
  3734. result->op = GGML_OP_RESHAPE;
  3735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3736. result->src[0] = a;
  3737. return result;
  3738. }
  3739. struct ggml_tensor * ggml_reshape_3d(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. int64_t ne0,
  3743. int64_t ne1,
  3744. int64_t ne2) {
  3745. GGML_ASSERT(ggml_is_contiguous(a));
  3746. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3747. bool is_node = false;
  3748. if (a->grad) {
  3749. is_node = true;
  3750. }
  3751. const int64_t ne[3] = { ne0, ne1, ne2 };
  3752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3753. ggml_format_name(result, "%s (reshaped)", a->name);
  3754. result->op = GGML_OP_RESHAPE;
  3755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3756. result->src[0] = a;
  3757. return result;
  3758. }
  3759. struct ggml_tensor * ggml_reshape_4d(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. int64_t ne0,
  3763. int64_t ne1,
  3764. int64_t ne2,
  3765. int64_t ne3) {
  3766. GGML_ASSERT(ggml_is_contiguous(a));
  3767. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3768. bool is_node = false;
  3769. if (a->grad) {
  3770. is_node = true;
  3771. }
  3772. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3773. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3774. ggml_format_name(result, "%s (reshaped)", a->name);
  3775. result->op = GGML_OP_RESHAPE;
  3776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3777. result->src[0] = a;
  3778. return result;
  3779. }
  3780. static struct ggml_tensor * ggml_view_impl(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. int n_dims,
  3784. const int64_t * ne,
  3785. size_t offset) {
  3786. bool is_node = false;
  3787. if (a->grad) {
  3788. is_node = true;
  3789. }
  3790. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3791. ggml_format_name(result, "%s (view)", a->name);
  3792. ggml_set_op_params(result, &offset, sizeof(offset));
  3793. result->op = GGML_OP_VIEW;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src[0] = a;
  3796. return result;
  3797. }
  3798. // ggml_view_1d
  3799. struct ggml_tensor * ggml_view_1d(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. int64_t ne0,
  3803. size_t offset) {
  3804. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3805. return result;
  3806. }
  3807. // ggml_view_2d
  3808. struct ggml_tensor * ggml_view_2d(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. int64_t ne0,
  3812. int64_t ne1,
  3813. size_t nb1,
  3814. size_t offset) {
  3815. const int64_t ne[2] = { ne0, ne1 };
  3816. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3817. result->nb[1] = nb1;
  3818. result->nb[2] = result->nb[1]*ne1;
  3819. result->nb[3] = result->nb[2];
  3820. return result;
  3821. }
  3822. // ggml_view_3d
  3823. struct ggml_tensor * ggml_view_3d(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a,
  3826. int64_t ne0,
  3827. int64_t ne1,
  3828. int64_t ne2,
  3829. size_t nb1,
  3830. size_t nb2,
  3831. size_t offset) {
  3832. const int64_t ne[3] = { ne0, ne1, ne2 };
  3833. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3834. result->nb[1] = nb1;
  3835. result->nb[2] = nb2;
  3836. result->nb[3] = result->nb[2]*ne2;
  3837. return result;
  3838. }
  3839. // ggml_view_4d
  3840. struct ggml_tensor * ggml_view_4d(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. int64_t ne0,
  3844. int64_t ne1,
  3845. int64_t ne2,
  3846. int64_t ne3,
  3847. size_t nb1,
  3848. size_t nb2,
  3849. size_t nb3,
  3850. size_t offset) {
  3851. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3852. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3853. result->nb[1] = nb1;
  3854. result->nb[2] = nb2;
  3855. result->nb[3] = nb3;
  3856. return result;
  3857. }
  3858. // ggml_permute
  3859. struct ggml_tensor * ggml_permute(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int axis0,
  3863. int axis1,
  3864. int axis2,
  3865. int axis3) {
  3866. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3867. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3868. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3869. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3870. GGML_ASSERT(axis0 != axis1);
  3871. GGML_ASSERT(axis0 != axis2);
  3872. GGML_ASSERT(axis0 != axis3);
  3873. GGML_ASSERT(axis1 != axis2);
  3874. GGML_ASSERT(axis1 != axis3);
  3875. GGML_ASSERT(axis2 != axis3);
  3876. bool is_node = false;
  3877. if (a->grad) {
  3878. is_node = true;
  3879. }
  3880. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3881. ggml_format_name(result, "%s (permuted)", a->name);
  3882. int ne[GGML_MAX_DIMS];
  3883. int nb[GGML_MAX_DIMS];
  3884. ne[axis0] = a->ne[0];
  3885. ne[axis1] = a->ne[1];
  3886. ne[axis2] = a->ne[2];
  3887. ne[axis3] = a->ne[3];
  3888. nb[axis0] = a->nb[0];
  3889. nb[axis1] = a->nb[1];
  3890. nb[axis2] = a->nb[2];
  3891. nb[axis3] = a->nb[3];
  3892. result->ne[0] = ne[0];
  3893. result->ne[1] = ne[1];
  3894. result->ne[2] = ne[2];
  3895. result->ne[3] = ne[3];
  3896. result->nb[0] = nb[0];
  3897. result->nb[1] = nb[1];
  3898. result->nb[2] = nb[2];
  3899. result->nb[3] = nb[3];
  3900. result->op = GGML_OP_PERMUTE;
  3901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3902. result->src[0] = a;
  3903. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3904. ggml_set_op_params(result, params, sizeof(params));
  3905. return result;
  3906. }
  3907. // ggml_transpose
  3908. struct ggml_tensor * ggml_transpose(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * a) {
  3911. bool is_node = false;
  3912. if (a->grad) {
  3913. is_node = true;
  3914. }
  3915. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3916. ggml_format_name(result, "%s (transposed)", a->name);
  3917. result->ne[0] = a->ne[1];
  3918. result->ne[1] = a->ne[0];
  3919. result->nb[0] = a->nb[1];
  3920. result->nb[1] = a->nb[0];
  3921. result->op = GGML_OP_TRANSPOSE;
  3922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3923. result->src[0] = a;
  3924. return result;
  3925. }
  3926. // ggml_get_rows
  3927. struct ggml_tensor * ggml_get_rows(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. struct ggml_tensor * b) {
  3931. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3932. GGML_ASSERT(b->ne[3] == 1);
  3933. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3934. bool is_node = false;
  3935. if (a->grad || b->grad) {
  3936. is_node = true;
  3937. }
  3938. // TODO: implement non F32 return
  3939. enum ggml_type type = GGML_TYPE_F32;
  3940. if (a->type == GGML_TYPE_I32) {
  3941. type = a->type;
  3942. }
  3943. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3944. result->op = GGML_OP_GET_ROWS;
  3945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3946. result->src[0] = a;
  3947. result->src[1] = b;
  3948. return result;
  3949. }
  3950. // ggml_get_rows_back
  3951. struct ggml_tensor * ggml_get_rows_back(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. struct ggml_tensor * b,
  3955. struct ggml_tensor * c) {
  3956. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3957. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3958. bool is_node = false;
  3959. if (a->grad || b->grad) {
  3960. is_node = true;
  3961. }
  3962. // TODO: implement non F32 return
  3963. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3964. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3965. result->op = GGML_OP_GET_ROWS_BACK;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src[0] = a;
  3968. result->src[1] = b;
  3969. return result;
  3970. }
  3971. // ggml_diag
  3972. struct ggml_tensor * ggml_diag(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a) {
  3975. GGML_ASSERT(a->ne[1] == 1);
  3976. bool is_node = false;
  3977. if (a->grad) {
  3978. is_node = true;
  3979. }
  3980. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3981. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3982. result->op = GGML_OP_DIAG;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src[0] = a;
  3985. return result;
  3986. }
  3987. // ggml_diag_mask_inf
  3988. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. int n_past,
  3992. bool inplace) {
  3993. bool is_node = false;
  3994. if (a->grad) {
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3998. int32_t params[] = { n_past };
  3999. ggml_set_op_params(result, params, sizeof(params));
  4000. result->op = GGML_OP_DIAG_MASK_INF;
  4001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4002. result->src[0] = a;
  4003. return result;
  4004. }
  4005. struct ggml_tensor * ggml_diag_mask_inf(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. int n_past) {
  4009. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4010. }
  4011. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a,
  4014. int n_past) {
  4015. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4016. }
  4017. // ggml_diag_mask_zero
  4018. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a,
  4021. int n_past,
  4022. bool inplace) {
  4023. bool is_node = false;
  4024. if (a->grad) {
  4025. is_node = true;
  4026. }
  4027. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4028. int32_t params[] = { n_past };
  4029. ggml_set_op_params(result, params, sizeof(params));
  4030. result->op = GGML_OP_DIAG_MASK_ZERO;
  4031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4032. result->src[0] = a;
  4033. return result;
  4034. }
  4035. struct ggml_tensor * ggml_diag_mask_zero(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. int n_past) {
  4039. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4040. }
  4041. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. int n_past) {
  4045. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4046. }
  4047. // ggml_soft_max
  4048. static struct ggml_tensor * ggml_soft_max_impl(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. struct ggml_tensor * mask,
  4052. float scale,
  4053. bool inplace) {
  4054. GGML_ASSERT(ggml_is_contiguous(a));
  4055. if (mask) {
  4056. GGML_ASSERT(ggml_is_contiguous(mask));
  4057. GGML_ASSERT(mask->ne[2] == 1);
  4058. GGML_ASSERT(mask->ne[3] == 1);
  4059. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4060. }
  4061. bool is_node = false;
  4062. if (a->grad) {
  4063. is_node = true;
  4064. }
  4065. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4066. float params[] = { scale };
  4067. ggml_set_op_params(result, params, sizeof(params));
  4068. result->op = GGML_OP_SOFT_MAX;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src[0] = a;
  4071. result->src[1] = mask;
  4072. return result;
  4073. }
  4074. struct ggml_tensor * ggml_soft_max(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a) {
  4077. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4078. }
  4079. struct ggml_tensor * ggml_soft_max_inplace(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a) {
  4082. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4083. }
  4084. struct ggml_tensor * ggml_soft_max_ext(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. struct ggml_tensor * mask,
  4088. float scale) {
  4089. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4090. }
  4091. // ggml_soft_max_back
  4092. static struct ggml_tensor * ggml_soft_max_back_impl(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a,
  4095. struct ggml_tensor * b,
  4096. bool inplace) {
  4097. bool is_node = false;
  4098. if (a->grad || b->grad) {
  4099. is_node = true; // TODO : implement backward pass
  4100. }
  4101. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4102. result->op = GGML_OP_SOFT_MAX_BACK;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. result->src[1] = b;
  4106. return result;
  4107. }
  4108. struct ggml_tensor * ggml_soft_max_back(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b) {
  4112. return ggml_soft_max_back_impl(ctx, a, b, false);
  4113. }
  4114. struct ggml_tensor * ggml_soft_max_back_inplace(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. struct ggml_tensor * b) {
  4118. return ggml_soft_max_back_impl(ctx, a, b, true);
  4119. }
  4120. // ggml_rope
  4121. static struct ggml_tensor * ggml_rope_impl(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. struct ggml_tensor * b,
  4125. int n_dims,
  4126. int mode,
  4127. int n_ctx,
  4128. int n_orig_ctx,
  4129. float freq_base,
  4130. float freq_scale,
  4131. float ext_factor,
  4132. float attn_factor,
  4133. float beta_fast,
  4134. float beta_slow,
  4135. float xpos_base,
  4136. bool xpos_down,
  4137. bool inplace) {
  4138. GGML_ASSERT(ggml_is_vector(b));
  4139. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4140. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4141. bool is_node = false;
  4142. if (a->grad) {
  4143. is_node = true;
  4144. }
  4145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4146. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4147. memcpy(params + 5, &freq_base, sizeof(float));
  4148. memcpy(params + 6, &freq_scale, sizeof(float));
  4149. memcpy(params + 7, &ext_factor, sizeof(float));
  4150. memcpy(params + 8, &attn_factor, sizeof(float));
  4151. memcpy(params + 9, &beta_fast, sizeof(float));
  4152. memcpy(params + 10, &beta_slow, sizeof(float));
  4153. memcpy(params + 11, &xpos_base, sizeof(float));
  4154. memcpy(params + 12, &xpos_down, sizeof(bool));
  4155. ggml_set_op_params(result, params, sizeof(params));
  4156. result->op = GGML_OP_ROPE;
  4157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4158. result->src[0] = a;
  4159. result->src[1] = b;
  4160. return result;
  4161. }
  4162. struct ggml_tensor * ggml_rope(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. struct ggml_tensor * b,
  4166. int n_dims,
  4167. int mode,
  4168. int n_ctx) {
  4169. return ggml_rope_impl(
  4170. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4171. );
  4172. }
  4173. struct ggml_tensor * ggml_rope_inplace(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. struct ggml_tensor * b,
  4177. int n_dims,
  4178. int mode,
  4179. int n_ctx) {
  4180. return ggml_rope_impl(
  4181. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4182. );
  4183. }
  4184. struct ggml_tensor * ggml_rope_custom(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b,
  4188. int n_dims,
  4189. int mode,
  4190. int n_ctx,
  4191. int n_orig_ctx,
  4192. float freq_base,
  4193. float freq_scale,
  4194. float ext_factor,
  4195. float attn_factor,
  4196. float beta_fast,
  4197. float beta_slow) {
  4198. return ggml_rope_impl(
  4199. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4200. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4201. );
  4202. }
  4203. struct ggml_tensor * ggml_rope_custom_inplace(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. struct ggml_tensor * b,
  4207. int n_dims,
  4208. int mode,
  4209. int n_ctx,
  4210. int n_orig_ctx,
  4211. float freq_base,
  4212. float freq_scale,
  4213. float ext_factor,
  4214. float attn_factor,
  4215. float beta_fast,
  4216. float beta_slow) {
  4217. return ggml_rope_impl(
  4218. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4219. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4220. );
  4221. }
  4222. struct ggml_tensor * ggml_rope_xpos_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. int n_dims,
  4227. float base,
  4228. bool down) {
  4229. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4230. }
  4231. // ggml_rope_back
  4232. struct ggml_tensor * ggml_rope_back(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a,
  4235. struct ggml_tensor * b,
  4236. int n_dims,
  4237. int mode,
  4238. int n_ctx,
  4239. int n_orig_ctx,
  4240. float freq_base,
  4241. float freq_scale,
  4242. float ext_factor,
  4243. float attn_factor,
  4244. float beta_fast,
  4245. float beta_slow,
  4246. float xpos_base,
  4247. bool xpos_down) {
  4248. GGML_ASSERT(ggml_is_vector(b));
  4249. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4250. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4251. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4252. bool is_node = false;
  4253. if (a->grad) {
  4254. is_node = false; // TODO: implement backward
  4255. }
  4256. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4257. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4258. memcpy(params + 5, &freq_base, sizeof(float));
  4259. memcpy(params + 6, &freq_scale, sizeof(float));
  4260. memcpy(params + 7, &ext_factor, sizeof(float));
  4261. memcpy(params + 8, &attn_factor, sizeof(float));
  4262. memcpy(params + 9, &beta_fast, sizeof(float));
  4263. memcpy(params + 10, &beta_slow, sizeof(float));
  4264. memcpy(params + 11, &xpos_base, sizeof(float));
  4265. memcpy(params + 12, &xpos_down, sizeof(bool));
  4266. ggml_set_op_params(result, params, sizeof(params));
  4267. result->op = GGML_OP_ROPE_BACK;
  4268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4269. result->src[0] = a;
  4270. result->src[1] = b;
  4271. return result;
  4272. }
  4273. // ggml_alibi
  4274. struct ggml_tensor * ggml_alibi(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. int n_past,
  4278. int n_head,
  4279. float bias_max) {
  4280. GGML_ASSERT(n_past >= 0);
  4281. bool is_node = false;
  4282. if (a->grad) {
  4283. GGML_ASSERT(false); // TODO: implement backward
  4284. is_node = true;
  4285. }
  4286. // TODO: when implement backward, fix this:
  4287. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4288. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4289. int32_t op_params[3] = { n_past, n_head };
  4290. memcpy(op_params + 2, &bias_max, sizeof(float));
  4291. ggml_set_op_params(result, op_params, sizeof(op_params));
  4292. result->op = GGML_OP_ALIBI;
  4293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4294. result->src[0] = a;
  4295. return result;
  4296. }
  4297. // ggml_clamp
  4298. struct ggml_tensor * ggml_clamp(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a,
  4301. float min,
  4302. float max) {
  4303. bool is_node = false;
  4304. if (a->grad) {
  4305. GGML_ASSERT(false); // TODO: implement backward
  4306. is_node = true;
  4307. }
  4308. // TODO: when implement backward, fix this:
  4309. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4310. float params[] = { min, max };
  4311. ggml_set_op_params(result, params, sizeof(params));
  4312. result->op = GGML_OP_CLAMP;
  4313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4314. result->src[0] = a;
  4315. return result;
  4316. }
  4317. // ggml_conv_1d
  4318. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4319. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4320. }
  4321. GGML_API struct ggml_tensor * ggml_conv_1d(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a,
  4324. struct ggml_tensor * b,
  4325. int s0,
  4326. int p0,
  4327. int d0) {
  4328. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4329. struct ggml_tensor * result =
  4330. ggml_mul_mat(ctx,
  4331. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4332. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4333. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4334. return result;
  4335. }
  4336. // ggml_conv_1d_ph
  4337. struct ggml_tensor* ggml_conv_1d_ph(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. int s,
  4342. int d) {
  4343. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4344. }
  4345. // ggml_conv_transpose_1d
  4346. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4347. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4348. }
  4349. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. struct ggml_tensor * b,
  4353. int s0,
  4354. int p0,
  4355. int d0) {
  4356. GGML_ASSERT(ggml_is_matrix(b));
  4357. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4358. GGML_ASSERT(a->ne[3] == 1);
  4359. GGML_ASSERT(p0 == 0);
  4360. GGML_ASSERT(d0 == 1);
  4361. bool is_node = false;
  4362. if (a->grad || b->grad) {
  4363. GGML_ASSERT(false); // TODO: implement backward
  4364. is_node = true;
  4365. }
  4366. const int64_t ne[4] = {
  4367. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4368. a->ne[1], b->ne[2], 1,
  4369. };
  4370. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4371. int32_t params[] = { s0, p0, d0 };
  4372. ggml_set_op_params(result, params, sizeof(params));
  4373. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src[0] = a;
  4376. result->src[1] = b;
  4377. return result;
  4378. }
  4379. // ggml_conv_depthwise
  4380. struct ggml_tensor * ggml_conv_depthwise_2d(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. struct ggml_tensor * b,
  4384. int s0,
  4385. int s1,
  4386. int p0,
  4387. int p1,
  4388. int d0,
  4389. int d1) {
  4390. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4391. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4392. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4393. s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
  4394. struct ggml_tensor * result =
  4395. ggml_mul_mat(ctx,
  4396. ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4397. ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4398. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4399. return result;
  4400. }
  4401. // ggml_conv_2d
  4402. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4403. // a: [OC,IC, KH, KW]
  4404. // b: [N, IC, IH, IW]
  4405. // result: [N, OH, OW, IC*KH*KW]
  4406. struct ggml_tensor * ggml_im2col(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. struct ggml_tensor * b,
  4410. int s0,
  4411. int s1,
  4412. int p0,
  4413. int p1,
  4414. int d0,
  4415. int d1,
  4416. bool is_2D) {
  4417. if(is_2D) {
  4418. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4419. } else {
  4420. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4421. }
  4422. bool is_node = false;
  4423. if (a->grad || b->grad) {
  4424. GGML_ASSERT(false); // TODO: implement backward
  4425. is_node = true;
  4426. }
  4427. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4428. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4429. const int64_t ne[4] = {
  4430. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4431. OW,
  4432. is_2D ? OH : b->ne[2],
  4433. is_2D ? b->ne[3] : 1,
  4434. };
  4435. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4436. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4437. ggml_set_op_params(result, params, sizeof(params));
  4438. result->op = GGML_OP_IM2COL;
  4439. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4440. result->src[0] = a;
  4441. result->src[1] = b;
  4442. return result;
  4443. }
  4444. // a: [OC,IC, KH, KW]
  4445. // b: [N, IC, IH, IW]
  4446. // result: [N, OC, OH, OW]
  4447. struct ggml_tensor * ggml_conv_2d(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b,
  4451. int s0,
  4452. int s1,
  4453. int p0,
  4454. int p1,
  4455. int d0,
  4456. int d1) {
  4457. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4458. struct ggml_tensor * result =
  4459. ggml_mul_mat(ctx,
  4460. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4461. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4462. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4463. return result;
  4464. }
  4465. // ggml_conv_2d_sk_p0
  4466. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. struct ggml_tensor * b) {
  4470. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4471. }
  4472. // ggml_conv_2d_s1_ph
  4473. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b) {
  4477. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4478. }
  4479. // ggml_conv_transpose_2d_p0
  4480. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4481. return (ins - 1) * s - 2 * p + ks;
  4482. }
  4483. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b,
  4487. int stride) {
  4488. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4489. bool is_node = false;
  4490. if (a->grad || b->grad) {
  4491. GGML_ASSERT(false); // TODO: implement backward
  4492. is_node = true;
  4493. }
  4494. const int64_t ne[4] = {
  4495. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4496. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4497. a->ne[2], b->ne[3],
  4498. };
  4499. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4500. ggml_set_op_params_i32(result, 0, stride);
  4501. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src[0] = a;
  4504. result->src[1] = b;
  4505. return result;
  4506. }
  4507. // ggml_pool_*
  4508. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4509. return (ins + 2 * p - ks) / s + 1;
  4510. }
  4511. // ggml_pool_1d
  4512. struct ggml_tensor * ggml_pool_1d(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. enum ggml_op_pool op,
  4516. int k0,
  4517. int s0,
  4518. int p0) {
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. GGML_ASSERT(false); // TODO: implement backward
  4522. is_node = true;
  4523. }
  4524. const int64_t ne[2] = {
  4525. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4526. a->ne[1],
  4527. };
  4528. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4529. int32_t params[] = { op, k0, s0, p0 };
  4530. ggml_set_op_params(result, params, sizeof(params));
  4531. result->op = GGML_OP_POOL_1D;
  4532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4533. result->src[0] = a;
  4534. return result;
  4535. }
  4536. // ggml_pool_2d
  4537. struct ggml_tensor * ggml_pool_2d(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. enum ggml_op_pool op,
  4541. int k0,
  4542. int k1,
  4543. int s0,
  4544. int s1,
  4545. float p0,
  4546. float p1) {
  4547. bool is_node = false;
  4548. if (a->grad) {
  4549. GGML_ASSERT(false); // TODO: implement backward
  4550. is_node = true;
  4551. }
  4552. const int64_t ne[3] = {
  4553. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4554. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4555. a->ne[2],
  4556. };
  4557. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4558. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4559. ggml_set_op_params(result, params, sizeof(params));
  4560. result->op = GGML_OP_POOL_2D;
  4561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4562. result->src[0] = a;
  4563. return result;
  4564. }
  4565. // ggml_upscale
  4566. static struct ggml_tensor * ggml_upscale_impl(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a,
  4569. int scale_factor) {
  4570. bool is_node = false;
  4571. if (a->grad) {
  4572. GGML_ASSERT(false); // TODO: implement backward
  4573. is_node = true;
  4574. }
  4575. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4576. a->ne[0] * scale_factor,
  4577. a->ne[1] * scale_factor,
  4578. a->ne[2], a->ne[3]);
  4579. result->op = GGML_OP_UPSCALE;
  4580. result->op_params[0] = scale_factor;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src[0] = a;
  4583. return result;
  4584. }
  4585. struct ggml_tensor * ggml_pad(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. int p0, int p1, int p2, int p3) {
  4589. bool is_node = false;
  4590. if (a->grad) {
  4591. GGML_ASSERT(false); // TODO: implement backward
  4592. is_node = true;
  4593. }
  4594. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4595. a->ne[0] + p0,
  4596. a->ne[1] + p1,
  4597. a->ne[2] + p2,
  4598. a->ne[3] + p3);
  4599. result->op = GGML_OP_PAD;
  4600. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4601. result->src[0] = a;
  4602. return result;
  4603. }
  4604. struct ggml_tensor * ggml_upscale(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. int scale_factor) {
  4608. return ggml_upscale_impl(ctx, a, scale_factor);
  4609. }
  4610. // ggml_argsort
  4611. struct ggml_tensor * ggml_argsort(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. enum ggml_sort_order order) {
  4615. bool is_node = false;
  4616. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4617. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4618. result->op = GGML_OP_ARGSORT;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = a;
  4621. return result;
  4622. }
  4623. // ggml_top_k
  4624. struct ggml_tensor * ggml_top_k(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. int k) {
  4628. GGML_ASSERT(a->ne[0] >= k);
  4629. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4630. result = ggml_view_4d(ctx, result,
  4631. k, result->ne[1], result->ne[2], result->ne[3],
  4632. result->nb[1], result->nb[2], result->nb[3],
  4633. 0);
  4634. return result;
  4635. }
  4636. // ggml_flash_attn
  4637. struct ggml_tensor * ggml_flash_attn(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * q,
  4640. struct ggml_tensor * k,
  4641. struct ggml_tensor * v,
  4642. bool masked) {
  4643. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4644. // TODO: check if vT can be multiplied by (k*qT)
  4645. bool is_node = false;
  4646. if (q->grad || k->grad || v->grad) {
  4647. is_node = true;
  4648. }
  4649. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4650. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4651. int32_t t = masked ? 1 : 0;
  4652. ggml_set_op_params(result, &t, sizeof(t));
  4653. result->op = GGML_OP_FLASH_ATTN;
  4654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4655. result->src[0] = q;
  4656. result->src[1] = k;
  4657. result->src[2] = v;
  4658. return result;
  4659. }
  4660. // ggml_flash_ff
  4661. struct ggml_tensor * ggml_flash_ff(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a,
  4664. struct ggml_tensor * b0,
  4665. struct ggml_tensor * b1,
  4666. struct ggml_tensor * c0,
  4667. struct ggml_tensor * c1) {
  4668. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4669. // TODO: more checks
  4670. bool is_node = false;
  4671. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4672. is_node = true;
  4673. }
  4674. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4676. result->op = GGML_OP_FLASH_FF;
  4677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4678. result->src[0] = a;
  4679. result->src[1] = b0;
  4680. result->src[2] = b1;
  4681. result->src[3] = c0;
  4682. result->src[4] = c1;
  4683. return result;
  4684. }
  4685. // ggml_flash_attn_back
  4686. struct ggml_tensor * ggml_flash_attn_back(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * q,
  4689. struct ggml_tensor * k,
  4690. struct ggml_tensor * v,
  4691. struct ggml_tensor * d,
  4692. bool masked) {
  4693. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4694. // TODO: check if vT can be multiplied by (k*qT)
  4695. // d shape [D,N,ne2,ne3]
  4696. // q shape [D,N,ne2,ne3]
  4697. // k shape [D,M,kvne2,ne3]
  4698. // v shape [M,D,kvne2,ne3]
  4699. const int64_t D = q->ne[0];
  4700. const int64_t N = q->ne[1];
  4701. const int64_t M = k->ne[1];
  4702. const int64_t ne2 = q->ne[2];
  4703. const int64_t ne3 = q->ne[3];
  4704. const int64_t kvne2 = k->ne[2];
  4705. GGML_ASSERT(k->ne[0] == D);
  4706. GGML_ASSERT(v->ne[0] == M);
  4707. GGML_ASSERT(v->ne[1] == D);
  4708. GGML_ASSERT(d->ne[0] == D);
  4709. GGML_ASSERT(d->ne[1] == N);
  4710. GGML_ASSERT(k->ne[2] == kvne2);
  4711. GGML_ASSERT(k->ne[3] == ne3);
  4712. GGML_ASSERT(v->ne[2] == kvne2);
  4713. GGML_ASSERT(v->ne[3] == ne3);
  4714. GGML_ASSERT(d->ne[2] == ne2);
  4715. GGML_ASSERT(d->ne[3] == ne3);
  4716. GGML_ASSERT(ne2 % kvne2 == 0);
  4717. bool is_node = false;
  4718. if (q->grad || k->grad || v->grad) {
  4719. // when using this operation (in backwards pass) these grads are set.
  4720. // we don't want to create (big) grad of our result, so is_node is false.
  4721. is_node = false;
  4722. }
  4723. // store gradients of q, k and v as continuous tensors concatenated in result.
  4724. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4725. const int64_t elem_q = ggml_nelements(q);
  4726. const int64_t elem_k = ggml_nelements(k);
  4727. const int64_t elem_v = ggml_nelements(v);
  4728. enum ggml_type result_type = GGML_TYPE_F32;
  4729. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4730. const size_t tsize = ggml_type_size(result_type);
  4731. const size_t offs_q = 0;
  4732. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4733. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4734. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4735. const size_t nelements = (end + tsize - 1)/tsize;
  4736. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4737. int32_t masked_i = masked ? 1 : 0;
  4738. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4739. result->op = GGML_OP_FLASH_ATTN_BACK;
  4740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4741. result->src[0] = q;
  4742. result->src[1] = k;
  4743. result->src[2] = v;
  4744. result->src[3] = d;
  4745. return result;
  4746. }
  4747. // ggml_win_part
  4748. struct ggml_tensor * ggml_win_part(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a,
  4751. int w) {
  4752. GGML_ASSERT(a->ne[3] == 1);
  4753. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4754. bool is_node = false;
  4755. if (a->grad) {
  4756. GGML_ASSERT(false); // TODO: implement backward
  4757. is_node = true;
  4758. }
  4759. // padding
  4760. const int px = (w - a->ne[1]%w)%w;
  4761. const int py = (w - a->ne[2]%w)%w;
  4762. const int npx = (px + a->ne[1])/w;
  4763. const int npy = (py + a->ne[2])/w;
  4764. const int np = npx*npy;
  4765. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4766. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4767. int32_t params[] = { npx, npy, w };
  4768. ggml_set_op_params(result, params, sizeof(params));
  4769. result->op = GGML_OP_WIN_PART;
  4770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4771. result->src[0] = a;
  4772. return result;
  4773. }
  4774. // ggml_win_unpart
  4775. struct ggml_tensor * ggml_win_unpart(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. int w0,
  4779. int h0,
  4780. int w) {
  4781. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4782. bool is_node = false;
  4783. if (a->grad) {
  4784. GGML_ASSERT(false); // TODO: implement backward
  4785. is_node = true;
  4786. }
  4787. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4788. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4789. int32_t params[] = { w };
  4790. ggml_set_op_params(result, params, sizeof(params));
  4791. result->op = GGML_OP_WIN_UNPART;
  4792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4793. result->src[0] = a;
  4794. return result;
  4795. }
  4796. // ggml_get_rel_pos
  4797. struct ggml_tensor * ggml_get_rel_pos(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. int qh,
  4801. int kh) {
  4802. GGML_ASSERT(qh == kh);
  4803. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4804. bool is_node = false;
  4805. if (a->grad) {
  4806. GGML_ASSERT(false); // TODO: implement backward
  4807. is_node = true;
  4808. }
  4809. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4810. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4811. result->op = GGML_OP_GET_REL_POS;
  4812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4813. result->src[0] = a;
  4814. return result;
  4815. }
  4816. // ggml_add_rel_pos
  4817. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * pw,
  4821. struct ggml_tensor * ph,
  4822. bool inplace) {
  4823. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4824. GGML_ASSERT(ggml_is_contiguous(a));
  4825. GGML_ASSERT(ggml_is_contiguous(pw));
  4826. GGML_ASSERT(ggml_is_contiguous(ph));
  4827. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4828. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4829. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4830. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4831. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4832. bool is_node = false;
  4833. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4834. is_node = true;
  4835. }
  4836. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4837. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4838. result->op = GGML_OP_ADD_REL_POS;
  4839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4840. result->src[0] = a;
  4841. result->src[1] = pw;
  4842. result->src[2] = ph;
  4843. return result;
  4844. }
  4845. struct ggml_tensor * ggml_add_rel_pos(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. struct ggml_tensor * pw,
  4849. struct ggml_tensor * ph) {
  4850. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4851. }
  4852. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * pw,
  4856. struct ggml_tensor * ph) {
  4857. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4858. }
  4859. // gmml_unary
  4860. static struct ggml_tensor * ggml_unary_impl(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. enum ggml_unary_op op,
  4864. bool inplace) {
  4865. bool is_node = false;
  4866. if (!inplace && (a->grad)) {
  4867. is_node = true;
  4868. }
  4869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4870. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4871. result->op = GGML_OP_UNARY;
  4872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4873. result->src[0] = a;
  4874. return result;
  4875. }
  4876. struct ggml_tensor * ggml_unary(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. enum ggml_unary_op op) {
  4880. return ggml_unary_impl(ctx, a, op, false);
  4881. }
  4882. struct ggml_tensor * ggml_unary_inplace(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. enum ggml_unary_op op) {
  4886. return ggml_unary_impl(ctx, a, op, true);
  4887. }
  4888. // ggml_map_unary
  4889. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. const ggml_unary_op_f32_t fun,
  4893. bool inplace) {
  4894. bool is_node = false;
  4895. if (!inplace && a->grad) {
  4896. is_node = true;
  4897. }
  4898. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4899. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4900. result->op = GGML_OP_MAP_UNARY;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src[0] = a;
  4903. return result;
  4904. }
  4905. struct ggml_tensor * ggml_map_unary_f32(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. const ggml_unary_op_f32_t fun) {
  4909. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4910. }
  4911. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. const ggml_unary_op_f32_t fun) {
  4915. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4916. }
  4917. // ggml_map_binary
  4918. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. struct ggml_tensor * b,
  4922. const ggml_binary_op_f32_t fun,
  4923. bool inplace) {
  4924. GGML_ASSERT(ggml_are_same_shape(a, b));
  4925. bool is_node = false;
  4926. if (!inplace && (a->grad || b->grad)) {
  4927. is_node = true;
  4928. }
  4929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4930. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4931. result->op = GGML_OP_MAP_BINARY;
  4932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4933. result->src[0] = a;
  4934. result->src[1] = b;
  4935. return result;
  4936. }
  4937. struct ggml_tensor * ggml_map_binary_f32(
  4938. struct ggml_context * ctx,
  4939. struct ggml_tensor * a,
  4940. struct ggml_tensor * b,
  4941. const ggml_binary_op_f32_t fun) {
  4942. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4943. }
  4944. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. const ggml_binary_op_f32_t fun) {
  4949. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4950. }
  4951. // ggml_map_custom1_f32
  4952. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. const ggml_custom1_op_f32_t fun,
  4956. bool inplace) {
  4957. bool is_node = false;
  4958. if (!inplace && a->grad) {
  4959. is_node = true;
  4960. }
  4961. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4962. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4963. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4965. result->src[0] = a;
  4966. return result;
  4967. }
  4968. struct ggml_tensor * ggml_map_custom1_f32(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. const ggml_custom1_op_f32_t fun) {
  4972. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4973. }
  4974. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. const ggml_custom1_op_f32_t fun) {
  4978. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4979. }
  4980. // ggml_map_custom2_f32
  4981. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. struct ggml_tensor * b,
  4985. const ggml_custom2_op_f32_t fun,
  4986. bool inplace) {
  4987. bool is_node = false;
  4988. if (!inplace && (a->grad || b->grad)) {
  4989. is_node = true;
  4990. }
  4991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4992. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4993. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4995. result->src[0] = a;
  4996. result->src[1] = b;
  4997. return result;
  4998. }
  4999. struct ggml_tensor * ggml_map_custom2_f32(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. struct ggml_tensor * b,
  5003. const ggml_custom2_op_f32_t fun) {
  5004. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5005. }
  5006. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. struct ggml_tensor * b,
  5010. const ggml_custom2_op_f32_t fun) {
  5011. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5012. }
  5013. // ggml_map_custom3_f32
  5014. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * b,
  5018. struct ggml_tensor * c,
  5019. const ggml_custom3_op_f32_t fun,
  5020. bool inplace) {
  5021. bool is_node = false;
  5022. if (!inplace && (a->grad || b->grad || c->grad)) {
  5023. is_node = true;
  5024. }
  5025. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5026. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5027. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5029. result->src[0] = a;
  5030. result->src[1] = b;
  5031. result->src[2] = c;
  5032. return result;
  5033. }
  5034. struct ggml_tensor * ggml_map_custom3_f32(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. struct ggml_tensor * b,
  5038. struct ggml_tensor * c,
  5039. const ggml_custom3_op_f32_t fun) {
  5040. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5041. }
  5042. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. struct ggml_tensor * b,
  5046. struct ggml_tensor * c,
  5047. const ggml_custom3_op_f32_t fun) {
  5048. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5049. }
  5050. // ggml_map_custom1
  5051. struct ggml_map_custom1_op_params {
  5052. ggml_custom1_op_t fun;
  5053. int n_tasks;
  5054. void * userdata;
  5055. };
  5056. static struct ggml_tensor * ggml_map_custom1_impl(
  5057. struct ggml_context * ctx,
  5058. struct ggml_tensor * a,
  5059. const ggml_custom1_op_t fun,
  5060. int n_tasks,
  5061. void * userdata,
  5062. bool inplace) {
  5063. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5064. bool is_node = false;
  5065. if (!inplace && a->grad) {
  5066. is_node = true;
  5067. }
  5068. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5069. struct ggml_map_custom1_op_params params = {
  5070. /*.fun =*/ fun,
  5071. /*.n_tasks =*/ n_tasks,
  5072. /*.userdata =*/ userdata
  5073. };
  5074. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5075. result->op = GGML_OP_MAP_CUSTOM1;
  5076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5077. result->src[0] = a;
  5078. return result;
  5079. }
  5080. struct ggml_tensor * ggml_map_custom1(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. const ggml_custom1_op_t fun,
  5084. int n_tasks,
  5085. void * userdata) {
  5086. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5087. }
  5088. struct ggml_tensor * ggml_map_custom1_inplace(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. const ggml_custom1_op_t fun,
  5092. int n_tasks,
  5093. void * userdata) {
  5094. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5095. }
  5096. // ggml_map_custom2
  5097. struct ggml_map_custom2_op_params {
  5098. ggml_custom2_op_t fun;
  5099. int n_tasks;
  5100. void * userdata;
  5101. };
  5102. static struct ggml_tensor * ggml_map_custom2_impl(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * b,
  5106. const ggml_custom2_op_t fun,
  5107. int n_tasks,
  5108. void * userdata,
  5109. bool inplace) {
  5110. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5111. bool is_node = false;
  5112. if (!inplace && (a->grad || b->grad)) {
  5113. is_node = true;
  5114. }
  5115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5116. struct ggml_map_custom2_op_params params = {
  5117. /*.fun =*/ fun,
  5118. /*.n_tasks =*/ n_tasks,
  5119. /*.userdata =*/ userdata
  5120. };
  5121. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5122. result->op = GGML_OP_MAP_CUSTOM2;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = b;
  5126. return result;
  5127. }
  5128. struct ggml_tensor * ggml_map_custom2(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. struct ggml_tensor * b,
  5132. const ggml_custom2_op_t fun,
  5133. int n_tasks,
  5134. void * userdata) {
  5135. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5136. }
  5137. struct ggml_tensor * ggml_map_custom2_inplace(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. struct ggml_tensor * b,
  5141. const ggml_custom2_op_t fun,
  5142. int n_tasks,
  5143. void * userdata) {
  5144. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5145. }
  5146. // ggml_map_custom3
  5147. struct ggml_map_custom3_op_params {
  5148. ggml_custom3_op_t fun;
  5149. int n_tasks;
  5150. void * userdata;
  5151. };
  5152. static struct ggml_tensor * ggml_map_custom3_impl(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. struct ggml_tensor * b,
  5156. struct ggml_tensor * c,
  5157. const ggml_custom3_op_t fun,
  5158. int n_tasks,
  5159. void * userdata,
  5160. bool inplace) {
  5161. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5162. bool is_node = false;
  5163. if (!inplace && (a->grad || b->grad || c->grad)) {
  5164. is_node = true;
  5165. }
  5166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5167. struct ggml_map_custom3_op_params params = {
  5168. /*.fun =*/ fun,
  5169. /*.n_tasks =*/ n_tasks,
  5170. /*.userdata =*/ userdata
  5171. };
  5172. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5173. result->op = GGML_OP_MAP_CUSTOM3;
  5174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5175. result->src[0] = a;
  5176. result->src[1] = b;
  5177. result->src[2] = c;
  5178. return result;
  5179. }
  5180. struct ggml_tensor * ggml_map_custom3(
  5181. struct ggml_context * ctx,
  5182. struct ggml_tensor * a,
  5183. struct ggml_tensor * b,
  5184. struct ggml_tensor * c,
  5185. const ggml_custom3_op_t fun,
  5186. int n_tasks,
  5187. void * userdata) {
  5188. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5189. }
  5190. struct ggml_tensor * ggml_map_custom3_inplace(
  5191. struct ggml_context * ctx,
  5192. struct ggml_tensor * a,
  5193. struct ggml_tensor * b,
  5194. struct ggml_tensor * c,
  5195. const ggml_custom3_op_t fun,
  5196. int n_tasks,
  5197. void * userdata) {
  5198. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5199. }
  5200. // ggml_cross_entropy_loss
  5201. struct ggml_tensor * ggml_cross_entropy_loss(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. struct ggml_tensor * b) {
  5205. GGML_ASSERT(ggml_are_same_shape(a, b));
  5206. bool is_node = false;
  5207. if (a->grad || b->grad) {
  5208. is_node = true;
  5209. }
  5210. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5211. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5213. result->src[0] = a;
  5214. result->src[1] = b;
  5215. return result;
  5216. }
  5217. // ggml_cross_entropy_loss_back
  5218. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5219. struct ggml_context * ctx,
  5220. struct ggml_tensor * a,
  5221. struct ggml_tensor * b,
  5222. struct ggml_tensor * c) {
  5223. GGML_ASSERT(ggml_are_same_shape(a, b));
  5224. GGML_ASSERT(ggml_is_scalar(c));
  5225. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5226. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5227. result->grad = NULL;
  5228. result->src[0] = a;
  5229. result->src[1] = b;
  5230. result->src[2] = c;
  5231. return result;
  5232. }
  5233. ////////////////////////////////////////////////////////////////////////////////
  5234. void ggml_set_param(
  5235. struct ggml_context * ctx,
  5236. struct ggml_tensor * tensor) {
  5237. tensor->is_param = true;
  5238. GGML_ASSERT(tensor->grad == NULL);
  5239. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5240. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5241. }
  5242. // ggml_compute_forward_dup
  5243. static void ggml_compute_forward_dup_same_cont(
  5244. const struct ggml_compute_params * params,
  5245. const struct ggml_tensor * src0,
  5246. struct ggml_tensor * dst) {
  5247. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5248. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5249. GGML_ASSERT(src0->type == dst->type);
  5250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5251. return;
  5252. }
  5253. const size_t nb00 = src0->nb[0];
  5254. const size_t nb0 = dst->nb[0];
  5255. const int ith = params->ith; // thread index
  5256. const int nth = params->nth; // number of threads
  5257. // parallelize by elements
  5258. const int ne = ggml_nelements(dst);
  5259. const int dr = (ne + nth - 1) / nth;
  5260. const int ie0 = dr * ith;
  5261. const int ie1 = MIN(ie0 + dr, ne);
  5262. if (ie0 < ie1) {
  5263. memcpy(
  5264. ((char *) dst->data + ie0*nb0),
  5265. ((char *) src0->data + ie0*nb00),
  5266. (ie1 - ie0) * ggml_type_size(src0->type));
  5267. }
  5268. }
  5269. static void ggml_compute_forward_dup_f16(
  5270. const struct ggml_compute_params * params,
  5271. const struct ggml_tensor * src0,
  5272. struct ggml_tensor * dst) {
  5273. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5275. return;
  5276. }
  5277. GGML_TENSOR_UNARY_OP_LOCALS
  5278. const int ith = params->ith; // thread index
  5279. const int nth = params->nth; // number of threads
  5280. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5281. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5282. return;
  5283. }
  5284. // parallelize by rows
  5285. const int nr = ne01;
  5286. // number of rows per thread
  5287. const int dr = (nr + nth - 1) / nth;
  5288. // row range for this thread
  5289. const int ir0 = dr * ith;
  5290. const int ir1 = MIN(ir0 + dr, nr);
  5291. if (src0->type == dst->type &&
  5292. ne00 == ne0 &&
  5293. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5294. // copy by rows
  5295. const size_t rs = ne00*nb00;
  5296. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5297. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5298. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5299. memcpy(
  5300. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5301. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5302. rs);
  5303. }
  5304. }
  5305. }
  5306. return;
  5307. }
  5308. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5309. if (ggml_is_contiguous(dst)) {
  5310. if (nb00 == sizeof(ggml_fp16_t)) {
  5311. if (dst->type == GGML_TYPE_F16) {
  5312. size_t id = 0;
  5313. const size_t rs = ne00 * nb00;
  5314. char * dst_ptr = (char *) dst->data;
  5315. for (int i03 = 0; i03 < ne03; i03++) {
  5316. for (int i02 = 0; i02 < ne02; i02++) {
  5317. id += rs * ir0;
  5318. for (int i01 = ir0; i01 < ir1; i01++) {
  5319. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5320. memcpy(dst_ptr + id, src0_ptr, rs);
  5321. id += rs;
  5322. }
  5323. id += rs * (ne01 - ir1);
  5324. }
  5325. }
  5326. } else if (dst->type == GGML_TYPE_F32) {
  5327. size_t id = 0;
  5328. float * dst_ptr = (float *) dst->data;
  5329. for (int i03 = 0; i03 < ne03; i03++) {
  5330. for (int i02 = 0; i02 < ne02; i02++) {
  5331. id += ne00 * ir0;
  5332. for (int i01 = ir0; i01 < ir1; i01++) {
  5333. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5334. for (int i00 = 0; i00 < ne00; i00++) {
  5335. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5336. id++;
  5337. }
  5338. }
  5339. id += ne00 * (ne01 - ir1);
  5340. }
  5341. }
  5342. } else if (type_traits[dst->type].from_float) {
  5343. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5344. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5345. size_t id = 0;
  5346. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5347. char * dst_ptr = (char *) dst->data;
  5348. for (int i03 = 0; i03 < ne03; i03++) {
  5349. for (int i02 = 0; i02 < ne02; i02++) {
  5350. id += rs * ir0;
  5351. for (int i01 = ir0; i01 < ir1; i01++) {
  5352. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5353. for (int i00 = 0; i00 < ne00; i00++) {
  5354. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5355. }
  5356. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5357. id += rs;
  5358. }
  5359. id += rs * (ne01 - ir1);
  5360. }
  5361. }
  5362. } else {
  5363. GGML_ASSERT(false); // TODO: implement
  5364. }
  5365. } else {
  5366. //printf("%s: this is not optimal - fix me\n", __func__);
  5367. if (dst->type == GGML_TYPE_F32) {
  5368. size_t id = 0;
  5369. float * dst_ptr = (float *) dst->data;
  5370. for (int i03 = 0; i03 < ne03; i03++) {
  5371. for (int i02 = 0; i02 < ne02; i02++) {
  5372. id += ne00 * ir0;
  5373. for (int i01 = ir0; i01 < ir1; i01++) {
  5374. for (int i00 = 0; i00 < ne00; i00++) {
  5375. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5376. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5377. id++;
  5378. }
  5379. }
  5380. id += ne00 * (ne01 - ir1);
  5381. }
  5382. }
  5383. } else if (dst->type == GGML_TYPE_F16) {
  5384. size_t id = 0;
  5385. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5386. for (int i03 = 0; i03 < ne03; i03++) {
  5387. for (int i02 = 0; i02 < ne02; i02++) {
  5388. id += ne00 * ir0;
  5389. for (int i01 = ir0; i01 < ir1; i01++) {
  5390. for (int i00 = 0; i00 < ne00; i00++) {
  5391. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5392. dst_ptr[id] = *src0_ptr;
  5393. id++;
  5394. }
  5395. }
  5396. id += ne00 * (ne01 - ir1);
  5397. }
  5398. }
  5399. } else {
  5400. GGML_ASSERT(false); // TODO: implement
  5401. }
  5402. }
  5403. return;
  5404. }
  5405. // dst counters
  5406. int64_t i10 = 0;
  5407. int64_t i11 = 0;
  5408. int64_t i12 = 0;
  5409. int64_t i13 = 0;
  5410. if (dst->type == GGML_TYPE_F16) {
  5411. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5412. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5413. i10 += ne00 * ir0;
  5414. while (i10 >= ne0) {
  5415. i10 -= ne0;
  5416. if (++i11 == ne1) {
  5417. i11 = 0;
  5418. if (++i12 == ne2) {
  5419. i12 = 0;
  5420. if (++i13 == ne3) {
  5421. i13 = 0;
  5422. }
  5423. }
  5424. }
  5425. }
  5426. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5427. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5428. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5429. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5430. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5431. if (++i10 == ne00) {
  5432. i10 = 0;
  5433. if (++i11 == ne01) {
  5434. i11 = 0;
  5435. if (++i12 == ne02) {
  5436. i12 = 0;
  5437. if (++i13 == ne03) {
  5438. i13 = 0;
  5439. }
  5440. }
  5441. }
  5442. }
  5443. }
  5444. }
  5445. i10 += ne00 * (ne01 - ir1);
  5446. while (i10 >= ne0) {
  5447. i10 -= ne0;
  5448. if (++i11 == ne1) {
  5449. i11 = 0;
  5450. if (++i12 == ne2) {
  5451. i12 = 0;
  5452. if (++i13 == ne3) {
  5453. i13 = 0;
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. }
  5460. } else if (dst->type == GGML_TYPE_F32) {
  5461. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5462. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5463. i10 += ne00 * ir0;
  5464. while (i10 >= ne0) {
  5465. i10 -= ne0;
  5466. if (++i11 == ne1) {
  5467. i11 = 0;
  5468. if (++i12 == ne2) {
  5469. i12 = 0;
  5470. if (++i13 == ne3) {
  5471. i13 = 0;
  5472. }
  5473. }
  5474. }
  5475. }
  5476. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5477. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5478. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5479. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5480. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5481. if (++i10 == ne0) {
  5482. i10 = 0;
  5483. if (++i11 == ne1) {
  5484. i11 = 0;
  5485. if (++i12 == ne2) {
  5486. i12 = 0;
  5487. if (++i13 == ne3) {
  5488. i13 = 0;
  5489. }
  5490. }
  5491. }
  5492. }
  5493. }
  5494. }
  5495. i10 += ne00 * (ne01 - ir1);
  5496. while (i10 >= ne0) {
  5497. i10 -= ne0;
  5498. if (++i11 == ne1) {
  5499. i11 = 0;
  5500. if (++i12 == ne2) {
  5501. i12 = 0;
  5502. if (++i13 == ne3) {
  5503. i13 = 0;
  5504. }
  5505. }
  5506. }
  5507. }
  5508. }
  5509. }
  5510. } else {
  5511. GGML_ASSERT(false); // TODO: implement
  5512. }
  5513. }
  5514. static void ggml_compute_forward_dup_f32(
  5515. const struct ggml_compute_params * params,
  5516. const struct ggml_tensor * src0,
  5517. struct ggml_tensor * dst) {
  5518. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5520. return;
  5521. }
  5522. GGML_TENSOR_UNARY_OP_LOCALS
  5523. const int ith = params->ith; // thread index
  5524. const int nth = params->nth; // number of threads
  5525. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5526. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5527. return;
  5528. }
  5529. // parallelize by rows
  5530. const int nr = ne01;
  5531. // number of rows per thread
  5532. const int dr = (nr + nth - 1) / nth;
  5533. // row range for this thread
  5534. const int ir0 = dr * ith;
  5535. const int ir1 = MIN(ir0 + dr, nr);
  5536. if (src0->type == dst->type &&
  5537. ne00 == ne0 &&
  5538. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5539. // copy by rows
  5540. const size_t rs = ne00*nb00;
  5541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5543. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5544. memcpy(
  5545. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5546. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5547. rs);
  5548. }
  5549. }
  5550. }
  5551. return;
  5552. }
  5553. if (ggml_is_contiguous(dst)) {
  5554. // TODO: simplify
  5555. if (nb00 == sizeof(float)) {
  5556. if (dst->type == GGML_TYPE_F32) {
  5557. size_t id = 0;
  5558. const size_t rs = ne00 * nb00;
  5559. char * dst_ptr = (char *) dst->data;
  5560. for (int i03 = 0; i03 < ne03; i03++) {
  5561. for (int i02 = 0; i02 < ne02; i02++) {
  5562. id += rs * ir0;
  5563. for (int i01 = ir0; i01 < ir1; i01++) {
  5564. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5565. memcpy(dst_ptr + id, src0_ptr, rs);
  5566. id += rs;
  5567. }
  5568. id += rs * (ne01 - ir1);
  5569. }
  5570. }
  5571. } else if (type_traits[dst->type].from_float) {
  5572. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5573. size_t id = 0;
  5574. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5575. char * dst_ptr = (char *) dst->data;
  5576. for (int i03 = 0; i03 < ne03; i03++) {
  5577. for (int i02 = 0; i02 < ne02; i02++) {
  5578. id += rs * ir0;
  5579. for (int i01 = ir0; i01 < ir1; i01++) {
  5580. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5581. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5582. id += rs;
  5583. }
  5584. id += rs * (ne01 - ir1);
  5585. }
  5586. }
  5587. } else {
  5588. GGML_ASSERT(false); // TODO: implement
  5589. }
  5590. } else {
  5591. //printf("%s: this is not optimal - fix me\n", __func__);
  5592. if (dst->type == GGML_TYPE_F32) {
  5593. size_t id = 0;
  5594. float * dst_ptr = (float *) dst->data;
  5595. for (int i03 = 0; i03 < ne03; i03++) {
  5596. for (int i02 = 0; i02 < ne02; i02++) {
  5597. id += ne00 * ir0;
  5598. for (int i01 = ir0; i01 < ir1; i01++) {
  5599. for (int i00 = 0; i00 < ne00; i00++) {
  5600. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5601. dst_ptr[id] = *src0_ptr;
  5602. id++;
  5603. }
  5604. }
  5605. id += ne00 * (ne01 - ir1);
  5606. }
  5607. }
  5608. } else if (dst->type == GGML_TYPE_F16) {
  5609. size_t id = 0;
  5610. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5611. for (int i03 = 0; i03 < ne03; i03++) {
  5612. for (int i02 = 0; i02 < ne02; i02++) {
  5613. id += ne00 * ir0;
  5614. for (int i01 = ir0; i01 < ir1; i01++) {
  5615. for (int i00 = 0; i00 < ne00; i00++) {
  5616. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5617. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5618. id++;
  5619. }
  5620. }
  5621. id += ne00 * (ne01 - ir1);
  5622. }
  5623. }
  5624. } else {
  5625. GGML_ASSERT(false); // TODO: implement
  5626. }
  5627. }
  5628. return;
  5629. }
  5630. // dst counters
  5631. int64_t i10 = 0;
  5632. int64_t i11 = 0;
  5633. int64_t i12 = 0;
  5634. int64_t i13 = 0;
  5635. if (dst->type == GGML_TYPE_F32) {
  5636. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5637. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5638. i10 += ne00 * ir0;
  5639. while (i10 >= ne0) {
  5640. i10 -= ne0;
  5641. if (++i11 == ne1) {
  5642. i11 = 0;
  5643. if (++i12 == ne2) {
  5644. i12 = 0;
  5645. if (++i13 == ne3) {
  5646. i13 = 0;
  5647. }
  5648. }
  5649. }
  5650. }
  5651. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5652. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5653. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5654. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5655. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5656. if (++i10 == ne0) {
  5657. i10 = 0;
  5658. if (++i11 == ne1) {
  5659. i11 = 0;
  5660. if (++i12 == ne2) {
  5661. i12 = 0;
  5662. if (++i13 == ne3) {
  5663. i13 = 0;
  5664. }
  5665. }
  5666. }
  5667. }
  5668. }
  5669. }
  5670. i10 += ne00 * (ne01 - ir1);
  5671. while (i10 >= ne0) {
  5672. i10 -= ne0;
  5673. if (++i11 == ne1) {
  5674. i11 = 0;
  5675. if (++i12 == ne2) {
  5676. i12 = 0;
  5677. if (++i13 == ne3) {
  5678. i13 = 0;
  5679. }
  5680. }
  5681. }
  5682. }
  5683. }
  5684. }
  5685. } else if (dst->type == GGML_TYPE_F16) {
  5686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5688. i10 += ne00 * ir0;
  5689. while (i10 >= ne0) {
  5690. i10 -= ne0;
  5691. if (++i11 == ne1) {
  5692. i11 = 0;
  5693. if (++i12 == ne2) {
  5694. i12 = 0;
  5695. if (++i13 == ne3) {
  5696. i13 = 0;
  5697. }
  5698. }
  5699. }
  5700. }
  5701. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5702. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5703. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5704. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5705. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5706. if (++i10 == ne0) {
  5707. i10 = 0;
  5708. if (++i11 == ne1) {
  5709. i11 = 0;
  5710. if (++i12 == ne2) {
  5711. i12 = 0;
  5712. if (++i13 == ne3) {
  5713. i13 = 0;
  5714. }
  5715. }
  5716. }
  5717. }
  5718. }
  5719. }
  5720. i10 += ne00 * (ne01 - ir1);
  5721. while (i10 >= ne0) {
  5722. i10 -= ne0;
  5723. if (++i11 == ne1) {
  5724. i11 = 0;
  5725. if (++i12 == ne2) {
  5726. i12 = 0;
  5727. if (++i13 == ne3) {
  5728. i13 = 0;
  5729. }
  5730. }
  5731. }
  5732. }
  5733. }
  5734. }
  5735. } else {
  5736. GGML_ASSERT(false); // TODO: implement
  5737. }
  5738. }
  5739. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5740. static void ggml_compute_forward_dup_bytes(
  5741. const struct ggml_compute_params * params,
  5742. const struct ggml_tensor * src0,
  5743. struct ggml_tensor * dst) {
  5744. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5745. GGML_ASSERT(src0->type == dst->type);
  5746. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5747. return;
  5748. }
  5749. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5750. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5751. return;
  5752. }
  5753. GGML_TENSOR_UNARY_OP_LOCALS;
  5754. const size_t type_size = ggml_type_size(src0->type);
  5755. const int ith = params->ith; // thread index
  5756. const int nth = params->nth; // number of threads
  5757. // parallelize by rows
  5758. const int nr = ne01;
  5759. // number of rows per thread
  5760. const int dr = (nr + nth - 1) / nth;
  5761. // row range for this thread
  5762. const int ir0 = dr * ith;
  5763. const int ir1 = MIN(ir0 + dr, nr);
  5764. if (src0->type == dst->type &&
  5765. ne00 == ne0 &&
  5766. nb00 == type_size && nb0 == type_size) {
  5767. // copy by rows
  5768. const size_t rs = ne00 * type_size;
  5769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5771. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5772. memcpy(
  5773. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5774. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5775. rs);
  5776. }
  5777. }
  5778. }
  5779. return;
  5780. }
  5781. if (ggml_is_contiguous(dst)) {
  5782. size_t id = 0;
  5783. char * dst_ptr = (char *) dst->data;
  5784. const size_t rs = ne00 * type_size;
  5785. if (nb00 == type_size) {
  5786. // src0 is contigous on first dimension, copy by rows
  5787. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5788. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5789. id += rs * ir0;
  5790. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5791. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5792. memcpy(dst_ptr + id, src0_ptr, rs);
  5793. id += rs;
  5794. }
  5795. id += rs * (ne01 - ir1);
  5796. }
  5797. }
  5798. } else {
  5799. //printf("%s: this is not optimal - fix me\n", __func__);
  5800. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5801. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5802. id += rs * ir0;
  5803. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5804. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5805. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5806. memcpy(dst_ptr + id, src0_ptr, type_size);
  5807. id += type_size;
  5808. }
  5809. }
  5810. id += rs * (ne01 - ir1);
  5811. }
  5812. }
  5813. }
  5814. return;
  5815. }
  5816. // dst counters
  5817. int64_t i10 = 0;
  5818. int64_t i11 = 0;
  5819. int64_t i12 = 0;
  5820. int64_t i13 = 0;
  5821. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5822. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5823. i10 += ne00 * ir0;
  5824. while (i10 >= ne0) {
  5825. i10 -= ne0;
  5826. if (++i11 == ne1) {
  5827. i11 = 0;
  5828. if (++i12 == ne2) {
  5829. i12 = 0;
  5830. if (++i13 == ne3) {
  5831. i13 = 0;
  5832. }
  5833. }
  5834. }
  5835. }
  5836. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5837. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5838. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5839. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5840. memcpy(dst_ptr, src0_ptr, type_size);
  5841. if (++i10 == ne0) {
  5842. i10 = 0;
  5843. if (++i11 == ne1) {
  5844. i11 = 0;
  5845. if (++i12 == ne2) {
  5846. i12 = 0;
  5847. if (++i13 == ne3) {
  5848. i13 = 0;
  5849. }
  5850. }
  5851. }
  5852. }
  5853. }
  5854. }
  5855. i10 += ne00 * (ne01 - ir1);
  5856. while (i10 >= ne0) {
  5857. i10 -= ne0;
  5858. if (++i11 == ne1) {
  5859. i11 = 0;
  5860. if (++i12 == ne2) {
  5861. i12 = 0;
  5862. if (++i13 == ne3) {
  5863. i13 = 0;
  5864. }
  5865. }
  5866. }
  5867. }
  5868. }
  5869. }
  5870. }
  5871. static void ggml_compute_forward_dup(
  5872. const struct ggml_compute_params * params,
  5873. const struct ggml_tensor * src0,
  5874. struct ggml_tensor * dst) {
  5875. if (src0->type == dst->type) {
  5876. ggml_compute_forward_dup_bytes(params, src0, dst);
  5877. return;
  5878. }
  5879. switch (src0->type) {
  5880. case GGML_TYPE_F16:
  5881. {
  5882. ggml_compute_forward_dup_f16(params, src0, dst);
  5883. } break;
  5884. case GGML_TYPE_F32:
  5885. {
  5886. ggml_compute_forward_dup_f32(params, src0, dst);
  5887. } break;
  5888. default:
  5889. {
  5890. GGML_ASSERT(false);
  5891. } break;
  5892. }
  5893. }
  5894. // ggml_compute_forward_add
  5895. static void ggml_compute_forward_add_f32(
  5896. const struct ggml_compute_params * params,
  5897. const struct ggml_tensor * src0,
  5898. const struct ggml_tensor * src1,
  5899. struct ggml_tensor * dst) {
  5900. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5902. return;
  5903. }
  5904. const int ith = params->ith;
  5905. const int nth = params->nth;
  5906. #ifdef GGML_USE_CLBLAST
  5907. if (src1->backend == GGML_BACKEND_GPU) {
  5908. // TODO: OpenCL kernel support full broadcast
  5909. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  5910. if (ith == 0) {
  5911. ggml_cl_add(src0, src1, dst);
  5912. }
  5913. return;
  5914. }
  5915. #endif
  5916. const int nr = ggml_nrows(src0);
  5917. GGML_TENSOR_BINARY_OP_LOCALS
  5918. GGML_ASSERT( nb0 == sizeof(float));
  5919. GGML_ASSERT(nb00 == sizeof(float));
  5920. // rows per thread
  5921. const int dr = (nr + nth - 1)/nth;
  5922. // row range for this thread
  5923. const int ir0 = dr*ith;
  5924. const int ir1 = MIN(ir0 + dr, nr);
  5925. if (nb10 == sizeof(float)) {
  5926. for (int ir = ir0; ir < ir1; ++ir) {
  5927. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5928. const int64_t i03 = ir/(ne02*ne01);
  5929. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5930. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5931. const int64_t i13 = i03 % ne13;
  5932. const int64_t i12 = i02 % ne12;
  5933. const int64_t i11 = i01 % ne11;
  5934. const int64_t nr0 = ne00 / ne10;
  5935. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5936. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5937. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5938. for (int64_t r = 0; r < nr0; ++r) {
  5939. #ifdef GGML_USE_ACCELERATE
  5940. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5941. #else
  5942. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5943. #endif
  5944. }
  5945. }
  5946. } else {
  5947. // src1 is not contiguous
  5948. for (int ir = ir0; ir < ir1; ++ir) {
  5949. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5950. const int64_t i03 = ir/(ne02*ne01);
  5951. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5952. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5953. const int64_t i13 = i03 % ne13;
  5954. const int64_t i12 = i02 % ne12;
  5955. const int64_t i11 = i01 % ne11;
  5956. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5957. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5958. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5959. const int64_t i10 = i0 % ne10;
  5960. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5961. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5962. }
  5963. }
  5964. }
  5965. }
  5966. static void ggml_compute_forward_add_f16_f32(
  5967. const struct ggml_compute_params * params,
  5968. const struct ggml_tensor * src0,
  5969. const struct ggml_tensor * src1,
  5970. struct ggml_tensor * dst) {
  5971. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5973. return;
  5974. }
  5975. const int ith = params->ith;
  5976. const int nth = params->nth;
  5977. const int nr = ggml_nrows(src0);
  5978. GGML_TENSOR_BINARY_OP_LOCALS
  5979. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5980. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5981. if (dst->type == GGML_TYPE_F32) {
  5982. GGML_ASSERT( nb0 == sizeof(float));
  5983. }
  5984. else {
  5985. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5986. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5987. }
  5988. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5989. // rows per thread
  5990. const int dr = (nr + nth - 1)/nth;
  5991. // row range for this thread
  5992. const int ir0 = dr*ith;
  5993. const int ir1 = MIN(ir0 + dr, nr);
  5994. if (nb10 == sizeof(float)) {
  5995. if (dst->type == GGML_TYPE_F16) {
  5996. for (int ir = ir0; ir < ir1; ++ir) {
  5997. // src0, src1 and dst are same shape => same indices
  5998. const int i3 = ir/(ne2*ne1);
  5999. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6000. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6001. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6002. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6003. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6004. for (int i = 0; i < ne0; i++) {
  6005. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6006. }
  6007. }
  6008. } else {
  6009. for (int ir = ir0; ir < ir1; ++ir) {
  6010. // src0, src1 and dst are same shape => same indices
  6011. const int i3 = ir/(ne2*ne1);
  6012. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6013. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6014. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6015. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6016. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6017. for (int i = 0; i < ne0; i++) {
  6018. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6019. }
  6020. }
  6021. }
  6022. }
  6023. else {
  6024. // src1 is not contiguous
  6025. GGML_ASSERT(false);
  6026. }
  6027. }
  6028. static void ggml_compute_forward_add_f16_f16(
  6029. const struct ggml_compute_params * params,
  6030. const struct ggml_tensor * src0,
  6031. const struct ggml_tensor * src1,
  6032. struct ggml_tensor * dst) {
  6033. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6035. return;
  6036. }
  6037. const int ith = params->ith;
  6038. const int nth = params->nth;
  6039. const int nr = ggml_nrows(src0);
  6040. GGML_TENSOR_BINARY_OP_LOCALS
  6041. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6042. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6043. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6044. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6045. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6046. // rows per thread
  6047. const int dr = (nr + nth - 1)/nth;
  6048. // row range for this thread
  6049. const int ir0 = dr*ith;
  6050. const int ir1 = MIN(ir0 + dr, nr);
  6051. if (nb10 == sizeof(ggml_fp16_t)) {
  6052. for (int ir = ir0; ir < ir1; ++ir) {
  6053. // src0, src1 and dst are same shape => same indices
  6054. const int i3 = ir/(ne2*ne1);
  6055. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6056. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6057. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6058. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6059. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6060. for (int i = 0; i < ne0; i++) {
  6061. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6062. }
  6063. }
  6064. }
  6065. else {
  6066. // src1 is not contiguous
  6067. GGML_ASSERT(false);
  6068. }
  6069. }
  6070. static void ggml_compute_forward_add_q_f32(
  6071. const struct ggml_compute_params * params,
  6072. const struct ggml_tensor * src0,
  6073. const struct ggml_tensor * src1,
  6074. struct ggml_tensor * dst) {
  6075. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6077. return;
  6078. }
  6079. const int nr = ggml_nrows(src0);
  6080. GGML_TENSOR_BINARY_OP_LOCALS
  6081. const int ith = params->ith;
  6082. const int nth = params->nth;
  6083. const enum ggml_type type = src0->type;
  6084. const enum ggml_type dtype = dst->type;
  6085. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6086. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6087. // we don't support permuted src0 or src1
  6088. GGML_ASSERT(nb00 == ggml_type_size(type));
  6089. GGML_ASSERT(nb10 == sizeof(float));
  6090. // dst cannot be transposed or permuted
  6091. GGML_ASSERT(nb0 <= nb1);
  6092. GGML_ASSERT(nb1 <= nb2);
  6093. GGML_ASSERT(nb2 <= nb3);
  6094. GGML_ASSERT(ggml_is_quantized(src0->type));
  6095. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6096. // rows per thread
  6097. const int dr = (nr + nth - 1)/nth;
  6098. // row range for this thread
  6099. const int ir0 = dr*ith;
  6100. const int ir1 = MIN(ir0 + dr, nr);
  6101. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6102. for (int ir = ir0; ir < ir1; ++ir) {
  6103. // src0 indices
  6104. const int i03 = ir/(ne02*ne01);
  6105. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6106. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6107. // src1 and dst are same shape as src0 => same indices
  6108. const int i13 = i03;
  6109. const int i12 = i02;
  6110. const int i11 = i01;
  6111. const int i3 = i03;
  6112. const int i2 = i02;
  6113. const int i1 = i01;
  6114. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6115. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6116. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6117. assert(ne00 % 32 == 0);
  6118. // unquantize row from src0 to temp buffer
  6119. dequantize_row_q(src0_row, wdata, ne00);
  6120. // add src1
  6121. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6122. // quantize row to dst
  6123. if (quantize_row_q != NULL) {
  6124. quantize_row_q(wdata, dst_row, ne00);
  6125. } else {
  6126. memcpy(dst_row, wdata, ne0*nb0);
  6127. }
  6128. }
  6129. }
  6130. static void ggml_compute_forward_add(
  6131. const struct ggml_compute_params * params,
  6132. const struct ggml_tensor * src0,
  6133. const struct ggml_tensor * src1,
  6134. struct ggml_tensor * dst) {
  6135. switch (src0->type) {
  6136. case GGML_TYPE_F32:
  6137. {
  6138. if (src1->type == GGML_TYPE_F32) {
  6139. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6140. }
  6141. else {
  6142. GGML_ASSERT(false);
  6143. }
  6144. } break;
  6145. case GGML_TYPE_F16:
  6146. {
  6147. if (src1->type == GGML_TYPE_F16) {
  6148. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6149. }
  6150. else if (src1->type == GGML_TYPE_F32) {
  6151. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6152. }
  6153. else {
  6154. GGML_ASSERT(false);
  6155. }
  6156. } break;
  6157. case GGML_TYPE_Q4_0:
  6158. case GGML_TYPE_Q4_1:
  6159. case GGML_TYPE_Q5_0:
  6160. case GGML_TYPE_Q5_1:
  6161. case GGML_TYPE_Q8_0:
  6162. case GGML_TYPE_Q2_K:
  6163. case GGML_TYPE_Q3_K:
  6164. case GGML_TYPE_Q4_K:
  6165. case GGML_TYPE_Q5_K:
  6166. case GGML_TYPE_Q6_K:
  6167. case GGML_TYPE_IQ2_XXS:
  6168. case GGML_TYPE_IQ2_XS:
  6169. {
  6170. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6171. } break;
  6172. default:
  6173. {
  6174. GGML_ASSERT(false);
  6175. } break;
  6176. }
  6177. }
  6178. // ggml_compute_forward_add1
  6179. static void ggml_compute_forward_add1_f32(
  6180. const struct ggml_compute_params * params,
  6181. const struct ggml_tensor * src0,
  6182. const struct ggml_tensor * src1,
  6183. struct ggml_tensor * dst) {
  6184. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6185. GGML_ASSERT(ggml_is_scalar(src1));
  6186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6187. return;
  6188. }
  6189. const int ith = params->ith;
  6190. const int nth = params->nth;
  6191. const int nr = ggml_nrows(src0);
  6192. GGML_TENSOR_UNARY_OP_LOCALS
  6193. GGML_ASSERT( nb0 == sizeof(float));
  6194. GGML_ASSERT(nb00 == sizeof(float));
  6195. // rows per thread
  6196. const int dr = (nr + nth - 1)/nth;
  6197. // row range for this thread
  6198. const int ir0 = dr*ith;
  6199. const int ir1 = MIN(ir0 + dr, nr);
  6200. for (int ir = ir0; ir < ir1; ++ir) {
  6201. // src0 and dst are same shape => same indices
  6202. const int i3 = ir/(ne2*ne1);
  6203. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6204. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6205. #ifdef GGML_USE_ACCELERATE
  6206. UNUSED(ggml_vec_add1_f32);
  6207. vDSP_vadd(
  6208. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6209. (float *) ((char *) src1->data), 0,
  6210. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6211. ne0);
  6212. #else
  6213. ggml_vec_add1_f32(ne0,
  6214. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6215. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6216. *(float *) src1->data);
  6217. #endif
  6218. }
  6219. }
  6220. static void ggml_compute_forward_add1_f16_f32(
  6221. const struct ggml_compute_params * params,
  6222. const struct ggml_tensor * src0,
  6223. const struct ggml_tensor * src1,
  6224. struct ggml_tensor * dst) {
  6225. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6226. GGML_ASSERT(ggml_is_scalar(src1));
  6227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6228. return;
  6229. }
  6230. // scalar to add
  6231. const float v = *(float *) src1->data;
  6232. const int ith = params->ith;
  6233. const int nth = params->nth;
  6234. const int nr = ggml_nrows(src0);
  6235. GGML_TENSOR_UNARY_OP_LOCALS
  6236. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6237. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6238. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6239. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6240. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6241. // rows per thread
  6242. const int dr = (nr + nth - 1)/nth;
  6243. // row range for this thread
  6244. const int ir0 = dr*ith;
  6245. const int ir1 = MIN(ir0 + dr, nr);
  6246. for (int ir = ir0; ir < ir1; ++ir) {
  6247. // src0 and dst are same shape => same indices
  6248. const int i3 = ir/(ne2*ne1);
  6249. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6250. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6251. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6252. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6253. for (int i = 0; i < ne0; i++) {
  6254. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6255. }
  6256. }
  6257. }
  6258. static void ggml_compute_forward_add1_f16_f16(
  6259. const struct ggml_compute_params * params,
  6260. const struct ggml_tensor * src0,
  6261. const struct ggml_tensor * src1,
  6262. struct ggml_tensor * dst) {
  6263. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6264. GGML_ASSERT(ggml_is_scalar(src1));
  6265. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6266. return;
  6267. }
  6268. // scalar to add
  6269. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6270. const int ith = params->ith;
  6271. const int nth = params->nth;
  6272. const int nr = ggml_nrows(src0);
  6273. GGML_TENSOR_UNARY_OP_LOCALS
  6274. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6275. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6276. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6277. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6278. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6279. // rows per thread
  6280. const int dr = (nr + nth - 1)/nth;
  6281. // row range for this thread
  6282. const int ir0 = dr*ith;
  6283. const int ir1 = MIN(ir0 + dr, nr);
  6284. for (int ir = ir0; ir < ir1; ++ir) {
  6285. // src0 and dst are same shape => same indices
  6286. const int i3 = ir/(ne2*ne1);
  6287. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6288. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6289. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6290. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6291. for (int i = 0; i < ne0; i++) {
  6292. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6293. }
  6294. }
  6295. }
  6296. static void ggml_compute_forward_add1_q_f32(
  6297. const struct ggml_compute_params * params,
  6298. const struct ggml_tensor * src0,
  6299. const struct ggml_tensor * src1,
  6300. struct ggml_tensor * dst) {
  6301. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6302. GGML_ASSERT(ggml_is_scalar(src1));
  6303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6304. return;
  6305. }
  6306. // scalar to add
  6307. const float v = *(float *) src1->data;
  6308. const int ith = params->ith;
  6309. const int nth = params->nth;
  6310. const int nr = ggml_nrows(src0);
  6311. GGML_TENSOR_UNARY_OP_LOCALS
  6312. const enum ggml_type type = src0->type;
  6313. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6314. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6315. // we don't support permuted src0
  6316. GGML_ASSERT(nb00 == ggml_type_size(type));
  6317. // dst cannot be transposed or permuted
  6318. GGML_ASSERT(nb0 <= nb1);
  6319. GGML_ASSERT(nb1 <= nb2);
  6320. GGML_ASSERT(nb2 <= nb3);
  6321. GGML_ASSERT(ggml_is_quantized(src0->type));
  6322. GGML_ASSERT(dst->type == src0->type);
  6323. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6324. // rows per thread
  6325. const int dr = (nr + nth - 1)/nth;
  6326. // row range for this thread
  6327. const int ir0 = dr*ith;
  6328. const int ir1 = MIN(ir0 + dr, nr);
  6329. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6330. for (int ir = ir0; ir < ir1; ++ir) {
  6331. // src0 and dst are same shape => same indices
  6332. const int i3 = ir/(ne2*ne1);
  6333. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6334. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6335. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6336. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6337. assert(ne0 % 32 == 0);
  6338. // unquantize row from src0 to temp buffer
  6339. dequantize_row_q(src0_row, wdata, ne0);
  6340. // add src1
  6341. ggml_vec_acc1_f32(ne0, wdata, v);
  6342. // quantize row to dst
  6343. quantize_row_q(wdata, dst_row, ne0);
  6344. }
  6345. }
  6346. static void ggml_compute_forward_add1(
  6347. const struct ggml_compute_params * params,
  6348. const struct ggml_tensor * src0,
  6349. const struct ggml_tensor * src1,
  6350. struct ggml_tensor * dst) {
  6351. switch (src0->type) {
  6352. case GGML_TYPE_F32:
  6353. {
  6354. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6355. } break;
  6356. case GGML_TYPE_F16:
  6357. {
  6358. if (src1->type == GGML_TYPE_F16) {
  6359. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6360. }
  6361. else if (src1->type == GGML_TYPE_F32) {
  6362. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6363. }
  6364. else {
  6365. GGML_ASSERT(false);
  6366. }
  6367. } break;
  6368. case GGML_TYPE_Q4_0:
  6369. case GGML_TYPE_Q4_1:
  6370. case GGML_TYPE_Q5_0:
  6371. case GGML_TYPE_Q5_1:
  6372. case GGML_TYPE_Q8_0:
  6373. case GGML_TYPE_Q8_1:
  6374. case GGML_TYPE_Q2_K:
  6375. case GGML_TYPE_Q3_K:
  6376. case GGML_TYPE_Q4_K:
  6377. case GGML_TYPE_Q5_K:
  6378. case GGML_TYPE_Q6_K:
  6379. case GGML_TYPE_IQ2_XXS:
  6380. case GGML_TYPE_IQ2_XS:
  6381. {
  6382. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6383. } break;
  6384. default:
  6385. {
  6386. GGML_ASSERT(false);
  6387. } break;
  6388. }
  6389. }
  6390. // ggml_compute_forward_acc
  6391. static void ggml_compute_forward_acc_f32(
  6392. const struct ggml_compute_params * params,
  6393. const struct ggml_tensor * src0,
  6394. const struct ggml_tensor * src1,
  6395. struct ggml_tensor * dst) {
  6396. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6397. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6398. // view src0 and dst with these strides and data offset inbytes during acc
  6399. // nb0 is implicitly element_size because src0 and dst are contiguous
  6400. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6401. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6402. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6403. size_t offset = ((int32_t *) dst->op_params)[3];
  6404. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6405. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6406. if (params->ith != 0) {
  6407. return;
  6408. }
  6409. // memcpy needs to be synchronized across threads to avoid race conditions.
  6410. // => do it in INIT phase
  6411. memcpy(
  6412. ((char *) dst->data),
  6413. ((char *) src0->data),
  6414. ggml_nbytes(dst));
  6415. }
  6416. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6417. return;
  6418. }
  6419. const int ith = params->ith;
  6420. const int nth = params->nth;
  6421. const int nr = ggml_nrows(src1);
  6422. const int nc = src1->ne[0];
  6423. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6424. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6425. // src0 and dst as viewed during acc
  6426. const size_t nb0 = ggml_element_size(src0);
  6427. const size_t nb00 = nb0;
  6428. const size_t nb01 = nb1;
  6429. const size_t nb02 = nb2;
  6430. const size_t nb03 = nb3;
  6431. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6432. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6433. GGML_ASSERT(nb10 == sizeof(float));
  6434. // rows per thread
  6435. const int dr = (nr + nth - 1)/nth;
  6436. // row range for this thread
  6437. const int ir0 = dr*ith;
  6438. const int ir1 = MIN(ir0 + dr, nr);
  6439. for (int ir = ir0; ir < ir1; ++ir) {
  6440. // src0 and dst are viewed with shape of src1 and offset
  6441. // => same indices
  6442. const int i3 = ir/(ne12*ne11);
  6443. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6444. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6445. #ifdef GGML_USE_ACCELERATE
  6446. vDSP_vadd(
  6447. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6448. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6449. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6450. #else
  6451. ggml_vec_add_f32(nc,
  6452. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6453. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6454. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6455. #endif
  6456. }
  6457. }
  6458. static void ggml_compute_forward_acc(
  6459. const struct ggml_compute_params * params,
  6460. const struct ggml_tensor * src0,
  6461. const struct ggml_tensor * src1,
  6462. struct ggml_tensor * dst) {
  6463. switch (src0->type) {
  6464. case GGML_TYPE_F32:
  6465. {
  6466. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6467. } break;
  6468. case GGML_TYPE_F16:
  6469. case GGML_TYPE_Q4_0:
  6470. case GGML_TYPE_Q4_1:
  6471. case GGML_TYPE_Q5_0:
  6472. case GGML_TYPE_Q5_1:
  6473. case GGML_TYPE_Q8_0:
  6474. case GGML_TYPE_Q8_1:
  6475. case GGML_TYPE_Q2_K:
  6476. case GGML_TYPE_Q3_K:
  6477. case GGML_TYPE_Q4_K:
  6478. case GGML_TYPE_Q5_K:
  6479. case GGML_TYPE_Q6_K:
  6480. case GGML_TYPE_IQ2_XXS:
  6481. case GGML_TYPE_IQ2_XS:
  6482. default:
  6483. {
  6484. GGML_ASSERT(false);
  6485. } break;
  6486. }
  6487. }
  6488. // ggml_compute_forward_sub
  6489. static void ggml_compute_forward_sub_f32(
  6490. const struct ggml_compute_params * params,
  6491. const struct ggml_tensor * src0,
  6492. const struct ggml_tensor * src1,
  6493. struct ggml_tensor * dst) {
  6494. assert(params->ith == 0);
  6495. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6496. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6497. return;
  6498. }
  6499. const int nr = ggml_nrows(src0);
  6500. GGML_TENSOR_BINARY_OP_LOCALS
  6501. GGML_ASSERT( nb0 == sizeof(float));
  6502. GGML_ASSERT(nb00 == sizeof(float));
  6503. if (nb10 == sizeof(float)) {
  6504. for (int ir = 0; ir < nr; ++ir) {
  6505. // src0, src1 and dst are same shape => same indices
  6506. const int i3 = ir/(ne2*ne1);
  6507. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6508. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6509. #ifdef GGML_USE_ACCELERATE
  6510. vDSP_vsub(
  6511. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6512. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6513. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6514. ne0);
  6515. #else
  6516. ggml_vec_sub_f32(ne0,
  6517. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6518. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6519. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6520. #endif
  6521. // }
  6522. // }
  6523. }
  6524. } else {
  6525. // src1 is not contiguous
  6526. for (int ir = 0; ir < nr; ++ir) {
  6527. // src0, src1 and dst are same shape => same indices
  6528. const int i3 = ir/(ne2*ne1);
  6529. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6530. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6531. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6532. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6533. for (int i0 = 0; i0 < ne0; i0++) {
  6534. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6535. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6536. }
  6537. }
  6538. }
  6539. }
  6540. static void ggml_compute_forward_sub(
  6541. const struct ggml_compute_params * params,
  6542. const struct ggml_tensor * src0,
  6543. const struct ggml_tensor * src1,
  6544. struct ggml_tensor * dst) {
  6545. switch (src0->type) {
  6546. case GGML_TYPE_F32:
  6547. {
  6548. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6549. } break;
  6550. default:
  6551. {
  6552. GGML_ASSERT(false);
  6553. } break;
  6554. }
  6555. }
  6556. // ggml_compute_forward_mul
  6557. static void ggml_compute_forward_mul_f32(
  6558. const struct ggml_compute_params * params,
  6559. const struct ggml_tensor * src0,
  6560. const struct ggml_tensor * src1,
  6561. struct ggml_tensor * dst) {
  6562. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6564. return;
  6565. }
  6566. const int ith = params->ith;
  6567. const int nth = params->nth;
  6568. #ifdef GGML_USE_CLBLAST
  6569. if (src1->backend == GGML_BACKEND_GPU) {
  6570. // TODO: OpenCL kernel support full broadcast
  6571. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6572. if (ith == 0) {
  6573. ggml_cl_mul(src0, src1, dst);
  6574. }
  6575. return;
  6576. }
  6577. #endif
  6578. const int64_t nr = ggml_nrows(src0);
  6579. GGML_TENSOR_BINARY_OP_LOCALS
  6580. GGML_ASSERT( nb0 == sizeof(float));
  6581. GGML_ASSERT(nb00 == sizeof(float));
  6582. if (nb10 == sizeof(float)) {
  6583. for (int64_t ir = ith; ir < nr; ir += nth) {
  6584. // src0 and dst are same shape => same indices
  6585. const int64_t i03 = ir/(ne02*ne01);
  6586. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6587. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6588. const int64_t i13 = i03 % ne13;
  6589. const int64_t i12 = i02 % ne12;
  6590. const int64_t i11 = i01 % ne11;
  6591. const int64_t nr0 = ne00 / ne10;
  6592. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6593. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6594. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6595. for (int64_t r = 0 ; r < nr0; ++r) {
  6596. #ifdef GGML_USE_ACCELERATE
  6597. UNUSED(ggml_vec_mul_f32);
  6598. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6599. #else
  6600. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6601. #endif
  6602. }
  6603. }
  6604. } else {
  6605. // src1 is not contiguous
  6606. for (int64_t ir = ith; ir < nr; ir += nth) {
  6607. // src0 and dst are same shape => same indices
  6608. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6609. const int64_t i03 = ir/(ne02*ne01);
  6610. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6611. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6612. const int64_t i13 = i03 % ne13;
  6613. const int64_t i12 = i02 % ne12;
  6614. const int64_t i11 = i01 % ne11;
  6615. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6616. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6617. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6618. const int64_t i10 = i0 % ne10;
  6619. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6620. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6621. }
  6622. }
  6623. }
  6624. }
  6625. static void ggml_compute_forward_mul(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. const struct ggml_tensor * src1,
  6629. struct ggml_tensor * dst) {
  6630. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6631. switch (src0->type) {
  6632. case GGML_TYPE_F32:
  6633. {
  6634. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6635. } break;
  6636. default:
  6637. {
  6638. GGML_ASSERT(false);
  6639. } break;
  6640. }
  6641. }
  6642. // ggml_compute_forward_div
  6643. static void ggml_compute_forward_div_f32(
  6644. const struct ggml_compute_params * params,
  6645. const struct ggml_tensor * src0,
  6646. const struct ggml_tensor * src1,
  6647. struct ggml_tensor * dst) {
  6648. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6650. return;
  6651. }
  6652. const int ith = params->ith;
  6653. const int nth = params->nth;
  6654. const int64_t nr = ggml_nrows(src0);
  6655. GGML_TENSOR_BINARY_OP_LOCALS
  6656. GGML_ASSERT( nb0 == sizeof(float));
  6657. GGML_ASSERT(nb00 == sizeof(float));
  6658. if (nb10 == sizeof(float)) {
  6659. for (int64_t ir = ith; ir < nr; ir += nth) {
  6660. // src0 and dst are same shape => same indices
  6661. const int64_t i03 = ir/(ne02*ne01);
  6662. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6663. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6664. const int64_t i13 = i03 % ne13;
  6665. const int64_t i12 = i02 % ne12;
  6666. const int64_t i11 = i01 % ne11;
  6667. const int64_t nr0 = ne00 / ne10;
  6668. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6669. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6670. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6671. for (int64_t r = 0; r < nr0; ++r) {
  6672. #ifdef GGML_USE_ACCELERATE
  6673. UNUSED(ggml_vec_div_f32);
  6674. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6675. #else
  6676. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6677. #endif
  6678. }
  6679. }
  6680. } else {
  6681. // src1 is not contiguous
  6682. for (int64_t ir = ith; ir < nr; ir += nth) {
  6683. // src0 and dst are same shape => same indices
  6684. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6685. const int64_t i03 = ir/(ne02*ne01);
  6686. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6687. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6688. const int64_t i13 = i03 % ne13;
  6689. const int64_t i12 = i02 % ne12;
  6690. const int64_t i11 = i01 % ne11;
  6691. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6692. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6693. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6694. const int64_t i10 = i0 % ne10;
  6695. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6696. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6697. }
  6698. }
  6699. }
  6700. }
  6701. static void ggml_compute_forward_div(
  6702. const struct ggml_compute_params * params,
  6703. const struct ggml_tensor * src0,
  6704. const struct ggml_tensor * src1,
  6705. struct ggml_tensor * dst) {
  6706. switch (src0->type) {
  6707. case GGML_TYPE_F32:
  6708. {
  6709. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6710. } break;
  6711. default:
  6712. {
  6713. GGML_ASSERT(false);
  6714. } break;
  6715. }
  6716. }
  6717. // ggml_compute_forward_sqr
  6718. static void ggml_compute_forward_sqr_f32(
  6719. const struct ggml_compute_params * params,
  6720. const struct ggml_tensor * src0,
  6721. struct ggml_tensor * dst) {
  6722. assert(params->ith == 0);
  6723. assert(ggml_are_same_shape(src0, dst));
  6724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6725. return;
  6726. }
  6727. const int n = ggml_nrows(src0);
  6728. const int nc = src0->ne[0];
  6729. assert( dst->nb[0] == sizeof(float));
  6730. assert(src0->nb[0] == sizeof(float));
  6731. for (int i = 0; i < n; i++) {
  6732. ggml_vec_sqr_f32(nc,
  6733. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6734. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6735. }
  6736. }
  6737. static void ggml_compute_forward_sqr(
  6738. const struct ggml_compute_params * params,
  6739. const struct ggml_tensor * src0,
  6740. struct ggml_tensor * dst) {
  6741. switch (src0->type) {
  6742. case GGML_TYPE_F32:
  6743. {
  6744. ggml_compute_forward_sqr_f32(params, src0, dst);
  6745. } break;
  6746. default:
  6747. {
  6748. GGML_ASSERT(false);
  6749. } break;
  6750. }
  6751. }
  6752. // ggml_compute_forward_sqrt
  6753. static void ggml_compute_forward_sqrt_f32(
  6754. const struct ggml_compute_params * params,
  6755. const struct ggml_tensor * src0,
  6756. struct ggml_tensor * dst) {
  6757. assert(params->ith == 0);
  6758. assert(ggml_are_same_shape(src0, dst));
  6759. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6760. return;
  6761. }
  6762. const int n = ggml_nrows(src0);
  6763. const int nc = src0->ne[0];
  6764. assert( dst->nb[0] == sizeof(float));
  6765. assert(src0->nb[0] == sizeof(float));
  6766. for (int i = 0; i < n; i++) {
  6767. ggml_vec_sqrt_f32(nc,
  6768. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6769. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6770. }
  6771. }
  6772. static void ggml_compute_forward_sqrt(
  6773. const struct ggml_compute_params * params,
  6774. const struct ggml_tensor * src0,
  6775. struct ggml_tensor * dst) {
  6776. switch (src0->type) {
  6777. case GGML_TYPE_F32:
  6778. {
  6779. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6780. } break;
  6781. default:
  6782. {
  6783. GGML_ASSERT(false);
  6784. } break;
  6785. }
  6786. }
  6787. // ggml_compute_forward_log
  6788. static void ggml_compute_forward_log_f32(
  6789. const struct ggml_compute_params * params,
  6790. const struct ggml_tensor * src0,
  6791. struct ggml_tensor * dst) {
  6792. GGML_ASSERT(params->ith == 0);
  6793. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6795. return;
  6796. }
  6797. const int n = ggml_nrows(src0);
  6798. const int nc = src0->ne[0];
  6799. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6800. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6801. for (int i = 0; i < n; i++) {
  6802. ggml_vec_log_f32(nc,
  6803. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6804. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6805. }
  6806. }
  6807. static void ggml_compute_forward_log(
  6808. const struct ggml_compute_params * params,
  6809. const struct ggml_tensor * src0,
  6810. struct ggml_tensor * dst) {
  6811. switch (src0->type) {
  6812. case GGML_TYPE_F32:
  6813. {
  6814. ggml_compute_forward_log_f32(params, src0, dst);
  6815. } break;
  6816. default:
  6817. {
  6818. GGML_ASSERT(false);
  6819. } break;
  6820. }
  6821. }
  6822. // ggml_compute_forward_sum
  6823. static void ggml_compute_forward_sum_f32(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. struct ggml_tensor * dst) {
  6827. assert(params->ith == 0);
  6828. assert(ggml_is_scalar(dst));
  6829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6830. return;
  6831. }
  6832. assert(ggml_is_scalar(dst));
  6833. assert(src0->nb[0] == sizeof(float));
  6834. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6835. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6836. ggml_float sum = 0;
  6837. ggml_float row_sum = 0;
  6838. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6839. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6840. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6841. ggml_vec_sum_f32_ggf(ne00,
  6842. &row_sum,
  6843. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6844. sum += row_sum;
  6845. }
  6846. }
  6847. }
  6848. ((float *) dst->data)[0] = sum;
  6849. }
  6850. static void ggml_compute_forward_sum_f16(
  6851. const struct ggml_compute_params * params,
  6852. const struct ggml_tensor * src0,
  6853. struct ggml_tensor * dst) {
  6854. assert(params->ith == 0);
  6855. assert(ggml_is_scalar(dst));
  6856. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6857. return;
  6858. }
  6859. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6860. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6861. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6862. float sum = 0;
  6863. float row_sum = 0;
  6864. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6865. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6866. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6867. ggml_vec_sum_f16_ggf(ne00,
  6868. &row_sum,
  6869. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6870. sum += row_sum;
  6871. }
  6872. }
  6873. }
  6874. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6875. }
  6876. static void ggml_compute_forward_sum(
  6877. const struct ggml_compute_params * params,
  6878. const struct ggml_tensor * src0,
  6879. struct ggml_tensor * dst) {
  6880. switch (src0->type) {
  6881. case GGML_TYPE_F32:
  6882. {
  6883. ggml_compute_forward_sum_f32(params, src0, dst);
  6884. } break;
  6885. case GGML_TYPE_F16:
  6886. {
  6887. ggml_compute_forward_sum_f16(params, src0, dst);
  6888. } break;
  6889. default:
  6890. {
  6891. GGML_ASSERT(false);
  6892. } break;
  6893. }
  6894. }
  6895. // ggml_compute_forward_sum_rows
  6896. static void ggml_compute_forward_sum_rows_f32(
  6897. const struct ggml_compute_params * params,
  6898. const struct ggml_tensor * src0,
  6899. struct ggml_tensor * dst) {
  6900. GGML_ASSERT(params->ith == 0);
  6901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6902. return;
  6903. }
  6904. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6905. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6906. GGML_TENSOR_UNARY_OP_LOCALS
  6907. GGML_ASSERT(ne0 == 1);
  6908. GGML_ASSERT(ne1 == ne01);
  6909. GGML_ASSERT(ne2 == ne02);
  6910. GGML_ASSERT(ne3 == ne03);
  6911. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6912. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6913. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6914. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6915. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6916. float row_sum = 0;
  6917. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6918. dst_row[0] = row_sum;
  6919. }
  6920. }
  6921. }
  6922. }
  6923. static void ggml_compute_forward_sum_rows(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * src0,
  6926. struct ggml_tensor * dst) {
  6927. switch (src0->type) {
  6928. case GGML_TYPE_F32:
  6929. {
  6930. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6931. } break;
  6932. default:
  6933. {
  6934. GGML_ASSERT(false);
  6935. } break;
  6936. }
  6937. }
  6938. // ggml_compute_forward_mean
  6939. static void ggml_compute_forward_mean_f32(
  6940. const struct ggml_compute_params * params,
  6941. const struct ggml_tensor * src0,
  6942. struct ggml_tensor * dst) {
  6943. assert(params->ith == 0);
  6944. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6945. return;
  6946. }
  6947. assert(src0->nb[0] == sizeof(float));
  6948. GGML_TENSOR_UNARY_OP_LOCALS
  6949. assert(ne0 == 1);
  6950. assert(ne1 == ne01);
  6951. assert(ne2 == ne02);
  6952. assert(ne3 == ne03);
  6953. UNUSED(ne0);
  6954. UNUSED(ne1);
  6955. UNUSED(ne2);
  6956. UNUSED(ne3);
  6957. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6958. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6959. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6960. ggml_vec_sum_f32(ne00,
  6961. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6962. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6963. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6964. }
  6965. }
  6966. }
  6967. }
  6968. static void ggml_compute_forward_mean(
  6969. const struct ggml_compute_params * params,
  6970. const struct ggml_tensor * src0,
  6971. struct ggml_tensor * dst) {
  6972. switch (src0->type) {
  6973. case GGML_TYPE_F32:
  6974. {
  6975. ggml_compute_forward_mean_f32(params, src0, dst);
  6976. } break;
  6977. default:
  6978. {
  6979. GGML_ASSERT(false);
  6980. } break;
  6981. }
  6982. }
  6983. // ggml_compute_forward_argmax
  6984. static void ggml_compute_forward_argmax_f32(
  6985. const struct ggml_compute_params * params,
  6986. const struct ggml_tensor * src0,
  6987. struct ggml_tensor * dst) {
  6988. assert(params->ith == 0);
  6989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6990. return;
  6991. }
  6992. assert(src0->nb[0] == sizeof(float));
  6993. assert(dst->nb[0] == sizeof(float));
  6994. const int64_t ne00 = src0->ne[0];
  6995. const int64_t ne01 = src0->ne[1];
  6996. const size_t nb01 = src0->nb[1];
  6997. const size_t nb0 = dst->nb[0];
  6998. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6999. float * src = (float *) ((char *) src0->data + i1*nb01);
  7000. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7001. int v = 0;
  7002. ggml_vec_argmax_f32(ne00, &v, src);
  7003. dst_[0] = v;
  7004. }
  7005. }
  7006. static void ggml_compute_forward_argmax(
  7007. const struct ggml_compute_params * params,
  7008. const struct ggml_tensor * src0,
  7009. struct ggml_tensor * dst) {
  7010. switch (src0->type) {
  7011. case GGML_TYPE_F32:
  7012. {
  7013. ggml_compute_forward_argmax_f32(params, src0, dst);
  7014. } break;
  7015. default:
  7016. {
  7017. GGML_ASSERT(false);
  7018. } break;
  7019. }
  7020. }
  7021. // ggml_compute_forward_repeat
  7022. static void ggml_compute_forward_repeat_f32(
  7023. const struct ggml_compute_params * params,
  7024. const struct ggml_tensor * src0,
  7025. struct ggml_tensor * dst) {
  7026. GGML_ASSERT(params->ith == 0);
  7027. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7029. return;
  7030. }
  7031. GGML_TENSOR_UNARY_OP_LOCALS
  7032. // guaranteed to be an integer due to the check in ggml_can_repeat
  7033. const int nr0 = (int)(ne0/ne00);
  7034. const int nr1 = (int)(ne1/ne01);
  7035. const int nr2 = (int)(ne2/ne02);
  7036. const int nr3 = (int)(ne3/ne03);
  7037. // TODO: support for transposed / permuted tensors
  7038. GGML_ASSERT(nb0 == sizeof(float));
  7039. GGML_ASSERT(nb00 == sizeof(float));
  7040. // TODO: maybe this is not optimal?
  7041. for (int i3 = 0; i3 < nr3; i3++) {
  7042. for (int k3 = 0; k3 < ne03; k3++) {
  7043. for (int i2 = 0; i2 < nr2; i2++) {
  7044. for (int k2 = 0; k2 < ne02; k2++) {
  7045. for (int i1 = 0; i1 < nr1; i1++) {
  7046. for (int k1 = 0; k1 < ne01; k1++) {
  7047. for (int i0 = 0; i0 < nr0; i0++) {
  7048. ggml_vec_cpy_f32(ne00,
  7049. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7050. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7051. }
  7052. }
  7053. }
  7054. }
  7055. }
  7056. }
  7057. }
  7058. }
  7059. static void ggml_compute_forward_repeat_f16(
  7060. const struct ggml_compute_params * params,
  7061. const struct ggml_tensor * src0,
  7062. struct ggml_tensor * dst) {
  7063. GGML_ASSERT(params->ith == 0);
  7064. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7066. return;
  7067. }
  7068. GGML_TENSOR_UNARY_OP_LOCALS
  7069. // guaranteed to be an integer due to the check in ggml_can_repeat
  7070. const int nr0 = (int)(ne0/ne00);
  7071. const int nr1 = (int)(ne1/ne01);
  7072. const int nr2 = (int)(ne2/ne02);
  7073. const int nr3 = (int)(ne3/ne03);
  7074. // TODO: support for transposed / permuted tensors
  7075. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7076. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7077. // TODO: maybe this is not optimal?
  7078. for (int i3 = 0; i3 < nr3; i3++) {
  7079. for (int k3 = 0; k3 < ne03; k3++) {
  7080. for (int i2 = 0; i2 < nr2; i2++) {
  7081. for (int k2 = 0; k2 < ne02; k2++) {
  7082. for (int i1 = 0; i1 < nr1; i1++) {
  7083. for (int k1 = 0; k1 < ne01; k1++) {
  7084. for (int i0 = 0; i0 < nr0; i0++) {
  7085. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7086. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7087. // ggml_vec_cpy_f16(ne00, y, x)
  7088. for (int i = 0; i < ne00; ++i) {
  7089. y[i] = x[i];
  7090. }
  7091. }
  7092. }
  7093. }
  7094. }
  7095. }
  7096. }
  7097. }
  7098. }
  7099. static void ggml_compute_forward_repeat(
  7100. const struct ggml_compute_params * params,
  7101. const struct ggml_tensor * src0,
  7102. struct ggml_tensor * dst) {
  7103. switch (src0->type) {
  7104. case GGML_TYPE_F16:
  7105. case GGML_TYPE_I16:
  7106. {
  7107. ggml_compute_forward_repeat_f16(params, src0, dst);
  7108. } break;
  7109. case GGML_TYPE_F32:
  7110. case GGML_TYPE_I32:
  7111. {
  7112. ggml_compute_forward_repeat_f32(params, src0, dst);
  7113. } break;
  7114. default:
  7115. {
  7116. GGML_ASSERT(false);
  7117. } break;
  7118. }
  7119. }
  7120. // ggml_compute_forward_repeat_back
  7121. static void ggml_compute_forward_repeat_back_f32(
  7122. const struct ggml_compute_params * params,
  7123. const struct ggml_tensor * src0,
  7124. struct ggml_tensor * dst) {
  7125. GGML_ASSERT(params->ith == 0);
  7126. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7128. return;
  7129. }
  7130. GGML_TENSOR_UNARY_OP_LOCALS
  7131. // guaranteed to be an integer due to the check in ggml_can_repeat
  7132. const int nr0 = (int)(ne00/ne0);
  7133. const int nr1 = (int)(ne01/ne1);
  7134. const int nr2 = (int)(ne02/ne2);
  7135. const int nr3 = (int)(ne03/ne3);
  7136. // TODO: support for transposed / permuted tensors
  7137. GGML_ASSERT(nb0 == sizeof(float));
  7138. GGML_ASSERT(nb00 == sizeof(float));
  7139. if (ggml_is_contiguous(dst)) {
  7140. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7141. } else {
  7142. for (int k3 = 0; k3 < ne3; k3++) {
  7143. for (int k2 = 0; k2 < ne2; k2++) {
  7144. for (int k1 = 0; k1 < ne1; k1++) {
  7145. ggml_vec_set_f32(ne0,
  7146. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7147. 0);
  7148. }
  7149. }
  7150. }
  7151. }
  7152. // TODO: maybe this is not optimal?
  7153. for (int i3 = 0; i3 < nr3; i3++) {
  7154. for (int k3 = 0; k3 < ne3; k3++) {
  7155. for (int i2 = 0; i2 < nr2; i2++) {
  7156. for (int k2 = 0; k2 < ne2; k2++) {
  7157. for (int i1 = 0; i1 < nr1; i1++) {
  7158. for (int k1 = 0; k1 < ne1; k1++) {
  7159. for (int i0 = 0; i0 < nr0; i0++) {
  7160. ggml_vec_acc_f32(ne0,
  7161. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7162. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7163. }
  7164. }
  7165. }
  7166. }
  7167. }
  7168. }
  7169. }
  7170. }
  7171. static void ggml_compute_forward_repeat_back(
  7172. const struct ggml_compute_params * params,
  7173. const struct ggml_tensor * src0,
  7174. struct ggml_tensor * dst) {
  7175. switch (src0->type) {
  7176. case GGML_TYPE_F32:
  7177. {
  7178. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7179. } break;
  7180. default:
  7181. {
  7182. GGML_ASSERT(false);
  7183. } break;
  7184. }
  7185. }
  7186. // ggml_compute_forward_concat
  7187. static void ggml_compute_forward_concat_f32(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0,
  7190. const struct ggml_tensor * src1,
  7191. struct ggml_tensor * dst) {
  7192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7193. return;
  7194. }
  7195. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7196. const int ith = params->ith;
  7197. const int nth = params->nth;
  7198. GGML_TENSOR_BINARY_OP_LOCALS
  7199. // TODO: support for transposed / permuted tensors
  7200. GGML_ASSERT(nb0 == sizeof(float));
  7201. GGML_ASSERT(nb00 == sizeof(float));
  7202. GGML_ASSERT(nb10 == sizeof(float));
  7203. for (int i3 = 0; i3 < ne3; i3++) {
  7204. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7205. if (i2 < ne02) { // src0
  7206. for (int i1 = 0; i1 < ne1; i1++) {
  7207. for (int i0 = 0; i0 < ne0; i0++) {
  7208. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7209. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7210. *y = *x;
  7211. }
  7212. }
  7213. } // src1
  7214. else {
  7215. for (int i1 = 0; i1 < ne1; i1++) {
  7216. for (int i0 = 0; i0 < ne0; i0++) {
  7217. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7218. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7219. *y = *x;
  7220. }
  7221. }
  7222. }
  7223. }
  7224. }
  7225. }
  7226. static void ggml_compute_forward_concat(
  7227. const struct ggml_compute_params* params,
  7228. const struct ggml_tensor* src0,
  7229. const struct ggml_tensor* src1,
  7230. struct ggml_tensor* dst) {
  7231. switch (src0->type) {
  7232. case GGML_TYPE_F32:
  7233. case GGML_TYPE_I32:
  7234. {
  7235. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7236. } break;
  7237. default:
  7238. {
  7239. GGML_ASSERT(false);
  7240. } break;
  7241. }
  7242. }
  7243. // ggml_compute_forward_abs
  7244. static void ggml_compute_forward_abs_f32(
  7245. const struct ggml_compute_params * params,
  7246. const struct ggml_tensor * src0,
  7247. struct ggml_tensor * dst) {
  7248. assert(params->ith == 0);
  7249. assert(ggml_are_same_shape(src0, dst));
  7250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7251. return;
  7252. }
  7253. const int n = ggml_nrows(src0);
  7254. const int nc = src0->ne[0];
  7255. assert(dst->nb[0] == sizeof(float));
  7256. assert(src0->nb[0] == sizeof(float));
  7257. for (int i = 0; i < n; i++) {
  7258. ggml_vec_abs_f32(nc,
  7259. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7260. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7261. }
  7262. }
  7263. static void ggml_compute_forward_abs(
  7264. const struct ggml_compute_params * params,
  7265. const struct ggml_tensor * src0,
  7266. struct ggml_tensor * dst) {
  7267. switch (src0->type) {
  7268. case GGML_TYPE_F32:
  7269. {
  7270. ggml_compute_forward_abs_f32(params, src0, dst);
  7271. } break;
  7272. default:
  7273. {
  7274. GGML_ASSERT(false);
  7275. } break;
  7276. }
  7277. }
  7278. // ggml_compute_forward_sgn
  7279. static void ggml_compute_forward_sgn_f32(
  7280. const struct ggml_compute_params * params,
  7281. const struct ggml_tensor * src0,
  7282. struct ggml_tensor * dst) {
  7283. assert(params->ith == 0);
  7284. assert(ggml_are_same_shape(src0, dst));
  7285. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7286. return;
  7287. }
  7288. const int n = ggml_nrows(src0);
  7289. const int nc = src0->ne[0];
  7290. assert(dst->nb[0] == sizeof(float));
  7291. assert(src0->nb[0] == sizeof(float));
  7292. for (int i = 0; i < n; i++) {
  7293. ggml_vec_sgn_f32(nc,
  7294. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7295. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7296. }
  7297. }
  7298. static void ggml_compute_forward_sgn(
  7299. const struct ggml_compute_params * params,
  7300. const struct ggml_tensor * src0,
  7301. struct ggml_tensor * dst) {
  7302. switch (src0->type) {
  7303. case GGML_TYPE_F32:
  7304. {
  7305. ggml_compute_forward_sgn_f32(params, src0, dst);
  7306. } break;
  7307. default:
  7308. {
  7309. GGML_ASSERT(false);
  7310. } break;
  7311. }
  7312. }
  7313. // ggml_compute_forward_neg
  7314. static void ggml_compute_forward_neg_f32(
  7315. const struct ggml_compute_params * params,
  7316. const struct ggml_tensor * src0,
  7317. struct ggml_tensor * dst) {
  7318. assert(params->ith == 0);
  7319. assert(ggml_are_same_shape(src0, dst));
  7320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7321. return;
  7322. }
  7323. const int n = ggml_nrows(src0);
  7324. const int nc = src0->ne[0];
  7325. assert(dst->nb[0] == sizeof(float));
  7326. assert(src0->nb[0] == sizeof(float));
  7327. for (int i = 0; i < n; i++) {
  7328. ggml_vec_neg_f32(nc,
  7329. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7330. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7331. }
  7332. }
  7333. static void ggml_compute_forward_neg(
  7334. const struct ggml_compute_params * params,
  7335. const struct ggml_tensor * src0,
  7336. struct ggml_tensor * dst) {
  7337. switch (src0->type) {
  7338. case GGML_TYPE_F32:
  7339. {
  7340. ggml_compute_forward_neg_f32(params, src0, dst);
  7341. } break;
  7342. default:
  7343. {
  7344. GGML_ASSERT(false);
  7345. } break;
  7346. }
  7347. }
  7348. // ggml_compute_forward_step
  7349. static void ggml_compute_forward_step_f32(
  7350. const struct ggml_compute_params * params,
  7351. const struct ggml_tensor * src0,
  7352. struct ggml_tensor * dst) {
  7353. assert(params->ith == 0);
  7354. assert(ggml_are_same_shape(src0, dst));
  7355. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7356. return;
  7357. }
  7358. const int n = ggml_nrows(src0);
  7359. const int nc = src0->ne[0];
  7360. assert(dst->nb[0] == sizeof(float));
  7361. assert(src0->nb[0] == sizeof(float));
  7362. for (int i = 0; i < n; i++) {
  7363. ggml_vec_step_f32(nc,
  7364. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7365. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7366. }
  7367. }
  7368. static void ggml_compute_forward_step(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. struct ggml_tensor * dst) {
  7372. switch (src0->type) {
  7373. case GGML_TYPE_F32:
  7374. {
  7375. ggml_compute_forward_step_f32(params, src0, dst);
  7376. } break;
  7377. default:
  7378. {
  7379. GGML_ASSERT(false);
  7380. } break;
  7381. }
  7382. }
  7383. // ggml_compute_forward_tanh
  7384. static void ggml_compute_forward_tanh_f32(
  7385. const struct ggml_compute_params * params,
  7386. const struct ggml_tensor * src0,
  7387. struct ggml_tensor * dst) {
  7388. assert(params->ith == 0);
  7389. assert(ggml_are_same_shape(src0, dst));
  7390. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7391. return;
  7392. }
  7393. const int n = ggml_nrows(src0);
  7394. const int nc = src0->ne[0];
  7395. assert(dst->nb[0] == sizeof(float));
  7396. assert(src0->nb[0] == sizeof(float));
  7397. for (int i = 0; i < n; i++) {
  7398. ggml_vec_tanh_f32(nc,
  7399. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7400. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7401. }
  7402. }
  7403. static void ggml_compute_forward_tanh(
  7404. const struct ggml_compute_params * params,
  7405. const struct ggml_tensor * src0,
  7406. struct ggml_tensor * dst) {
  7407. switch (src0->type) {
  7408. case GGML_TYPE_F32:
  7409. {
  7410. ggml_compute_forward_tanh_f32(params, src0, dst);
  7411. } break;
  7412. default:
  7413. {
  7414. GGML_ASSERT(false);
  7415. } break;
  7416. }
  7417. }
  7418. // ggml_compute_forward_elu
  7419. static void ggml_compute_forward_elu_f32(
  7420. const struct ggml_compute_params * params,
  7421. const struct ggml_tensor * src0,
  7422. struct ggml_tensor * dst) {
  7423. assert(params->ith == 0);
  7424. assert(ggml_are_same_shape(src0, dst));
  7425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7426. return;
  7427. }
  7428. const int n = ggml_nrows(src0);
  7429. const int nc = src0->ne[0];
  7430. assert(dst->nb[0] == sizeof(float));
  7431. assert(src0->nb[0] == sizeof(float));
  7432. for (int i = 0; i < n; i++) {
  7433. ggml_vec_elu_f32(nc,
  7434. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7435. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7436. }
  7437. }
  7438. static void ggml_compute_forward_elu(
  7439. const struct ggml_compute_params * params,
  7440. const struct ggml_tensor * src0,
  7441. struct ggml_tensor * dst) {
  7442. switch (src0->type) {
  7443. case GGML_TYPE_F32:
  7444. {
  7445. ggml_compute_forward_elu_f32(params, src0, dst);
  7446. } break;
  7447. default:
  7448. {
  7449. GGML_ASSERT(false);
  7450. } break;
  7451. }
  7452. }
  7453. // ggml_compute_forward_relu
  7454. static void ggml_compute_forward_relu_f32(
  7455. const struct ggml_compute_params * params,
  7456. const struct ggml_tensor * src0,
  7457. struct ggml_tensor * dst) {
  7458. assert(params->ith == 0);
  7459. assert(ggml_are_same_shape(src0, dst));
  7460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7461. return;
  7462. }
  7463. const int n = ggml_nrows(src0);
  7464. const int nc = src0->ne[0];
  7465. assert(dst->nb[0] == sizeof(float));
  7466. assert(src0->nb[0] == sizeof(float));
  7467. for (int i = 0; i < n; i++) {
  7468. ggml_vec_relu_f32(nc,
  7469. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7470. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7471. }
  7472. }
  7473. static void ggml_compute_forward_relu(
  7474. const struct ggml_compute_params * params,
  7475. const struct ggml_tensor * src0,
  7476. struct ggml_tensor * dst) {
  7477. switch (src0->type) {
  7478. case GGML_TYPE_F32:
  7479. {
  7480. ggml_compute_forward_relu_f32(params, src0, dst);
  7481. } break;
  7482. default:
  7483. {
  7484. GGML_ASSERT(false);
  7485. } break;
  7486. }
  7487. }
  7488. // ggml_compute_forward_gelu
  7489. static void ggml_compute_forward_gelu_f32(
  7490. const struct ggml_compute_params * params,
  7491. const struct ggml_tensor * src0,
  7492. struct ggml_tensor * dst) {
  7493. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7494. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7495. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7496. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7497. return;
  7498. }
  7499. const int ith = params->ith;
  7500. const int nth = params->nth;
  7501. const int nc = src0->ne[0];
  7502. const int nr = ggml_nrows(src0);
  7503. // rows per thread
  7504. const int dr = (nr + nth - 1)/nth;
  7505. // row range for this thread
  7506. const int ir0 = dr*ith;
  7507. const int ir1 = MIN(ir0 + dr, nr);
  7508. for (int i1 = ir0; i1 < ir1; i1++) {
  7509. ggml_vec_gelu_f32(nc,
  7510. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7511. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7512. #ifndef NDEBUG
  7513. for (int k = 0; k < nc; k++) {
  7514. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7515. UNUSED(x);
  7516. assert(!isnan(x));
  7517. assert(!isinf(x));
  7518. }
  7519. #endif
  7520. }
  7521. }
  7522. static void ggml_compute_forward_gelu(
  7523. const struct ggml_compute_params * params,
  7524. const struct ggml_tensor * src0,
  7525. struct ggml_tensor * dst) {
  7526. switch (src0->type) {
  7527. case GGML_TYPE_F32:
  7528. {
  7529. ggml_compute_forward_gelu_f32(params, src0, dst);
  7530. } break;
  7531. default:
  7532. {
  7533. GGML_ASSERT(false);
  7534. } break;
  7535. }
  7536. }
  7537. // ggml_compute_forward_gelu_quick
  7538. static void ggml_compute_forward_gelu_quick_f32(
  7539. const struct ggml_compute_params * params,
  7540. const struct ggml_tensor * src0,
  7541. struct ggml_tensor * dst) {
  7542. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7543. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7544. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7546. return;
  7547. }
  7548. const int ith = params->ith;
  7549. const int nth = params->nth;
  7550. const int nc = src0->ne[0];
  7551. const int nr = ggml_nrows(src0);
  7552. // rows per thread
  7553. const int dr = (nr + nth - 1)/nth;
  7554. // row range for this thread
  7555. const int ir0 = dr*ith;
  7556. const int ir1 = MIN(ir0 + dr, nr);
  7557. for (int i1 = ir0; i1 < ir1; i1++) {
  7558. ggml_vec_gelu_quick_f32(nc,
  7559. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7560. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7561. #ifndef NDEBUG
  7562. for (int k = 0; k < nc; k++) {
  7563. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7564. UNUSED(x);
  7565. assert(!isnan(x));
  7566. assert(!isinf(x));
  7567. }
  7568. #endif
  7569. }
  7570. }
  7571. static void ggml_compute_forward_gelu_quick(
  7572. const struct ggml_compute_params * params,
  7573. const struct ggml_tensor * src0,
  7574. struct ggml_tensor * dst) {
  7575. switch (src0->type) {
  7576. case GGML_TYPE_F32:
  7577. {
  7578. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7579. } break;
  7580. default:
  7581. {
  7582. GGML_ASSERT(false);
  7583. } break;
  7584. }
  7585. }
  7586. // ggml_compute_forward_silu
  7587. static void ggml_compute_forward_silu_f32(
  7588. const struct ggml_compute_params * params,
  7589. const struct ggml_tensor * src0,
  7590. struct ggml_tensor * dst) {
  7591. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7592. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7593. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7595. return;
  7596. }
  7597. const int ith = params->ith;
  7598. const int nth = params->nth;
  7599. const int nc = src0->ne[0];
  7600. const int nr = ggml_nrows(src0);
  7601. // rows per thread
  7602. const int dr = (nr + nth - 1)/nth;
  7603. // row range for this thread
  7604. const int ir0 = dr*ith;
  7605. const int ir1 = MIN(ir0 + dr, nr);
  7606. for (int i1 = ir0; i1 < ir1; i1++) {
  7607. ggml_vec_silu_f32(nc,
  7608. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7609. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7610. #ifndef NDEBUG
  7611. for (int k = 0; k < nc; k++) {
  7612. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7613. UNUSED(x);
  7614. assert(!isnan(x));
  7615. assert(!isinf(x));
  7616. }
  7617. #endif
  7618. }
  7619. }
  7620. static void ggml_compute_forward_silu(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. struct ggml_tensor * dst) {
  7624. switch (src0->type) {
  7625. case GGML_TYPE_F32:
  7626. {
  7627. ggml_compute_forward_silu_f32(params, src0, dst);
  7628. } break;
  7629. default:
  7630. {
  7631. GGML_ASSERT(false);
  7632. } break;
  7633. }
  7634. }
  7635. // ggml_compute_forward_leaky_relu
  7636. static void ggml_compute_forward_leaky_relu_f32(
  7637. const struct ggml_compute_params * params,
  7638. const struct ggml_tensor * src0,
  7639. struct ggml_tensor * dst) {
  7640. assert(params->ith == 0);
  7641. assert(ggml_are_same_shape(src0, dst));
  7642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7643. return;
  7644. }
  7645. const int n = ggml_nrows(src0);
  7646. const int nc = src0->ne[0];
  7647. float negative_slope;
  7648. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7649. assert(dst->nb[0] == sizeof(float));
  7650. assert(src0->nb[0] == sizeof(float));
  7651. for (int i = 0; i < n; i++) {
  7652. ggml_vec_leaky_relu_f32(nc,
  7653. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7654. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7655. }
  7656. }
  7657. static void ggml_compute_forward_leaky_relu(
  7658. const struct ggml_compute_params * params,
  7659. const struct ggml_tensor * src0,
  7660. struct ggml_tensor * dst) {
  7661. switch (src0->type) {
  7662. case GGML_TYPE_F32:
  7663. {
  7664. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7665. } break;
  7666. default:
  7667. {
  7668. GGML_ASSERT(false);
  7669. } break;
  7670. }
  7671. }
  7672. // ggml_compute_forward_silu_back
  7673. static void ggml_compute_forward_silu_back_f32(
  7674. const struct ggml_compute_params * params,
  7675. const struct ggml_tensor * src0,
  7676. const struct ggml_tensor * grad,
  7677. struct ggml_tensor * dst) {
  7678. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7679. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7680. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7681. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7682. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7684. return;
  7685. }
  7686. const int ith = params->ith;
  7687. const int nth = params->nth;
  7688. const int nc = src0->ne[0];
  7689. const int nr = ggml_nrows(src0);
  7690. // rows per thread
  7691. const int dr = (nr + nth - 1)/nth;
  7692. // row range for this thread
  7693. const int ir0 = dr*ith;
  7694. const int ir1 = MIN(ir0 + dr, nr);
  7695. for (int i1 = ir0; i1 < ir1; i1++) {
  7696. ggml_vec_silu_backward_f32(nc,
  7697. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7698. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7699. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7700. #ifndef NDEBUG
  7701. for (int k = 0; k < nc; k++) {
  7702. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7703. UNUSED(x);
  7704. assert(!isnan(x));
  7705. assert(!isinf(x));
  7706. }
  7707. #endif
  7708. }
  7709. }
  7710. static void ggml_compute_forward_silu_back(
  7711. const struct ggml_compute_params * params,
  7712. const struct ggml_tensor * src0,
  7713. const struct ggml_tensor * grad,
  7714. struct ggml_tensor * dst) {
  7715. switch (src0->type) {
  7716. case GGML_TYPE_F32:
  7717. {
  7718. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7719. } break;
  7720. default:
  7721. {
  7722. GGML_ASSERT(false);
  7723. } break;
  7724. }
  7725. }
  7726. static void ggml_compute_forward_hardswish_f32(
  7727. const struct ggml_compute_params * params,
  7728. const struct ggml_tensor * src0,
  7729. struct ggml_tensor * dst) {
  7730. assert(params->ith == 0);
  7731. assert(ggml_are_same_shape(src0, dst));
  7732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7733. return;
  7734. }
  7735. const int n = ggml_nrows(src0);
  7736. const int nc = src0->ne[0];
  7737. assert(dst->nb[0] == sizeof(float));
  7738. assert(src0->nb[0] == sizeof(float));
  7739. for (int i = 0; i < n; i++) {
  7740. ggml_vec_hardswish_f32(nc,
  7741. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7742. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7743. }
  7744. }
  7745. static void ggml_compute_forward_hardswish(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. struct ggml_tensor * dst) {
  7749. switch (src0->type) {
  7750. case GGML_TYPE_F32:
  7751. {
  7752. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7753. } break;
  7754. default:
  7755. {
  7756. GGML_ASSERT(false);
  7757. } break;
  7758. }
  7759. }
  7760. static void ggml_compute_forward_hardsigmoid_f32(
  7761. const struct ggml_compute_params * params,
  7762. const struct ggml_tensor * src0,
  7763. struct ggml_tensor * dst) {
  7764. assert(params->ith == 0);
  7765. assert(ggml_are_same_shape(src0, dst));
  7766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7767. return;
  7768. }
  7769. const int n = ggml_nrows(src0);
  7770. const int nc = src0->ne[0];
  7771. assert(dst->nb[0] == sizeof(float));
  7772. assert(src0->nb[0] == sizeof(float));
  7773. for (int i = 0; i < n; i++) {
  7774. ggml_vec_hardsigmoid_f32(nc,
  7775. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7776. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7777. }
  7778. }
  7779. static void ggml_compute_forward_hardsigmoid(
  7780. const struct ggml_compute_params * params,
  7781. const struct ggml_tensor * src0,
  7782. struct ggml_tensor * dst) {
  7783. switch (src0->type) {
  7784. case GGML_TYPE_F32:
  7785. {
  7786. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7787. } break;
  7788. default:
  7789. {
  7790. GGML_ASSERT(false);
  7791. } break;
  7792. }
  7793. }
  7794. // ggml_compute_forward_norm
  7795. static void ggml_compute_forward_norm_f32(
  7796. const struct ggml_compute_params * params,
  7797. const struct ggml_tensor * src0,
  7798. struct ggml_tensor * dst) {
  7799. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7800. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7801. return;
  7802. }
  7803. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7804. const int ith = params->ith;
  7805. const int nth = params->nth;
  7806. GGML_TENSOR_UNARY_OP_LOCALS
  7807. float eps;
  7808. memcpy(&eps, dst->op_params, sizeof(float));
  7809. GGML_ASSERT(eps > 0.0f);
  7810. // TODO: optimize
  7811. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7812. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7813. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7814. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7815. ggml_float sum = 0.0;
  7816. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7817. sum += (ggml_float)x[i00];
  7818. }
  7819. float mean = sum/ne00;
  7820. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7821. ggml_float sum2 = 0.0;
  7822. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7823. float v = x[i00] - mean;
  7824. y[i00] = v;
  7825. sum2 += (ggml_float)(v*v);
  7826. }
  7827. float variance = sum2/ne00;
  7828. const float scale = 1.0f/sqrtf(variance + eps);
  7829. ggml_vec_scale_f32(ne00, y, scale);
  7830. }
  7831. }
  7832. }
  7833. }
  7834. static void ggml_compute_forward_norm(
  7835. const struct ggml_compute_params * params,
  7836. const struct ggml_tensor * src0,
  7837. struct ggml_tensor * dst) {
  7838. switch (src0->type) {
  7839. case GGML_TYPE_F32:
  7840. {
  7841. ggml_compute_forward_norm_f32(params, src0, dst);
  7842. } break;
  7843. default:
  7844. {
  7845. GGML_ASSERT(false);
  7846. } break;
  7847. }
  7848. }
  7849. // ggml_compute_forward_group_rms_norm
  7850. static void ggml_compute_forward_rms_norm_f32(
  7851. const struct ggml_compute_params * params,
  7852. const struct ggml_tensor * src0,
  7853. struct ggml_tensor * dst) {
  7854. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7856. return;
  7857. }
  7858. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7859. const int ith = params->ith;
  7860. const int nth = params->nth;
  7861. GGML_TENSOR_UNARY_OP_LOCALS
  7862. float eps;
  7863. memcpy(&eps, dst->op_params, sizeof(float));
  7864. GGML_ASSERT(eps > 0.0f);
  7865. // TODO: optimize
  7866. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7867. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7868. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7869. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7870. ggml_float sum = 0.0;
  7871. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7872. sum += (ggml_float)(x[i00] * x[i00]);
  7873. }
  7874. const float mean = sum/ne00;
  7875. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7876. memcpy(y, x, ne00 * sizeof(float));
  7877. // for (int i00 = 0; i00 < ne00; i00++) {
  7878. // y[i00] = x[i00];
  7879. // }
  7880. const float scale = 1.0f/sqrtf(mean + eps);
  7881. ggml_vec_scale_f32(ne00, y, scale);
  7882. }
  7883. }
  7884. }
  7885. }
  7886. static void ggml_compute_forward_rms_norm(
  7887. const struct ggml_compute_params * params,
  7888. const struct ggml_tensor * src0,
  7889. struct ggml_tensor * dst) {
  7890. switch (src0->type) {
  7891. case GGML_TYPE_F32:
  7892. {
  7893. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7894. } break;
  7895. default:
  7896. {
  7897. GGML_ASSERT(false);
  7898. } break;
  7899. }
  7900. }
  7901. static void ggml_compute_forward_rms_norm_back_f32(
  7902. const struct ggml_compute_params * params,
  7903. const struct ggml_tensor * src0,
  7904. const struct ggml_tensor * src1,
  7905. struct ggml_tensor * dst) {
  7906. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7908. return;
  7909. }
  7910. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7911. const int ith = params->ith;
  7912. const int nth = params->nth;
  7913. GGML_TENSOR_BINARY_OP_LOCALS
  7914. float eps;
  7915. memcpy(&eps, dst->op_params, sizeof(float));
  7916. // TODO: optimize
  7917. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7918. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7919. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7920. // src1 is same shape as src0 => same indices
  7921. const int64_t i11 = i01;
  7922. const int64_t i12 = i02;
  7923. const int64_t i13 = i03;
  7924. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7925. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7926. ggml_float sum_xx = 0.0;
  7927. ggml_float sum_xdz = 0.0;
  7928. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7929. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7930. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7931. }
  7932. //const float mean = (float)(sum_xx)/ne00;
  7933. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7934. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7935. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7936. // we could cache rms from forward pass to improve performance.
  7937. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7938. //const float rms = sqrtf(mean_eps);
  7939. const float rrms = 1.0f / sqrtf(mean_eps);
  7940. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7941. {
  7942. // z = rms_norm(x)
  7943. //
  7944. // rms_norm(src0) =
  7945. // scale(
  7946. // src0,
  7947. // div(
  7948. // 1,
  7949. // sqrt(
  7950. // add(
  7951. // scale(
  7952. // sum(
  7953. // sqr(
  7954. // src0)),
  7955. // (1.0/N)),
  7956. // eps))));
  7957. // postorder:
  7958. // ## op args grad
  7959. // 00 param src0 grad[#00]
  7960. // 01 const 1
  7961. // 02 sqr (#00) grad[#02]
  7962. // 03 sum (#02) grad[#03]
  7963. // 04 const 1/N
  7964. // 05 scale (#03, #04) grad[#05]
  7965. // 06 const eps
  7966. // 07 add (#05, #06) grad[#07]
  7967. // 08 sqrt (#07) grad[#08]
  7968. // 09 div (#01,#08) grad[#09]
  7969. // 10 scale (#00,#09) grad[#10]
  7970. //
  7971. // backward pass, given grad[#10]
  7972. // #10: scale
  7973. // grad[#00] += scale(grad[#10],#09)
  7974. // grad[#09] += sum(mul(grad[#10],#00))
  7975. // #09: div
  7976. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7977. // #08: sqrt
  7978. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7979. // #07: add
  7980. // grad[#05] += grad[#07]
  7981. // #05: scale
  7982. // grad[#03] += scale(grad[#05],#04)
  7983. // #03: sum
  7984. // grad[#02] += repeat(grad[#03], #02)
  7985. // #02:
  7986. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7987. //
  7988. // substitute and simplify:
  7989. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7990. // grad[#02] = repeat(grad[#03], #02)
  7991. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7992. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7993. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7994. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7995. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7996. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7997. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7998. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7999. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8000. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8001. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8002. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8003. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8004. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8005. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8006. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8007. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8008. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8009. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8010. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8011. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8012. // a = b*c + d*e
  8013. // a = b*c*f/f + d*e*f/f
  8014. // a = (b*c*f + d*e*f)*(1/f)
  8015. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8016. // a = (b + d*e/c)*c
  8017. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8018. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8019. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8020. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8021. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8022. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8023. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8024. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8025. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8026. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8027. }
  8028. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8029. // post-order:
  8030. // dx := x
  8031. // dx := scale(dx,-mean_xdz/mean_eps)
  8032. // dx := add(dx, dz)
  8033. // dx := scale(dx, rrms)
  8034. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8035. ggml_vec_cpy_f32 (ne00, dx, x);
  8036. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8037. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8038. ggml_vec_acc_f32 (ne00, dx, dz);
  8039. ggml_vec_scale_f32(ne00, dx, rrms);
  8040. }
  8041. }
  8042. }
  8043. }
  8044. static void ggml_compute_forward_rms_norm_back(
  8045. const struct ggml_compute_params * params,
  8046. const struct ggml_tensor * src0,
  8047. const struct ggml_tensor * src1,
  8048. struct ggml_tensor * dst) {
  8049. switch (src0->type) {
  8050. case GGML_TYPE_F32:
  8051. {
  8052. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8053. } break;
  8054. default:
  8055. {
  8056. GGML_ASSERT(false);
  8057. } break;
  8058. }
  8059. }
  8060. // ggml_compute_forward_group_norm
  8061. static void ggml_compute_forward_group_norm_f32(
  8062. const struct ggml_compute_params * params,
  8063. const struct ggml_tensor * src0,
  8064. struct ggml_tensor * dst) {
  8065. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8067. return;
  8068. }
  8069. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8070. const int ith = params->ith;
  8071. const int nth = params->nth;
  8072. GGML_TENSOR_UNARY_OP_LOCALS
  8073. const float eps = 1e-6f; // TODO: make this a parameter
  8074. // TODO: optimize
  8075. int n_channels = src0->ne[2];
  8076. int n_groups = dst->op_params[0];
  8077. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8078. for (int i = ith; i < n_groups; i+=nth) {
  8079. int start = i * n_channels_per_group;
  8080. int end = start + n_channels_per_group;
  8081. if (end > n_channels) {
  8082. end = n_channels;
  8083. }
  8084. int step = end - start;
  8085. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8086. ggml_float sum = 0.0;
  8087. for (int64_t i02 = start; i02 < end; i02++) {
  8088. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8089. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8090. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8091. sum += (ggml_float)x[i00];
  8092. }
  8093. }
  8094. }
  8095. float mean = sum / (ne00 * ne01 * step);
  8096. ggml_float sum2 = 0.0;
  8097. for (int64_t i02 = start; i02 < end; i02++) {
  8098. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8099. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8100. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8101. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8102. float v = x[i00] - mean;
  8103. y[i00] = v;
  8104. sum2 += (ggml_float)(v * v);
  8105. }
  8106. }
  8107. }
  8108. float variance = sum2 / (ne00 * ne01 * step);
  8109. const float scale = 1.0f / sqrtf(variance + eps);
  8110. for (int64_t i02 = start; i02 < end; i02++) {
  8111. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8112. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8113. ggml_vec_scale_f32(ne00, y, scale);
  8114. }
  8115. }
  8116. }
  8117. }
  8118. }
  8119. static void ggml_compute_forward_group_norm(
  8120. const struct ggml_compute_params * params,
  8121. const struct ggml_tensor * src0,
  8122. struct ggml_tensor * dst) {
  8123. switch (src0->type) {
  8124. case GGML_TYPE_F32:
  8125. {
  8126. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8127. } break;
  8128. default:
  8129. {
  8130. GGML_ASSERT(false);
  8131. } break;
  8132. }
  8133. }
  8134. // ggml_compute_forward_mul_mat
  8135. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8136. // helper function to determine if it is better to use BLAS or not
  8137. // for large matrices, BLAS is faster
  8138. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8139. const struct ggml_tensor * src0 = dst->src[0];
  8140. const struct ggml_tensor * src1 = dst->src[1];
  8141. //const int64_t ne00 = src0->ne[0];
  8142. //const int64_t ne01 = src0->ne[1];
  8143. const int64_t ne10 = src1->ne[0];
  8144. const int64_t ne0 = dst->ne[0];
  8145. const int64_t ne1 = dst->ne[1];
  8146. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8147. // all the experts for each batch element and the processing would become incredibly slow
  8148. // TODO: find the optimal values for these
  8149. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8150. ggml_is_contiguous(src0) &&
  8151. ggml_is_contiguous(src1) &&
  8152. //src0->type == GGML_TYPE_F32 &&
  8153. src1->type == GGML_TYPE_F32 &&
  8154. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8155. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8156. return true;
  8157. }
  8158. return false;
  8159. }
  8160. #endif
  8161. static void ggml_compute_forward_mul_mat(
  8162. const struct ggml_compute_params * params,
  8163. const struct ggml_tensor * src0,
  8164. const struct ggml_tensor * src1,
  8165. struct ggml_tensor * dst) {
  8166. int64_t t0 = ggml_perf_time_us();
  8167. UNUSED(t0);
  8168. GGML_TENSOR_BINARY_OP_LOCALS
  8169. const int ith = params->ith;
  8170. const int nth = params->nth;
  8171. const enum ggml_type type = src0->type;
  8172. const bool src1_cont = ggml_is_contiguous(src1);
  8173. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8174. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8175. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8176. GGML_ASSERT(ne0 == ne01);
  8177. GGML_ASSERT(ne1 == ne11);
  8178. GGML_ASSERT(ne2 == ne12);
  8179. GGML_ASSERT(ne3 == ne13);
  8180. // we don't support permuted src0 or src1
  8181. GGML_ASSERT(nb00 == ggml_type_size(type));
  8182. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8183. // dst cannot be transposed or permuted
  8184. GGML_ASSERT(nb0 == sizeof(float));
  8185. GGML_ASSERT(nb0 <= nb1);
  8186. GGML_ASSERT(nb1 <= nb2);
  8187. GGML_ASSERT(nb2 <= nb3);
  8188. // broadcast factors
  8189. const int64_t r2 = ne12/ne02;
  8190. const int64_t r3 = ne13/ne03;
  8191. // nb01 >= nb00 - src0 is not transposed
  8192. // compute by src0 rows
  8193. #if defined(GGML_USE_CLBLAST)
  8194. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8195. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8196. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8197. }
  8198. return;
  8199. }
  8200. #endif
  8201. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8202. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8203. const int64_t ne_plane = ne01*ne00;
  8204. const int64_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8205. UNUSED(desired_wsize);
  8206. if (params->type == GGML_TASK_INIT) {
  8207. if (type != GGML_TYPE_F32) {
  8208. assert(params->wsize >= desired_wsize);
  8209. // parallelize by src0 rows
  8210. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8211. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8212. // broadcast src0 into src1 across 2nd,3rd dimension
  8213. const int64_t i03 = i13/r3;
  8214. const int64_t i02 = i12/r2;
  8215. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8216. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8217. ggml_to_float_t const to_float = type_traits[type].to_float;
  8218. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8219. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8220. }
  8221. }
  8222. }
  8223. }
  8224. return;
  8225. }
  8226. if (params->type == GGML_TASK_FINALIZE) {
  8227. return;
  8228. }
  8229. // perform sgemm, parallelization controlled by blas lib
  8230. if (ith != 0) {
  8231. return;
  8232. }
  8233. //const int64_t tgemm0 = ggml_perf_time_us();
  8234. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8235. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8236. const int64_t i03 = i13/r3;
  8237. const int64_t i02 = i12/r2;
  8238. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8239. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8240. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8241. if (type != GGML_TYPE_F32) {
  8242. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8243. }
  8244. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8245. ne1, ne01, ne10,
  8246. 1.0f, y, ne10,
  8247. x, ne00,
  8248. 0.0f, d, ne01);
  8249. }
  8250. }
  8251. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8252. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8253. return;
  8254. }
  8255. #endif
  8256. if (params->type == GGML_TASK_INIT) {
  8257. if (ith != 0) {
  8258. return;
  8259. }
  8260. if (src1->type != vec_dot_type) {
  8261. char * wdata = params->wdata;
  8262. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8263. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8264. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8265. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8266. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8267. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8268. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8269. wdata += row_size;
  8270. }
  8271. }
  8272. }
  8273. }
  8274. return;
  8275. }
  8276. if (params->type == GGML_TASK_FINALIZE) {
  8277. return;
  8278. }
  8279. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8280. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8281. const int64_t nr0 = ne01; // src0 rows
  8282. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8283. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8284. // distribute the thread work across the inner or outer loop based on which one is larger
  8285. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8286. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8287. const int64_t ith0 = ith % nth0;
  8288. const int64_t ith1 = ith / nth0;
  8289. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8290. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8291. const int64_t ir010 = dr0*ith0;
  8292. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8293. const int64_t ir110 = dr1*ith1;
  8294. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8295. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8296. // threads with no work simply yield (not sure if it helps)
  8297. if (ir010 >= ir011 || ir110 >= ir111) {
  8298. sched_yield();
  8299. return;
  8300. }
  8301. assert(ne12 % ne02 == 0);
  8302. assert(ne13 % ne03 == 0);
  8303. // block-tiling attempt
  8304. const int64_t blck_0 = 16;
  8305. const int64_t blck_1 = 16;
  8306. // attempt to reduce false-sharing (does not seem to make a difference)
  8307. float tmp[16];
  8308. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8309. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8310. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8311. const int64_t i13 = (ir1/(ne12*ne1));
  8312. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8313. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8314. // broadcast src0 into src1
  8315. const int64_t i03 = i13/r3;
  8316. const int64_t i02 = i12/r2;
  8317. const int64_t i1 = i11;
  8318. const int64_t i2 = i12;
  8319. const int64_t i3 = i13;
  8320. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8321. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8322. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8323. // the original src1 data pointer, so we should index using the indices directly
  8324. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8325. const char * src1_col = (const char *) wdata +
  8326. (src1_cont || src1->type != vec_dot_type
  8327. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8328. : (i11*nb11 + i12*nb12 + i13*nb13));
  8329. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8330. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8331. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8332. //}
  8333. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8334. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8335. }
  8336. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8337. }
  8338. }
  8339. }
  8340. }
  8341. // ggml_compute_forward_mul_mat_id
  8342. static void ggml_compute_forward_mul_mat_id(
  8343. const struct ggml_compute_params * params,
  8344. const struct ggml_tensor * ids,
  8345. const struct ggml_tensor * src1,
  8346. struct ggml_tensor * dst) {
  8347. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8348. GGML_TENSOR_BINARY_OP_LOCALS
  8349. const int ith = params->ith;
  8350. const int nth = params->nth;
  8351. const enum ggml_type type = src0->type;
  8352. const bool src1_cont = ggml_is_contiguous(src1);
  8353. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8354. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8355. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8356. GGML_ASSERT(ne0 == ne01);
  8357. GGML_ASSERT(ne1 == ne11);
  8358. GGML_ASSERT(ne2 == ne12);
  8359. GGML_ASSERT(ne3 == ne13);
  8360. // we don't support permuted src0 or src1
  8361. GGML_ASSERT(nb00 == ggml_type_size(type));
  8362. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8363. // dst cannot be transposed or permuted
  8364. GGML_ASSERT(nb0 == sizeof(float));
  8365. GGML_ASSERT(nb0 <= nb1);
  8366. GGML_ASSERT(nb1 <= nb2);
  8367. GGML_ASSERT(nb2 <= nb3);
  8368. // broadcast factors
  8369. const int64_t r2 = ne12/ne02;
  8370. const int64_t r3 = ne13/ne03;
  8371. // row groups
  8372. const int id = ggml_get_op_params_i32(dst, 0);
  8373. const int n_as = ggml_get_op_params_i32(dst, 1);
  8374. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8375. (char *) params->wdata :
  8376. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8377. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8378. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8379. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8380. if (params->type == GGML_TASK_INIT) {
  8381. if (ith != 0) {
  8382. return;
  8383. }
  8384. char * wdata = params->wdata;
  8385. if (src1->type != vec_dot_type) {
  8386. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8387. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8388. assert(src1->type == GGML_TYPE_F32);
  8389. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8390. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8391. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8392. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8393. wdata += row_size;
  8394. }
  8395. }
  8396. }
  8397. }
  8398. // initialize matrix_row_counts
  8399. GGML_ASSERT(wdata == wdata_src1_end);
  8400. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8401. // group rows by src0 matrix
  8402. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8403. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8404. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8405. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8406. matrix_row_counts[row_id] += 1;
  8407. }
  8408. return;
  8409. }
  8410. if (params->type == GGML_TASK_FINALIZE) {
  8411. return;
  8412. }
  8413. // compute each matrix multiplication in sequence
  8414. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8415. const int64_t cne1 = matrix_row_counts[cur_a];
  8416. if (cne1 == 0) {
  8417. continue;
  8418. }
  8419. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8420. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8421. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8422. const int64_t nr0 = ne01; // src0 rows
  8423. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8424. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8425. // distribute the thread work across the inner or outer loop based on which one is larger
  8426. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8427. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8428. const int64_t ith0 = ith % nth0;
  8429. const int64_t ith1 = ith / nth0;
  8430. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8431. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8432. const int64_t ir010 = dr0*ith0;
  8433. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8434. const int64_t ir110 = dr1*ith1;
  8435. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8436. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8437. // threads with no work simply yield (not sure if it helps)
  8438. if (ir010 >= ir011 || ir110 >= ir111) {
  8439. sched_yield();
  8440. continue;
  8441. }
  8442. assert(ne12 % ne02 == 0);
  8443. assert(ne13 % ne03 == 0);
  8444. // block-tiling attempt
  8445. const int64_t blck_0 = 16;
  8446. const int64_t blck_1 = 16;
  8447. // attempt to reduce false-sharing (does not seem to make a difference)
  8448. float tmp[16];
  8449. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8450. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8451. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8452. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8453. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8454. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8455. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8456. // broadcast src0 into src1
  8457. const int64_t i03 = i13/r3;
  8458. const int64_t i02 = i12/r2;
  8459. const int64_t i1 = i11;
  8460. const int64_t i2 = i12;
  8461. const int64_t i3 = i13;
  8462. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8463. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8464. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8465. // the original src1 data pointer, so we should index using the indices directly
  8466. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8467. const char * src1_col = (const char *) wdata +
  8468. (src1_cont || src1->type != vec_dot_type
  8469. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8470. : (i11*nb11 + i12*nb12 + i13*nb13));
  8471. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8472. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8473. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8474. //}
  8475. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8476. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8477. }
  8478. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8479. }
  8480. }
  8481. }
  8482. }
  8483. #undef MMID_MATRIX_ROW
  8484. }
  8485. // ggml_compute_forward_out_prod
  8486. static void ggml_compute_forward_out_prod_f32(
  8487. const struct ggml_compute_params * params,
  8488. const struct ggml_tensor * src0,
  8489. const struct ggml_tensor * src1,
  8490. struct ggml_tensor * dst) {
  8491. // int64_t t0 = ggml_perf_time_us();
  8492. // UNUSED(t0);
  8493. GGML_TENSOR_BINARY_OP_LOCALS
  8494. const int ith = params->ith;
  8495. const int nth = params->nth;
  8496. GGML_ASSERT(ne0 == ne00);
  8497. GGML_ASSERT(ne1 == ne10);
  8498. GGML_ASSERT(ne2 == ne02);
  8499. GGML_ASSERT(ne02 == ne12);
  8500. GGML_ASSERT(ne3 == ne13);
  8501. GGML_ASSERT(ne03 == ne13);
  8502. // we don't support permuted src0 or src1
  8503. GGML_ASSERT(nb00 == sizeof(float));
  8504. // dst cannot be transposed or permuted
  8505. GGML_ASSERT(nb0 == sizeof(float));
  8506. // GGML_ASSERT(nb0 <= nb1);
  8507. // GGML_ASSERT(nb1 <= nb2);
  8508. // GGML_ASSERT(nb2 <= nb3);
  8509. // nb01 >= nb00 - src0 is not transposed
  8510. // compute by src0 rows
  8511. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8512. // TODO: #if defined(GGML_USE_CLBLAST)
  8513. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8514. bool use_blas = ggml_is_matrix(src0) &&
  8515. ggml_is_matrix(src1) &&
  8516. ggml_is_contiguous(src0) &&
  8517. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8518. #endif
  8519. if (params->type == GGML_TASK_INIT) {
  8520. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8521. if (use_blas) {
  8522. return;
  8523. }
  8524. #endif
  8525. if (ith != 0) {
  8526. return;
  8527. }
  8528. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8529. return;
  8530. }
  8531. if (params->type == GGML_TASK_FINALIZE) {
  8532. return;
  8533. }
  8534. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8535. if (use_blas) {
  8536. if (params->ith != 0) { // All threads other than the first do no work.
  8537. return;
  8538. }
  8539. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8540. // src0: (k,n)
  8541. // src1: (k,m)
  8542. // dst: (m,n)
  8543. //
  8544. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8545. // Also expressed as (major,minor)
  8546. // a: (m,k): so src1 transposed
  8547. // b: (k,n): so src0
  8548. // c: (m,n)
  8549. //
  8550. // However, if ggml_is_transposed(src1) is true, then
  8551. // src1->data already contains a transposed version, so sgemm mustn't
  8552. // transpose it further.
  8553. int n = src0->ne[0];
  8554. int k = src0->ne[1];
  8555. int m = src1->ne[0];
  8556. int transposeA, lda;
  8557. if (!ggml_is_transposed(src1)) {
  8558. transposeA = CblasTrans;
  8559. lda = m;
  8560. } else {
  8561. transposeA = CblasNoTrans;
  8562. lda = k;
  8563. }
  8564. float * a = (float *) ((char *) src1->data);
  8565. float * b = (float *) ((char *) src0->data);
  8566. float * c = (float *) ((char *) dst->data);
  8567. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8568. return;
  8569. }
  8570. #endif
  8571. // dst[:,:,:,:] = 0
  8572. // for i2,i3:
  8573. // for i1:
  8574. // for i01:
  8575. // for i0:
  8576. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8577. // parallelize by last three dimensions
  8578. // total rows in dst
  8579. const int64_t nr = ne1*ne2*ne3;
  8580. // rows per thread
  8581. const int64_t dr = (nr + nth - 1)/nth;
  8582. // row range for this thread
  8583. const int64_t ir0 = dr*ith;
  8584. const int64_t ir1 = MIN(ir0 + dr, nr);
  8585. // block-tiling attempt
  8586. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8587. const int64_t blck_1 = 16;
  8588. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8589. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8590. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8591. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8592. for (int64_t ir = bir; ir < bir1; ++ir) {
  8593. // dst indices
  8594. const int64_t i3 = ir/(ne2*ne1);
  8595. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8596. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8597. const int64_t i02 = i2;
  8598. const int64_t i03 = i3;
  8599. //const int64_t i10 = i1;
  8600. const int64_t i12 = i2;
  8601. const int64_t i13 = i3;
  8602. #if GGML_VEC_MAD_UNROLL > 2
  8603. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8604. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8605. const int64_t i11 = i01;
  8606. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8607. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8608. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8609. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8610. }
  8611. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8612. const int64_t i11 = i01;
  8613. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8614. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8615. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8616. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8617. }
  8618. #else
  8619. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8620. const int64_t i11 = i01;
  8621. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8622. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8623. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8624. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8625. }
  8626. #endif
  8627. }
  8628. }
  8629. }
  8630. //int64_t t1 = ggml_perf_time_us();
  8631. //static int64_t acc = 0;
  8632. //acc += t1 - t0;
  8633. //if (t1 - t0 > 10) {
  8634. // printf("\n");
  8635. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8636. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8637. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8638. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8639. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8640. //}
  8641. }
  8642. static void ggml_compute_forward_out_prod_q_f32(
  8643. const struct ggml_compute_params * params,
  8644. const struct ggml_tensor * src0,
  8645. const struct ggml_tensor * src1,
  8646. struct ggml_tensor * dst) {
  8647. // int64_t t0 = ggml_perf_time_us();
  8648. // UNUSED(t0);
  8649. GGML_TENSOR_BINARY_OP_LOCALS;
  8650. const int ith = params->ith;
  8651. const int nth = params->nth;
  8652. const enum ggml_type type = src0->type;
  8653. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8654. GGML_ASSERT(ne02 == ne12);
  8655. GGML_ASSERT(ne03 == ne13);
  8656. GGML_ASSERT(ne2 == ne12);
  8657. GGML_ASSERT(ne3 == ne13);
  8658. // we don't support permuted src0 dim0
  8659. GGML_ASSERT(nb00 == ggml_type_size(type));
  8660. // dst dim0 cannot be transposed or permuted
  8661. GGML_ASSERT(nb0 == sizeof(float));
  8662. // GGML_ASSERT(nb0 <= nb1);
  8663. // GGML_ASSERT(nb1 <= nb2);
  8664. // GGML_ASSERT(nb2 <= nb3);
  8665. GGML_ASSERT(ne0 == ne00);
  8666. GGML_ASSERT(ne1 == ne10);
  8667. GGML_ASSERT(ne2 == ne02);
  8668. GGML_ASSERT(ne3 == ne03);
  8669. // nb01 >= nb00 - src0 is not transposed
  8670. // compute by src0 rows
  8671. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8672. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8673. if (params->type == GGML_TASK_INIT) {
  8674. if (ith != 0) {
  8675. return;
  8676. }
  8677. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8678. return;
  8679. }
  8680. if (params->type == GGML_TASK_FINALIZE) {
  8681. return;
  8682. }
  8683. // parallelize by last three dimensions
  8684. // total rows in dst
  8685. const int64_t nr = ne1*ne2*ne3;
  8686. // rows per thread
  8687. const int64_t dr = (nr + nth - 1)/nth;
  8688. // row range for this thread
  8689. const int64_t ir0 = dr*ith;
  8690. const int64_t ir1 = MIN(ir0 + dr, nr);
  8691. // dst[:,:,:,:] = 0
  8692. // for i2,i3:
  8693. // for i1:
  8694. // for i01:
  8695. // for i0:
  8696. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8697. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8698. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8699. // dst indices
  8700. const int64_t i3 = ir/(ne2*ne1);
  8701. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8702. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8703. const int64_t i02 = i2;
  8704. const int64_t i03 = i3;
  8705. //const int64_t i10 = i1;
  8706. const int64_t i12 = i2;
  8707. const int64_t i13 = i3;
  8708. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8709. const int64_t i11 = i01;
  8710. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8711. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8712. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8713. dequantize_row_q(s0, wdata, ne0);
  8714. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8715. }
  8716. }
  8717. //int64_t t1 = ggml_perf_time_us();
  8718. //static int64_t acc = 0;
  8719. //acc += t1 - t0;
  8720. //if (t1 - t0 > 10) {
  8721. // printf("\n");
  8722. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8723. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8724. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8725. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8726. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8727. //}
  8728. }
  8729. static void ggml_compute_forward_out_prod(
  8730. const struct ggml_compute_params * params,
  8731. const struct ggml_tensor * src0,
  8732. const struct ggml_tensor * src1,
  8733. struct ggml_tensor * dst) {
  8734. switch (src0->type) {
  8735. case GGML_TYPE_Q4_0:
  8736. case GGML_TYPE_Q4_1:
  8737. case GGML_TYPE_Q5_0:
  8738. case GGML_TYPE_Q5_1:
  8739. case GGML_TYPE_Q8_0:
  8740. case GGML_TYPE_Q2_K:
  8741. case GGML_TYPE_Q3_K:
  8742. case GGML_TYPE_Q4_K:
  8743. case GGML_TYPE_Q5_K:
  8744. case GGML_TYPE_Q6_K:
  8745. case GGML_TYPE_IQ2_XXS:
  8746. case GGML_TYPE_IQ2_XS:
  8747. {
  8748. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8749. } break;
  8750. case GGML_TYPE_F16:
  8751. {
  8752. GGML_ASSERT(false); // todo
  8753. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8754. } break;
  8755. case GGML_TYPE_F32:
  8756. {
  8757. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8758. } break;
  8759. default:
  8760. {
  8761. GGML_ASSERT(false);
  8762. } break;
  8763. }
  8764. }
  8765. // ggml_compute_forward_scale
  8766. static void ggml_compute_forward_scale_f32(
  8767. const struct ggml_compute_params * params,
  8768. const struct ggml_tensor * src0,
  8769. struct ggml_tensor * dst) {
  8770. GGML_ASSERT(ggml_is_contiguous(src0));
  8771. GGML_ASSERT(ggml_is_contiguous(dst));
  8772. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8774. return;
  8775. }
  8776. // scale factor
  8777. float v;
  8778. memcpy(&v, dst->op_params, sizeof(float));
  8779. const int ith = params->ith;
  8780. const int nth = params->nth;
  8781. const int nc = src0->ne[0];
  8782. const int nr = ggml_nrows(src0);
  8783. // rows per thread
  8784. const int dr = (nr + nth - 1)/nth;
  8785. // row range for this thread
  8786. const int ir0 = dr*ith;
  8787. const int ir1 = MIN(ir0 + dr, nr);
  8788. const size_t nb01 = src0->nb[1];
  8789. const size_t nb1 = dst->nb[1];
  8790. for (int i1 = ir0; i1 < ir1; i1++) {
  8791. if (dst->data != src0->data) {
  8792. // src0 is same shape as dst => same indices
  8793. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8794. }
  8795. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8796. }
  8797. }
  8798. static void ggml_compute_forward_scale(
  8799. const struct ggml_compute_params * params,
  8800. const struct ggml_tensor * src0,
  8801. struct ggml_tensor * dst) {
  8802. switch (src0->type) {
  8803. case GGML_TYPE_F32:
  8804. {
  8805. ggml_compute_forward_scale_f32(params, src0, dst);
  8806. } break;
  8807. default:
  8808. {
  8809. GGML_ASSERT(false);
  8810. } break;
  8811. }
  8812. }
  8813. // ggml_compute_forward_set
  8814. static void ggml_compute_forward_set_f32(
  8815. const struct ggml_compute_params * params,
  8816. const struct ggml_tensor * src0,
  8817. const struct ggml_tensor * src1,
  8818. struct ggml_tensor * dst) {
  8819. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8820. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8821. // view src0 and dst with these strides and data offset inbytes during set
  8822. // nb0 is implicitly element_size because src0 and dst are contiguous
  8823. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8824. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8825. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8826. size_t offset = ((int32_t *) dst->op_params)[3];
  8827. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8828. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8829. if (params->ith != 0) {
  8830. return;
  8831. }
  8832. // memcpy needs to be synchronized across threads to avoid race conditions.
  8833. // => do it in INIT phase
  8834. memcpy(
  8835. ((char *) dst->data),
  8836. ((char *) src0->data),
  8837. ggml_nbytes(dst));
  8838. }
  8839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8840. return;
  8841. }
  8842. const int ith = params->ith;
  8843. const int nth = params->nth;
  8844. const int nr = ggml_nrows(src1);
  8845. const int nc = src1->ne[0];
  8846. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8847. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8848. // src0 and dst as viewed during set
  8849. const size_t nb0 = ggml_element_size(src0);
  8850. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8851. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8852. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8853. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8854. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8855. GGML_ASSERT(nb10 == sizeof(float));
  8856. // rows per thread
  8857. const int dr = (nr + nth - 1)/nth;
  8858. // row range for this thread
  8859. const int ir0 = dr*ith;
  8860. const int ir1 = MIN(ir0 + dr, nr);
  8861. for (int ir = ir0; ir < ir1; ++ir) {
  8862. // src0 and dst are viewed with shape of src1 and offset
  8863. // => same indices
  8864. const int i3 = ir/(ne12*ne11);
  8865. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8866. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8867. ggml_vec_cpy_f32(nc,
  8868. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8869. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8870. }
  8871. }
  8872. static void ggml_compute_forward_set(
  8873. const struct ggml_compute_params * params,
  8874. const struct ggml_tensor * src0,
  8875. const struct ggml_tensor * src1,
  8876. struct ggml_tensor * dst) {
  8877. switch (src0->type) {
  8878. case GGML_TYPE_F32:
  8879. {
  8880. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8881. } break;
  8882. case GGML_TYPE_F16:
  8883. case GGML_TYPE_Q4_0:
  8884. case GGML_TYPE_Q4_1:
  8885. case GGML_TYPE_Q5_0:
  8886. case GGML_TYPE_Q5_1:
  8887. case GGML_TYPE_Q8_0:
  8888. case GGML_TYPE_Q8_1:
  8889. case GGML_TYPE_Q2_K:
  8890. case GGML_TYPE_Q3_K:
  8891. case GGML_TYPE_Q4_K:
  8892. case GGML_TYPE_Q5_K:
  8893. case GGML_TYPE_Q6_K:
  8894. case GGML_TYPE_IQ2_XXS:
  8895. case GGML_TYPE_IQ2_XS:
  8896. default:
  8897. {
  8898. GGML_ASSERT(false);
  8899. } break;
  8900. }
  8901. }
  8902. // ggml_compute_forward_cpy
  8903. static void ggml_compute_forward_cpy(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. struct ggml_tensor * dst) {
  8907. ggml_compute_forward_dup(params, src0, dst);
  8908. }
  8909. // ggml_compute_forward_cont
  8910. static void ggml_compute_forward_cont(
  8911. const struct ggml_compute_params * params,
  8912. const struct ggml_tensor * src0,
  8913. struct ggml_tensor * dst) {
  8914. ggml_compute_forward_dup(params, src0, dst);
  8915. }
  8916. // ggml_compute_forward_reshape
  8917. static void ggml_compute_forward_reshape(
  8918. const struct ggml_compute_params * params,
  8919. const struct ggml_tensor * src0,
  8920. struct ggml_tensor * dst) {
  8921. // NOP
  8922. UNUSED(params);
  8923. UNUSED(src0);
  8924. UNUSED(dst);
  8925. }
  8926. // ggml_compute_forward_view
  8927. static void ggml_compute_forward_view(
  8928. const struct ggml_compute_params * params,
  8929. const struct ggml_tensor * src0) {
  8930. // NOP
  8931. UNUSED(params);
  8932. UNUSED(src0);
  8933. }
  8934. // ggml_compute_forward_permute
  8935. static void ggml_compute_forward_permute(
  8936. const struct ggml_compute_params * params,
  8937. const struct ggml_tensor * src0) {
  8938. // NOP
  8939. UNUSED(params);
  8940. UNUSED(src0);
  8941. }
  8942. // ggml_compute_forward_transpose
  8943. static void ggml_compute_forward_transpose(
  8944. const struct ggml_compute_params * params,
  8945. const struct ggml_tensor * src0) {
  8946. // NOP
  8947. UNUSED(params);
  8948. UNUSED(src0);
  8949. }
  8950. // ggml_compute_forward_get_rows
  8951. static void ggml_compute_forward_get_rows_q(
  8952. const struct ggml_compute_params * params,
  8953. const struct ggml_tensor * src0,
  8954. const struct ggml_tensor * src1,
  8955. struct ggml_tensor * dst) {
  8956. assert(params->ith == 0);
  8957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8958. return;
  8959. }
  8960. GGML_TENSOR_BINARY_OP_LOCALS
  8961. const int64_t nc = ne00;
  8962. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8963. const enum ggml_type type = src0->type;
  8964. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8965. assert(ne0 == nc);
  8966. assert(ne02 == ne11);
  8967. assert(nb00 == ggml_type_size(type));
  8968. assert(ggml_nrows(dst) == nr);
  8969. // TODO: multi-thread
  8970. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8971. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8972. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8973. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8974. dequantize_row_q(
  8975. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8976. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8977. }
  8978. }
  8979. }
  8980. }
  8981. static void ggml_compute_forward_get_rows_f16(
  8982. const struct ggml_compute_params * params,
  8983. const struct ggml_tensor * src0,
  8984. const struct ggml_tensor * src1,
  8985. struct ggml_tensor * dst) {
  8986. assert(params->ith == 0);
  8987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8988. return;
  8989. }
  8990. GGML_TENSOR_BINARY_OP_LOCALS
  8991. const int64_t nc = ne00;
  8992. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8993. assert(ne0 == nc);
  8994. assert(ne02 == ne11);
  8995. assert(nb00 == sizeof(ggml_fp16_t));
  8996. assert(ggml_nrows(dst) == nr);
  8997. // TODO: multi-thread
  8998. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8999. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9000. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9001. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9002. ggml_fp16_to_fp32_row(
  9003. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9004. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9005. }
  9006. }
  9007. }
  9008. }
  9009. static void ggml_compute_forward_get_rows_f32(
  9010. const struct ggml_compute_params * params,
  9011. const struct ggml_tensor * src0,
  9012. const struct ggml_tensor * src1,
  9013. struct ggml_tensor * dst) {
  9014. assert(params->ith == 0);
  9015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9016. return;
  9017. }
  9018. GGML_TENSOR_BINARY_OP_LOCALS
  9019. const int64_t nc = ne00;
  9020. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9021. assert(ne0 == nc);
  9022. assert(ne02 == ne11);
  9023. assert(nb00 == sizeof(float));
  9024. assert(ggml_nrows(dst) == nr);
  9025. // TODO: multi-thread
  9026. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9027. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9028. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9029. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9030. ggml_vec_cpy_f32(nc,
  9031. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9032. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9033. }
  9034. }
  9035. }
  9036. }
  9037. static void ggml_compute_forward_get_rows(
  9038. const struct ggml_compute_params * params,
  9039. const struct ggml_tensor * src0,
  9040. const struct ggml_tensor * src1,
  9041. struct ggml_tensor * dst) {
  9042. switch (src0->type) {
  9043. case GGML_TYPE_Q4_0:
  9044. case GGML_TYPE_Q4_1:
  9045. case GGML_TYPE_Q5_0:
  9046. case GGML_TYPE_Q5_1:
  9047. case GGML_TYPE_Q8_0:
  9048. case GGML_TYPE_Q8_1:
  9049. case GGML_TYPE_Q2_K:
  9050. case GGML_TYPE_Q3_K:
  9051. case GGML_TYPE_Q4_K:
  9052. case GGML_TYPE_Q5_K:
  9053. case GGML_TYPE_Q6_K:
  9054. case GGML_TYPE_IQ2_XXS:
  9055. case GGML_TYPE_IQ2_XS:
  9056. {
  9057. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9058. } break;
  9059. case GGML_TYPE_F16:
  9060. {
  9061. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9062. } break;
  9063. case GGML_TYPE_F32:
  9064. case GGML_TYPE_I32:
  9065. {
  9066. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9067. } break;
  9068. default:
  9069. {
  9070. GGML_ASSERT(false);
  9071. } break;
  9072. }
  9073. //static bool first = true;
  9074. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9075. //if (first) {
  9076. // first = false;
  9077. //} else {
  9078. // for (int k = 0; k < dst->ne[1]; ++k) {
  9079. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9080. // for (int i = 0; i < 16; ++i) {
  9081. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9082. // }
  9083. // printf("\n");
  9084. // }
  9085. // printf("\n");
  9086. // }
  9087. // printf("\n");
  9088. // exit(0);
  9089. //}
  9090. }
  9091. // ggml_compute_forward_get_rows_back
  9092. static void ggml_compute_forward_get_rows_back_f32_f16(
  9093. const struct ggml_compute_params * params,
  9094. const struct ggml_tensor * src0,
  9095. const struct ggml_tensor * src1,
  9096. struct ggml_tensor * dst) {
  9097. GGML_ASSERT(params->ith == 0);
  9098. GGML_ASSERT(ggml_is_contiguous(dst));
  9099. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9100. if (params->type == GGML_TASK_INIT) {
  9101. if (params->ith != 0) {
  9102. return;
  9103. }
  9104. memset(dst->data, 0, ggml_nbytes(dst));
  9105. }
  9106. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9107. return;
  9108. }
  9109. const int nc = src0->ne[0];
  9110. const int nr = ggml_nelements(src1);
  9111. GGML_ASSERT( dst->ne[0] == nc);
  9112. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9113. for (int i = 0; i < nr; ++i) {
  9114. const int r = ((int32_t *) src1->data)[i];
  9115. for (int j = 0; j < nc; ++j) {
  9116. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9117. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9118. }
  9119. }
  9120. }
  9121. static void ggml_compute_forward_get_rows_back_f32(
  9122. const struct ggml_compute_params * params,
  9123. const struct ggml_tensor * src0,
  9124. const struct ggml_tensor * src1,
  9125. struct ggml_tensor * dst) {
  9126. GGML_ASSERT(params->ith == 0);
  9127. GGML_ASSERT(ggml_is_contiguous(dst));
  9128. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9129. if (params->type == GGML_TASK_INIT) {
  9130. if (params->ith != 0) {
  9131. return;
  9132. }
  9133. memset(dst->data, 0, ggml_nbytes(dst));
  9134. }
  9135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9136. return;
  9137. }
  9138. const int nc = src0->ne[0];
  9139. const int nr = ggml_nelements(src1);
  9140. GGML_ASSERT( dst->ne[0] == nc);
  9141. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9142. for (int i = 0; i < nr; ++i) {
  9143. const int r = ((int32_t *) src1->data)[i];
  9144. ggml_vec_add_f32(nc,
  9145. (float *) ((char *) dst->data + r*dst->nb[1]),
  9146. (float *) ((char *) dst->data + r*dst->nb[1]),
  9147. (float *) ((char *) src0->data + i*src0->nb[1]));
  9148. }
  9149. }
  9150. static void ggml_compute_forward_get_rows_back(
  9151. const struct ggml_compute_params * params,
  9152. const struct ggml_tensor * src0,
  9153. const struct ggml_tensor * src1,
  9154. struct ggml_tensor * dst) {
  9155. switch (src0->type) {
  9156. case GGML_TYPE_F16:
  9157. {
  9158. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9159. } break;
  9160. case GGML_TYPE_F32:
  9161. {
  9162. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9163. } break;
  9164. default:
  9165. {
  9166. GGML_ASSERT(false);
  9167. } break;
  9168. }
  9169. //static bool first = true;
  9170. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9171. //if (first) {
  9172. // first = false;
  9173. //} else {
  9174. // for (int k = 0; k < dst->ne[1]; ++k) {
  9175. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9176. // for (int i = 0; i < 16; ++i) {
  9177. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9178. // }
  9179. // printf("\n");
  9180. // }
  9181. // printf("\n");
  9182. // }
  9183. // printf("\n");
  9184. // exit(0);
  9185. //}
  9186. }
  9187. // ggml_compute_forward_diag
  9188. static void ggml_compute_forward_diag_f32(
  9189. const struct ggml_compute_params * params,
  9190. const struct ggml_tensor * src0,
  9191. struct ggml_tensor * dst) {
  9192. GGML_ASSERT(params->ith == 0);
  9193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9194. return;
  9195. }
  9196. // TODO: handle transposed/permuted matrices
  9197. GGML_TENSOR_UNARY_OP_LOCALS
  9198. GGML_ASSERT(ne00 == ne0);
  9199. GGML_ASSERT(ne00 == ne1);
  9200. GGML_ASSERT(ne01 == 1);
  9201. GGML_ASSERT(ne02 == ne2);
  9202. GGML_ASSERT(ne03 == ne3);
  9203. GGML_ASSERT(nb00 == sizeof(float));
  9204. GGML_ASSERT(nb0 == sizeof(float));
  9205. for (int i3 = 0; i3 < ne3; i3++) {
  9206. for (int i2 = 0; i2 < ne2; i2++) {
  9207. for (int i1 = 0; i1 < ne1; i1++) {
  9208. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9209. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9210. for (int i0 = 0; i0 < i1; i0++) {
  9211. d[i0] = 0;
  9212. }
  9213. d[i1] = s[i1];
  9214. for (int i0 = i1+1; i0 < ne0; i0++) {
  9215. d[i0] = 0;
  9216. }
  9217. }
  9218. }
  9219. }
  9220. }
  9221. static void ggml_compute_forward_diag(
  9222. const struct ggml_compute_params * params,
  9223. const struct ggml_tensor * src0,
  9224. struct ggml_tensor * dst) {
  9225. switch (src0->type) {
  9226. case GGML_TYPE_F32:
  9227. {
  9228. ggml_compute_forward_diag_f32(params, src0, dst);
  9229. } break;
  9230. default:
  9231. {
  9232. GGML_ASSERT(false);
  9233. } break;
  9234. }
  9235. }
  9236. // ggml_compute_forward_diag_mask_inf
  9237. static void ggml_compute_forward_diag_mask_f32(
  9238. const struct ggml_compute_params * params,
  9239. const struct ggml_tensor * src0,
  9240. struct ggml_tensor * dst,
  9241. const float value) {
  9242. const int ith = params->ith;
  9243. const int nth = params->nth;
  9244. const int n_past = ((int32_t *) dst->op_params)[0];
  9245. const bool inplace = src0->data == dst->data;
  9246. GGML_ASSERT(n_past >= 0);
  9247. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9248. if (ith != 0) {
  9249. return;
  9250. }
  9251. // memcpy needs to be synchronized across threads to avoid race conditions.
  9252. // => do it in INIT phase
  9253. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9254. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9255. memcpy(
  9256. ((char *) dst->data),
  9257. ((char *) src0->data),
  9258. ggml_nbytes(dst));
  9259. }
  9260. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9261. return;
  9262. }
  9263. // TODO: handle transposed/permuted matrices
  9264. const int n = ggml_nrows(src0);
  9265. const int nc = src0->ne[0];
  9266. const int nr = src0->ne[1];
  9267. const int nz = n/nr;
  9268. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9269. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9270. for (int k = 0; k < nz; k++) {
  9271. for (int j = ith; j < nr; j += nth) {
  9272. for (int i = n_past; i < nc; i++) {
  9273. if (i > n_past + j) {
  9274. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9275. }
  9276. }
  9277. }
  9278. }
  9279. }
  9280. static void ggml_compute_forward_diag_mask_inf(
  9281. const struct ggml_compute_params * params,
  9282. const struct ggml_tensor * src0,
  9283. struct ggml_tensor * dst) {
  9284. switch (src0->type) {
  9285. case GGML_TYPE_F32:
  9286. {
  9287. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9288. } break;
  9289. default:
  9290. {
  9291. GGML_ASSERT(false);
  9292. } break;
  9293. }
  9294. }
  9295. static void ggml_compute_forward_diag_mask_zero(
  9296. const struct ggml_compute_params * params,
  9297. const struct ggml_tensor * src0,
  9298. struct ggml_tensor * dst) {
  9299. switch (src0->type) {
  9300. case GGML_TYPE_F32:
  9301. {
  9302. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9303. } break;
  9304. default:
  9305. {
  9306. GGML_ASSERT(false);
  9307. } break;
  9308. }
  9309. }
  9310. // ggml_compute_forward_soft_max
  9311. static void ggml_compute_forward_soft_max_f32(
  9312. const struct ggml_compute_params * params,
  9313. const struct ggml_tensor * src0,
  9314. const struct ggml_tensor * src1,
  9315. struct ggml_tensor * dst) {
  9316. assert(ggml_is_contiguous(dst));
  9317. assert(ggml_are_same_shape(src0, dst));
  9318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9319. return;
  9320. }
  9321. float scale = 1.0f;
  9322. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9323. // TODO: handle transposed/permuted matrices
  9324. const int ith = params->ith;
  9325. const int nth = params->nth;
  9326. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9327. const int nc = src0->ne[0];
  9328. const int nr = ggml_nrows(src0);
  9329. // rows per thread
  9330. const int dr = (nr + nth - 1)/nth;
  9331. // row range for this thread
  9332. const int ir0 = dr*ith;
  9333. const int ir1 = MIN(ir0 + dr, nr);
  9334. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9335. for (int i1 = ir0; i1 < ir1; i1++) {
  9336. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9337. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9338. // broadcast the mask across rows
  9339. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9340. ggml_vec_cpy_f32 (nc, wp, sp);
  9341. ggml_vec_scale_f32(nc, wp, scale);
  9342. if (mp) {
  9343. ggml_vec_acc_f32(nc, wp, mp);
  9344. }
  9345. #ifndef NDEBUG
  9346. for (int i = 0; i < nc; ++i) {
  9347. //printf("p[%d] = %f\n", i, p[i]);
  9348. assert(!isnan(wp[i]));
  9349. }
  9350. #endif
  9351. float max = -INFINITY;
  9352. ggml_vec_max_f32(nc, &max, wp);
  9353. ggml_float sum = 0.0;
  9354. uint16_t scvt;
  9355. for (int i = 0; i < nc; i++) {
  9356. if (wp[i] == -INFINITY) {
  9357. dp[i] = 0.0f;
  9358. } else {
  9359. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9360. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9361. memcpy(&scvt, &s, sizeof(scvt));
  9362. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9363. sum += (ggml_float)val;
  9364. dp[i] = val;
  9365. }
  9366. }
  9367. assert(sum > 0.0);
  9368. sum = 1.0/sum;
  9369. ggml_vec_scale_f32(nc, dp, sum);
  9370. #ifndef NDEBUG
  9371. for (int i = 0; i < nc; ++i) {
  9372. assert(!isnan(dp[i]));
  9373. assert(!isinf(dp[i]));
  9374. }
  9375. #endif
  9376. }
  9377. }
  9378. static void ggml_compute_forward_soft_max(
  9379. const struct ggml_compute_params * params,
  9380. const struct ggml_tensor * src0,
  9381. const struct ggml_tensor * src1,
  9382. struct ggml_tensor * dst) {
  9383. switch (src0->type) {
  9384. case GGML_TYPE_F32:
  9385. {
  9386. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9387. } break;
  9388. default:
  9389. {
  9390. GGML_ASSERT(false);
  9391. } break;
  9392. }
  9393. }
  9394. // ggml_compute_forward_soft_max_back
  9395. static void ggml_compute_forward_soft_max_back_f32(
  9396. const struct ggml_compute_params * params,
  9397. const struct ggml_tensor * src0,
  9398. const struct ggml_tensor * src1,
  9399. struct ggml_tensor * dst) {
  9400. GGML_ASSERT(ggml_is_contiguous(src0));
  9401. GGML_ASSERT(ggml_is_contiguous(src1));
  9402. GGML_ASSERT(ggml_is_contiguous(dst));
  9403. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9404. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9406. return;
  9407. }
  9408. // TODO: handle transposed/permuted matrices
  9409. const int ith = params->ith;
  9410. const int nth = params->nth;
  9411. const int nc = src0->ne[0];
  9412. const int nr = ggml_nrows(src0);
  9413. // rows per thread
  9414. const int dr = (nr + nth - 1)/nth;
  9415. // row range for this thread
  9416. const int ir0 = dr*ith;
  9417. const int ir1 = MIN(ir0 + dr, nr);
  9418. for (int i1 = ir0; i1 < ir1; i1++) {
  9419. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9420. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9421. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9422. #ifndef NDEBUG
  9423. for (int i = 0; i < nc; ++i) {
  9424. //printf("p[%d] = %f\n", i, p[i]);
  9425. assert(!isnan(dy[i]));
  9426. assert(!isnan(y[i]));
  9427. }
  9428. #endif
  9429. // Jii = yi - yi*yi
  9430. // Jij = -yi*yj
  9431. // J = diag(y)-y.T*y
  9432. // dx = J * dy
  9433. // dxk = sum_i(Jki * dyi)
  9434. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9435. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9436. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9437. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9438. // dxk = -yk * dot(y, dy) + yk*dyk
  9439. // dxk = yk * (- dot(y, dy) + dyk)
  9440. // dxk = yk * (dyk - dot(y, dy))
  9441. //
  9442. // post-order:
  9443. // dot_y_dy := dot(y, dy)
  9444. // dx := dy
  9445. // dx := dx - dot_y_dy
  9446. // dx := dx * y
  9447. // linear runtime, no additional memory
  9448. float dot_y_dy = 0;
  9449. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9450. ggml_vec_cpy_f32 (nc, dx, dy);
  9451. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9452. ggml_vec_mul_f32 (nc, dx, dx, y);
  9453. #ifndef NDEBUG
  9454. for (int i = 0; i < nc; ++i) {
  9455. assert(!isnan(dx[i]));
  9456. assert(!isinf(dx[i]));
  9457. }
  9458. #endif
  9459. }
  9460. }
  9461. static void ggml_compute_forward_soft_max_back(
  9462. const struct ggml_compute_params * params,
  9463. const struct ggml_tensor * src0,
  9464. const struct ggml_tensor * src1,
  9465. struct ggml_tensor * dst) {
  9466. switch (src0->type) {
  9467. case GGML_TYPE_F32:
  9468. {
  9469. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9470. } break;
  9471. default:
  9472. {
  9473. GGML_ASSERT(false);
  9474. } break;
  9475. }
  9476. }
  9477. // ggml_compute_forward_alibi
  9478. static void ggml_compute_forward_alibi_f32(
  9479. const struct ggml_compute_params * params,
  9480. const struct ggml_tensor * src0,
  9481. struct ggml_tensor * dst) {
  9482. assert(params->ith == 0);
  9483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9484. return;
  9485. }
  9486. //const int n_past = ((int32_t *) dst->op_params)[0];
  9487. const int n_head = ((int32_t *) dst->op_params)[1];
  9488. float max_bias;
  9489. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9490. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9491. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9492. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9493. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9494. const int64_t n = ggml_nrows(src0);
  9495. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9496. const size_t nb0 = src0->nb[0];
  9497. const size_t nb1 = src0->nb[1];
  9498. const size_t nb2 = src0->nb[2];
  9499. //const int nb3 = src0->nb[3];
  9500. GGML_ASSERT(nb0 == sizeof(float));
  9501. GGML_ASSERT(n_head == ne2);
  9502. // add alibi to src0 (KQ_scaled)
  9503. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9504. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9505. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9506. for (int64_t i = 0; i < ne0; i++) {
  9507. for (int64_t j = 0; j < ne1; j++) {
  9508. for (int64_t k = 0; k < ne2_ne3; k++) {
  9509. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9510. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9511. // TODO: k*nb2 or k*nb3
  9512. float m_k;
  9513. if (k < n_heads_log2_floor) {
  9514. m_k = powf(m0, k + 1);
  9515. } else {
  9516. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9517. }
  9518. pdst[0] = i * m_k + src[0];
  9519. }
  9520. }
  9521. }
  9522. }
  9523. static void ggml_compute_forward_alibi_f16(
  9524. const struct ggml_compute_params * params,
  9525. const struct ggml_tensor * src0,
  9526. struct ggml_tensor * dst) {
  9527. assert(params->ith == 0);
  9528. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9529. return;
  9530. }
  9531. //const int n_past = ((int32_t *) dst->op_params)[0];
  9532. const int n_head = ((int32_t *) dst->op_params)[1];
  9533. float max_bias;
  9534. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9535. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9536. const int ne1 = src0->ne[1]; // seq_len_without_past
  9537. const int ne2 = src0->ne[2]; // n_head -> this is k
  9538. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9539. const int n = ggml_nrows(src0);
  9540. const int ne2_ne3 = n/ne1; // ne2*ne3
  9541. const int nb0 = src0->nb[0];
  9542. const int nb1 = src0->nb[1];
  9543. const int nb2 = src0->nb[2];
  9544. //const int nb3 = src0->nb[3];
  9545. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9546. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9547. GGML_ASSERT(n_head == ne2);
  9548. // add alibi to src0 (KQ_scaled)
  9549. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9550. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9551. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9552. for (int i = 0; i < ne0; i++) {
  9553. for (int j = 0; j < ne1; j++) {
  9554. for (int k = 0; k < ne2_ne3; k++) {
  9555. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9556. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9557. // TODO: k*nb2 or k*nb3
  9558. float m_k;
  9559. if (k < n_heads_log2_floor) {
  9560. m_k = powf(m0, k + 1);
  9561. } else {
  9562. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9563. }
  9564. // we return F32
  9565. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9566. }
  9567. }
  9568. }
  9569. }
  9570. static void ggml_compute_forward_alibi(
  9571. const struct ggml_compute_params * params,
  9572. const struct ggml_tensor * src0,
  9573. struct ggml_tensor * dst) {
  9574. switch (src0->type) {
  9575. case GGML_TYPE_F16:
  9576. {
  9577. ggml_compute_forward_alibi_f16(params, src0, dst);
  9578. } break;
  9579. case GGML_TYPE_F32:
  9580. {
  9581. ggml_compute_forward_alibi_f32(params, src0, dst);
  9582. } break;
  9583. case GGML_TYPE_Q4_0:
  9584. case GGML_TYPE_Q4_1:
  9585. case GGML_TYPE_Q5_0:
  9586. case GGML_TYPE_Q5_1:
  9587. case GGML_TYPE_Q8_0:
  9588. case GGML_TYPE_Q8_1:
  9589. case GGML_TYPE_Q2_K:
  9590. case GGML_TYPE_Q3_K:
  9591. case GGML_TYPE_Q4_K:
  9592. case GGML_TYPE_Q5_K:
  9593. case GGML_TYPE_Q6_K:
  9594. case GGML_TYPE_IQ2_XXS:
  9595. case GGML_TYPE_IQ2_XS:
  9596. case GGML_TYPE_Q8_K:
  9597. case GGML_TYPE_I8:
  9598. case GGML_TYPE_I16:
  9599. case GGML_TYPE_I32:
  9600. case GGML_TYPE_COUNT:
  9601. {
  9602. GGML_ASSERT(false);
  9603. } break;
  9604. }
  9605. }
  9606. // ggml_compute_forward_clamp
  9607. static void ggml_compute_forward_clamp_f32(
  9608. const struct ggml_compute_params * params,
  9609. const struct ggml_tensor * src0,
  9610. struct ggml_tensor * dst) {
  9611. assert(params->ith == 0);
  9612. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9613. return;
  9614. }
  9615. float min;
  9616. float max;
  9617. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9618. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9619. const int ith = params->ith;
  9620. const int nth = params->nth;
  9621. const int n = ggml_nrows(src0);
  9622. const int nc = src0->ne[0];
  9623. const size_t nb00 = src0->nb[0];
  9624. const size_t nb01 = src0->nb[1];
  9625. const size_t nb0 = dst->nb[0];
  9626. const size_t nb1 = dst->nb[1];
  9627. GGML_ASSERT( nb0 == sizeof(float));
  9628. GGML_ASSERT(nb00 == sizeof(float));
  9629. for (int j = ith; j < n; j += nth) {
  9630. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9631. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9632. for (int i = 0; i < nc; i++) {
  9633. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9634. }
  9635. }
  9636. }
  9637. static void ggml_compute_forward_clamp(
  9638. const struct ggml_compute_params * params,
  9639. const struct ggml_tensor * src0,
  9640. struct ggml_tensor * dst) {
  9641. switch (src0->type) {
  9642. case GGML_TYPE_F32:
  9643. {
  9644. ggml_compute_forward_clamp_f32(params, src0, dst);
  9645. } break;
  9646. case GGML_TYPE_F16:
  9647. case GGML_TYPE_Q4_0:
  9648. case GGML_TYPE_Q4_1:
  9649. case GGML_TYPE_Q5_0:
  9650. case GGML_TYPE_Q5_1:
  9651. case GGML_TYPE_Q8_0:
  9652. case GGML_TYPE_Q8_1:
  9653. case GGML_TYPE_Q2_K:
  9654. case GGML_TYPE_Q3_K:
  9655. case GGML_TYPE_Q4_K:
  9656. case GGML_TYPE_Q5_K:
  9657. case GGML_TYPE_Q6_K:
  9658. case GGML_TYPE_IQ2_XXS:
  9659. case GGML_TYPE_IQ2_XS:
  9660. case GGML_TYPE_Q8_K:
  9661. case GGML_TYPE_I8:
  9662. case GGML_TYPE_I16:
  9663. case GGML_TYPE_I32:
  9664. case GGML_TYPE_COUNT:
  9665. {
  9666. GGML_ASSERT(false);
  9667. } break;
  9668. }
  9669. }
  9670. // ggml_compute_forward_rope
  9671. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9672. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9673. return 1 - MIN(1, MAX(0, y));
  9674. }
  9675. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9676. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9677. static void rope_yarn(
  9678. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9679. float * cos_theta, float * sin_theta
  9680. ) {
  9681. // Get n-d rotational scaling corrected for extrapolation
  9682. float theta_interp = freq_scale * theta_extrap;
  9683. float theta = theta_interp;
  9684. if (ext_factor != 0.0f) {
  9685. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9686. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9687. // Get n-d magnitude scaling corrected for interpolation
  9688. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9689. }
  9690. *cos_theta = cosf(theta) * mscale;
  9691. *sin_theta = sinf(theta) * mscale;
  9692. }
  9693. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9694. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9695. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9696. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9697. }
  9698. static void ggml_rope_cache_init(
  9699. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9700. float * cache, float sin_sign, float theta_scale
  9701. ) {
  9702. float theta = theta_base;
  9703. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9704. rope_yarn(
  9705. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9706. );
  9707. cache[i0 + 1] *= sin_sign;
  9708. theta *= theta_scale;
  9709. }
  9710. }
  9711. GGML_CALL void ggml_rope_yarn_corr_dims(
  9712. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9713. ) {
  9714. // start and end correction dims
  9715. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9716. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9717. }
  9718. static void ggml_compute_forward_rope_f32(
  9719. const struct ggml_compute_params * params,
  9720. const struct ggml_tensor * src0,
  9721. const struct ggml_tensor * src1,
  9722. struct ggml_tensor * dst,
  9723. const bool forward) {
  9724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9725. return;
  9726. }
  9727. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9728. // these two only relevant for xPos RoPE:
  9729. float xpos_base;
  9730. bool xpos_down;
  9731. //const int n_past = ((int32_t *) dst->op_params)[0];
  9732. const int n_dims = ((int32_t *) dst->op_params)[1];
  9733. const int mode = ((int32_t *) dst->op_params)[2];
  9734. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9735. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9736. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9737. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9738. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9739. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9740. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9741. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9742. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9743. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9744. GGML_TENSOR_UNARY_OP_LOCALS
  9745. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9746. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9747. GGML_ASSERT(nb00 == sizeof(float));
  9748. const int ith = params->ith;
  9749. const int nth = params->nth;
  9750. const int nr = ggml_nrows(dst);
  9751. GGML_ASSERT(n_dims <= ne0);
  9752. GGML_ASSERT(n_dims % 2 == 0);
  9753. // rows per thread
  9754. const int dr = (nr + nth - 1)/nth;
  9755. // row range for this thread
  9756. const int ir0 = dr*ith;
  9757. const int ir1 = MIN(ir0 + dr, nr);
  9758. // row index used to determine which thread to use
  9759. int ir = 0;
  9760. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9761. const float inv_ndims = -1.f/n_dims;
  9762. float corr_dims[2];
  9763. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9764. const bool is_neox = mode & 2;
  9765. const bool is_glm = mode & 4;
  9766. // backward process uses inverse rotation by cos and sin.
  9767. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9768. // this essentially just switches the sign of sin.
  9769. const float sin_sign = forward ? 1.0f : -1.0f;
  9770. const int32_t * pos = (const int32_t *) src1->data;
  9771. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9772. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9773. const int64_t p = pos[i2];
  9774. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9775. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9776. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9777. }
  9778. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9779. if (ir++ < ir0) continue;
  9780. if (ir > ir1) break;
  9781. float theta_base = (float)p;
  9782. if (is_glm) {
  9783. theta_base = MIN(p, n_ctx - 2);
  9784. float block_theta = MAX(p - (n_ctx - 2), 0);
  9785. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9786. const float cos_theta = cosf(theta_base);
  9787. const float sin_theta = sinf(theta_base) * sin_sign;
  9788. const float cos_block_theta = cosf(block_theta);
  9789. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9790. theta_base *= theta_scale;
  9791. block_theta *= theta_scale;
  9792. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9793. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9794. const float x0 = src[0];
  9795. const float x1 = src[n_dims/2];
  9796. const float x2 = src[n_dims];
  9797. const float x3 = src[n_dims/2*3];
  9798. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9799. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9800. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9801. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9802. }
  9803. } else if (!is_neox) {
  9804. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9805. const float cos_theta = cache[i0 + 0];
  9806. const float sin_theta = cache[i0 + 1];
  9807. // zeta scaling for xPos only:
  9808. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9809. if (xpos_down) zeta = 1.0f / zeta;
  9810. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9811. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9812. const float x0 = src[0];
  9813. const float x1 = src[1];
  9814. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9815. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9816. }
  9817. } else {
  9818. // TODO: this might be wrong for ne0 != n_dims - need double check
  9819. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9820. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9821. theta_base *= freq_scale;
  9822. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9823. if (ic < n_dims) {
  9824. const int64_t ib = 0;
  9825. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9826. float cur_rot = inv_ndims * ic - ib;
  9827. float cos_theta, sin_theta;
  9828. rope_yarn(
  9829. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9830. &cos_theta, &sin_theta
  9831. );
  9832. sin_theta *= sin_sign;
  9833. theta_base *= theta_scale;
  9834. const int64_t i0 = ib*n_dims + ic/2;
  9835. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9836. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9837. const float x0 = src[0];
  9838. const float x1 = src[n_dims/2];
  9839. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9840. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9841. } else {
  9842. const int64_t i0 = ic;
  9843. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9844. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9845. dst_data[0] = src[0];
  9846. dst_data[1] = src[1];
  9847. }
  9848. }
  9849. }
  9850. }
  9851. }
  9852. }
  9853. }
  9854. static void ggml_compute_forward_rope_f16(
  9855. const struct ggml_compute_params * params,
  9856. const struct ggml_tensor * src0,
  9857. const struct ggml_tensor * src1,
  9858. struct ggml_tensor * dst,
  9859. const bool forward) {
  9860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9861. return;
  9862. }
  9863. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9864. //const int n_past = ((int32_t *) dst->op_params)[0];
  9865. const int n_dims = ((int32_t *) dst->op_params)[1];
  9866. const int mode = ((int32_t *) dst->op_params)[2];
  9867. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9868. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9869. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9870. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9871. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9872. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9873. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9874. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9875. GGML_TENSOR_UNARY_OP_LOCALS
  9876. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9877. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9878. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9879. const int ith = params->ith;
  9880. const int nth = params->nth;
  9881. const int nr = ggml_nrows(dst);
  9882. GGML_ASSERT(n_dims <= ne0);
  9883. GGML_ASSERT(n_dims % 2 == 0);
  9884. // rows per thread
  9885. const int dr = (nr + nth - 1)/nth;
  9886. // row range for this thread
  9887. const int ir0 = dr*ith;
  9888. const int ir1 = MIN(ir0 + dr, nr);
  9889. // row index used to determine which thread to use
  9890. int ir = 0;
  9891. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9892. const float inv_ndims = -1.f/n_dims;
  9893. float corr_dims[2];
  9894. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9895. const bool is_neox = mode & 2;
  9896. const bool is_glm = mode & 4;
  9897. // backward process uses inverse rotation by cos and sin.
  9898. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9899. // this essentially just switches the sign of sin.
  9900. const float sin_sign = forward ? 1.0f : -1.0f;
  9901. const int32_t * pos = (const int32_t *) src1->data;
  9902. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9903. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9904. const int64_t p = pos[i2];
  9905. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9906. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9907. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9908. }
  9909. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9910. if (ir++ < ir0) continue;
  9911. if (ir > ir1) break;
  9912. float theta_base = (float)p;
  9913. if (is_glm) {
  9914. theta_base = MIN(p, n_ctx - 2);
  9915. float block_theta = MAX(p - (n_ctx - 2), 0);
  9916. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9917. const float cos_theta = cosf(theta_base);
  9918. const float sin_theta = sinf(theta_base) * sin_sign;
  9919. const float cos_block_theta = cosf(block_theta);
  9920. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9921. theta_base *= theta_scale;
  9922. block_theta *= theta_scale;
  9923. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9924. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9925. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9926. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9927. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9928. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9929. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9930. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9931. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9932. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9933. }
  9934. } else if (!is_neox) {
  9935. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9936. const float cos_theta = cache[i0 + 0];
  9937. const float sin_theta = cache[i0 + 1];
  9938. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9939. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9940. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9941. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9942. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9943. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9944. }
  9945. } else {
  9946. // TODO: this might be wrong for ne0 != n_dims - need double check
  9947. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9948. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9949. theta_base *= freq_scale;
  9950. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9951. if (ic < n_dims) {
  9952. const int64_t ib = 0;
  9953. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9954. float cur_rot = inv_ndims * ic - ib;
  9955. float cos_theta, sin_theta;
  9956. rope_yarn(
  9957. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9958. &cos_theta, &sin_theta
  9959. );
  9960. sin_theta *= sin_sign;
  9961. theta_base *= theta_scale;
  9962. const int64_t i0 = ib*n_dims + ic/2;
  9963. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9964. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9965. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9966. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9967. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9968. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9969. } else {
  9970. const int64_t i0 = ic;
  9971. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9972. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9973. dst_data[0] = src[0];
  9974. dst_data[1] = src[1];
  9975. }
  9976. }
  9977. }
  9978. }
  9979. }
  9980. }
  9981. }
  9982. static void ggml_compute_forward_rope(
  9983. const struct ggml_compute_params * params,
  9984. const struct ggml_tensor * src0,
  9985. const struct ggml_tensor * src1,
  9986. struct ggml_tensor * dst) {
  9987. switch (src0->type) {
  9988. case GGML_TYPE_F16:
  9989. {
  9990. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9991. } break;
  9992. case GGML_TYPE_F32:
  9993. {
  9994. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9995. } break;
  9996. default:
  9997. {
  9998. GGML_ASSERT(false);
  9999. } break;
  10000. }
  10001. }
  10002. // ggml_compute_forward_rope_back
  10003. static void ggml_compute_forward_rope_back(
  10004. const struct ggml_compute_params * params,
  10005. const struct ggml_tensor * src0,
  10006. const struct ggml_tensor * src1,
  10007. struct ggml_tensor * dst) {
  10008. switch (src0->type) {
  10009. case GGML_TYPE_F16:
  10010. {
  10011. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10012. } break;
  10013. case GGML_TYPE_F32:
  10014. {
  10015. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10016. } break;
  10017. default:
  10018. {
  10019. GGML_ASSERT(false);
  10020. } break;
  10021. }
  10022. }
  10023. // ggml_compute_forward_conv_transpose_1d
  10024. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10025. const struct ggml_compute_params * params,
  10026. const struct ggml_tensor * src0,
  10027. const struct ggml_tensor * src1,
  10028. struct ggml_tensor * dst) {
  10029. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10030. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10031. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10032. int64_t t0 = ggml_perf_time_us();
  10033. UNUSED(t0);
  10034. GGML_TENSOR_BINARY_OP_LOCALS
  10035. const int ith = params->ith;
  10036. const int nth = params->nth;
  10037. const int nk = ne00*ne01*ne02;
  10038. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10039. GGML_ASSERT(nb10 == sizeof(float));
  10040. if (params->type == GGML_TASK_INIT) {
  10041. if (ith != 0) {
  10042. return;
  10043. }
  10044. memset(params->wdata, 0, params->wsize);
  10045. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10046. {
  10047. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10049. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10050. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10051. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10052. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10053. dst_data[i00*ne02 + i02] = src[i00];
  10054. }
  10055. }
  10056. }
  10057. }
  10058. // permute source data (src1) from (L x Cin) to (Cin x L)
  10059. {
  10060. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10061. ggml_fp16_t * dst_data = wdata;
  10062. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10063. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10064. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10065. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10066. }
  10067. }
  10068. }
  10069. // need to zero dst since we are accumulating into it
  10070. memset(dst->data, 0, ggml_nbytes(dst));
  10071. return;
  10072. }
  10073. if (params->type == GGML_TASK_FINALIZE) {
  10074. return;
  10075. }
  10076. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10077. // total rows in dst
  10078. const int nr = ne1;
  10079. // rows per thread
  10080. const int dr = (nr + nth - 1)/nth;
  10081. // row range for this thread
  10082. const int ir0 = dr*ith;
  10083. const int ir1 = MIN(ir0 + dr, nr);
  10084. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10085. ggml_fp16_t * const wdata_src = wdata + nk;
  10086. for (int i1 = ir0; i1 < ir1; i1++) {
  10087. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10088. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10089. for (int i10 = 0; i10 < ne10; i10++) {
  10090. const int i1n = i10*ne11;
  10091. for (int i00 = 0; i00 < ne00; i00++) {
  10092. float v = 0;
  10093. ggml_vec_dot_f16(ne02, &v,
  10094. (ggml_fp16_t *) wdata_src + i1n,
  10095. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  10096. dst_data[i10*s0 + i00] += v;
  10097. }
  10098. }
  10099. }
  10100. }
  10101. static void ggml_compute_forward_conv_transpose_1d_f32(
  10102. const struct ggml_compute_params * params,
  10103. const struct ggml_tensor * src0,
  10104. const struct ggml_tensor * src1,
  10105. struct ggml_tensor * dst) {
  10106. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10107. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10108. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10109. int64_t t0 = ggml_perf_time_us();
  10110. UNUSED(t0);
  10111. GGML_TENSOR_BINARY_OP_LOCALS
  10112. const int ith = params->ith;
  10113. const int nth = params->nth;
  10114. const int nk = ne00*ne01*ne02;
  10115. GGML_ASSERT(nb00 == sizeof(float));
  10116. GGML_ASSERT(nb10 == sizeof(float));
  10117. if (params->type == GGML_TASK_INIT) {
  10118. if (ith != 0) {
  10119. return;
  10120. }
  10121. memset(params->wdata, 0, params->wsize);
  10122. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10123. {
  10124. float * const wdata = (float *) params->wdata + 0;
  10125. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10126. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10127. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10128. float * dst_data = wdata + i01*ne00*ne02;
  10129. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10130. dst_data[i00*ne02 + i02] = src[i00];
  10131. }
  10132. }
  10133. }
  10134. }
  10135. // prepare source data (src1)
  10136. {
  10137. float * const wdata = (float *) params->wdata + nk;
  10138. float * dst_data = wdata;
  10139. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10140. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10141. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10142. dst_data[i10*ne11 + i11] = src[i10];
  10143. }
  10144. }
  10145. }
  10146. // need to zero dst since we are accumulating into it
  10147. memset(dst->data, 0, ggml_nbytes(dst));
  10148. return;
  10149. }
  10150. if (params->type == GGML_TASK_FINALIZE) {
  10151. return;
  10152. }
  10153. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10154. // total rows in dst
  10155. const int nr = ne1;
  10156. // rows per thread
  10157. const int dr = (nr + nth - 1)/nth;
  10158. // row range for this thread
  10159. const int ir0 = dr*ith;
  10160. const int ir1 = MIN(ir0 + dr, nr);
  10161. float * const wdata = (float *) params->wdata + 0;
  10162. float * const wdata_src = wdata + nk;
  10163. for (int i1 = ir0; i1 < ir1; i1++) {
  10164. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10165. float * wdata_kernel = wdata + i1*ne02*ne00;
  10166. for (int i10 = 0; i10 < ne10; i10++) {
  10167. const int i1n = i10*ne11;
  10168. for (int i00 = 0; i00 < ne00; i00++) {
  10169. float v = 0;
  10170. ggml_vec_dot_f32(ne02, &v,
  10171. wdata_src + i1n,
  10172. wdata_kernel + i00*ne02);
  10173. dst_data[i10*s0 + i00] += v;
  10174. }
  10175. }
  10176. }
  10177. }
  10178. static void ggml_compute_forward_conv_transpose_1d(
  10179. const struct ggml_compute_params * params,
  10180. const struct ggml_tensor * src0,
  10181. const struct ggml_tensor * src1,
  10182. struct ggml_tensor * dst) {
  10183. switch (src0->type) {
  10184. case GGML_TYPE_F16:
  10185. {
  10186. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10187. } break;
  10188. case GGML_TYPE_F32:
  10189. {
  10190. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10191. } break;
  10192. default:
  10193. {
  10194. GGML_ASSERT(false);
  10195. } break;
  10196. }
  10197. }
  10198. // src0: kernel [OC, IC, KH, KW]
  10199. // src1: image [N, IC, IH, IW]
  10200. // dst: result [N, OH, OW, IC*KH*KW]
  10201. static void ggml_compute_forward_im2col_f16(
  10202. const struct ggml_compute_params * params,
  10203. const struct ggml_tensor * src0,
  10204. const struct ggml_tensor * src1,
  10205. struct ggml_tensor * dst) {
  10206. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10207. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10208. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10209. int64_t t0 = ggml_perf_time_us();
  10210. UNUSED(t0);
  10211. GGML_TENSOR_BINARY_OP_LOCALS;
  10212. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10213. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10214. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10215. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10216. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10217. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10218. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10219. const int ith = params->ith;
  10220. const int nth = params->nth;
  10221. const int64_t N = is_2D ? ne13 : ne12;
  10222. const int64_t IC = is_2D ? ne12 : ne11;
  10223. const int64_t IH = is_2D ? ne11 : 1;
  10224. const int64_t IW = ne10;
  10225. const int64_t KH = is_2D ? ne01 : 1;
  10226. const int64_t KW = ne00;
  10227. const int64_t OH = is_2D ? ne2 : 1;
  10228. const int64_t OW = ne1;
  10229. int ofs0 = is_2D ? nb13 : nb12;
  10230. int ofs1 = is_2D ? nb12 : nb11;
  10231. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10232. GGML_ASSERT(nb10 == sizeof(float));
  10233. if (params->type == GGML_TASK_INIT) {
  10234. return;
  10235. }
  10236. if (params->type == GGML_TASK_FINALIZE) {
  10237. return;
  10238. }
  10239. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10240. {
  10241. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10242. for (int64_t in = 0; in < N; in++) {
  10243. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10244. for (int64_t iow = 0; iow < OW; iow++) {
  10245. for (int64_t iic = ith; iic < IC; iic += nth) {
  10246. // micro kernel
  10247. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10248. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10249. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10250. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10251. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10252. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10253. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10254. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10255. } else {
  10256. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10257. }
  10258. }
  10259. }
  10260. }
  10261. }
  10262. }
  10263. }
  10264. }
  10265. }
  10266. static void ggml_compute_forward_im2col(
  10267. const struct ggml_compute_params * params,
  10268. const struct ggml_tensor * src0,
  10269. const struct ggml_tensor * src1,
  10270. struct ggml_tensor * dst) {
  10271. switch (src0->type) {
  10272. case GGML_TYPE_F16:
  10273. {
  10274. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10275. } break;
  10276. case GGML_TYPE_F32:
  10277. {
  10278. GGML_ASSERT(false);
  10279. } break;
  10280. default:
  10281. {
  10282. GGML_ASSERT(false);
  10283. } break;
  10284. }
  10285. }
  10286. // ggml_compute_forward_conv_transpose_2d
  10287. static void ggml_compute_forward_conv_transpose_2d(
  10288. const struct ggml_compute_params * params,
  10289. const struct ggml_tensor * src0,
  10290. const struct ggml_tensor * src1,
  10291. struct ggml_tensor * dst) {
  10292. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10293. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10294. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10295. int64_t t0 = ggml_perf_time_us();
  10296. UNUSED(t0);
  10297. GGML_TENSOR_BINARY_OP_LOCALS
  10298. const int ith = params->ith;
  10299. const int nth = params->nth;
  10300. const int nk = ne00*ne01*ne02*ne03;
  10301. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10302. GGML_ASSERT(nb10 == sizeof(float));
  10303. if (params->type == GGML_TASK_INIT) {
  10304. if (ith != 0) {
  10305. return;
  10306. }
  10307. memset(params->wdata, 0, params->wsize);
  10308. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10309. {
  10310. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10311. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10312. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10313. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10314. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10315. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10316. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10317. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10318. }
  10319. }
  10320. }
  10321. }
  10322. }
  10323. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10324. {
  10325. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10326. for (int i12 = 0; i12 < ne12; i12++) {
  10327. for (int i11 = 0; i11 < ne11; i11++) {
  10328. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10329. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10330. for (int i10 = 0; i10 < ne10; i10++) {
  10331. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10332. }
  10333. }
  10334. }
  10335. }
  10336. memset(dst->data, 0, ggml_nbytes(dst));
  10337. return;
  10338. }
  10339. if (params->type == GGML_TASK_FINALIZE) {
  10340. return;
  10341. }
  10342. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10343. // total patches in dst
  10344. const int np = ne2;
  10345. // patches per thread
  10346. const int dp = (np + nth - 1)/nth;
  10347. // patch range for this thread
  10348. const int ip0 = dp*ith;
  10349. const int ip1 = MIN(ip0 + dp, np);
  10350. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10351. ggml_fp16_t * const wdata_src = wdata + nk;
  10352. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10353. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10354. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10355. for (int i11 = 0; i11 < ne11; i11++) {
  10356. for (int i10 = 0; i10 < ne10; i10++) {
  10357. const int i1n = i11*ne10*ne12 + i10*ne12;
  10358. for (int i01 = 0; i01 < ne01; i01++) {
  10359. for (int i00 = 0; i00 < ne00; i00++) {
  10360. float v = 0;
  10361. ggml_vec_dot_f16(ne03, &v,
  10362. wdata_src + i1n,
  10363. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10364. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10365. }
  10366. }
  10367. }
  10368. }
  10369. }
  10370. }
  10371. // ggml_compute_forward_pool_1d_sk_p0
  10372. static void ggml_compute_forward_pool_1d_sk_p0(
  10373. const struct ggml_compute_params * params,
  10374. const enum ggml_op_pool op,
  10375. const struct ggml_tensor * src,
  10376. const int k,
  10377. struct ggml_tensor * dst) {
  10378. assert(src->type == GGML_TYPE_F32);
  10379. assert(params->ith == 0);
  10380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10381. return;
  10382. }
  10383. const char * cdata = (const char *)src->data;
  10384. const char * const data_end = cdata + ggml_nbytes(src);
  10385. float * drow = (float *)dst->data;
  10386. const int64_t rs = dst->ne[0];
  10387. while (cdata < data_end) {
  10388. const float * const srow = (const float *)cdata;
  10389. int j = 0;
  10390. for (int64_t i = 0; i < rs; ++i) {
  10391. switch (op) {
  10392. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10393. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10394. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10395. }
  10396. for (int ki = 0; ki < k; ++ki) {
  10397. switch (op) {
  10398. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10399. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10400. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10401. }
  10402. ++j;
  10403. }
  10404. switch (op) {
  10405. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10406. case GGML_OP_POOL_MAX: break;
  10407. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10408. }
  10409. }
  10410. cdata += src->nb[1];
  10411. drow += rs;
  10412. }
  10413. }
  10414. // ggml_compute_forward_pool_1d
  10415. static void ggml_compute_forward_pool_1d(
  10416. const struct ggml_compute_params * params,
  10417. const struct ggml_tensor * src0,
  10418. struct ggml_tensor * dst) {
  10419. const int32_t * opts = (const int32_t *)dst->op_params;
  10420. enum ggml_op_pool op = opts[0];
  10421. const int k0 = opts[1];
  10422. const int s0 = opts[2];
  10423. const int p0 = opts[3];
  10424. GGML_ASSERT(p0 == 0); // padding not supported
  10425. GGML_ASSERT(k0 == s0); // only s = k supported
  10426. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10427. }
  10428. // ggml_compute_forward_pool_2d
  10429. static void ggml_compute_forward_pool_2d(
  10430. const struct ggml_compute_params * params,
  10431. const struct ggml_tensor * src,
  10432. struct ggml_tensor * dst) {
  10433. assert(src->type == GGML_TYPE_F32);
  10434. assert(params->ith == 0);
  10435. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10436. return;
  10437. }
  10438. const int32_t * opts = (const int32_t *)dst->op_params;
  10439. enum ggml_op_pool op = opts[0];
  10440. const int k0 = opts[1];
  10441. const int k1 = opts[2];
  10442. const int s0 = opts[3];
  10443. const int s1 = opts[4];
  10444. const int p0 = opts[5];
  10445. const int p1 = opts[6];
  10446. const char * cdata = (const char*)src->data;
  10447. const char * const data_end = cdata + ggml_nbytes(src);
  10448. const int64_t px = dst->ne[0];
  10449. const int64_t py = dst->ne[1];
  10450. const int64_t pa = px * py;
  10451. float * dplane = (float *)dst->data;
  10452. const int ka = k0 * k1;
  10453. const int offset0 = -p0;
  10454. const int offset1 = -p1;
  10455. while (cdata < data_end) {
  10456. for (int oy = 0; oy < py; ++oy) {
  10457. float * const drow = dplane + oy * px;
  10458. for (int ox = 0; ox < px; ++ox) {
  10459. float * const out = drow + ox;
  10460. switch (op) {
  10461. case GGML_OP_POOL_AVG: *out = 0; break;
  10462. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10463. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10464. }
  10465. const int ix = offset0 + ox * s0;
  10466. const int iy = offset1 + oy * s1;
  10467. for (int ky = 0; ky < k1; ++ky) {
  10468. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10469. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10470. for (int kx = 0; kx < k0; ++kx) {
  10471. int j = ix + kx;
  10472. if (j < 0 || j >= src->ne[0]) continue;
  10473. switch (op) {
  10474. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10475. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10476. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10477. }
  10478. }
  10479. }
  10480. switch (op) {
  10481. case GGML_OP_POOL_AVG: *out /= ka; break;
  10482. case GGML_OP_POOL_MAX: break;
  10483. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10484. }
  10485. }
  10486. }
  10487. cdata += src->nb[2];
  10488. dplane += pa;
  10489. }
  10490. }
  10491. // ggml_compute_forward_upscale
  10492. static void ggml_compute_forward_upscale_f32(
  10493. const struct ggml_compute_params * params,
  10494. const struct ggml_tensor * src0,
  10495. struct ggml_tensor * dst) {
  10496. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10497. return;
  10498. }
  10499. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10500. const int ith = params->ith;
  10501. const int nth = params->nth;
  10502. GGML_TENSOR_UNARY_OP_LOCALS
  10503. const int scale_factor = dst->op_params[0];
  10504. // TODO: optimize
  10505. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10506. const int64_t i03 = i3;
  10507. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10508. const int64_t i02 = i2;
  10509. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10510. const int64_t i01 = i1 / scale_factor;
  10511. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10512. const int64_t i00 = i0 / scale_factor;
  10513. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10514. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10515. *y = *x;
  10516. }
  10517. }
  10518. }
  10519. }
  10520. }
  10521. static void ggml_compute_forward_upscale(
  10522. const struct ggml_compute_params * params,
  10523. const struct ggml_tensor * src0,
  10524. struct ggml_tensor * dst) {
  10525. switch (src0->type) {
  10526. case GGML_TYPE_F32:
  10527. {
  10528. ggml_compute_forward_upscale_f32(params, src0, dst);
  10529. } break;
  10530. default:
  10531. {
  10532. GGML_ASSERT(false);
  10533. } break;
  10534. }
  10535. }
  10536. // ggml_compute_forward_pad
  10537. static void ggml_compute_forward_pad_f32(
  10538. const struct ggml_compute_params * params,
  10539. const struct ggml_tensor * src0,
  10540. struct ggml_tensor * dst) {
  10541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10542. return;
  10543. }
  10544. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10545. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10546. const int ith = params->ith;
  10547. const int nth = params->nth;
  10548. GGML_TENSOR_UNARY_OP_LOCALS
  10549. float * dst_ptr = (float *) dst->data;
  10550. // TODO: optimize
  10551. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10552. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10553. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10554. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10555. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10556. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10557. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10558. dst_ptr[dst_idx] = *src_ptr;
  10559. } else {
  10560. dst_ptr[dst_idx] = 0;
  10561. }
  10562. }
  10563. }
  10564. }
  10565. }
  10566. }
  10567. static void ggml_compute_forward_pad(
  10568. const struct ggml_compute_params * params,
  10569. const struct ggml_tensor * src0,
  10570. struct ggml_tensor * dst) {
  10571. switch (src0->type) {
  10572. case GGML_TYPE_F32:
  10573. {
  10574. ggml_compute_forward_pad_f32(params, src0, dst);
  10575. } break;
  10576. default:
  10577. {
  10578. GGML_ASSERT(false);
  10579. } break;
  10580. }
  10581. }
  10582. // ggml_compute_forward_argsort
  10583. static void ggml_compute_forward_argsort_f32(
  10584. const struct ggml_compute_params * params,
  10585. const struct ggml_tensor * src0,
  10586. struct ggml_tensor * dst) {
  10587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10588. return;
  10589. }
  10590. GGML_TENSOR_UNARY_OP_LOCALS
  10591. GGML_ASSERT(nb0 == sizeof(float));
  10592. const int ith = params->ith;
  10593. const int nth = params->nth;
  10594. const int64_t nr = ggml_nrows(src0);
  10595. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10596. for (int64_t i = ith; i < nr; i += nth) {
  10597. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10598. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10599. for (int64_t j = 0; j < ne0; j++) {
  10600. dst_data[j] = j;
  10601. }
  10602. // C doesn't have a functional sort, so we do a bubble sort instead
  10603. for (int64_t j = 0; j < ne0; j++) {
  10604. for (int64_t k = j + 1; k < ne0; k++) {
  10605. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10606. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10607. int32_t tmp = dst_data[j];
  10608. dst_data[j] = dst_data[k];
  10609. dst_data[k] = tmp;
  10610. }
  10611. }
  10612. }
  10613. }
  10614. }
  10615. static void ggml_compute_forward_argsort(
  10616. const struct ggml_compute_params * params,
  10617. const struct ggml_tensor * src0,
  10618. struct ggml_tensor * dst) {
  10619. switch (src0->type) {
  10620. case GGML_TYPE_F32:
  10621. {
  10622. ggml_compute_forward_argsort_f32(params, src0, dst);
  10623. } break;
  10624. default:
  10625. {
  10626. GGML_ASSERT(false);
  10627. } break;
  10628. }
  10629. }
  10630. // ggml_compute_forward_flash_attn
  10631. static void ggml_compute_forward_flash_attn_f32(
  10632. const struct ggml_compute_params * params,
  10633. const struct ggml_tensor * q,
  10634. const struct ggml_tensor * k,
  10635. const struct ggml_tensor * v,
  10636. const bool masked,
  10637. struct ggml_tensor * dst) {
  10638. int64_t t0 = ggml_perf_time_us();
  10639. UNUSED(t0);
  10640. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10641. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10642. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10643. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10644. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10645. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10646. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10647. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10648. const int ith = params->ith;
  10649. const int nth = params->nth;
  10650. const int64_t D = neq0;
  10651. const int64_t N = neq1;
  10652. const int64_t P = nek1 - N;
  10653. const int64_t M = P + N;
  10654. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10655. GGML_ASSERT(ne0 == D);
  10656. GGML_ASSERT(ne1 == N);
  10657. GGML_ASSERT(P >= 0);
  10658. GGML_ASSERT(nbq0 == sizeof(float));
  10659. GGML_ASSERT(nbk0 == sizeof(float));
  10660. GGML_ASSERT(nbv0 == sizeof(float));
  10661. GGML_ASSERT(neq0 == D);
  10662. GGML_ASSERT(nek0 == D);
  10663. GGML_ASSERT(nev1 == D);
  10664. GGML_ASSERT(neq1 == N);
  10665. GGML_ASSERT(nek1 == N + P);
  10666. GGML_ASSERT(nev1 == D);
  10667. // dst cannot be transposed or permuted
  10668. GGML_ASSERT(nb0 == sizeof(float));
  10669. GGML_ASSERT(nb0 <= nb1);
  10670. GGML_ASSERT(nb1 <= nb2);
  10671. GGML_ASSERT(nb2 <= nb3);
  10672. if (params->type == GGML_TASK_INIT) {
  10673. return;
  10674. }
  10675. if (params->type == GGML_TASK_FINALIZE) {
  10676. return;
  10677. }
  10678. // parallelize by q rows using ggml_vec_dot_f32
  10679. // total rows in q
  10680. const int nr = neq1*neq2*neq3;
  10681. // rows per thread
  10682. const int dr = (nr + nth - 1)/nth;
  10683. // row range for this thread
  10684. const int ir0 = dr*ith;
  10685. const int ir1 = MIN(ir0 + dr, nr);
  10686. const float scale = 1.0f/sqrtf(D);
  10687. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10688. for (int ir = ir0; ir < ir1; ++ir) {
  10689. // q indices
  10690. const int iq3 = ir/(neq2*neq1);
  10691. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10692. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10693. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10694. for (int i = M; i < Mup; ++i) {
  10695. S[i] = -INFINITY;
  10696. }
  10697. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10698. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10699. // k indices
  10700. const int ik3 = iq3;
  10701. const int ik2 = iq2 % nek2;
  10702. const int ik1 = ic;
  10703. // S indices
  10704. const int i1 = ik1;
  10705. ggml_vec_dot_f32(neq0,
  10706. S + i1,
  10707. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10708. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10709. }
  10710. // scale
  10711. ggml_vec_scale_f32(masked_begin, S, scale);
  10712. for (int64_t i = masked_begin; i < M; i++) {
  10713. S[i] = -INFINITY;
  10714. }
  10715. // softmax
  10716. // exclude known -INF S[..] values from max and loop
  10717. // dont forget to set their SW values to zero
  10718. {
  10719. float max = -INFINITY;
  10720. ggml_vec_max_f32(masked_begin, &max, S);
  10721. ggml_float sum = 0.0;
  10722. {
  10723. #ifdef GGML_SOFT_MAX_ACCELERATE
  10724. max = -max;
  10725. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10726. vvexpf(S, S, &Mup);
  10727. ggml_vec_sum_f32(Mup, &sum, S);
  10728. #else
  10729. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10730. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10731. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10732. if (i >= masked_begin) {
  10733. break;
  10734. }
  10735. float * SS = S + i;
  10736. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10737. if (i + j >= masked_begin) {
  10738. break;
  10739. } else if (SS[j] == -INFINITY) {
  10740. SS[j] = 0.0f;
  10741. } else {
  10742. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10743. const float val = expf(SS[j] - max);
  10744. #else
  10745. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10746. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10747. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10748. #endif
  10749. sump[j] += (ggml_float)val;
  10750. SS[j] = val;
  10751. }
  10752. }
  10753. }
  10754. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10755. sum += sump[i];
  10756. }
  10757. #endif
  10758. }
  10759. assert(sum > 0.0);
  10760. sum = 1.0/sum;
  10761. ggml_vec_scale_f32(masked_begin, S, sum);
  10762. #ifndef NDEBUG
  10763. for (int i = 0; i < masked_begin; ++i) {
  10764. assert(!isnan(S[i]));
  10765. assert(!isinf(S[i]));
  10766. }
  10767. #endif
  10768. }
  10769. for (int64_t ic = 0; ic < nev1; ++ic) {
  10770. // dst indices
  10771. const int i1 = iq1;
  10772. const int i2 = iq2;
  10773. const int i3 = iq3;
  10774. // v indices
  10775. const int iv2 = iq2 % nev2;
  10776. const int iv3 = iq3;
  10777. ggml_vec_dot_f32(masked_begin,
  10778. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10779. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10780. S);
  10781. }
  10782. }
  10783. }
  10784. static void ggml_compute_forward_flash_attn_f16(
  10785. const struct ggml_compute_params * params,
  10786. const struct ggml_tensor * q,
  10787. const struct ggml_tensor * k,
  10788. const struct ggml_tensor * v,
  10789. const bool masked,
  10790. struct ggml_tensor * dst) {
  10791. int64_t t0 = ggml_perf_time_us();
  10792. UNUSED(t0);
  10793. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10794. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10795. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10796. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10797. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10798. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10799. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10800. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10801. const int ith = params->ith;
  10802. const int nth = params->nth;
  10803. const int64_t D = neq0;
  10804. const int64_t N = neq1;
  10805. const int64_t P = nek1 - N;
  10806. const int64_t M = P + N;
  10807. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10808. GGML_ASSERT(ne0 == D);
  10809. GGML_ASSERT(ne1 == N);
  10810. GGML_ASSERT(P >= 0);
  10811. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10812. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10813. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10814. GGML_ASSERT(neq0 == D);
  10815. GGML_ASSERT(nek0 == D);
  10816. GGML_ASSERT(nev1 == D);
  10817. GGML_ASSERT(neq1 == N);
  10818. GGML_ASSERT(nek1 == N + P);
  10819. GGML_ASSERT(nev1 == D);
  10820. // dst cannot be transposed or permuted
  10821. GGML_ASSERT(nb0 == sizeof(float));
  10822. GGML_ASSERT(nb0 <= nb1);
  10823. GGML_ASSERT(nb1 <= nb2);
  10824. GGML_ASSERT(nb2 <= nb3);
  10825. if (params->type == GGML_TASK_INIT) {
  10826. return;
  10827. }
  10828. if (params->type == GGML_TASK_FINALIZE) {
  10829. return;
  10830. }
  10831. // parallelize by q rows using ggml_vec_dot_f32
  10832. // total rows in q
  10833. const int nr = neq1*neq2*neq3;
  10834. // rows per thread
  10835. const int dr = (nr + nth - 1)/nth;
  10836. // row range for this thread
  10837. const int ir0 = dr*ith;
  10838. const int ir1 = MIN(ir0 + dr, nr);
  10839. const float scale = 1.0f/sqrtf(D);
  10840. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10841. for (int ir = ir0; ir < ir1; ++ir) {
  10842. // q indices
  10843. const int iq3 = ir/(neq2*neq1);
  10844. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10845. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10846. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10847. for (int i = M; i < Mup; ++i) {
  10848. S[i] = -INFINITY;
  10849. }
  10850. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10851. for (int64_t ic = 0; ic < nek1; ++ic) {
  10852. // k indices
  10853. const int ik3 = iq3;
  10854. const int ik2 = iq2 % nek2;
  10855. const int ik1 = ic;
  10856. // S indices
  10857. const int i1 = ik1;
  10858. ggml_vec_dot_f16(neq0,
  10859. S + i1,
  10860. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10861. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10862. }
  10863. } else {
  10864. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10865. // k indices
  10866. const int ik3 = iq3;
  10867. const int ik2 = iq2 % nek2;
  10868. const int ik1 = ic;
  10869. // S indices
  10870. const int i1 = ik1;
  10871. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10872. S + i1,
  10873. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10874. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10875. }
  10876. }
  10877. // scale
  10878. ggml_vec_scale_f32(nek1, S, scale);
  10879. if (masked) {
  10880. for (int64_t i = P; i < M; i++) {
  10881. if (i > P + iq1) {
  10882. S[i] = -INFINITY;
  10883. }
  10884. }
  10885. }
  10886. // softmax
  10887. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10888. // dont forget to set their S values to zero
  10889. {
  10890. float max = -INFINITY;
  10891. ggml_vec_max_f32(M, &max, S);
  10892. ggml_float sum = 0.0;
  10893. {
  10894. #ifdef GGML_SOFT_MAX_ACCELERATE
  10895. max = -max;
  10896. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10897. vvexpf(S, S, &Mup);
  10898. ggml_vec_sum_f32(Mup, &sum, S);
  10899. #else
  10900. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10901. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10902. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10903. float * SS = S + i;
  10904. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10905. if (SS[j] == -INFINITY) {
  10906. SS[j] = 0.0f;
  10907. } else {
  10908. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10909. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10910. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10911. sump[j] += (ggml_float)val;
  10912. SS[j] = val;
  10913. }
  10914. }
  10915. }
  10916. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10917. sum += sump[i];
  10918. }
  10919. #endif
  10920. }
  10921. assert(sum > 0.0);
  10922. sum = 1.0/sum;
  10923. ggml_vec_scale_f32(M, S, sum);
  10924. #ifndef NDEBUG
  10925. for (int i = 0; i < M; ++i) {
  10926. assert(!isnan(S[i]));
  10927. assert(!isinf(S[i]));
  10928. }
  10929. #endif
  10930. }
  10931. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10932. for (int64_t i = 0; i < M; i++) {
  10933. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10934. }
  10935. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10936. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10937. for (int64_t ic = 0; ic < nev1; ++ic) {
  10938. // dst indices
  10939. const int i1 = iq1;
  10940. const int i2 = iq2;
  10941. const int i3 = iq3;
  10942. // v indices
  10943. const int iv2 = iq2 % nev2;
  10944. const int iv3 = iq3;
  10945. ggml_vec_dot_f16(nev0,
  10946. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10947. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10948. S16);
  10949. }
  10950. } else {
  10951. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10952. // dst indices
  10953. const int i1 = iq1;
  10954. const int i2 = iq2;
  10955. const int i3 = iq3;
  10956. // v indices
  10957. const int iv2 = iq2 % nev2;
  10958. const int iv3 = iq3;
  10959. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10960. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10961. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10962. S16);
  10963. }
  10964. }
  10965. }
  10966. }
  10967. static void ggml_compute_forward_flash_attn(
  10968. const struct ggml_compute_params * params,
  10969. const struct ggml_tensor * q,
  10970. const struct ggml_tensor * k,
  10971. const struct ggml_tensor * v,
  10972. const bool masked,
  10973. struct ggml_tensor * dst) {
  10974. switch (q->type) {
  10975. case GGML_TYPE_F16:
  10976. {
  10977. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10978. } break;
  10979. case GGML_TYPE_F32:
  10980. {
  10981. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10982. } break;
  10983. default:
  10984. {
  10985. GGML_ASSERT(false);
  10986. } break;
  10987. }
  10988. }
  10989. // ggml_compute_forward_flash_ff
  10990. static void ggml_compute_forward_flash_ff_f16(
  10991. const struct ggml_compute_params * params,
  10992. const struct ggml_tensor * a, // F16
  10993. const struct ggml_tensor * b0, // F16 fc_w
  10994. const struct ggml_tensor * b1, // F32 fc_b
  10995. const struct ggml_tensor * c0, // F16 proj_w
  10996. const struct ggml_tensor * c1, // F32 proj_b
  10997. struct ggml_tensor * dst) {
  10998. int64_t t0 = ggml_perf_time_us();
  10999. UNUSED(t0);
  11000. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11001. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11002. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11003. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11004. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11005. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11006. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11007. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11008. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11009. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11010. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11011. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11012. const int ith = params->ith;
  11013. const int nth = params->nth;
  11014. const int64_t D = nea0;
  11015. //const int64_t N = nea1;
  11016. const int64_t M = neb01;
  11017. GGML_ASSERT(ne0 == nea0);
  11018. GGML_ASSERT(ne1 == nea1);
  11019. GGML_ASSERT(ne2 == nea2);
  11020. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11021. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11022. GGML_ASSERT(nbb10 == sizeof(float));
  11023. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11024. GGML_ASSERT(nbc10 == sizeof(float));
  11025. GGML_ASSERT(neb00 == D);
  11026. GGML_ASSERT(neb01 == M);
  11027. GGML_ASSERT(neb10 == M);
  11028. GGML_ASSERT(neb11 == 1);
  11029. GGML_ASSERT(nec00 == M);
  11030. GGML_ASSERT(nec01 == D);
  11031. GGML_ASSERT(nec10 == D);
  11032. GGML_ASSERT(nec11 == 1);
  11033. // dst cannot be transposed or permuted
  11034. GGML_ASSERT(nb0 == sizeof(float));
  11035. GGML_ASSERT(nb0 <= nb1);
  11036. GGML_ASSERT(nb1 <= nb2);
  11037. GGML_ASSERT(nb2 <= nb3);
  11038. if (params->type == GGML_TASK_INIT) {
  11039. return;
  11040. }
  11041. if (params->type == GGML_TASK_FINALIZE) {
  11042. return;
  11043. }
  11044. // parallelize by a rows using ggml_vec_dot_f32
  11045. // total rows in a
  11046. const int nr = nea1*nea2*nea3;
  11047. // rows per thread
  11048. const int dr = (nr + nth - 1)/nth;
  11049. // row range for this thread
  11050. const int ir0 = dr*ith;
  11051. const int ir1 = MIN(ir0 + dr, nr);
  11052. for (int ir = ir0; ir < ir1; ++ir) {
  11053. // a indices
  11054. const int ia3 = ir/(nea2*nea1);
  11055. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11056. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11057. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11058. for (int64_t ic = 0; ic < neb01; ++ic) {
  11059. // b0 indices
  11060. const int ib03 = ia3;
  11061. const int ib02 = ia2;
  11062. const int ib01 = ic;
  11063. // S indices
  11064. const int i1 = ib01;
  11065. ggml_vec_dot_f16(nea0,
  11066. S + i1,
  11067. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11068. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11069. }
  11070. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11071. //ggml_vec_gelu_f32(neb01, S, S);
  11072. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11073. for (int64_t i = 0; i < M; i++) {
  11074. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11075. }
  11076. ggml_vec_gelu_f16(neb01, S16, S16);
  11077. {
  11078. // dst indices
  11079. const int i1 = ia1;
  11080. const int i2 = ia2;
  11081. const int i3 = ia3;
  11082. for (int64_t ic = 0; ic < nec01; ++ic) {
  11083. ggml_vec_dot_f16(neb01,
  11084. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11085. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11086. S16);
  11087. }
  11088. ggml_vec_add_f32(nec01,
  11089. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11090. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11091. (float *) c1->data);
  11092. }
  11093. }
  11094. }
  11095. static void ggml_compute_forward_flash_ff(
  11096. const struct ggml_compute_params * params,
  11097. const struct ggml_tensor * a,
  11098. const struct ggml_tensor * b0,
  11099. const struct ggml_tensor * b1,
  11100. const struct ggml_tensor * c0,
  11101. const struct ggml_tensor * c1,
  11102. struct ggml_tensor * dst) {
  11103. switch (b0->type) {
  11104. case GGML_TYPE_F16:
  11105. {
  11106. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11107. } break;
  11108. case GGML_TYPE_F32:
  11109. {
  11110. GGML_ASSERT(false); // TODO
  11111. } break;
  11112. default:
  11113. {
  11114. GGML_ASSERT(false);
  11115. } break;
  11116. }
  11117. }
  11118. // ggml_compute_forward_flash_attn_back
  11119. static void ggml_compute_forward_flash_attn_back_f32(
  11120. const struct ggml_compute_params * params,
  11121. const struct ggml_tensor * q,
  11122. const struct ggml_tensor * k,
  11123. const struct ggml_tensor * v,
  11124. const struct ggml_tensor * d,
  11125. const bool masked,
  11126. struct ggml_tensor * dst) {
  11127. int64_t t0 = ggml_perf_time_us();
  11128. UNUSED(t0);
  11129. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11130. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11131. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11132. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11133. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11134. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11135. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11136. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11137. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11138. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11139. const int ith = params->ith;
  11140. const int nth = params->nth;
  11141. const int64_t D = neq0;
  11142. const int64_t N = neq1;
  11143. const int64_t P = nek1 - N;
  11144. const int64_t M = P + N;
  11145. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11146. const int mxDM = MAX(D, Mup);
  11147. // GGML_ASSERT(ne0 == D);
  11148. // GGML_ASSERT(ne1 == N);
  11149. GGML_ASSERT(P >= 0);
  11150. GGML_ASSERT(nbq0 == sizeof(float));
  11151. GGML_ASSERT(nbk0 == sizeof(float));
  11152. GGML_ASSERT(nbv0 == sizeof(float));
  11153. GGML_ASSERT(neq0 == D);
  11154. GGML_ASSERT(nek0 == D);
  11155. GGML_ASSERT(nev1 == D);
  11156. GGML_ASSERT(ned0 == D);
  11157. GGML_ASSERT(neq1 == N);
  11158. GGML_ASSERT(nek1 == N + P);
  11159. GGML_ASSERT(nev1 == D);
  11160. GGML_ASSERT(ned1 == N);
  11161. // dst cannot be transposed or permuted
  11162. GGML_ASSERT(nb0 == sizeof(float));
  11163. GGML_ASSERT(nb0 <= nb1);
  11164. GGML_ASSERT(nb1 <= nb2);
  11165. GGML_ASSERT(nb2 <= nb3);
  11166. if (params->type == GGML_TASK_INIT) {
  11167. if (ith == 0) {
  11168. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11169. }
  11170. return;
  11171. }
  11172. if (params->type == GGML_TASK_FINALIZE) {
  11173. return;
  11174. }
  11175. const int64_t elem_q = ggml_nelements(q);
  11176. const int64_t elem_k = ggml_nelements(k);
  11177. enum ggml_type result_type = dst->type;
  11178. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11179. const size_t tsize = ggml_type_size(result_type);
  11180. const size_t offs_q = 0;
  11181. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11182. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11183. void * grad_q = (char *) dst->data;
  11184. void * grad_k = (char *) dst->data + offs_k;
  11185. void * grad_v = (char *) dst->data + offs_v;
  11186. const size_t nbgq1 = nb0*neq0;
  11187. const size_t nbgq2 = nb0*neq0*neq1;
  11188. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11189. const size_t nbgk1 = nb0*nek0;
  11190. const size_t nbgk2 = nb0*nek0*nek1;
  11191. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11192. const size_t nbgv1 = nb0*nev0;
  11193. const size_t nbgv2 = nb0*nev0*nev1;
  11194. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11195. // parallelize by k rows using ggml_vec_dot_f32
  11196. // total rows in k
  11197. const int nr = nek2*nek3;
  11198. // rows per thread
  11199. const int dr = (nr + nth - 1)/nth;
  11200. // row range for this thread
  11201. const int ir0 = dr*ith;
  11202. const int ir1 = MIN(ir0 + dr, nr);
  11203. const float scale = 1.0f/sqrtf(D);
  11204. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11205. // how often k2 (and v2) is repeated in q2
  11206. int nrep = neq2/nek2;
  11207. for (int ir = ir0; ir < ir1; ++ir) {
  11208. // q indices
  11209. const int ik3 = ir/(nek2);
  11210. const int ik2 = ir - ik3*nek2;
  11211. const int iq3 = ik3;
  11212. const int id3 = ik3;
  11213. const int iv3 = ik3;
  11214. const int iv2 = ik2;
  11215. for (int irep = 0; irep < nrep; ++irep) {
  11216. const int iq2 = ik2 + irep*nek2;
  11217. const int id2 = iq2;
  11218. // (ik2 + irep*nek2) % nek2 == ik2
  11219. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11220. const int id1 = iq1;
  11221. // not sure about CACHE_LINE_SIZE_F32..
  11222. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11223. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11224. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11225. for (int i = M; i < Mup; ++i) {
  11226. S[i] = -INFINITY;
  11227. }
  11228. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11229. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11230. // k indices
  11231. const int ik1 = ic;
  11232. // S indices
  11233. const int i1 = ik1;
  11234. ggml_vec_dot_f32(neq0,
  11235. S + i1,
  11236. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11237. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11238. }
  11239. // scale
  11240. ggml_vec_scale_f32(masked_begin, S, scale);
  11241. for (int64_t i = masked_begin; i < M; i++) {
  11242. S[i] = -INFINITY;
  11243. }
  11244. // softmax
  11245. // exclude known -INF S[..] values from max and loop
  11246. // dont forget to set their SM values to zero
  11247. {
  11248. float max = -INFINITY;
  11249. ggml_vec_max_f32(masked_begin, &max, S);
  11250. ggml_float sum = 0.0;
  11251. {
  11252. #ifdef GGML_SOFT_MAX_ACCELERATE
  11253. max = -max;
  11254. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11255. vvexpf(SM, SM, &Mup);
  11256. ggml_vec_sum_f32(Mup, &sum, SM);
  11257. #else
  11258. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11259. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11260. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11261. if (i >= masked_begin) {
  11262. break;
  11263. }
  11264. float * SR = S + i;
  11265. float * SW = SM + i;
  11266. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11267. if (i + j >= masked_begin) {
  11268. break;
  11269. } else if (SR[j] == -INFINITY) {
  11270. SW[j] = 0.0f;
  11271. } else {
  11272. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11273. const float val = expf(SR[j] - max);
  11274. #else
  11275. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11276. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11277. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11278. #endif
  11279. sump[j] += (ggml_float)val;
  11280. SW[j] = val;
  11281. }
  11282. }
  11283. }
  11284. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11285. sum += sump[i];
  11286. }
  11287. #endif
  11288. }
  11289. assert(sum > 0.0);
  11290. sum = 1.0/sum;
  11291. ggml_vec_scale_f32(masked_begin, SM, sum);
  11292. }
  11293. // step-by-step explanation
  11294. {
  11295. // forward-process shape grads from backward process
  11296. // parallel_for ik2,ik3:
  11297. // for irep:
  11298. // iq2 = ik2 + irep*nek2
  11299. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11300. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11301. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11302. // for iq1:
  11303. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11304. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11305. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11306. // S0 = -Inf [D,1,1,1]
  11307. // ~S1[i] = dot(kcur[:D,i], qcur)
  11308. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11309. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11310. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11311. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11312. // ~S5[i] = dot(vcur[:,i], S4)
  11313. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11314. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11315. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11316. // dst backward-/ grad[dst] = d
  11317. //
  11318. // output gradients with their dependencies:
  11319. //
  11320. // grad[kcur] = grad[S1].T @ qcur
  11321. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11322. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11323. // grad[S4] = grad[S5] @ vcur
  11324. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11325. // grad[qcur] = grad[S1] @ kcur
  11326. // grad[vcur] = grad[S5].T @ S4
  11327. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11328. //
  11329. // in post-order:
  11330. //
  11331. // S1 = qcur @ kcur.T
  11332. // S2 = S1 * scale
  11333. // S3 = diag_mask_inf(S2, P)
  11334. // S4 = softmax(S3)
  11335. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11336. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11337. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11338. // grad[qcur] = grad[S1] @ kcur
  11339. // grad[kcur] = grad[S1].T @ qcur
  11340. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11341. //
  11342. // using less variables (SM=S4):
  11343. //
  11344. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11345. // SM = softmax(S)
  11346. // S = d[:D,iq1,iq2,iq3] @ vcur
  11347. // dot_SM_gradSM = dot(SM, S)
  11348. // S = SM * (S - dot(SM, S))
  11349. // S = diag_mask_zero(S, P) * scale
  11350. //
  11351. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11352. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11353. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11354. }
  11355. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11356. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11357. // for ic:
  11358. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11359. // exclude known future zero S[..] values from operation
  11360. ggml_vec_set_f32(masked_begin, S, 0);
  11361. for (int64_t ic = 0; ic < D; ++ic) {
  11362. ggml_vec_mad_f32(masked_begin,
  11363. S,
  11364. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11365. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11366. }
  11367. // S = SM * (S - dot(SM, S))
  11368. float dot_SM_gradSM = 0;
  11369. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11370. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11371. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11372. // S = diag_mask_zero(S, P) * scale
  11373. // already done by above ggml_vec_set_f32
  11374. // exclude known zero S[..] values from operation
  11375. ggml_vec_scale_f32(masked_begin, S, scale);
  11376. // S shape [M,1]
  11377. // SM shape [M,1]
  11378. // kcur shape [D,M]
  11379. // qcur shape [D,1]
  11380. // vcur shape [M,D]
  11381. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11382. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11383. // for ic:
  11384. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11385. // exclude known zero S[..] values from loop
  11386. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11387. ggml_vec_mad_f32(D,
  11388. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11389. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11390. S[ic]);
  11391. }
  11392. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11393. // for ic:
  11394. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11395. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11396. // exclude known zero S[..] values from loop
  11397. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11398. ggml_vec_mad_f32(D,
  11399. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11400. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11401. S[ic]);
  11402. }
  11403. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11404. // for ic:
  11405. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11406. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11407. // exclude known zero SM[..] values from mad
  11408. for (int64_t ic = 0; ic < D; ++ic) {
  11409. ggml_vec_mad_f32(masked_begin,
  11410. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11411. SM,
  11412. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11413. }
  11414. }
  11415. }
  11416. }
  11417. }
  11418. static void ggml_compute_forward_flash_attn_back(
  11419. const struct ggml_compute_params * params,
  11420. const struct ggml_tensor * q,
  11421. const struct ggml_tensor * k,
  11422. const struct ggml_tensor * v,
  11423. const struct ggml_tensor * d,
  11424. const bool masked,
  11425. struct ggml_tensor * dst) {
  11426. switch (q->type) {
  11427. case GGML_TYPE_F32:
  11428. {
  11429. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11430. } break;
  11431. default:
  11432. {
  11433. GGML_ASSERT(false);
  11434. } break;
  11435. }
  11436. }
  11437. // ggml_compute_forward_win_part
  11438. static void ggml_compute_forward_win_part_f32(
  11439. const struct ggml_compute_params * params,
  11440. const struct ggml_tensor * src0,
  11441. struct ggml_tensor * dst) {
  11442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11443. return;
  11444. }
  11445. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11446. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11447. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11448. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11449. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11450. assert(ne00 == ne0);
  11451. assert(ne3 == nep0*nep1);
  11452. // TODO: optimize / multi-thread
  11453. for (int py = 0; py < nep1; ++py) {
  11454. for (int px = 0; px < nep0; ++px) {
  11455. const int64_t i3 = py*nep0 + px;
  11456. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11457. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11458. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11459. const int64_t i02 = py*w + i2;
  11460. const int64_t i01 = px*w + i1;
  11461. const int64_t i00 = i0;
  11462. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11463. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11464. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11465. ((float *) dst->data)[i] = 0.0f;
  11466. } else {
  11467. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11468. }
  11469. }
  11470. }
  11471. }
  11472. }
  11473. }
  11474. }
  11475. static void ggml_compute_forward_win_part(
  11476. const struct ggml_compute_params * params,
  11477. const struct ggml_tensor * src0,
  11478. struct ggml_tensor * dst) {
  11479. switch (src0->type) {
  11480. case GGML_TYPE_F32:
  11481. {
  11482. ggml_compute_forward_win_part_f32(params, src0, dst);
  11483. } break;
  11484. default:
  11485. {
  11486. GGML_ASSERT(false);
  11487. } break;
  11488. }
  11489. }
  11490. // ggml_compute_forward_win_unpart
  11491. static void ggml_compute_forward_win_unpart_f32(
  11492. const struct ggml_compute_params * params,
  11493. const struct ggml_tensor * src0,
  11494. struct ggml_tensor * dst) {
  11495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11496. return;
  11497. }
  11498. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11499. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11500. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11501. // padding
  11502. const int px = (w - ne1%w)%w;
  11503. //const int py = (w - ne2%w)%w;
  11504. const int npx = (px + ne1)/w;
  11505. //const int npy = (py + ne2)/w;
  11506. assert(ne0 == ne00);
  11507. // TODO: optimize / multi-thread
  11508. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11509. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11510. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11511. const int ip2 = i2/w;
  11512. const int ip1 = i1/w;
  11513. const int64_t i02 = i2%w;
  11514. const int64_t i01 = i1%w;
  11515. const int64_t i00 = i0;
  11516. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11517. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11518. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11519. }
  11520. }
  11521. }
  11522. }
  11523. static void ggml_compute_forward_win_unpart(
  11524. const struct ggml_compute_params * params,
  11525. const struct ggml_tensor * src0,
  11526. struct ggml_tensor * dst) {
  11527. switch (src0->type) {
  11528. case GGML_TYPE_F32:
  11529. {
  11530. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11531. } break;
  11532. default:
  11533. {
  11534. GGML_ASSERT(false);
  11535. } break;
  11536. }
  11537. }
  11538. //gmml_compute_forward_unary
  11539. static void ggml_compute_forward_unary(
  11540. const struct ggml_compute_params * params,
  11541. const struct ggml_tensor * src0,
  11542. struct ggml_tensor * dst) {
  11543. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11544. switch (op) {
  11545. case GGML_UNARY_OP_ABS:
  11546. {
  11547. ggml_compute_forward_abs(params, src0, dst);
  11548. } break;
  11549. case GGML_UNARY_OP_SGN:
  11550. {
  11551. ggml_compute_forward_sgn(params, src0, dst);
  11552. } break;
  11553. case GGML_UNARY_OP_NEG:
  11554. {
  11555. ggml_compute_forward_neg(params, src0, dst);
  11556. } break;
  11557. case GGML_UNARY_OP_STEP:
  11558. {
  11559. ggml_compute_forward_step(params, src0, dst);
  11560. } break;
  11561. case GGML_UNARY_OP_TANH:
  11562. {
  11563. ggml_compute_forward_tanh(params, src0, dst);
  11564. } break;
  11565. case GGML_UNARY_OP_ELU:
  11566. {
  11567. ggml_compute_forward_elu(params, src0, dst);
  11568. } break;
  11569. case GGML_UNARY_OP_RELU:
  11570. {
  11571. ggml_compute_forward_relu(params, src0, dst);
  11572. } break;
  11573. case GGML_UNARY_OP_GELU:
  11574. {
  11575. ggml_compute_forward_gelu(params, src0, dst);
  11576. } break;
  11577. case GGML_UNARY_OP_GELU_QUICK:
  11578. {
  11579. ggml_compute_forward_gelu_quick(params, src0, dst);
  11580. } break;
  11581. case GGML_UNARY_OP_SILU:
  11582. {
  11583. ggml_compute_forward_silu(params, src0, dst);
  11584. } break;
  11585. case GGML_UNARY_OP_HARDSWISH:
  11586. {
  11587. ggml_compute_forward_hardswish(params, src0, dst);
  11588. } break;
  11589. case GGML_UNARY_OP_HARDSIGMOID:
  11590. {
  11591. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11592. } break;
  11593. default:
  11594. {
  11595. GGML_ASSERT(false);
  11596. } break;
  11597. }
  11598. }
  11599. // ggml_compute_forward_get_rel_pos
  11600. static void ggml_compute_forward_get_rel_pos_f16(
  11601. const struct ggml_compute_params * params,
  11602. const struct ggml_tensor * src0,
  11603. struct ggml_tensor * dst) {
  11604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11605. return;
  11606. }
  11607. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11608. GGML_TENSOR_UNARY_OP_LOCALS
  11609. const int64_t w = ne1;
  11610. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11611. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11612. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11613. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11614. const int64_t pos = (w - i1 - 1) + i2;
  11615. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11616. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11617. }
  11618. }
  11619. }
  11620. }
  11621. static void ggml_compute_forward_get_rel_pos(
  11622. const struct ggml_compute_params * params,
  11623. const struct ggml_tensor * src0,
  11624. struct ggml_tensor * dst) {
  11625. switch (src0->type) {
  11626. case GGML_TYPE_F16:
  11627. {
  11628. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11629. } break;
  11630. default:
  11631. {
  11632. GGML_ASSERT(false);
  11633. } break;
  11634. }
  11635. }
  11636. // ggml_compute_forward_add_rel_pos
  11637. static void ggml_compute_forward_add_rel_pos_f32(
  11638. const struct ggml_compute_params * params,
  11639. const struct ggml_tensor * src0,
  11640. const struct ggml_tensor * src1,
  11641. const struct ggml_tensor * src2,
  11642. struct ggml_tensor * dst) {
  11643. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11644. if (!inplace && params->type == GGML_TASK_INIT) {
  11645. if (params->ith != 0) {
  11646. return;
  11647. }
  11648. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11649. return;
  11650. }
  11651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11652. return;
  11653. }
  11654. int64_t t0 = ggml_perf_time_us();
  11655. UNUSED(t0);
  11656. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11657. float * src1_data = (float *) src1->data;
  11658. float * src2_data = (float *) src2->data;
  11659. float * dst_data = (float *) dst->data;
  11660. const int64_t ne10 = src1->ne[0];
  11661. const int64_t ne11 = src1->ne[1];
  11662. const int64_t ne12 = src1->ne[2];
  11663. const int64_t ne13 = src1->ne[3];
  11664. const int ith = params->ith;
  11665. const int nth = params->nth;
  11666. // total patches in dst
  11667. const int np = ne13;
  11668. // patches per thread
  11669. const int dp = (np + nth - 1)/nth;
  11670. // patch range for this thread
  11671. const int ip0 = dp*ith;
  11672. const int ip1 = MIN(ip0 + dp, np);
  11673. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11674. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11675. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11676. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11677. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11678. const int64_t jp0 = jp1 + i10;
  11679. const float src1_e = src1_data[jp0];
  11680. const float src2_e = src2_data[jp0];
  11681. const int64_t jdh = jp0 * ne10;
  11682. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11683. for (int64_t j = 0; j < ne10; ++j) {
  11684. dst_data[jdh + j ] += src2_e;
  11685. dst_data[jdw + j*ne10] += src1_e;
  11686. }
  11687. }
  11688. }
  11689. }
  11690. }
  11691. }
  11692. static void ggml_compute_forward_add_rel_pos(
  11693. const struct ggml_compute_params * params,
  11694. const struct ggml_tensor * src0,
  11695. const struct ggml_tensor * src1,
  11696. const struct ggml_tensor * src2,
  11697. struct ggml_tensor * dst) {
  11698. switch (src0->type) {
  11699. case GGML_TYPE_F32:
  11700. {
  11701. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11702. } break;
  11703. default:
  11704. {
  11705. GGML_ASSERT(false);
  11706. } break;
  11707. }
  11708. }
  11709. // ggml_compute_forward_map_unary
  11710. static void ggml_compute_forward_map_unary_f32(
  11711. const struct ggml_compute_params * params,
  11712. const struct ggml_tensor * src0,
  11713. struct ggml_tensor * dst,
  11714. const ggml_unary_op_f32_t fun) {
  11715. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11717. return;
  11718. }
  11719. const int n = ggml_nrows(src0);
  11720. const int nc = src0->ne[0];
  11721. assert( dst->nb[0] == sizeof(float));
  11722. assert(src0->nb[0] == sizeof(float));
  11723. for (int i = 0; i < n; i++) {
  11724. fun(nc,
  11725. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11726. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11727. }
  11728. }
  11729. static void ggml_compute_forward_map_unary(
  11730. const struct ggml_compute_params * params,
  11731. const struct ggml_tensor * src0,
  11732. struct ggml_tensor * dst,
  11733. const ggml_unary_op_f32_t fun) {
  11734. switch (src0->type) {
  11735. case GGML_TYPE_F32:
  11736. {
  11737. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11738. } break;
  11739. default:
  11740. {
  11741. GGML_ASSERT(false);
  11742. } break;
  11743. }
  11744. }
  11745. // ggml_compute_forward_map_binary
  11746. static void ggml_compute_forward_map_binary_f32(
  11747. const struct ggml_compute_params * params,
  11748. const struct ggml_tensor * src0,
  11749. const struct ggml_tensor * src1,
  11750. struct ggml_tensor * dst,
  11751. const ggml_binary_op_f32_t fun) {
  11752. assert(params->ith == 0);
  11753. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11755. return;
  11756. }
  11757. const int n = ggml_nrows(src0);
  11758. const int nc = src0->ne[0];
  11759. assert( dst->nb[0] == sizeof(float));
  11760. assert(src0->nb[0] == sizeof(float));
  11761. assert(src1->nb[0] == sizeof(float));
  11762. for (int i = 0; i < n; i++) {
  11763. fun(nc,
  11764. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11765. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11766. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11767. }
  11768. }
  11769. static void ggml_compute_forward_map_binary(
  11770. const struct ggml_compute_params * params,
  11771. const struct ggml_tensor * src0,
  11772. const struct ggml_tensor * src1,
  11773. struct ggml_tensor * dst,
  11774. const ggml_binary_op_f32_t fun) {
  11775. switch (src0->type) {
  11776. case GGML_TYPE_F32:
  11777. {
  11778. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11779. } break;
  11780. default:
  11781. {
  11782. GGML_ASSERT(false);
  11783. } break;
  11784. }
  11785. }
  11786. // ggml_compute_forward_map_custom1
  11787. static void ggml_compute_forward_map_custom1_f32(
  11788. const struct ggml_compute_params * params,
  11789. const struct ggml_tensor * a,
  11790. struct ggml_tensor * dst,
  11791. const ggml_custom1_op_f32_t fun) {
  11792. assert(params->ith == 0);
  11793. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11794. return;
  11795. }
  11796. fun(dst, a);
  11797. }
  11798. // ggml_compute_forward_map_custom2
  11799. static void ggml_compute_forward_map_custom2_f32(
  11800. const struct ggml_compute_params * params,
  11801. const struct ggml_tensor * a,
  11802. const struct ggml_tensor * b,
  11803. struct ggml_tensor * dst,
  11804. const ggml_custom2_op_f32_t fun) {
  11805. assert(params->ith == 0);
  11806. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11807. return;
  11808. }
  11809. fun(dst, a, b);
  11810. }
  11811. // ggml_compute_forward_map_custom3
  11812. static void ggml_compute_forward_map_custom3_f32(
  11813. const struct ggml_compute_params * params,
  11814. const struct ggml_tensor * a,
  11815. const struct ggml_tensor * b,
  11816. const struct ggml_tensor * c,
  11817. struct ggml_tensor * dst,
  11818. const ggml_custom3_op_f32_t fun) {
  11819. assert(params->ith == 0);
  11820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11821. return;
  11822. }
  11823. fun(dst, a, b, c);
  11824. }
  11825. // ggml_compute_forward_map_custom1
  11826. static void ggml_compute_forward_map_custom1(
  11827. const struct ggml_compute_params * params,
  11828. const struct ggml_tensor * a,
  11829. struct ggml_tensor * dst) {
  11830. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11831. return;
  11832. }
  11833. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11834. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11835. }
  11836. // ggml_compute_forward_map_custom2
  11837. static void ggml_compute_forward_map_custom2(
  11838. const struct ggml_compute_params * params,
  11839. const struct ggml_tensor * a,
  11840. const struct ggml_tensor * b,
  11841. struct ggml_tensor * dst) {
  11842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11843. return;
  11844. }
  11845. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11846. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11847. }
  11848. // ggml_compute_forward_map_custom3
  11849. static void ggml_compute_forward_map_custom3(
  11850. const struct ggml_compute_params * params,
  11851. const struct ggml_tensor * a,
  11852. const struct ggml_tensor * b,
  11853. const struct ggml_tensor * c,
  11854. struct ggml_tensor * dst) {
  11855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11856. return;
  11857. }
  11858. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11859. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11860. }
  11861. // ggml_compute_forward_cross_entropy_loss
  11862. static void ggml_compute_forward_cross_entropy_loss_f32(
  11863. const struct ggml_compute_params * params,
  11864. const struct ggml_tensor * src0,
  11865. const struct ggml_tensor * src1,
  11866. struct ggml_tensor * dst) {
  11867. GGML_ASSERT(ggml_is_contiguous(src0));
  11868. GGML_ASSERT(ggml_is_contiguous(src1));
  11869. GGML_ASSERT(ggml_is_scalar(dst));
  11870. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11871. const int ith = params->ith;
  11872. const int nth = params->nth;
  11873. float * sums = (float *) params->wdata;
  11874. // TODO: handle transposed/permuted matrices
  11875. const int nc = src0->ne[0];
  11876. const int nr = ggml_nrows(src0);
  11877. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11878. if (params->type == GGML_TASK_INIT) {
  11879. if (ith == 0) {
  11880. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11881. }
  11882. return;
  11883. }
  11884. if (params->type == GGML_TASK_FINALIZE) {
  11885. if (ith == 0) {
  11886. float * dp = (float *) dst->data;
  11887. ggml_vec_sum_f32(nth, dp, sums);
  11888. dp[0] *= -1.0f / (float) nr;
  11889. }
  11890. return;
  11891. }
  11892. const double eps = 1e-9;
  11893. // rows per thread
  11894. const int dr = (nr + nth - 1)/nth;
  11895. // row range for this thread
  11896. const int ir0 = dr*ith;
  11897. const int ir1 = MIN(ir0 + dr, nr);
  11898. for (int i1 = ir0; i1 < ir1; i1++) {
  11899. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11900. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11901. float * st = ((float *) params->wdata) + nth + ith*nc;
  11902. #ifndef NDEBUG
  11903. for (int i = 0; i < nc; ++i) {
  11904. //printf("p[%d] = %f\n", i, p[i]);
  11905. assert(!isnan(s0[i]));
  11906. assert(!isnan(s1[i]));
  11907. }
  11908. #endif
  11909. // soft_max
  11910. ggml_float sum = 0.0;
  11911. {
  11912. float max = -INFINITY;
  11913. ggml_vec_max_f32(nc, &max, s0);
  11914. uint16_t scvt; UNUSED(scvt);
  11915. for (int i = 0; i < nc; i++) {
  11916. if (s0[i] == -INFINITY) {
  11917. st[i] = 0.0f;
  11918. } else {
  11919. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11920. const float s = s0[i] - max;
  11921. const float val = expf(s);
  11922. #else
  11923. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11924. memcpy(&scvt, &s, sizeof(scvt));
  11925. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11926. #endif
  11927. sum += (ggml_float)val;
  11928. st[i] = val;
  11929. }
  11930. }
  11931. assert(sum > 0.0);
  11932. // sum = 1.0/sum;
  11933. }
  11934. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11935. sum = (1.0 - eps) / sum;
  11936. ggml_vec_scale_f32(nc, st, sum);
  11937. ggml_vec_add1_f32(nc, st, st, eps);
  11938. ggml_vec_log_f32(nc, st, st);
  11939. ggml_vec_mul_f32(nc, st, st, s1);
  11940. float st_sum = 0;
  11941. ggml_vec_sum_f32(nc, &st_sum, st);
  11942. sums[ith] += st_sum;
  11943. #ifndef NDEBUG
  11944. for (int i = 0; i < nc; ++i) {
  11945. assert(!isnan(st[i]));
  11946. assert(!isinf(st[i]));
  11947. }
  11948. #endif
  11949. }
  11950. }
  11951. static void ggml_compute_forward_cross_entropy_loss(
  11952. const struct ggml_compute_params * params,
  11953. const struct ggml_tensor * src0,
  11954. const struct ggml_tensor * src1,
  11955. struct ggml_tensor * dst) {
  11956. switch (src0->type) {
  11957. case GGML_TYPE_F32:
  11958. {
  11959. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11960. } break;
  11961. default:
  11962. {
  11963. GGML_ASSERT(false);
  11964. } break;
  11965. }
  11966. }
  11967. // ggml_compute_forward_cross_entropy_loss_back
  11968. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11969. const struct ggml_compute_params * params,
  11970. const struct ggml_tensor * src0,
  11971. const struct ggml_tensor * src1,
  11972. const struct ggml_tensor * opt0,
  11973. struct ggml_tensor * dst) {
  11974. GGML_ASSERT(ggml_is_contiguous(dst));
  11975. GGML_ASSERT(ggml_is_contiguous(src0));
  11976. GGML_ASSERT(ggml_is_contiguous(src1));
  11977. GGML_ASSERT(ggml_is_contiguous(opt0));
  11978. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11979. const int64_t ith = params->ith;
  11980. const int64_t nth = params->nth;
  11981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11982. return;
  11983. }
  11984. const double eps = 1e-9;
  11985. // TODO: handle transposed/permuted matrices
  11986. const int64_t nc = src0->ne[0];
  11987. const int64_t nr = ggml_nrows(src0);
  11988. // rows per thread
  11989. const int64_t dr = (nr + nth - 1)/nth;
  11990. // row range for this thread
  11991. const int64_t ir0 = dr*ith;
  11992. const int64_t ir1 = MIN(ir0 + dr, nr);
  11993. float * d = (float *) opt0->data;
  11994. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11995. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11996. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11997. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11998. #ifndef NDEBUG
  11999. for (int i = 0; i < nc; ++i) {
  12000. //printf("p[%d] = %f\n", i, p[i]);
  12001. assert(!isnan(s0[i]));
  12002. assert(!isnan(s1[i]));
  12003. }
  12004. #endif
  12005. // soft_max
  12006. ggml_float sum = 0.0;
  12007. {
  12008. float max = -INFINITY;
  12009. ggml_vec_max_f32(nc, &max, s0);
  12010. uint16_t scvt; UNUSED(scvt);
  12011. for (int i = 0; i < nc; i++) {
  12012. if (s0[i] == -INFINITY) {
  12013. ds0[i] = 0.0f;
  12014. } else {
  12015. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12016. const float s = s0[i] - max;
  12017. const float val = expf(s);
  12018. #else
  12019. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12020. memcpy(&scvt, &s, sizeof(scvt));
  12021. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12022. #endif
  12023. sum += (ggml_float)val;
  12024. ds0[i] = val;
  12025. }
  12026. }
  12027. assert(sum > 0.0);
  12028. sum = (1.0 - eps)/sum;
  12029. }
  12030. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12031. ggml_vec_scale_f32(nc, ds0, sum);
  12032. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12033. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12034. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12035. #ifndef NDEBUG
  12036. for (int i = 0; i < nc; ++i) {
  12037. assert(!isnan(ds0[i]));
  12038. assert(!isinf(ds0[i]));
  12039. }
  12040. #endif
  12041. }
  12042. }
  12043. static void ggml_compute_forward_cross_entropy_loss_back(
  12044. const struct ggml_compute_params * params,
  12045. const struct ggml_tensor * src0,
  12046. const struct ggml_tensor * src1,
  12047. const struct ggml_tensor * opt0,
  12048. struct ggml_tensor * dst) {
  12049. switch (src0->type) {
  12050. case GGML_TYPE_F32:
  12051. {
  12052. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12053. } break;
  12054. default:
  12055. {
  12056. GGML_ASSERT(false);
  12057. } break;
  12058. }
  12059. }
  12060. /////////////////////////////////
  12061. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12062. GGML_ASSERT(params);
  12063. if (tensor->op == GGML_OP_NONE) {
  12064. return;
  12065. }
  12066. #ifdef GGML_USE_CUBLAS
  12067. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12068. if (skip_cpu) {
  12069. return;
  12070. }
  12071. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12072. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12073. #endif // GGML_USE_CUBLAS
  12074. switch (tensor->op) {
  12075. case GGML_OP_DUP:
  12076. {
  12077. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12078. } break;
  12079. case GGML_OP_ADD:
  12080. {
  12081. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12082. } break;
  12083. case GGML_OP_ADD1:
  12084. {
  12085. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12086. } break;
  12087. case GGML_OP_ACC:
  12088. {
  12089. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12090. } break;
  12091. case GGML_OP_SUB:
  12092. {
  12093. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12094. } break;
  12095. case GGML_OP_MUL:
  12096. {
  12097. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12098. } break;
  12099. case GGML_OP_DIV:
  12100. {
  12101. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12102. } break;
  12103. case GGML_OP_SQR:
  12104. {
  12105. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12106. } break;
  12107. case GGML_OP_SQRT:
  12108. {
  12109. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12110. } break;
  12111. case GGML_OP_LOG:
  12112. {
  12113. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12114. } break;
  12115. case GGML_OP_SUM:
  12116. {
  12117. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12118. } break;
  12119. case GGML_OP_SUM_ROWS:
  12120. {
  12121. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12122. } break;
  12123. case GGML_OP_MEAN:
  12124. {
  12125. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12126. } break;
  12127. case GGML_OP_ARGMAX:
  12128. {
  12129. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12130. } break;
  12131. case GGML_OP_REPEAT:
  12132. {
  12133. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12134. } break;
  12135. case GGML_OP_REPEAT_BACK:
  12136. {
  12137. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12138. } break;
  12139. case GGML_OP_CONCAT:
  12140. {
  12141. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12142. } break;
  12143. case GGML_OP_SILU_BACK:
  12144. {
  12145. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12146. } break;
  12147. case GGML_OP_NORM:
  12148. {
  12149. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12150. } break;
  12151. case GGML_OP_RMS_NORM:
  12152. {
  12153. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12154. } break;
  12155. case GGML_OP_RMS_NORM_BACK:
  12156. {
  12157. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12158. } break;
  12159. case GGML_OP_GROUP_NORM:
  12160. {
  12161. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12162. } break;
  12163. case GGML_OP_MUL_MAT:
  12164. {
  12165. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12166. } break;
  12167. case GGML_OP_MUL_MAT_ID:
  12168. {
  12169. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12170. } break;
  12171. case GGML_OP_OUT_PROD:
  12172. {
  12173. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12174. } break;
  12175. case GGML_OP_SCALE:
  12176. {
  12177. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12178. } break;
  12179. case GGML_OP_SET:
  12180. {
  12181. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12182. } break;
  12183. case GGML_OP_CPY:
  12184. {
  12185. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12186. } break;
  12187. case GGML_OP_CONT:
  12188. {
  12189. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12190. } break;
  12191. case GGML_OP_RESHAPE:
  12192. {
  12193. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12194. } break;
  12195. case GGML_OP_VIEW:
  12196. {
  12197. ggml_compute_forward_view(params, tensor->src[0]);
  12198. } break;
  12199. case GGML_OP_PERMUTE:
  12200. {
  12201. ggml_compute_forward_permute(params, tensor->src[0]);
  12202. } break;
  12203. case GGML_OP_TRANSPOSE:
  12204. {
  12205. ggml_compute_forward_transpose(params, tensor->src[0]);
  12206. } break;
  12207. case GGML_OP_GET_ROWS:
  12208. {
  12209. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12210. } break;
  12211. case GGML_OP_GET_ROWS_BACK:
  12212. {
  12213. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12214. } break;
  12215. case GGML_OP_DIAG:
  12216. {
  12217. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12218. } break;
  12219. case GGML_OP_DIAG_MASK_INF:
  12220. {
  12221. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12222. } break;
  12223. case GGML_OP_DIAG_MASK_ZERO:
  12224. {
  12225. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12226. } break;
  12227. case GGML_OP_SOFT_MAX:
  12228. {
  12229. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12230. } break;
  12231. case GGML_OP_SOFT_MAX_BACK:
  12232. {
  12233. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12234. } break;
  12235. case GGML_OP_ROPE:
  12236. {
  12237. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12238. } break;
  12239. case GGML_OP_ROPE_BACK:
  12240. {
  12241. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12242. } break;
  12243. case GGML_OP_ALIBI:
  12244. {
  12245. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12246. } break;
  12247. case GGML_OP_CLAMP:
  12248. {
  12249. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12250. } break;
  12251. case GGML_OP_CONV_TRANSPOSE_1D:
  12252. {
  12253. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12254. } break;
  12255. case GGML_OP_IM2COL:
  12256. {
  12257. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12258. } break;
  12259. case GGML_OP_CONV_TRANSPOSE_2D:
  12260. {
  12261. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12262. } break;
  12263. case GGML_OP_POOL_1D:
  12264. {
  12265. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12266. } break;
  12267. case GGML_OP_POOL_2D:
  12268. {
  12269. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12270. } break;
  12271. case GGML_OP_UPSCALE:
  12272. {
  12273. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12274. } break;
  12275. case GGML_OP_PAD:
  12276. {
  12277. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12278. } break;
  12279. case GGML_OP_ARGSORT:
  12280. {
  12281. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12282. } break;
  12283. case GGML_OP_LEAKY_RELU:
  12284. {
  12285. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12286. } break;
  12287. case GGML_OP_FLASH_ATTN:
  12288. {
  12289. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12290. GGML_ASSERT(t == 0 || t == 1);
  12291. const bool masked = t != 0;
  12292. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12293. } break;
  12294. case GGML_OP_FLASH_FF:
  12295. {
  12296. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12297. } break;
  12298. case GGML_OP_FLASH_ATTN_BACK:
  12299. {
  12300. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12301. GGML_ASSERT(t == 0 || t == 1);
  12302. bool masked = t != 0;
  12303. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12304. } break;
  12305. case GGML_OP_WIN_PART:
  12306. {
  12307. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12308. } break;
  12309. case GGML_OP_WIN_UNPART:
  12310. {
  12311. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12312. } break;
  12313. case GGML_OP_UNARY:
  12314. {
  12315. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12316. } break;
  12317. case GGML_OP_GET_REL_POS:
  12318. {
  12319. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12320. } break;
  12321. case GGML_OP_ADD_REL_POS:
  12322. {
  12323. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12324. } break;
  12325. case GGML_OP_MAP_UNARY:
  12326. {
  12327. ggml_unary_op_f32_t fun;
  12328. memcpy(&fun, tensor->op_params, sizeof(fun));
  12329. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12330. }
  12331. break;
  12332. case GGML_OP_MAP_BINARY:
  12333. {
  12334. ggml_binary_op_f32_t fun;
  12335. memcpy(&fun, tensor->op_params, sizeof(fun));
  12336. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12337. }
  12338. break;
  12339. case GGML_OP_MAP_CUSTOM1_F32:
  12340. {
  12341. ggml_custom1_op_f32_t fun;
  12342. memcpy(&fun, tensor->op_params, sizeof(fun));
  12343. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12344. }
  12345. break;
  12346. case GGML_OP_MAP_CUSTOM2_F32:
  12347. {
  12348. ggml_custom2_op_f32_t fun;
  12349. memcpy(&fun, tensor->op_params, sizeof(fun));
  12350. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12351. }
  12352. break;
  12353. case GGML_OP_MAP_CUSTOM3_F32:
  12354. {
  12355. ggml_custom3_op_f32_t fun;
  12356. memcpy(&fun, tensor->op_params, sizeof(fun));
  12357. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12358. }
  12359. break;
  12360. case GGML_OP_MAP_CUSTOM1:
  12361. {
  12362. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12363. }
  12364. break;
  12365. case GGML_OP_MAP_CUSTOM2:
  12366. {
  12367. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12368. }
  12369. break;
  12370. case GGML_OP_MAP_CUSTOM3:
  12371. {
  12372. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12373. }
  12374. break;
  12375. case GGML_OP_CROSS_ENTROPY_LOSS:
  12376. {
  12377. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12378. }
  12379. break;
  12380. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12381. {
  12382. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12383. }
  12384. break;
  12385. case GGML_OP_NONE:
  12386. {
  12387. // nop
  12388. } break;
  12389. case GGML_OP_COUNT:
  12390. {
  12391. GGML_ASSERT(false);
  12392. } break;
  12393. }
  12394. }
  12395. ////////////////////////////////////////////////////////////////////////////////
  12396. static size_t ggml_hash_size(size_t min_sz) {
  12397. // next primes after powers of two
  12398. static const size_t primes[] = {
  12399. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12400. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12401. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12402. 16777259, 33554467, 67108879, 134217757, 268435459,
  12403. 536870923, 1073741827, 2147483659
  12404. };
  12405. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12406. // find the smallest prime that is larger or equal to min_sz
  12407. size_t l = 0;
  12408. size_t r = n_primes;
  12409. while (l < r) {
  12410. size_t m = (l + r)/2;
  12411. if (primes[m] < min_sz) {
  12412. l = m + 1;
  12413. } else {
  12414. r = m;
  12415. }
  12416. }
  12417. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12418. return sz;
  12419. }
  12420. static size_t ggml_hash(const void * p) {
  12421. return (size_t)p;
  12422. }
  12423. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12424. size_t h = ggml_hash(key) % hash_set.size;
  12425. // linear probing
  12426. size_t i = h;
  12427. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12428. i = (i + 1) % hash_set.size;
  12429. if (i == h) {
  12430. // visited all hash table entries -> not found
  12431. return GGML_HASHTABLE_FULL;
  12432. }
  12433. }
  12434. return i;
  12435. }
  12436. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12437. size_t i = ggml_hash_find(hash_set, key);
  12438. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12439. }
  12440. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12441. size_t i = ggml_hash_find(hash_set, key);
  12442. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12443. if (hash_set.keys[i] == key) {
  12444. return GGML_HASHTABLE_ALREADY_EXISTS;
  12445. }
  12446. // insert
  12447. GGML_ASSERT(hash_set.keys[i] == NULL);
  12448. hash_set.keys[i] = key;
  12449. return i;
  12450. }
  12451. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12452. size_t i = ggml_hash_find(hash_set, key);
  12453. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12454. hash_set.keys[i] = key;
  12455. return i;
  12456. }
  12457. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12458. size = ggml_hash_size(size);
  12459. struct ggml_hash_set result;
  12460. result.size = size;
  12461. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12462. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12463. return result;
  12464. }
  12465. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12466. free(hash_set.keys);
  12467. }
  12468. struct hash_map {
  12469. struct ggml_hash_set set;
  12470. struct ggml_tensor ** vals;
  12471. };
  12472. static struct hash_map * ggml_new_hash_map(size_t size) {
  12473. struct hash_map * result = malloc(sizeof(struct hash_map));
  12474. result->set = ggml_hash_set_new(size);
  12475. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12476. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12477. return result;
  12478. }
  12479. static void ggml_hash_map_free(struct hash_map * map) {
  12480. ggml_hash_set_free(map->set);
  12481. free(map->vals);
  12482. free(map);
  12483. }
  12484. // gradient checkpointing
  12485. static struct ggml_tensor * ggml_recompute_graph_node(
  12486. struct ggml_context * ctx,
  12487. struct ggml_cgraph * graph,
  12488. struct hash_map * replacements,
  12489. struct ggml_tensor * node) {
  12490. if (node == NULL) {
  12491. return NULL;
  12492. }
  12493. if (node->is_param) {
  12494. return node;
  12495. }
  12496. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12497. return node;
  12498. }
  12499. int count_children = 0;
  12500. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12501. if (node->src[k]) {
  12502. ++count_children;
  12503. }
  12504. }
  12505. if (count_children == 0) {
  12506. return node;
  12507. }
  12508. size_t i = ggml_hash_find(replacements->set, node);
  12509. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12510. if (replacements->set.keys[i] == node) {
  12511. return replacements->vals[i];
  12512. }
  12513. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12514. // insert clone into replacements
  12515. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12516. replacements->set.keys[i] = node;
  12517. replacements->vals[i] = clone;
  12518. clone->op = node->op;
  12519. clone->grad = node->grad;
  12520. clone->is_param = node->is_param;
  12521. clone->extra = node->extra;
  12522. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12523. clone->nb[k] = node->nb[k];
  12524. }
  12525. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12526. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12527. }
  12528. if (node->view_src != NULL) {
  12529. clone->data = (node->view_src->data == NULL)
  12530. ? NULL // view_src not yet allocated
  12531. : (char *) node->view_src->data // view_src already allocated
  12532. + node->view_offs;
  12533. clone->view_src = node->view_src;
  12534. clone->view_offs = node->view_offs;
  12535. }
  12536. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12537. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12538. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12539. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12540. return clone;
  12541. }
  12542. void ggml_build_backward_gradient_checkpointing(
  12543. struct ggml_context * ctx,
  12544. struct ggml_cgraph * gf,
  12545. struct ggml_cgraph * gb,
  12546. struct ggml_cgraph * gb_tmp,
  12547. struct ggml_tensor * * checkpoints,
  12548. int n_checkpoints) {
  12549. ggml_graph_cpy(gf, gb_tmp);
  12550. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12551. if (n_checkpoints <= 0) {
  12552. ggml_graph_cpy(gb_tmp, gb);
  12553. return;
  12554. }
  12555. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12556. // insert checkpoints in replacements
  12557. for (int i = 0; i < n_checkpoints; ++i) {
  12558. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12559. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12560. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12561. replacements->set.keys[k] = checkpoints[i];
  12562. replacements->vals[k] = checkpoints[i];
  12563. }
  12564. ggml_graph_cpy(gf, gb);
  12565. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12566. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12567. // by recomputing them from checkpoints
  12568. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12569. struct ggml_tensor * node = gb_tmp->nodes[i];
  12570. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12571. // insert new tensors recomputing src, reusing already made replacements,
  12572. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12573. // recurse for input tensors,
  12574. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12575. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12576. }
  12577. // insert rewritten backward node with replacements made into resulting backward graph gb
  12578. ggml_build_forward_expand(gb, node);
  12579. }
  12580. ggml_hash_map_free(replacements);
  12581. }
  12582. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12583. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12584. if (ggml_hash_contains(zero_table, a)) {
  12585. return b;
  12586. } else {
  12587. return ggml_add_impl(ctx, a, b, false);
  12588. }
  12589. }
  12590. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12591. if (ggml_hash_contains(zero_table, a)) {
  12592. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12593. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12594. } else {
  12595. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12596. }
  12597. }
  12598. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12599. if (ggml_hash_contains(zero_table, a)) {
  12600. return ggml_repeat(ctx, b, a);
  12601. } else {
  12602. return ggml_add1_impl(ctx, a, b, false);
  12603. }
  12604. }
  12605. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12606. if (ggml_hash_contains(zero_table, a)) {
  12607. return ggml_neg(ctx, b);
  12608. } else {
  12609. return ggml_sub_impl(ctx, a, b, false);
  12610. }
  12611. }
  12612. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12613. struct ggml_tensor * src0 = tensor->src[0];
  12614. struct ggml_tensor * src1 = tensor->src[1];
  12615. switch (tensor->op) {
  12616. case GGML_OP_DUP:
  12617. {
  12618. if (src0->grad) {
  12619. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12620. }
  12621. } break;
  12622. case GGML_OP_ADD:
  12623. {
  12624. if (src0->grad) {
  12625. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12626. }
  12627. if (src1->grad) {
  12628. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12629. }
  12630. } break;
  12631. case GGML_OP_ADD1:
  12632. {
  12633. if (src0->grad) {
  12634. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12635. }
  12636. if (src1->grad) {
  12637. src1->grad = ggml_add_or_set(ctx,
  12638. src1->grad,
  12639. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12640. zero_table);
  12641. }
  12642. } break;
  12643. case GGML_OP_ACC:
  12644. {
  12645. if (src0->grad) {
  12646. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12647. }
  12648. if (src1->grad) {
  12649. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12650. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12651. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12652. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12653. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12654. tensor->grad,
  12655. src1->grad->ne[0],
  12656. src1->grad->ne[1],
  12657. src1->grad->ne[2],
  12658. src1->grad->ne[3],
  12659. nb1, nb2, nb3, offset);
  12660. src1->grad =
  12661. ggml_add_or_set(ctx,
  12662. src1->grad,
  12663. ggml_reshape(ctx,
  12664. ggml_cont(ctx, tensor_grad_view),
  12665. src1->grad),
  12666. zero_table);
  12667. }
  12668. } break;
  12669. case GGML_OP_SUB:
  12670. {
  12671. if (src0->grad) {
  12672. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12673. }
  12674. if (src1->grad) {
  12675. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12676. }
  12677. } break;
  12678. case GGML_OP_MUL:
  12679. {
  12680. if (src0->grad) {
  12681. src0->grad =
  12682. ggml_add_or_set(ctx,
  12683. src0->grad,
  12684. ggml_mul(ctx, src1, tensor->grad),
  12685. zero_table);
  12686. }
  12687. if (src1->grad) {
  12688. src1->grad =
  12689. ggml_add_or_set(ctx,
  12690. src1->grad,
  12691. ggml_mul(ctx, src0, tensor->grad),
  12692. zero_table);
  12693. }
  12694. } break;
  12695. case GGML_OP_DIV:
  12696. {
  12697. if (src0->grad) {
  12698. src0->grad =
  12699. ggml_add_or_set(ctx,
  12700. src0->grad,
  12701. ggml_div(ctx, tensor->grad, src1),
  12702. zero_table);
  12703. }
  12704. if (src1->grad) {
  12705. src1->grad =
  12706. ggml_sub_or_set(ctx,
  12707. src1->grad,
  12708. ggml_mul(ctx,
  12709. tensor->grad,
  12710. ggml_div(ctx, tensor, src1)),
  12711. zero_table);
  12712. }
  12713. } break;
  12714. case GGML_OP_SQR:
  12715. {
  12716. if (src0->grad) {
  12717. src0->grad =
  12718. ggml_add_or_set(ctx,
  12719. src0->grad,
  12720. ggml_scale(ctx,
  12721. ggml_mul(ctx, src0, tensor->grad),
  12722. 2.0f),
  12723. zero_table);
  12724. }
  12725. } break;
  12726. case GGML_OP_SQRT:
  12727. {
  12728. if (src0->grad) {
  12729. src0->grad =
  12730. ggml_add_or_set(ctx,
  12731. src0->grad,
  12732. ggml_scale(ctx,
  12733. ggml_div(ctx,
  12734. tensor->grad,
  12735. tensor),
  12736. 0.5f),
  12737. zero_table);
  12738. }
  12739. } break;
  12740. case GGML_OP_LOG:
  12741. {
  12742. if (src0->grad) {
  12743. src0->grad =
  12744. ggml_add_or_set(ctx,
  12745. src0->grad,
  12746. ggml_div(ctx,
  12747. tensor->grad,
  12748. src0),
  12749. zero_table);
  12750. }
  12751. } break;
  12752. case GGML_OP_SUM:
  12753. {
  12754. if (src0->grad) {
  12755. src0->grad =
  12756. ggml_add1_or_set(ctx,
  12757. src0->grad,
  12758. tensor->grad,
  12759. zero_table);
  12760. }
  12761. } break;
  12762. case GGML_OP_SUM_ROWS:
  12763. {
  12764. if (src0->grad) {
  12765. src0->grad =
  12766. ggml_add_or_set(ctx,
  12767. src0->grad,
  12768. ggml_repeat(ctx,
  12769. tensor->grad,
  12770. src0->grad),
  12771. zero_table);
  12772. }
  12773. } break;
  12774. case GGML_OP_MEAN:
  12775. case GGML_OP_ARGMAX:
  12776. {
  12777. GGML_ASSERT(false); // TODO: implement
  12778. } break;
  12779. case GGML_OP_REPEAT:
  12780. {
  12781. // necessary for llama
  12782. if (src0->grad) {
  12783. src0->grad = ggml_add_or_set(ctx,
  12784. src0->grad,
  12785. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12786. zero_table);
  12787. }
  12788. } break;
  12789. case GGML_OP_REPEAT_BACK:
  12790. {
  12791. if (src0->grad) {
  12792. // TODO: test this
  12793. src0->grad = ggml_add_or_set(ctx,
  12794. src0->grad,
  12795. ggml_repeat(ctx, tensor->grad, src0->grad),
  12796. zero_table);
  12797. }
  12798. } break;
  12799. case GGML_OP_CONCAT:
  12800. {
  12801. GGML_ASSERT(false); // TODO: implement
  12802. } break;
  12803. case GGML_OP_SILU_BACK:
  12804. {
  12805. GGML_ASSERT(false); // TODO: not implemented
  12806. } break;
  12807. case GGML_OP_NORM:
  12808. {
  12809. GGML_ASSERT(false); // TODO: not implemented
  12810. } break;
  12811. case GGML_OP_RMS_NORM:
  12812. {
  12813. // necessary for llama
  12814. if (src0->grad) {
  12815. float eps;
  12816. memcpy(&eps, tensor->op_params, sizeof(float));
  12817. src0->grad = ggml_add_or_set(ctx,
  12818. src0->grad,
  12819. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12820. zero_table);
  12821. }
  12822. } break;
  12823. case GGML_OP_RMS_NORM_BACK:
  12824. {
  12825. GGML_ASSERT(false); // TODO: not implemented
  12826. } break;
  12827. case GGML_OP_GROUP_NORM:
  12828. {
  12829. GGML_ASSERT(false); // TODO: not implemented
  12830. } break;
  12831. case GGML_OP_MUL_MAT:
  12832. {
  12833. // https://cs231n.github.io/optimization-2/#staged
  12834. // # forward pass
  12835. // s0 = np.random.randn(5, 10)
  12836. // s1 = np.random.randn(10, 3)
  12837. // t = s0.dot(s1)
  12838. // # now suppose we had the gradient on t from above in the circuit
  12839. // dt = np.random.randn(*t.shape) # same shape as t
  12840. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12841. // ds1 = t.T.dot(dt)
  12842. // tensor.shape [m,p,qq,rr]
  12843. // src0.shape [n,m,q1,r1]
  12844. // src1.shape [n,p,qq,rr]
  12845. // necessary for llama
  12846. if (src0->grad) {
  12847. struct ggml_tensor * s1_tg =
  12848. ggml_out_prod(ctx, // [n,m,qq,rr]
  12849. src1, // [n,p,qq,rr]
  12850. tensor->grad); // [m,p,qq,rr]
  12851. const int64_t qq = s1_tg->ne[2];
  12852. const int64_t rr = s1_tg->ne[3];
  12853. const int64_t q1 = src0->ne[2];
  12854. const int64_t r1 = src0->ne[3];
  12855. const bool ne2_broadcasted = qq > q1;
  12856. const bool ne3_broadcasted = rr > r1;
  12857. if (ne2_broadcasted || ne3_broadcasted) {
  12858. // sum broadcast repetitions of s1_tg into shape of src0
  12859. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12860. }
  12861. src0->grad =
  12862. ggml_add_or_set(ctx,
  12863. src0->grad, // [n,m,q1,r1]
  12864. s1_tg, // [n,m,q1,r1]
  12865. zero_table);
  12866. }
  12867. if (src1->grad) {
  12868. src1->grad =
  12869. ggml_add_or_set(ctx,
  12870. src1->grad, // [n,p,qq,rr]
  12871. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12872. // ggml_cont(ctx, // [m,n,q1,r1]
  12873. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12874. // tensor->grad), // [m,p,qq,rr]
  12875. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12876. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12877. // // and then use ggml_out_prod
  12878. ggml_out_prod(ctx, // [n,p,qq,rr]
  12879. src0, // [n,m,q1,r1]
  12880. ggml_transpose(ctx, // [p,m,qq,rr]
  12881. tensor->grad)), // [m,p,qq,rr]
  12882. zero_table);
  12883. }
  12884. } break;
  12885. case GGML_OP_MUL_MAT_ID:
  12886. {
  12887. GGML_ASSERT(false); // TODO: not implemented
  12888. } break;
  12889. case GGML_OP_OUT_PROD:
  12890. {
  12891. GGML_ASSERT(false); // TODO: not implemented
  12892. } break;
  12893. case GGML_OP_SCALE:
  12894. {
  12895. // necessary for llama
  12896. if (src0->grad) {
  12897. float s;
  12898. memcpy(&s, tensor->op_params, sizeof(float));
  12899. src0->grad =
  12900. ggml_add_or_set(ctx,
  12901. src0->grad,
  12902. ggml_scale_impl(ctx, tensor->grad, s, false),
  12903. zero_table);
  12904. }
  12905. } break;
  12906. case GGML_OP_SET:
  12907. {
  12908. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12909. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12910. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12911. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12912. struct ggml_tensor * tensor_grad_view = NULL;
  12913. if (src0->grad || src1->grad) {
  12914. GGML_ASSERT(src0->type == tensor->type);
  12915. GGML_ASSERT(tensor->grad->type == tensor->type);
  12916. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12917. tensor_grad_view = ggml_view_4d(ctx,
  12918. tensor->grad,
  12919. src1->grad->ne[0],
  12920. src1->grad->ne[1],
  12921. src1->grad->ne[2],
  12922. src1->grad->ne[3],
  12923. nb1, nb2, nb3, offset);
  12924. }
  12925. if (src0->grad) {
  12926. src0->grad = ggml_add_or_set(ctx,
  12927. src0->grad,
  12928. ggml_acc_impl(ctx,
  12929. tensor->grad,
  12930. ggml_neg(ctx, tensor_grad_view),
  12931. nb1, nb2, nb3, offset, false),
  12932. zero_table);
  12933. }
  12934. if (src1->grad) {
  12935. src1->grad =
  12936. ggml_add_or_set(ctx,
  12937. src1->grad,
  12938. ggml_reshape(ctx,
  12939. ggml_cont(ctx, tensor_grad_view),
  12940. src1->grad),
  12941. zero_table);
  12942. }
  12943. } break;
  12944. case GGML_OP_CPY:
  12945. {
  12946. // necessary for llama
  12947. // cpy overwrites value of src1 by src0 and returns view(src1)
  12948. // the overwriting is mathematically equivalent to:
  12949. // tensor = src0 * 1 + src1 * 0
  12950. if (src0->grad) {
  12951. // dsrc0 = dtensor * 1
  12952. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12953. }
  12954. if (src1->grad) {
  12955. // dsrc1 = dtensor * 0 -> noop
  12956. }
  12957. } break;
  12958. case GGML_OP_CONT:
  12959. {
  12960. // same as cpy
  12961. if (src0->grad) {
  12962. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12963. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12964. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12965. }
  12966. } break;
  12967. case GGML_OP_RESHAPE:
  12968. {
  12969. // necessary for llama
  12970. if (src0->grad) {
  12971. src0->grad =
  12972. ggml_add_or_set(ctx, src0->grad,
  12973. ggml_reshape(ctx,
  12974. ggml_is_contiguous(tensor->grad)
  12975. ? tensor->grad
  12976. : ggml_cont(ctx, tensor->grad),
  12977. src0->grad),
  12978. zero_table);
  12979. }
  12980. } break;
  12981. case GGML_OP_VIEW:
  12982. {
  12983. // necessary for llama
  12984. if (src0->grad) {
  12985. size_t offset;
  12986. memcpy(&offset, tensor->op_params, sizeof(offset));
  12987. size_t nb1 = tensor->nb[1];
  12988. size_t nb2 = tensor->nb[2];
  12989. size_t nb3 = tensor->nb[3];
  12990. if (src0->type != src0->grad->type) {
  12991. // gradient is typically F32, but src0 could be other type
  12992. size_t ng = ggml_element_size(src0->grad);
  12993. size_t n0 = ggml_element_size(src0);
  12994. GGML_ASSERT(offset % n0 == 0);
  12995. GGML_ASSERT(nb1 % n0 == 0);
  12996. GGML_ASSERT(nb2 % n0 == 0);
  12997. GGML_ASSERT(nb3 % n0 == 0);
  12998. offset = (offset / n0) * ng;
  12999. nb1 = (nb1 / n0) * ng;
  13000. nb2 = (nb2 / n0) * ng;
  13001. nb3 = (nb3 / n0) * ng;
  13002. }
  13003. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13004. }
  13005. } break;
  13006. case GGML_OP_PERMUTE:
  13007. {
  13008. // necessary for llama
  13009. if (src0->grad) {
  13010. int32_t * axes = (int32_t *) tensor->op_params;
  13011. int axis0 = axes[0] & 0x3;
  13012. int axis1 = axes[1] & 0x3;
  13013. int axis2 = axes[2] & 0x3;
  13014. int axis3 = axes[3] & 0x3;
  13015. int axes_backward[4] = {0,0,0,0};
  13016. axes_backward[axis0] = 0;
  13017. axes_backward[axis1] = 1;
  13018. axes_backward[axis2] = 2;
  13019. axes_backward[axis3] = 3;
  13020. src0->grad =
  13021. ggml_add_or_set(ctx, src0->grad,
  13022. ggml_permute(ctx,
  13023. tensor->grad,
  13024. axes_backward[0],
  13025. axes_backward[1],
  13026. axes_backward[2],
  13027. axes_backward[3]),
  13028. zero_table);
  13029. }
  13030. } break;
  13031. case GGML_OP_TRANSPOSE:
  13032. {
  13033. // necessary for llama
  13034. if (src0->grad) {
  13035. src0->grad =
  13036. ggml_add_or_set(ctx, src0->grad,
  13037. ggml_transpose(ctx, tensor->grad),
  13038. zero_table);
  13039. }
  13040. } break;
  13041. case GGML_OP_GET_ROWS:
  13042. {
  13043. // necessary for llama (only for tokenizer)
  13044. if (src0->grad) {
  13045. src0->grad =
  13046. ggml_add_or_set(ctx, src0->grad,
  13047. // last ggml_get_rows_back argument src0->grad is only
  13048. // necessary to setup correct output shape
  13049. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13050. zero_table);
  13051. }
  13052. if (src1->grad) {
  13053. // noop
  13054. }
  13055. } break;
  13056. case GGML_OP_GET_ROWS_BACK:
  13057. {
  13058. GGML_ASSERT(false); // TODO: not implemented
  13059. } break;
  13060. case GGML_OP_DIAG:
  13061. {
  13062. GGML_ASSERT(false); // TODO: not implemented
  13063. } break;
  13064. case GGML_OP_DIAG_MASK_INF:
  13065. {
  13066. // necessary for llama
  13067. if (src0->grad) {
  13068. const int n_past = ((int32_t *) tensor->op_params)[0];
  13069. src0->grad =
  13070. ggml_add_or_set(ctx, src0->grad,
  13071. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13072. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13073. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13074. zero_table);
  13075. }
  13076. } break;
  13077. case GGML_OP_DIAG_MASK_ZERO:
  13078. {
  13079. // necessary for llama
  13080. if (src0->grad) {
  13081. const int n_past = ((int32_t *) tensor->op_params)[0];
  13082. src0->grad =
  13083. ggml_add_or_set(ctx, src0->grad,
  13084. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13085. zero_table);
  13086. }
  13087. } break;
  13088. case GGML_OP_SOFT_MAX:
  13089. {
  13090. // necessary for llama
  13091. if (src0->grad) {
  13092. src0->grad =
  13093. ggml_add_or_set(ctx, src0->grad,
  13094. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13095. zero_table);
  13096. }
  13097. } break;
  13098. case GGML_OP_SOFT_MAX_BACK:
  13099. {
  13100. GGML_ASSERT(false); // TODO: not implemented
  13101. } break;
  13102. case GGML_OP_ROPE:
  13103. {
  13104. // necessary for llama
  13105. if (src0->grad) {
  13106. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13107. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13108. const int mode = ((int32_t *) tensor->op_params)[2];
  13109. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13110. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13111. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13112. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13113. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13114. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13115. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13116. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13117. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13118. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13119. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13120. src0->grad = ggml_add_or_set(ctx,
  13121. src0->grad,
  13122. ggml_rope_back(ctx,
  13123. tensor->grad,
  13124. src1,
  13125. n_dims,
  13126. mode,
  13127. n_ctx,
  13128. n_orig_ctx,
  13129. freq_base,
  13130. freq_scale,
  13131. ext_factor,
  13132. attn_factor,
  13133. beta_fast,
  13134. beta_slow,
  13135. xpos_base,
  13136. xpos_down),
  13137. zero_table);
  13138. }
  13139. } break;
  13140. case GGML_OP_ROPE_BACK:
  13141. {
  13142. if (src0->grad) {
  13143. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13144. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13145. const int mode = ((int32_t *) tensor->op_params)[2];
  13146. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13147. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13148. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13149. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13150. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13151. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13152. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13153. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13154. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13155. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13156. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13157. src0->grad = ggml_add_or_set(ctx,
  13158. src0->grad,
  13159. ggml_rope_impl(ctx,
  13160. tensor->grad,
  13161. src1,
  13162. n_dims,
  13163. mode,
  13164. n_ctx,
  13165. n_orig_ctx,
  13166. freq_base,
  13167. freq_scale,
  13168. ext_factor,
  13169. attn_factor,
  13170. beta_fast,
  13171. beta_slow,
  13172. xpos_base,
  13173. xpos_down,
  13174. false),
  13175. zero_table);
  13176. }
  13177. } break;
  13178. case GGML_OP_ALIBI:
  13179. {
  13180. GGML_ASSERT(false); // TODO: not implemented
  13181. } break;
  13182. case GGML_OP_CLAMP:
  13183. {
  13184. GGML_ASSERT(false); // TODO: not implemented
  13185. } break;
  13186. case GGML_OP_CONV_TRANSPOSE_1D:
  13187. {
  13188. GGML_ASSERT(false); // TODO: not implemented
  13189. } break;
  13190. case GGML_OP_IM2COL:
  13191. {
  13192. GGML_ASSERT(false); // TODO: not implemented
  13193. } break;
  13194. case GGML_OP_CONV_TRANSPOSE_2D:
  13195. {
  13196. GGML_ASSERT(false); // TODO: not implemented
  13197. } break;
  13198. case GGML_OP_POOL_1D:
  13199. {
  13200. GGML_ASSERT(false); // TODO: not implemented
  13201. } break;
  13202. case GGML_OP_POOL_2D:
  13203. {
  13204. GGML_ASSERT(false); // TODO: not implemented
  13205. } break;
  13206. case GGML_OP_UPSCALE:
  13207. {
  13208. GGML_ASSERT(false); // TODO: not implemented
  13209. } break;
  13210. case GGML_OP_PAD:
  13211. {
  13212. GGML_ASSERT(false); // TODO: not implemented
  13213. } break;
  13214. case GGML_OP_ARGSORT:
  13215. {
  13216. GGML_ASSERT(false); // TODO: not implemented
  13217. } break;
  13218. case GGML_OP_LEAKY_RELU:
  13219. {
  13220. GGML_ASSERT(false); // TODO: not implemented
  13221. } break;
  13222. case GGML_OP_FLASH_ATTN:
  13223. {
  13224. struct ggml_tensor * flash_grad = NULL;
  13225. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13226. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13227. GGML_ASSERT(t == 0 || t == 1);
  13228. bool masked = t != 0;
  13229. flash_grad =
  13230. ggml_flash_attn_back(ctx,
  13231. src0,
  13232. src1,
  13233. tensor->src[2],
  13234. tensor->grad,
  13235. masked);
  13236. }
  13237. struct ggml_tensor * src2 = tensor->src[2];
  13238. const int64_t elem_q = ggml_nelements(src0);
  13239. const int64_t elem_k = ggml_nelements(src1);
  13240. const int64_t elem_v = ggml_nelements(src2);
  13241. enum ggml_type result_type = flash_grad->type;
  13242. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13243. const size_t tsize = ggml_type_size(result_type);
  13244. const size_t offs_q = 0;
  13245. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13246. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13247. if (src0->grad) {
  13248. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13249. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13250. src0->grad = ggml_add_or_set(ctx,
  13251. src0->grad,
  13252. grad_q,
  13253. zero_table);
  13254. }
  13255. if (src1->grad) {
  13256. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13257. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13258. src1->grad = ggml_add_or_set(ctx,
  13259. src1->grad,
  13260. grad_k,
  13261. zero_table);
  13262. }
  13263. if (src2->grad) {
  13264. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13265. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13266. src2->grad = ggml_add_or_set(ctx,
  13267. src2->grad,
  13268. grad_v,
  13269. zero_table);
  13270. }
  13271. } break;
  13272. case GGML_OP_FLASH_FF:
  13273. {
  13274. GGML_ASSERT(false); // not supported
  13275. } break;
  13276. case GGML_OP_FLASH_ATTN_BACK:
  13277. {
  13278. GGML_ASSERT(false); // not supported
  13279. } break;
  13280. case GGML_OP_WIN_PART:
  13281. case GGML_OP_WIN_UNPART:
  13282. case GGML_OP_UNARY:
  13283. {
  13284. switch (ggml_get_unary_op(tensor)) {
  13285. case GGML_UNARY_OP_ABS:
  13286. {
  13287. if (src0->grad) {
  13288. src0->grad =
  13289. ggml_add_or_set(ctx,
  13290. src0->grad,
  13291. ggml_mul(ctx,
  13292. ggml_sgn(ctx, src0),
  13293. tensor->grad),
  13294. zero_table);
  13295. }
  13296. } break;
  13297. case GGML_UNARY_OP_SGN:
  13298. {
  13299. if (src0->grad) {
  13300. // noop
  13301. }
  13302. } break;
  13303. case GGML_UNARY_OP_NEG:
  13304. {
  13305. if (src0->grad) {
  13306. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13307. }
  13308. } break;
  13309. case GGML_UNARY_OP_STEP:
  13310. {
  13311. if (src0->grad) {
  13312. // noop
  13313. }
  13314. } break;
  13315. case GGML_UNARY_OP_TANH:
  13316. {
  13317. GGML_ASSERT(false); // TODO: not implemented
  13318. } break;
  13319. case GGML_UNARY_OP_ELU:
  13320. {
  13321. GGML_ASSERT(false); // TODO: not implemented
  13322. } break;
  13323. case GGML_UNARY_OP_RELU:
  13324. {
  13325. if (src0->grad) {
  13326. src0->grad = ggml_add_or_set(ctx,
  13327. src0->grad,
  13328. ggml_mul(ctx,
  13329. ggml_step(ctx, src0),
  13330. tensor->grad),
  13331. zero_table);
  13332. }
  13333. } break;
  13334. case GGML_UNARY_OP_GELU:
  13335. {
  13336. GGML_ASSERT(false); // TODO: not implemented
  13337. } break;
  13338. case GGML_UNARY_OP_GELU_QUICK:
  13339. {
  13340. GGML_ASSERT(false); // TODO: not implemented
  13341. } break;
  13342. case GGML_UNARY_OP_SILU:
  13343. {
  13344. // necessary for llama
  13345. if (src0->grad) {
  13346. src0->grad = ggml_add_or_set(ctx,
  13347. src0->grad,
  13348. ggml_silu_back(ctx, src0, tensor->grad),
  13349. zero_table);
  13350. }
  13351. } break;
  13352. default:
  13353. GGML_ASSERT(false);
  13354. }
  13355. } break;
  13356. case GGML_OP_GET_REL_POS:
  13357. case GGML_OP_ADD_REL_POS:
  13358. case GGML_OP_MAP_UNARY:
  13359. case GGML_OP_MAP_BINARY:
  13360. case GGML_OP_MAP_CUSTOM1_F32:
  13361. case GGML_OP_MAP_CUSTOM2_F32:
  13362. case GGML_OP_MAP_CUSTOM3_F32:
  13363. case GGML_OP_MAP_CUSTOM1:
  13364. case GGML_OP_MAP_CUSTOM2:
  13365. case GGML_OP_MAP_CUSTOM3:
  13366. {
  13367. GGML_ASSERT(false); // not supported
  13368. } break;
  13369. case GGML_OP_CROSS_ENTROPY_LOSS:
  13370. {
  13371. if (src0->grad) {
  13372. src0->grad = ggml_add_or_set(ctx,
  13373. src0->grad,
  13374. ggml_cross_entropy_loss_back(ctx,
  13375. src0,
  13376. src1,
  13377. tensor->grad),
  13378. zero_table);
  13379. }
  13380. } break;
  13381. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13382. {
  13383. GGML_ASSERT(false); // not supported
  13384. } break;
  13385. case GGML_OP_NONE:
  13386. {
  13387. // nop
  13388. } break;
  13389. case GGML_OP_COUNT:
  13390. {
  13391. GGML_ASSERT(false);
  13392. } break;
  13393. }
  13394. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13395. if (tensor->src[i] && tensor->src[i]->grad) {
  13396. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13397. }
  13398. }
  13399. }
  13400. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13401. if (node->grad == NULL) {
  13402. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13403. // it can also happen during forward pass, if the user performs computations with constants
  13404. if (node->op != GGML_OP_NONE) {
  13405. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13406. }
  13407. }
  13408. // check if already visited
  13409. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13410. return;
  13411. }
  13412. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13413. const int k =
  13414. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13415. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13416. /* unknown order, just fall back to using i*/ i;
  13417. if (node->src[k]) {
  13418. ggml_visit_parents(cgraph, node->src[k]);
  13419. }
  13420. }
  13421. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13422. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13423. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13424. if (strlen(node->name) == 0) {
  13425. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13426. }
  13427. cgraph->leafs[cgraph->n_leafs] = node;
  13428. cgraph->n_leafs++;
  13429. } else {
  13430. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13431. if (strlen(node->name) == 0) {
  13432. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13433. }
  13434. cgraph->nodes[cgraph->n_nodes] = node;
  13435. if (cgraph->grads) {
  13436. cgraph->grads[cgraph->n_nodes] = node->grad;
  13437. }
  13438. cgraph->n_nodes++;
  13439. }
  13440. }
  13441. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13442. if (!expand) {
  13443. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13444. ggml_graph_clear(cgraph);
  13445. }
  13446. const int n0 = cgraph->n_nodes;
  13447. UNUSED(n0);
  13448. ggml_visit_parents(cgraph, tensor);
  13449. const int n_new = cgraph->n_nodes - n0;
  13450. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13451. if (n_new > 0) {
  13452. // the last added node should always be starting point
  13453. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13454. }
  13455. }
  13456. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13457. ggml_build_forward_impl(cgraph, tensor, true);
  13458. }
  13459. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13460. GGML_ASSERT(gf->n_nodes > 0);
  13461. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13462. if (keep) {
  13463. for (int i = 0; i < gf->n_nodes; i++) {
  13464. struct ggml_tensor * node = gf->nodes[i];
  13465. if (node->grad) {
  13466. node->grad = ggml_dup_tensor(ctx, node);
  13467. gf->grads[i] = node->grad;
  13468. }
  13469. }
  13470. }
  13471. // remember original gradients which start with zero values
  13472. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13473. for (int i = 0; i < gf->n_nodes; i++) {
  13474. if (gf->grads[i]) {
  13475. ggml_hash_insert(zero_table, gf->grads[i]);
  13476. }
  13477. }
  13478. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13479. struct ggml_tensor * node = gf->nodes[i];
  13480. // inplace operations to add gradients are not created by ggml_compute_backward
  13481. // use allocator to automatically make inplace operations
  13482. if (node->grad) {
  13483. ggml_compute_backward(ctx, node, zero_table);
  13484. }
  13485. }
  13486. for (int i = 0; i < gf->n_nodes; i++) {
  13487. struct ggml_tensor * node = gf->nodes[i];
  13488. if (node->is_param) {
  13489. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13490. ggml_build_forward_expand(gb, node->grad);
  13491. }
  13492. }
  13493. ggml_hash_set_free(zero_table);
  13494. }
  13495. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13496. size_t nbytes = sizeof(struct ggml_cgraph);
  13497. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13498. if (grads) {
  13499. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13500. }
  13501. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13502. return nbytes;
  13503. }
  13504. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13505. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13506. }
  13507. size_t ggml_graph_overhead(void) {
  13508. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13509. }
  13510. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13511. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13512. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13513. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13514. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13515. size_t hash_size = ggml_hash_size(size * 2);
  13516. struct ggml_tensor ** nodes_ptr = data_start;
  13517. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13518. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13519. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13520. // check that we allocated the correct amount of memory
  13521. assert(obj_size == (size_t) (
  13522. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13523. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13524. *cgraph = (struct ggml_cgraph) {
  13525. /*.size =*/ size,
  13526. /*.n_nodes =*/ 0,
  13527. /*.n_leafs =*/ 0,
  13528. /*.nodes =*/ nodes_ptr,
  13529. /*.grads =*/ grads_ptr,
  13530. /*.leafs =*/ leafs_ptr,
  13531. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13532. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13533. /*.perf_runs =*/ 0,
  13534. /*.perf_cycles =*/ 0,
  13535. /*.perf_time_us =*/ 0,
  13536. };
  13537. return cgraph;
  13538. }
  13539. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13540. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13541. }
  13542. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13543. struct ggml_cgraph cgraph = {
  13544. /*.size =*/ 0,
  13545. /*.n_nodes =*/ i1 - i0,
  13546. /*.n_leafs =*/ 0,
  13547. /*.nodes =*/ cgraph0->nodes + i0,
  13548. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13549. /*.leafs =*/ NULL,
  13550. /*.hash_table =*/ { 0, NULL },
  13551. /*.order =*/ cgraph0->order,
  13552. /*.perf_runs =*/ 0,
  13553. /*.perf_cycles =*/ 0,
  13554. /*.perf_time_us =*/ 0,
  13555. };
  13556. return cgraph;
  13557. }
  13558. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13559. GGML_ASSERT(dst->size >= src->n_leafs);
  13560. GGML_ASSERT(dst->size >= src->n_nodes);
  13561. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13562. dst->n_leafs = src->n_leafs;
  13563. dst->n_nodes = src->n_nodes;
  13564. dst->order = src->order;
  13565. for (int i = 0; i < src->n_leafs; ++i) {
  13566. dst->leafs[i] = src->leafs[i];
  13567. }
  13568. for (int i = 0; i < src->n_nodes; ++i) {
  13569. dst->nodes[i] = src->nodes[i];
  13570. }
  13571. if (src->grads) {
  13572. GGML_ASSERT(dst->grads != NULL);
  13573. for (int i = 0; i < src->n_nodes; ++i) {
  13574. dst->grads[i] = src->grads[i];
  13575. }
  13576. }
  13577. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13578. if (src->visited_hash_table.keys[i]) {
  13579. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13580. }
  13581. }
  13582. }
  13583. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13584. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13585. ggml_graph_cpy(cgraph, result);
  13586. return result;
  13587. }
  13588. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13589. GGML_ASSERT(cgraph->grads != NULL);
  13590. for (int i = 0; i < cgraph->n_nodes; i++) {
  13591. struct ggml_tensor * grad = cgraph->grads[i];
  13592. if (grad) {
  13593. ggml_set_zero(grad);
  13594. }
  13595. }
  13596. }
  13597. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13598. cgraph->n_leafs = 0;
  13599. cgraph->n_nodes = 0;
  13600. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13601. }
  13602. //
  13603. // thread data
  13604. //
  13605. // synchronization is done via busy loops
  13606. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13607. //
  13608. #ifdef __APPLE__
  13609. //#include <os/lock.h>
  13610. //
  13611. //typedef os_unfair_lock ggml_lock_t;
  13612. //
  13613. //#define ggml_lock_init(x) UNUSED(x)
  13614. //#define ggml_lock_destroy(x) UNUSED(x)
  13615. //#define ggml_lock_lock os_unfair_lock_lock
  13616. //#define ggml_lock_unlock os_unfair_lock_unlock
  13617. //
  13618. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13619. typedef int ggml_lock_t;
  13620. #define ggml_lock_init(x) UNUSED(x)
  13621. #define ggml_lock_destroy(x) UNUSED(x)
  13622. #define ggml_lock_lock(x) UNUSED(x)
  13623. #define ggml_lock_unlock(x) UNUSED(x)
  13624. #define GGML_LOCK_INITIALIZER 0
  13625. typedef pthread_t ggml_thread_t;
  13626. #define ggml_thread_create pthread_create
  13627. #define ggml_thread_join pthread_join
  13628. #else
  13629. //typedef pthread_spinlock_t ggml_lock_t;
  13630. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13631. //#define ggml_lock_destroy pthread_spin_destroy
  13632. //#define ggml_lock_lock pthread_spin_lock
  13633. //#define ggml_lock_unlock pthread_spin_unlock
  13634. typedef int ggml_lock_t;
  13635. #define ggml_lock_init(x) UNUSED(x)
  13636. #define ggml_lock_destroy(x) UNUSED(x)
  13637. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13638. #define ggml_lock_lock(x) _mm_pause()
  13639. #else
  13640. #define ggml_lock_lock(x) UNUSED(x)
  13641. #endif
  13642. #define ggml_lock_unlock(x) UNUSED(x)
  13643. #define GGML_LOCK_INITIALIZER 0
  13644. typedef pthread_t ggml_thread_t;
  13645. #define ggml_thread_create pthread_create
  13646. #define ggml_thread_join pthread_join
  13647. #endif
  13648. // Android's libc implementation "bionic" does not support setting affinity
  13649. #if defined(__linux__) && !defined(__BIONIC__)
  13650. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13651. if (!ggml_is_numa()) {
  13652. return;
  13653. }
  13654. // run thread on node_num thread_n / (threads per node)
  13655. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13656. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13657. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13658. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13659. CPU_ZERO_S(setsize, cpus);
  13660. for (size_t i = 0; i < node->n_cpus; ++i) {
  13661. CPU_SET_S(node->cpus[i], setsize, cpus);
  13662. }
  13663. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13664. if (rv) {
  13665. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13666. strerror(rv));
  13667. }
  13668. CPU_FREE(cpus);
  13669. }
  13670. static void clear_numa_thread_affinity(void) {
  13671. if (!ggml_is_numa()) {
  13672. return;
  13673. }
  13674. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13675. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13676. CPU_ZERO_S(setsize, cpus);
  13677. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13678. CPU_SET_S(i, setsize, cpus);
  13679. }
  13680. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13681. if (rv) {
  13682. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13683. strerror(rv));
  13684. }
  13685. CPU_FREE(cpus);
  13686. }
  13687. #else
  13688. // TODO: Windows etc.
  13689. // (the linux implementation may also work on BSD, someone should test)
  13690. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13691. static void clear_numa_thread_affinity(void) {}
  13692. #endif
  13693. struct ggml_compute_state_shared {
  13694. const struct ggml_cgraph * cgraph;
  13695. const struct ggml_cplan * cplan;
  13696. int64_t perf_node_start_cycles;
  13697. int64_t perf_node_start_time_us;
  13698. const int n_threads;
  13699. // synchronization primitives
  13700. atomic_int n_active; // num active threads
  13701. atomic_int node_n; // active graph node
  13702. atomic_int node_task; // active graph node task phase
  13703. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13704. void * abort_callback_data;
  13705. };
  13706. struct ggml_compute_state {
  13707. ggml_thread_t thrd;
  13708. int ith;
  13709. struct ggml_compute_state_shared * shared;
  13710. };
  13711. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13712. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13713. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13714. node->perf_runs++;
  13715. node->perf_cycles += cycles_cur;
  13716. node->perf_time_us += time_us_cur;
  13717. }
  13718. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13719. int n_tasks = 0;
  13720. switch (node->op) {
  13721. case GGML_OP_CPY:
  13722. case GGML_OP_DUP:
  13723. case GGML_OP_ADD:
  13724. case GGML_OP_ADD1:
  13725. case GGML_OP_ACC:
  13726. {
  13727. n_tasks = n_threads;
  13728. } break;
  13729. case GGML_OP_SUB:
  13730. case GGML_OP_SQR:
  13731. case GGML_OP_SQRT:
  13732. case GGML_OP_LOG:
  13733. case GGML_OP_SUM:
  13734. case GGML_OP_SUM_ROWS:
  13735. case GGML_OP_MEAN:
  13736. case GGML_OP_ARGMAX:
  13737. case GGML_OP_REPEAT:
  13738. case GGML_OP_REPEAT_BACK:
  13739. case GGML_OP_LEAKY_RELU:
  13740. {
  13741. n_tasks = 1;
  13742. } break;
  13743. case GGML_OP_UNARY:
  13744. switch (ggml_get_unary_op(node)) {
  13745. case GGML_UNARY_OP_ABS:
  13746. case GGML_UNARY_OP_SGN:
  13747. case GGML_UNARY_OP_NEG:
  13748. case GGML_UNARY_OP_STEP:
  13749. case GGML_UNARY_OP_TANH:
  13750. case GGML_UNARY_OP_ELU:
  13751. case GGML_UNARY_OP_RELU:
  13752. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13753. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13754. {
  13755. n_tasks = 1;
  13756. } break;
  13757. case GGML_UNARY_OP_GELU:
  13758. case GGML_UNARY_OP_GELU_QUICK:
  13759. case GGML_UNARY_OP_SILU:
  13760. {
  13761. n_tasks = n_threads;
  13762. } break;
  13763. default:
  13764. GGML_ASSERT(false);
  13765. }
  13766. break;
  13767. case GGML_OP_SILU_BACK:
  13768. case GGML_OP_MUL:
  13769. case GGML_OP_DIV:
  13770. case GGML_OP_NORM:
  13771. case GGML_OP_RMS_NORM:
  13772. case GGML_OP_RMS_NORM_BACK:
  13773. case GGML_OP_GROUP_NORM:
  13774. case GGML_OP_CONCAT:
  13775. {
  13776. n_tasks = n_threads;
  13777. } break;
  13778. case GGML_OP_MUL_MAT:
  13779. {
  13780. n_tasks = n_threads;
  13781. // TODO: use different scheduling for different matrix sizes
  13782. //const int nr0 = ggml_nrows(node->src[0]);
  13783. //const int nr1 = ggml_nrows(node->src[1]);
  13784. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13785. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13786. } break;
  13787. case GGML_OP_MUL_MAT_ID:
  13788. {
  13789. n_tasks = n_threads;
  13790. } break;
  13791. case GGML_OP_OUT_PROD:
  13792. {
  13793. n_tasks = n_threads;
  13794. } break;
  13795. case GGML_OP_SCALE:
  13796. case GGML_OP_SET:
  13797. case GGML_OP_CONT:
  13798. case GGML_OP_RESHAPE:
  13799. case GGML_OP_VIEW:
  13800. case GGML_OP_PERMUTE:
  13801. case GGML_OP_TRANSPOSE:
  13802. case GGML_OP_GET_ROWS:
  13803. case GGML_OP_GET_ROWS_BACK:
  13804. case GGML_OP_DIAG:
  13805. {
  13806. n_tasks = 1;
  13807. } break;
  13808. case GGML_OP_DIAG_MASK_ZERO:
  13809. case GGML_OP_DIAG_MASK_INF:
  13810. case GGML_OP_SOFT_MAX_BACK:
  13811. case GGML_OP_ROPE:
  13812. case GGML_OP_ROPE_BACK:
  13813. case GGML_OP_ADD_REL_POS:
  13814. {
  13815. n_tasks = n_threads;
  13816. } break;
  13817. case GGML_OP_ALIBI:
  13818. {
  13819. n_tasks = 1; //TODO
  13820. } break;
  13821. case GGML_OP_CLAMP:
  13822. {
  13823. n_tasks = 1; //TODO
  13824. } break;
  13825. case GGML_OP_SOFT_MAX:
  13826. {
  13827. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  13828. } break;
  13829. case GGML_OP_CONV_TRANSPOSE_1D:
  13830. {
  13831. n_tasks = n_threads;
  13832. } break;
  13833. case GGML_OP_IM2COL:
  13834. {
  13835. n_tasks = n_threads;
  13836. } break;
  13837. case GGML_OP_CONV_TRANSPOSE_2D:
  13838. {
  13839. n_tasks = n_threads;
  13840. } break;
  13841. case GGML_OP_POOL_1D:
  13842. case GGML_OP_POOL_2D:
  13843. {
  13844. n_tasks = 1;
  13845. } break;
  13846. case GGML_OP_UPSCALE:
  13847. {
  13848. n_tasks = n_threads;
  13849. } break;
  13850. case GGML_OP_PAD:
  13851. {
  13852. n_tasks = n_threads;
  13853. } break;
  13854. case GGML_OP_ARGSORT:
  13855. {
  13856. n_tasks = n_threads;
  13857. } break;
  13858. case GGML_OP_FLASH_ATTN:
  13859. {
  13860. n_tasks = n_threads;
  13861. } break;
  13862. case GGML_OP_FLASH_FF:
  13863. {
  13864. n_tasks = n_threads;
  13865. } break;
  13866. case GGML_OP_FLASH_ATTN_BACK:
  13867. {
  13868. n_tasks = n_threads;
  13869. } break;
  13870. case GGML_OP_WIN_PART:
  13871. case GGML_OP_WIN_UNPART:
  13872. case GGML_OP_GET_REL_POS:
  13873. case GGML_OP_MAP_UNARY:
  13874. case GGML_OP_MAP_BINARY:
  13875. case GGML_OP_MAP_CUSTOM1_F32:
  13876. case GGML_OP_MAP_CUSTOM2_F32:
  13877. case GGML_OP_MAP_CUSTOM3_F32:
  13878. {
  13879. n_tasks = 1;
  13880. } break;
  13881. case GGML_OP_MAP_CUSTOM1:
  13882. {
  13883. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13884. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13885. n_tasks = n_threads;
  13886. } else {
  13887. n_tasks = MIN(p->n_tasks, n_threads);
  13888. }
  13889. } break;
  13890. case GGML_OP_MAP_CUSTOM2:
  13891. {
  13892. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13893. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13894. n_tasks = n_threads;
  13895. } else {
  13896. n_tasks = MIN(p->n_tasks, n_threads);
  13897. }
  13898. } break;
  13899. case GGML_OP_MAP_CUSTOM3:
  13900. {
  13901. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13902. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13903. n_tasks = n_threads;
  13904. } else {
  13905. n_tasks = MIN(p->n_tasks, n_threads);
  13906. }
  13907. } break;
  13908. case GGML_OP_CROSS_ENTROPY_LOSS:
  13909. {
  13910. n_tasks = n_threads;
  13911. } break;
  13912. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13913. {
  13914. n_tasks = n_threads;
  13915. } break;
  13916. case GGML_OP_NONE:
  13917. {
  13918. n_tasks = 1;
  13919. } break;
  13920. case GGML_OP_COUNT:
  13921. {
  13922. GGML_ASSERT(false);
  13923. } break;
  13924. default:
  13925. {
  13926. fprintf(stderr, "%s: op not implemented: ", __func__);
  13927. if (node->op < GGML_OP_COUNT) {
  13928. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13929. } else {
  13930. fprintf(stderr, "%d\n", node->op);
  13931. }
  13932. GGML_ASSERT(false);
  13933. } break;
  13934. }
  13935. assert(n_tasks > 0);
  13936. return n_tasks;
  13937. }
  13938. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  13939. // wait for other threads to finish
  13940. const int last_node_n = * node_n;
  13941. while (true) {
  13942. if (do_yield) {
  13943. sched_yield();
  13944. }
  13945. * node_n = atomic_load(&state->shared->node_n);
  13946. if (* node_n != last_node_n) break;
  13947. }
  13948. }
  13949. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  13950. // wait for other threads to finish
  13951. const int last_task_phase = * task_phase;
  13952. while (true) {
  13953. if (do_yield) {
  13954. sched_yield();
  13955. }
  13956. * task_phase = atomic_load(&state->shared->node_task);
  13957. if (* task_phase != last_task_phase) break;
  13958. }
  13959. }
  13960. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13961. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13962. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13963. const struct ggml_cplan * cplan = state->shared->cplan;
  13964. const int n_threads = state->shared->n_threads;
  13965. set_numa_thread_affinity(state->ith, n_threads);
  13966. int node_n = -1;
  13967. int task_phase = GGML_TASK_FINALIZE;
  13968. while (true) {
  13969. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13970. state->shared->node_n += 1;
  13971. return (thread_ret_t) GGML_EXIT_ABORTED;
  13972. }
  13973. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13974. // all other threads are finished and spinning
  13975. // do finalize and init here so we don't have synchronize again
  13976. struct ggml_compute_params params = {
  13977. /*.type =*/ GGML_TASK_FINALIZE,
  13978. /*.ith =*/ 0,
  13979. /*.nth =*/ 0,
  13980. /*.wsize =*/ cplan->work_size,
  13981. /*.wdata =*/ cplan->work_data,
  13982. };
  13983. if (node_n != -1) {
  13984. /* FINALIZE */
  13985. struct ggml_tensor * node = cgraph->nodes[node_n];
  13986. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13987. params.nth = ggml_get_n_tasks(node, n_threads);
  13988. ggml_compute_forward(&params, node);
  13989. }
  13990. ggml_graph_compute_perf_stats_node(node, state->shared);
  13991. }
  13992. // distribute new work or execute it direct if 1T
  13993. while (++node_n < cgraph->n_nodes) {
  13994. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13995. struct ggml_tensor * node = cgraph->nodes[node_n];
  13996. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13997. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13998. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13999. params.nth = n_tasks;
  14000. if (n_tasks == 1) {
  14001. /* INIT */
  14002. if (GGML_OP_HAS_INIT[node->op]) {
  14003. params.type = GGML_TASK_INIT;
  14004. ggml_compute_forward(&params, node);
  14005. }
  14006. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14007. // they do something more efficient than spinning (?)
  14008. params.type = GGML_TASK_COMPUTE;
  14009. ggml_compute_forward(&params, node);
  14010. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14011. params.type = GGML_TASK_FINALIZE;
  14012. ggml_compute_forward(&params, node);
  14013. }
  14014. ggml_graph_compute_perf_stats_node(node, state->shared);
  14015. } else {
  14016. break;
  14017. }
  14018. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14019. break;
  14020. }
  14021. }
  14022. task_phase = GGML_TASK_INIT;
  14023. atomic_store(&state->shared->n_active, n_threads);
  14024. atomic_store(&state->shared->node_n, node_n);
  14025. atomic_store(&state->shared->node_task, task_phase);
  14026. } else {
  14027. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14028. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14029. }
  14030. // check if we should stop
  14031. if (node_n >= cgraph->n_nodes) break;
  14032. /* INIT & COMPUTE */
  14033. struct ggml_tensor * node = cgraph->nodes[node_n];
  14034. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14035. struct ggml_compute_params params = {
  14036. /*.type =*/ GGML_TASK_INIT,
  14037. /*.ith =*/ state->ith,
  14038. /*.nth =*/ n_tasks,
  14039. /*.wsize =*/ cplan->work_size,
  14040. /*.wdata =*/ cplan->work_data,
  14041. };
  14042. if (state->ith < n_tasks) {
  14043. if (GGML_OP_HAS_INIT[node->op]) {
  14044. ggml_compute_forward(&params, node);
  14045. }
  14046. }
  14047. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14048. task_phase = GGML_TASK_COMPUTE;
  14049. atomic_store(&state->shared->n_active, n_threads);
  14050. atomic_store(&state->shared->node_task, task_phase);
  14051. }
  14052. else {
  14053. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14054. // depending on the workload and the operating system.
  14055. // since it is not clear what is the best approach, it should potentially become user-configurable
  14056. // ref: https://github.com/ggerganov/ggml/issues/291
  14057. // UPD: adding the do_yield flag seems to resolve the issue universally
  14058. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14059. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14060. }
  14061. if (state->ith < n_tasks) {
  14062. params.type = GGML_TASK_COMPUTE;
  14063. ggml_compute_forward(&params, node);
  14064. }
  14065. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14066. task_phase = GGML_TASK_FINALIZE;
  14067. atomic_store(&state->shared->n_active, n_threads);
  14068. atomic_store(&state->shared->node_task, task_phase);
  14069. }
  14070. else {
  14071. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14072. }
  14073. }
  14074. return GGML_EXIT_SUCCESS;
  14075. }
  14076. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14077. if (n_threads <= 0) {
  14078. n_threads = GGML_DEFAULT_N_THREADS;
  14079. }
  14080. size_t work_size = 0;
  14081. struct ggml_cplan cplan;
  14082. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14083. // thread scheduling for the different operations + work buffer size estimation
  14084. for (int i = 0; i < cgraph->n_nodes; i++) {
  14085. struct ggml_tensor * node = cgraph->nodes[i];
  14086. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14087. size_t cur = 0;
  14088. switch (node->op) {
  14089. case GGML_OP_CPY:
  14090. case GGML_OP_DUP:
  14091. {
  14092. if (ggml_is_quantized(node->type)) {
  14093. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14094. }
  14095. } break;
  14096. case GGML_OP_ADD:
  14097. case GGML_OP_ADD1:
  14098. {
  14099. if (ggml_is_quantized(node->src[0]->type)) {
  14100. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14101. }
  14102. } break;
  14103. case GGML_OP_ACC:
  14104. {
  14105. if (ggml_is_quantized(node->src[0]->type)) {
  14106. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14107. }
  14108. } break;
  14109. case GGML_OP_MUL_MAT:
  14110. {
  14111. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14112. #if defined(GGML_USE_CLBLAST)
  14113. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14114. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14115. } else
  14116. #endif
  14117. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14118. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14119. if (node->src[0]->type != GGML_TYPE_F32) {
  14120. // here we need memory for fully dequantized matrix from src0
  14121. // take into account that src0 can be broadcasted into src1[2,3]
  14122. cur = ggml_type_size(GGML_TYPE_F32)
  14123. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14124. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14125. }
  14126. } else
  14127. #endif
  14128. if (node->src[1]->type != vec_dot_type) {
  14129. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14130. }
  14131. } break;
  14132. case GGML_OP_MUL_MAT_ID:
  14133. {
  14134. cur = 0;
  14135. const struct ggml_tensor * src0 = node->src[2];
  14136. const struct ggml_tensor * src1 = node->src[1];
  14137. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14138. if (src1->type != vec_dot_type) {
  14139. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14140. }
  14141. const int n_as = ggml_get_op_params_i32(node, 1);
  14142. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14143. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14144. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14145. } break;
  14146. case GGML_OP_OUT_PROD:
  14147. {
  14148. if (ggml_is_quantized(node->src[0]->type)) {
  14149. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14150. }
  14151. } break;
  14152. case GGML_OP_SOFT_MAX:
  14153. case GGML_OP_ROPE:
  14154. {
  14155. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14156. } break;
  14157. case GGML_OP_CONV_TRANSPOSE_1D:
  14158. {
  14159. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14160. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14161. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14162. const int64_t ne00 = node->src[0]->ne[0]; // K
  14163. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14164. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14165. const int64_t ne10 = node->src[1]->ne[0]; // L
  14166. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14167. if (node->src[0]->type == GGML_TYPE_F16 &&
  14168. node->src[1]->type == GGML_TYPE_F32) {
  14169. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14170. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14171. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14172. node->src[1]->type == GGML_TYPE_F32) {
  14173. cur += sizeof(float)*ne00*ne01*ne02;
  14174. cur += sizeof(float)*ne10*ne11;
  14175. } else {
  14176. GGML_ASSERT(false);
  14177. }
  14178. } break;
  14179. case GGML_OP_CONV_TRANSPOSE_2D:
  14180. {
  14181. const int64_t ne00 = node->src[0]->ne[0]; // W
  14182. const int64_t ne01 = node->src[0]->ne[1]; // H
  14183. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14184. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14185. const int64_t ne10 = node->src[1]->ne[0]; // W
  14186. const int64_t ne11 = node->src[1]->ne[1]; // H
  14187. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14188. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14189. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14190. } break;
  14191. case GGML_OP_FLASH_ATTN:
  14192. {
  14193. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14194. if (node->src[1]->type == GGML_TYPE_F32) {
  14195. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14196. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14197. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14198. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14199. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14200. }
  14201. } break;
  14202. case GGML_OP_FLASH_FF:
  14203. {
  14204. if (node->src[1]->type == GGML_TYPE_F32) {
  14205. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14206. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14207. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14208. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14209. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14210. }
  14211. } break;
  14212. case GGML_OP_FLASH_ATTN_BACK:
  14213. {
  14214. const int64_t D = node->src[0]->ne[0];
  14215. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14216. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14217. if (node->src[1]->type == GGML_TYPE_F32) {
  14218. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14219. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14220. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14221. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14222. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14223. }
  14224. } break;
  14225. case GGML_OP_CROSS_ENTROPY_LOSS:
  14226. {
  14227. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14228. } break;
  14229. case GGML_OP_COUNT:
  14230. {
  14231. GGML_ASSERT(false);
  14232. } break;
  14233. default:
  14234. break;
  14235. }
  14236. work_size = MAX(work_size, cur);
  14237. }
  14238. if (work_size > 0) {
  14239. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14240. }
  14241. cplan.n_threads = n_threads;
  14242. cplan.work_size = work_size;
  14243. cplan.work_data = NULL;
  14244. return cplan;
  14245. }
  14246. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14247. {
  14248. GGML_ASSERT(cplan);
  14249. GGML_ASSERT(cplan->n_threads > 0);
  14250. if (cplan->work_size > 0) {
  14251. GGML_ASSERT(cplan->work_data);
  14252. }
  14253. }
  14254. const int n_threads = cplan->n_threads;
  14255. struct ggml_compute_state_shared state_shared = {
  14256. /*.cgraph =*/ cgraph,
  14257. /*.cgraph_plan =*/ cplan,
  14258. /*.perf_node_start_cycles =*/ 0,
  14259. /*.perf_node_start_time_us =*/ 0,
  14260. /*.n_threads =*/ n_threads,
  14261. /*.n_active =*/ n_threads,
  14262. /*.node_n =*/ -1,
  14263. /*.node_task =*/ GGML_TASK_FINALIZE,
  14264. /*.abort_callback =*/ NULL,
  14265. /*.abort_callback_data =*/ NULL,
  14266. };
  14267. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14268. // create thread pool
  14269. if (n_threads > 1) {
  14270. for (int j = 1; j < n_threads; ++j) {
  14271. workers[j] = (struct ggml_compute_state) {
  14272. .thrd = 0,
  14273. .ith = j,
  14274. .shared = &state_shared,
  14275. };
  14276. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14277. GGML_ASSERT(rc == 0);
  14278. UNUSED(rc);
  14279. }
  14280. }
  14281. workers[0].ith = 0;
  14282. workers[0].shared = &state_shared;
  14283. const int64_t perf_start_cycles = ggml_perf_cycles();
  14284. const int64_t perf_start_time_us = ggml_perf_time_us();
  14285. // this is a work thread too
  14286. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14287. // don't leave affinity set on the main thread
  14288. clear_numa_thread_affinity();
  14289. // join or kill thread pool
  14290. if (n_threads > 1) {
  14291. for (int j = 1; j < n_threads; j++) {
  14292. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14293. GGML_ASSERT(rc == 0);
  14294. }
  14295. }
  14296. // performance stats (graph)
  14297. {
  14298. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14299. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14300. cgraph->perf_runs++;
  14301. cgraph->perf_cycles += perf_cycles_cur;
  14302. cgraph->perf_time_us += perf_time_us_cur;
  14303. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14304. __func__, cgraph->perf_runs,
  14305. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14306. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14307. (double) perf_time_us_cur / 1000.0,
  14308. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14309. }
  14310. return compute_status;
  14311. }
  14312. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14313. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14314. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14315. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14316. ggml_graph_compute(cgraph, &cplan);
  14317. }
  14318. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14319. for (int i = 0; i < cgraph->n_leafs; i++) {
  14320. struct ggml_tensor * leaf = cgraph->leafs[i];
  14321. if (strcmp(leaf->name, name) == 0) {
  14322. return leaf;
  14323. }
  14324. }
  14325. for (int i = 0; i < cgraph->n_nodes; i++) {
  14326. struct ggml_tensor * node = cgraph->nodes[i];
  14327. if (strcmp(node->name, name) == 0) {
  14328. return node;
  14329. }
  14330. }
  14331. return NULL;
  14332. }
  14333. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14334. const int64_t * ne = tensor->ne;
  14335. const size_t * nb = tensor->nb;
  14336. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14337. ggml_type_name(tensor->type),
  14338. ggml_op_name (tensor->op),
  14339. ggml_n_dims(tensor),
  14340. ne[0], ne[1], ne[2], ne[3],
  14341. nb[0], nb[1], nb[2], nb[3],
  14342. tensor->data,
  14343. tensor->name);
  14344. }
  14345. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14346. const int64_t * ne = tensor->ne;
  14347. const size_t * nb = tensor->nb;
  14348. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14349. arg,
  14350. ggml_type_name(tensor->type),
  14351. ggml_op_name (tensor->op),
  14352. ggml_n_dims(tensor),
  14353. ne[0], ne[1], ne[2], ne[3],
  14354. nb[0], nb[1], nb[2], nb[3],
  14355. tensor->data,
  14356. tensor->name);
  14357. }
  14358. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14359. uint64_t size_eval = 0;
  14360. // compute size of intermediate results
  14361. // TODO: does not take into account scratch buffers !!!!
  14362. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14363. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14364. }
  14365. // print
  14366. {
  14367. FILE * fout = stdout;
  14368. fprintf(fout, "\n");
  14369. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14370. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14371. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14372. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14373. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14374. // header
  14375. fprintf(fout, "\n");
  14376. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14377. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14378. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14379. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14380. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14381. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14382. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14383. }
  14384. // header
  14385. fprintf(fout, "\n");
  14386. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14387. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14388. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14389. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14390. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14391. if (cgraph->nodes[i]->src[j]) {
  14392. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14393. }
  14394. }
  14395. fprintf(fout, "\n");
  14396. }
  14397. fprintf(fout, "\n");
  14398. }
  14399. // write binary data
  14400. {
  14401. FILE * fout = fopen(fname, "wb");
  14402. if (!fout) {
  14403. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14404. return;
  14405. }
  14406. // header
  14407. {
  14408. const uint32_t magic = GGML_FILE_MAGIC;
  14409. const uint32_t version = GGML_FILE_VERSION;
  14410. const uint32_t n_leafs = cgraph->n_leafs;
  14411. const uint32_t n_nodes = cgraph->n_nodes;
  14412. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14413. fwrite(&version, sizeof(uint32_t), 1, fout);
  14414. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14415. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14416. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14417. }
  14418. // leafs
  14419. {
  14420. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14421. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14422. const uint32_t type = tensor->type;
  14423. const uint32_t op = tensor->op;
  14424. fwrite(&type, sizeof(uint32_t), 1, fout);
  14425. fwrite(&op, sizeof(uint32_t), 1, fout);
  14426. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14427. const uint64_t ne = tensor->ne[j];
  14428. const uint64_t nb = tensor->nb[j];
  14429. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14430. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14431. }
  14432. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14433. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14434. // dump the data
  14435. // TODO: pad this to 32 byte boundary
  14436. {
  14437. const size_t size = ggml_nbytes(tensor);
  14438. fwrite(tensor->data, sizeof(char), size, fout);
  14439. }
  14440. }
  14441. }
  14442. // nodes
  14443. {
  14444. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14445. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14446. const uint32_t type = tensor->type;
  14447. const uint32_t op = tensor->op;
  14448. fwrite(&type, sizeof(uint32_t), 1, fout);
  14449. fwrite(&op, sizeof(uint32_t), 1, fout);
  14450. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14451. const uint64_t ne = tensor->ne[j];
  14452. const uint64_t nb = tensor->nb[j];
  14453. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14454. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14455. }
  14456. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14457. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14458. // output the op arguments
  14459. {
  14460. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14461. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14462. args[j] = tensor->src[j];
  14463. }
  14464. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14465. if (args[j]) {
  14466. int32_t idx = -1;
  14467. // check if leaf
  14468. {
  14469. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14470. if (args[j] == cgraph->leafs[k]) {
  14471. idx = k;
  14472. break;
  14473. }
  14474. }
  14475. }
  14476. // check if node
  14477. if (idx == -1) {
  14478. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14479. if (args[j] == cgraph->nodes[k]) {
  14480. idx = cgraph->n_leafs + k;
  14481. break;
  14482. }
  14483. }
  14484. }
  14485. if (idx == -1) {
  14486. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14487. fclose(fout);
  14488. return;
  14489. }
  14490. fwrite(&idx, sizeof(int32_t), 1, fout);
  14491. } else {
  14492. const int32_t nul = -1;
  14493. fwrite(&nul, sizeof(int32_t), 1, fout);
  14494. }
  14495. }
  14496. }
  14497. }
  14498. }
  14499. fclose(fout);
  14500. }
  14501. }
  14502. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14503. assert(*ctx_data == NULL);
  14504. assert(*ctx_eval == NULL);
  14505. struct ggml_cgraph * result = NULL;
  14506. struct ggml_tensor * data = NULL;
  14507. // read file into data
  14508. {
  14509. FILE * fin = fopen(fname, "rb");
  14510. if (!fin) {
  14511. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14512. return result;
  14513. }
  14514. size_t fsize = 0;
  14515. fseek(fin, 0, SEEK_END);
  14516. fsize = ftell(fin);
  14517. fseek(fin, 0, SEEK_SET);
  14518. // create the data context
  14519. {
  14520. const size_t overhead = 1*ggml_tensor_overhead();
  14521. struct ggml_init_params params = {
  14522. .mem_size = fsize + overhead,
  14523. .mem_buffer = NULL,
  14524. .no_alloc = false,
  14525. };
  14526. *ctx_data = ggml_init(params);
  14527. if (!*ctx_data) {
  14528. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14529. fclose(fin);
  14530. return result;
  14531. }
  14532. }
  14533. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14534. {
  14535. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14536. if (ret != fsize) {
  14537. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14538. fclose(fin);
  14539. return result;
  14540. }
  14541. }
  14542. fclose(fin);
  14543. }
  14544. // populate result
  14545. {
  14546. char * ptr = (char *) data->data;
  14547. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14548. if (magic != GGML_FILE_MAGIC) {
  14549. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14550. return result;
  14551. }
  14552. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14553. if (version != GGML_FILE_VERSION) {
  14554. fprintf(stderr, "%s: invalid version number\n", __func__);
  14555. return result;
  14556. }
  14557. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14558. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14559. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14560. const int graph_size = MAX(n_leafs, n_nodes);
  14561. // create the data context
  14562. {
  14563. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14564. struct ggml_init_params params = {
  14565. .mem_size = size_eval + overhead,
  14566. .mem_buffer = NULL,
  14567. .no_alloc = true,
  14568. };
  14569. *ctx_eval = ggml_init(params);
  14570. if (!*ctx_eval) {
  14571. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14572. return result;
  14573. }
  14574. }
  14575. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14576. result->n_leafs = n_leafs;
  14577. result->n_nodes = n_nodes;
  14578. // leafs
  14579. {
  14580. uint32_t type;
  14581. uint32_t op;
  14582. for (uint32_t i = 0; i < n_leafs; ++i) {
  14583. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14584. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14585. int64_t ne[GGML_MAX_DIMS];
  14586. size_t nb[GGML_MAX_DIMS];
  14587. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14588. uint64_t ne_cur;
  14589. uint64_t nb_cur;
  14590. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14591. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14592. ne[j] = ne_cur;
  14593. nb[j] = nb_cur;
  14594. }
  14595. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14596. tensor->op = (enum ggml_op) op;
  14597. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14598. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14599. tensor->data = (void *) ptr;
  14600. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14601. tensor->nb[j] = nb[j];
  14602. }
  14603. result->leafs[i] = tensor;
  14604. ptr += ggml_nbytes(tensor);
  14605. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14606. }
  14607. }
  14608. ggml_set_no_alloc(*ctx_eval, false);
  14609. // nodes
  14610. {
  14611. uint32_t type;
  14612. uint32_t op;
  14613. for (uint32_t i = 0; i < n_nodes; ++i) {
  14614. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14615. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14616. enum ggml_op eop = (enum ggml_op) op;
  14617. int64_t ne[GGML_MAX_DIMS];
  14618. size_t nb[GGML_MAX_DIMS];
  14619. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14620. uint64_t ne_cur;
  14621. uint64_t nb_cur;
  14622. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14623. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14624. ne[j] = ne_cur;
  14625. nb[j] = nb_cur;
  14626. }
  14627. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14628. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14629. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14630. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14631. // parse args
  14632. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14633. const int32_t arg_idx = ptr_arg_idx[j];
  14634. if (arg_idx == -1) {
  14635. continue;
  14636. }
  14637. if (arg_idx < result->n_leafs) {
  14638. args[j] = result->leafs[arg_idx];
  14639. } else {
  14640. args[j] = result->nodes[arg_idx - result->n_leafs];
  14641. }
  14642. }
  14643. // create the tensor
  14644. // "view" operations are handled differently
  14645. // TODO: handle inplace ops - currently a copy is always made
  14646. struct ggml_tensor * tensor = NULL;
  14647. switch (eop) {
  14648. // TODO: implement other view ops
  14649. case GGML_OP_RESHAPE:
  14650. {
  14651. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14652. } break;
  14653. case GGML_OP_VIEW:
  14654. {
  14655. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14656. size_t offs;
  14657. memcpy(&offs, ptr_op_params, sizeof(offs));
  14658. tensor->data = ((char *) tensor->data) + offs;
  14659. } break;
  14660. case GGML_OP_TRANSPOSE:
  14661. {
  14662. tensor = ggml_transpose(*ctx_eval, args[0]);
  14663. } break;
  14664. case GGML_OP_PERMUTE:
  14665. {
  14666. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14667. } break;
  14668. default:
  14669. {
  14670. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14671. tensor->op = eop;
  14672. } break;
  14673. }
  14674. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14675. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14676. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14677. tensor->nb[j] = nb[j];
  14678. }
  14679. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14680. tensor->src[j] = args[j];
  14681. }
  14682. result->nodes[i] = tensor;
  14683. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14684. }
  14685. }
  14686. }
  14687. return result;
  14688. }
  14689. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14690. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14691. GGML_PRINT("=== GRAPH ===\n");
  14692. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14693. for (int i = 0; i < cgraph->n_nodes; i++) {
  14694. struct ggml_tensor * node = cgraph->nodes[i];
  14695. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14696. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14697. i,
  14698. node->ne[0], node->ne[1], node->ne[2],
  14699. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14700. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14701. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14702. (double) node->perf_time_us / 1000.0,
  14703. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14704. }
  14705. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14706. for (int i = 0; i < cgraph->n_leafs; i++) {
  14707. struct ggml_tensor * node = cgraph->leafs[i];
  14708. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14709. i,
  14710. node->ne[0], node->ne[1],
  14711. ggml_op_name(node->op),
  14712. ggml_get_name(node));
  14713. }
  14714. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14715. if (perf_total_per_op_us[i] == 0) {
  14716. continue;
  14717. }
  14718. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14719. }
  14720. GGML_PRINT("========================================\n");
  14721. }
  14722. // check if node is part of the graph
  14723. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14724. if (cgraph == NULL) {
  14725. return true;
  14726. }
  14727. for (int i = 0; i < cgraph->n_nodes; i++) {
  14728. if (cgraph->nodes[i] == node) {
  14729. return true;
  14730. }
  14731. }
  14732. return false;
  14733. }
  14734. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14735. for (int i = 0; i < cgraph->n_nodes; i++) {
  14736. struct ggml_tensor * parent = cgraph->nodes[i];
  14737. if (parent->grad == node) {
  14738. return parent;
  14739. }
  14740. }
  14741. return NULL;
  14742. }
  14743. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14744. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14745. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14746. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14747. gparent0 ? (void *) gparent0 : (void *) parent,
  14748. gparent0 ? "g" : "x",
  14749. gparent ? (void *) gparent : (void *) node,
  14750. gparent ? "g" : "x",
  14751. gparent ? "empty" : "vee",
  14752. gparent ? "dashed" : "solid",
  14753. label);
  14754. }
  14755. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14756. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14757. (void *) parent, "x",
  14758. (void *) node, "x",
  14759. label);
  14760. }
  14761. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14762. char color[16];
  14763. FILE * fp = fopen(filename, "w");
  14764. GGML_ASSERT(fp);
  14765. fprintf(fp, "digraph G {\n");
  14766. fprintf(fp, " newrank = true;\n");
  14767. fprintf(fp, " rankdir = LR;\n");
  14768. for (int i = 0; i < gb->n_nodes; i++) {
  14769. struct ggml_tensor * node = gb->nodes[i];
  14770. if (ggml_graph_get_parent(gb, node) != NULL) {
  14771. continue;
  14772. }
  14773. if (node->is_param) {
  14774. snprintf(color, sizeof(color), "yellow");
  14775. } else if (node->grad) {
  14776. if (ggml_graph_find(gf, node)) {
  14777. snprintf(color, sizeof(color), "green");
  14778. } else {
  14779. snprintf(color, sizeof(color), "lightblue");
  14780. }
  14781. } else {
  14782. snprintf(color, sizeof(color), "white");
  14783. }
  14784. fprintf(fp, " \"%p\" [ "
  14785. "style = filled; fillcolor = %s; shape = record; "
  14786. "label=\"",
  14787. (void *) node, color);
  14788. if (strlen(node->name) > 0) {
  14789. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14790. } else {
  14791. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14792. }
  14793. if (ggml_is_matrix(node)) {
  14794. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14795. } else {
  14796. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14797. }
  14798. if (node->grad) {
  14799. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14800. } else {
  14801. fprintf(fp, "\"; ]\n");
  14802. }
  14803. }
  14804. for (int i = 0; i < gb->n_leafs; i++) {
  14805. struct ggml_tensor * node = gb->leafs[i];
  14806. snprintf(color, sizeof(color), "pink");
  14807. fprintf(fp, " \"%p\" [ "
  14808. "style = filled; fillcolor = %s; shape = record; "
  14809. "label=\"<x>",
  14810. (void *) node, color);
  14811. if (strlen(node->name) > 0) {
  14812. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14813. } else {
  14814. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14815. }
  14816. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14817. if (ggml_nelements(node) < 5) {
  14818. fprintf(fp, " | (");
  14819. for (int j = 0; j < ggml_nelements(node); j++) {
  14820. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14821. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14822. }
  14823. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14824. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14825. }
  14826. else {
  14827. fprintf(fp, "#");
  14828. }
  14829. if (j < ggml_nelements(node) - 1) {
  14830. fprintf(fp, ", ");
  14831. }
  14832. }
  14833. fprintf(fp, ")");
  14834. }
  14835. fprintf(fp, "\"; ]\n");
  14836. }
  14837. for (int i = 0; i < gb->n_nodes; i++) {
  14838. struct ggml_tensor * node = gb->nodes[i];
  14839. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14840. if (node->src[j]) {
  14841. char label[16];
  14842. snprintf(label, sizeof(label), "src %d", j);
  14843. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14844. }
  14845. }
  14846. }
  14847. for (int i = 0; i < gb->n_leafs; i++) {
  14848. struct ggml_tensor * node = gb->leafs[i];
  14849. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14850. if (node->src[j]) {
  14851. char label[16];
  14852. snprintf(label, sizeof(label), "src %d", j);
  14853. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14854. }
  14855. }
  14856. }
  14857. fprintf(fp, "}\n");
  14858. fclose(fp);
  14859. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14860. }
  14861. ////////////////////////////////////////////////////////////////////////////////
  14862. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14863. int i = 0;
  14864. for (int p = 0; p < np; ++p) {
  14865. const int64_t ne = ggml_nelements(ps[p]) ;
  14866. // TODO: add function to set tensor from array
  14867. for (int64_t j = 0; j < ne; ++j) {
  14868. ggml_set_f32_1d(ps[p], j, x[i++]);
  14869. }
  14870. }
  14871. }
  14872. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14873. int i = 0;
  14874. for (int p = 0; p < np; ++p) {
  14875. const int64_t ne = ggml_nelements(ps[p]) ;
  14876. // TODO: add function to get all elements at once
  14877. for (int64_t j = 0; j < ne; ++j) {
  14878. x[i++] = ggml_get_f32_1d(ps[p], j);
  14879. }
  14880. }
  14881. }
  14882. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14883. int64_t i = 0;
  14884. for (int p = 0; p < np; ++p) {
  14885. const int64_t ne = ggml_nelements(ps[p]) ;
  14886. // TODO: add function to get all elements at once
  14887. for (int64_t j = 0; j < ne; ++j) {
  14888. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14889. }
  14890. }
  14891. }
  14892. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14893. int64_t i = 0;
  14894. for (int p = 0; p < np; ++p) {
  14895. const int64_t ne = ggml_nelements(ps[p]) ;
  14896. // TODO: add function to get all elements at once
  14897. for (int64_t j = 0; j < ne; ++j) {
  14898. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14899. }
  14900. }
  14901. }
  14902. //
  14903. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14904. //
  14905. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14906. //
  14907. static enum ggml_opt_result ggml_opt_adam(
  14908. struct ggml_context * ctx,
  14909. struct ggml_opt_context * opt,
  14910. struct ggml_opt_params params,
  14911. struct ggml_tensor * f,
  14912. struct ggml_cgraph * gf,
  14913. struct ggml_cgraph * gb,
  14914. ggml_opt_callback callback,
  14915. void * callback_data) {
  14916. GGML_ASSERT(ggml_is_scalar(f));
  14917. // these will store the parameters we want to optimize
  14918. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14919. int np = 0;
  14920. int64_t nx = 0;
  14921. for (int i = 0; i < gf->n_nodes; ++i) {
  14922. if (gf->nodes[i]->is_param) {
  14923. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14924. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14925. ps[np++] = gf->nodes[i];
  14926. nx += ggml_nelements(gf->nodes[i]);
  14927. }
  14928. }
  14929. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14930. int iter = opt->iter;
  14931. ggml_opt_init(opt->ctx, opt, params, nx);
  14932. opt->iter = iter;
  14933. }
  14934. // constants
  14935. float sched = params.adam.sched;
  14936. const float alpha = params.adam.alpha;
  14937. const float decay = params.adam.decay * alpha;
  14938. const float beta1 = params.adam.beta1;
  14939. const float beta2 = params.adam.beta2;
  14940. const float eps = params.adam.eps;
  14941. const float gclip = params.adam.gclip;
  14942. const int decay_min_ndim = params.adam.decay_min_ndim;
  14943. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14944. const float accum_norm = 1.0f / (float) n_accum;
  14945. float * g = opt->adam.g->data; // gradients
  14946. float * m = opt->adam.m->data; // first moment
  14947. float * v = opt->adam.v->data; // second moment
  14948. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14949. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14950. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14951. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14952. bool cancel = false;
  14953. // compute the function value
  14954. float fx = 0;
  14955. ggml_set_zero(opt->adam.g);
  14956. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14957. if (callback) {
  14958. callback(callback_data, accum_step, &sched, &cancel);
  14959. if (cancel) {
  14960. return GGML_OPT_CANCEL;
  14961. }
  14962. }
  14963. // ggml_graph_reset (gf);
  14964. ggml_set_f32 (f->grad, 1.0f);
  14965. ggml_graph_compute(gb, &cplan);
  14966. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14967. fx += ggml_get_f32_1d(f, 0);
  14968. }
  14969. fx *= accum_norm;
  14970. opt->adam.fx_prev = fx;
  14971. opt->adam.fx_best = opt->adam.fx_prev;
  14972. if (pf) {
  14973. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14974. }
  14975. opt->loss_before = opt->adam.fx_prev;
  14976. opt->loss_after = opt->adam.fx_prev;
  14977. // initialize
  14978. if (opt->just_initialized) {
  14979. opt->adam.n_no_improvement = 0;
  14980. opt->just_initialized = false;
  14981. }
  14982. float * fx_best = &opt->adam.fx_best;
  14983. float * fx_prev = &opt->adam.fx_prev;
  14984. int * n_no_improvement = &opt->adam.n_no_improvement;
  14985. int iter0 = opt->iter;
  14986. // run the optimizer
  14987. for (int t = 0; t < params.adam.n_iter; ++t) {
  14988. opt->iter = iter0 + t + 1;
  14989. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14990. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14991. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14992. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14993. for (int i = 0; i < np; ++i) {
  14994. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14995. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14996. }
  14997. const int64_t t_start_wall = ggml_time_us();
  14998. const int64_t t_start_cpu = ggml_cycles();
  14999. UNUSED(t_start_wall);
  15000. UNUSED(t_start_cpu);
  15001. {
  15002. float gnorm = 1.0f;
  15003. if (gclip > 0.0f) {
  15004. // gradient clipping
  15005. ggml_float sum = 0.0;
  15006. for (int64_t i = 0; i < nx; ++i) {
  15007. sum += (ggml_float)(g[i]*g[i]);
  15008. }
  15009. ggml_float norm = sqrt(sum);
  15010. if (norm > (ggml_float) gclip) {
  15011. gnorm = (float) ((ggml_float) gclip / norm);
  15012. }
  15013. }
  15014. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15015. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15016. int64_t i = 0;
  15017. for (int p = 0; p < np; ++p) {
  15018. const int64_t ne = ggml_nelements(ps[p]);
  15019. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15020. for (int64_t j = 0; j < ne; ++j) {
  15021. float x = ggml_get_f32_1d(ps[p], j);
  15022. float g_ = g[i]*gnorm;
  15023. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15024. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15025. float mh = m[i]*beta1h;
  15026. float vh = v[i]*beta2h;
  15027. vh = sqrtf(vh) + eps;
  15028. x = x*(1.0f - p_decay) - mh/vh;
  15029. ggml_set_f32_1d(ps[p], j, x);
  15030. ++i;
  15031. }
  15032. }
  15033. }
  15034. fx = 0;
  15035. ggml_set_zero(opt->adam.g);
  15036. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15037. if (callback) {
  15038. callback(callback_data, accum_step, &sched, &cancel);
  15039. if (cancel) {
  15040. return GGML_OPT_CANCEL;;
  15041. }
  15042. }
  15043. // ggml_graph_reset (gf);
  15044. ggml_set_f32 (f->grad, 1.0f);
  15045. ggml_graph_compute(gb, &cplan);
  15046. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15047. fx += ggml_get_f32_1d(f, 0);
  15048. }
  15049. fx *= accum_norm;
  15050. opt->loss_after = fx;
  15051. // check convergence
  15052. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15053. GGML_PRINT_DEBUG("converged\n");
  15054. return GGML_OPT_OK;
  15055. }
  15056. // delta-based convergence test
  15057. if (pf != NULL) {
  15058. // need at least params.past iterations to start checking for convergence
  15059. if (params.past <= iter0 + t) {
  15060. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15061. if (fabsf(rate) < params.delta) {
  15062. return GGML_OPT_OK;
  15063. }
  15064. }
  15065. pf[(iter0 + t)%params.past] = fx;
  15066. }
  15067. // check for improvement
  15068. if (params.max_no_improvement > 0) {
  15069. if (fx_best[0] > fx) {
  15070. fx_best[0] = fx;
  15071. n_no_improvement[0] = 0;
  15072. } else {
  15073. ++n_no_improvement[0];
  15074. if (n_no_improvement[0] >= params.max_no_improvement) {
  15075. return GGML_OPT_OK;
  15076. }
  15077. }
  15078. }
  15079. fx_prev[0] = fx;
  15080. {
  15081. const int64_t t_end_cpu = ggml_cycles();
  15082. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15083. UNUSED(t_end_cpu);
  15084. const int64_t t_end_wall = ggml_time_us();
  15085. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15086. UNUSED(t_end_wall);
  15087. }
  15088. }
  15089. return GGML_OPT_DID_NOT_CONVERGE;
  15090. }
  15091. //
  15092. // L-BFGS
  15093. //
  15094. // the L-BFGS implementation below is based on the following implementation:
  15095. //
  15096. // https://github.com/chokkan/liblbfgs
  15097. //
  15098. struct ggml_lbfgs_iteration_data {
  15099. float alpha;
  15100. float ys;
  15101. float * s;
  15102. float * y;
  15103. };
  15104. static enum ggml_opt_result linesearch_backtracking(
  15105. const struct ggml_opt_params * params,
  15106. int nx,
  15107. float * x,
  15108. float * fx,
  15109. float * g,
  15110. float * d,
  15111. float * step,
  15112. const float * xp,
  15113. struct ggml_tensor * f,
  15114. struct ggml_cgraph * gb,
  15115. struct ggml_cplan * cplan,
  15116. const int np,
  15117. struct ggml_tensor * ps[],
  15118. bool * cancel,
  15119. ggml_opt_callback callback,
  15120. void * callback_data) {
  15121. int count = 0;
  15122. float width = 0.0f;
  15123. float dg = 0.0f;
  15124. float finit = 0.0f;
  15125. float dginit = 0.0f;
  15126. float dgtest = 0.0f;
  15127. const float dec = 0.5f;
  15128. const float inc = 2.1f;
  15129. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15130. const float accum_norm = 1.0f / (float) n_accum;
  15131. if (*step <= 0.f) {
  15132. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15133. }
  15134. // compute the initial gradient in the search direction
  15135. ggml_vec_dot_f32(nx, &dginit, g, d);
  15136. // make sure that d points to a descent direction
  15137. if (0 < dginit) {
  15138. return GGML_LINESEARCH_FAIL;
  15139. }
  15140. // initialize local variables
  15141. finit = *fx;
  15142. dgtest = params->lbfgs.ftol*dginit;
  15143. while (true) {
  15144. ggml_vec_cpy_f32(nx, x, xp);
  15145. ggml_vec_mad_f32(nx, x, d, *step);
  15146. // evaluate the function and gradient values
  15147. {
  15148. ggml_opt_set_params(np, ps, x);
  15149. *fx = 0;
  15150. memset(g, 0, sizeof(float)*nx);
  15151. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15152. if (callback) {
  15153. // LBFG-S does not support learning rate -> ignore learning schedule
  15154. float sched = 0;
  15155. callback(callback_data, accum_step, &sched, cancel);
  15156. if (*cancel) {
  15157. return GGML_OPT_CANCEL;
  15158. }
  15159. }
  15160. // ggml_graph_reset (gf);
  15161. ggml_set_f32 (f->grad, 1.0f);
  15162. ggml_graph_compute(gb, cplan);
  15163. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15164. *fx += ggml_get_f32_1d(f, 0);
  15165. }
  15166. *fx *= accum_norm;
  15167. }
  15168. ++count;
  15169. if (*fx > finit + (*step)*dgtest) {
  15170. width = dec;
  15171. } else {
  15172. // Armijo condition is satisfied
  15173. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15174. return count;
  15175. }
  15176. ggml_vec_dot_f32(nx, &dg, g, d);
  15177. // check the Wolfe condition
  15178. if (dg < params->lbfgs.wolfe * dginit) {
  15179. width = inc;
  15180. } else {
  15181. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15182. // regular Wolfe conditions
  15183. return count;
  15184. }
  15185. if(dg > -params->lbfgs.wolfe*dginit) {
  15186. width = dec;
  15187. } else {
  15188. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15189. return count;
  15190. }
  15191. }
  15192. }
  15193. if (*step < params->lbfgs.min_step) {
  15194. return GGML_LINESEARCH_MINIMUM_STEP;
  15195. }
  15196. if (*step > params->lbfgs.max_step) {
  15197. return GGML_LINESEARCH_MAXIMUM_STEP;
  15198. }
  15199. if (params->lbfgs.max_linesearch <= count) {
  15200. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15201. }
  15202. (*step) *= width;
  15203. }
  15204. GGML_UNREACHABLE();
  15205. }
  15206. static enum ggml_opt_result ggml_opt_lbfgs(
  15207. struct ggml_context * ctx,
  15208. struct ggml_opt_context * opt,
  15209. struct ggml_opt_params params,
  15210. struct ggml_tensor * f,
  15211. struct ggml_cgraph * gf,
  15212. struct ggml_cgraph * gb,
  15213. ggml_opt_callback callback,
  15214. void * callback_data) {
  15215. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15216. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15217. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15218. return GGML_OPT_INVALID_WOLFE;
  15219. }
  15220. }
  15221. const int m = params.lbfgs.m;
  15222. // these will store the parameters we want to optimize
  15223. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15224. int np = 0;
  15225. int nx = 0;
  15226. for (int i = 0; i < gf->n_nodes; ++i) {
  15227. if (gf->nodes[i]->is_param) {
  15228. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15229. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15230. ps[np++] = gf->nodes[i];
  15231. nx += ggml_nelements(gf->nodes[i]);
  15232. }
  15233. }
  15234. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15235. int iter = opt->iter;
  15236. ggml_opt_init(ctx, opt, params, nx);
  15237. opt->iter = iter;
  15238. }
  15239. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15240. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15241. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15242. float * x = opt->lbfgs.x->data; // current parameters
  15243. float * xp = opt->lbfgs.xp->data; // previous parameters
  15244. float * g = opt->lbfgs.g->data; // current gradient
  15245. float * gp = opt->lbfgs.gp->data; // previous gradient
  15246. float * d = opt->lbfgs.d->data; // search direction
  15247. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15248. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15249. const float accum_norm = 1.0f / (float) n_accum;
  15250. float fx = 0.0f; // cost function value
  15251. float xnorm = 0.0f; // ||x||
  15252. float gnorm = 0.0f; // ||g||
  15253. // initialize x from the graph nodes
  15254. ggml_opt_get_params(np, ps, x);
  15255. // the L-BFGS memory
  15256. float * lm_alpha = opt->lbfgs.lmal->data;
  15257. float * lm_ys = opt->lbfgs.lmys->data;
  15258. float * lm_s = opt->lbfgs.lms->data;
  15259. float * lm_y = opt->lbfgs.lmy->data;
  15260. bool cancel = false;
  15261. // evaluate the function value and its gradient
  15262. {
  15263. ggml_opt_set_params(np, ps, x);
  15264. fx = 0;
  15265. memset(g, 0, sizeof(float)*nx);
  15266. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15267. if (callback) {
  15268. // LBFG-S does not support learning rate -> ignore learning schedule
  15269. float sched = 0;
  15270. callback(callback_data, accum_step, &sched, &cancel);
  15271. if (cancel) {
  15272. return GGML_OPT_CANCEL;
  15273. }
  15274. }
  15275. // ggml_graph_reset (gf);
  15276. ggml_set_f32 (f->grad, 1.0f);
  15277. ggml_graph_compute(gb, &cplan);
  15278. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15279. fx += ggml_get_f32_1d(f, 0);
  15280. }
  15281. fx *= accum_norm;
  15282. opt->loss_before = fx;
  15283. opt->loss_after = fx;
  15284. }
  15285. // search direction = -gradient
  15286. ggml_vec_neg_f32(nx, d, g);
  15287. // ||x||, ||g||
  15288. ggml_vec_norm_f32(nx, &xnorm, x);
  15289. ggml_vec_norm_f32(nx, &gnorm, g);
  15290. if (xnorm < 1.0f) {
  15291. xnorm = 1.0f;
  15292. }
  15293. // already optimized
  15294. if (gnorm/xnorm <= params.lbfgs.eps) {
  15295. return GGML_OPT_OK;
  15296. }
  15297. if (opt->just_initialized) {
  15298. if (pf) {
  15299. pf[0] = fx;
  15300. }
  15301. opt->lbfgs.fx_best = fx;
  15302. // initial step
  15303. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15304. opt->lbfgs.j = 0;
  15305. opt->lbfgs.k = 1;
  15306. opt->lbfgs.end = 0;
  15307. opt->lbfgs.n_no_improvement = 0;
  15308. opt->just_initialized = false;
  15309. }
  15310. float * fx_best = &opt->lbfgs.fx_best;
  15311. float * step = &opt->lbfgs.step;
  15312. int * j = &opt->lbfgs.j;
  15313. int * k = &opt->lbfgs.k;
  15314. int * end = &opt->lbfgs.end;
  15315. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15316. int ls = 0;
  15317. int bound = 0;
  15318. float ys = 0.0f;
  15319. float yy = 0.0f;
  15320. float beta = 0.0f;
  15321. int it = 0;
  15322. while (true) {
  15323. // store the current position and gradient vectors
  15324. ggml_vec_cpy_f32(nx, xp, x);
  15325. ggml_vec_cpy_f32(nx, gp, g);
  15326. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15327. // to determine if the optimization should be cancelled
  15328. // this is a simple change, but not doing this atm, since I don't have a nice
  15329. // way to test and don't want to break something with so many changes lined up
  15330. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15331. if (cancel) {
  15332. return GGML_OPT_CANCEL;
  15333. }
  15334. if (ls < 0) {
  15335. // linesearch failed - go back to the previous point and return
  15336. ggml_vec_cpy_f32(nx, x, xp);
  15337. ggml_vec_cpy_f32(nx, g, gp);
  15338. return ls;
  15339. }
  15340. opt->loss_after = fx;
  15341. ggml_vec_norm_f32(nx, &xnorm, x);
  15342. ggml_vec_norm_f32(nx, &gnorm, g);
  15343. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15344. if (xnorm < 1.0f) {
  15345. xnorm = 1.0f;
  15346. }
  15347. if (gnorm/xnorm <= params.lbfgs.eps) {
  15348. // converged
  15349. return GGML_OPT_OK;
  15350. }
  15351. // delta-based convergence test
  15352. if (pf != NULL) {
  15353. // need at least params.past iterations to start checking for convergence
  15354. if (params.past <= k[0]) {
  15355. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15356. if (fabsf(rate) < params.delta) {
  15357. return GGML_OPT_OK;
  15358. }
  15359. }
  15360. pf[k[0]%params.past] = fx;
  15361. }
  15362. // check for improvement
  15363. if (params.max_no_improvement > 0) {
  15364. if (fx < fx_best[0]) {
  15365. fx_best[0] = fx;
  15366. n_no_improvement[0] = 0;
  15367. } else {
  15368. n_no_improvement[0]++;
  15369. if (n_no_improvement[0] >= params.max_no_improvement) {
  15370. return GGML_OPT_OK;
  15371. }
  15372. }
  15373. }
  15374. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15375. // reached the maximum number of iterations
  15376. return GGML_OPT_DID_NOT_CONVERGE;
  15377. }
  15378. // update vectors s and y:
  15379. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15380. // y_{k+1} = g_{k+1} - g_{k}.
  15381. //
  15382. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15383. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15384. // compute scalars ys and yy:
  15385. // ys = y^t \cdot s -> 1 / \rho.
  15386. // yy = y^t \cdot y.
  15387. //
  15388. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15389. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15390. lm_ys[end[0]] = ys;
  15391. // find new search direction
  15392. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15393. bound = (m <= k[0]) ? m : k[0];
  15394. k[0]++;
  15395. it++;
  15396. end[0] = (end[0] + 1)%m;
  15397. // initialize search direction with -g
  15398. ggml_vec_neg_f32(nx, d, g);
  15399. j[0] = end[0];
  15400. for (int i = 0; i < bound; ++i) {
  15401. j[0] = (j[0] + m - 1) % m;
  15402. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15403. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15404. lm_alpha[j[0]] /= lm_ys[j[0]];
  15405. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15406. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15407. }
  15408. ggml_vec_scale_f32(nx, d, ys/yy);
  15409. for (int i = 0; i < bound; ++i) {
  15410. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15411. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15412. beta /= lm_ys[j[0]];
  15413. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15414. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15415. j[0] = (j[0] + 1)%m;
  15416. }
  15417. step[0] = 1.0;
  15418. }
  15419. GGML_UNREACHABLE();
  15420. }
  15421. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15422. struct ggml_opt_params result;
  15423. switch (type) {
  15424. case GGML_OPT_ADAM:
  15425. {
  15426. result = (struct ggml_opt_params) {
  15427. .type = GGML_OPT_ADAM,
  15428. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15429. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15430. .past = 0,
  15431. .delta = 1e-5f,
  15432. .max_no_improvement = 100,
  15433. .print_forward_graph = true,
  15434. .print_backward_graph = true,
  15435. .n_gradient_accumulation = 1,
  15436. .adam = {
  15437. .n_iter = 10000,
  15438. .sched = 1.000f,
  15439. .decay = 0.0f,
  15440. .decay_min_ndim = 2,
  15441. .alpha = 0.001f,
  15442. .beta1 = 0.9f,
  15443. .beta2 = 0.999f,
  15444. .eps = 1e-8f,
  15445. .eps_f = 1e-5f,
  15446. .eps_g = 1e-3f,
  15447. .gclip = 0.0f,
  15448. },
  15449. };
  15450. } break;
  15451. case GGML_OPT_LBFGS:
  15452. {
  15453. result = (struct ggml_opt_params) {
  15454. .type = GGML_OPT_LBFGS,
  15455. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15456. .n_threads = 1,
  15457. .past = 0,
  15458. .delta = 1e-5f,
  15459. .max_no_improvement = 0,
  15460. .print_forward_graph = true,
  15461. .print_backward_graph = true,
  15462. .n_gradient_accumulation = 1,
  15463. .lbfgs = {
  15464. .m = 6,
  15465. .n_iter = 100,
  15466. .max_linesearch = 20,
  15467. .eps = 1e-5f,
  15468. .ftol = 1e-4f,
  15469. .wolfe = 0.9f,
  15470. .min_step = 1e-20f,
  15471. .max_step = 1e+20f,
  15472. .linesearch = GGML_LINESEARCH_DEFAULT,
  15473. },
  15474. };
  15475. } break;
  15476. }
  15477. return result;
  15478. }
  15479. GGML_API void ggml_opt_init(
  15480. struct ggml_context * ctx,
  15481. struct ggml_opt_context * opt,
  15482. struct ggml_opt_params params,
  15483. int64_t nx) {
  15484. opt->ctx = ctx;
  15485. opt->params = params;
  15486. opt->iter = 0;
  15487. opt->nx = nx;
  15488. opt->just_initialized = true;
  15489. if (opt->ctx == NULL) {
  15490. struct ggml_init_params ctx_opt_params;
  15491. if (opt->params.type == GGML_OPT_ADAM) {
  15492. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15493. if (opt->params.past > 0) {
  15494. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15495. }
  15496. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15497. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15498. if (opt->params.past > 0) {
  15499. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15500. }
  15501. }
  15502. ctx_opt_params.mem_buffer = NULL;
  15503. ctx_opt_params.no_alloc = false;
  15504. opt->ctx = ggml_init(ctx_opt_params);
  15505. }
  15506. switch (opt->params.type) {
  15507. case GGML_OPT_ADAM:
  15508. {
  15509. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15510. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15511. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15512. opt->adam.pf = params.past > 0
  15513. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15514. : NULL;
  15515. ggml_set_zero(opt->adam.m);
  15516. ggml_set_zero(opt->adam.v);
  15517. if (opt->adam.pf) {
  15518. ggml_set_zero(opt->adam.pf);
  15519. }
  15520. } break;
  15521. case GGML_OPT_LBFGS:
  15522. {
  15523. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15524. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15525. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15526. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15527. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15528. opt->lbfgs.pf = params.past > 0
  15529. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15530. : NULL;
  15531. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15532. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15533. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15534. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15535. ggml_set_zero(opt->lbfgs.x);
  15536. ggml_set_zero(opt->lbfgs.xp);
  15537. ggml_set_zero(opt->lbfgs.g);
  15538. ggml_set_zero(opt->lbfgs.gp);
  15539. ggml_set_zero(opt->lbfgs.d);
  15540. if (opt->lbfgs.pf) {
  15541. ggml_set_zero(opt->lbfgs.pf);
  15542. }
  15543. ggml_set_zero(opt->lbfgs.lmal);
  15544. ggml_set_zero(opt->lbfgs.lmys);
  15545. ggml_set_zero(opt->lbfgs.lms);
  15546. ggml_set_zero(opt->lbfgs.lmy);
  15547. } break;
  15548. }
  15549. }
  15550. enum ggml_opt_result ggml_opt(
  15551. struct ggml_context * ctx,
  15552. struct ggml_opt_params params,
  15553. struct ggml_tensor * f) {
  15554. bool free_ctx = false;
  15555. if (ctx == NULL) {
  15556. struct ggml_init_params params_ctx = {
  15557. .mem_size = 16*1024*1024,
  15558. .mem_buffer = NULL,
  15559. .no_alloc = false,
  15560. };
  15561. ctx = ggml_init(params_ctx);
  15562. if (ctx == NULL) {
  15563. return GGML_OPT_NO_CONTEXT;
  15564. }
  15565. free_ctx = true;
  15566. }
  15567. enum ggml_opt_result result = GGML_OPT_OK;
  15568. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15569. ggml_opt_init(ctx, opt, params, 0);
  15570. result = ggml_opt_resume(ctx, opt, f);
  15571. if (free_ctx) {
  15572. ggml_free(ctx);
  15573. }
  15574. return result;
  15575. }
  15576. enum ggml_opt_result ggml_opt_resume(
  15577. struct ggml_context * ctx,
  15578. struct ggml_opt_context * opt,
  15579. struct ggml_tensor * f) {
  15580. // build forward + backward compute graphs
  15581. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15582. ggml_build_forward_expand(gf, f);
  15583. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15584. ggml_build_backward_expand(ctx, gf, gb, true);
  15585. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15586. }
  15587. enum ggml_opt_result ggml_opt_resume_g(
  15588. struct ggml_context * ctx,
  15589. struct ggml_opt_context * opt,
  15590. struct ggml_tensor * f,
  15591. struct ggml_cgraph * gf,
  15592. struct ggml_cgraph * gb,
  15593. ggml_opt_callback callback,
  15594. void * callback_data) {
  15595. // build forward + backward compute graphs
  15596. enum ggml_opt_result result = GGML_OPT_OK;
  15597. switch (opt->params.type) {
  15598. case GGML_OPT_ADAM:
  15599. {
  15600. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15601. } break;
  15602. case GGML_OPT_LBFGS:
  15603. {
  15604. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15605. } break;
  15606. }
  15607. if (opt->params.print_forward_graph) {
  15608. ggml_graph_print (gf);
  15609. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15610. }
  15611. if (opt->params.print_backward_graph) {
  15612. ggml_graph_print (gb);
  15613. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15614. }
  15615. return result;
  15616. }
  15617. ////////////////////////////////////////////////////////////////////////////////
  15618. void ggml_quantize_init(enum ggml_type type) {
  15619. ggml_critical_section_start();
  15620. switch (type) {
  15621. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15622. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15623. default: // nothing
  15624. break;
  15625. }
  15626. ggml_critical_section_end();
  15627. }
  15628. void ggml_quantize_free(void) {
  15629. ggml_critical_section_start();
  15630. iq2xs_free_impl(256);
  15631. iq2xs_free_impl(512);
  15632. ggml_critical_section_end();
  15633. }
  15634. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15635. assert(k % QK4_0 == 0);
  15636. const int nb = k / QK4_0;
  15637. for (int b = 0; b < n; b += k) {
  15638. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15639. quantize_row_q4_0_reference(src + b, y, k);
  15640. for (int i = 0; i < nb; i++) {
  15641. for (int j = 0; j < QK4_0; j += 2) {
  15642. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15643. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15644. hist[vi0]++;
  15645. hist[vi1]++;
  15646. }
  15647. }
  15648. }
  15649. return (n/QK4_0*sizeof(block_q4_0));
  15650. }
  15651. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15652. assert(k % QK4_1 == 0);
  15653. const int nb = k / QK4_1;
  15654. for (int b = 0; b < n; b += k) {
  15655. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15656. quantize_row_q4_1_reference(src + b, y, k);
  15657. for (int i = 0; i < nb; i++) {
  15658. for (int j = 0; j < QK4_1; j += 2) {
  15659. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15660. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15661. hist[vi0]++;
  15662. hist[vi1]++;
  15663. }
  15664. }
  15665. }
  15666. return (n/QK4_1*sizeof(block_q4_1));
  15667. }
  15668. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15669. assert(k % QK5_0 == 0);
  15670. const int nb = k / QK5_0;
  15671. for (int b = 0; b < n; b += k) {
  15672. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15673. quantize_row_q5_0_reference(src + b, y, k);
  15674. for (int i = 0; i < nb; i++) {
  15675. uint32_t qh;
  15676. memcpy(&qh, &y[i].qh, sizeof(qh));
  15677. for (int j = 0; j < QK5_0; j += 2) {
  15678. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15679. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15680. // cast to 16 bins
  15681. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15682. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15683. hist[vi0]++;
  15684. hist[vi1]++;
  15685. }
  15686. }
  15687. }
  15688. return (n/QK5_0*sizeof(block_q5_0));
  15689. }
  15690. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15691. assert(k % QK5_1 == 0);
  15692. const int nb = k / QK5_1;
  15693. for (int b = 0; b < n; b += k) {
  15694. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15695. quantize_row_q5_1_reference(src + b, y, k);
  15696. for (int i = 0; i < nb; i++) {
  15697. uint32_t qh;
  15698. memcpy(&qh, &y[i].qh, sizeof(qh));
  15699. for (int j = 0; j < QK5_1; j += 2) {
  15700. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15701. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15702. // cast to 16 bins
  15703. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15704. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15705. hist[vi0]++;
  15706. hist[vi1]++;
  15707. }
  15708. }
  15709. }
  15710. return (n/QK5_1*sizeof(block_q5_1));
  15711. }
  15712. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15713. assert(k % QK8_0 == 0);
  15714. const int nb = k / QK8_0;
  15715. for (int b = 0; b < n; b += k) {
  15716. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15717. quantize_row_q8_0_reference(src + b, y, k);
  15718. for (int i = 0; i < nb; i++) {
  15719. for (int j = 0; j < QK8_0; ++j) {
  15720. const int8_t vi = y[i].qs[j];
  15721. hist[vi/16 + 8]++;
  15722. }
  15723. }
  15724. }
  15725. return (n/QK8_0*sizeof(block_q8_0));
  15726. }
  15727. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15728. return
  15729. type == GGML_TYPE_IQ2_XXS ||
  15730. type == GGML_TYPE_IQ2_XS;
  15731. }
  15732. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15733. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15734. ggml_quantize_init(type); // this is noop if already initialized
  15735. size_t result = 0;
  15736. int n = nrows * n_per_row;
  15737. switch (type) {
  15738. case GGML_TYPE_Q4_0:
  15739. {
  15740. GGML_ASSERT(start % QK4_0 == 0);
  15741. GGML_ASSERT(start % n_per_row == 0);
  15742. size_t start_row = start / n_per_row;
  15743. size_t row_size = ggml_row_size(type, n_per_row);
  15744. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15745. GGML_ASSERT(result == row_size * nrows);
  15746. } break;
  15747. case GGML_TYPE_Q4_1:
  15748. {
  15749. GGML_ASSERT(start % QK4_1 == 0);
  15750. GGML_ASSERT(start % n_per_row == 0);
  15751. size_t start_row = start / n_per_row;
  15752. size_t row_size = ggml_row_size(type, n_per_row);
  15753. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15754. GGML_ASSERT(result == row_size * nrows);
  15755. } break;
  15756. case GGML_TYPE_Q5_0:
  15757. {
  15758. GGML_ASSERT(start % QK5_0 == 0);
  15759. GGML_ASSERT(start % n_per_row == 0);
  15760. size_t start_row = start / n_per_row;
  15761. size_t row_size = ggml_row_size(type, n_per_row);
  15762. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15763. GGML_ASSERT(result == row_size * nrows);
  15764. } break;
  15765. case GGML_TYPE_Q5_1:
  15766. {
  15767. GGML_ASSERT(start % QK5_1 == 0);
  15768. GGML_ASSERT(start % n_per_row == 0);
  15769. size_t start_row = start / n_per_row;
  15770. size_t row_size = ggml_row_size(type, n_per_row);
  15771. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15772. GGML_ASSERT(result == row_size * nrows);
  15773. } break;
  15774. case GGML_TYPE_Q8_0:
  15775. {
  15776. GGML_ASSERT(start % QK8_0 == 0);
  15777. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15778. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15779. } break;
  15780. case GGML_TYPE_Q2_K:
  15781. {
  15782. GGML_ASSERT(start % QK_K == 0);
  15783. GGML_ASSERT(start % n_per_row == 0);
  15784. size_t start_row = start / n_per_row;
  15785. size_t row_size = ggml_row_size(type, n_per_row);
  15786. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15787. GGML_ASSERT(result == row_size * nrows);
  15788. } break;
  15789. case GGML_TYPE_Q3_K:
  15790. {
  15791. GGML_ASSERT(start % QK_K == 0);
  15792. GGML_ASSERT(start % n_per_row == 0);
  15793. size_t start_row = start / n_per_row;
  15794. size_t row_size = ggml_row_size(type, n_per_row);
  15795. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15796. GGML_ASSERT(result == row_size * nrows);
  15797. } break;
  15798. case GGML_TYPE_Q4_K:
  15799. {
  15800. GGML_ASSERT(start % QK_K == 0);
  15801. GGML_ASSERT(start % n_per_row == 0);
  15802. size_t start_row = start / n_per_row;
  15803. size_t row_size = ggml_row_size(type, n_per_row);
  15804. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15805. GGML_ASSERT(result == row_size * nrows);
  15806. } break;
  15807. case GGML_TYPE_Q5_K:
  15808. {
  15809. GGML_ASSERT(start % QK_K == 0);
  15810. GGML_ASSERT(start % n_per_row == 0);
  15811. size_t start_row = start / n_per_row;
  15812. size_t row_size = ggml_row_size(type, n_per_row);
  15813. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15814. GGML_ASSERT(result == row_size * nrows);
  15815. } break;
  15816. case GGML_TYPE_Q6_K:
  15817. {
  15818. GGML_ASSERT(start % QK_K == 0);
  15819. GGML_ASSERT(start % n_per_row == 0);
  15820. size_t start_row = start / n_per_row;
  15821. size_t row_size = ggml_row_size(type, n_per_row);
  15822. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15823. GGML_ASSERT(result == row_size * nrows);
  15824. } break;
  15825. case GGML_TYPE_IQ2_XXS:
  15826. {
  15827. GGML_ASSERT(start % QK_K == 0);
  15828. GGML_ASSERT(start % n_per_row == 0);
  15829. GGML_ASSERT(imatrix);
  15830. size_t start_row = start / n_per_row;
  15831. size_t row_size = ggml_row_size(type, n_per_row);
  15832. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15833. GGML_ASSERT(result == row_size * nrows);
  15834. } break;
  15835. case GGML_TYPE_IQ2_XS:
  15836. {
  15837. GGML_ASSERT(start % QK_K == 0);
  15838. GGML_ASSERT(start % n_per_row == 0);
  15839. GGML_ASSERT(imatrix);
  15840. size_t start_row = start / n_per_row;
  15841. size_t row_size = ggml_row_size(type, n_per_row);
  15842. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15843. GGML_ASSERT(result == row_size * nrows);
  15844. } break;
  15845. case GGML_TYPE_F16:
  15846. {
  15847. size_t elemsize = sizeof(ggml_fp16_t);
  15848. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15849. result = n * elemsize;
  15850. } break;
  15851. case GGML_TYPE_F32:
  15852. {
  15853. size_t elemsize = sizeof(float);
  15854. result = n * elemsize;
  15855. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15856. } break;
  15857. default:
  15858. assert(false);
  15859. }
  15860. return result;
  15861. }
  15862. ////////////////////////////////////////////////////////////////////////////////
  15863. struct gguf_str {
  15864. uint64_t n; // GGUFv2
  15865. char * data;
  15866. };
  15867. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15868. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15869. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15870. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15871. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15872. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15873. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15874. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15875. [GGUF_TYPE_BOOL] = sizeof(bool),
  15876. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15877. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15878. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15879. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15880. [GGUF_TYPE_ARRAY] = 0, // undefined
  15881. };
  15882. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15883. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15884. [GGUF_TYPE_UINT8] = "u8",
  15885. [GGUF_TYPE_INT8] = "i8",
  15886. [GGUF_TYPE_UINT16] = "u16",
  15887. [GGUF_TYPE_INT16] = "i16",
  15888. [GGUF_TYPE_UINT32] = "u32",
  15889. [GGUF_TYPE_INT32] = "i32",
  15890. [GGUF_TYPE_FLOAT32] = "f32",
  15891. [GGUF_TYPE_BOOL] = "bool",
  15892. [GGUF_TYPE_STRING] = "str",
  15893. [GGUF_TYPE_ARRAY] = "arr",
  15894. [GGUF_TYPE_UINT64] = "u64",
  15895. [GGUF_TYPE_INT64] = "i64",
  15896. [GGUF_TYPE_FLOAT64] = "f64",
  15897. };
  15898. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15899. union gguf_value {
  15900. uint8_t uint8;
  15901. int8_t int8;
  15902. uint16_t uint16;
  15903. int16_t int16;
  15904. uint32_t uint32;
  15905. int32_t int32;
  15906. float float32;
  15907. uint64_t uint64;
  15908. int64_t int64;
  15909. double float64;
  15910. bool bool_;
  15911. struct gguf_str str;
  15912. struct {
  15913. enum gguf_type type;
  15914. uint64_t n; // GGUFv2
  15915. void * data;
  15916. } arr;
  15917. };
  15918. struct gguf_kv {
  15919. struct gguf_str key;
  15920. enum gguf_type type;
  15921. union gguf_value value;
  15922. };
  15923. struct gguf_header {
  15924. char magic[4];
  15925. uint32_t version;
  15926. uint64_t n_tensors; // GGUFv2
  15927. uint64_t n_kv; // GGUFv2
  15928. };
  15929. struct gguf_tensor_info {
  15930. struct gguf_str name;
  15931. uint32_t n_dims;
  15932. uint64_t ne[GGML_MAX_DIMS];
  15933. enum ggml_type type;
  15934. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15935. // for writing API
  15936. const void * data;
  15937. size_t size;
  15938. };
  15939. struct gguf_context {
  15940. struct gguf_header header;
  15941. struct gguf_kv * kv;
  15942. struct gguf_tensor_info * infos;
  15943. size_t alignment;
  15944. size_t offset; // offset of `data` from beginning of file
  15945. size_t size; // size of `data` in bytes
  15946. //uint8_t * padding;
  15947. void * data;
  15948. };
  15949. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15950. const size_t n = fread(dst, 1, size, file);
  15951. *offset += n;
  15952. return n == size;
  15953. }
  15954. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15955. p->n = 0;
  15956. p->data = NULL;
  15957. bool ok = true;
  15958. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15959. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15960. return ok;
  15961. }
  15962. struct gguf_context * gguf_init_empty(void) {
  15963. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15964. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15965. ctx->header.version = GGUF_VERSION;
  15966. ctx->header.n_tensors = 0;
  15967. ctx->header.n_kv = 0;
  15968. ctx->kv = NULL;
  15969. ctx->infos = NULL;
  15970. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15971. ctx->offset = 0;
  15972. ctx->size = 0;
  15973. ctx->data = NULL;
  15974. return ctx;
  15975. }
  15976. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15977. FILE * file = fopen(fname, "rb");
  15978. if (!file) {
  15979. return NULL;
  15980. }
  15981. // offset from start of file
  15982. size_t offset = 0;
  15983. char magic[4];
  15984. // check the magic before making allocations
  15985. {
  15986. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15987. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15988. if (magic[i] != GGUF_MAGIC[i]) {
  15989. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15990. fclose(file);
  15991. return NULL;
  15992. }
  15993. }
  15994. }
  15995. bool ok = true;
  15996. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15997. // read the header
  15998. {
  15999. strncpy(ctx->header.magic, magic, 4);
  16000. ctx->kv = NULL;
  16001. ctx->infos = NULL;
  16002. ctx->data = NULL;
  16003. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16004. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16005. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16006. if (ctx->header.version == 1) {
  16007. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16008. fclose(file);
  16009. gguf_free(ctx);
  16010. return NULL;
  16011. }
  16012. if (!ok) {
  16013. fprintf(stderr, "%s: failed to read header\n", __func__);
  16014. fclose(file);
  16015. gguf_free(ctx);
  16016. return NULL;
  16017. }
  16018. }
  16019. // read the kv pairs
  16020. {
  16021. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16022. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16023. struct gguf_kv * kv = &ctx->kv[i];
  16024. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16025. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16026. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16027. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16028. switch (kv->type) {
  16029. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16030. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16031. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16032. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16033. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16034. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16035. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16036. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16037. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16038. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16039. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16040. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16041. case GGUF_TYPE_ARRAY:
  16042. {
  16043. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16044. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16045. switch (kv->value.arr.type) {
  16046. case GGUF_TYPE_UINT8:
  16047. case GGUF_TYPE_INT8:
  16048. case GGUF_TYPE_UINT16:
  16049. case GGUF_TYPE_INT16:
  16050. case GGUF_TYPE_UINT32:
  16051. case GGUF_TYPE_INT32:
  16052. case GGUF_TYPE_FLOAT32:
  16053. case GGUF_TYPE_UINT64:
  16054. case GGUF_TYPE_INT64:
  16055. case GGUF_TYPE_FLOAT64:
  16056. case GGUF_TYPE_BOOL:
  16057. {
  16058. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16059. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16060. } break;
  16061. case GGUF_TYPE_STRING:
  16062. {
  16063. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16064. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16065. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16066. }
  16067. } break;
  16068. case GGUF_TYPE_ARRAY:
  16069. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16070. }
  16071. } break;
  16072. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16073. }
  16074. if (!ok) {
  16075. break;
  16076. }
  16077. }
  16078. if (!ok) {
  16079. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16080. fclose(file);
  16081. gguf_free(ctx);
  16082. return NULL;
  16083. }
  16084. }
  16085. // read the tensor infos
  16086. {
  16087. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16088. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16089. struct gguf_tensor_info * info = &ctx->infos[i];
  16090. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16091. info->ne[j] = 1;
  16092. }
  16093. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16094. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16095. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16096. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16097. }
  16098. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16099. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16100. if (!ok) {
  16101. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16102. fclose(file);
  16103. gguf_free(ctx);
  16104. return NULL;
  16105. }
  16106. }
  16107. }
  16108. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16109. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16110. if (alignment_idx != -1) {
  16111. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16112. }
  16113. // we require the data section to be aligned, so take into account any padding
  16114. {
  16115. const size_t offset_pad = offset % ctx->alignment;
  16116. if (offset_pad != 0) {
  16117. offset += ctx->alignment - offset_pad;
  16118. fseek(file, offset, SEEK_SET);
  16119. }
  16120. }
  16121. // store the current file offset - this is where the data section starts
  16122. ctx->offset = offset;
  16123. // compute the total size of the data section, taking into account the alignment
  16124. {
  16125. ctx->size = 0;
  16126. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16127. struct gguf_tensor_info * info = &ctx->infos[i];
  16128. const int64_t ne =
  16129. (int64_t) info->ne[0] *
  16130. (int64_t) info->ne[1] *
  16131. (int64_t) info->ne[2] *
  16132. (int64_t) info->ne[3];
  16133. if (ne % ggml_blck_size(info->type) != 0) {
  16134. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16135. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16136. fclose(file);
  16137. gguf_free(ctx);
  16138. return NULL;
  16139. }
  16140. const size_t size_cur = ggml_row_size(info->type, ne);
  16141. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16142. }
  16143. }
  16144. // load the tensor data only if requested
  16145. if (params.ctx != NULL) {
  16146. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16147. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16148. // the ggml_tensor structs to the appropriate locations in the binary blob
  16149. // compute the exact size needed for the new ggml_context
  16150. const size_t mem_size =
  16151. params.no_alloc ?
  16152. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16153. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16154. struct ggml_init_params pdata = {
  16155. .mem_size = mem_size,
  16156. .mem_buffer = NULL,
  16157. .no_alloc = params.no_alloc,
  16158. };
  16159. *params.ctx = ggml_init(pdata);
  16160. struct ggml_context * ctx_data = *params.ctx;
  16161. struct ggml_tensor * data = NULL;
  16162. if (!params.no_alloc) {
  16163. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16164. ok = ok && data != NULL;
  16165. // read the binary blob with the tensor data
  16166. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16167. if (!ok) {
  16168. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16169. fclose(file);
  16170. ggml_free(ctx_data);
  16171. gguf_free(ctx);
  16172. return NULL;
  16173. }
  16174. ctx->data = data->data;
  16175. }
  16176. ggml_set_no_alloc(ctx_data, true);
  16177. // create the tensors
  16178. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16179. const int64_t ne[GGML_MAX_DIMS] = {
  16180. ctx->infos[i].ne[0],
  16181. ctx->infos[i].ne[1],
  16182. ctx->infos[i].ne[2],
  16183. ctx->infos[i].ne[3],
  16184. };
  16185. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16186. ok = ok && cur != NULL;
  16187. ggml_set_name(cur, ctx->infos[i].name.data);
  16188. if (!ok) {
  16189. break;
  16190. }
  16191. // point the data member to the appropriate location in the binary blob using the tensor infos
  16192. if (!params.no_alloc) {
  16193. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16194. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16195. }
  16196. }
  16197. if (!ok) {
  16198. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16199. fclose(file);
  16200. ggml_free(ctx_data);
  16201. gguf_free(ctx);
  16202. return NULL;
  16203. }
  16204. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16205. }
  16206. fclose(file);
  16207. return ctx;
  16208. }
  16209. void gguf_free(struct gguf_context * ctx) {
  16210. if (ctx == NULL) {
  16211. return;
  16212. }
  16213. if (ctx->kv) {
  16214. // free string memory - not great..
  16215. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16216. struct gguf_kv * kv = &ctx->kv[i];
  16217. if (kv->key.data) {
  16218. free(kv->key.data);
  16219. }
  16220. if (kv->type == GGUF_TYPE_STRING) {
  16221. if (kv->value.str.data) {
  16222. free(kv->value.str.data);
  16223. }
  16224. }
  16225. if (kv->type == GGUF_TYPE_ARRAY) {
  16226. if (kv->value.arr.data) {
  16227. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16228. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16229. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16230. if (str->data) {
  16231. free(str->data);
  16232. }
  16233. }
  16234. }
  16235. free(kv->value.arr.data);
  16236. }
  16237. }
  16238. }
  16239. free(ctx->kv);
  16240. }
  16241. if (ctx->infos) {
  16242. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16243. struct gguf_tensor_info * info = &ctx->infos[i];
  16244. if (info->name.data) {
  16245. free(info->name.data);
  16246. }
  16247. }
  16248. free(ctx->infos);
  16249. }
  16250. GGML_ALIGNED_FREE(ctx);
  16251. }
  16252. const char * gguf_type_name(enum gguf_type type) {
  16253. return GGUF_TYPE_NAME[type];
  16254. }
  16255. int gguf_get_version(const struct gguf_context * ctx) {
  16256. return ctx->header.version;
  16257. }
  16258. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16259. return ctx->alignment;
  16260. }
  16261. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16262. return ctx->offset;
  16263. }
  16264. void * gguf_get_data(const struct gguf_context * ctx) {
  16265. return ctx->data;
  16266. }
  16267. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16268. return ctx->header.n_kv;
  16269. }
  16270. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16271. // return -1 if key not found
  16272. int keyfound = -1;
  16273. const int n_kv = gguf_get_n_kv(ctx);
  16274. for (int i = 0; i < n_kv; ++i) {
  16275. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16276. keyfound = i;
  16277. break;
  16278. }
  16279. }
  16280. return keyfound;
  16281. }
  16282. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16283. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16284. return ctx->kv[key_id].key.data;
  16285. }
  16286. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16287. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16288. return ctx->kv[key_id].type;
  16289. }
  16290. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16291. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16292. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16293. return ctx->kv[key_id].value.arr.type;
  16294. }
  16295. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16296. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16297. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16298. return ctx->kv[key_id].value.arr.data;
  16299. }
  16300. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16303. struct gguf_kv * kv = &ctx->kv[key_id];
  16304. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16305. return str->data;
  16306. }
  16307. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16308. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16309. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16310. return ctx->kv[key_id].value.arr.n;
  16311. }
  16312. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16313. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16314. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16315. return ctx->kv[key_id].value.uint8;
  16316. }
  16317. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16318. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16319. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16320. return ctx->kv[key_id].value.int8;
  16321. }
  16322. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16323. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16324. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16325. return ctx->kv[key_id].value.uint16;
  16326. }
  16327. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16328. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16329. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16330. return ctx->kv[key_id].value.int16;
  16331. }
  16332. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16333. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16334. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16335. return ctx->kv[key_id].value.uint32;
  16336. }
  16337. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16338. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16339. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16340. return ctx->kv[key_id].value.int32;
  16341. }
  16342. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16343. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16344. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16345. return ctx->kv[key_id].value.float32;
  16346. }
  16347. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16348. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16349. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16350. return ctx->kv[key_id].value.uint64;
  16351. }
  16352. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16353. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16354. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16355. return ctx->kv[key_id].value.int64;
  16356. }
  16357. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16358. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16359. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16360. return ctx->kv[key_id].value.float64;
  16361. }
  16362. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16363. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16364. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16365. return ctx->kv[key_id].value.bool_;
  16366. }
  16367. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16368. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16369. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16370. return ctx->kv[key_id].value.str.data;
  16371. }
  16372. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16373. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16374. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16375. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16376. return &ctx->kv[key_id].value;
  16377. }
  16378. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16379. return ctx->header.n_tensors;
  16380. }
  16381. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16382. // return -1 if tensor not found
  16383. int tensorfound = -1;
  16384. const int n_tensors = gguf_get_n_tensors(ctx);
  16385. for (int i = 0; i < n_tensors; ++i) {
  16386. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16387. tensorfound = i;
  16388. break;
  16389. }
  16390. }
  16391. return tensorfound;
  16392. }
  16393. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16394. return ctx->infos[i].offset;
  16395. }
  16396. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16397. return ctx->infos[i].name.data;
  16398. }
  16399. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16400. return ctx->infos[i].type;
  16401. }
  16402. // returns the index
  16403. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16404. const int idx = gguf_find_key(ctx, key);
  16405. if (idx >= 0) {
  16406. return idx;
  16407. }
  16408. const int n_kv = gguf_get_n_kv(ctx);
  16409. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16410. ctx->kv[n_kv].key.n = strlen(key);
  16411. ctx->kv[n_kv].key.data = strdup(key);
  16412. ctx->header.n_kv++;
  16413. return n_kv;
  16414. }
  16415. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16416. const int idx = gguf_get_or_add_key(ctx, key);
  16417. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16418. ctx->kv[idx].value.uint8 = val;
  16419. }
  16420. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16421. const int idx = gguf_get_or_add_key(ctx, key);
  16422. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16423. ctx->kv[idx].value.int8 = val;
  16424. }
  16425. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16426. const int idx = gguf_get_or_add_key(ctx, key);
  16427. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16428. ctx->kv[idx].value.uint16 = val;
  16429. }
  16430. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16431. const int idx = gguf_get_or_add_key(ctx, key);
  16432. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16433. ctx->kv[idx].value.int16 = val;
  16434. }
  16435. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16436. const int idx = gguf_get_or_add_key(ctx, key);
  16437. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16438. ctx->kv[idx].value.uint32 = val;
  16439. }
  16440. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16441. const int idx = gguf_get_or_add_key(ctx, key);
  16442. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16443. ctx->kv[idx].value.int32 = val;
  16444. }
  16445. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16446. const int idx = gguf_get_or_add_key(ctx, key);
  16447. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16448. ctx->kv[idx].value.float32 = val;
  16449. }
  16450. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16451. const int idx = gguf_get_or_add_key(ctx, key);
  16452. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16453. ctx->kv[idx].value.uint64 = val;
  16454. }
  16455. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16456. const int idx = gguf_get_or_add_key(ctx, key);
  16457. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16458. ctx->kv[idx].value.int64 = val;
  16459. }
  16460. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16461. const int idx = gguf_get_or_add_key(ctx, key);
  16462. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16463. ctx->kv[idx].value.float64 = val;
  16464. }
  16465. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16466. const int idx = gguf_get_or_add_key(ctx, key);
  16467. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16468. ctx->kv[idx].value.bool_ = val;
  16469. }
  16470. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16471. const int idx = gguf_get_or_add_key(ctx, key);
  16472. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16473. ctx->kv[idx].value.str.n = strlen(val);
  16474. ctx->kv[idx].value.str.data = strdup(val);
  16475. }
  16476. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16477. const int idx = gguf_get_or_add_key(ctx, key);
  16478. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16479. ctx->kv[idx].value.arr.type = type;
  16480. ctx->kv[idx].value.arr.n = n;
  16481. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16482. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16483. }
  16484. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16485. const int idx = gguf_get_or_add_key(ctx, key);
  16486. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16487. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16488. ctx->kv[idx].value.arr.n = n;
  16489. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16490. for (int i = 0; i < n; i++) {
  16491. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16492. str->n = strlen(data[i]);
  16493. str->data = strdup(data[i]);
  16494. }
  16495. }
  16496. // set or add KV pairs from another context
  16497. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16498. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16499. switch (src->kv[i].type) {
  16500. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16501. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16502. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16503. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16504. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16505. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16506. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16507. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16508. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16509. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16510. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16511. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16512. case GGUF_TYPE_ARRAY:
  16513. {
  16514. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16515. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16516. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16517. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16518. }
  16519. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16520. free((void *)data);
  16521. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16522. GGML_ASSERT(false && "nested arrays not supported");
  16523. } else {
  16524. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16525. }
  16526. } break;
  16527. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16528. }
  16529. }
  16530. }
  16531. void gguf_add_tensor(
  16532. struct gguf_context * ctx,
  16533. const struct ggml_tensor * tensor) {
  16534. const int idx = ctx->header.n_tensors;
  16535. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16536. ctx->infos[idx].name.n = strlen(tensor->name);
  16537. ctx->infos[idx].name.data = strdup(tensor->name);
  16538. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16539. ctx->infos[idx].ne[i] = 1;
  16540. }
  16541. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16542. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16543. ctx->infos[idx].ne[i] = tensor->ne[i];
  16544. }
  16545. ctx->infos[idx].type = tensor->type;
  16546. ctx->infos[idx].offset = 0;
  16547. ctx->infos[idx].data = tensor->data;
  16548. ctx->infos[idx].size = ggml_nbytes(tensor);
  16549. if (ctx->header.n_tensors > 0) {
  16550. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16551. }
  16552. ctx->header.n_tensors++;
  16553. }
  16554. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16555. const int idx = gguf_find_tensor(ctx, name);
  16556. if (idx < 0) {
  16557. GGML_ASSERT(false && "tensor not found");
  16558. }
  16559. ctx->infos[idx].type = type;
  16560. }
  16561. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16562. const int idx = gguf_find_tensor(ctx, name);
  16563. if (idx < 0) {
  16564. GGML_ASSERT(false && "tensor not found");
  16565. }
  16566. ctx->infos[idx].data = data;
  16567. ctx->infos[idx].size = size;
  16568. // update offsets
  16569. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16570. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16571. }
  16572. }
  16573. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16574. // fwrite(&val->n, sizeof(val->n), 1, file);
  16575. // fwrite(val->data, sizeof(char), val->n, file);
  16576. //}
  16577. //
  16578. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16579. // fwrite(val, sizeof(char), size, file);
  16580. //}
  16581. struct gguf_buf {
  16582. void * data;
  16583. size_t size;
  16584. size_t offset;
  16585. };
  16586. static struct gguf_buf gguf_buf_init(size_t size) {
  16587. struct gguf_buf buf = {
  16588. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16589. /*buf.size =*/ size,
  16590. /*buf.offset =*/ 0,
  16591. };
  16592. return buf;
  16593. }
  16594. static void gguf_buf_free(struct gguf_buf buf) {
  16595. if (buf.data) {
  16596. free(buf.data);
  16597. }
  16598. }
  16599. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16600. if (buf->offset + size > buf->size) {
  16601. buf->size = 1.5*(buf->offset + size);
  16602. if (buf->data) {
  16603. buf->data = realloc(buf->data, buf->size);
  16604. }
  16605. }
  16606. }
  16607. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16608. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16609. if (buf->data) {
  16610. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16611. }
  16612. buf->offset += sizeof(val->n);
  16613. if (buf->data) {
  16614. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16615. }
  16616. buf->offset += val->n;
  16617. }
  16618. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16619. gguf_buf_grow(buf, el_size);
  16620. if (buf->data) {
  16621. memcpy((char *) buf->data + buf->offset, val, el_size);
  16622. }
  16623. buf->offset += el_size;
  16624. }
  16625. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16626. // write header
  16627. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16628. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16629. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16630. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16631. // write key-value pairs
  16632. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16633. struct gguf_kv * kv = &ctx->kv[i];
  16634. gguf_bwrite_str(buf, &kv->key);
  16635. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16636. switch (kv->type) {
  16637. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16638. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16639. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16640. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16641. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16642. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16643. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16644. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16645. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16646. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16647. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16648. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16649. case GGUF_TYPE_ARRAY:
  16650. {
  16651. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16652. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16653. switch (kv->value.arr.type) {
  16654. case GGUF_TYPE_UINT8:
  16655. case GGUF_TYPE_INT8:
  16656. case GGUF_TYPE_UINT16:
  16657. case GGUF_TYPE_INT16:
  16658. case GGUF_TYPE_UINT32:
  16659. case GGUF_TYPE_INT32:
  16660. case GGUF_TYPE_FLOAT32:
  16661. case GGUF_TYPE_UINT64:
  16662. case GGUF_TYPE_INT64:
  16663. case GGUF_TYPE_FLOAT64:
  16664. case GGUF_TYPE_BOOL:
  16665. {
  16666. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16667. } break;
  16668. case GGUF_TYPE_STRING:
  16669. {
  16670. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16671. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16672. }
  16673. } break;
  16674. case GGUF_TYPE_ARRAY:
  16675. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16676. }
  16677. } break;
  16678. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16679. }
  16680. }
  16681. // write tensor infos
  16682. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16683. struct gguf_tensor_info * info = &ctx->infos[i];
  16684. gguf_bwrite_str(buf, &info->name);
  16685. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16686. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16687. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16688. }
  16689. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16690. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16691. }
  16692. // we require the data section to be aligned, so take into account any padding
  16693. {
  16694. const size_t offset = buf->offset;
  16695. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16696. if (offset_pad != offset) {
  16697. uint8_t pad = 0;
  16698. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16699. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16700. }
  16701. }
  16702. }
  16703. if (only_meta) {
  16704. return;
  16705. }
  16706. size_t offset = 0;
  16707. // write tensor data
  16708. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16709. struct gguf_tensor_info * info = &ctx->infos[i];
  16710. const size_t size = info->size;
  16711. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16712. gguf_bwrite_el(buf, info->data, size);
  16713. if (size_pad != size) {
  16714. uint8_t pad = 0;
  16715. for (size_t j = 0; j < size_pad - size; ++j) {
  16716. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16717. }
  16718. }
  16719. GGML_ASSERT(offset == info->offset);
  16720. offset += size_pad;
  16721. }
  16722. }
  16723. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16724. FILE * file = fopen(fname, "wb");
  16725. if (!file) {
  16726. GGML_ASSERT(false && "failed to open file for writing");
  16727. }
  16728. struct gguf_buf buf = gguf_buf_init(16*1024);
  16729. gguf_write_to_buf(ctx, &buf, only_meta);
  16730. fwrite(buf.data, 1, buf.offset, file);
  16731. gguf_buf_free(buf);
  16732. fclose(file);
  16733. }
  16734. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16735. // no allocs - only compute size
  16736. struct gguf_buf buf = gguf_buf_init(0);
  16737. gguf_write_to_buf(ctx, &buf, true);
  16738. return buf.offset;
  16739. }
  16740. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16741. struct gguf_buf buf = gguf_buf_init(16*1024);
  16742. gguf_write_to_buf(ctx, &buf, true);
  16743. memcpy(data, buf.data, buf.offset);
  16744. gguf_buf_free(buf);
  16745. }
  16746. ////////////////////////////////////////////////////////////////////////////////
  16747. int ggml_cpu_has_avx(void) {
  16748. #if defined(__AVX__)
  16749. return 1;
  16750. #else
  16751. return 0;
  16752. #endif
  16753. }
  16754. int ggml_cpu_has_avx_vnni(void) {
  16755. #if defined(__AVXVNNI__)
  16756. return 1;
  16757. #else
  16758. return 0;
  16759. #endif
  16760. }
  16761. int ggml_cpu_has_avx2(void) {
  16762. #if defined(__AVX2__)
  16763. return 1;
  16764. #else
  16765. return 0;
  16766. #endif
  16767. }
  16768. int ggml_cpu_has_avx512(void) {
  16769. #if defined(__AVX512F__)
  16770. return 1;
  16771. #else
  16772. return 0;
  16773. #endif
  16774. }
  16775. int ggml_cpu_has_avx512_vbmi(void) {
  16776. #if defined(__AVX512VBMI__)
  16777. return 1;
  16778. #else
  16779. return 0;
  16780. #endif
  16781. }
  16782. int ggml_cpu_has_avx512_vnni(void) {
  16783. #if defined(__AVX512VNNI__)
  16784. return 1;
  16785. #else
  16786. return 0;
  16787. #endif
  16788. }
  16789. int ggml_cpu_has_fma(void) {
  16790. #if defined(__FMA__)
  16791. return 1;
  16792. #else
  16793. return 0;
  16794. #endif
  16795. }
  16796. int ggml_cpu_has_neon(void) {
  16797. #if defined(__ARM_NEON)
  16798. return 1;
  16799. #else
  16800. return 0;
  16801. #endif
  16802. }
  16803. int ggml_cpu_has_arm_fma(void) {
  16804. #if defined(__ARM_FEATURE_FMA)
  16805. return 1;
  16806. #else
  16807. return 0;
  16808. #endif
  16809. }
  16810. int ggml_cpu_has_metal(void) {
  16811. #if defined(GGML_USE_METAL)
  16812. return 1;
  16813. #else
  16814. return 0;
  16815. #endif
  16816. }
  16817. int ggml_cpu_has_f16c(void) {
  16818. #if defined(__F16C__)
  16819. return 1;
  16820. #else
  16821. return 0;
  16822. #endif
  16823. }
  16824. int ggml_cpu_has_fp16_va(void) {
  16825. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16826. return 1;
  16827. #else
  16828. return 0;
  16829. #endif
  16830. }
  16831. int ggml_cpu_has_wasm_simd(void) {
  16832. #if defined(__wasm_simd128__)
  16833. return 1;
  16834. #else
  16835. return 0;
  16836. #endif
  16837. }
  16838. int ggml_cpu_has_blas(void) {
  16839. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16840. return 1;
  16841. #else
  16842. return 0;
  16843. #endif
  16844. }
  16845. int ggml_cpu_has_cublas(void) {
  16846. #if defined(GGML_USE_CUBLAS)
  16847. return 1;
  16848. #else
  16849. return 0;
  16850. #endif
  16851. }
  16852. int ggml_cpu_has_clblast(void) {
  16853. #if defined(GGML_USE_CLBLAST)
  16854. return 1;
  16855. #else
  16856. return 0;
  16857. #endif
  16858. }
  16859. int ggml_cpu_has_gpublas(void) {
  16860. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16861. }
  16862. int ggml_cpu_has_sse3(void) {
  16863. #if defined(__SSE3__)
  16864. return 1;
  16865. #else
  16866. return 0;
  16867. #endif
  16868. }
  16869. int ggml_cpu_has_ssse3(void) {
  16870. #if defined(__SSSE3__)
  16871. return 1;
  16872. #else
  16873. return 0;
  16874. #endif
  16875. }
  16876. int ggml_cpu_has_vsx(void) {
  16877. #if defined(__POWER9_VECTOR__)
  16878. return 1;
  16879. #else
  16880. return 0;
  16881. #endif
  16882. }
  16883. ////////////////////////////////////////////////////////////////////////////////