utils.hpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. #pragma once
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include "common/base64.hpp"
  6. #ifndef NDEBUG
  7. // crash the server in debug mode, otherwise send an http 500 error
  8. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  9. #endif
  10. // increase max payload length to allow use of larger context size
  11. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  12. #include "httplib.h"
  13. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  14. #define JSON_ASSERT GGML_ASSERT
  15. #include "json.hpp"
  16. #include <random>
  17. #include <sstream>
  18. #include <string>
  19. #include <vector>
  20. #include <memory>
  21. #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
  22. using json = nlohmann::ordered_json;
  23. #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  24. #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  25. #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  26. #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  27. #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  28. #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  29. #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  30. #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  31. #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  32. #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  33. #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  34. #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  35. template <typename T>
  36. static T json_value(const json & body, const std::string & key, const T & default_value) {
  37. // Fallback null to default value
  38. if (body.contains(key) && !body.at(key).is_null()) {
  39. try {
  40. return body.at(key);
  41. } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
  42. LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
  43. return default_value;
  44. }
  45. } else {
  46. return default_value;
  47. }
  48. }
  49. const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
  50. //
  51. // tokenizer and input processing utils
  52. //
  53. static bool json_is_array_of_numbers(const json & data) {
  54. if (data.is_array()) {
  55. for (const auto & e : data) {
  56. if (!e.is_number_integer()) {
  57. return false;
  58. }
  59. }
  60. return true;
  61. }
  62. return false;
  63. }
  64. // is array having BOTH numbers & strings?
  65. static bool json_is_array_of_mixed_numbers_strings(const json & data) {
  66. bool seen_string = false;
  67. bool seen_number = false;
  68. if (data.is_array()) {
  69. for (const auto & e : data) {
  70. seen_string |= e.is_string();
  71. seen_number |= e.is_number_integer();
  72. if (seen_number && seen_string) {
  73. return true;
  74. }
  75. }
  76. }
  77. return false;
  78. }
  79. // get value by path(key1 / key2)
  80. static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
  81. json result = json::object();
  82. for (const std::string & path : paths) {
  83. json current = js;
  84. const auto keys = string_split<std::string>(path, /*separator*/ '/');
  85. bool valid_path = true;
  86. for (const std::string & k : keys) {
  87. if (valid_path && current.is_object() && current.contains(k)) {
  88. current = current[k];
  89. } else {
  90. valid_path = false;
  91. }
  92. }
  93. if (valid_path) {
  94. result[path] = current;
  95. }
  96. }
  97. return result;
  98. }
  99. /**
  100. * this handles 2 cases:
  101. * - only string, example: "string"
  102. * - mixed string and tokens, example: [12, 34, "string", 56, 78]
  103. */
  104. static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
  105. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  106. // or the first element of the json_prompt array is a string.
  107. llama_tokens prompt_tokens;
  108. if (json_prompt.is_array()) {
  109. bool first = true;
  110. for (const auto & p : json_prompt) {
  111. if (p.is_string()) {
  112. auto s = p.template get<std::string>();
  113. llama_tokens p;
  114. if (first) {
  115. p = common_tokenize(vocab, s, add_special, parse_special);
  116. first = false;
  117. } else {
  118. p = common_tokenize(vocab, s, false, parse_special);
  119. }
  120. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  121. } else {
  122. if (first) {
  123. first = false;
  124. }
  125. prompt_tokens.push_back(p.template get<llama_token>());
  126. }
  127. }
  128. } else {
  129. auto s = json_prompt.template get<std::string>();
  130. prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
  131. }
  132. return prompt_tokens;
  133. }
  134. /**
  135. * break the input "prompt" object into multiple prompt if needed, then tokenize them
  136. * this supports these cases:
  137. * - "prompt": "string"
  138. * - "prompt": [12, 34, 56]
  139. * - "prompt": [12, 34, "string", 56, 78]
  140. * and multiple prompts (multi-tasks):
  141. * - "prompt": ["string1", "string2"]
  142. * - "prompt": ["string1", [12, 34, 56]]
  143. * - "prompt": [[12, 34, 56], [78, 90, 12]]
  144. * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
  145. */
  146. static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
  147. std::vector<llama_tokens> result;
  148. if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
  149. // string or mixed
  150. result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
  151. } else if (json_is_array_of_numbers(json_prompt)) {
  152. // array of tokens
  153. result.push_back(json_prompt.get<llama_tokens>());
  154. } else if (json_prompt.is_array()) {
  155. // array of prompts
  156. result.reserve(json_prompt.size());
  157. for (const auto & p : json_prompt) {
  158. if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
  159. result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
  160. } else if (json_is_array_of_numbers(p)) {
  161. // array of tokens
  162. result.push_back(p.get<llama_tokens>());
  163. } else {
  164. throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
  165. }
  166. }
  167. } else {
  168. throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
  169. }
  170. if (result.empty()) {
  171. throw std::runtime_error("\"prompt\" must not be empty");
  172. }
  173. return result;
  174. }
  175. // return the last index of character that can form a valid string
  176. // if the last character is potentially cut in half, return the index before the cut
  177. // if validate_utf8(text) == text.size(), then the whole text is valid utf8
  178. static size_t validate_utf8(const std::string& text) {
  179. size_t len = text.size();
  180. if (len == 0) return 0;
  181. // Check the last few bytes to see if a multi-byte character is cut off
  182. for (size_t i = 1; i <= 4 && i <= len; ++i) {
  183. unsigned char c = text[len - i];
  184. // Check for start of a multi-byte sequence from the end
  185. if ((c & 0xE0) == 0xC0) {
  186. // 2-byte character start: 110xxxxx
  187. // Needs at least 2 bytes
  188. if (i < 2) return len - i;
  189. } else if ((c & 0xF0) == 0xE0) {
  190. // 3-byte character start: 1110xxxx
  191. // Needs at least 3 bytes
  192. if (i < 3) return len - i;
  193. } else if ((c & 0xF8) == 0xF0) {
  194. // 4-byte character start: 11110xxx
  195. // Needs at least 4 bytes
  196. if (i < 4) return len - i;
  197. }
  198. }
  199. // If no cut-off multi-byte character is found, return full length
  200. return len;
  201. }
  202. //
  203. // template utils
  204. //
  205. // format rerank task: [BOS]query[EOS][SEP]doc[EOS]
  206. static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
  207. llama_tokens result;
  208. result.reserve(doc.size() + query.size() + 4);
  209. result.push_back(llama_vocab_bos(vocab));
  210. result.insert(result.end(), query.begin(), query.end());
  211. result.push_back(llama_vocab_eos(vocab));
  212. result.push_back(llama_vocab_sep(vocab));
  213. result.insert(result.end(), doc.begin(), doc.end());
  214. result.push_back(llama_vocab_eos(vocab));
  215. return result;
  216. }
  217. // format infill task
  218. static llama_tokens format_infill(
  219. const llama_vocab * vocab,
  220. const json & input_prefix,
  221. const json & input_suffix,
  222. const json & input_extra,
  223. const int n_batch,
  224. const int n_predict,
  225. const int n_ctx,
  226. const bool spm_infill,
  227. const llama_tokens & tokens_prompt
  228. ) {
  229. // TODO: optimize this block by reducing memory allocations and movement
  230. // use FIM repo-level pattern:
  231. // ref: https://arxiv.org/pdf/2409.12186
  232. //
  233. // [FIM_REP]myproject
  234. // [FIM_SEP]filename0
  235. // extra chunk 0
  236. // [FIM_SEP]filename1
  237. // extra chunk 1
  238. // ...
  239. // [FIM_SEP]filename
  240. // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
  241. //
  242. llama_tokens extra_tokens;
  243. extra_tokens.reserve(n_ctx);
  244. auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
  245. auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);
  246. if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
  247. // TODO: make project name an input
  248. static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);
  249. extra_tokens.push_back(llama_vocab_fim_rep(vocab));
  250. extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
  251. }
  252. for (const auto & chunk : input_extra) {
  253. // { "text": string, "filename": string }
  254. const std::string text = json_value(chunk, "text", std::string());
  255. const std::string filename = json_value(chunk, "filename", std::string("tmp"));
  256. if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
  257. const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);
  258. extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
  259. extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  260. } else {
  261. // chunk separator in binary form to avoid confusing the AI
  262. static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
  263. static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);
  264. extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
  265. }
  266. const auto chunk_tokens = common_tokenize(vocab, text, false, false);
  267. extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
  268. }
  269. if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
  270. // TODO: current filename
  271. static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);
  272. extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
  273. extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
  274. }
  275. // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
  276. const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
  277. const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
  278. SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
  279. // fill the rest of the context with extra chunks
  280. const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
  281. tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
  282. tokens_suffix.resize(n_suffix_take);
  283. tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
  284. tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
  285. tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));
  286. auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
  287. auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
  288. if (llama_vocab_get_add_bos(vocab)) {
  289. embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
  290. }
  291. SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
  292. // put the extra context before the FIM prefix
  293. embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
  294. embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
  295. embd_inp.push_back(llama_vocab_fim_mid(vocab));
  296. return embd_inp;
  297. }
  298. // Format given chat. If tmpl is empty, we take the template from model metadata
  299. inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
  300. std::vector<common_chat_msg> chat;
  301. for (size_t i = 0; i < messages.size(); ++i) {
  302. const auto & curr_msg = messages[i];
  303. std::string role = json_value(curr_msg, "role", std::string(""));
  304. std::string content;
  305. if (curr_msg.contains("content")) {
  306. if (curr_msg["content"].is_string()) {
  307. content = curr_msg["content"].get<std::string>();
  308. } else if (curr_msg["content"].is_array()) {
  309. for (const auto & part : curr_msg["content"]) {
  310. if (part.contains("text")) {
  311. content += "\n" + part["text"].get<std::string>();
  312. }
  313. }
  314. } else {
  315. throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
  316. }
  317. } else {
  318. throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
  319. }
  320. chat.push_back({role, content});
  321. }
  322. const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
  323. LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
  324. return formatted_chat;
  325. }
  326. //
  327. // base64 utils (TODO: move to common in the future)
  328. //
  329. static const std::string base64_chars =
  330. "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  331. "abcdefghijklmnopqrstuvwxyz"
  332. "0123456789+/";
  333. static inline bool is_base64(uint8_t c) {
  334. return (isalnum(c) || (c == '+') || (c == '/'));
  335. }
  336. static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
  337. int i = 0;
  338. int j = 0;
  339. int in_ = 0;
  340. int in_len = encoded_string.size();
  341. uint8_t char_array_4[4];
  342. uint8_t char_array_3[3];
  343. std::vector<uint8_t> ret;
  344. while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
  345. char_array_4[i++] = encoded_string[in_]; in_++;
  346. if (i == 4) {
  347. for (i = 0; i < 4; i++) {
  348. char_array_4[i] = base64_chars.find(char_array_4[i]);
  349. }
  350. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  351. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  352. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  353. for (i = 0; (i < 3); i++) {
  354. ret.push_back(char_array_3[i]);
  355. }
  356. i = 0;
  357. }
  358. }
  359. if (i) {
  360. for (j = i; j < 4; j++) {
  361. char_array_4[j] = 0;
  362. }
  363. for (j = 0; j < 4; j++) {
  364. char_array_4[j] = base64_chars.find(char_array_4[j]);
  365. }
  366. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  367. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  368. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  369. for (j = 0; j < i - 1; j++) {
  370. ret.push_back(char_array_3[j]);
  371. }
  372. }
  373. return ret;
  374. }
  375. //
  376. // random string / id
  377. //
  378. static std::string random_string() {
  379. static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
  380. std::random_device rd;
  381. std::mt19937 generator(rd());
  382. std::string result(32, ' ');
  383. for (int i = 0; i < 32; ++i) {
  384. result[i] = str[generator() % str.size()];
  385. }
  386. return result;
  387. }
  388. static std::string gen_chatcmplid() {
  389. return "chatcmpl-" + random_string();
  390. }
  391. //
  392. // other common utils
  393. //
  394. static bool ends_with(const std::string & str, const std::string & suffix) {
  395. return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
  396. }
  397. static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
  398. if (!text.empty() && !stop.empty()) {
  399. const char text_last_char = text.back();
  400. for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
  401. if (stop[char_index] == text_last_char) {
  402. const std::string current_partial = stop.substr(0, char_index + 1);
  403. if (ends_with(text, current_partial)) {
  404. return text.size() - char_index - 1;
  405. }
  406. }
  407. }
  408. }
  409. return std::string::npos;
  410. }
  411. // TODO: reuse llama_detokenize
  412. template <class Iter>
  413. static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
  414. std::string ret;
  415. for (; begin != end; ++begin) {
  416. ret += common_token_to_piece(ctx, *begin);
  417. }
  418. return ret;
  419. }
  420. // format incomplete utf-8 multibyte character for output
  421. static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
  422. std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);
  423. // if the size is 1 and first bit is 1, meaning it's a partial character
  424. // (size > 1 meaning it's already a known token)
  425. if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
  426. std::stringstream ss;
  427. ss << std::hex << (out[0] & 0xff);
  428. std::string res(ss.str());
  429. out = "byte: \\x" + res;
  430. }
  431. return out;
  432. }
  433. static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
  434. const std::string str =
  435. std::string(event) + ": " +
  436. data.dump(-1, ' ', false, json::error_handler_t::replace) +
  437. "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
  438. LOG_DBG("data stream, to_send: %s", str.c_str());
  439. return sink.write(str.c_str(), str.size());
  440. }
  441. //
  442. // OAI utils
  443. //
  444. static json oaicompat_completion_params_parse(const json & body) {
  445. json llama_params;
  446. if (!body.contains("prompt")) {
  447. throw std::runtime_error("\"prompt\" is required");
  448. }
  449. // Handle "stop" field
  450. if (body.contains("stop") && body.at("stop").is_string()) {
  451. llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
  452. } else {
  453. llama_params["stop"] = json_value(body, "stop", json::array());
  454. }
  455. // Handle "n" field
  456. int n_choices = json_value(body, "n", 1);
  457. if (n_choices != 1) {
  458. throw std::runtime_error("Only one completion choice is allowed");
  459. }
  460. // Params supported by OAI but unsupported by llama.cpp
  461. static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" };
  462. for (const auto & param : unsupported_params) {
  463. if (body.contains(param)) {
  464. throw std::runtime_error("Unsupported param: " + param);
  465. }
  466. }
  467. // Copy remaining properties to llama_params
  468. for (const auto & item : body.items()) {
  469. // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
  470. if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
  471. llama_params[item.key()] = item.value();
  472. }
  473. }
  474. return llama_params;
  475. }
  476. static json oaicompat_chat_completion_params_parse(
  477. const struct llama_model * model,
  478. const json & body, /* openai api json semantics */
  479. const std::string & chat_template) {
  480. json llama_params;
  481. // Apply chat template to the list of messages
  482. llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
  483. // Handle "stop" field
  484. if (body.contains("stop") && body.at("stop").is_string()) {
  485. llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
  486. } else {
  487. llama_params["stop"] = json_value(body, "stop", json::array());
  488. }
  489. // Handle "response_format" field
  490. if (body.contains("response_format")) {
  491. json response_format = json_value(body, "response_format", json::object());
  492. std::string response_type = json_value(response_format, "type", std::string());
  493. if (response_type == "json_object") {
  494. llama_params["json_schema"] = json_value(response_format, "schema", json::object());
  495. } else if (response_type == "json_schema") {
  496. json json_schema = json_value(response_format, "json_schema", json::object());
  497. llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
  498. } else if (!response_type.empty() && response_type != "text") {
  499. throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
  500. }
  501. }
  502. // Handle "n" field
  503. int n_choices = json_value(body, "n", 1);
  504. if (n_choices != 1) {
  505. throw std::runtime_error("Only one completion choice is allowed");
  506. }
  507. // Handle "logprobs" field
  508. // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
  509. if (json_value(body, "logprobs", false)) {
  510. llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
  511. } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
  512. throw std::runtime_error("top_logprobs requires logprobs to be set to true");
  513. }
  514. // Params supported by OAI but unsupported by llama.cpp
  515. static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
  516. for (const auto & param : unsupported_params) {
  517. if (body.contains(param)) {
  518. throw std::runtime_error("Unsupported param: " + param);
  519. }
  520. }
  521. // Copy remaining properties to llama_params
  522. // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
  523. // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
  524. for (const auto & item : body.items()) {
  525. // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
  526. if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
  527. llama_params[item.key()] = item.value();
  528. }
  529. }
  530. return llama_params;
  531. }
  532. static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
  533. json data = json::array();
  534. int32_t n_tokens = 0;
  535. int i = 0;
  536. for (const auto & elem : embeddings) {
  537. json embedding_obj;
  538. if (use_base64) {
  539. const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
  540. const char* data_ptr = reinterpret_cast<const char*>(vec.data());
  541. size_t data_size = vec.size() * sizeof(float);
  542. embedding_obj = {
  543. {"embedding", base64::encode(data_ptr, data_size)},
  544. {"index", i++},
  545. {"object", "embedding"},
  546. {"encoding_format", "base64"}
  547. };
  548. } else {
  549. embedding_obj = {
  550. {"embedding", json_value(elem, "embedding", json::array())},
  551. {"index", i++},
  552. {"object", "embedding"}
  553. };
  554. }
  555. data.push_back(embedding_obj);
  556. n_tokens += json_value(elem, "tokens_evaluated", 0);
  557. }
  558. json res = json {
  559. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  560. {"object", "list"},
  561. {"usage", json {
  562. {"prompt_tokens", n_tokens},
  563. {"total_tokens", n_tokens}
  564. }},
  565. {"data", data}
  566. };
  567. return res;
  568. }
  569. static json format_response_rerank(const json & request, const json & ranks) {
  570. json data = json::array();
  571. int32_t n_tokens = 0;
  572. int i = 0;
  573. for (const auto & rank : ranks) {
  574. data.push_back(json{
  575. {"index", i++},
  576. {"relevance_score", json_value(rank, "score", 0.0)},
  577. });
  578. n_tokens += json_value(rank, "tokens_evaluated", 0);
  579. }
  580. json res = json {
  581. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  582. {"object", "list"},
  583. {"usage", json {
  584. {"prompt_tokens", n_tokens},
  585. {"total_tokens", n_tokens}
  586. }},
  587. {"results", data}
  588. };
  589. return res;
  590. }
  591. static bool is_valid_utf8(const std::string & str) {
  592. const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
  593. const unsigned char* end = bytes + str.length();
  594. while (bytes < end) {
  595. if (*bytes <= 0x7F) {
  596. // 1-byte sequence (0xxxxxxx)
  597. bytes++;
  598. } else if ((*bytes & 0xE0) == 0xC0) {
  599. // 2-byte sequence (110xxxxx 10xxxxxx)
  600. if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
  601. return false;
  602. bytes += 2;
  603. } else if ((*bytes & 0xF0) == 0xE0) {
  604. // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
  605. if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
  606. return false;
  607. bytes += 3;
  608. } else if ((*bytes & 0xF8) == 0xF0) {
  609. // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
  610. if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
  611. (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
  612. return false;
  613. bytes += 4;
  614. } else {
  615. // Invalid UTF-8 lead byte
  616. return false;
  617. }
  618. }
  619. return true;
  620. }
  621. static json format_tokenizer_response(const json & tokens) {
  622. return json {
  623. {"tokens", tokens}
  624. };
  625. }
  626. static json format_detokenized_response(const std::string & content) {
  627. return json {
  628. {"content", content}
  629. };
  630. }
  631. static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
  632. json data = json::array();
  633. for (const auto & lb : logit_bias) {
  634. data.push_back(json{
  635. {"bias", lb.bias},
  636. {"token", lb.token},
  637. });
  638. }
  639. return data;
  640. }
  641. static std::string safe_json_to_str(const json & data) {
  642. return data.dump(-1, ' ', false, json::error_handler_t::replace);
  643. }
  644. static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
  645. std::vector<llama_token_data> cur;
  646. const auto * logits = llama_get_logits_ith(ctx, idx);
  647. const llama_model * model = llama_get_model(ctx);
  648. const llama_vocab * vocab = llama_model_get_vocab(model);
  649. const int n_vocab = llama_vocab_n_tokens(vocab);
  650. cur.resize(n_vocab);
  651. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  652. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  653. }
  654. // sort tokens by logits
  655. std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
  656. return a.logit > b.logit;
  657. });
  658. // apply softmax
  659. float max_l = cur[0].logit;
  660. float cum_sum = 0.0f;
  661. for (size_t i = 0; i < cur.size(); ++i) {
  662. float p = expf(cur[i].logit - max_l);
  663. cur[i].p = p;
  664. cum_sum += p;
  665. }
  666. for (size_t i = 0; i < cur.size(); ++i) {
  667. cur[i].p /= cum_sum;
  668. }
  669. return cur;
  670. }
  671. static bool are_lora_equal(
  672. const std::vector<common_adapter_lora_info> & l1,
  673. const std::vector<common_adapter_lora_info> & l2) {
  674. if (l1.size() != l2.size()) {
  675. return false;
  676. }
  677. for (size_t i = 0; i < l1.size(); ++i) {
  678. // we don't check lora.path to reduce the time complexity
  679. if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
  680. return false;
  681. }
  682. }
  683. return true;
  684. }
  685. // parse lora config from JSON request, returned a copy of lora_base with updated scale
  686. static std::vector<common_adapter_lora_info> parse_lora_request(
  687. const std::vector<common_adapter_lora_info> & lora_base,
  688. const json & data) {
  689. std::vector<common_adapter_lora_info> lora(lora_base);
  690. int max_idx = lora.size();
  691. // clear existing value
  692. for (auto & entry : lora) {
  693. entry.scale = 0.0f;
  694. }
  695. // set value
  696. for (const auto & entry : data) {
  697. int id = json_value(entry, "id", -1);
  698. float scale = json_value(entry, "scale", 0.0f);
  699. if (0 <= id && id < max_idx) {
  700. lora[id].scale = scale;
  701. } else {
  702. throw std::runtime_error("invalid adapter id");
  703. }
  704. }
  705. return lora;
  706. }