speculative.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "sampling.h"
  4. #include "log.h"
  5. #include "llama.h"
  6. #include <algorithm>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <random>
  10. #include <set>
  11. #include <string>
  12. #include <vector>
  13. #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
  14. #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
  15. struct seq_draft {
  16. bool active = false;
  17. bool drafting = false;
  18. bool skip = false;
  19. int i_batch_dft = 0;
  20. std::vector<int> i_batch_tgt;
  21. std::vector<llama_token> tokens;
  22. std::vector<std::vector<llama_token_data>> dists;
  23. struct gpt_sampler * smpl = nullptr;
  24. };
  25. int main(int argc, char ** argv) {
  26. gpt_params params;
  27. // needed to get candidate probs even for temp <= 0.0
  28. params.sparams.n_probs = 128;
  29. if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
  30. return 1;
  31. }
  32. gpt_init();
  33. if (params.model_draft.empty()) {
  34. LOG_ERR("%s: --model-draft is required\n", __func__);
  35. return 1;
  36. }
  37. // max number of parallel drafting sequences (i.e. tree branches)
  38. const int n_seq_dft = params.n_parallel;
  39. // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
  40. const float p_split = params.p_split;
  41. std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed);
  42. std::uniform_real_distribution<> u_dist;
  43. // init llama.cpp
  44. llama_backend_init();
  45. llama_numa_init(params.numa);
  46. llama_model * model_tgt = NULL;
  47. llama_model * model_dft = NULL;
  48. llama_context * ctx_tgt = NULL;
  49. llama_context * ctx_dft = NULL;
  50. // load the target model
  51. llama_init_result llama_init_tgt = llama_init_from_gpt_params(params);
  52. model_tgt = llama_init_tgt.model;
  53. ctx_tgt = llama_init_tgt.context;
  54. // load the draft model
  55. params.model = params.model_draft;
  56. params.n_gpu_layers = params.n_gpu_layers_draft;
  57. if (params.draft_cpuparams.n_threads > 0) {
  58. params.cpuparams.n_threads = params.draft_cpuparams.n_threads;
  59. }
  60. params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
  61. llama_init_result llama_init_dft = llama_init_from_gpt_params(params);
  62. model_dft = llama_init_dft.model;
  63. ctx_dft = llama_init_dft.context;
  64. const bool vocab_type_tgt = llama_vocab_type(model_tgt);
  65. LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
  66. const bool vocab_type_dft = llama_vocab_type(model_dft);
  67. LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
  68. if (vocab_type_tgt != vocab_type_dft) {
  69. LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
  70. LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
  71. return 1;
  72. }
  73. if (
  74. llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
  75. llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
  76. llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
  77. llama_token_eos(model_tgt) != llama_token_eos(model_dft)
  78. ) {
  79. LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
  80. return 1;
  81. }
  82. {
  83. const int n_vocab_tgt = llama_n_vocab(model_tgt);
  84. const int n_vocab_dft = llama_n_vocab(model_dft);
  85. const int vocab_diff = n_vocab_tgt > n_vocab_dft
  86. ? n_vocab_tgt - n_vocab_dft
  87. : n_vocab_dft - n_vocab_tgt;
  88. if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
  89. LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
  90. LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
  91. n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
  92. return 1;
  93. }
  94. for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
  95. const char * token_text_tgt = llama_token_get_text(model_tgt, i);
  96. const char * token_text_dft = llama_token_get_text(model_dft, i);
  97. if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
  98. LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
  99. LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
  100. llama_token_to_piece(ctx_tgt, i).c_str(),
  101. llama_token_to_piece(ctx_dft, i).c_str());
  102. return 1;
  103. }
  104. }
  105. }
  106. // Tokenize the prompt
  107. std::vector<llama_token> inp;
  108. inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
  109. const int max_context_size = llama_n_ctx(ctx_tgt);
  110. const int max_tokens_list_size = max_context_size - 4;
  111. if ((int) inp.size() > max_tokens_list_size) {
  112. LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  113. return 1;
  114. }
  115. LOG("\n\n");
  116. for (auto id : inp) {
  117. LOG("%s", llama_token_to_piece(ctx_tgt, id).c_str());
  118. }
  119. const int n_input = inp.size();
  120. const auto t_enc_start = ggml_time_us();
  121. // eval the prompt with both models
  122. llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
  123. llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
  124. llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
  125. const auto t_enc_end = ggml_time_us();
  126. // the 2 models should have the same vocab
  127. //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
  128. // how many tokens to draft each time
  129. int n_draft = params.n_draft;
  130. int n_predict = 0;
  131. int n_drafted = 0;
  132. int n_accept = 0;
  133. int n_past_tgt = inp.size();
  134. int n_past_dft = inp.size();
  135. // used to determine end of generation
  136. bool has_eos = false;
  137. // target model sampling context (reuse the llama_context's sampling instance)
  138. struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
  139. struct llama_sampler * softmax = llama_sampler_init_softmax();
  140. // draft sequence data
  141. std::vector<seq_draft> drafts(n_seq_dft);
  142. for (int s = 0; s < n_seq_dft; ++s) {
  143. // allocate gpt_sampler for each draft sequence
  144. drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
  145. }
  146. llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
  147. llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
  148. const auto t_dec_start = ggml_time_us();
  149. // sample from the last token of the prompt
  150. drafts[0].i_batch_tgt.resize(1);
  151. drafts[0].i_batch_tgt[0] = 0;
  152. while (true) {
  153. std::set<int> active_seqs = {};
  154. // print current draft sequences
  155. for (int s = 0; s < n_seq_dft; ++s) {
  156. if (!drafts[s].active) {
  157. continue;
  158. }
  159. active_seqs.insert(s);
  160. const auto & tokens = drafts[s].tokens;
  161. LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
  162. }
  163. int i_dft = 0;
  164. int s_keep = 0;
  165. llama_token token_id;
  166. std::string token_str;
  167. // loop until we fail to accept a drafted token or we run out of drafted tokens
  168. while (true) {
  169. // check if the target token matches any of the drafts
  170. // for stochastic sampling, attempt to match the token with the drafted tokens
  171. {
  172. bool accept = false;
  173. if (params.sparams.temp > 0) {
  174. // stochastic verification
  175. gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
  176. auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
  177. float p_tgt = 0.0f;
  178. float p_dft = 0.0f;
  179. while (active_seqs.size() > 0) {
  180. // randomly select a sequence to verify from active sequences
  181. std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
  182. int s = *std::next(active_seqs.begin(), u_int_dist(rng));
  183. if (i_dft >= (int) drafts[s].tokens.size()) {
  184. drafts[s].active = false;
  185. active_seqs.erase(s);
  186. continue;
  187. }
  188. if (accept) {
  189. // if we already accepted a token, we can skip the rest
  190. if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
  191. drafts[s].active = false;
  192. active_seqs.erase(s);
  193. }
  194. continue;
  195. }
  196. LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
  197. float r = u_dist(rng);
  198. llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
  199. //GGML_ASSERT(dist_tgt.size <= dist_dft.size);
  200. // acquire the token probabilities assigned by the draft and target models
  201. for (size_t i = 0; i < dist_tgt.size; i++) {
  202. if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
  203. p_tgt = dist_tgt.data[i].p;
  204. }
  205. if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
  206. p_dft = dist_dft.data[i].p;
  207. }
  208. if (p_tgt && p_dft) {
  209. break;
  210. }
  211. }
  212. LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
  213. if (r <= p_tgt / p_dft) {
  214. s_keep = s;
  215. accept = true;
  216. token_id = drafts[s].tokens[i_dft];
  217. token_str = llama_token_to_piece(ctx_tgt, token_id);
  218. gpt_sampler_accept(smpl, token_id, true);
  219. LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
  220. break;
  221. } else {
  222. LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
  223. drafts[s].active = false;
  224. // calculate residual probability
  225. GGML_ASSERT(dist_tgt.sorted);
  226. GGML_ASSERT(dist_dft.sorted);
  227. // sort dist by id
  228. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  229. return a.id < b.id;
  230. });
  231. std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
  232. return a.id < b.id;
  233. });
  234. float sum_probs = 0.0f;
  235. for (size_t i = 0; i < dist_tgt.size; i++) {
  236. if (i < dist_dft.size) {
  237. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
  238. } else {
  239. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
  240. }
  241. sum_probs += dist_tgt.data[i].p;
  242. }
  243. for (size_t i = 0; i < dist_tgt.size; i++) {
  244. dist_tgt.data[i].p /= sum_probs;
  245. }
  246. // sort dist_tgt by p desc
  247. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  248. return a.p > b.p;
  249. });
  250. }
  251. active_seqs.erase(s);
  252. for(int i = 0; i < n_seq_dft; i++) {
  253. if (i == s) {
  254. continue;
  255. }
  256. if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
  257. // synchronize active status for sequences with the same drafted token
  258. drafts[i].active = drafts[i].active && accept;
  259. if (!drafts[i].active) {
  260. active_seqs.erase(s);
  261. }
  262. }
  263. }
  264. }
  265. if (!accept) {
  266. // all drafted tokens were rejected
  267. // sample from the target model
  268. LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
  269. std::vector<float> probs(dist_tgt.size);
  270. for (size_t i = 0; i < dist_tgt.size; ++i) {
  271. probs[i] = dist_tgt.data[i].p;
  272. }
  273. std::discrete_distribution<> dist(probs.begin(), probs.end());
  274. const int idx = dist(rng);
  275. token_id = dist_tgt.data[idx].id;
  276. gpt_sampler_accept(smpl, token_id, true);
  277. token_str = llama_token_to_piece(ctx_tgt, token_id);
  278. }
  279. } else {
  280. // greedy verification
  281. // sample from the target model
  282. LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
  283. token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
  284. gpt_sampler_accept(smpl, token_id, true);
  285. token_str = llama_token_to_piece(ctx_tgt, token_id);
  286. for (int s = 0; s < n_seq_dft; ++s) {
  287. if (!drafts[s].active) {
  288. continue;
  289. }
  290. if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
  291. LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
  292. s_keep = s;
  293. accept = true;
  294. } else {
  295. drafts[s].active = false;
  296. }
  297. }
  298. }
  299. if (llama_token_is_eog(model_tgt, token_id)) {
  300. has_eos = true;
  301. }
  302. ++n_predict;
  303. if (accept) {
  304. ++n_accept;
  305. ++n_past_tgt;
  306. ++n_past_dft;
  307. ++i_dft;
  308. if (params.use_color) {
  309. // Color token according to its origin sequence
  310. LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
  311. } else {
  312. LOG("%s", token_str.c_str());
  313. }
  314. continue;
  315. } else {
  316. LOG("%s", token_str.c_str());
  317. break;
  318. }
  319. }
  320. }
  321. {
  322. LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
  323. // TODO: simplify
  324. {
  325. LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
  326. llama_kv_cache_seq_keep(ctx_dft, s_keep);
  327. llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
  328. llama_kv_cache_seq_keep(ctx_dft, 0);
  329. llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
  330. llama_kv_cache_seq_keep(ctx_tgt, s_keep);
  331. llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
  332. llama_kv_cache_seq_keep(ctx_tgt, 0);
  333. }
  334. for (int s = 0; s < n_seq_dft; ++s) {
  335. drafts[s].active = false;
  336. drafts[s].tokens.clear();
  337. drafts[s].i_batch_tgt.clear();
  338. drafts[s].dists.clear();
  339. }
  340. // note: will be erased after the speculation phase
  341. drafts[0].tokens.push_back(token_id);
  342. drafts[0].dists.push_back(std::vector<llama_token_data>());
  343. drafts[0].i_batch_tgt.push_back(0);
  344. llama_batch_clear(batch_dft);
  345. llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
  346. llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
  347. // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
  348. llama_decode(ctx_dft, batch_dft);
  349. ++n_past_dft;
  350. }
  351. if (n_predict > params.n_predict || has_eos) {
  352. break;
  353. }
  354. if (drafts[0].smpl) {
  355. gpt_sampler_free(drafts[0].smpl);
  356. }
  357. drafts[0].smpl = gpt_sampler_clone(smpl);
  358. int n_seq_cur = 1;
  359. int n_past_cur = n_past_dft;
  360. for (int s = 0; s < n_seq_dft; ++s) {
  361. drafts[s].active = false;
  362. drafts[s].drafting = false;
  363. }
  364. drafts[0].active = true;
  365. drafts[0].drafting = true;
  366. drafts[0].i_batch_dft = 0;
  367. llama_batch_clear(batch_tgt);
  368. llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
  369. // sample n_draft tokens from the draft model using tree-based sampling
  370. for (int i = 0; i < n_draft; ++i) {
  371. batch_dft.n_tokens = 0;
  372. for (int s = 0; s < n_seq_dft; ++s) {
  373. drafts[s].skip = false;
  374. }
  375. for (int s = 0; s < n_seq_dft; ++s) {
  376. if (!drafts[s].drafting || drafts[s].skip) {
  377. continue;
  378. }
  379. gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
  380. const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
  381. for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
  382. LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
  383. k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
  384. }
  385. std::vector<int> sa(1, s);
  386. // attempt to split the branch if the probability is high enough
  387. for (int f = 1; f < 8; ++f) {
  388. if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
  389. LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
  390. llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
  391. llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
  392. // all previous tokens from this branch are now also part of the new branch
  393. for (int t = 0; t < batch_tgt.n_tokens; ++t) {
  394. for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
  395. if (batch_tgt.seq_id[t][p] == s) {
  396. batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
  397. batch_tgt.n_seq_id[t]++;
  398. break;
  399. }
  400. }
  401. }
  402. // copy the draft state
  403. drafts[n_seq_cur].active = true;
  404. drafts[n_seq_cur].drafting = true;
  405. drafts[n_seq_cur].skip = true;
  406. drafts[n_seq_cur].tokens = drafts[s].tokens;
  407. drafts[n_seq_cur].dists = drafts[s].dists;
  408. drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
  409. drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
  410. if (drafts[n_seq_cur].smpl) {
  411. gpt_sampler_free(drafts[n_seq_cur].smpl);
  412. }
  413. drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
  414. sa.push_back(n_seq_cur);
  415. n_seq_cur++;
  416. } else {
  417. break;
  418. }
  419. }
  420. // add drafted token for each sequence
  421. for (int is = 0; is < (int) sa.size(); ++is) {
  422. const llama_token id = cur_p->data[is].id;
  423. const int s = sa[is];
  424. gpt_sampler_accept(drafts[s].smpl, id, true);
  425. drafts[s].tokens.push_back(id);
  426. // save cur_p.data into drafts[s].dists
  427. drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
  428. // add unique drafted tokens to the target batch
  429. drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
  430. llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
  431. // add the token to the batch for batched decoding with the draft model
  432. drafts[s].i_batch_dft = batch_dft.n_tokens;
  433. llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
  434. if (batch_tgt.n_tokens > n_draft) {
  435. drafts[s].drafting = false;
  436. }
  437. }
  438. }
  439. // no sequence is drafting anymore
  440. if (batch_dft.n_tokens == 0) {
  441. break;
  442. }
  443. // evaluate the drafted tokens on the draft model
  444. llama_decode(ctx_dft, batch_dft);
  445. ++n_past_cur;
  446. ++n_drafted;
  447. if (batch_tgt.n_tokens > n_draft) {
  448. break;
  449. }
  450. }
  451. // evaluate the target model on the drafted tokens
  452. {
  453. llama_kv_cache_seq_keep(ctx_tgt, 0);
  454. for (int s = 1; s < n_seq_dft; ++s) {
  455. llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
  456. }
  457. // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
  458. llama_decode(ctx_tgt, batch_tgt);
  459. ++n_past_tgt;
  460. }
  461. // the first token is always proposed by the target model before the speculation loop so we erase it here
  462. for (int s = 0; s < n_seq_dft; ++s) {
  463. if (!drafts[s].active) {
  464. continue;
  465. }
  466. drafts[s].tokens.erase(drafts[s].tokens.begin());
  467. drafts[s].dists.erase(drafts[s].dists.begin());
  468. }
  469. }
  470. auto t_dec_end = ggml_time_us();
  471. LOG("\n\n");
  472. LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  473. LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  474. LOG_INF("\n");
  475. LOG_INF("n_draft = %d\n", n_draft);
  476. LOG_INF("n_predict = %d\n", n_predict);
  477. LOG_INF("n_drafted = %d\n", n_drafted);
  478. LOG_INF("n_accept = %d\n", n_accept);
  479. LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  480. LOG_INF("\n");
  481. LOG_INF("draft:\n\n");
  482. // TODO: print sampling/grammar timings for all drafts
  483. llama_perf_context_print(ctx_dft);
  484. LOG_INF("\n");
  485. LOG_INF("target:\n\n");
  486. gpt_perf_print(ctx_tgt, smpl);
  487. gpt_sampler_free(smpl);
  488. for (int s = 0; s < n_seq_dft; ++s) {
  489. gpt_sampler_free(drafts[s].smpl);
  490. }
  491. llama_sampler_free(softmax);
  492. llama_batch_free(batch_dft);
  493. llama_free(ctx_tgt);
  494. llama_free_model(model_tgt);
  495. llama_free(ctx_dft);
  496. llama_free_model(model_dft);
  497. llama_backend_free();
  498. LOG("\n\n");
  499. return 0;
  500. }