llama-model-loader.cpp 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072
  1. #include "llama-model-loader.h"
  2. #include "ggml.h"
  3. #include <array>
  4. #include <cinttypes>
  5. #include <cstring>
  6. #include <future>
  7. static const size_t kiB = 1024;
  8. static const size_t MiB = 1024*kiB;
  9. static const size_t GiB = 1024*MiB;
  10. const char * llama_file_version_name(llama_fver version) {
  11. switch (version) {
  12. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  13. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  14. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  15. }
  16. return "unknown";
  17. }
  18. static std::string llama_model_ftype_name(llama_ftype ftype) {
  19. if (ftype & LLAMA_FTYPE_GUESSED) {
  20. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  21. }
  22. switch (ftype) {
  23. case LLAMA_FTYPE_ALL_F32: return "all F32";
  24. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  25. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  26. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  27. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  28. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  29. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  30. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  31. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  32. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  33. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  34. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  35. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  36. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  37. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  38. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  39. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  40. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  41. case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
  42. case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
  43. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
  44. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  45. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  46. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  47. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  48. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
  49. case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
  50. case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
  51. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  52. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  53. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  54. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  55. default: return "unknown, may not work";
  56. }
  57. }
  58. namespace GGUFMeta {
  59. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
  60. struct GKV_Base_Type {
  61. static constexpr gguf_type gt = gt_;
  62. static T getter(const gguf_context * ctx, const int kid) {
  63. return gfun(ctx, kid);
  64. }
  65. };
  66. template<typename T> struct GKV_Base;
  67. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  68. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  69. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  70. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  71. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  72. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  73. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  74. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  75. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  76. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  77. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  78. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  79. template<> struct GKV_Base<std::string> {
  80. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  81. static std::string getter(const gguf_context * ctx, const int kid) {
  82. return gguf_get_val_str(ctx, kid);
  83. }
  84. };
  85. struct ArrayInfo {
  86. const gguf_type gt;
  87. const size_t length;
  88. const void * data;
  89. };
  90. template<> struct GKV_Base<ArrayInfo> {
  91. public:
  92. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  93. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  94. const enum gguf_type arr_type = gguf_get_arr_type(ctx, k);
  95. return ArrayInfo {
  96. arr_type,
  97. size_t(gguf_get_arr_n(ctx, k)),
  98. arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k),
  99. };
  100. }
  101. };
  102. template<typename T>
  103. class GKV : public GKV_Base<T> {
  104. GKV() = delete;
  105. public:
  106. static T get_kv(const gguf_context * ctx, const int k) {
  107. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  108. if (kt != GKV::gt) {
  109. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  110. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  111. }
  112. return GKV::getter(ctx, k);
  113. }
  114. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  115. switch (ty) {
  116. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  117. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  118. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  119. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  120. }
  121. return "unknown";
  122. }
  123. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  124. if (!ovrd) { return false; }
  125. if (ovrd->tag == expected_type) {
  126. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  127. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  128. switch (ovrd->tag) {
  129. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  130. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  131. } break;
  132. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  133. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  134. } break;
  135. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  136. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  137. } break;
  138. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  139. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  140. } break;
  141. default:
  142. // Shouldn't be possible to end up here, but just in case...
  143. throw std::runtime_error(
  144. format("Unsupported attempt to override %s type for metadata key %s\n",
  145. override_type_to_str(ovrd->tag), ovrd->key));
  146. }
  147. return true;
  148. }
  149. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  150. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  151. return false;
  152. }
  153. template<typename OT>
  154. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  155. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  156. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  157. target = ovrd->val_bool;
  158. return true;
  159. }
  160. return false;
  161. }
  162. template<typename OT>
  163. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  164. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  165. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  166. target = ovrd->val_i64;
  167. return true;
  168. }
  169. return false;
  170. }
  171. template<typename OT>
  172. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  173. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  174. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  175. target = ovrd->val_f64;
  176. return true;
  177. }
  178. return false;
  179. }
  180. template<typename OT>
  181. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  182. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  183. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  184. target = ovrd->val_str;
  185. return true;
  186. }
  187. return false;
  188. }
  189. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  190. if (try_override<T>(target, ovrd)) {
  191. return true;
  192. }
  193. if (k < 0) { return false; }
  194. target = get_kv(ctx, k);
  195. return true;
  196. }
  197. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  198. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  199. }
  200. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  201. return set(ctx, key.c_str(), target, ovrd);
  202. }
  203. };
  204. }
  205. template<typename T>
  206. typename std::enable_if<std::is_integral<T>::value, bool>::type
  207. llama_model_loader::get_arr_n(const std::string & key, T & result, bool required) {
  208. const int kid = gguf_find_key(meta.get(), key.c_str());
  209. if (kid < 0) {
  210. if (required) {
  211. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  212. }
  213. return false;
  214. }
  215. struct GGUFMeta::ArrayInfo arr_info =
  216. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
  217. result = arr_info.length;
  218. return true;
  219. }
  220. template<typename T>
  221. typename std::enable_if<std::is_integral<T>::value, bool>::type
  222. llama_model_loader::get_arr_n(enum llm_kv kid, T & result, bool required) {
  223. return get_arr_n(llm_kv(kid), result, required);
  224. }
  225. template bool llama_model_loader::get_arr_n(enum llm_kv kid, uint32_t & result, bool required);
  226. template<typename T>
  227. bool llama_model_loader::get_arr(const std::string & key, std::vector<T> & result, bool required) {
  228. const int kid = gguf_find_key(meta.get(), key.c_str());
  229. if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) {
  230. if (required) {
  231. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  232. }
  233. return false;
  234. }
  235. struct GGUFMeta::ArrayInfo arr_info =
  236. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
  237. switch (arr_info.gt) {
  238. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  239. case GGUF_TYPE_INT32: GGML_ASSERT(
  240. (std::is_same<T, int32_t>::value) ||
  241. (std::is_same<T, uint32_t>::value)); break;
  242. default:
  243. throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
  244. }
  245. result.resize(arr_info.length);
  246. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  247. return true;
  248. }
  249. template<typename T, size_t N_MAX>
  250. bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
  251. const int kid = gguf_find_key(meta.get(), key.c_str());
  252. if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) {
  253. if (required) {
  254. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  255. }
  256. return false;
  257. }
  258. struct GGUFMeta::ArrayInfo arr_info =
  259. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
  260. switch (arr_info.gt) {
  261. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  262. case GGUF_TYPE_INT32: GGML_ASSERT(
  263. (std::is_same<T, int32_t>::value) ||
  264. (std::is_same<T, uint32_t>::value)); break;
  265. default:
  266. throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
  267. }
  268. if (arr_info.length > N_MAX) {
  269. throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX));
  270. }
  271. std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
  272. return true;
  273. }
  274. template<typename T>
  275. bool llama_model_loader::get_arr(enum llm_kv kid, T & result, bool required) {
  276. return get_arr(llm_kv(kid), result, required);
  277. }
  278. template<typename T>
  279. bool llama_model_loader::get_key(const std::string & key, T & result, bool required) {
  280. auto it = kv_overrides.find(key);
  281. const struct llama_model_kv_override * override =
  282. it != kv_overrides.end() ? &it->second : nullptr;
  283. const bool found = GGUFMeta::GKV<T>::set(meta.get(), key, result, override);
  284. if (required && !found) {
  285. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  286. }
  287. return found;
  288. }
  289. template<typename T>
  290. bool llama_model_loader::get_key(enum llm_kv kid, T & result, bool required) {
  291. return get_key(llm_kv(kid), result, required);
  292. }
  293. template bool llama_model_loader::get_key<bool> (enum llm_kv kid, bool & result, bool required);
  294. template bool llama_model_loader::get_key<float> (enum llm_kv kid, float & result, bool required);
  295. template bool llama_model_loader::get_key<uint32_t> (enum llm_kv kid, uint32_t & result, bool required);
  296. template bool llama_model_loader::get_key<std::string>(enum llm_kv kid, std::string & result, bool required);
  297. template<>
  298. bool llama_model_loader::get_key(enum llm_kv kid, enum llama_pooling_type & result, bool required) {
  299. uint32_t tmp;
  300. const bool found = get_key(kid, tmp, required);
  301. if (found) {
  302. result = (enum llama_pooling_type) tmp;
  303. } else {
  304. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  305. }
  306. return found;
  307. }
  308. // get array of n <= N_MAX elements, or a single element repeated n times
  309. template<typename T, size_t N_MAX>
  310. bool llama_model_loader::get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required) {
  311. const int kid = gguf_find_key(meta.get(), key.c_str());
  312. if (kid < 0) {
  313. if (required) {
  314. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  315. }
  316. return false;
  317. }
  318. if (n > N_MAX) {
  319. throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str()));
  320. }
  321. if (gguf_get_kv_type(meta.get(), kid) == GGUF_TYPE_ARRAY) {
  322. struct GGUFMeta::ArrayInfo arr_info =
  323. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
  324. if (n != arr_info.length) {
  325. throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
  326. }
  327. return get_arr(key, result, required);
  328. }
  329. T value;
  330. bool ok = get_key(key, value, required);
  331. if (!ok) {
  332. return false;
  333. }
  334. for (uint32_t i = 0; i < n; i++) {
  335. result[i] = value;
  336. }
  337. return true;
  338. }
  339. template<typename T>
  340. bool llama_model_loader::get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required) {
  341. return get_key_or_arr(llm_kv(kid), result, n, required);
  342. }
  343. // TODO: this is not very clever - figure out something better
  344. template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
  345. template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
  346. llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  347. int trace = 0;
  348. if (getenv("LLAMA_TRACE")) {
  349. trace = atoi(getenv("LLAMA_TRACE"));
  350. }
  351. if (param_overrides_p != nullptr) {
  352. for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
  353. kv_overrides.insert({std::string(p->key), *p});
  354. }
  355. }
  356. struct ggml_context * ctx = NULL;
  357. struct gguf_init_params params = {
  358. /*.no_alloc = */ true,
  359. /*.ctx = */ &ctx,
  360. };
  361. meta.reset(gguf_init_from_file(fname.c_str(), params));
  362. if (!meta) {
  363. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  364. }
  365. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  366. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  367. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  368. contexts.emplace_back(ctx);
  369. // Save tensors data offset of the main file.
  370. // For subsidiary files, `meta` tensor data offset must not be used,
  371. // so we build a unified tensors index for weights.
  372. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  373. std::string tensor_name = std::string(cur->name);
  374. // make sure there is no duplicated tensor names
  375. if (weights_map.find(tensor_name) != weights_map.end()) {
  376. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
  377. }
  378. n_elements += ggml_nelements(cur);
  379. n_bytes += ggml_nbytes(cur);
  380. weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), 0, meta.get(), cur));
  381. }
  382. uint16_t n_split = 0;
  383. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  384. // Load additional GGML contexts
  385. if (n_split > 1) {
  386. uint16_t idx = 0;
  387. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  388. if (idx != 0) {
  389. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  390. }
  391. std::vector<char> split_prefix(llama_path_max(), 0);
  392. if (!llama_split_prefix(split_prefix.data(), split_prefix.size(), fname.c_str(), idx, n_split)) {
  393. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  394. }
  395. if (trace > 0) {
  396. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  397. }
  398. std::vector<char> split_path(llama_path_max(), 0);
  399. for (idx = 1; idx < n_split; idx++) {
  400. llama_split_path(split_path.data(), split_path.size(), split_prefix.data(), idx, n_split);
  401. struct gguf_init_params split_params = {
  402. /*.no_alloc = */ true,
  403. /*.ctx = */ &ctx,
  404. };
  405. gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path.data(), split_params) };
  406. if (!ctx_gguf) {
  407. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path.data()));
  408. }
  409. files.emplace_back(new llama_file(split_path.data(), "rb"));
  410. contexts.emplace_back(ctx);
  411. // Save tensors data offset info of the shard.
  412. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  413. std::string tensor_name = std::string(cur->name);
  414. // make sure there is no duplicated tensor names
  415. if (weights_map.find(tensor_name) != weights_map.end()) {
  416. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
  417. }
  418. n_elements += ggml_nelements(cur);
  419. n_bytes += ggml_nbytes(cur);
  420. weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), idx, ctx_gguf.get(), cur));
  421. }
  422. }
  423. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  424. // sanity check
  425. {
  426. const int n_tensors_loaded = (int) weights_map.size();
  427. if (n_tensors != n_tensors_loaded) {
  428. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  429. }
  430. }
  431. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  432. }
  433. n_kv = gguf_get_n_kv(meta.get());
  434. n_tensors = weights_map.size();
  435. fver = (enum llama_fver) gguf_get_version(meta.get());
  436. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  437. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  438. // determine file type based on the number of tensors for each quantization and print meta data
  439. // TODO: make optional
  440. {
  441. std::map<enum ggml_type, uint32_t> n_type;
  442. uint32_t n_type_max = 0;
  443. enum ggml_type type_max = GGML_TYPE_F32;
  444. for (const auto & it : weights_map) {
  445. const llama_tensor_weight & w = it.second;
  446. const ggml_tensor * tensor = w.tensor;
  447. enum ggml_type type = tensor->type;
  448. n_type[type]++;
  449. if (n_type_max < n_type[type]) {
  450. n_type_max = n_type[type];
  451. type_max = type;
  452. }
  453. if (trace > 0) {
  454. const uint16_t sid = w.idx;
  455. LLAMA_LOG_INFO("%s: - tensor split %2d: %32s %-8s [ %s ]\n", __func__, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  456. }
  457. }
  458. switch (type_max) {
  459. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  460. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  461. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  462. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  463. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  464. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  465. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  466. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  467. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  468. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  469. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  470. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  471. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  472. case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break;
  473. case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break;
  474. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  475. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  476. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  477. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  478. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  479. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  480. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  481. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  482. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  483. default:
  484. {
  485. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  486. ftype = LLAMA_FTYPE_ALL_F32;
  487. } break;
  488. }
  489. // this is a way to mark that we have "guessed" the file type
  490. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  491. {
  492. const int kid = gguf_find_key(meta.get(), "general.file_type"); // TODO: use LLM_KV
  493. if (kid >= 0) {
  494. ftype = (llama_ftype) gguf_get_val_u32(meta.get(), kid);
  495. }
  496. }
  497. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  498. for (int i = 0; i < n_kv; i++) {
  499. const char * name = gguf_get_key(meta.get(), i);
  500. const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
  501. const std::string type_name =
  502. type == GGUF_TYPE_ARRAY
  503. ? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
  504. : gguf_type_name(type);
  505. std::string value = gguf_kv_to_str(meta.get(), i);
  506. const size_t MAX_VALUE_LEN = 40;
  507. if (value.size() > MAX_VALUE_LEN) {
  508. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  509. }
  510. replace_all(value, "\n", "\\n");
  511. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  512. }
  513. // print type counts
  514. for (auto & kv : n_type) {
  515. if (kv.second == 0) {
  516. continue;
  517. }
  518. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  519. }
  520. }
  521. if (!llama_mmap::SUPPORTED) {
  522. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  523. use_mmap = false;
  524. }
  525. this->use_mmap = use_mmap;
  526. this->check_tensors = check_tensors;
  527. }
  528. std::string llama_model_loader::get_arch_name() const {
  529. return arch_name;
  530. }
  531. enum llm_arch llama_model_loader::get_arch() const {
  532. return llm_kv.arch;
  533. }
  534. const llama_model_loader::llama_tensor_weight * llama_model_loader::get_weight(const char * name) const {
  535. auto pos = weights_map.find(name);
  536. if (pos != weights_map.end()) {
  537. return &pos->second;
  538. }
  539. return nullptr;
  540. }
  541. const llama_model_loader::llama_tensor_weight & llama_model_loader::require_weight(const char * name) const {
  542. const llama_tensor_weight * weight = get_weight(name);
  543. if (!weight) {
  544. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  545. }
  546. return *weight;
  547. }
  548. struct ggml_tensor * llama_model_loader::get_tensor_meta(const char * name) const {
  549. const auto * weight = get_weight(name);
  550. if (!weight) {
  551. return nullptr;
  552. }
  553. return weight->tensor;
  554. }
  555. struct ggml_tensor * llama_model_loader::require_tensor_meta(const std::string & name) const {
  556. struct ggml_tensor * tensor = get_tensor_meta(name.c_str());
  557. if (!tensor) {
  558. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  559. }
  560. return tensor;
  561. }
  562. const struct ggml_tensor * llama_model_loader::check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  563. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  564. if (cur == NULL) {
  565. if (!required) {
  566. return NULL;
  567. }
  568. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  569. }
  570. {
  571. bool is_ok = true;
  572. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  573. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  574. is_ok = false;
  575. break;
  576. }
  577. }
  578. if (!is_ok) {
  579. throw std::runtime_error(
  580. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  581. __func__, name.c_str(),
  582. llama_format_tensor_shape(ne).c_str(),
  583. llama_format_tensor_shape(cur).c_str()));
  584. }
  585. }
  586. return cur;
  587. }
  588. struct ggml_tensor * llama_model_loader::create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags) {
  589. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  590. if (cur == NULL) {
  591. return NULL;
  592. }
  593. bool duplicated = flags & TENSOR_DUPLICATED;
  594. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  595. ggml_set_name(tensor, ggml_get_name(cur));
  596. if (duplicated) {
  597. size_data += ggml_nbytes(cur);
  598. } else {
  599. n_created++;
  600. }
  601. return tensor;
  602. }
  603. struct ggml_tensor * llama_model_loader::create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required) {
  604. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  605. if (cur == NULL) {
  606. return NULL;
  607. }
  608. if (cur->type != base->type) {
  609. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  610. }
  611. std::array<int64_t, GGML_MAX_DIMS> dims;
  612. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  613. dims[i] = i < ne.size() ? ne.begin()[i] : 1;
  614. }
  615. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  616. dims[0], dims[1], dims[2], dims[3],
  617. cur->nb[1], cur->nb[2], cur->nb[3],
  618. offset);
  619. ggml_set_name(tensor, name.c_str());
  620. n_created++;
  621. return tensor;
  622. }
  623. void llama_model_loader::done_getting_tensors() const {
  624. if (n_created != n_tensors) {
  625. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  626. }
  627. }
  628. void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps) {
  629. if (use_mmap) {
  630. mappings.reserve(files.size());
  631. mmaps_used.reserve(files.size());
  632. for (const auto & file : files) {
  633. auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
  634. auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
  635. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
  636. mmaps_used.emplace_back(mapping->size(), 0);
  637. if (mlock_mmaps) {
  638. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  639. mlock_mmap->init(mapping->addr());
  640. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  641. }
  642. mappings.emplace_back(std::move(mapping));
  643. }
  644. }
  645. // compute the total size of all tensors for progress reporting
  646. for (const auto & it : weights_map) {
  647. size_data += ggml_nbytes(it.second.tensor);
  648. }
  649. }
  650. void llama_model_loader::get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  651. GGML_ASSERT(!mappings.empty());
  652. const auto & mapping = mappings.at(idx);
  653. *first = mapping->size();
  654. *last = 0;
  655. *addr = mapping->addr();
  656. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  657. const auto * weight = get_weight(ggml_get_name(tensor));
  658. if (!weight || weight->idx != idx) {
  659. continue;
  660. }
  661. *first = std::min(*first, weight->offs);
  662. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  663. }
  664. }
  665. void llama_model_loader::load_data_for(struct ggml_tensor * cur) const {
  666. const auto & w = require_weight(ggml_get_name(cur));
  667. if (use_mmap) {
  668. const auto & mapping = mappings.at(w.idx);
  669. if (cur->data == nullptr) {
  670. cur->data = (uint8_t *)mapping->addr() + w.offs;
  671. } else {
  672. memcpy(cur->data, (uint8_t *)mapping->addr() + w.offs, ggml_nbytes(cur));
  673. }
  674. } else {
  675. GGML_ASSERT(cur->data != nullptr);
  676. GGML_ASSERT(w.idx < files.size());
  677. const auto & file = files.at(w.idx);
  678. file->seek(w.offs, SEEK_SET);
  679. file->read_raw(cur->data, ggml_nbytes(cur));
  680. }
  681. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  682. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  683. }
  684. }
  685. bool llama_model_loader::load_all_data(
  686. struct ggml_context * ctx,
  687. llama_buf_map & bufs,
  688. llama_mlocks * lmlocks,
  689. llama_progress_callback progress_callback,
  690. void * progress_callback_user_data) {
  691. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  692. std::vector<no_init<uint8_t>> read_buf;
  693. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  694. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  695. // NVMe raid configurations might require more / larger buffers.
  696. constexpr size_t n_buffers = 4;
  697. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  698. std::vector<ggml_backend_buffer_t> host_buffers;
  699. std::vector<ggml_backend_event_t> events;
  700. std::vector<void *> host_ptrs;
  701. size_t buffer_idx = 0; // buffer to use for async loads
  702. ggml_backend_t upload_backend = [&](const char * func) -> ggml_backend_t {
  703. if (use_mmap || check_tensors) {
  704. return nullptr;
  705. }
  706. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  707. // First determine if the backend supports the necessary features for async uploads.
  708. auto * buf = bufs.count(0) ? bufs.at(0) : nullptr;
  709. if (!buf) {
  710. LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", func);
  711. return nullptr;
  712. }
  713. auto * buft = ggml_backend_buffer_get_type(buf);
  714. auto * dev = ggml_backend_buft_get_device(buft);
  715. if (!dev) {
  716. LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", func,
  717. ggml_backend_buft_name(buft));
  718. return nullptr;
  719. }
  720. if (buft != ggml_backend_dev_buffer_type(dev)) {
  721. LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", func,
  722. ggml_backend_buft_name(buft), ggml_backend_dev_name(dev));
  723. return nullptr;
  724. }
  725. ggml_backend_dev_props props;
  726. ggml_backend_dev_get_props(dev, &props);
  727. if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) {
  728. LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", func,
  729. ggml_backend_dev_name(dev));
  730. return nullptr;
  731. }
  732. auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
  733. if (!host_buft) {
  734. LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", func,
  735. ggml_backend_dev_name(dev));
  736. return nullptr;
  737. }
  738. // If the backend is supported, create pinned memory buffers and events for synchronisation.
  739. for (size_t idx = 0; idx < n_buffers; ++idx) {
  740. auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
  741. if (!buf) {
  742. LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func,
  743. ggml_backend_dev_name(dev));
  744. return nullptr;
  745. }
  746. host_buffers.emplace_back(buf);
  747. host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf));
  748. auto * event = ggml_backend_event_new(dev);
  749. if (!event) {
  750. LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", func,
  751. ggml_backend_dev_name(dev));
  752. return nullptr;
  753. }
  754. events.emplace_back(event);
  755. }
  756. ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
  757. if (!backend) {
  758. LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", func,
  759. ggml_backend_dev_name(dev));
  760. return nullptr;
  761. }
  762. return backend;
  763. }(__func__);
  764. if (upload_backend) {
  765. LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__,
  766. ggml_backend_dev_name(ggml_backend_get_device(upload_backend)),
  767. ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))),
  768. ggml_backend_name(upload_backend));
  769. }
  770. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  771. const auto * weight = get_weight(ggml_get_name(cur));
  772. if (weight == nullptr) {
  773. // this can happen with split experts models
  774. continue;
  775. }
  776. if (progress_callback) {
  777. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  778. return false;
  779. }
  780. }
  781. size_t n_size = ggml_nbytes(cur);
  782. if (use_mmap) {
  783. const auto & mapping = mappings.at(weight->idx);
  784. ggml_backend_buffer_t buf_mmap = nullptr;
  785. if (bufs.count(weight->idx)) {
  786. buf_mmap = bufs.at(weight->idx);
  787. }
  788. uint8_t * data = (uint8_t *) mapping->addr() + weight->offs;
  789. if (check_tensors) {
  790. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  791. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  792. }));
  793. }
  794. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  795. if (buf_mmap && cur->data == nullptr) {
  796. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  797. if (lmlocks) {
  798. const auto & lmlock = lmlocks->at(weight->idx);
  799. lmlock->grow_to(weight->offs + n_size);
  800. }
  801. auto & mmap_used = mmaps_used[weight->idx];
  802. mmap_used.first = std::min(mmap_used.first, weight->offs);
  803. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  804. } else {
  805. ggml_backend_tensor_set(cur, data, 0, n_size);
  806. }
  807. } else {
  808. const auto & file = files.at(weight->idx);
  809. if (ggml_backend_buffer_is_host(cur->buffer)) {
  810. file->seek(weight->offs, SEEK_SET);
  811. file->read_raw(cur->data, n_size);
  812. if (check_tensors) {
  813. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  814. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  815. }));
  816. }
  817. } else {
  818. // If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  819. if (upload_backend) {
  820. file->seek(weight->offs, SEEK_SET);
  821. size_t bytes_read = 0;
  822. while (bytes_read < n_size) {
  823. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  824. ggml_backend_event_synchronize(events[buffer_idx]);
  825. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  826. ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  827. ggml_backend_event_record(events[buffer_idx], upload_backend);
  828. bytes_read += read_iteration;
  829. ++buffer_idx;
  830. buffer_idx %= n_buffers;
  831. }
  832. } else {
  833. read_buf.resize(n_size);
  834. file->seek(weight->offs, SEEK_SET);
  835. file->read_raw(read_buf.data(), n_size);
  836. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  837. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  838. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  839. }
  840. }
  841. }
  842. }
  843. size_done += n_size;
  844. }
  845. // free temporary resources used for async uploads
  846. for (auto * event : events) {
  847. ggml_backend_event_synchronize(event);
  848. ggml_backend_event_free(event);
  849. }
  850. for (auto * buf : host_buffers) {
  851. ggml_backend_buffer_free(buf);
  852. }
  853. ggml_backend_free(upload_backend);
  854. // check validation results
  855. bool validation_failed = false;
  856. for (auto & future : validation_result) {
  857. auto result = future.get();
  858. if (!result.second) {
  859. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  860. validation_failed = true;
  861. }
  862. }
  863. if (validation_failed) {
  864. throw std::runtime_error("found tensors with invalid data");
  865. }
  866. // check if this is the last call and do final cleanup
  867. if (size_done >= size_data) {
  868. // unmap offloaded tensors and metadata
  869. if (use_mmap) {
  870. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  871. const auto & mmap_used = mmaps_used.at(idx);
  872. auto & mapping = mappings.at(idx);
  873. mapping->unmap_fragment(0, mmap_used.first);
  874. if (mmap_used.second != 0) {
  875. mapping->unmap_fragment(mmap_used.second, mapping->size());
  876. }
  877. }
  878. }
  879. if (progress_callback) {
  880. // Even though the model is done loading, we still honor
  881. // cancellation since we need to free allocations.
  882. return progress_callback(1.0f, progress_callback_user_data);
  883. }
  884. }
  885. return true;
  886. }
  887. std::string llama_model_loader::ftype_name() const {
  888. return llama_model_ftype_name(ftype);
  889. }
  890. void llama_model_loader::print_info() const {
  891. LLAMA_LOG_INFO("%s: file format = %s\n", __func__, llama_file_version_name(fver));
  892. LLAMA_LOG_INFO("%s: file type = %s\n", __func__, llama_model_ftype_name(ftype).c_str());
  893. if (n_bytes < GiB) {
  894. LLAMA_LOG_INFO("%s: file size = %.2f MiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0, n_bytes*8.0/n_elements);
  895. } else {
  896. LLAMA_LOG_INFO("%s: file size = %.2f GiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0/1024.0, n_bytes*8.0/n_elements);
  897. }
  898. }