passkey.cpp 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include <cmath>
  6. #include <cstdio>
  7. #include <string>
  8. #include <vector>
  9. static void print_usage(int, char ** argv) {
  10. LOG("\nexample usage:\n");
  11. LOG("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
  12. LOG("\n");
  13. }
  14. int main(int argc, char ** argv) {
  15. common_params params;
  16. params.n_junk = 250;
  17. params.n_keep = 32;
  18. params.i_pos = -1;
  19. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
  20. return 1;
  21. }
  22. common_init();
  23. int n_junk = params.n_junk;
  24. int n_keep = params.n_keep;
  25. int n_grp = params.grp_attn_n;
  26. int i_pos = params.i_pos;
  27. if (i_pos == -1) {
  28. i_pos = rand() % n_junk;
  29. }
  30. const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
  31. const std::string prompt_suffix = " What is the pass key? The pass key is";
  32. // generate junk text
  33. params.prompt = prompt_prefix;
  34. const int passkey = rand() % 50000 + 1;
  35. for (int i = 0; i < n_junk; i++) {
  36. if (i % n_junk == i_pos) {
  37. params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
  38. }
  39. params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
  40. }
  41. params.prompt += prompt_suffix;
  42. // init LLM
  43. llama_backend_init();
  44. llama_numa_init(params.numa);
  45. // initialize the model
  46. llama_model_params model_params = common_model_params_to_llama(params);
  47. llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
  48. if (model == NULL) {
  49. LOG_ERR("%s: unable to load model\n" , __func__);
  50. return 1;
  51. }
  52. const llama_vocab * vocab = llama_model_get_vocab(model);
  53. // initialize the context
  54. llama_context_params ctx_params = common_context_params_to_llama(params);
  55. ctx_params.n_ctx = llama_model_n_ctx_train(model)*n_grp + n_keep;
  56. GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
  57. llama_context * ctx = llama_init_from_model(model, ctx_params);
  58. if (ctx == NULL) {
  59. LOG_ERR("%s: failed to create the llama_context\n" , __func__);
  60. return 1;
  61. }
  62. auto sparams = llama_sampler_chain_default_params();
  63. llama_sampler * smpl = llama_sampler_chain_init(sparams);
  64. llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
  65. // tokenize the prompt
  66. std::vector<llama_token> tokens_list;
  67. tokens_list = common_tokenize(ctx, params.prompt, true);
  68. // tokenize the prefix and use it as a sink
  69. const int n_tokens_prefix = common_tokenize(ctx, prompt_prefix, true).size();
  70. const int n_tokens_all = tokens_list.size();
  71. // we leave a margin of 16 tokens for the generated text - it should contain just the passkey
  72. const int n_predict = 16;
  73. // total length of the sequences including the prompt
  74. const int n_len = n_tokens_all + n_predict;
  75. const int n_ctx = llama_n_ctx(ctx) - n_keep;
  76. const int n_kv_req = llama_n_ctx(ctx);
  77. const int n_batch = ctx_params.n_batch;
  78. const int n_batch_grp = ctx_params.n_batch/n_grp;
  79. LOG_INF("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
  80. // print the prompt token-by-token
  81. LOG_INF("\n");
  82. LOG_INF("prefix tokens: %d\n", n_tokens_prefix);
  83. LOG_INF("prompt tokens: %d\n", n_tokens_all);
  84. //LOG_INF("prompt: %s\n", params.prompt.c_str());
  85. llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
  86. int n_past = 0;
  87. // fill the KV cache
  88. for (int i = 0; i < n_ctx; i += n_batch) {
  89. if (i > 0 && n_grp > 1) {
  90. // if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
  91. const int ib = i/n_batch - 1;
  92. const int bd = n_batch_grp*(n_grp - 1);
  93. llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
  94. llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
  95. llama_kv_cache_update (ctx);
  96. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  97. }
  98. common_batch_clear(batch);
  99. for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
  100. common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
  101. }
  102. if (i + n_batch >= n_tokens_all) {
  103. batch.logits[batch.n_tokens - 1] = true;
  104. }
  105. if (llama_decode(ctx, batch) != 0) {
  106. LOG_INF("%s: llama_decode() failed\n", __func__);
  107. return 1;
  108. }
  109. LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
  110. if (i + n_batch >= n_tokens_all) {
  111. break;
  112. }
  113. }
  114. for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
  115. const int n_discard = n_batch;
  116. LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
  117. llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
  118. llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
  119. //llama_kv_cache_defrag (ctx);
  120. llama_kv_cache_update (ctx);
  121. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  122. common_batch_clear(batch);
  123. for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
  124. common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
  125. }
  126. if (i + n_batch >= n_tokens_all) {
  127. batch.logits[batch.n_tokens - 1] = true;
  128. }
  129. if (llama_decode(ctx, batch) != 0) {
  130. LOG_ERR("%s: llama_decode() failed\n", __func__);
  131. return 1;
  132. }
  133. LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
  134. }
  135. {
  136. const int n_discard = n_past - n_ctx + n_predict;
  137. if (n_discard > 0) {
  138. LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
  139. llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
  140. llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
  141. //llama_kv_cache_defrag (ctx);
  142. llama_kv_cache_update (ctx);
  143. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  144. }
  145. }
  146. LOG_INF("\n");
  147. LOG_INF("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
  148. LOG_INF("\n");
  149. // main loop
  150. int n_cur = n_tokens_all;
  151. int n_decode = 0;
  152. LOG_INF("%s", prompt_suffix.c_str());
  153. const auto t_main_start = ggml_time_us();
  154. while (n_cur <= n_len) {
  155. // sample the next token
  156. {
  157. const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
  158. // is it an end of generation?
  159. if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len) {
  160. LOG("\n");
  161. break;
  162. }
  163. LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
  164. n_decode += 1;
  165. // prepare the next batch
  166. common_batch_clear(batch);
  167. // push this new token for next evaluation
  168. common_batch_add(batch, new_token_id, n_past++, { 0 }, true);
  169. }
  170. n_cur += 1;
  171. // evaluate the current batch with the transformer model
  172. if (llama_decode(ctx, batch)) {
  173. LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
  174. return 1;
  175. }
  176. }
  177. LOG("\n");
  178. const auto t_main_end = ggml_time_us();
  179. LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
  180. __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
  181. LOG("\n");
  182. llama_perf_context_print(ctx);
  183. LOG("\n");
  184. llama_sampler_free(smpl);
  185. llama_batch_free(batch);
  186. llama_free(ctx);
  187. llama_model_free(model);
  188. llama_backend_free();
  189. return 0;
  190. }