1
0

server.cpp 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. enum oaicompat_type {
  61. OAICOMPAT_TYPE_NONE,
  62. OAICOMPAT_TYPE_CHAT,
  63. OAICOMPAT_TYPE_COMPLETION,
  64. OAICOMPAT_TYPE_EMBEDDING,
  65. };
  66. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  67. enum error_type {
  68. ERROR_TYPE_INVALID_REQUEST,
  69. ERROR_TYPE_AUTHENTICATION,
  70. ERROR_TYPE_SERVER,
  71. ERROR_TYPE_NOT_FOUND,
  72. ERROR_TYPE_PERMISSION,
  73. ERROR_TYPE_UNAVAILABLE, // custom error
  74. ERROR_TYPE_NOT_SUPPORTED, // custom error
  75. };
  76. struct slot_params {
  77. bool stream = true;
  78. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  79. bool return_tokens = false;
  80. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  81. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  82. int32_t n_predict = -1; // new tokens to predict
  83. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  84. int64_t t_max_prompt_ms = -1; // TODO: implement
  85. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  86. std::vector<common_adapter_lora_info> lora;
  87. std::vector<std::string> antiprompt;
  88. std::vector<std::string> response_fields;
  89. bool timings_per_token = false;
  90. bool post_sampling_probs = false;
  91. bool ignore_eos = false;
  92. struct common_params_sampling sampling;
  93. struct common_params_speculative speculative;
  94. // OAI-compat fields
  95. bool verbose = false;
  96. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  97. std::string oaicompat_model;
  98. std::string oaicompat_cmpl_id;
  99. json to_json() const {
  100. std::vector<std::string> samplers;
  101. samplers.reserve(sampling.samplers.size());
  102. for (const auto & sampler : sampling.samplers) {
  103. samplers.emplace_back(common_sampler_type_to_str(sampler));
  104. }
  105. json lora = json::array();
  106. for (size_t i = 0; i < this->lora.size(); ++i) {
  107. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  108. }
  109. return json {
  110. {"n_predict", n_predict}, // Server configured n_predict
  111. {"seed", sampling.seed},
  112. {"temperature", sampling.temp},
  113. {"dynatemp_range", sampling.dynatemp_range},
  114. {"dynatemp_exponent", sampling.dynatemp_exponent},
  115. {"top_k", sampling.top_k},
  116. {"top_p", sampling.top_p},
  117. {"min_p", sampling.min_p},
  118. {"xtc_probability", sampling.xtc_probability},
  119. {"xtc_threshold", sampling.xtc_threshold},
  120. {"typical_p", sampling.typ_p},
  121. {"repeat_last_n", sampling.penalty_last_n},
  122. {"repeat_penalty", sampling.penalty_repeat},
  123. {"presence_penalty", sampling.penalty_present},
  124. {"frequency_penalty", sampling.penalty_freq},
  125. {"dry_multiplier", sampling.dry_multiplier},
  126. {"dry_base", sampling.dry_base},
  127. {"dry_allowed_length", sampling.dry_allowed_length},
  128. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  129. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  130. {"mirostat", sampling.mirostat},
  131. {"mirostat_tau", sampling.mirostat_tau},
  132. {"mirostat_eta", sampling.mirostat_eta},
  133. {"stop", antiprompt},
  134. {"max_tokens", n_predict}, // User configured n_predict
  135. {"n_keep", n_keep},
  136. {"n_discard", n_discard},
  137. {"ignore_eos", sampling.ignore_eos},
  138. {"stream", stream},
  139. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  140. {"n_probs", sampling.n_probs},
  141. {"min_keep", sampling.min_keep},
  142. {"grammar", sampling.grammar},
  143. {"samplers", samplers},
  144. {"speculative.n_max", speculative.n_max},
  145. {"speculative.n_min", speculative.n_min},
  146. {"speculative.p_min", speculative.p_min},
  147. {"timings_per_token", timings_per_token},
  148. {"post_sampling_probs", post_sampling_probs},
  149. {"lora", lora},
  150. };
  151. }
  152. };
  153. struct server_task {
  154. int id = -1; // to be filled by server_queue
  155. int index = -1; // used when there are multiple prompts (batch request)
  156. server_task_type type;
  157. // used by SERVER_TASK_TYPE_CANCEL
  158. int id_target = -1;
  159. // used by SERVER_TASK_TYPE_INFERENCE
  160. slot_params params;
  161. llama_tokens prompt_tokens;
  162. int id_selected_slot = -1;
  163. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  164. struct slot_action {
  165. int slot_id;
  166. std::string filename;
  167. std::string filepath;
  168. };
  169. slot_action slot_action;
  170. // used by SERVER_TASK_TYPE_METRICS
  171. bool metrics_reset_bucket = false;
  172. // used by SERVER_TASK_TYPE_SET_LORA
  173. std::vector<common_adapter_lora_info> set_lora;
  174. server_task(server_task_type type) : type(type) {}
  175. static slot_params params_from_json_cmpl(
  176. const llama_context * ctx,
  177. const common_params & params_base,
  178. const json & data) {
  179. const llama_model * model = llama_get_model(ctx);
  180. const llama_vocab * vocab = llama_model_get_vocab(model);
  181. slot_params params;
  182. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  183. slot_params defaults;
  184. defaults.sampling = params_base.sampling;
  185. defaults.speculative = params_base.speculative;
  186. // enabling this will output extra debug information in the HTTP responses from the server
  187. params.verbose = params_base.verbosity > 9;
  188. params.timings_per_token = json_value(data, "timings_per_token", false);
  189. params.stream = json_value(data, "stream", false);
  190. params.cache_prompt = json_value(data, "cache_prompt", true);
  191. params.return_tokens = json_value(data, "return_tokens", false);
  192. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  193. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  194. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  195. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  196. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  197. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  198. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  199. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  200. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  201. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  202. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  203. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  204. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  205. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  206. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  207. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  208. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  209. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  210. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  211. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  212. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  213. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  214. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  215. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  216. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  217. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  218. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  219. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  220. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  221. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  222. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  223. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  224. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  225. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  226. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  227. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  228. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  229. if (data.contains("lora")) {
  230. if (data.at("lora").is_array()) {
  231. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  232. } else {
  233. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  234. }
  235. } else {
  236. params.lora = params_base.lora_adapters;
  237. }
  238. // TODO: add more sanity checks for the input parameters
  239. if (params.sampling.penalty_last_n < -1) {
  240. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  241. }
  242. if (params.sampling.dry_penalty_last_n < -1) {
  243. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  244. }
  245. if (params.sampling.penalty_last_n == -1) {
  246. // note: should be the slot's context and not the full context, but it's ok
  247. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  248. }
  249. if (params.sampling.dry_penalty_last_n == -1) {
  250. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  251. }
  252. if (params.sampling.dry_base < 1.0f) {
  253. params.sampling.dry_base = defaults.sampling.dry_base;
  254. }
  255. // sequence breakers for DRY
  256. {
  257. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  258. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  259. if (data.contains("dry_sequence_breakers")) {
  260. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  261. if (params.sampling.dry_sequence_breakers.empty()) {
  262. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  263. }
  264. }
  265. }
  266. // process "json_schema" and "grammar"
  267. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  268. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  269. }
  270. if (data.contains("json_schema") && !data.contains("grammar")) {
  271. try {
  272. auto schema = json_value(data, "json_schema", json::object());
  273. params.sampling.grammar = json_schema_to_grammar(schema);
  274. } catch (const std::exception & e) {
  275. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  276. }
  277. } else {
  278. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  279. }
  280. {
  281. params.sampling.logit_bias.clear();
  282. params.ignore_eos = json_value(data, "ignore_eos", false);
  283. const auto & logit_bias = data.find("logit_bias");
  284. if (logit_bias != data.end() && logit_bias->is_array()) {
  285. const int n_vocab = llama_vocab_n_tokens(vocab);
  286. for (const auto & el : *logit_bias) {
  287. // TODO: we may want to throw errors here, in case "el" is incorrect
  288. if (el.is_array() && el.size() == 2) {
  289. float bias;
  290. if (el[1].is_number()) {
  291. bias = el[1].get<float>();
  292. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  293. bias = -INFINITY;
  294. } else {
  295. continue;
  296. }
  297. if (el[0].is_number_integer()) {
  298. llama_token tok = el[0].get<llama_token>();
  299. if (tok >= 0 && tok < n_vocab) {
  300. params.sampling.logit_bias.push_back({tok, bias});
  301. }
  302. } else if (el[0].is_string()) {
  303. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  304. for (auto tok : toks) {
  305. params.sampling.logit_bias.push_back({tok, bias});
  306. }
  307. }
  308. }
  309. }
  310. }
  311. }
  312. {
  313. params.antiprompt.clear();
  314. const auto & stop = data.find("stop");
  315. if (stop != data.end() && stop->is_array()) {
  316. for (const auto & word : *stop) {
  317. if (!word.empty()) {
  318. params.antiprompt.push_back(word);
  319. }
  320. }
  321. }
  322. }
  323. {
  324. const auto & samplers = data.find("samplers");
  325. if (samplers != data.end()) {
  326. if (samplers->is_array()) {
  327. std::vector<std::string> sampler_names;
  328. for (const auto & name : *samplers) {
  329. if (name.is_string()) {
  330. sampler_names.emplace_back(name);
  331. }
  332. }
  333. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  334. } else if (samplers->is_string()){
  335. std::string sampler_string;
  336. for (const auto & name : *samplers) {
  337. sampler_string += name;
  338. }
  339. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  340. }
  341. } else {
  342. params.sampling.samplers = defaults.sampling.samplers;
  343. }
  344. }
  345. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  346. params.oaicompat_model = json_value(data, "model", model_name);
  347. return params;
  348. }
  349. // utility function
  350. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  351. std::unordered_set<int> ids(tasks.size());
  352. for (size_t i = 0; i < tasks.size(); i++) {
  353. ids.insert(tasks[i].id);
  354. }
  355. return ids;
  356. }
  357. };
  358. struct result_timings {
  359. int32_t prompt_n = -1;
  360. double prompt_ms;
  361. double prompt_per_token_ms;
  362. double prompt_per_second;
  363. int32_t predicted_n = -1;
  364. double predicted_ms;
  365. double predicted_per_token_ms;
  366. double predicted_per_second;
  367. json to_json() const {
  368. return {
  369. {"prompt_n", prompt_n},
  370. {"prompt_ms", prompt_ms},
  371. {"prompt_per_token_ms", prompt_per_token_ms},
  372. {"prompt_per_second", prompt_per_second},
  373. {"predicted_n", predicted_n},
  374. {"predicted_ms", predicted_ms},
  375. {"predicted_per_token_ms", predicted_per_token_ms},
  376. {"predicted_per_second", predicted_per_second},
  377. };
  378. }
  379. };
  380. struct server_task_result {
  381. int id = -1;
  382. int id_slot = -1;
  383. virtual bool is_error() {
  384. // only used by server_task_result_error
  385. return false;
  386. }
  387. virtual bool is_stop() {
  388. // only used by server_task_result_cmpl_*
  389. return false;
  390. }
  391. virtual int get_index() {
  392. return -1;
  393. }
  394. virtual json to_json() = 0;
  395. virtual ~server_task_result() = default;
  396. };
  397. // using shared_ptr for polymorphism of server_task_result
  398. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  399. inline std::string stop_type_to_str(stop_type type) {
  400. switch (type) {
  401. case STOP_TYPE_EOS: return "eos";
  402. case STOP_TYPE_WORD: return "word";
  403. case STOP_TYPE_LIMIT: return "limit";
  404. default: return "none";
  405. }
  406. }
  407. struct completion_token_output {
  408. llama_token tok;
  409. float prob;
  410. std::string text_to_send;
  411. struct prob_info {
  412. llama_token tok;
  413. std::string txt;
  414. float prob;
  415. };
  416. std::vector<prob_info> probs;
  417. json to_json(bool post_sampling_probs) const {
  418. json probs_for_token = json::array();
  419. for (const auto & p : probs) {
  420. std::string txt(p.txt);
  421. txt.resize(validate_utf8(txt));
  422. probs_for_token.push_back(json {
  423. {"id", p.tok},
  424. {"token", txt},
  425. {"bytes", str_to_bytes(p.txt)},
  426. {
  427. post_sampling_probs ? "prob" : "logprob",
  428. post_sampling_probs ? p.prob : logarithm(p.prob)
  429. },
  430. });
  431. }
  432. return probs_for_token;
  433. }
  434. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  435. json out = json::array();
  436. for (const auto & p : probs) {
  437. std::string txt(p.text_to_send);
  438. txt.resize(validate_utf8(txt));
  439. out.push_back(json {
  440. {"id", p.tok},
  441. {"token", txt},
  442. {"bytes", str_to_bytes(p.text_to_send)},
  443. {
  444. post_sampling_probs ? "prob" : "logprob",
  445. post_sampling_probs ? p.prob : logarithm(p.prob)
  446. },
  447. {
  448. post_sampling_probs ? "top_probs" : "top_logprobs",
  449. p.to_json(post_sampling_probs)
  450. },
  451. });
  452. }
  453. return out;
  454. }
  455. static float logarithm(float x) {
  456. // nlohmann::json converts -inf to null, so we need to prevent that
  457. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  458. }
  459. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  460. std::vector<unsigned char> bytes;
  461. for (unsigned char c : str) {
  462. bytes.push_back(c);
  463. }
  464. return bytes;
  465. }
  466. };
  467. struct server_task_result_cmpl_final : server_task_result {
  468. int index = 0;
  469. std::string content;
  470. llama_tokens tokens;
  471. bool stream;
  472. result_timings timings;
  473. std::string prompt;
  474. bool truncated;
  475. int32_t n_decoded;
  476. int32_t n_prompt_tokens;
  477. int32_t n_tokens_cached;
  478. bool has_new_line;
  479. std::string stopping_word;
  480. stop_type stop = STOP_TYPE_NONE;
  481. bool post_sampling_probs;
  482. std::vector<completion_token_output> probs_output;
  483. std::vector<std::string> response_fields;
  484. slot_params generation_params;
  485. // OAI-compat fields
  486. bool verbose = false;
  487. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  488. std::string oaicompat_model;
  489. std::string oaicompat_cmpl_id;
  490. virtual int get_index() override {
  491. return index;
  492. }
  493. virtual bool is_stop() override {
  494. return true; // in stream mode, final responses are considered stop
  495. }
  496. virtual json to_json() override {
  497. switch (oaicompat) {
  498. case OAICOMPAT_TYPE_NONE:
  499. return to_json_non_oaicompat();
  500. case OAICOMPAT_TYPE_COMPLETION:
  501. return to_json_oaicompat();
  502. case OAICOMPAT_TYPE_CHAT:
  503. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  504. default:
  505. GGML_ASSERT(false && "Invalid oaicompat_type");
  506. }
  507. }
  508. json to_json_non_oaicompat() {
  509. json res = json {
  510. {"index", index},
  511. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  512. {"tokens", stream ? llama_tokens {} : tokens},
  513. {"id_slot", id_slot},
  514. {"stop", true},
  515. {"model", oaicompat_model},
  516. {"tokens_predicted", n_decoded},
  517. {"tokens_evaluated", n_prompt_tokens},
  518. {"generation_settings", generation_params.to_json()},
  519. {"prompt", prompt},
  520. {"has_new_line", has_new_line},
  521. {"truncated", truncated},
  522. {"stop_type", stop_type_to_str(stop)},
  523. {"stopping_word", stopping_word},
  524. {"tokens_cached", n_tokens_cached},
  525. {"timings", timings.to_json()},
  526. };
  527. if (!stream && !probs_output.empty()) {
  528. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  529. }
  530. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  531. }
  532. json to_json_oaicompat() {
  533. std::time_t t = std::time(0);
  534. json logprobs = json(nullptr); // OAI default to null
  535. if (!stream && probs_output.size() > 0) {
  536. logprobs = json{
  537. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  538. };
  539. }
  540. json finish_reason = "length";
  541. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  542. finish_reason = "stop";
  543. }
  544. json res = json {
  545. {"choices", json::array({
  546. json{
  547. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  548. {"index", index},
  549. {"logprobs", logprobs},
  550. {"finish_reason", finish_reason},
  551. }
  552. })},
  553. {"created", t},
  554. {"model", oaicompat_model},
  555. {"system_fingerprint", build_info},
  556. {"object", "text_completion"},
  557. {"usage", json {
  558. {"completion_tokens", n_decoded},
  559. {"prompt_tokens", n_prompt_tokens},
  560. {"total_tokens", n_decoded + n_prompt_tokens}
  561. }},
  562. {"id", oaicompat_cmpl_id}
  563. };
  564. // extra fields for debugging purposes
  565. if (verbose) {
  566. res["__verbose"] = to_json_non_oaicompat();
  567. }
  568. if (timings.prompt_n >= 0) {
  569. res.push_back({"timings", timings.to_json()});
  570. }
  571. return res;
  572. }
  573. json to_json_oaicompat_chat() {
  574. std::string finish_reason = "length";
  575. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  576. finish_reason = "stop";
  577. }
  578. json choice = json{
  579. {"finish_reason", finish_reason},
  580. {"index", 0},
  581. {"message", json {
  582. {"content", content},
  583. {"role", "assistant"}
  584. }
  585. }};
  586. if (!stream && probs_output.size() > 0) {
  587. choice["logprobs"] = json{
  588. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  589. };
  590. }
  591. std::time_t t = std::time(0);
  592. json res = json {
  593. {"choices", json::array({choice})},
  594. {"created", t},
  595. {"model", oaicompat_model},
  596. {"system_fingerprint", build_info},
  597. {"object", "chat.completion"},
  598. {"usage", json {
  599. {"completion_tokens", n_decoded},
  600. {"prompt_tokens", n_prompt_tokens},
  601. {"total_tokens", n_decoded + n_prompt_tokens}
  602. }},
  603. {"id", oaicompat_cmpl_id}
  604. };
  605. // extra fields for debugging purposes
  606. if (verbose) {
  607. res["__verbose"] = to_json_non_oaicompat();
  608. }
  609. if (timings.prompt_n >= 0) {
  610. res.push_back({"timings", timings.to_json()});
  611. }
  612. return res;
  613. }
  614. json to_json_oaicompat_chat_stream() {
  615. std::time_t t = std::time(0);
  616. std::string finish_reason = "length";
  617. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  618. finish_reason = "stop";
  619. }
  620. json choice = json{
  621. {"finish_reason", finish_reason},
  622. {"index", 0},
  623. {"delta", json::object()}
  624. };
  625. json ret = json {
  626. {"choices", json::array({choice})},
  627. {"created", t},
  628. {"id", oaicompat_cmpl_id},
  629. {"model", oaicompat_model},
  630. {"system_fingerprint", build_info},
  631. {"object", "chat.completion.chunk"},
  632. {"usage", json {
  633. {"completion_tokens", n_decoded},
  634. {"prompt_tokens", n_prompt_tokens},
  635. {"total_tokens", n_decoded + n_prompt_tokens},
  636. }},
  637. };
  638. if (timings.prompt_n >= 0) {
  639. ret.push_back({"timings", timings.to_json()});
  640. }
  641. return ret;
  642. }
  643. };
  644. struct server_task_result_cmpl_partial : server_task_result {
  645. int index = 0;
  646. std::string content;
  647. llama_tokens tokens;
  648. int32_t n_decoded;
  649. int32_t n_prompt_tokens;
  650. bool post_sampling_probs;
  651. completion_token_output prob_output;
  652. result_timings timings;
  653. // OAI-compat fields
  654. bool verbose = false;
  655. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  656. std::string oaicompat_model;
  657. std::string oaicompat_cmpl_id;
  658. virtual int get_index() override {
  659. return index;
  660. }
  661. virtual bool is_stop() override {
  662. return false; // in stream mode, partial responses are not considered stop
  663. }
  664. virtual json to_json() override {
  665. switch (oaicompat) {
  666. case OAICOMPAT_TYPE_NONE:
  667. return to_json_non_oaicompat();
  668. case OAICOMPAT_TYPE_COMPLETION:
  669. return to_json_oaicompat();
  670. case OAICOMPAT_TYPE_CHAT:
  671. return to_json_oaicompat_chat();
  672. default:
  673. GGML_ASSERT(false && "Invalid oaicompat_type");
  674. }
  675. }
  676. json to_json_non_oaicompat() {
  677. // non-OAI-compat JSON
  678. json res = json {
  679. {"index", index},
  680. {"content", content},
  681. {"tokens", tokens},
  682. {"stop", false},
  683. {"id_slot", id_slot},
  684. {"tokens_predicted", n_decoded},
  685. {"tokens_evaluated", n_prompt_tokens},
  686. };
  687. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  688. if (timings.prompt_n > 0) {
  689. res.push_back({"timings", timings.to_json()});
  690. }
  691. if (!prob_output.probs.empty()) {
  692. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  693. }
  694. return res;
  695. }
  696. json to_json_oaicompat() {
  697. std::time_t t = std::time(0);
  698. json logprobs = json(nullptr); // OAI default to null
  699. if (prob_output.probs.size() > 0) {
  700. logprobs = json{
  701. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  702. };
  703. }
  704. json res = json {
  705. {"choices", json::array({
  706. json{
  707. {"text", content},
  708. {"index", index},
  709. {"logprobs", logprobs},
  710. {"finish_reason", nullptr},
  711. }
  712. })},
  713. {"created", t},
  714. {"model", oaicompat_model},
  715. {"system_fingerprint", build_info},
  716. {"object", "text_completion"},
  717. {"id", oaicompat_cmpl_id}
  718. };
  719. // extra fields for debugging purposes
  720. if (verbose) {
  721. res["__verbose"] = to_json_non_oaicompat();
  722. }
  723. if (timings.prompt_n >= 0) {
  724. res.push_back({"timings", timings.to_json()});
  725. }
  726. return res;
  727. }
  728. json to_json_oaicompat_chat() {
  729. bool first = n_decoded == 0;
  730. std::time_t t = std::time(0);
  731. json choices;
  732. if (first) {
  733. if (content.empty()) {
  734. choices = json::array({json{{"finish_reason", nullptr},
  735. {"index", 0},
  736. {"delta", json{{"role", "assistant"}}}}});
  737. } else {
  738. // We have to send this as two updates to conform to openai behavior
  739. json initial_ret = json{{"choices", json::array({json{
  740. {"finish_reason", nullptr},
  741. {"index", 0},
  742. {"delta", json{
  743. {"role", "assistant"}
  744. }}}})},
  745. {"created", t},
  746. {"id", oaicompat_cmpl_id},
  747. {"model", oaicompat_model},
  748. {"object", "chat.completion.chunk"}};
  749. json second_ret = json{
  750. {"choices", json::array({json{{"finish_reason", nullptr},
  751. {"index", 0},
  752. {"delta", json {
  753. {"content", content}}}
  754. }})},
  755. {"created", t},
  756. {"id", oaicompat_cmpl_id},
  757. {"model", oaicompat_model},
  758. {"object", "chat.completion.chunk"}};
  759. return std::vector<json>({initial_ret, second_ret});
  760. }
  761. } else {
  762. choices = json::array({json{
  763. {"finish_reason", nullptr},
  764. {"index", 0},
  765. {"delta",
  766. json {
  767. {"content", content},
  768. }},
  769. }});
  770. }
  771. GGML_ASSERT(choices.size() >= 1);
  772. if (prob_output.probs.size() > 0) {
  773. choices[0]["logprobs"] = json{
  774. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  775. };
  776. }
  777. json ret = json {
  778. {"choices", choices},
  779. {"created", t},
  780. {"id", oaicompat_cmpl_id},
  781. {"model", oaicompat_model},
  782. {"system_fingerprint", build_info},
  783. {"object", "chat.completion.chunk"}
  784. };
  785. if (timings.prompt_n >= 0) {
  786. ret.push_back({"timings", timings.to_json()});
  787. }
  788. return std::vector<json>({ret});
  789. }
  790. };
  791. struct server_task_result_embd : server_task_result {
  792. int index = 0;
  793. std::vector<std::vector<float>> embedding;
  794. int32_t n_tokens;
  795. // OAI-compat fields
  796. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  797. virtual int get_index() override {
  798. return index;
  799. }
  800. virtual json to_json() override {
  801. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  802. ? to_json_oaicompat()
  803. : to_json_non_oaicompat();
  804. }
  805. json to_json_non_oaicompat() {
  806. return json {
  807. {"index", index},
  808. {"embedding", embedding},
  809. };
  810. }
  811. json to_json_oaicompat() {
  812. return json {
  813. {"index", index},
  814. {"embedding", embedding[0]},
  815. {"tokens_evaluated", n_tokens},
  816. };
  817. }
  818. };
  819. struct server_task_result_rerank : server_task_result {
  820. int index = 0;
  821. float score = -1e6;
  822. int32_t n_tokens;
  823. virtual int get_index() override {
  824. return index;
  825. }
  826. virtual json to_json() override {
  827. return json {
  828. {"index", index},
  829. {"score", score},
  830. {"tokens_evaluated", n_tokens},
  831. };
  832. }
  833. };
  834. // this function maybe used outside of server_task_result_error
  835. static json format_error_response(const std::string & message, const enum error_type type) {
  836. std::string type_str;
  837. int code = 500;
  838. switch (type) {
  839. case ERROR_TYPE_INVALID_REQUEST:
  840. type_str = "invalid_request_error";
  841. code = 400;
  842. break;
  843. case ERROR_TYPE_AUTHENTICATION:
  844. type_str = "authentication_error";
  845. code = 401;
  846. break;
  847. case ERROR_TYPE_NOT_FOUND:
  848. type_str = "not_found_error";
  849. code = 404;
  850. break;
  851. case ERROR_TYPE_SERVER:
  852. type_str = "server_error";
  853. code = 500;
  854. break;
  855. case ERROR_TYPE_PERMISSION:
  856. type_str = "permission_error";
  857. code = 403;
  858. break;
  859. case ERROR_TYPE_NOT_SUPPORTED:
  860. type_str = "not_supported_error";
  861. code = 501;
  862. break;
  863. case ERROR_TYPE_UNAVAILABLE:
  864. type_str = "unavailable_error";
  865. code = 503;
  866. break;
  867. }
  868. return json {
  869. {"code", code},
  870. {"message", message},
  871. {"type", type_str},
  872. };
  873. }
  874. struct server_task_result_error : server_task_result {
  875. int index = 0;
  876. error_type err_type = ERROR_TYPE_SERVER;
  877. std::string err_msg;
  878. virtual bool is_error() override {
  879. return true;
  880. }
  881. virtual json to_json() override {
  882. return format_error_response(err_msg, err_type);
  883. }
  884. };
  885. struct server_task_result_metrics : server_task_result {
  886. int n_idle_slots;
  887. int n_processing_slots;
  888. int n_tasks_deferred;
  889. int64_t t_start;
  890. int32_t kv_cache_tokens_count;
  891. int32_t kv_cache_used_cells;
  892. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  893. uint64_t n_prompt_tokens_processed_total = 0;
  894. uint64_t t_prompt_processing_total = 0;
  895. uint64_t n_tokens_predicted_total = 0;
  896. uint64_t t_tokens_generation_total = 0;
  897. uint64_t n_prompt_tokens_processed = 0;
  898. uint64_t t_prompt_processing = 0;
  899. uint64_t n_tokens_predicted = 0;
  900. uint64_t t_tokens_generation = 0;
  901. uint64_t n_decode_total = 0;
  902. uint64_t n_busy_slots_total = 0;
  903. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  904. // therefore, we use json to temporarily store the slot.to_json() result
  905. json slots_data = json::array();
  906. virtual json to_json() override {
  907. return json {
  908. { "idle", n_idle_slots },
  909. { "processing", n_processing_slots },
  910. { "deferred", n_tasks_deferred },
  911. { "t_start", t_start },
  912. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  913. { "t_tokens_generation_total", t_tokens_generation_total },
  914. { "n_tokens_predicted_total", n_tokens_predicted_total },
  915. { "t_prompt_processing_total", t_prompt_processing_total },
  916. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  917. { "t_prompt_processing", t_prompt_processing },
  918. { "n_tokens_predicted", n_tokens_predicted },
  919. { "t_tokens_generation", t_tokens_generation },
  920. { "n_decode_total", n_decode_total },
  921. { "n_busy_slots_total", n_busy_slots_total },
  922. { "kv_cache_tokens_count", kv_cache_tokens_count },
  923. { "kv_cache_used_cells", kv_cache_used_cells },
  924. { "slots", slots_data },
  925. };
  926. }
  927. };
  928. struct server_task_result_slot_save_load : server_task_result {
  929. std::string filename;
  930. bool is_save; // true = save, false = load
  931. size_t n_tokens;
  932. size_t n_bytes;
  933. double t_ms;
  934. virtual json to_json() override {
  935. if (is_save) {
  936. return json {
  937. { "id_slot", id_slot },
  938. { "filename", filename },
  939. { "n_saved", n_tokens },
  940. { "n_written", n_bytes },
  941. { "timings", {
  942. { "save_ms", t_ms }
  943. }},
  944. };
  945. } else {
  946. return json {
  947. { "id_slot", id_slot },
  948. { "filename", filename },
  949. { "n_restored", n_tokens },
  950. { "n_read", n_bytes },
  951. { "timings", {
  952. { "restore_ms", t_ms }
  953. }},
  954. };
  955. }
  956. }
  957. };
  958. struct server_task_result_slot_erase : server_task_result {
  959. size_t n_erased;
  960. virtual json to_json() override {
  961. return json {
  962. { "id_slot", id_slot },
  963. { "n_erased", n_erased },
  964. };
  965. }
  966. };
  967. struct server_task_result_apply_lora : server_task_result {
  968. virtual json to_json() override {
  969. return json {{ "success", true }};
  970. }
  971. };
  972. struct server_slot {
  973. int id;
  974. int id_task = -1;
  975. // only used for completion/embedding/infill/rerank
  976. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  977. llama_batch batch_spec = {};
  978. llama_context * ctx = nullptr;
  979. llama_context * ctx_dft = nullptr;
  980. common_speculative * spec = nullptr;
  981. std::vector<common_adapter_lora_info> lora;
  982. // the index relative to completion multi-task request
  983. size_t index = 0;
  984. struct slot_params params;
  985. slot_state state = SLOT_STATE_IDLE;
  986. // used to determine the slot that has been used the longest
  987. int64_t t_last_used = -1;
  988. // generation props
  989. int32_t n_ctx = 0; // context size per slot
  990. int32_t n_past = 0;
  991. int32_t n_decoded = 0;
  992. int32_t n_remaining = -1;
  993. int32_t i_batch = -1;
  994. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  995. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  996. int32_t n_prompt_tokens = 0;
  997. int32_t n_prompt_tokens_processed = 0;
  998. // input prompt tokens
  999. llama_tokens prompt_tokens;
  1000. size_t last_nl_pos = 0;
  1001. std::string generated_text;
  1002. llama_tokens generated_tokens;
  1003. llama_tokens cache_tokens;
  1004. std::vector<completion_token_output> generated_token_probs;
  1005. bool has_next_token = true;
  1006. bool has_new_line = false;
  1007. bool truncated = false;
  1008. stop_type stop;
  1009. std::string stopping_word;
  1010. // sampling
  1011. json json_schema;
  1012. struct common_sampler * smpl = nullptr;
  1013. llama_token sampled;
  1014. // stats
  1015. size_t n_sent_text = 0; // number of sent text character
  1016. int64_t t_start_process_prompt;
  1017. int64_t t_start_generation;
  1018. double t_prompt_processing; // ms
  1019. double t_token_generation; // ms
  1020. std::function<void(int)> callback_on_release;
  1021. void reset() {
  1022. SLT_DBG(*this, "%s", "\n");
  1023. n_prompt_tokens = 0;
  1024. last_nl_pos = 0;
  1025. generated_text = "";
  1026. has_new_line = false;
  1027. truncated = false;
  1028. stop = STOP_TYPE_NONE;
  1029. stopping_word = "";
  1030. n_past = 0;
  1031. n_sent_text = 0;
  1032. task_type = SERVER_TASK_TYPE_COMPLETION;
  1033. generated_tokens.clear();
  1034. generated_token_probs.clear();
  1035. }
  1036. bool is_non_causal() const {
  1037. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1038. }
  1039. bool can_batch_with(server_slot & other_slot) {
  1040. return is_non_causal() == other_slot.is_non_causal()
  1041. && are_lora_equal(lora, other_slot.lora);
  1042. }
  1043. bool has_budget(const common_params & global_params) {
  1044. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1045. return true; // limitless
  1046. }
  1047. n_remaining = -1;
  1048. if (params.n_predict != -1) {
  1049. n_remaining = params.n_predict - n_decoded;
  1050. } else if (global_params.n_predict != -1) {
  1051. n_remaining = global_params.n_predict - n_decoded;
  1052. }
  1053. return n_remaining > 0; // no budget
  1054. }
  1055. bool is_processing() const {
  1056. return state != SLOT_STATE_IDLE;
  1057. }
  1058. bool can_speculate() const {
  1059. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1060. }
  1061. void add_token(const completion_token_output & token) {
  1062. if (!is_processing()) {
  1063. SLT_WRN(*this, "%s", "slot is not processing\n");
  1064. return;
  1065. }
  1066. generated_token_probs.push_back(token);
  1067. }
  1068. void release() {
  1069. if (is_processing()) {
  1070. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1071. t_last_used = ggml_time_us();
  1072. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1073. state = SLOT_STATE_IDLE;
  1074. callback_on_release(id);
  1075. }
  1076. }
  1077. result_timings get_timings() const {
  1078. result_timings timings;
  1079. timings.prompt_n = n_prompt_tokens_processed;
  1080. timings.prompt_ms = t_prompt_processing;
  1081. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1082. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1083. timings.predicted_n = n_decoded;
  1084. timings.predicted_ms = t_token_generation;
  1085. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1086. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1087. return timings;
  1088. }
  1089. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1090. size_t stop_pos = std::string::npos;
  1091. for (const std::string & word : params.antiprompt) {
  1092. size_t pos;
  1093. if (is_full_stop) {
  1094. const size_t tmp = word.size() + last_token_size;
  1095. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1096. pos = text.find(word, from_pos);
  1097. } else {
  1098. // otherwise, partial stop
  1099. pos = find_partial_stop_string(word, text);
  1100. }
  1101. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1102. if (is_full_stop) {
  1103. stop = STOP_TYPE_WORD;
  1104. stopping_word = word;
  1105. has_next_token = false;
  1106. }
  1107. stop_pos = pos;
  1108. }
  1109. }
  1110. return stop_pos;
  1111. }
  1112. void print_timings() const {
  1113. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1114. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1115. const double t_gen = t_token_generation / n_decoded;
  1116. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1117. SLT_INF(*this,
  1118. "\n"
  1119. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1120. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1121. " total time = %10.2f ms / %5d tokens\n",
  1122. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1123. t_token_generation, n_decoded, t_gen, n_gen_second,
  1124. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1125. }
  1126. json to_json() const {
  1127. return json {
  1128. {"id", id},
  1129. {"id_task", id_task},
  1130. {"n_ctx", n_ctx},
  1131. {"speculative", can_speculate()},
  1132. {"is_processing", is_processing()},
  1133. {"non_causal", is_non_causal()},
  1134. {"params", params.to_json()},
  1135. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1136. {"next_token",
  1137. {
  1138. {"has_next_token", has_next_token},
  1139. {"has_new_line", has_new_line},
  1140. {"n_remain", n_remaining},
  1141. {"n_decoded", n_decoded},
  1142. {"stopping_word", stopping_word},
  1143. }
  1144. },
  1145. };
  1146. }
  1147. };
  1148. struct server_metrics {
  1149. int64_t t_start = 0;
  1150. uint64_t n_prompt_tokens_processed_total = 0;
  1151. uint64_t t_prompt_processing_total = 0;
  1152. uint64_t n_tokens_predicted_total = 0;
  1153. uint64_t t_tokens_generation_total = 0;
  1154. uint64_t n_prompt_tokens_processed = 0;
  1155. uint64_t t_prompt_processing = 0;
  1156. uint64_t n_tokens_predicted = 0;
  1157. uint64_t t_tokens_generation = 0;
  1158. uint64_t n_decode_total = 0;
  1159. uint64_t n_busy_slots_total = 0;
  1160. void init() {
  1161. t_start = ggml_time_us();
  1162. }
  1163. void on_prompt_eval(const server_slot & slot) {
  1164. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1165. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1166. t_prompt_processing += slot.t_prompt_processing;
  1167. t_prompt_processing_total += slot.t_prompt_processing;
  1168. }
  1169. void on_prediction(const server_slot & slot) {
  1170. n_tokens_predicted_total += slot.n_decoded;
  1171. n_tokens_predicted += slot.n_decoded;
  1172. t_tokens_generation += slot.t_token_generation;
  1173. t_tokens_generation_total += slot.t_token_generation;
  1174. }
  1175. void on_decoded(const std::vector<server_slot> & slots) {
  1176. n_decode_total++;
  1177. for (const auto & slot : slots) {
  1178. if (slot.is_processing()) {
  1179. n_busy_slots_total++;
  1180. }
  1181. }
  1182. }
  1183. void reset_bucket() {
  1184. n_prompt_tokens_processed = 0;
  1185. t_prompt_processing = 0;
  1186. n_tokens_predicted = 0;
  1187. t_tokens_generation = 0;
  1188. }
  1189. };
  1190. struct server_queue {
  1191. int id = 0;
  1192. bool running;
  1193. // queues
  1194. std::deque<server_task> queue_tasks;
  1195. std::deque<server_task> queue_tasks_deferred;
  1196. std::mutex mutex_tasks;
  1197. std::condition_variable condition_tasks;
  1198. // callback functions
  1199. std::function<void(server_task)> callback_new_task;
  1200. std::function<void(void)> callback_update_slots;
  1201. // Add a new task to the end of the queue
  1202. int post(server_task task, bool front = false) {
  1203. std::unique_lock<std::mutex> lock(mutex_tasks);
  1204. GGML_ASSERT(task.id != -1);
  1205. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1206. if (front) {
  1207. queue_tasks.push_front(std::move(task));
  1208. } else {
  1209. queue_tasks.push_back(std::move(task));
  1210. }
  1211. condition_tasks.notify_one();
  1212. return task.id;
  1213. }
  1214. // multi-task version of post()
  1215. int post(std::vector<server_task> & tasks, bool front = false) {
  1216. std::unique_lock<std::mutex> lock(mutex_tasks);
  1217. for (auto & task : tasks) {
  1218. if (task.id == -1) {
  1219. task.id = id++;
  1220. }
  1221. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1222. if (front) {
  1223. queue_tasks.push_front(std::move(task));
  1224. } else {
  1225. queue_tasks.push_back(std::move(task));
  1226. }
  1227. }
  1228. condition_tasks.notify_one();
  1229. return 0;
  1230. }
  1231. // Add a new task, but defer until one slot is available
  1232. void defer(server_task task) {
  1233. std::unique_lock<std::mutex> lock(mutex_tasks);
  1234. QUE_DBG("defer task, id = %d\n", task.id);
  1235. queue_tasks_deferred.push_back(std::move(task));
  1236. condition_tasks.notify_one();
  1237. }
  1238. // Get the next id for creating a new task
  1239. int get_new_id() {
  1240. std::unique_lock<std::mutex> lock(mutex_tasks);
  1241. int new_id = id++;
  1242. return new_id;
  1243. }
  1244. // Register function to process a new task
  1245. void on_new_task(std::function<void(server_task)> callback) {
  1246. callback_new_task = std::move(callback);
  1247. }
  1248. // Register the function to be called when all slots data is ready to be processed
  1249. void on_update_slots(std::function<void(void)> callback) {
  1250. callback_update_slots = std::move(callback);
  1251. }
  1252. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1253. void pop_deferred_task() {
  1254. std::unique_lock<std::mutex> lock(mutex_tasks);
  1255. if (!queue_tasks_deferred.empty()) {
  1256. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1257. queue_tasks_deferred.pop_front();
  1258. }
  1259. condition_tasks.notify_one();
  1260. }
  1261. // end the start_loop routine
  1262. void terminate() {
  1263. std::unique_lock<std::mutex> lock(mutex_tasks);
  1264. running = false;
  1265. condition_tasks.notify_all();
  1266. }
  1267. /**
  1268. * Main loop consists of these steps:
  1269. * - Wait until a new task arrives
  1270. * - Process the task (i.e. maybe copy data into slot)
  1271. * - Check if multitask is finished
  1272. * - Update all slots
  1273. */
  1274. void start_loop() {
  1275. running = true;
  1276. while (true) {
  1277. QUE_DBG("%s", "processing new tasks\n");
  1278. while (true) {
  1279. std::unique_lock<std::mutex> lock(mutex_tasks);
  1280. if (queue_tasks.empty()) {
  1281. lock.unlock();
  1282. break;
  1283. }
  1284. server_task task = queue_tasks.front();
  1285. queue_tasks.pop_front();
  1286. lock.unlock();
  1287. QUE_DBG("processing task, id = %d\n", task.id);
  1288. callback_new_task(std::move(task));
  1289. }
  1290. // all tasks in the current loop is processed, slots data is now ready
  1291. QUE_DBG("%s", "update slots\n");
  1292. callback_update_slots();
  1293. QUE_DBG("%s", "waiting for new tasks\n");
  1294. {
  1295. std::unique_lock<std::mutex> lock(mutex_tasks);
  1296. if (queue_tasks.empty()) {
  1297. if (!running) {
  1298. QUE_DBG("%s", "terminate\n");
  1299. return;
  1300. }
  1301. condition_tasks.wait(lock, [&]{
  1302. return (!queue_tasks.empty() || !running);
  1303. });
  1304. }
  1305. }
  1306. }
  1307. }
  1308. };
  1309. struct server_response {
  1310. // for keeping track of all tasks waiting for the result
  1311. std::unordered_set<int> waiting_task_ids;
  1312. // the main result queue (using ptr for polymorphism)
  1313. std::vector<server_task_result_ptr> queue_results;
  1314. std::mutex mutex_results;
  1315. std::condition_variable condition_results;
  1316. // add the id_task to the list of tasks waiting for response
  1317. void add_waiting_task_id(int id_task) {
  1318. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1319. std::unique_lock<std::mutex> lock(mutex_results);
  1320. waiting_task_ids.insert(id_task);
  1321. }
  1322. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1323. std::unique_lock<std::mutex> lock(mutex_results);
  1324. for (const auto & task : tasks) {
  1325. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1326. waiting_task_ids.insert(task.id);
  1327. }
  1328. }
  1329. // when the request is finished, we can remove task associated with it
  1330. void remove_waiting_task_id(int id_task) {
  1331. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1332. std::unique_lock<std::mutex> lock(mutex_results);
  1333. waiting_task_ids.erase(id_task);
  1334. }
  1335. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1336. std::unique_lock<std::mutex> lock(mutex_results);
  1337. for (const auto & id_task : id_tasks) {
  1338. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1339. waiting_task_ids.erase(id_task);
  1340. }
  1341. }
  1342. // This function blocks the thread until there is a response for one of the id_tasks
  1343. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1344. while (true) {
  1345. std::unique_lock<std::mutex> lock(mutex_results);
  1346. condition_results.wait(lock, [&]{
  1347. return !queue_results.empty();
  1348. });
  1349. for (int i = 0; i < (int) queue_results.size(); i++) {
  1350. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1351. server_task_result_ptr res = std::move(queue_results[i]);
  1352. queue_results.erase(queue_results.begin() + i);
  1353. return res;
  1354. }
  1355. }
  1356. }
  1357. // should never reach here
  1358. }
  1359. // single-task version of recv()
  1360. server_task_result_ptr recv(int id_task) {
  1361. std::unordered_set<int> id_tasks = {id_task};
  1362. return recv(id_tasks);
  1363. }
  1364. // Send a new result to a waiting id_task
  1365. void send(server_task_result_ptr && result) {
  1366. SRV_DBG("sending result for task id = %d\n", result->id);
  1367. std::unique_lock<std::mutex> lock(mutex_results);
  1368. for (const auto & id_task : waiting_task_ids) {
  1369. if (result->id == id_task) {
  1370. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1371. queue_results.emplace_back(std::move(result));
  1372. condition_results.notify_all();
  1373. return;
  1374. }
  1375. }
  1376. }
  1377. };
  1378. struct server_context {
  1379. common_params params_base;
  1380. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1381. common_init_result llama_init;
  1382. common_init_result llama_init_dft;
  1383. llama_model * model = nullptr;
  1384. llama_context * ctx = nullptr;
  1385. const llama_vocab * vocab = nullptr;
  1386. llama_model * model_dft = nullptr;
  1387. llama_context_params cparams_dft;
  1388. llama_batch batch = {};
  1389. bool clean_kv_cache = true;
  1390. bool add_bos_token = true;
  1391. bool has_eos_token = false;
  1392. int32_t n_ctx; // total context for all clients / slots
  1393. // slots / clients
  1394. std::vector<server_slot> slots;
  1395. json default_generation_settings_for_props;
  1396. server_queue queue_tasks;
  1397. server_response queue_results;
  1398. server_metrics metrics;
  1399. // Necessary similarity of prompt for slot selection
  1400. float slot_prompt_similarity = 0.0f;
  1401. ~server_context() {
  1402. // Clear any sampling context
  1403. for (server_slot & slot : slots) {
  1404. common_sampler_free(slot.smpl);
  1405. slot.smpl = nullptr;
  1406. llama_free(slot.ctx_dft);
  1407. slot.ctx_dft = nullptr;
  1408. common_speculative_free(slot.spec);
  1409. slot.spec = nullptr;
  1410. llama_batch_free(slot.batch_spec);
  1411. }
  1412. llama_batch_free(batch);
  1413. }
  1414. bool load_model(const common_params & params) {
  1415. SRV_INF("loading model '%s'\n", params.model.c_str());
  1416. params_base = params;
  1417. llama_init = common_init_from_params(params_base);
  1418. model = llama_init.model.get();
  1419. ctx = llama_init.context.get();
  1420. if (model == nullptr) {
  1421. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1422. return false;
  1423. }
  1424. vocab = llama_model_get_vocab(model);
  1425. n_ctx = llama_n_ctx(ctx);
  1426. add_bos_token = llama_vocab_get_add_bos(vocab);
  1427. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1428. if (!params_base.speculative.model.empty()) {
  1429. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1430. auto params_dft = params_base;
  1431. params_dft.devices = params_base.speculative.devices;
  1432. params_dft.model = params_base.speculative.model;
  1433. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1434. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1435. params_dft.n_parallel = 1;
  1436. llama_init_dft = common_init_from_params(params_dft);
  1437. model_dft = llama_init_dft.model.get();
  1438. if (model_dft == nullptr) {
  1439. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1440. return false;
  1441. }
  1442. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1443. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1444. return false;
  1445. }
  1446. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1447. cparams_dft = common_context_params_to_llama(params_dft);
  1448. cparams_dft.n_batch = n_ctx_dft;
  1449. // force F16 KV cache for the draft model for extra performance
  1450. cparams_dft.type_k = GGML_TYPE_F16;
  1451. cparams_dft.type_v = GGML_TYPE_F16;
  1452. }
  1453. return true;
  1454. }
  1455. bool validate_builtin_chat_template() const {
  1456. llama_chat_message chat[] = {{"user", "test"}};
  1457. const char * tmpl = llama_model_chat_template(model);
  1458. const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
  1459. return chat_res > 0;
  1460. }
  1461. void init() {
  1462. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1463. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1464. for (int i = 0; i < params_base.n_parallel; i++) {
  1465. server_slot slot;
  1466. slot.id = i;
  1467. slot.ctx = ctx;
  1468. slot.n_ctx = n_ctx_slot;
  1469. slot.n_predict = params_base.n_predict;
  1470. if (model_dft) {
  1471. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1472. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1473. if (slot.ctx_dft == nullptr) {
  1474. SRV_ERR("%s", "failed to create draft context\n");
  1475. return;
  1476. }
  1477. slot.spec = common_speculative_init(slot.ctx_dft);
  1478. if (slot.spec == nullptr) {
  1479. SRV_ERR("%s", "failed to create speculator\n");
  1480. return;
  1481. }
  1482. }
  1483. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1484. slot.params.sampling = params_base.sampling;
  1485. slot.callback_on_release = [this](int) {
  1486. queue_tasks.pop_deferred_task();
  1487. };
  1488. slot.reset();
  1489. slots.push_back(slot);
  1490. }
  1491. default_generation_settings_for_props = slots[0].to_json();
  1492. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1493. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1494. {
  1495. const int32_t n_batch = llama_n_batch(ctx);
  1496. // only a single seq_id per token is needed
  1497. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1498. }
  1499. metrics.init();
  1500. }
  1501. server_slot * get_slot_by_id(int id) {
  1502. for (server_slot & slot : slots) {
  1503. if (slot.id == id) {
  1504. return &slot;
  1505. }
  1506. }
  1507. return nullptr;
  1508. }
  1509. server_slot * get_available_slot(const server_task & task) {
  1510. server_slot * ret = nullptr;
  1511. // find the slot that has at least n% prompt similarity
  1512. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1513. int lcs_len = 0;
  1514. float similarity = 0;
  1515. for (server_slot & slot : slots) {
  1516. // skip the slot if it is not available
  1517. if (slot.is_processing()) {
  1518. continue;
  1519. }
  1520. // skip the slot if it does not contains cached tokens
  1521. if (slot.cache_tokens.empty()) {
  1522. continue;
  1523. }
  1524. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1525. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1526. // fraction of the common subsequence length compared to the current slot's prompt length
  1527. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1528. // select the current slot if the criteria match
  1529. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1530. lcs_len = cur_lcs_len;
  1531. similarity = cur_similarity;
  1532. ret = &slot;
  1533. }
  1534. }
  1535. if (ret != nullptr) {
  1536. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1537. }
  1538. }
  1539. // find the slot that has been least recently used
  1540. if (ret == nullptr) {
  1541. int64_t t_last = ggml_time_us();
  1542. for (server_slot & slot : slots) {
  1543. // skip the slot if it is not available
  1544. if (slot.is_processing()) {
  1545. continue;
  1546. }
  1547. // select the current slot if the criteria match
  1548. if (slot.t_last_used < t_last) {
  1549. t_last = slot.t_last_used;
  1550. ret = &slot;
  1551. }
  1552. }
  1553. if (ret != nullptr) {
  1554. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1555. }
  1556. }
  1557. return ret;
  1558. }
  1559. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1560. slot.reset();
  1561. slot.id_task = task.id;
  1562. slot.index = task.index;
  1563. slot.task_type = task.type;
  1564. slot.params = std::move(task.params);
  1565. slot.prompt_tokens = std::move(task.prompt_tokens);
  1566. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1567. // if lora is changed, we cannot reuse cached tokens
  1568. slot.cache_tokens.clear();
  1569. slot.lora = task.params.lora;
  1570. }
  1571. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1572. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1573. // Might be better to reject the request with a 400 ?
  1574. slot.params.n_predict = slot.n_predict;
  1575. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1576. }
  1577. if (slot.params.ignore_eos && has_eos_token) {
  1578. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1579. }
  1580. {
  1581. if (slot.smpl != nullptr) {
  1582. common_sampler_free(slot.smpl);
  1583. }
  1584. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1585. if (slot.smpl == nullptr) {
  1586. // for now, the only error that may happen here is invalid grammar
  1587. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1588. return false;
  1589. }
  1590. }
  1591. if (slot.ctx_dft) {
  1592. llama_batch_free(slot.batch_spec);
  1593. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1594. }
  1595. slot.state = SLOT_STATE_STARTED;
  1596. SLT_INF(slot, "%s", "processing task\n");
  1597. return true;
  1598. }
  1599. void kv_cache_clear() {
  1600. SRV_DBG("%s", "clearing KV cache\n");
  1601. // clear the entire KV cache
  1602. llama_kv_cache_clear(ctx);
  1603. clean_kv_cache = false;
  1604. }
  1605. bool process_token(completion_token_output & result, server_slot & slot) {
  1606. // remember which tokens were sampled - used for repetition penalties during sampling
  1607. const std::string token_str = result.text_to_send;
  1608. slot.sampled = result.tok;
  1609. slot.generated_text += token_str;
  1610. if (slot.params.return_tokens) {
  1611. slot.generated_tokens.push_back(result.tok);
  1612. }
  1613. slot.has_next_token = true;
  1614. // check if there is incomplete UTF-8 character at the end
  1615. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1616. // search stop word and delete it
  1617. if (!incomplete) {
  1618. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1619. const std::string str_test = slot.generated_text.substr(pos);
  1620. bool send_text = true;
  1621. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1622. if (stop_pos != std::string::npos) {
  1623. slot.generated_text.erase(
  1624. slot.generated_text.begin() + pos + stop_pos,
  1625. slot.generated_text.end());
  1626. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1627. } else if (slot.has_next_token) {
  1628. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1629. send_text = stop_pos == std::string::npos;
  1630. }
  1631. // check if there is any token to predict
  1632. if (send_text) {
  1633. // no send the stop word in the response
  1634. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1635. slot.n_sent_text += result.text_to_send.size();
  1636. // add the token to slot queue and cache
  1637. } else {
  1638. result.text_to_send = "";
  1639. }
  1640. slot.add_token(result);
  1641. if (slot.params.stream) {
  1642. send_partial_response(slot, result);
  1643. }
  1644. }
  1645. if (incomplete) {
  1646. slot.has_next_token = true;
  1647. }
  1648. // check the limits
  1649. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1650. slot.stop = STOP_TYPE_LIMIT;
  1651. slot.has_next_token = false;
  1652. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1653. }
  1654. if (slot.has_new_line) {
  1655. // if we have already seen a new line, we stop after a certain time limit
  1656. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1657. slot.stop = STOP_TYPE_LIMIT;
  1658. slot.has_next_token = false;
  1659. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1660. }
  1661. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1662. if (slot.params.n_indent > 0) {
  1663. // check the current indentation
  1664. // TODO: improve by not doing it more than once for each new line
  1665. if (slot.last_nl_pos > 0) {
  1666. size_t pos = slot.last_nl_pos;
  1667. int n_indent = 0;
  1668. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1669. n_indent++;
  1670. pos++;
  1671. }
  1672. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1673. slot.stop = STOP_TYPE_LIMIT;
  1674. slot.has_next_token = false;
  1675. // cut the last line
  1676. slot.generated_text.erase(pos, std::string::npos);
  1677. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1678. }
  1679. }
  1680. // find the next new line
  1681. {
  1682. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1683. if (pos != std::string::npos) {
  1684. slot.last_nl_pos = pos + 1;
  1685. }
  1686. }
  1687. }
  1688. }
  1689. // check if there is a new line in the generated text
  1690. if (result.text_to_send.find('\n') != std::string::npos) {
  1691. slot.has_new_line = true;
  1692. }
  1693. // if context shift is disabled, we stop when it reaches the context limit
  1694. if (slot.n_past >= slot.n_ctx) {
  1695. slot.truncated = true;
  1696. slot.stop = STOP_TYPE_LIMIT;
  1697. slot.has_next_token = false;
  1698. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1699. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1700. }
  1701. if (llama_vocab_is_eog(vocab, result.tok)) {
  1702. slot.stop = STOP_TYPE_EOS;
  1703. slot.has_next_token = false;
  1704. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1705. }
  1706. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1707. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1708. slot.truncated = true;
  1709. slot.stop = STOP_TYPE_LIMIT;
  1710. slot.has_next_token = false; // stop prediction
  1711. SLT_WRN(slot,
  1712. "n_predict (%d) is set for infinite generation. "
  1713. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1714. slot.params.n_predict, n_ctx_train);
  1715. }
  1716. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1717. return slot.has_next_token; // continue
  1718. }
  1719. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1720. size_t n_probs = slot.params.sampling.n_probs;
  1721. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1722. if (post_sampling) {
  1723. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1724. const size_t max_probs = cur_p->size;
  1725. // set probability for sampled token
  1726. for (size_t i = 0; i < max_probs; i++) {
  1727. if (cur_p->data[i].id == result.tok) {
  1728. result.prob = cur_p->data[i].p;
  1729. break;
  1730. }
  1731. }
  1732. // set probability for top n_probs tokens
  1733. result.probs.reserve(max_probs);
  1734. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1735. result.probs.push_back({
  1736. cur_p->data[i].id,
  1737. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1738. cur_p->data[i].p
  1739. });
  1740. }
  1741. } else {
  1742. // TODO: optimize this with min-p optimization
  1743. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1744. // set probability for sampled token
  1745. for (size_t i = 0; i < n_vocab; i++) {
  1746. // set probability for sampled token
  1747. if (cur[i].id == result.tok) {
  1748. result.prob = cur[i].p;
  1749. break;
  1750. }
  1751. }
  1752. // set probability for top n_probs tokens
  1753. result.probs.reserve(n_probs);
  1754. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1755. result.probs.push_back({
  1756. cur[i].id,
  1757. common_detokenize(ctx, {cur[i].id}, special),
  1758. cur[i].p
  1759. });
  1760. }
  1761. }
  1762. }
  1763. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1764. send_error(task.id, error, type);
  1765. }
  1766. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1767. send_error(slot.id_task, error, type);
  1768. }
  1769. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1770. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1771. auto res = std::make_unique<server_task_result_error>();
  1772. res->id = id_task;
  1773. res->err_type = type;
  1774. res->err_msg = error;
  1775. queue_results.send(std::move(res));
  1776. }
  1777. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1778. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1779. res->id = slot.id_task;
  1780. res->index = slot.index;
  1781. res->content = tkn.text_to_send;
  1782. res->tokens = { tkn.tok };
  1783. res->n_decoded = slot.n_decoded;
  1784. res->n_prompt_tokens = slot.n_prompt_tokens;
  1785. res->post_sampling_probs = slot.params.post_sampling_probs;
  1786. res->verbose = slot.params.verbose;
  1787. res->oaicompat = slot.params.oaicompat;
  1788. res->oaicompat_model = slot.params.oaicompat_model;
  1789. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1790. // populate res.probs_output
  1791. if (slot.params.sampling.n_probs > 0) {
  1792. res->prob_output = tkn; // copy the token probs
  1793. }
  1794. // populate timings if this is final response or timings_per_token is enabled
  1795. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1796. res->timings = slot.get_timings();
  1797. }
  1798. queue_results.send(std::move(res));
  1799. }
  1800. void send_final_response(server_slot & slot) {
  1801. auto res = std::make_unique<server_task_result_cmpl_final>();
  1802. res->id = slot.id_task;
  1803. res->id_slot = slot.id;
  1804. res->index = slot.index;
  1805. res->content = slot.generated_text;
  1806. res->tokens = slot.generated_tokens;
  1807. res->timings = slot.get_timings();
  1808. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1809. res->response_fields = slot.params.response_fields;
  1810. res->truncated = slot.truncated;
  1811. res->n_decoded = slot.n_decoded;
  1812. res->n_prompt_tokens = slot.n_prompt_tokens;
  1813. res->n_tokens_cached = slot.n_past;
  1814. res->has_new_line = slot.has_new_line;
  1815. res->stopping_word = slot.stopping_word;
  1816. res->stop = slot.stop;
  1817. res->post_sampling_probs = slot.params.post_sampling_probs;
  1818. res->verbose = slot.params.verbose;
  1819. res->stream = slot.params.stream;
  1820. res->oaicompat = slot.params.oaicompat;
  1821. res->oaicompat_model = slot.params.oaicompat_model;
  1822. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1823. // populate res.probs_output
  1824. if (slot.params.sampling.n_probs > 0) {
  1825. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1826. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1827. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1828. res->probs_output = std::vector<completion_token_output>(
  1829. slot.generated_token_probs.begin(),
  1830. slot.generated_token_probs.end() - safe_offset);
  1831. } else {
  1832. res->probs_output = std::vector<completion_token_output>(
  1833. slot.generated_token_probs.begin(),
  1834. slot.generated_token_probs.end());
  1835. }
  1836. }
  1837. res->generation_params = slot.params; // copy the parameters
  1838. queue_results.send(std::move(res));
  1839. }
  1840. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1841. auto res = std::make_unique<server_task_result_embd>();
  1842. res->id = slot.id_task;
  1843. res->index = slot.index;
  1844. res->n_tokens = slot.n_prompt_tokens;
  1845. res->oaicompat = slot.params.oaicompat;
  1846. const int n_embd = llama_model_n_embd(model);
  1847. std::vector<float> embd_res(n_embd, 0.0f);
  1848. for (int i = 0; i < batch.n_tokens; ++i) {
  1849. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1850. continue;
  1851. }
  1852. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1853. if (embd == NULL) {
  1854. embd = llama_get_embeddings_ith(ctx, i);
  1855. }
  1856. if (embd == NULL) {
  1857. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1858. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1859. continue;
  1860. }
  1861. // normalize only when there is pooling
  1862. // TODO: configurable
  1863. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1864. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  1865. res->embedding.push_back(embd_res);
  1866. } else {
  1867. res->embedding.push_back({ embd, embd + n_embd });
  1868. }
  1869. }
  1870. SLT_DBG(slot, "%s", "sending embeddings\n");
  1871. queue_results.send(std::move(res));
  1872. }
  1873. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1874. auto res = std::make_unique<server_task_result_rerank>();
  1875. res->id = slot.id_task;
  1876. res->index = slot.index;
  1877. res->n_tokens = slot.n_prompt_tokens;
  1878. for (int i = 0; i < batch.n_tokens; ++i) {
  1879. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1880. continue;
  1881. }
  1882. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1883. if (embd == NULL) {
  1884. embd = llama_get_embeddings_ith(ctx, i);
  1885. }
  1886. if (embd == NULL) {
  1887. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1888. res->score = -1e6;
  1889. continue;
  1890. }
  1891. res->score = embd[0];
  1892. }
  1893. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1894. queue_results.send(std::move(res));
  1895. }
  1896. //
  1897. // Functions to create new task(s) and receive result(s)
  1898. //
  1899. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1900. std::vector<server_task> cancel_tasks;
  1901. cancel_tasks.reserve(id_tasks.size());
  1902. for (const auto & id_task : id_tasks) {
  1903. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1904. server_task task(SERVER_TASK_TYPE_CANCEL);
  1905. task.id_target = id_task;
  1906. cancel_tasks.push_back(task);
  1907. queue_results.remove_waiting_task_id(id_task);
  1908. }
  1909. // push to beginning of the queue, so it has highest priority
  1910. queue_tasks.post(cancel_tasks, true);
  1911. }
  1912. // receive the results from task(s)
  1913. void receive_multi_results(
  1914. const std::unordered_set<int> & id_tasks,
  1915. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1916. const std::function<void(json)> & error_handler) {
  1917. std::vector<server_task_result_ptr> results(id_tasks.size());
  1918. for (size_t i = 0; i < id_tasks.size(); i++) {
  1919. server_task_result_ptr result = queue_results.recv(id_tasks);
  1920. if (result->is_error()) {
  1921. error_handler(result->to_json());
  1922. cancel_tasks(id_tasks);
  1923. return;
  1924. }
  1925. GGML_ASSERT(
  1926. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1927. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1928. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1929. );
  1930. const size_t idx = result->get_index();
  1931. GGML_ASSERT(idx < results.size() && "index out of range");
  1932. results[idx] = std::move(result);
  1933. }
  1934. result_handler(results);
  1935. }
  1936. // receive the results from task(s), in stream mode
  1937. void receive_cmpl_results_stream(
  1938. const std::unordered_set<int> & id_tasks,
  1939. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1940. const std::function<void(json)> & error_handler) {
  1941. size_t n_finished = 0;
  1942. while (true) {
  1943. server_task_result_ptr result = queue_results.recv(id_tasks);
  1944. if (result->is_error()) {
  1945. error_handler(result->to_json());
  1946. cancel_tasks(id_tasks);
  1947. return;
  1948. }
  1949. GGML_ASSERT(
  1950. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1951. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1952. );
  1953. if (!result_handler(result)) {
  1954. cancel_tasks(id_tasks);
  1955. break;
  1956. }
  1957. if (result->is_stop()) {
  1958. if (++n_finished == id_tasks.size()) {
  1959. break;
  1960. }
  1961. }
  1962. }
  1963. }
  1964. //
  1965. // Functions to process the task
  1966. //
  1967. void process_single_task(server_task task) {
  1968. switch (task.type) {
  1969. case SERVER_TASK_TYPE_COMPLETION:
  1970. case SERVER_TASK_TYPE_INFILL:
  1971. case SERVER_TASK_TYPE_EMBEDDING:
  1972. case SERVER_TASK_TYPE_RERANK:
  1973. {
  1974. const int id_slot = task.id_selected_slot;
  1975. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1976. if (slot == nullptr) {
  1977. // if no slot is available, we defer this task for processing later
  1978. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1979. queue_tasks.defer(task);
  1980. break;
  1981. }
  1982. if (slot->is_processing()) {
  1983. // if requested slot is unavailable, we defer this task for processing later
  1984. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1985. queue_tasks.defer(task);
  1986. break;
  1987. }
  1988. if (!launch_slot_with_task(*slot, task)) {
  1989. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1990. break;
  1991. }
  1992. } break;
  1993. case SERVER_TASK_TYPE_CANCEL:
  1994. {
  1995. // release slot linked with the task id
  1996. for (auto & slot : slots) {
  1997. if (slot.id_task == task.id_target) {
  1998. slot.release();
  1999. break;
  2000. }
  2001. }
  2002. } break;
  2003. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2004. {
  2005. // do nothing
  2006. } break;
  2007. case SERVER_TASK_TYPE_METRICS:
  2008. {
  2009. json slots_data = json::array();
  2010. int n_idle_slots = 0;
  2011. int n_processing_slots = 0;
  2012. for (server_slot & slot : slots) {
  2013. json slot_data = slot.to_json();
  2014. if (slot.is_processing()) {
  2015. n_processing_slots++;
  2016. } else {
  2017. n_idle_slots++;
  2018. }
  2019. slots_data.push_back(slot_data);
  2020. }
  2021. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2022. auto res = std::make_unique<server_task_result_metrics>();
  2023. res->id = task.id;
  2024. res->slots_data = std::move(slots_data);
  2025. res->n_idle_slots = n_idle_slots;
  2026. res->n_processing_slots = n_processing_slots;
  2027. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2028. res->t_start = metrics.t_start;
  2029. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2030. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2031. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2032. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2033. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2034. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2035. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2036. res->t_prompt_processing = metrics.t_prompt_processing;
  2037. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2038. res->t_tokens_generation = metrics.t_tokens_generation;
  2039. res->n_decode_total = metrics.n_decode_total;
  2040. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2041. if (task.metrics_reset_bucket) {
  2042. metrics.reset_bucket();
  2043. }
  2044. queue_results.send(std::move(res));
  2045. } break;
  2046. case SERVER_TASK_TYPE_SLOT_SAVE:
  2047. {
  2048. int id_slot = task.slot_action.slot_id;
  2049. server_slot * slot = get_slot_by_id(id_slot);
  2050. if (slot == nullptr) {
  2051. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2052. break;
  2053. }
  2054. if (slot->is_processing()) {
  2055. // if requested slot is unavailable, we defer this task for processing later
  2056. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2057. queue_tasks.defer(task);
  2058. break;
  2059. }
  2060. const size_t token_count = slot->cache_tokens.size();
  2061. const int64_t t_start = ggml_time_us();
  2062. std::string filename = task.slot_action.filename;
  2063. std::string filepath = task.slot_action.filepath;
  2064. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2065. const int64_t t_end = ggml_time_us();
  2066. const double t_save_ms = (t_end - t_start) / 1000.0;
  2067. auto res = std::make_unique<server_task_result_slot_save_load>();
  2068. res->id = task.id;
  2069. res->id_slot = id_slot;
  2070. res->filename = filename;
  2071. res->is_save = true;
  2072. res->n_tokens = token_count;
  2073. res->n_bytes = nwrite;
  2074. res->t_ms = t_save_ms;
  2075. queue_results.send(std::move(res));
  2076. } break;
  2077. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2078. {
  2079. int id_slot = task.slot_action.slot_id;
  2080. server_slot * slot = get_slot_by_id(id_slot);
  2081. if (slot == nullptr) {
  2082. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2083. break;
  2084. }
  2085. if (slot->is_processing()) {
  2086. // if requested slot is unavailable, we defer this task for processing later
  2087. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2088. queue_tasks.defer(task);
  2089. break;
  2090. }
  2091. const int64_t t_start = ggml_time_us();
  2092. std::string filename = task.slot_action.filename;
  2093. std::string filepath = task.slot_action.filepath;
  2094. slot->cache_tokens.resize(slot->n_ctx);
  2095. size_t token_count = 0;
  2096. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2097. if (nread == 0) {
  2098. slot->cache_tokens.resize(0);
  2099. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2100. break;
  2101. }
  2102. slot->cache_tokens.resize(token_count);
  2103. const int64_t t_end = ggml_time_us();
  2104. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2105. auto res = std::make_unique<server_task_result_slot_save_load>();
  2106. res->id = task.id;
  2107. res->id_slot = id_slot;
  2108. res->filename = filename;
  2109. res->is_save = false;
  2110. res->n_tokens = token_count;
  2111. res->n_bytes = nread;
  2112. res->t_ms = t_restore_ms;
  2113. queue_results.send(std::move(res));
  2114. } break;
  2115. case SERVER_TASK_TYPE_SLOT_ERASE:
  2116. {
  2117. int id_slot = task.slot_action.slot_id;
  2118. server_slot * slot = get_slot_by_id(id_slot);
  2119. if (slot == nullptr) {
  2120. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2121. break;
  2122. }
  2123. if (slot->is_processing()) {
  2124. // if requested slot is unavailable, we defer this task for processing later
  2125. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2126. queue_tasks.defer(task);
  2127. break;
  2128. }
  2129. // Erase token cache
  2130. const size_t n_erased = slot->cache_tokens.size();
  2131. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2132. slot->cache_tokens.clear();
  2133. auto res = std::make_unique<server_task_result_slot_erase>();
  2134. res->id = task.id;
  2135. res->id_slot = id_slot;
  2136. res->n_erased = n_erased;
  2137. queue_results.send(std::move(res));
  2138. } break;
  2139. case SERVER_TASK_TYPE_SET_LORA:
  2140. {
  2141. params_base.lora_adapters = std::move(task.set_lora);
  2142. auto res = std::make_unique<server_task_result_apply_lora>();
  2143. res->id = task.id;
  2144. queue_results.send(std::move(res));
  2145. } break;
  2146. }
  2147. }
  2148. void update_slots() {
  2149. // check if all slots are idle
  2150. {
  2151. bool all_idle = true;
  2152. for (auto & slot : slots) {
  2153. if (slot.is_processing()) {
  2154. all_idle = false;
  2155. break;
  2156. }
  2157. }
  2158. if (all_idle) {
  2159. SRV_INF("%s", "all slots are idle\n");
  2160. if (clean_kv_cache) {
  2161. kv_cache_clear();
  2162. }
  2163. return;
  2164. }
  2165. }
  2166. {
  2167. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2168. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2169. task.id = queue_tasks.get_new_id();
  2170. queue_tasks.post(task);
  2171. }
  2172. // apply context-shift if needed
  2173. // TODO: simplify and improve
  2174. for (server_slot & slot : slots) {
  2175. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2176. if (!params_base.ctx_shift) {
  2177. // this check is redundant (for good)
  2178. // we should never get here, because generation should already stopped in process_token()
  2179. slot.release();
  2180. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2181. continue;
  2182. }
  2183. // Shift context
  2184. const int n_keep = slot.params.n_keep + add_bos_token;
  2185. const int n_left = slot.n_past - n_keep;
  2186. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2187. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2188. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2189. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2190. if (slot.params.cache_prompt) {
  2191. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2192. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2193. }
  2194. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2195. }
  2196. slot.n_past -= n_discard;
  2197. slot.truncated = true;
  2198. }
  2199. }
  2200. // start populating the batch for this iteration
  2201. common_batch_clear(batch);
  2202. // track if given slot can be batched with slots already in the batch
  2203. server_slot * slot_batched = nullptr;
  2204. // frist, add sampled tokens from any ongoing sequences
  2205. for (auto & slot : slots) {
  2206. if (slot.state != SLOT_STATE_GENERATING) {
  2207. continue;
  2208. }
  2209. // check if we can batch this slot with the previous one
  2210. if (!slot_batched) {
  2211. slot_batched = &slot;
  2212. } else if (!slot_batched->can_batch_with(slot)) {
  2213. continue;
  2214. }
  2215. slot.i_batch = batch.n_tokens;
  2216. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2217. slot.n_past += 1;
  2218. if (slot.params.cache_prompt) {
  2219. slot.cache_tokens.push_back(slot.sampled);
  2220. }
  2221. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2222. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2223. }
  2224. // process in chunks of params.n_batch
  2225. int32_t n_batch = llama_n_batch(ctx);
  2226. int32_t n_ubatch = llama_n_ubatch(ctx);
  2227. // next, batch any pending prompts without exceeding n_batch
  2228. if (params_base.cont_batching || batch.n_tokens == 0) {
  2229. for (auto & slot : slots) {
  2230. // check if we can batch this slot with the previous one
  2231. if (slot.is_processing()) {
  2232. if (!slot_batched) {
  2233. slot_batched = &slot;
  2234. } else if (!slot_batched->can_batch_with(slot)) {
  2235. continue;
  2236. }
  2237. }
  2238. // this slot still has a prompt to be processed
  2239. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2240. auto & prompt_tokens = slot.prompt_tokens;
  2241. // TODO: maybe move branch to outside of this loop in the future
  2242. if (slot.state == SLOT_STATE_STARTED) {
  2243. slot.t_start_process_prompt = ggml_time_us();
  2244. slot.t_start_generation = 0;
  2245. slot.n_past = 0;
  2246. slot.n_prompt_tokens = prompt_tokens.size();
  2247. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2248. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2249. // print prompt tokens (for debugging)
  2250. if (1) {
  2251. // first 16 tokens (avoid flooding logs)
  2252. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2253. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2254. }
  2255. } else {
  2256. // all
  2257. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2258. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2259. }
  2260. }
  2261. // empty prompt passed -> release the slot and send empty response
  2262. if (prompt_tokens.empty()) {
  2263. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2264. slot.release();
  2265. slot.print_timings();
  2266. send_final_response(slot);
  2267. continue;
  2268. }
  2269. if (slot.is_non_causal()) {
  2270. if (slot.n_prompt_tokens > n_ubatch) {
  2271. slot.release();
  2272. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2273. continue;
  2274. }
  2275. if (slot.n_prompt_tokens > slot.n_ctx) {
  2276. slot.release();
  2277. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2278. continue;
  2279. }
  2280. } else {
  2281. if (!params_base.ctx_shift) {
  2282. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2283. // TODO: there should be a separate parameter that control prompt truncation
  2284. // context shift should be applied only during the generation phase
  2285. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2286. slot.release();
  2287. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2288. continue;
  2289. }
  2290. }
  2291. if (slot.params.n_keep < 0) {
  2292. slot.params.n_keep = slot.n_prompt_tokens;
  2293. }
  2294. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2295. // if input prompt is too big, truncate it
  2296. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2297. const int n_left = slot.n_ctx - slot.params.n_keep;
  2298. const int n_block_size = n_left / 2;
  2299. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2300. llama_tokens new_tokens(
  2301. prompt_tokens.begin(),
  2302. prompt_tokens.begin() + slot.params.n_keep);
  2303. new_tokens.insert(
  2304. new_tokens.end(),
  2305. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2306. prompt_tokens.end());
  2307. prompt_tokens = std::move(new_tokens);
  2308. slot.truncated = true;
  2309. slot.n_prompt_tokens = prompt_tokens.size();
  2310. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2311. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2312. }
  2313. if (slot.params.cache_prompt) {
  2314. // reuse any previously computed tokens that are common with the new prompt
  2315. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2316. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2317. if (params_base.n_cache_reuse > 0) {
  2318. size_t head_c = slot.n_past; // cache
  2319. size_t head_p = slot.n_past; // current prompt
  2320. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2321. while (head_c < slot.cache_tokens.size() &&
  2322. head_p < prompt_tokens.size()) {
  2323. size_t n_match = 0;
  2324. while (head_c + n_match < slot.cache_tokens.size() &&
  2325. head_p + n_match < prompt_tokens.size() &&
  2326. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2327. n_match++;
  2328. }
  2329. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2330. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2331. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2332. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2333. //}
  2334. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2335. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2336. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2337. for (size_t i = 0; i < n_match; i++) {
  2338. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2339. slot.n_past++;
  2340. }
  2341. head_c += n_match;
  2342. head_p += n_match;
  2343. } else {
  2344. head_c += 1;
  2345. }
  2346. }
  2347. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2348. }
  2349. }
  2350. }
  2351. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2352. // we have to evaluate at least 1 token to generate logits.
  2353. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2354. slot.n_past--;
  2355. }
  2356. slot.n_prompt_tokens_processed = 0;
  2357. }
  2358. // non-causal tasks require to fit the entire prompt in the physical batch
  2359. if (slot.is_non_causal()) {
  2360. // cannot fit the prompt in the current batch - will try next iter
  2361. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2362. continue;
  2363. }
  2364. }
  2365. // keep only the common part
  2366. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2367. // could not partially delete (likely using a non-Transformer model)
  2368. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2369. // there is no common part left
  2370. slot.n_past = 0;
  2371. }
  2372. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2373. // remove the non-common part from the cache
  2374. slot.cache_tokens.resize(slot.n_past);
  2375. // add prompt tokens for processing in the current batch
  2376. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2377. // without pooling, we want to output the embeddings for all the tokens in the batch
  2378. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2379. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2380. if (slot.params.cache_prompt) {
  2381. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2382. }
  2383. slot.n_prompt_tokens_processed++;
  2384. slot.n_past++;
  2385. }
  2386. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2387. // entire prompt has been processed
  2388. if (slot.n_past == slot.n_prompt_tokens) {
  2389. slot.state = SLOT_STATE_DONE_PROMPT;
  2390. GGML_ASSERT(batch.n_tokens > 0);
  2391. common_sampler_reset(slot.smpl);
  2392. // Process all prompt tokens through sampler system
  2393. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2394. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2395. }
  2396. // extract the logits only for the last token
  2397. batch.logits[batch.n_tokens - 1] = true;
  2398. slot.n_decoded = 0;
  2399. slot.i_batch = batch.n_tokens - 1;
  2400. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2401. }
  2402. }
  2403. if (batch.n_tokens >= n_batch) {
  2404. break;
  2405. }
  2406. }
  2407. }
  2408. if (batch.n_tokens == 0) {
  2409. SRV_WRN("%s", "no tokens to decode\n");
  2410. return;
  2411. }
  2412. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2413. if (slot_batched) {
  2414. // make sure we're in the right embedding mode
  2415. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2416. // apply lora, only need to do it once per batch
  2417. common_set_adapter_lora(ctx, slot_batched->lora);
  2418. }
  2419. // process the created batch of tokens
  2420. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2421. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2422. llama_batch batch_view = {
  2423. n_tokens,
  2424. batch.token + i,
  2425. nullptr,
  2426. batch.pos + i,
  2427. batch.n_seq_id + i,
  2428. batch.seq_id + i,
  2429. batch.logits + i,
  2430. };
  2431. const int ret = llama_decode(ctx, batch_view);
  2432. metrics.on_decoded(slots);
  2433. if (ret != 0) {
  2434. if (n_batch == 1 || ret < 0) {
  2435. // if you get here, it means the KV cache is full - try increasing it via the context size
  2436. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2437. for (auto & slot : slots) {
  2438. slot.release();
  2439. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2440. }
  2441. break; // break loop of n_batch
  2442. }
  2443. // retry with half the batch size to try to find a free slot in the KV cache
  2444. n_batch /= 2;
  2445. i -= n_batch;
  2446. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2447. continue; // continue loop of n_batch
  2448. }
  2449. for (auto & slot : slots) {
  2450. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2451. continue; // continue loop of slots
  2452. }
  2453. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2454. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2455. // prompt evaluated for embedding
  2456. send_embedding(slot, batch_view);
  2457. slot.release();
  2458. slot.i_batch = -1;
  2459. continue; // continue loop of slots
  2460. }
  2461. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2462. send_rerank(slot, batch_view);
  2463. slot.release();
  2464. slot.i_batch = -1;
  2465. continue; // continue loop of slots
  2466. }
  2467. // prompt evaluated for next-token prediction
  2468. slot.state = SLOT_STATE_GENERATING;
  2469. } else if (slot.state != SLOT_STATE_GENERATING) {
  2470. continue; // continue loop of slots
  2471. }
  2472. const int tok_idx = slot.i_batch - i;
  2473. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2474. slot.i_batch = -1;
  2475. common_sampler_accept(slot.smpl, id, true);
  2476. slot.n_decoded += 1;
  2477. const int64_t t_current = ggml_time_us();
  2478. if (slot.n_decoded == 1) {
  2479. slot.t_start_generation = t_current;
  2480. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2481. metrics.on_prompt_eval(slot);
  2482. }
  2483. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2484. completion_token_output result;
  2485. result.tok = id;
  2486. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2487. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2488. if (slot.params.sampling.n_probs > 0) {
  2489. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2490. }
  2491. if (!process_token(result, slot)) {
  2492. // release slot because of stop condition
  2493. slot.release();
  2494. slot.print_timings();
  2495. send_final_response(slot);
  2496. metrics.on_prediction(slot);
  2497. continue;
  2498. }
  2499. }
  2500. // do speculative decoding
  2501. for (auto & slot : slots) {
  2502. if (!slot.is_processing() || !slot.can_speculate()) {
  2503. continue;
  2504. }
  2505. if (slot.state != SLOT_STATE_GENERATING) {
  2506. continue;
  2507. }
  2508. // determine the max draft that fits the current slot state
  2509. int n_draft_max = slot.params.speculative.n_max;
  2510. // note: n_past is not yet increased for the `id` token sampled above
  2511. // also, need to leave space for 1 extra token to allow context shifts
  2512. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2513. if (slot.n_remaining > 0) {
  2514. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2515. }
  2516. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2517. if (n_draft_max < slot.params.speculative.n_min) {
  2518. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2519. continue;
  2520. }
  2521. llama_token id = slot.sampled;
  2522. struct common_speculative_params params_spec;
  2523. params_spec.n_draft = n_draft_max;
  2524. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2525. params_spec.p_min = slot.params.speculative.p_min;
  2526. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2527. // ignore small drafts
  2528. if (slot.params.speculative.n_min > (int) draft.size()) {
  2529. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2530. continue;
  2531. }
  2532. // construct the speculation batch
  2533. common_batch_clear(slot.batch_spec);
  2534. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2535. for (size_t i = 0; i < draft.size(); ++i) {
  2536. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2537. }
  2538. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2539. llama_decode(ctx, slot.batch_spec);
  2540. // the accepted tokens from the speculation
  2541. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2542. slot.n_past += ids.size();
  2543. slot.n_decoded += ids.size();
  2544. slot.cache_tokens.push_back(id);
  2545. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2546. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2547. for (size_t i = 0; i < ids.size(); ++i) {
  2548. completion_token_output result;
  2549. result.tok = ids[i];
  2550. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2551. result.prob = 1.0f; // set later
  2552. // TODO: set result.probs
  2553. if (!process_token(result, slot)) {
  2554. // release slot because of stop condition
  2555. slot.release();
  2556. slot.print_timings();
  2557. send_final_response(slot);
  2558. metrics.on_prediction(slot);
  2559. break;
  2560. }
  2561. }
  2562. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2563. }
  2564. }
  2565. SRV_DBG("%s", "run slots completed\n");
  2566. }
  2567. json model_meta() const {
  2568. return json {
  2569. {"vocab_type", llama_vocab_type (vocab)},
  2570. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2571. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2572. {"n_embd", llama_model_n_embd (model)},
  2573. {"n_params", llama_model_n_params (model)},
  2574. {"size", llama_model_size (model)},
  2575. };
  2576. }
  2577. };
  2578. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2579. // skip GH copilot requests when using default port
  2580. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2581. return;
  2582. }
  2583. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2584. LOG_DBG("request: %s\n", req.body.c_str());
  2585. LOG_DBG("response: %s\n", res.body.c_str());
  2586. }
  2587. std::function<void(int)> shutdown_handler;
  2588. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2589. inline void signal_handler(int signal) {
  2590. if (is_terminating.test_and_set()) {
  2591. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2592. // this is for better developer experience, we can remove when the server is stable enough
  2593. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2594. exit(1);
  2595. }
  2596. shutdown_handler(signal);
  2597. }
  2598. int main(int argc, char ** argv) {
  2599. // own arguments required by this example
  2600. common_params params;
  2601. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2602. return 1;
  2603. }
  2604. common_init();
  2605. // struct that contains llama context and inference
  2606. server_context ctx_server;
  2607. llama_backend_init();
  2608. llama_numa_init(params.numa);
  2609. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2610. LOG_INF("\n");
  2611. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2612. LOG_INF("\n");
  2613. std::unique_ptr<httplib::Server> svr;
  2614. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2615. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2616. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2617. svr.reset(
  2618. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2619. );
  2620. } else {
  2621. LOG_INF("Running without SSL\n");
  2622. svr.reset(new httplib::Server());
  2623. }
  2624. #else
  2625. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2626. LOG_ERR("Server is built without SSL support\n");
  2627. return 1;
  2628. }
  2629. svr.reset(new httplib::Server());
  2630. #endif
  2631. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2632. svr->set_default_headers({{"Server", "llama.cpp"}});
  2633. svr->set_logger(log_server_request);
  2634. auto res_error = [](httplib::Response & res, const json & error_data) {
  2635. json final_response {{"error", error_data}};
  2636. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2637. res.status = json_value(error_data, "code", 500);
  2638. };
  2639. auto res_ok = [](httplib::Response & res, const json & data) {
  2640. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2641. res.status = 200;
  2642. };
  2643. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2644. std::string message;
  2645. try {
  2646. std::rethrow_exception(ep);
  2647. } catch (const std::exception & e) {
  2648. message = e.what();
  2649. } catch (...) {
  2650. message = "Unknown Exception";
  2651. }
  2652. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2653. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2654. res_error(res, formatted_error);
  2655. });
  2656. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2657. if (res.status == 404) {
  2658. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2659. }
  2660. // for other error codes, we skip processing here because it's already done by res_error()
  2661. });
  2662. // set timeouts and change hostname and port
  2663. svr->set_read_timeout (params.timeout_read);
  2664. svr->set_write_timeout(params.timeout_write);
  2665. std::unordered_map<std::string, std::string> log_data;
  2666. log_data["hostname"] = params.hostname;
  2667. log_data["port"] = std::to_string(params.port);
  2668. if (params.api_keys.size() == 1) {
  2669. auto key = params.api_keys[0];
  2670. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2671. } else if (params.api_keys.size() > 1) {
  2672. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2673. }
  2674. // Necessary similarity of prompt for slot selection
  2675. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2676. //
  2677. // Middlewares
  2678. //
  2679. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2680. static const std::unordered_set<std::string> public_endpoints = {
  2681. "/health",
  2682. "/models",
  2683. "/v1/models",
  2684. };
  2685. // If API key is not set, skip validation
  2686. if (params.api_keys.empty()) {
  2687. return true;
  2688. }
  2689. // If path is public or is static file, skip validation
  2690. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2691. return true;
  2692. }
  2693. // Check for API key in the header
  2694. auto auth_header = req.get_header_value("Authorization");
  2695. std::string prefix = "Bearer ";
  2696. if (auth_header.substr(0, prefix.size()) == prefix) {
  2697. std::string received_api_key = auth_header.substr(prefix.size());
  2698. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2699. return true; // API key is valid
  2700. }
  2701. }
  2702. // API key is invalid or not provided
  2703. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2704. LOG_WRN("Unauthorized: Invalid API Key\n");
  2705. return false;
  2706. };
  2707. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2708. server_state current_state = state.load();
  2709. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2710. auto tmp = string_split<std::string>(req.path, '.');
  2711. if (req.path == "/" || tmp.back() == "html") {
  2712. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2713. res.status = 503;
  2714. } else {
  2715. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2716. }
  2717. return false;
  2718. }
  2719. return true;
  2720. };
  2721. // register server middlewares
  2722. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2723. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2724. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2725. if (req.method == "OPTIONS") {
  2726. res.set_header("Access-Control-Allow-Credentials", "true");
  2727. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2728. res.set_header("Access-Control-Allow-Headers", "*");
  2729. res.set_content("", "text/html"); // blank response, no data
  2730. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2731. }
  2732. if (!middleware_server_state(req, res)) {
  2733. return httplib::Server::HandlerResponse::Handled;
  2734. }
  2735. if (!middleware_validate_api_key(req, res)) {
  2736. return httplib::Server::HandlerResponse::Handled;
  2737. }
  2738. return httplib::Server::HandlerResponse::Unhandled;
  2739. });
  2740. //
  2741. // Route handlers (or controllers)
  2742. //
  2743. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2744. // error and loading states are handled by middleware
  2745. json health = {{"status", "ok"}};
  2746. res_ok(res, health);
  2747. };
  2748. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2749. if (!params.endpoint_slots) {
  2750. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2751. return;
  2752. }
  2753. // request slots data using task queue
  2754. server_task task(SERVER_TASK_TYPE_METRICS);
  2755. task.id = ctx_server.queue_tasks.get_new_id();
  2756. ctx_server.queue_results.add_waiting_task_id(task.id);
  2757. ctx_server.queue_tasks.post(task, true); // high-priority task
  2758. // get the result
  2759. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2760. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2761. if (result->is_error()) {
  2762. res_error(res, result->to_json());
  2763. return;
  2764. }
  2765. // TODO: get rid of this dynamic_cast
  2766. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2767. GGML_ASSERT(res_metrics != nullptr);
  2768. // optionally return "fail_on_no_slot" error
  2769. if (req.has_param("fail_on_no_slot")) {
  2770. if (res_metrics->n_idle_slots == 0) {
  2771. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2772. return;
  2773. }
  2774. }
  2775. res_ok(res, res_metrics->slots_data);
  2776. };
  2777. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2778. if (!params.endpoint_metrics) {
  2779. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2780. return;
  2781. }
  2782. // request slots data using task queue
  2783. server_task task(SERVER_TASK_TYPE_METRICS);
  2784. task.id = ctx_server.queue_tasks.get_new_id();
  2785. task.metrics_reset_bucket = true;
  2786. ctx_server.queue_results.add_waiting_task_id(task.id);
  2787. ctx_server.queue_tasks.post(task, true); // high-priority task
  2788. // get the result
  2789. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2790. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2791. if (result->is_error()) {
  2792. res_error(res, result->to_json());
  2793. return;
  2794. }
  2795. // TODO: get rid of this dynamic_cast
  2796. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2797. GGML_ASSERT(res_metrics != nullptr);
  2798. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2799. json all_metrics_def = json {
  2800. {"counter", {{
  2801. {"name", "prompt_tokens_total"},
  2802. {"help", "Number of prompt tokens processed."},
  2803. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2804. }, {
  2805. {"name", "prompt_seconds_total"},
  2806. {"help", "Prompt process time"},
  2807. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2808. }, {
  2809. {"name", "tokens_predicted_total"},
  2810. {"help", "Number of generation tokens processed."},
  2811. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2812. }, {
  2813. {"name", "tokens_predicted_seconds_total"},
  2814. {"help", "Predict process time"},
  2815. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2816. }, {
  2817. {"name", "n_decode_total"},
  2818. {"help", "Total number of llama_decode() calls"},
  2819. {"value", res_metrics->n_decode_total}
  2820. }, {
  2821. {"name", "n_busy_slots_per_decode"},
  2822. {"help", "Average number of busy slots per llama_decode() call"},
  2823. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2824. }}},
  2825. {"gauge", {{
  2826. {"name", "prompt_tokens_seconds"},
  2827. {"help", "Average prompt throughput in tokens/s."},
  2828. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2829. },{
  2830. {"name", "predicted_tokens_seconds"},
  2831. {"help", "Average generation throughput in tokens/s."},
  2832. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2833. },{
  2834. {"name", "kv_cache_usage_ratio"},
  2835. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2836. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2837. },{
  2838. {"name", "kv_cache_tokens"},
  2839. {"help", "KV-cache tokens."},
  2840. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2841. },{
  2842. {"name", "requests_processing"},
  2843. {"help", "Number of request processing."},
  2844. {"value", (uint64_t) res_metrics->n_processing_slots}
  2845. },{
  2846. {"name", "requests_deferred"},
  2847. {"help", "Number of request deferred."},
  2848. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2849. }}}
  2850. };
  2851. std::stringstream prometheus;
  2852. for (const auto & el : all_metrics_def.items()) {
  2853. const auto & type = el.key();
  2854. const auto & metrics_def = el.value();
  2855. for (const auto & metric_def : metrics_def) {
  2856. const std::string name = metric_def.at("name");
  2857. const std::string help = metric_def.at("help");
  2858. auto value = json_value(metric_def, "value", 0.);
  2859. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2860. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2861. << "llamacpp:" << name << " " << value << "\n";
  2862. }
  2863. }
  2864. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2865. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2866. res.status = 200; // HTTP OK
  2867. };
  2868. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2869. json request_data = json::parse(req.body);
  2870. std::string filename = request_data.at("filename");
  2871. if (!fs_validate_filename(filename)) {
  2872. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2873. return;
  2874. }
  2875. std::string filepath = params.slot_save_path + filename;
  2876. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2877. task.id = ctx_server.queue_tasks.get_new_id();
  2878. task.slot_action.slot_id = id_slot;
  2879. task.slot_action.filename = filename;
  2880. task.slot_action.filepath = filepath;
  2881. ctx_server.queue_results.add_waiting_task_id(task.id);
  2882. ctx_server.queue_tasks.post(task);
  2883. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2884. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2885. if (result->is_error()) {
  2886. res_error(res, result->to_json());
  2887. return;
  2888. }
  2889. res_ok(res, result->to_json());
  2890. };
  2891. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2892. json request_data = json::parse(req.body);
  2893. std::string filename = request_data.at("filename");
  2894. if (!fs_validate_filename(filename)) {
  2895. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2896. return;
  2897. }
  2898. std::string filepath = params.slot_save_path + filename;
  2899. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2900. task.id = ctx_server.queue_tasks.get_new_id();
  2901. task.slot_action.slot_id = id_slot;
  2902. task.slot_action.filename = filename;
  2903. task.slot_action.filepath = filepath;
  2904. ctx_server.queue_results.add_waiting_task_id(task.id);
  2905. ctx_server.queue_tasks.post(task);
  2906. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2907. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2908. if (result->is_error()) {
  2909. res_error(res, result->to_json());
  2910. return;
  2911. }
  2912. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2913. res_ok(res, result->to_json());
  2914. };
  2915. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2916. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2917. task.id = ctx_server.queue_tasks.get_new_id();
  2918. task.slot_action.slot_id = id_slot;
  2919. ctx_server.queue_results.add_waiting_task_id(task.id);
  2920. ctx_server.queue_tasks.post(task);
  2921. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2922. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2923. if (result->is_error()) {
  2924. res_error(res, result->to_json());
  2925. return;
  2926. }
  2927. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2928. res_ok(res, result->to_json());
  2929. };
  2930. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2931. if (params.slot_save_path.empty()) {
  2932. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2933. return;
  2934. }
  2935. std::string id_slot_str = req.path_params.at("id_slot");
  2936. int id_slot;
  2937. try {
  2938. id_slot = std::stoi(id_slot_str);
  2939. } catch (const std::exception &) {
  2940. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2941. return;
  2942. }
  2943. std::string action = req.get_param_value("action");
  2944. if (action == "save") {
  2945. handle_slots_save(req, res, id_slot);
  2946. } else if (action == "restore") {
  2947. handle_slots_restore(req, res, id_slot);
  2948. } else if (action == "erase") {
  2949. handle_slots_erase(req, res, id_slot);
  2950. } else {
  2951. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2952. }
  2953. };
  2954. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2955. // this endpoint is publicly available, please only return what is safe to be exposed
  2956. json data = {
  2957. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2958. { "total_slots", ctx_server.params_base.n_parallel },
  2959. { "model_path", ctx_server.params_base.model },
  2960. { "chat_template", common_get_builtin_chat_template(ctx_server.model) },
  2961. { "build_info", build_info },
  2962. };
  2963. res_ok(res, data);
  2964. };
  2965. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2966. if (!ctx_server.params_base.endpoint_props) {
  2967. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2968. return;
  2969. }
  2970. json data = json::parse(req.body);
  2971. // update any props here
  2972. res_ok(res, {{ "success", true }});
  2973. };
  2974. // handle completion-like requests (completion, chat, infill)
  2975. // we can optionally provide a custom format for partial results and final results
  2976. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  2977. server_task_type type,
  2978. json & data,
  2979. httplib::Response & res,
  2980. oaicompat_type oaicompat) {
  2981. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2982. if (ctx_server.params_base.embedding) {
  2983. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2984. return;
  2985. }
  2986. auto completion_id = gen_chatcmplid();
  2987. std::vector<server_task> tasks;
  2988. try {
  2989. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, data.at("prompt"), true, true);
  2990. tasks.reserve(tokenized_prompts.size());
  2991. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2992. server_task task = server_task(type);
  2993. task.id = ctx_server.queue_tasks.get_new_id();
  2994. task.index = i;
  2995. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2996. task.params = server_task::params_from_json_cmpl(
  2997. ctx_server.ctx,
  2998. ctx_server.params_base,
  2999. data);
  3000. task.id_selected_slot = json_value(data, "id_slot", -1);
  3001. // OAI-compat
  3002. task.params.oaicompat = oaicompat;
  3003. task.params.oaicompat_cmpl_id = completion_id;
  3004. // oaicompat_model is already populated by params_from_json_cmpl
  3005. tasks.push_back(task);
  3006. }
  3007. } catch (const std::exception & e) {
  3008. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3009. return;
  3010. }
  3011. ctx_server.queue_results.add_waiting_tasks(tasks);
  3012. ctx_server.queue_tasks.post(tasks);
  3013. bool stream = json_value(data, "stream", false);
  3014. const auto task_ids = server_task::get_list_id(tasks);
  3015. if (!stream) {
  3016. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3017. if (results.size() == 1) {
  3018. // single result
  3019. res_ok(res, results[0]->to_json());
  3020. } else {
  3021. // multiple results (multitask)
  3022. json arr = json::array();
  3023. for (auto & res : results) {
  3024. arr.push_back(res->to_json());
  3025. }
  3026. res_ok(res, arr);
  3027. }
  3028. }, [&](const json & error_data) {
  3029. res_error(res, error_data);
  3030. });
  3031. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3032. } else {
  3033. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3034. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3035. json res_json = result->to_json();
  3036. if (res_json.is_array()) {
  3037. for (const auto & res : res_json) {
  3038. if (!server_sent_event(sink, "data", res)) {
  3039. return false;
  3040. }
  3041. }
  3042. return true;
  3043. } else {
  3044. return server_sent_event(sink, "data", res_json);
  3045. }
  3046. }, [&](const json & error_data) {
  3047. server_sent_event(sink, "error", error_data);
  3048. });
  3049. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3050. static const std::string ev_done = "data: [DONE]\n\n";
  3051. sink.write(ev_done.data(), ev_done.size());
  3052. }
  3053. sink.done();
  3054. return false;
  3055. };
  3056. auto on_complete = [task_ids, &ctx_server] (bool) {
  3057. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3058. };
  3059. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3060. }
  3061. };
  3062. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3063. json data = json::parse(req.body);
  3064. return handle_completions_impl(
  3065. SERVER_TASK_TYPE_COMPLETION,
  3066. data,
  3067. res,
  3068. OAICOMPAT_TYPE_NONE);
  3069. };
  3070. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3071. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3072. return handle_completions_impl(
  3073. SERVER_TASK_TYPE_COMPLETION,
  3074. data,
  3075. res,
  3076. OAICOMPAT_TYPE_COMPLETION);
  3077. };
  3078. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3079. // check model compatibility
  3080. std::string err;
  3081. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3082. err += "prefix token is missing. ";
  3083. }
  3084. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3085. err += "suffix token is missing. ";
  3086. }
  3087. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3088. err += "middle token is missing. ";
  3089. }
  3090. if (!err.empty()) {
  3091. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3092. return;
  3093. }
  3094. json data = json::parse(req.body);
  3095. // validate input
  3096. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3097. // prompt is optional
  3098. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3099. }
  3100. if (!data.contains("input_prefix")) {
  3101. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3102. }
  3103. if (!data.contains("input_suffix")) {
  3104. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3105. }
  3106. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3107. // input_extra is optional
  3108. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3109. return;
  3110. }
  3111. json input_extra = json_value(data, "input_extra", json::array());
  3112. for (const auto & chunk : input_extra) {
  3113. // { "text": string, "filename": string }
  3114. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3115. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3116. return;
  3117. }
  3118. // filename is optional
  3119. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3120. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3121. return;
  3122. }
  3123. }
  3124. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3125. std::string prompt = json_value(data, "prompt", std::string());
  3126. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3127. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3128. data["prompt"] = format_infill(
  3129. ctx_server.vocab,
  3130. data.at("input_prefix"),
  3131. data.at("input_suffix"),
  3132. data.at("input_extra"),
  3133. ctx_server.params_base.n_batch,
  3134. ctx_server.params_base.n_predict,
  3135. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3136. ctx_server.params_base.spm_infill,
  3137. tokenized_prompts[0]
  3138. );
  3139. return handle_completions_impl(
  3140. SERVER_TASK_TYPE_INFILL,
  3141. data,
  3142. res,
  3143. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3144. };
  3145. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3146. if (ctx_server.params_base.embedding) {
  3147. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3148. return;
  3149. }
  3150. json data = oaicompat_chat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  3151. return handle_completions_impl(
  3152. SERVER_TASK_TYPE_COMPLETION,
  3153. data,
  3154. res,
  3155. OAICOMPAT_TYPE_CHAT);
  3156. };
  3157. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3158. json models = {
  3159. {"object", "list"},
  3160. {"data", {
  3161. {
  3162. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3163. {"object", "model"},
  3164. {"created", std::time(0)},
  3165. {"owned_by", "llamacpp"},
  3166. {"meta", ctx_server.model_meta()}
  3167. },
  3168. }}
  3169. };
  3170. res_ok(res, models);
  3171. };
  3172. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3173. const json body = json::parse(req.body);
  3174. json tokens_response = json::array();
  3175. if (body.count("content") != 0) {
  3176. const bool add_special = json_value(body, "add_special", false);
  3177. const bool with_pieces = json_value(body, "with_pieces", false);
  3178. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3179. if (with_pieces) {
  3180. for (const auto& token : tokens) {
  3181. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3182. json piece_json;
  3183. // Check if the piece is valid UTF-8
  3184. if (is_valid_utf8(piece)) {
  3185. piece_json = piece;
  3186. } else {
  3187. // If not valid UTF-8, store as array of byte values
  3188. piece_json = json::array();
  3189. for (unsigned char c : piece) {
  3190. piece_json.push_back(static_cast<int>(c));
  3191. }
  3192. }
  3193. tokens_response.push_back({
  3194. {"id", token},
  3195. {"piece", piece_json}
  3196. });
  3197. }
  3198. } else {
  3199. tokens_response = tokens;
  3200. }
  3201. }
  3202. const json data = format_tokenizer_response(tokens_response);
  3203. res_ok(res, data);
  3204. };
  3205. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3206. const json body = json::parse(req.body);
  3207. std::string content;
  3208. if (body.count("tokens") != 0) {
  3209. const llama_tokens tokens = body.at("tokens");
  3210. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3211. }
  3212. const json data = format_detokenized_response(content);
  3213. res_ok(res, data);
  3214. };
  3215. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3216. const json body = json::parse(req.body);
  3217. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3218. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3219. return;
  3220. }
  3221. // for the shape of input/content, see tokenize_input_prompts()
  3222. json prompt;
  3223. if (body.count("input") != 0) {
  3224. prompt = body.at("input");
  3225. } else if (body.contains("content")) {
  3226. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3227. prompt = body.at("content");
  3228. } else {
  3229. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3230. return;
  3231. }
  3232. bool use_base64 = false;
  3233. if (body.count("encoding_format") != 0) {
  3234. const std::string& format = body.at("encoding_format");
  3235. if (format == "base64") {
  3236. use_base64 = true;
  3237. } else if (format != "float") {
  3238. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3239. return;
  3240. }
  3241. }
  3242. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3243. for (const auto & tokens : tokenized_prompts) {
  3244. // this check is necessary for models that do not add BOS token to the input
  3245. if (tokens.empty()) {
  3246. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3247. return;
  3248. }
  3249. }
  3250. // create and queue the task
  3251. json responses = json::array();
  3252. bool error = false;
  3253. {
  3254. std::vector<server_task> tasks;
  3255. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3256. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3257. task.id = ctx_server.queue_tasks.get_new_id();
  3258. task.index = i;
  3259. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3260. // OAI-compat
  3261. task.params.oaicompat = oaicompat;
  3262. tasks.push_back(task);
  3263. }
  3264. ctx_server.queue_results.add_waiting_tasks(tasks);
  3265. ctx_server.queue_tasks.post(tasks);
  3266. // get the result
  3267. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3268. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3269. for (auto & res : results) {
  3270. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3271. responses.push_back(res->to_json());
  3272. }
  3273. }, [&](const json & error_data) {
  3274. res_error(res, error_data);
  3275. error = true;
  3276. });
  3277. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3278. }
  3279. if (error) {
  3280. return;
  3281. }
  3282. // write JSON response
  3283. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3284. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3285. : json(responses);
  3286. res_ok(res, root);
  3287. };
  3288. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3289. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3290. };
  3291. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3292. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3293. };
  3294. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3295. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3296. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3297. return;
  3298. }
  3299. const json body = json::parse(req.body);
  3300. // TODO: implement
  3301. //int top_n = 1;
  3302. //if (body.count("top_n") != 1) {
  3303. // top_n = body.at("top_n");
  3304. //} else {
  3305. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3306. // return;
  3307. //}
  3308. json query;
  3309. if (body.count("query") == 1) {
  3310. query = body.at("query");
  3311. if (!query.is_string()) {
  3312. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3313. return;
  3314. }
  3315. } else {
  3316. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3317. return;
  3318. }
  3319. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3320. if (documents.empty()) {
  3321. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3322. return;
  3323. }
  3324. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3325. // create and queue the task
  3326. json responses = json::array();
  3327. bool error = false;
  3328. {
  3329. std::vector<server_task> tasks;
  3330. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3331. tasks.reserve(tokenized_docs.size());
  3332. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3333. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3334. task.id = ctx_server.queue_tasks.get_new_id();
  3335. task.index = i;
  3336. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3337. tasks.push_back(task);
  3338. }
  3339. ctx_server.queue_results.add_waiting_tasks(tasks);
  3340. ctx_server.queue_tasks.post(tasks);
  3341. // get the result
  3342. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3343. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3344. for (auto & res : results) {
  3345. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3346. responses.push_back(res->to_json());
  3347. }
  3348. }, [&](const json & error_data) {
  3349. res_error(res, error_data);
  3350. error = true;
  3351. });
  3352. }
  3353. if (error) {
  3354. return;
  3355. }
  3356. // write JSON response
  3357. json root = format_response_rerank(body, responses);
  3358. res_ok(res, root);
  3359. };
  3360. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3361. json result = json::array();
  3362. const auto & loras = ctx_server.params_base.lora_adapters;
  3363. for (size_t i = 0; i < loras.size(); ++i) {
  3364. auto & lora = loras[i];
  3365. result.push_back({
  3366. {"id", i},
  3367. {"path", lora.path},
  3368. {"scale", lora.scale},
  3369. });
  3370. }
  3371. res_ok(res, result);
  3372. res.status = 200; // HTTP OK
  3373. };
  3374. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3375. const json body = json::parse(req.body);
  3376. if (!body.is_array()) {
  3377. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3378. return;
  3379. }
  3380. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3381. task.id = ctx_server.queue_tasks.get_new_id();
  3382. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3383. ctx_server.queue_results.add_waiting_task_id(task.id);
  3384. ctx_server.queue_tasks.post(task);
  3385. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3386. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3387. if (result->is_error()) {
  3388. res_error(res, result->to_json());
  3389. return;
  3390. }
  3391. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3392. res_ok(res, result->to_json());
  3393. };
  3394. //
  3395. // Router
  3396. //
  3397. if (!params.webui) {
  3398. LOG_INF("Web UI is disabled\n");
  3399. } else {
  3400. // register static assets routes
  3401. if (!params.public_path.empty()) {
  3402. // Set the base directory for serving static files
  3403. bool is_found = svr->set_mount_point("/", params.public_path);
  3404. if (!is_found) {
  3405. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3406. return 1;
  3407. }
  3408. } else {
  3409. // using embedded static index.html
  3410. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3411. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3412. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3413. } else {
  3414. res.set_header("Content-Encoding", "gzip");
  3415. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3416. }
  3417. return false;
  3418. });
  3419. }
  3420. }
  3421. // register API routes
  3422. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3423. svr->Get ("/metrics", handle_metrics);
  3424. svr->Get ("/props", handle_props);
  3425. svr->Post("/props", handle_props_change);
  3426. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3427. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3428. svr->Post("/completion", handle_completions); // legacy
  3429. svr->Post("/completions", handle_completions);
  3430. svr->Post("/v1/completions", handle_completions_oai);
  3431. svr->Post("/chat/completions", handle_chat_completions);
  3432. svr->Post("/v1/chat/completions", handle_chat_completions);
  3433. svr->Post("/infill", handle_infill);
  3434. svr->Post("/embedding", handle_embeddings); // legacy
  3435. svr->Post("/embeddings", handle_embeddings);
  3436. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3437. svr->Post("/rerank", handle_rerank);
  3438. svr->Post("/reranking", handle_rerank);
  3439. svr->Post("/v1/rerank", handle_rerank);
  3440. svr->Post("/v1/reranking", handle_rerank);
  3441. svr->Post("/tokenize", handle_tokenize);
  3442. svr->Post("/detokenize", handle_detokenize);
  3443. // LoRA adapters hotswap
  3444. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3445. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3446. // Save & load slots
  3447. svr->Get ("/slots", handle_slots);
  3448. svr->Post("/slots/:id_slot", handle_slots_action);
  3449. //
  3450. // Start the server
  3451. //
  3452. if (params.n_threads_http < 1) {
  3453. // +2 threads for monitoring endpoints
  3454. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3455. }
  3456. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3457. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3458. // clean up function, to be called before exit
  3459. auto clean_up = [&svr]() {
  3460. svr->stop();
  3461. llama_backend_free();
  3462. };
  3463. // bind HTTP listen port
  3464. bool was_bound = false;
  3465. if (params.port == 0) {
  3466. int bound_port = svr->bind_to_any_port(params.hostname);
  3467. if ((was_bound = (bound_port >= 0))) {
  3468. params.port = bound_port;
  3469. }
  3470. } else {
  3471. was_bound = svr->bind_to_port(params.hostname, params.port);
  3472. }
  3473. if (!was_bound) {
  3474. //LOG_ERROR("couldn't bind HTTP server socket", {
  3475. // {"hostname", params.hostname},
  3476. // {"port", params.port},
  3477. //});
  3478. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3479. clean_up();
  3480. return 1;
  3481. }
  3482. // run the HTTP server in a thread
  3483. std::thread t([&]() { svr->listen_after_bind(); });
  3484. svr->wait_until_ready();
  3485. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3486. // load the model
  3487. LOG_INF("%s: loading model\n", __func__);
  3488. if (!ctx_server.load_model(params)) {
  3489. clean_up();
  3490. t.join();
  3491. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3492. return 1;
  3493. }
  3494. ctx_server.init();
  3495. state.store(SERVER_STATE_READY);
  3496. LOG_INF("%s: model loaded\n", __func__);
  3497. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3498. if (params.chat_template.empty()) {
  3499. if (!ctx_server.validate_builtin_chat_template()) {
  3500. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3501. params.chat_template = "chatml";
  3502. }
  3503. }
  3504. // print sample chat example to make it clear which template is used
  3505. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3506. params.chat_template.empty() ? "(built-in)" : params.chat_template.c_str(),
  3507. common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3508. ctx_server.queue_tasks.on_new_task(std::bind(
  3509. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3510. ctx_server.queue_tasks.on_update_slots(std::bind(
  3511. &server_context::update_slots, &ctx_server));
  3512. shutdown_handler = [&](int) {
  3513. ctx_server.queue_tasks.terminate();
  3514. };
  3515. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3516. ctx_server.queue_tasks.start_loop();
  3517. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3518. struct sigaction sigint_action;
  3519. sigint_action.sa_handler = signal_handler;
  3520. sigemptyset (&sigint_action.sa_mask);
  3521. sigint_action.sa_flags = 0;
  3522. sigaction(SIGINT, &sigint_action, NULL);
  3523. sigaction(SIGTERM, &sigint_action, NULL);
  3524. #elif defined (_WIN32)
  3525. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3526. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3527. };
  3528. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3529. #endif
  3530. clean_up();
  3531. t.join();
  3532. return 0;
  3533. }