ggml.c 334 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. // reference implementation for deterministic creation of model files
  371. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. const int nb = k / QK;
  374. const size_t bs = sizeof(float) + QK/2;
  375. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  376. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  377. uint8_t pp[QK/2];
  378. for (int i = 0; i < nb; i++) {
  379. float amax = 0.0f; // absolute max
  380. for (int l = 0; l < QK; l++) {
  381. const float v = x[i*QK + l];
  382. amax = MAX(amax, fabsf(v));
  383. }
  384. const float d = amax / ((1 << 3) - 1);
  385. const float id = d ? 1.0f/d : 0.0f;
  386. *(float *)pd = d;
  387. pd += bs;
  388. for (int l = 0; l < QK; l += 2) {
  389. const float v0 = x[i*QK + l + 0]*id;
  390. const float v1 = x[i*QK + l + 1]*id;
  391. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  392. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  393. assert(vi0 >= 0 && vi0 < 16);
  394. assert(vi1 >= 0 && vi1 < 16);
  395. pp[l/2] = vi0 | (vi1 << 4);
  396. }
  397. memcpy(pb, pp, sizeof(pp));
  398. pb += bs;
  399. }
  400. }
  401. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  402. assert(k % QK == 0);
  403. #if __ARM_NEON || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  404. const int nb = k / QK;
  405. const size_t bs = sizeof(float) + QK/2;
  406. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  407. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  408. uint8_t pp[QK/2];
  409. #endif
  410. #if defined(__POWER9_VECTOR__)
  411. #if QK == 32
  412. const vector float v85 = vec_splats(8.5f);
  413. for (int i = 0; i < nb; i++) {
  414. float amax = 0.0f; // absolute max
  415. vector float srcv [8];
  416. vector float asrcv[8];
  417. vector float amaxv[8];
  418. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  419. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  420. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  421. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  422. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  423. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  424. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  425. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  426. amax = MAX(
  427. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  428. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  429. const float d = amax / ((1 << 3) - 1);
  430. const float id = d ? 1.0/d : 0.0;
  431. *(float *)pd = d;
  432. pd += bs;
  433. const vector float vid = vec_splats(id);
  434. for (int l = 0; l < 8; l++) {
  435. const vector float vf = vec_madd(srcv[l], vid, v85);
  436. const vector signed int vi = vec_signed(vf);
  437. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  438. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  439. }
  440. //memcpy(pb, pp, sizeof(pp));
  441. pb += bs;
  442. }
  443. #else
  444. #error "not implemented for QK"
  445. #endif
  446. #elif __ARM_NEON
  447. #if QK == 32
  448. for (int i = 0; i < nb; i++) {
  449. float amax = 0.0f; // absolute max
  450. float32x4_t srcv [8];
  451. float32x4_t asrcv[8];
  452. float32x4_t amaxv[8];
  453. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  454. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  455. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  456. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  457. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  458. amax = MAX(
  459. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  460. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  461. const float d = amax / ((1 << 3) - 1);
  462. const float id = d ? 1.0/d : 0.0;
  463. *(float *)pd = d;
  464. pd += bs;
  465. for (int l = 0; l < 8; l++) {
  466. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  467. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  468. const int32x4_t vi = vcvtq_s32_f32(vf);
  469. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  470. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  471. }
  472. memcpy(pb, pp, sizeof(pp));
  473. pb += bs;
  474. }
  475. #else
  476. #error "not implemented for QK"
  477. #endif
  478. #elif defined(__AVX2__)
  479. #if QK == 32
  480. for (int i = 0; i < nb; i++) {
  481. // Load elements into 4 AVX vectors
  482. __m256 v0 = _mm256_loadu_ps( x );
  483. __m256 v1 = _mm256_loadu_ps( x + 8 );
  484. __m256 v2 = _mm256_loadu_ps( x + 16 );
  485. __m256 v3 = _mm256_loadu_ps( x + 24 );
  486. x += 32;
  487. // Compute max(abs(e)) for the block
  488. const __m256 signBit = _mm256_set1_ps( -0.0f );
  489. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  490. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  491. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  492. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  493. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  494. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  495. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  496. const float maxScalar = _mm_cvtss_f32( max4 );
  497. // Quantize these floats
  498. const float d = maxScalar / 7.0f;
  499. *(float *)pd = d;
  500. pd += bs;
  501. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  502. const __m256 mul = _mm256_set1_ps( id );
  503. // Apply the multiplier
  504. v0 = _mm256_mul_ps( v0, mul );
  505. v1 = _mm256_mul_ps( v1, mul );
  506. v2 = _mm256_mul_ps( v2, mul );
  507. v3 = _mm256_mul_ps( v3, mul );
  508. // Round to nearest integer
  509. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  510. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  511. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  512. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  513. // Convert floats to integers
  514. __m256i i0 = _mm256_cvtps_epi32( v0 );
  515. __m256i i1 = _mm256_cvtps_epi32( v1 );
  516. __m256i i2 = _mm256_cvtps_epi32( v2 );
  517. __m256i i3 = _mm256_cvtps_epi32( v3 );
  518. // Convert int32 to int16
  519. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  520. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  521. // Convert int16 to int8
  522. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  523. // We got our precious signed bytes, but the order is now wrong
  524. // These AVX2 pack instructions process 16-byte pieces independently
  525. // The following instruction is fixing the order
  526. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  527. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  528. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  529. const __m256i off = _mm256_set1_epi8( 8 );
  530. i0 = _mm256_add_epi8( i0, off );
  531. // Compress the vector into 4 bit/value, and store
  532. __m128i res = packNibbles( i0 );
  533. _mm_storeu_si128( ( __m128i* )pb, res );
  534. pb += bs;
  535. }
  536. #else
  537. #error "not implemented for QK"
  538. #endif
  539. #elif defined(__wasm_simd128__)
  540. #if QK == 32
  541. for (int i = 0; i < nb; i++) {
  542. float amax = 0.0f; // absolute max
  543. v128_t srcv [8];
  544. v128_t asrcv[8];
  545. v128_t amaxv[8];
  546. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  547. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  548. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  549. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  550. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  551. amax = MAX(
  552. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  553. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  554. const float d = amax / ((1 << 3) - 1);
  555. const float id = d ? 1.0/d : 0.0;
  556. *(float *)pd = d;
  557. pd += bs;
  558. for (int l = 0; l < 8; l++) {
  559. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  560. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  561. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  562. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  563. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  564. }
  565. memcpy(pb, pp, sizeof(pp));
  566. pb += bs;
  567. }
  568. #else
  569. #error "not implemented for QK"
  570. #endif
  571. #else
  572. // scalar
  573. quantize_row_q4_0_reference(x, y, k);
  574. #endif
  575. }
  576. // method 4
  577. // blocks of QK elements
  578. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  579. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  580. assert(k % QK == 0);
  581. const int nb = k / QK;
  582. const size_t bs = 2*sizeof(float) + QK/2;
  583. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  584. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  585. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  586. uint8_t pp[QK/2];
  587. for (int i = 0; i < nb; i++) {
  588. float min = FLT_MAX;
  589. float max = -FLT_MAX;
  590. for (int l = 0; l < QK; l++) {
  591. const float v = x[i*QK + l];
  592. if (v < min) min = v;
  593. if (v > max) max = v;
  594. }
  595. const float d = (max - min) / ((1 << 4) - 1);
  596. const float id = d ? 1.0f/d : 0.0f;
  597. *(float *)pm = min;
  598. *(float *)pd = d;
  599. pm += bs;
  600. pd += bs;
  601. for (int l = 0; l < QK; l += 2) {
  602. const float v0 = (x[i*QK + l + 0] - min)*id;
  603. const float v1 = (x[i*QK + l + 1] - min)*id;
  604. const uint8_t vi0 = round(v0);
  605. const uint8_t vi1 = round(v1);
  606. assert(vi0 >= 0 && vi0 < 16);
  607. assert(vi1 >= 0 && vi1 < 16);
  608. pp[l/2] = vi0 | (vi1 << 4);
  609. }
  610. memcpy(pb, pp, sizeof(pp));
  611. pb += bs;
  612. }
  613. }
  614. // TODO: vectorize
  615. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  616. assert(k % QK == 0);
  617. const int nb = k / QK;
  618. const size_t bs = sizeof(float) + QK/2;
  619. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  620. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  621. // scalar
  622. for (int i = 0; i < nb; i++) {
  623. const float d = *(const float *) (pd + i*bs);
  624. const uint8_t * restrict pp = pb + i*bs;
  625. for (int l = 0; l < QK; l += 2) {
  626. const uint8_t vi = pp[l/2];
  627. const int8_t vi0 = vi & 0xf;
  628. const int8_t vi1 = vi >> 4;
  629. const float v0 = (vi0 - 8)*d;
  630. const float v1 = (vi1 - 8)*d;
  631. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  632. y[i*QK + l + 0] = v0;
  633. y[i*QK + l + 1] = v1;
  634. assert(!isnan(y[i*QK + l + 0]));
  635. assert(!isnan(y[i*QK + l + 1]));
  636. }
  637. }
  638. }
  639. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  640. assert(k % QK == 0);
  641. const int nb = k / QK;
  642. const size_t bs = 2*sizeof(float) + QK/2;
  643. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  644. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  645. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  646. for (int i = 0; i < nb; i++) {
  647. const float d = *(const float *) (pd + i*bs);
  648. const float m = *(const float *) (pm + i*bs);
  649. const uint8_t * restrict pp = pb + i*bs;
  650. for (int l = 0; l < QK; l += 2) {
  651. const uint8_t vi = pp[l/2];
  652. const int8_t vi0 = vi & 0xf;
  653. const int8_t vi1 = vi >> 4;
  654. const float v0 = vi0*d + m;
  655. const float v1 = vi1*d + m;
  656. y[i*QK + l + 0] = v0;
  657. y[i*QK + l + 1] = v1;
  658. assert(!isnan(y[i*QK + l + 0]));
  659. assert(!isnan(y[i*QK + l + 1]));
  660. }
  661. }
  662. }
  663. //
  664. // simd mappings
  665. //
  666. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  667. // we then implement the fundamental computation operations below using only these macros
  668. // adding support for new architectures requires to define the corresponding SIMD macros
  669. //
  670. // GGML_F32_STEP / GGML_F16_STEP
  671. // number of elements to process in a single step
  672. //
  673. // GGML_F32_EPR / GGML_F16_EPR
  674. // number of elements to fit in a single register
  675. //
  676. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  677. #define GGML_SIMD
  678. // F32 NEON
  679. #define GGML_F32_STEP 16
  680. #define GGML_F32_EPR 4
  681. #define GGML_F32x4 float32x4_t
  682. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  683. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  684. #define GGML_F32x4_LOAD vld1q_f32
  685. #define GGML_F32x4_STORE vst1q_f32
  686. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  687. #define GGML_F32x4_ADD vaddq_f32
  688. #define GGML_F32x4_MUL vmulq_f32
  689. #if defined(__ARM_FEATURE_QRDMX)
  690. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  691. #else
  692. #define GGML_F32x4_REDUCE_ONE(x) \
  693. (vgetq_lane_f32(x, 0) + \
  694. vgetq_lane_f32(x, 1) + \
  695. vgetq_lane_f32(x, 2) + \
  696. vgetq_lane_f32(x, 3))
  697. #endif
  698. #define GGML_F32x4_REDUCE(res, x) \
  699. { \
  700. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  701. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  702. } \
  703. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  704. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  705. } \
  706. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  707. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  708. } \
  709. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  710. }
  711. #define GGML_F32_VEC GGML_F32x4
  712. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  713. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  714. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  715. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  716. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  717. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  718. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  719. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  720. // F16 NEON
  721. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  722. #define GGML_F16_STEP 32
  723. #define GGML_F16_EPR 8
  724. #define GGML_F16x8 float16x8_t
  725. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  726. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  727. #define GGML_F16x8_LOAD vld1q_f16
  728. #define GGML_F16x8_STORE vst1q_f16
  729. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  730. #define GGML_F16x8_ADD vaddq_f16
  731. #define GGML_F16x8_MUL vmulq_f16
  732. #define GGML_F16x8_REDUCE(res, x) \
  733. { \
  734. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  735. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  736. } \
  737. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  738. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  739. } \
  740. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  741. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  742. } \
  743. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  744. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  745. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  746. }
  747. #define GGML_F16_VEC GGML_F16x8
  748. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  749. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  750. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  751. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  752. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  753. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  754. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  755. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  756. #else
  757. // if FP16 vector arithmetic is not supported, we use FP32 instead
  758. // and take advantage of the vcvt_ functions to convert to/from FP16
  759. #define GGML_F16_STEP 16
  760. #define GGML_F16_EPR 4
  761. #define GGML_F32Cx4 float32x4_t
  762. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  763. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  764. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  765. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  766. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  767. #define GGML_F32Cx4_ADD vaddq_f32
  768. #define GGML_F32Cx4_MUL vmulq_f32
  769. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  770. #define GGML_F16_VEC GGML_F32Cx4
  771. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  772. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  773. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  774. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  775. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  776. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  777. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  778. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  779. #endif
  780. #elif defined(__AVX__)
  781. #define GGML_SIMD
  782. // F32 AVX
  783. #define GGML_F32_STEP 32
  784. #define GGML_F32_EPR 8
  785. #define GGML_F32x8 __m256
  786. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  787. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  788. #define GGML_F32x8_LOAD _mm256_loadu_ps
  789. #define GGML_F32x8_STORE _mm256_storeu_ps
  790. #if defined(__FMA__)
  791. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  792. #else
  793. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  794. #endif
  795. #define GGML_F32x8_ADD _mm256_add_ps
  796. #define GGML_F32x8_MUL _mm256_mul_ps
  797. #define GGML_F32x8_REDUCE(res, x) \
  798. { \
  799. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  800. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  801. } \
  802. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  803. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  804. } \
  805. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  806. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  807. } \
  808. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  809. _mm256_extractf128_ps(x[0], 1)); \
  810. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  811. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  812. }
  813. // TODO: is this optimal ?
  814. #define GGML_F32_VEC GGML_F32x8
  815. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  816. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  817. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  818. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  819. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  820. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  821. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  822. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  823. // F16 AVX
  824. #define GGML_F16_STEP 32
  825. #define GGML_F16_EPR 8
  826. // F16 arithmetic is not supported by AVX, so we use F32 instead
  827. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  828. #define GGML_F32Cx8 __m256
  829. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  830. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  831. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  832. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  833. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  834. #define GGML_F32Cx8_ADD _mm256_add_ps
  835. #define GGML_F32Cx8_MUL _mm256_mul_ps
  836. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  837. #define GGML_F16_VEC GGML_F32Cx8
  838. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  839. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  840. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  841. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  842. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  843. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  844. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  845. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  846. #elif defined(__POWER9_VECTOR__)
  847. #define GGML_SIMD
  848. // F32 POWER9
  849. #define GGML_F32_STEP 32
  850. #define GGML_F32_EPR 4
  851. #define GGML_F32x4 vector float
  852. #define GGML_F32x4_ZERO 0.0f
  853. #define GGML_F32x4_SET1 vec_splats
  854. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  855. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  856. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  857. #define GGML_F32x4_ADD vec_add
  858. #define GGML_F32x4_MUL vec_mul
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  862. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  863. } \
  864. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  865. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  866. } \
  867. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  868. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  869. } \
  870. res = vec_extract(x[0], 0) + \
  871. vec_extract(x[0], 1) + \
  872. vec_extract(x[0], 2) + \
  873. vec_extract(x[0], 3); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 POWER9
  885. #define GGML_F16_STEP GGML_F32_STEP
  886. #define GGML_F16_EPR GGML_F32_EPR
  887. #define GGML_F16_VEC GGML_F32x4
  888. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  890. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  891. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  892. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  893. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  894. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  895. vec_extract_fp32_from_shortl(vec_xl(0, p))
  896. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  897. #define GGML_F16_VEC_STORE(p, r, i) \
  898. if (i & 0x1) \
  899. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  900. r[i - GGML_ENDIAN_BYTE(0)]), \
  901. 0, p - GGML_F16_EPR)
  902. #elif defined(__wasm_simd128__)
  903. #define GGML_SIMD
  904. // F32 WASM
  905. #define GGML_F32_STEP 16
  906. #define GGML_F32_EPR 4
  907. #define GGML_F32x4 v128_t
  908. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  909. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  910. #define GGML_F32x4_LOAD wasm_v128_load
  911. #define GGML_F32x4_STORE wasm_v128_store
  912. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  913. #define GGML_F32x4_ADD wasm_f32x4_add
  914. #define GGML_F32x4_MUL wasm_f32x4_mul
  915. #define GGML_F32x4_REDUCE(res, x) \
  916. { \
  917. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  918. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  919. } \
  920. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  921. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  922. } \
  923. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  924. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  925. } \
  926. res = wasm_f32x4_extract_lane(x[0], 0) + \
  927. wasm_f32x4_extract_lane(x[0], 1) + \
  928. wasm_f32x4_extract_lane(x[0], 2) + \
  929. wasm_f32x4_extract_lane(x[0], 3); \
  930. }
  931. #define GGML_F32_VEC GGML_F32x4
  932. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  933. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  934. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  935. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  936. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  937. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  938. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  939. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  940. // F16 WASM
  941. #define GGML_F16_STEP 16
  942. #define GGML_F16_EPR 4
  943. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  944. float tmp[4];
  945. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  946. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  947. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  948. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  949. return wasm_v128_load(tmp);
  950. }
  951. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  952. float tmp[4];
  953. wasm_v128_store(tmp, x);
  954. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  955. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  956. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  957. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  958. }
  959. #define GGML_F16x4 v128_t
  960. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  961. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  962. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  963. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  964. #define GGML_F16x4_FMA GGML_F32x4_FMA
  965. #define GGML_F16x4_ADD wasm_f32x4_add
  966. #define GGML_F16x4_MUL wasm_f32x4_mul
  967. #define GGML_F16x4_REDUCE(res, x) \
  968. { \
  969. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  970. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  971. } \
  972. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  973. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  974. } \
  975. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  976. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  977. } \
  978. res = wasm_f32x4_extract_lane(x[0], 0) + \
  979. wasm_f32x4_extract_lane(x[0], 1) + \
  980. wasm_f32x4_extract_lane(x[0], 2) + \
  981. wasm_f32x4_extract_lane(x[0], 3); \
  982. }
  983. #define GGML_F16_VEC GGML_F16x4
  984. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  985. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  986. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  987. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  988. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  989. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  990. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  991. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  992. #elif defined(__SSE3__)
  993. #define GGML_SIMD
  994. // F32 SSE
  995. #define GGML_F32_STEP 32
  996. #define GGML_F32_EPR 4
  997. #define GGML_F32x4 __m128
  998. #define GGML_F32x4_ZERO _mm_setzero_ps()
  999. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1000. #define GGML_F32x4_LOAD _mm_loadu_ps
  1001. #define GGML_F32x4_STORE _mm_storeu_ps
  1002. #if defined(__FMA__)
  1003. // TODO: Does this work?
  1004. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1005. #else
  1006. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1007. #endif
  1008. #define GGML_F32x4_ADD _mm_add_ps
  1009. #define GGML_F32x4_MUL _mm_mul_ps
  1010. #define GGML_F32x4_REDUCE(res, x) \
  1011. { \
  1012. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1013. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1014. } \
  1015. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1016. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1017. } \
  1018. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1019. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1020. } \
  1021. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1022. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1023. }
  1024. // TODO: is this optimal ?
  1025. #define GGML_F32_VEC GGML_F32x4
  1026. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1027. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1028. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1029. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1030. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1031. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1032. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1033. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1034. // F16 SSE
  1035. #define GGML_F16_STEP 32
  1036. #define GGML_F16_EPR 4
  1037. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1038. float tmp[4];
  1039. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1040. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1041. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1042. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1043. return _mm_loadu_ps(tmp);
  1044. }
  1045. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1046. float arr[4];
  1047. _mm_storeu_ps(arr, y);
  1048. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1049. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1050. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1051. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1052. }
  1053. #define GGML_F32Cx4 __m128
  1054. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1055. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1056. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1057. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1058. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1059. #define GGML_F32Cx4_ADD _mm_add_ps
  1060. #define GGML_F32Cx4_MUL _mm_mul_ps
  1061. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1062. #define GGML_F16_VEC GGML_F32Cx4
  1063. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1071. #endif
  1072. // GGML_F32_ARR / GGML_F16_ARR
  1073. // number of registers to use per step
  1074. #ifdef GGML_SIMD
  1075. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1076. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1077. #endif
  1078. //
  1079. // fundamental operations
  1080. //
  1081. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1082. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1083. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1084. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1085. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1086. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1087. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1088. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1089. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1090. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1091. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1092. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1093. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1094. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1095. ggml_float sumf = 0.0;
  1096. #ifdef GGML_SIMD
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1106. }
  1107. }
  1108. // reduce sum0..sum3 to sum0
  1109. GGML_F32_VEC_REDUCE(sumf, sum);
  1110. // leftovers
  1111. for (int i = np; i < n; ++i) {
  1112. sumf += x[i]*y[i];
  1113. }
  1114. #else
  1115. // scalar
  1116. for (int i = 0; i < n; ++i) {
  1117. sumf += x[i]*y[i];
  1118. }
  1119. #endif
  1120. *s = sumf;
  1121. }
  1122. #if __AVX512F__ && QK == 32
  1123. static inline __m512 dot_q4_0_oneblock_avx512(
  1124. __m512 acc,
  1125. const uint8_t * pd0,
  1126. const uint8_t * pd1,
  1127. const uint8_t * pb0,
  1128. const uint8_t * pb1,
  1129. size_t bs,
  1130. int i
  1131. ) {
  1132. const float * d0_0 = (const float *) (pd0 + i*bs);
  1133. const float * d1_0 = (const float *) (pd1 + i*bs);
  1134. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1135. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1136. // Compute combined scale for the block
  1137. float scaleScalar = d0_0[0] * d1_0[0];
  1138. __m512 scale = _mm512_set1_ps( scaleScalar );
  1139. __m256i bx = bytesFromNibbles( p0 );
  1140. __m256i by = bytesFromNibbles( p1 );
  1141. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1142. const __m256i off = _mm256_set1_epi8( 8 );
  1143. bx = _mm256_sub_epi8( bx, off );
  1144. by = _mm256_sub_epi8( by, off );
  1145. // Sign-extend 16 signed bytes into int16_t
  1146. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1147. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1148. // Compute products of int16_t integers, add pairwise
  1149. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1150. // Convert int32_t to float
  1151. __m512 p = _mm512_cvtepi32_ps( i64 );
  1152. // Apply the scale, and accumulate
  1153. return _mm512_fmadd_ps( scale, p, acc );
  1154. }
  1155. #endif
  1156. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1157. ggml_float sumf = 0.0;
  1158. #if defined(GGML_SIMD)
  1159. const int np = (n & ~(GGML_F16_STEP - 1));
  1160. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1161. GGML_F16_VEC ax[GGML_F16_ARR];
  1162. GGML_F16_VEC ay[GGML_F16_ARR];
  1163. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1164. for (int j = 0; j < GGML_F16_ARR; j++) {
  1165. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1166. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1167. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1168. }
  1169. }
  1170. // reduce sum0..sum3 to sum0
  1171. GGML_F16_VEC_REDUCE(sumf, sum);
  1172. // leftovers
  1173. for (int i = np; i < n; ++i) {
  1174. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1175. }
  1176. #else
  1177. for (int i = 0; i < n; ++i) {
  1178. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1179. }
  1180. #endif
  1181. *s = sumf;
  1182. }
  1183. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1184. const int nb = n / QK;
  1185. assert(n % QK == 0);
  1186. assert(nb % 2 == 0);
  1187. const size_t bs = sizeof(float) + QK/2;
  1188. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1189. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1190. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1191. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1192. float sumf = 0.0;
  1193. #ifdef __ARM_NEON
  1194. #if QK == 32
  1195. float sum0 = 0.0f;
  1196. float sum1 = 0.0f;
  1197. for (int i = 0; i < nb; i += 2) {
  1198. const float d0_0 = *(const float *) (pd0 + i*bs);
  1199. const float d1_0 = *(const float *) (pd1 + i*bs);
  1200. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1201. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1202. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1203. const uint8_t * restrict p0 = pb0 + i*bs;
  1204. const uint8_t * restrict p1 = pb1 + i*bs;
  1205. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1206. const int8x16_t s8b = vdupq_n_s8(0x8);
  1207. const uint8x16_t v0_0 = vld1q_u8(p0);
  1208. const uint8x16_t v1_0 = vld1q_u8(p1);
  1209. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1210. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1211. // 4-bit -> 8-bit
  1212. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1213. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1214. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1215. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1216. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1217. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1218. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1219. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1220. // sub 8
  1221. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1222. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1223. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1224. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1225. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1226. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1227. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1228. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1229. #if defined(__ARM_FEATURE_DOTPROD)
  1230. // dot product into int16x8_t
  1231. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1232. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1233. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1234. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1235. // scalar
  1236. #if defined(__ARM_FEATURE_QRDMX)
  1237. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1238. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1239. #else
  1240. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1241. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1242. #endif
  1243. #else
  1244. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1245. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1246. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1247. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1248. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1249. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1250. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1251. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1252. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1253. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1254. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1255. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1256. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1257. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1258. // scalar
  1259. #if defined(__ARM_FEATURE_QRDMX)
  1260. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1261. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1262. #else
  1263. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1264. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1265. #endif
  1266. #endif
  1267. }
  1268. sumf = sum0 + sum1;
  1269. #else
  1270. #error "not implemented for QK"
  1271. #endif
  1272. #elif defined(__AVX512F__)
  1273. #if QK == 32
  1274. // Initialize accumulator with zeros
  1275. __m512 acc0 = _mm512_setzero_ps();
  1276. __m512 acc1 = _mm512_setzero_ps();
  1277. const int superblock_size = 8;
  1278. const int superblock_count = nb / superblock_size;
  1279. const int remainder = nb % superblock_size;
  1280. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1281. int i = superblock_ix * superblock_size;
  1282. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1283. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1284. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1285. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1286. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1287. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1288. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1289. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1290. }
  1291. // Remainders
  1292. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1293. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1294. }
  1295. // Horizontal sum of all lanes of the accumulator
  1296. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1297. #else
  1298. #error "not implemented for QK"
  1299. #endif
  1300. #elif defined(__AVX2__)
  1301. #if QK == 32
  1302. const size_t countBlocks = nb;
  1303. // Initialize accumulator with zeros
  1304. __m256 acc = _mm256_setzero_ps();
  1305. // Main loop
  1306. for (int i = 0; i < nb; ++i) {
  1307. const float * d0_0 = (const float *) (pd0 + i*bs);
  1308. const float * d1_0 = (const float *) (pd1 + i*bs);
  1309. const uint8_t * restrict p0 = pb0 + i*bs;
  1310. const uint8_t * restrict p1 = pb1 + i*bs;
  1311. // Compute combined scale for the block
  1312. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1313. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1314. __m256i bx = bytesFromNibbles( p0 );
  1315. __m256i by = bytesFromNibbles( p1 );
  1316. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1317. const __m256i off = _mm256_set1_epi8( 8 );
  1318. bx = _mm256_sub_epi8( bx, off );
  1319. by = _mm256_sub_epi8( by, off );
  1320. // Sign-extend first 16 signed bytes into int16_t
  1321. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1322. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1323. // Compute products of int16_t integers, add pairwise
  1324. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1325. // Sign-extend last 16 signed bytes into int16_t vectors
  1326. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1327. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1328. // Accumulate products of int16_t integers
  1329. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1330. // Convert int32_t to float
  1331. __m256 p = _mm256_cvtepi32_ps( i32 );
  1332. // Apply the scale, and accumulate
  1333. acc = _mm256_fmadd_ps( scale, p, acc );
  1334. }
  1335. // Return horizontal sum of the acc vector
  1336. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1337. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1338. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1339. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1340. sumf = _mm_cvtss_f32( res );
  1341. #else
  1342. #error "not implemented for QK"
  1343. #endif
  1344. #elif defined(__wasm_simd128__)
  1345. #if QK == 32
  1346. // wasm simd
  1347. float sum0 = 0.0f;
  1348. float sum1 = 0.0f;
  1349. for (int i = 0; i < nb; i += 2) {
  1350. const float d0_0 = *(const float *) (pd0 + i*bs);
  1351. const float d1_0 = *(const float *) (pd1 + i*bs);
  1352. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1353. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1354. const uint8_t * restrict p0 = pb0 + i*bs;
  1355. const uint8_t * restrict p1 = pb1 + i*bs;
  1356. const v128_t m4b = wasm_u8x16_splat(0xf);
  1357. const v128_t s8b = wasm_i8x16_splat(0x8);
  1358. const v128_t v0_0 = wasm_v128_load(p0);
  1359. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1360. const v128_t v1_0 = wasm_v128_load(p1);
  1361. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1362. // 4-bit -> 8-bit
  1363. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1364. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1365. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1366. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1367. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1368. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1369. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1370. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1371. // sub 8
  1372. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1373. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1374. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1375. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1376. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1377. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1378. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1379. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1380. // dot product into int16x8_t
  1381. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1382. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1383. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1384. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1385. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1386. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1387. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1388. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1389. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1390. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1391. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1392. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1393. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1394. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1395. sum0 += d0_0*d1_0*(
  1396. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1397. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1398. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1399. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1400. sum1 += d0_1*d1_1*(
  1401. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1402. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1403. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1404. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1405. }
  1406. sumf = sum0 + sum1;
  1407. #else
  1408. #error "not implemented for QK"
  1409. #endif
  1410. #else
  1411. // scalar
  1412. for (int i = 0; i < nb; i++) {
  1413. const float d0 = *(const float *) (pd0 + i*bs);
  1414. const float d1 = *(const float *) (pd1 + i*bs);
  1415. const uint8_t * restrict p0 = pb0 + i*bs;
  1416. const uint8_t * restrict p1 = pb1 + i*bs;
  1417. for (int j = 0; j < QK/2; j++) {
  1418. const uint8_t v0 = p0[j];
  1419. const uint8_t v1 = p1[j];
  1420. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1421. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1422. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1423. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1424. sumf += f0*f2 + f1*f3;
  1425. }
  1426. }
  1427. #endif
  1428. *s = sumf;
  1429. }
  1430. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1431. const int nb = n / QK;
  1432. const size_t bs = 2*sizeof(float) + QK/2;
  1433. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1434. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1435. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1436. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1437. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1438. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1439. float sumf = 0.0;
  1440. #if defined(__AVX2__)
  1441. #if QK == 32
  1442. // Initialize accumulator with zeros
  1443. __m256 acc = _mm256_setzero_ps();
  1444. // Accumulator for constant offsets
  1445. float acc_offset = 0.0f;
  1446. // Main loop
  1447. for (int i = 0; i < nb; ++i) {
  1448. const float * m0 = (const float *) (pm0 + i*bs);
  1449. const float * m1 = (const float *) (pm1 + i*bs);
  1450. const float * d0 = (const float *) (pd0 + i*bs);
  1451. const float * d1 = (const float *) (pd1 + i*bs);
  1452. const uint8_t * restrict p0 = pb0 + i*bs;
  1453. const uint8_t * restrict p1 = pb1 + i*bs;
  1454. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1455. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1456. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1457. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1458. // Compute combined scale for the block
  1459. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1460. // Compute cross scales for the block
  1461. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1462. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1463. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1464. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1465. __m256i bx = bytesFromNibbles( p0 );
  1466. __m256i by = bytesFromNibbles( p1 );
  1467. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1468. // Sign-extend first 16 signed bytes into int16_t
  1469. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1470. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1471. // Compute products of int16_t integers, add pairwise
  1472. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1473. // Sign-extend last 16 signed bytes into int16_t vectors
  1474. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1475. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1476. // Accumulate products of int16_t integers
  1477. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1478. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1479. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1480. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1481. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1482. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1483. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1484. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1485. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1486. // Convert int32_t to float
  1487. __m256 p = _mm256_cvtepi32_ps( i32 );
  1488. // Apply the scale, and accumulate
  1489. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1490. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1491. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1492. // acc_offset += m0*m1 (for each entry in the block)
  1493. acc_offset += (*m0)*(*m1);
  1494. }
  1495. // Return horizontal sum of the acc vector
  1496. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1497. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1498. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1499. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1500. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1501. #else
  1502. #error "not implemented for QK"
  1503. #endif
  1504. #else
  1505. // scalar
  1506. for (int i = 0; i < nb; i++) {
  1507. const float m0 = *(const float *) (pm0 + i*bs);
  1508. const float m1 = *(const float *) (pm1 + i*bs);
  1509. const float d0 = *(const float *) (pd0 + i*bs);
  1510. const float d1 = *(const float *) (pd1 + i*bs);
  1511. const uint8_t * restrict p0 = pb0 + i*bs;
  1512. const uint8_t * restrict p1 = pb1 + i*bs;
  1513. for (int j = 0; j < QK/2; j++) {
  1514. const uint8_t v0 = p0[j];
  1515. const uint8_t v1 = p1[j];
  1516. const float f0 = d0*(v0 & 0xf) + m0;
  1517. const float f1 = d0*(v0 >> 4) + m0;
  1518. const float f2 = d1*(v1 & 0xf) + m1;
  1519. const float f3 = d1*(v1 >> 4) + m1;
  1520. sumf += f0*f2 + f1*f3;
  1521. }
  1522. }
  1523. #endif
  1524. *s = sumf;
  1525. }
  1526. // compute GGML_VEC_DOT_UNROLL dot products at once
  1527. // xs - x row stride in bytes
  1528. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1529. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1530. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1531. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1532. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1533. }
  1534. #if defined(GGML_SIMD)
  1535. const int np = (n & ~(GGML_F16_STEP - 1));
  1536. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1537. GGML_F16_VEC ax[GGML_F16_ARR];
  1538. GGML_F16_VEC ay[GGML_F16_ARR];
  1539. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1540. for (int j = 0; j < GGML_F16_ARR; j++) {
  1541. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1542. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1543. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1544. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1545. }
  1546. }
  1547. }
  1548. // reduce sum0..sum3 to sum0
  1549. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1550. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1551. }
  1552. // leftovers
  1553. for (int i = np; i < n; ++i) {
  1554. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1555. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1556. }
  1557. }
  1558. #else
  1559. for (int i = 0; i < n; ++i) {
  1560. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1561. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1562. }
  1563. }
  1564. #endif
  1565. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1566. s[i] = sumf[i];
  1567. }
  1568. }
  1569. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1570. #if defined(GGML_SIMD)
  1571. const int np = (n & ~(GGML_F32_STEP - 1));
  1572. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1573. GGML_F32_VEC ax[GGML_F32_ARR];
  1574. GGML_F32_VEC ay[GGML_F32_ARR];
  1575. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1576. for (int j = 0; j < GGML_F32_ARR; j++) {
  1577. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1578. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1579. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1580. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1581. }
  1582. }
  1583. // leftovers
  1584. for (int i = np; i < n; ++i) {
  1585. y[i] += x[i]*v;
  1586. }
  1587. #else
  1588. // scalar
  1589. for (int i = 0; i < n; ++i) {
  1590. y[i] += x[i]*v;
  1591. }
  1592. #endif
  1593. }
  1594. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1595. #if defined(GGML_SIMD)
  1596. const int np = (n & ~(GGML_F16_STEP - 1));
  1597. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1598. GGML_F16_VEC ax[GGML_F16_ARR];
  1599. GGML_F16_VEC ay[GGML_F16_ARR];
  1600. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1601. for (int j = 0; j < GGML_F16_ARR; j++) {
  1602. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1603. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1604. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1605. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1606. }
  1607. }
  1608. // leftovers
  1609. for (int i = np; i < n; ++i) {
  1610. GGML_ASSERT(false);
  1611. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1612. }
  1613. #else
  1614. for (int i = 0; i < n; ++i) {
  1615. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1616. }
  1617. #endif
  1618. }
  1619. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1620. assert(n % QK == 0);
  1621. const int nb = n / QK;
  1622. const size_t bs = sizeof(float) + QK/2;
  1623. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1624. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1625. #if __ARM_NEON
  1626. #if QK == 32
  1627. for (int i = 0; i < nb; ++i) {
  1628. const float d0 = v*(*(const float *) (pd + i*bs));
  1629. const uint8_t * restrict pp = pb + i*bs;
  1630. const uint8x8_t m4b = vdup_n_u8(0xf);
  1631. const int8x8_t s8b = vdup_n_s8(0x8);
  1632. const float32x4_t vd = vdupq_n_f32(d0);
  1633. for (int j = 0; j < 2; j++) {
  1634. const uint8x8_t vx = vld1_u8(pp + j*8);
  1635. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1636. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1637. // sub 8
  1638. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1639. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1640. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1641. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1642. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1643. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1644. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1645. // convert to 2x int16x8_t
  1646. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1647. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1648. // convert to 4x float32x4_t
  1649. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1650. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1651. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1652. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1653. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1654. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1655. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1656. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1657. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1658. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1659. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1660. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1661. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1662. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1663. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1664. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1665. }
  1666. }
  1667. #endif
  1668. #else
  1669. // scalar
  1670. for (int i = 0; i < nb; i++) {
  1671. const float d = *(const float *) (pd + i*bs);
  1672. const uint8_t * restrict pp = pb + i*bs;
  1673. for (int l = 0; l < QK; l += 2) {
  1674. const uint8_t vi = pp[l/2];
  1675. const int8_t vi0 = vi & 0xf;
  1676. const int8_t vi1 = vi >> 4;
  1677. const float v0 = (vi0 - 8)*d;
  1678. const float v1 = (vi1 - 8)*d;
  1679. y[i*QK + l + 0] += v0*v;
  1680. y[i*QK + l + 1] += v1*v;
  1681. assert(!isnan(y[i*QK + l + 0]));
  1682. assert(!isnan(y[i*QK + l + 1]));
  1683. assert(!isinf(y[i*QK + l + 0]));
  1684. assert(!isinf(y[i*QK + l + 1]));
  1685. }
  1686. }
  1687. #endif
  1688. }
  1689. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1690. assert(n % QK == 0);
  1691. const int nb = n / QK;
  1692. const size_t bs = 2*sizeof(float) + QK/2;
  1693. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1694. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1695. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1696. for (int i = 0; i < nb; i++) {
  1697. const float d = *(const float *) (pd + i*bs);
  1698. const float m = *(const float *) (pm + i*bs);
  1699. const uint8_t * restrict pp = pb + i*bs;
  1700. for (int l = 0; l < QK; l += 2) {
  1701. const uint8_t vi = pp[l/2];
  1702. const uint8_t vi0 = vi & 0xf;
  1703. const uint8_t vi1 = vi >> 4;
  1704. const float v0 = d*vi0 + m;
  1705. const float v1 = d*vi1 + m;
  1706. y[i*QK + l + 0] += v0*v;
  1707. y[i*QK + l + 1] += v1*v;
  1708. assert(!isnan(y[i*QK + l + 0]));
  1709. assert(!isnan(y[i*QK + l + 1]));
  1710. assert(!isinf(y[i*QK + l + 0]));
  1711. assert(!isinf(y[i*QK + l + 1]));
  1712. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1713. }
  1714. }
  1715. }
  1716. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1717. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1718. #if defined(GGML_SIMD)
  1719. const int np = (n & ~(GGML_F32_STEP - 1));
  1720. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1721. GGML_F32_VEC ay[GGML_F32_ARR];
  1722. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1723. for (int j = 0; j < GGML_F32_ARR; j++) {
  1724. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1725. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1726. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1727. }
  1728. }
  1729. // leftovers
  1730. for (int i = np; i < n; ++i) {
  1731. y[i] *= v;
  1732. }
  1733. #else
  1734. // scalar
  1735. for (int i = 0; i < n; ++i) {
  1736. y[i] *= v;
  1737. }
  1738. #endif
  1739. }
  1740. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1741. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1742. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1743. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1744. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1745. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1746. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1747. static const ggml_float GELU_COEF_A = 0.044715;
  1748. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1749. inline static float ggml_gelu_f32(float x) {
  1750. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1751. }
  1752. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1753. const uint16_t * i16 = (const uint16_t *) x;
  1754. for (int i = 0; i < n; ++i) {
  1755. y[i] = table_gelu_f16[i16[i]];
  1756. }
  1757. }
  1758. #ifdef GGML_GELU_FP16
  1759. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1760. uint16_t t;
  1761. for (int i = 0; i < n; ++i) {
  1762. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1763. memcpy(&t, &fp16, sizeof(uint16_t));
  1764. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1765. }
  1766. }
  1767. #else
  1768. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1769. for (int i = 0; i < n; ++i) {
  1770. y[i] = ggml_gelu_f32(x[i]);
  1771. }
  1772. }
  1773. #endif
  1774. // Sigmoid Linear Unit (SiLU) function
  1775. inline static float ggml_silu_f32(float x) {
  1776. return x/(1.0 + exp(-x));
  1777. }
  1778. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1779. const uint16_t * i16 = (const uint16_t *) x;
  1780. for (int i = 0; i < n; ++i) {
  1781. y[i] = table_silu_f16[i16[i]];
  1782. }
  1783. }
  1784. #ifdef GGML_SILU_FP16
  1785. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1786. uint16_t t;
  1787. for (int i = 0; i < n; ++i) {
  1788. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1789. memcpy(&t, &fp16, sizeof(uint16_t));
  1790. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1791. }
  1792. }
  1793. #else
  1794. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1795. for (int i = 0; i < n; ++i) {
  1796. y[i] = ggml_silu_f32(x[i]);
  1797. }
  1798. }
  1799. #endif
  1800. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1801. #ifndef GGML_USE_ACCELERATE
  1802. ggml_float sum = 0.0;
  1803. for (int i = 0; i < n; ++i) {
  1804. sum += x[i];
  1805. }
  1806. *s = sum;
  1807. #else
  1808. vDSP_sve(x, 1, s, n);
  1809. #endif
  1810. }
  1811. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1812. #ifndef GGML_USE_ACCELERATE
  1813. ggml_float max = -INFINITY;
  1814. for (int i = 0; i < n; ++i) {
  1815. max = MAX(max, x[i]);
  1816. }
  1817. *s = max;
  1818. #else
  1819. vDSP_maxv(x, 1, s, n);
  1820. #endif
  1821. }
  1822. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1823. //
  1824. // logging
  1825. //
  1826. #if (GGML_DEBUG >= 1)
  1827. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1828. #else
  1829. #define GGML_PRINT_DEBUG(...)
  1830. #endif
  1831. #if (GGML_DEBUG >= 5)
  1832. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1833. #else
  1834. #define GGML_PRINT_DEBUG_5(...)
  1835. #endif
  1836. #if (GGML_DEBUG >= 10)
  1837. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1838. #else
  1839. #define GGML_PRINT_DEBUG_10(...)
  1840. #endif
  1841. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1842. //
  1843. // data types
  1844. //
  1845. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1846. QK,
  1847. QK,
  1848. 1,
  1849. 1,
  1850. 1,
  1851. 1,
  1852. 1,
  1853. };
  1854. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1855. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1856. sizeof(float ) + QK/2,
  1857. sizeof(float )*2 + QK/2,
  1858. sizeof(int8_t ),
  1859. sizeof(int16_t),
  1860. sizeof(int32_t),
  1861. sizeof(ggml_fp16_t),
  1862. sizeof(float ),
  1863. };
  1864. // don't forget to update the array above when adding new types
  1865. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1866. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1867. "NONE",
  1868. "DUP",
  1869. "ADD",
  1870. "SUB",
  1871. "MUL",
  1872. "DIV",
  1873. "SQR",
  1874. "SQRT",
  1875. "SUM",
  1876. "MEAN",
  1877. "REPEAT",
  1878. "ABS",
  1879. "SGN",
  1880. "NEG",
  1881. "STEP",
  1882. "RELU",
  1883. "GELU",
  1884. "SILU",
  1885. "NORM",
  1886. "RMS_NORM",
  1887. "MUL_MAT",
  1888. "SCALE",
  1889. "CPY",
  1890. "RESHAPE",
  1891. "VIEW",
  1892. "PERMUTE",
  1893. "TRANSPOSE",
  1894. "GET_ROWS",
  1895. "DIAG_MASK_INF",
  1896. "SOFT_MAX",
  1897. "ROPE",
  1898. "CONV_1D_1S",
  1899. "CONV_1D_2S",
  1900. "FLASH_ATTN",
  1901. "FLASH_FF",
  1902. };
  1903. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1904. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1905. "none",
  1906. "x",
  1907. "x+y",
  1908. "x-y",
  1909. "x*y",
  1910. "x/y",
  1911. "x^2",
  1912. "√x",
  1913. "Σx",
  1914. "Σx/n",
  1915. "repeat(x)",
  1916. "abs(x)",
  1917. "sgn(x)",
  1918. "-x",
  1919. "step(x)",
  1920. "relu(x)",
  1921. "gelu(x)",
  1922. "silu(x)",
  1923. "norm(x)",
  1924. "rms_norm(x)",
  1925. "X*Y",
  1926. "x*v",
  1927. "x-\\>y",
  1928. "reshape(x)",
  1929. "view(x)",
  1930. "permute(x)",
  1931. "transpose(x)",
  1932. "get_rows(x)",
  1933. "diag_mask_inf(x)",
  1934. "soft_max(x)",
  1935. "rope(x)",
  1936. "conv_1d_1s(x)",
  1937. "conv_1d_2s(x)",
  1938. "flash_attn(x)",
  1939. "flash_ff(x)",
  1940. };
  1941. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1942. //
  1943. // ggml object
  1944. //
  1945. struct ggml_object {
  1946. size_t offs;
  1947. size_t size;
  1948. struct ggml_object * next;
  1949. char padding[8];
  1950. };
  1951. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1952. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1953. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1954. //
  1955. // ggml context
  1956. //
  1957. struct ggml_context {
  1958. size_t mem_size;
  1959. void * mem_buffer;
  1960. bool mem_buffer_owned;
  1961. bool mem_buffer_mlocked;
  1962. int n_objects;
  1963. struct ggml_object * objects_begin;
  1964. struct ggml_object * objects_end;
  1965. struct ggml_scratch scratch;
  1966. struct ggml_scratch scratch_save;
  1967. };
  1968. struct ggml_context_container {
  1969. bool used;
  1970. struct ggml_context context;
  1971. };
  1972. //
  1973. // compute types
  1974. //
  1975. enum ggml_task_type {
  1976. GGML_TASK_INIT = 0,
  1977. GGML_TASK_COMPUTE,
  1978. GGML_TASK_FINALIZE,
  1979. };
  1980. struct ggml_compute_params {
  1981. enum ggml_task_type type;
  1982. int ith, nth;
  1983. // work buffer for all threads
  1984. size_t wsize;
  1985. void * wdata;
  1986. };
  1987. //
  1988. // ggml state
  1989. //
  1990. struct ggml_state {
  1991. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1992. };
  1993. // global state
  1994. static struct ggml_state g_state;
  1995. static atomic_int g_state_barrier = 0;
  1996. // barrier via spin lock
  1997. inline static void ggml_critical_section_start(void) {
  1998. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1999. while (processing > 0) {
  2000. // wait for other threads to finish
  2001. atomic_fetch_sub(&g_state_barrier, 1);
  2002. sched_yield(); // TODO: reconsider this
  2003. processing = atomic_fetch_add(&g_state_barrier, 1);
  2004. }
  2005. }
  2006. // TODO: make this somehow automatically executed
  2007. // some sort of "sentry" mechanism
  2008. inline static void ggml_critical_section_end(void) {
  2009. atomic_fetch_sub(&g_state_barrier, 1);
  2010. }
  2011. ////////////////////////////////////////////////////////////////////////////////
  2012. void ggml_print_object(const struct ggml_object * obj) {
  2013. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2014. obj->offs, obj->size, (const void *) obj->next);
  2015. }
  2016. void ggml_print_objects(const struct ggml_context * ctx) {
  2017. struct ggml_object * obj = ctx->objects_begin;
  2018. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2019. while (obj != NULL) {
  2020. ggml_print_object(obj);
  2021. obj = obj->next;
  2022. }
  2023. GGML_PRINT("%s: --- end ---\n", __func__);
  2024. }
  2025. int ggml_nelements(const struct ggml_tensor * tensor) {
  2026. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2027. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2028. }
  2029. int ggml_nrows(const struct ggml_tensor * tensor) {
  2030. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2031. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2032. }
  2033. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2034. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2035. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2036. }
  2037. int ggml_blck_size(enum ggml_type type) {
  2038. return GGML_BLCK_SIZE[type];
  2039. }
  2040. size_t ggml_type_size(enum ggml_type type) {
  2041. return GGML_TYPE_SIZE[type];
  2042. }
  2043. float ggml_type_sizef(enum ggml_type type) {
  2044. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2045. }
  2046. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2047. return GGML_TYPE_SIZE[tensor->type];
  2048. }
  2049. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2050. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2051. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2052. }
  2053. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2054. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2055. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2056. }
  2057. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2058. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2059. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2060. }
  2061. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2062. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2063. return
  2064. (t0->ne[0] == t1->ne[0]) &&
  2065. (t0->ne[2] == t1->ne[2]) &&
  2066. (t0->ne[3] == t1->ne[3]);
  2067. }
  2068. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2069. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2070. return
  2071. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2072. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2073. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2074. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2075. }
  2076. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2077. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2078. return
  2079. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2080. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2081. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2082. }
  2083. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2084. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2085. return
  2086. (t0->ne[0] == t1->ne[0] ) &&
  2087. (t0->ne[1] == t1->ne[1] ) &&
  2088. (t0->ne[2] == t1->ne[2] ) &&
  2089. (t0->ne[3] == t1->ne[3] );
  2090. }
  2091. // check if t1 can be represented as a repeatition of t0
  2092. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2093. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2094. return
  2095. (t1->ne[0]%t0->ne[0] == 0) &&
  2096. (t1->ne[1]%t0->ne[1] == 0) &&
  2097. (t1->ne[2]%t0->ne[2] == 0) &&
  2098. (t1->ne[3]%t0->ne[3] == 0);
  2099. }
  2100. static inline int ggml_up32(int n) {
  2101. return (n + 31) & ~31;
  2102. }
  2103. static inline int ggml_up64(int n) {
  2104. return (n + 63) & ~63;
  2105. }
  2106. static inline int ggml_up(int n, int m) {
  2107. // assert m is a power of 2
  2108. GGML_ASSERT((m & (m - 1)) == 0);
  2109. return (n + m - 1) & ~(m - 1);
  2110. }
  2111. // assert that pointer is aligned to GGML_MEM_ALIGN
  2112. #define ggml_assert_aligned(ptr) \
  2113. assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2114. ////////////////////////////////////////////////////////////////////////////////
  2115. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2116. // make this function thread safe
  2117. ggml_critical_section_start();
  2118. static bool is_first_call = true;
  2119. if (is_first_call) {
  2120. // initialize GELU, SILU and EXP F32 tables
  2121. {
  2122. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2123. ggml_fp16_t ii;
  2124. for (int i = 0; i < (1 << 16); ++i) {
  2125. uint16_t ui = i;
  2126. memcpy(&ii, &ui, sizeof(ii));
  2127. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2128. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2129. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2130. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2131. }
  2132. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2133. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2134. }
  2135. // initialize g_state
  2136. {
  2137. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2138. g_state = (struct ggml_state) {
  2139. /*.contexts =*/ { { 0 } },
  2140. };
  2141. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2142. g_state.contexts[i].used = false;
  2143. }
  2144. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2145. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2146. }
  2147. is_first_call = false;
  2148. }
  2149. // find non-used context in g_state
  2150. struct ggml_context * ctx = NULL;
  2151. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2152. if (!g_state.contexts[i].used) {
  2153. g_state.contexts[i].used = true;
  2154. ctx = &g_state.contexts[i].context;
  2155. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2156. break;
  2157. }
  2158. }
  2159. if (ctx == NULL) {
  2160. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2161. ggml_critical_section_end();
  2162. return NULL;
  2163. }
  2164. *ctx = (struct ggml_context) {
  2165. /*.mem_size =*/ params.mem_size,
  2166. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2167. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2168. /*.mem_buffer_mlocked =*/ false,
  2169. /*.n_objects =*/ 0,
  2170. /*.objects_begin =*/ NULL,
  2171. /*.objects_end =*/ NULL,
  2172. /*.scratch =*/ { 0, 0, NULL, },
  2173. /*.scratch_save =*/ { 0, 0, NULL, },
  2174. };
  2175. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2176. ggml_assert_aligned(ctx->mem_buffer);
  2177. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2178. ggml_critical_section_end();
  2179. return ctx;
  2180. }
  2181. void ggml_free(struct ggml_context * ctx) {
  2182. // make this function thread safe
  2183. ggml_critical_section_start();
  2184. bool found = false;
  2185. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2186. if (&g_state.contexts[i].context == ctx) {
  2187. g_state.contexts[i].used = false;
  2188. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2189. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2190. #if GGML_MLOCK_SUPPORT
  2191. if (ctx->mem_buffer_mlocked) {
  2192. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2193. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2194. }
  2195. }
  2196. #endif
  2197. if (ctx->mem_buffer_owned) {
  2198. free(ctx->mem_buffer);
  2199. }
  2200. found = true;
  2201. break;
  2202. }
  2203. }
  2204. if (!found) {
  2205. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2206. }
  2207. ggml_critical_section_end();
  2208. }
  2209. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2210. return ctx->objects_end->offs + ctx->objects_end->size;
  2211. }
  2212. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2213. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2214. ctx->scratch = scratch;
  2215. return result;
  2216. }
  2217. bool ggml_mlock_supported(void) {
  2218. return GGML_MLOCK_SUPPORT;
  2219. }
  2220. #if GGML_MLOCK_SUPPORT
  2221. #ifdef __APPLE__
  2222. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2223. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2224. #else
  2225. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2226. #endif
  2227. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2228. if (ctx->mem_buffer_mlocked) {
  2229. return true;
  2230. }
  2231. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2232. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2233. ctx->mem_size, strerror(errno));
  2234. GGML_ASSERT(ret >= 0);
  2235. return false;
  2236. }
  2237. ctx->mem_buffer_mlocked = true;
  2238. return true;
  2239. }
  2240. #else // GGML_MLOCK_SUPPORT
  2241. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2242. *err_p = strdup("can't mlock because it's not supported on this system");
  2243. return false;
  2244. }
  2245. #endif // GGML_MLOCK_SUPPORT
  2246. ////////////////////////////////////////////////////////////////////////////////
  2247. struct ggml_tensor * ggml_new_tensor_impl(
  2248. struct ggml_context * ctx,
  2249. enum ggml_type type,
  2250. int n_dims,
  2251. const int* ne,
  2252. void* data) {
  2253. // always insert objects at the end of the context's memory pool
  2254. struct ggml_object * obj_cur = ctx->objects_end;
  2255. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2256. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2257. const size_t cur_end = cur_offs + cur_size;
  2258. size_t size_needed = 0;
  2259. if (data == NULL) {
  2260. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2261. for (int i = 1; i < n_dims; i++) {
  2262. size_needed *= ne[i];
  2263. }
  2264. // align to GGML_MEM_ALIGN
  2265. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2266. }
  2267. char * const mem_buffer = ctx->mem_buffer;
  2268. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2269. if (ctx->scratch.data == NULL || data != NULL) {
  2270. size_needed += sizeof(struct ggml_tensor);
  2271. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2272. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2273. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2274. assert(false);
  2275. return NULL;
  2276. }
  2277. *obj_new = (struct ggml_object) {
  2278. .offs = cur_end + GGML_OBJECT_SIZE,
  2279. .size = size_needed,
  2280. .next = NULL,
  2281. };
  2282. } else {
  2283. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2284. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2285. assert(false);
  2286. return NULL;
  2287. }
  2288. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2289. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2290. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2291. assert(false);
  2292. return NULL;
  2293. }
  2294. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2295. *obj_new = (struct ggml_object) {
  2296. .offs = cur_end + GGML_OBJECT_SIZE,
  2297. .size = sizeof(struct ggml_tensor),
  2298. .next = NULL,
  2299. };
  2300. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2301. ctx->scratch.offs += size_needed;
  2302. }
  2303. if (obj_cur != NULL) {
  2304. obj_cur->next = obj_new;
  2305. } else {
  2306. // this is the first object in this context
  2307. ctx->objects_begin = obj_new;
  2308. }
  2309. ctx->objects_end = obj_new;
  2310. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2311. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2312. ggml_assert_aligned(result);
  2313. *result = (struct ggml_tensor) {
  2314. /*.type =*/ type,
  2315. /*.n_dims =*/ n_dims,
  2316. /*.ne =*/ { 1, 1, 1, 1 },
  2317. /*.nb =*/ { 0, 0, 0, 0 },
  2318. /*.op =*/ GGML_OP_NONE,
  2319. /*.is_param =*/ false,
  2320. /*.grad =*/ NULL,
  2321. /*.src0 =*/ NULL,
  2322. /*.src1 =*/ NULL,
  2323. /*.opt =*/ { NULL },
  2324. /*.n_tasks =*/ 0,
  2325. /*.perf_runs =*/ 0,
  2326. /*.perf_cycles =*/ 0,
  2327. /*.perf_time_us =*/ 0,
  2328. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2329. /*.pad =*/ { 0 },
  2330. };
  2331. ggml_assert_aligned(result->data);
  2332. for (int i = 0; i < n_dims; i++) {
  2333. result->ne[i] = ne[i];
  2334. }
  2335. result->nb[0] = GGML_TYPE_SIZE[type];
  2336. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2337. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2338. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2339. }
  2340. ctx->n_objects++;
  2341. return result;
  2342. }
  2343. struct ggml_tensor * ggml_new_tensor(
  2344. struct ggml_context * ctx,
  2345. enum ggml_type type,
  2346. int n_dims,
  2347. const int * ne) {
  2348. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2349. }
  2350. struct ggml_tensor * ggml_new_tensor_1d(
  2351. struct ggml_context * ctx,
  2352. enum ggml_type type,
  2353. int ne0) {
  2354. return ggml_new_tensor(ctx, type, 1, &ne0);
  2355. }
  2356. struct ggml_tensor * ggml_new_tensor_2d(
  2357. struct ggml_context * ctx,
  2358. enum ggml_type type,
  2359. int ne0,
  2360. int ne1) {
  2361. const int ne[2] = { ne0, ne1 };
  2362. return ggml_new_tensor(ctx, type, 2, ne);
  2363. }
  2364. struct ggml_tensor * ggml_new_tensor_3d(
  2365. struct ggml_context * ctx,
  2366. enum ggml_type type,
  2367. int ne0,
  2368. int ne1,
  2369. int ne2) {
  2370. const int ne[3] = { ne0, ne1, ne2 };
  2371. return ggml_new_tensor(ctx, type, 3, ne);
  2372. }
  2373. struct ggml_tensor * ggml_new_tensor_4d(
  2374. struct ggml_context * ctx,
  2375. enum ggml_type type,
  2376. int ne0,
  2377. int ne1,
  2378. int ne2,
  2379. int ne3) {
  2380. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2381. return ggml_new_tensor(ctx, type, 4, ne);
  2382. }
  2383. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2384. ctx->scratch_save = ctx->scratch;
  2385. ctx->scratch.data = NULL;
  2386. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2387. ctx->scratch = ctx->scratch_save;
  2388. ggml_set_i32(result, value);
  2389. return result;
  2390. }
  2391. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2392. ctx->scratch_save = ctx->scratch;
  2393. ctx->scratch.data = NULL;
  2394. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2395. ctx->scratch = ctx->scratch_save;
  2396. ggml_set_f32(result, value);
  2397. return result;
  2398. }
  2399. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2400. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2401. }
  2402. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2403. memset(tensor->data, 0, ggml_nbytes(tensor));
  2404. return tensor;
  2405. }
  2406. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2407. const int n = ggml_nrows(tensor);
  2408. const int nc = tensor->ne[0];
  2409. const size_t n1 = tensor->nb[1];
  2410. char * const data = tensor->data;
  2411. switch (tensor->type) {
  2412. case GGML_TYPE_Q4_0:
  2413. {
  2414. GGML_ASSERT(false);
  2415. } break;
  2416. case GGML_TYPE_Q4_1:
  2417. {
  2418. GGML_ASSERT(false);
  2419. } break;
  2420. case GGML_TYPE_I8:
  2421. {
  2422. assert(tensor->nb[0] == sizeof(int8_t));
  2423. for (int i = 0; i < n; i++) {
  2424. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2425. }
  2426. } break;
  2427. case GGML_TYPE_I16:
  2428. {
  2429. assert(tensor->nb[0] == sizeof(int16_t));
  2430. for (int i = 0; i < n; i++) {
  2431. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2432. }
  2433. } break;
  2434. case GGML_TYPE_I32:
  2435. {
  2436. assert(tensor->nb[0] == sizeof(int32_t));
  2437. for (int i = 0; i < n; i++) {
  2438. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2439. }
  2440. } break;
  2441. case GGML_TYPE_F16:
  2442. {
  2443. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2444. for (int i = 0; i < n; i++) {
  2445. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2446. }
  2447. } break;
  2448. case GGML_TYPE_F32:
  2449. {
  2450. assert(tensor->nb[0] == sizeof(float));
  2451. for (int i = 0; i < n; i++) {
  2452. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2453. }
  2454. } break;
  2455. case GGML_TYPE_COUNT:
  2456. {
  2457. GGML_ASSERT(false);
  2458. } break;
  2459. }
  2460. return tensor;
  2461. }
  2462. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2463. const int n = ggml_nrows(tensor);
  2464. const int nc = tensor->ne[0];
  2465. const size_t n1 = tensor->nb[1];
  2466. char * const data = tensor->data;
  2467. switch (tensor->type) {
  2468. case GGML_TYPE_Q4_0:
  2469. {
  2470. GGML_ASSERT(false);
  2471. } break;
  2472. case GGML_TYPE_Q4_1:
  2473. {
  2474. GGML_ASSERT(false);
  2475. } break;
  2476. case GGML_TYPE_I8:
  2477. {
  2478. assert(tensor->nb[0] == sizeof(int8_t));
  2479. for (int i = 0; i < n; i++) {
  2480. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2481. }
  2482. } break;
  2483. case GGML_TYPE_I16:
  2484. {
  2485. assert(tensor->nb[0] == sizeof(int16_t));
  2486. for (int i = 0; i < n; i++) {
  2487. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2488. }
  2489. } break;
  2490. case GGML_TYPE_I32:
  2491. {
  2492. assert(tensor->nb[0] == sizeof(int32_t));
  2493. for (int i = 0; i < n; i++) {
  2494. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2495. }
  2496. } break;
  2497. case GGML_TYPE_F16:
  2498. {
  2499. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2500. for (int i = 0; i < n; i++) {
  2501. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2502. }
  2503. } break;
  2504. case GGML_TYPE_F32:
  2505. {
  2506. assert(tensor->nb[0] == sizeof(float));
  2507. for (int i = 0; i < n; i++) {
  2508. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2509. }
  2510. } break;
  2511. case GGML_TYPE_COUNT:
  2512. {
  2513. GGML_ASSERT(false);
  2514. } break;
  2515. }
  2516. return tensor;
  2517. }
  2518. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_Q4_0:
  2521. {
  2522. GGML_ASSERT(false);
  2523. } break;
  2524. case GGML_TYPE_Q4_1:
  2525. {
  2526. GGML_ASSERT(false);
  2527. } break;
  2528. case GGML_TYPE_I8:
  2529. {
  2530. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2531. return ((int8_t *)(tensor->data))[i];
  2532. } break;
  2533. case GGML_TYPE_I16:
  2534. {
  2535. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2536. return ((int16_t *)(tensor->data))[i];
  2537. } break;
  2538. case GGML_TYPE_I32:
  2539. {
  2540. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2541. return ((int32_t *)(tensor->data))[i];
  2542. } break;
  2543. case GGML_TYPE_F16:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2546. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2547. } break;
  2548. case GGML_TYPE_F32:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2551. return ((float *)(tensor->data))[i];
  2552. } break;
  2553. case GGML_TYPE_COUNT:
  2554. {
  2555. GGML_ASSERT(false);
  2556. } break;
  2557. }
  2558. return 0.0f;
  2559. }
  2560. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2561. switch (tensor->type) {
  2562. case GGML_TYPE_Q4_0:
  2563. {
  2564. GGML_ASSERT(false);
  2565. } break;
  2566. case GGML_TYPE_Q4_1:
  2567. {
  2568. GGML_ASSERT(false);
  2569. } break;
  2570. case GGML_TYPE_I8:
  2571. {
  2572. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2573. ((int8_t *)(tensor->data))[i] = value;
  2574. } break;
  2575. case GGML_TYPE_I16:
  2576. {
  2577. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2578. ((int16_t *)(tensor->data))[i] = value;
  2579. } break;
  2580. case GGML_TYPE_I32:
  2581. {
  2582. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2583. ((int32_t *)(tensor->data))[i] = value;
  2584. } break;
  2585. case GGML_TYPE_F16:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2588. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2589. } break;
  2590. case GGML_TYPE_F32:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2593. ((float *)(tensor->data))[i] = value;
  2594. } break;
  2595. case GGML_TYPE_COUNT:
  2596. {
  2597. GGML_ASSERT(false);
  2598. } break;
  2599. }
  2600. }
  2601. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2602. switch (tensor->type) {
  2603. case GGML_TYPE_Q4_0:
  2604. {
  2605. GGML_ASSERT(false);
  2606. } break;
  2607. case GGML_TYPE_Q4_1:
  2608. {
  2609. GGML_ASSERT(false);
  2610. } break;
  2611. case GGML_TYPE_I8:
  2612. {
  2613. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2614. return ((int8_t *)(tensor->data))[i];
  2615. } break;
  2616. case GGML_TYPE_I16:
  2617. {
  2618. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2619. return ((int16_t *)(tensor->data))[i];
  2620. } break;
  2621. case GGML_TYPE_I32:
  2622. {
  2623. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2624. return ((int32_t *)(tensor->data))[i];
  2625. } break;
  2626. case GGML_TYPE_F16:
  2627. {
  2628. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2629. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2630. } break;
  2631. case GGML_TYPE_F32:
  2632. {
  2633. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2634. return ((float *)(tensor->data))[i];
  2635. } break;
  2636. case GGML_TYPE_COUNT:
  2637. {
  2638. GGML_ASSERT(false);
  2639. } break;
  2640. }
  2641. return 0.0f;
  2642. }
  2643. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2644. switch (tensor->type) {
  2645. case GGML_TYPE_Q4_0:
  2646. {
  2647. GGML_ASSERT(false);
  2648. } break;
  2649. case GGML_TYPE_Q4_1:
  2650. {
  2651. GGML_ASSERT(false);
  2652. } break;
  2653. case GGML_TYPE_I8:
  2654. {
  2655. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2656. ((int8_t *)(tensor->data))[i] = value;
  2657. } break;
  2658. case GGML_TYPE_I16:
  2659. {
  2660. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2661. ((int16_t *)(tensor->data))[i] = value;
  2662. } break;
  2663. case GGML_TYPE_I32:
  2664. {
  2665. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2666. ((int32_t *)(tensor->data))[i] = value;
  2667. } break;
  2668. case GGML_TYPE_F16:
  2669. {
  2670. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2671. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2672. } break;
  2673. case GGML_TYPE_F32:
  2674. {
  2675. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2676. ((float *)(tensor->data))[i] = value;
  2677. } break;
  2678. case GGML_TYPE_COUNT:
  2679. {
  2680. GGML_ASSERT(false);
  2681. } break;
  2682. }
  2683. }
  2684. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2685. return tensor->data;
  2686. }
  2687. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2688. assert(tensor->type == GGML_TYPE_F32);
  2689. return (float *)(tensor->data);
  2690. }
  2691. struct ggml_tensor * ggml_view_tensor(
  2692. struct ggml_context * ctx,
  2693. const struct ggml_tensor * src) {
  2694. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2695. }
  2696. ////////////////////////////////////////////////////////////////////////////////
  2697. // ggml_dup
  2698. struct ggml_tensor * ggml_dup_impl(
  2699. struct ggml_context * ctx,
  2700. struct ggml_tensor * a,
  2701. bool inplace) {
  2702. bool is_node = false;
  2703. if (!inplace && (a->grad)) {
  2704. is_node = true;
  2705. }
  2706. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2707. result->op = GGML_OP_DUP;
  2708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2709. result->src0 = a;
  2710. result->src1 = NULL;
  2711. return result;
  2712. }
  2713. struct ggml_tensor * ggml_dup(
  2714. struct ggml_context * ctx,
  2715. struct ggml_tensor * a) {
  2716. return ggml_dup_impl(ctx, a, false);
  2717. }
  2718. struct ggml_tensor * ggml_dup_inplace(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a) {
  2721. return ggml_dup_impl(ctx, a, true);
  2722. }
  2723. // ggml_add
  2724. struct ggml_tensor * ggml_add_impl(
  2725. struct ggml_context * ctx,
  2726. struct ggml_tensor * a,
  2727. struct ggml_tensor * b,
  2728. bool inplace) {
  2729. GGML_ASSERT(ggml_are_same_shape(a, b));
  2730. bool is_node = false;
  2731. if (!inplace && (a->grad || b->grad)) {
  2732. is_node = true;
  2733. }
  2734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2735. result->op = GGML_OP_ADD;
  2736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2737. result->src0 = a;
  2738. result->src1 = b;
  2739. return result;
  2740. }
  2741. struct ggml_tensor * ggml_add(
  2742. struct ggml_context * ctx,
  2743. struct ggml_tensor * a,
  2744. struct ggml_tensor * b) {
  2745. return ggml_add_impl(ctx, a, b, false);
  2746. }
  2747. struct ggml_tensor * ggml_add_inplace(
  2748. struct ggml_context * ctx,
  2749. struct ggml_tensor * a,
  2750. struct ggml_tensor * b) {
  2751. return ggml_add_impl(ctx, a, b, true);
  2752. }
  2753. // ggml_sub
  2754. struct ggml_tensor * ggml_sub_impl(
  2755. struct ggml_context * ctx,
  2756. struct ggml_tensor * a,
  2757. struct ggml_tensor * b,
  2758. bool inplace) {
  2759. GGML_ASSERT(ggml_are_same_shape(a, b));
  2760. bool is_node = false;
  2761. if (!inplace && (a->grad || b->grad)) {
  2762. is_node = true;
  2763. }
  2764. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2765. result->op = GGML_OP_SUB;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src0 = a;
  2768. result->src1 = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_sub(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b) {
  2775. return ggml_sub_impl(ctx, a, b, false);
  2776. }
  2777. struct ggml_tensor * ggml_sub_inplace(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b) {
  2781. return ggml_sub_impl(ctx, a, b, true);
  2782. }
  2783. // ggml_mul
  2784. struct ggml_tensor * ggml_mul_impl(
  2785. struct ggml_context * ctx,
  2786. struct ggml_tensor * a,
  2787. struct ggml_tensor * b,
  2788. bool inplace) {
  2789. GGML_ASSERT(ggml_are_same_shape(a, b));
  2790. bool is_node = false;
  2791. if (!inplace && (a->grad || b->grad)) {
  2792. is_node = true;
  2793. }
  2794. if (inplace) {
  2795. GGML_ASSERT(is_node == false);
  2796. }
  2797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2798. result->op = GGML_OP_MUL;
  2799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2800. result->src0 = a;
  2801. result->src1 = b;
  2802. return result;
  2803. }
  2804. struct ggml_tensor * ggml_mul(
  2805. struct ggml_context * ctx,
  2806. struct ggml_tensor * a,
  2807. struct ggml_tensor * b) {
  2808. return ggml_mul_impl(ctx, a, b, false);
  2809. }
  2810. struct ggml_tensor * ggml_mul_inplace(
  2811. struct ggml_context * ctx,
  2812. struct ggml_tensor * a,
  2813. struct ggml_tensor * b) {
  2814. return ggml_mul_impl(ctx, a, b, true);
  2815. }
  2816. // ggml_div
  2817. struct ggml_tensor * ggml_div_impl(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a,
  2820. struct ggml_tensor * b,
  2821. bool inplace) {
  2822. GGML_ASSERT(ggml_are_same_shape(a, b));
  2823. bool is_node = false;
  2824. if (!inplace && (a->grad || b->grad)) {
  2825. is_node = true;
  2826. }
  2827. if (inplace) {
  2828. GGML_ASSERT(is_node == false);
  2829. }
  2830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2831. result->op = GGML_OP_DIV;
  2832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2833. result->src0 = a;
  2834. result->src1 = b;
  2835. return result;
  2836. }
  2837. struct ggml_tensor * ggml_div(
  2838. struct ggml_context * ctx,
  2839. struct ggml_tensor * a,
  2840. struct ggml_tensor * b) {
  2841. return ggml_div_impl(ctx, a, b, false);
  2842. }
  2843. struct ggml_tensor * ggml_div_inplace(
  2844. struct ggml_context * ctx,
  2845. struct ggml_tensor * a,
  2846. struct ggml_tensor * b) {
  2847. return ggml_div_impl(ctx, a, b, true);
  2848. }
  2849. // ggml_sqr
  2850. struct ggml_tensor * ggml_sqr_impl(
  2851. struct ggml_context * ctx,
  2852. struct ggml_tensor * a,
  2853. bool inplace) {
  2854. bool is_node = false;
  2855. if (!inplace && (a->grad)) {
  2856. is_node = true;
  2857. }
  2858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2859. result->op = GGML_OP_SQR;
  2860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2861. result->src0 = a;
  2862. result->src1 = NULL;
  2863. return result;
  2864. }
  2865. struct ggml_tensor * ggml_sqr(
  2866. struct ggml_context * ctx,
  2867. struct ggml_tensor * a) {
  2868. return ggml_sqr_impl(ctx, a, false);
  2869. }
  2870. struct ggml_tensor * ggml_sqr_inplace(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * a) {
  2873. return ggml_sqr_impl(ctx, a, true);
  2874. }
  2875. // ggml_sqrt
  2876. struct ggml_tensor * ggml_sqrt_impl(
  2877. struct ggml_context * ctx,
  2878. struct ggml_tensor * a,
  2879. bool inplace) {
  2880. bool is_node = false;
  2881. if (!inplace && (a->grad)) {
  2882. is_node = true;
  2883. }
  2884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2885. result->op = GGML_OP_SQRT;
  2886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2887. result->src0 = a;
  2888. result->src1 = NULL;
  2889. return result;
  2890. }
  2891. struct ggml_tensor * ggml_sqrt(
  2892. struct ggml_context * ctx,
  2893. struct ggml_tensor * a) {
  2894. return ggml_sqrt_impl(ctx, a, false);
  2895. }
  2896. struct ggml_tensor * ggml_sqrt_inplace(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a) {
  2899. return ggml_sqrt_impl(ctx, a, true);
  2900. }
  2901. // ggml_sum
  2902. struct ggml_tensor * ggml_sum(
  2903. struct ggml_context * ctx,
  2904. struct ggml_tensor * a) {
  2905. bool is_node = false;
  2906. if (a->grad) {
  2907. is_node = true;
  2908. }
  2909. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2910. result->op = GGML_OP_SUM;
  2911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2912. result->src0 = a;
  2913. result->src1 = NULL;
  2914. return result;
  2915. }
  2916. // ggml_mean
  2917. struct ggml_tensor * ggml_mean(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a) {
  2920. bool is_node = false;
  2921. if (a->grad) {
  2922. GGML_ASSERT(false); // TODO: implement
  2923. is_node = true;
  2924. }
  2925. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2926. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2927. result->op = GGML_OP_MEAN;
  2928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2929. result->src0 = a;
  2930. result->src1 = NULL;
  2931. return result;
  2932. }
  2933. // ggml_repeat
  2934. struct ggml_tensor * ggml_repeat(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. struct ggml_tensor * b) {
  2938. GGML_ASSERT(ggml_can_repeat(a, b));
  2939. bool is_node = false;
  2940. if (a->grad) {
  2941. is_node = true;
  2942. }
  2943. if (ggml_are_same_shape(a, b) && !is_node) {
  2944. return a;
  2945. }
  2946. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2947. result->op = GGML_OP_REPEAT;
  2948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2949. result->src0 = a;
  2950. result->src1 = b;
  2951. return result;
  2952. }
  2953. // ggml_abs
  2954. struct ggml_tensor * ggml_abs_impl(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a,
  2957. bool inplace) {
  2958. bool is_node = false;
  2959. if (!inplace && (a->grad)) {
  2960. is_node = true;
  2961. }
  2962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2963. result->op = GGML_OP_ABS;
  2964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2965. result->src0 = a;
  2966. result->src1 = NULL;
  2967. return result;
  2968. }
  2969. struct ggml_tensor * ggml_abs(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a) {
  2972. return ggml_abs_impl(ctx, a, false);
  2973. }
  2974. struct ggml_tensor * ggml_abs_inplace(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a) {
  2977. return ggml_abs_impl(ctx, a, true);
  2978. }
  2979. // ggml_sgn
  2980. struct ggml_tensor * ggml_sgn_impl(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a,
  2983. bool inplace) {
  2984. bool is_node = false;
  2985. if (!inplace && (a->grad)) {
  2986. is_node = true;
  2987. }
  2988. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2989. result->op = GGML_OP_SGN;
  2990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2991. result->src0 = a;
  2992. result->src1 = NULL;
  2993. return result;
  2994. }
  2995. struct ggml_tensor * ggml_sgn(
  2996. struct ggml_context * ctx,
  2997. struct ggml_tensor * a) {
  2998. return ggml_sgn_impl(ctx, a, false);
  2999. }
  3000. struct ggml_tensor * ggml_sgn_inplace(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a) {
  3003. return ggml_sgn_impl(ctx, a, true);
  3004. }
  3005. // ggml_neg
  3006. struct ggml_tensor * ggml_neg_impl(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * a,
  3009. bool inplace) {
  3010. bool is_node = false;
  3011. if (!inplace && (a->grad)) {
  3012. is_node = true;
  3013. }
  3014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3015. result->op = GGML_OP_NEG;
  3016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3017. result->src0 = a;
  3018. result->src1 = NULL;
  3019. return result;
  3020. }
  3021. struct ggml_tensor * ggml_neg(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a) {
  3024. return ggml_neg_impl(ctx, a, false);
  3025. }
  3026. struct ggml_tensor * ggml_neg_inplace(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a) {
  3029. return ggml_neg_impl(ctx, a, true);
  3030. }
  3031. // ggml_step
  3032. struct ggml_tensor * ggml_step_impl(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a,
  3035. bool inplace) {
  3036. bool is_node = false;
  3037. if (!inplace && (a->grad)) {
  3038. is_node = true;
  3039. }
  3040. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3041. result->op = GGML_OP_STEP;
  3042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3043. result->src0 = a;
  3044. result->src1 = NULL;
  3045. return result;
  3046. }
  3047. struct ggml_tensor * ggml_step(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a) {
  3050. return ggml_step_impl(ctx, a, false);
  3051. }
  3052. struct ggml_tensor * ggml_step_inplace(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a) {
  3055. return ggml_step_impl(ctx, a, true);
  3056. }
  3057. // ggml_relu
  3058. struct ggml_tensor * ggml_relu_impl(
  3059. struct ggml_context * ctx,
  3060. struct ggml_tensor * a,
  3061. bool inplace) {
  3062. bool is_node = false;
  3063. if (!inplace && (a->grad)) {
  3064. is_node = true;
  3065. }
  3066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3067. result->op = GGML_OP_RELU;
  3068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3069. result->src0 = a;
  3070. result->src1 = NULL;
  3071. return result;
  3072. }
  3073. struct ggml_tensor * ggml_relu(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a) {
  3076. return ggml_relu_impl(ctx, a, false);
  3077. }
  3078. struct ggml_tensor * ggml_relu_inplace(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a) {
  3081. return ggml_relu_impl(ctx, a, true);
  3082. }
  3083. // ggml_gelu
  3084. struct ggml_tensor * ggml_gelu_impl(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a,
  3087. bool inplace) {
  3088. bool is_node = false;
  3089. if (!inplace && (a->grad)) {
  3090. is_node = true;
  3091. }
  3092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3093. result->op = GGML_OP_GELU;
  3094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3095. result->src0 = a;
  3096. result->src1 = NULL;
  3097. return result;
  3098. }
  3099. struct ggml_tensor * ggml_gelu(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a) {
  3102. return ggml_gelu_impl(ctx, a, false);
  3103. }
  3104. struct ggml_tensor * ggml_gelu_inplace(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a) {
  3107. return ggml_gelu_impl(ctx, a, true);
  3108. }
  3109. // ggml_silu
  3110. struct ggml_tensor * ggml_silu_impl(
  3111. struct ggml_context * ctx,
  3112. struct ggml_tensor * a,
  3113. bool inplace) {
  3114. bool is_node = false;
  3115. if (!inplace && (a->grad)) {
  3116. is_node = true;
  3117. }
  3118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3119. result->op = GGML_OP_SILU;
  3120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3121. result->src0 = a;
  3122. result->src1 = NULL;
  3123. return result;
  3124. }
  3125. struct ggml_tensor * ggml_silu(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a) {
  3128. return ggml_silu_impl(ctx, a, false);
  3129. }
  3130. struct ggml_tensor * ggml_silu_inplace(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a) {
  3133. return ggml_silu_impl(ctx, a, true);
  3134. }
  3135. // ggml_norm
  3136. struct ggml_tensor * ggml_norm_impl(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a,
  3139. bool inplace) {
  3140. bool is_node = false;
  3141. if (!inplace && (a->grad)) {
  3142. GGML_ASSERT(false); // TODO: implement backward
  3143. is_node = true;
  3144. }
  3145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3146. result->op = GGML_OP_NORM;
  3147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3148. result->src0 = a;
  3149. result->src1 = NULL; // TODO: maybe store epsilon here?
  3150. return result;
  3151. }
  3152. struct ggml_tensor * ggml_norm(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a) {
  3155. return ggml_norm_impl(ctx, a, false);
  3156. }
  3157. struct ggml_tensor * ggml_norm_inplace(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a) {
  3160. return ggml_norm_impl(ctx, a, true);
  3161. }
  3162. struct ggml_tensor * ggml_rms_norm_impl(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. bool inplace) {
  3166. bool is_node = false;
  3167. if (!inplace && (a->grad)) {
  3168. GGML_ASSERT(false); // TODO: implement backward
  3169. is_node = true;
  3170. }
  3171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3172. result->op = GGML_OP_RMS_NORM;
  3173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3174. result->src0 = a;
  3175. result->src1 = NULL; // TODO: maybe store epsilon here?
  3176. return result;
  3177. }
  3178. struct ggml_tensor * ggml_rms_norm(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_rms_norm_impl(ctx, a, false);
  3182. }
  3183. struct ggml_tensor * ggml_rms_norm_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_rms_norm_impl(ctx, a, true);
  3187. }
  3188. // ggml_mul_mat
  3189. struct ggml_tensor * ggml_mul_mat(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a,
  3192. struct ggml_tensor * b) {
  3193. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3194. bool is_node = false;
  3195. if (a->grad || b->grad) {
  3196. is_node = true;
  3197. }
  3198. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3199. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3200. result->op = GGML_OP_MUL_MAT;
  3201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3202. result->src0 = a;
  3203. result->src1 = b;
  3204. return result;
  3205. }
  3206. // ggml_scale
  3207. struct ggml_tensor * ggml_scale_impl(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. struct ggml_tensor * b,
  3211. bool inplace) {
  3212. GGML_ASSERT(ggml_is_scalar(b));
  3213. GGML_ASSERT(ggml_is_padded_1d(a));
  3214. bool is_node = false;
  3215. if (!inplace && (a->grad || b->grad)) {
  3216. GGML_ASSERT(false); // TODO: implement backward
  3217. is_node = true;
  3218. }
  3219. // TODO: when implement backward, fix this:
  3220. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3221. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3222. result->op = GGML_OP_SCALE;
  3223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3224. result->src0 = a;
  3225. result->src1 = b;
  3226. return result;
  3227. }
  3228. struct ggml_tensor * ggml_scale(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a,
  3231. struct ggml_tensor * b) {
  3232. return ggml_scale_impl(ctx, a, b, false);
  3233. }
  3234. struct ggml_tensor * ggml_scale_inplace(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a,
  3237. struct ggml_tensor * b) {
  3238. return ggml_scale_impl(ctx, a, b, true);
  3239. }
  3240. // ggml_cpy
  3241. struct ggml_tensor * ggml_cpy_impl(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a,
  3244. struct ggml_tensor * b,
  3245. bool inplace) {
  3246. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3247. bool is_node = false;
  3248. if (!inplace && (a->grad || b->grad)) {
  3249. GGML_ASSERT(false); // TODO: implement backward
  3250. is_node = true;
  3251. }
  3252. // make a view of the destination
  3253. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3254. result->op = GGML_OP_CPY;
  3255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3256. result->src0 = a;
  3257. result->src1 = b;
  3258. return result;
  3259. }
  3260. struct ggml_tensor * ggml_cpy(
  3261. struct ggml_context * ctx,
  3262. struct ggml_tensor * a,
  3263. struct ggml_tensor * b) {
  3264. return ggml_cpy_impl(ctx, a, b, false);
  3265. }
  3266. struct ggml_tensor * ggml_cpy_inplace(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b) {
  3270. return ggml_cpy_impl(ctx, a, b, true);
  3271. }
  3272. // ggml_reshape
  3273. struct ggml_tensor * ggml_reshape(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a,
  3276. struct ggml_tensor * b) {
  3277. GGML_ASSERT(ggml_is_contiguous(a));
  3278. GGML_ASSERT(ggml_is_contiguous(b));
  3279. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3280. bool is_node = false;
  3281. if (a->grad || b->grad) {
  3282. GGML_ASSERT(false); // TODO: implement backward
  3283. is_node = true;
  3284. }
  3285. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3286. result->op = GGML_OP_RESHAPE;
  3287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3288. result->src0 = a;
  3289. result->src1 = NULL;
  3290. return result;
  3291. }
  3292. struct ggml_tensor * ggml_reshape_2d(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. int ne0,
  3296. int ne1) {
  3297. GGML_ASSERT(ggml_is_contiguous(a));
  3298. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3299. bool is_node = false;
  3300. if (a->grad) {
  3301. GGML_ASSERT(false); // TODO: implement backward
  3302. is_node = true;
  3303. }
  3304. const int ne[2] = { ne0, ne1 };
  3305. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3306. result->op = GGML_OP_RESHAPE;
  3307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3308. result->src0 = a;
  3309. result->src1 = NULL;
  3310. return result;
  3311. }
  3312. struct ggml_tensor * ggml_reshape_3d(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a,
  3315. int ne0,
  3316. int ne1,
  3317. int ne2) {
  3318. GGML_ASSERT(ggml_is_contiguous(a));
  3319. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3320. bool is_node = false;
  3321. if (a->grad) {
  3322. GGML_ASSERT(false); // TODO: implement backward
  3323. is_node = true;
  3324. }
  3325. const int ne[3] = { ne0, ne1, ne2 };
  3326. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3327. result->op = GGML_OP_RESHAPE;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src0 = a;
  3330. result->src1 = NULL;
  3331. return result;
  3332. }
  3333. // ggml_view_1d
  3334. struct ggml_tensor * ggml_view_1d(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a,
  3337. int ne0,
  3338. size_t offset) {
  3339. if (a->grad) {
  3340. GGML_ASSERT(false); // gradient propagation is not supported
  3341. }
  3342. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3343. result->op = GGML_OP_VIEW;
  3344. result->grad = NULL;
  3345. result->src0 = a;
  3346. result->src1 = NULL; // TODO: maybe store the offset here?
  3347. return result;
  3348. }
  3349. // ggml_view_2d
  3350. struct ggml_tensor * ggml_view_2d(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. int ne0,
  3354. int ne1,
  3355. size_t nb1,
  3356. size_t offset) {
  3357. if (a->grad) {
  3358. GGML_ASSERT(false); // gradient propagation is not supported
  3359. }
  3360. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3361. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3362. result->nb[1] = nb1;
  3363. result->nb[2] = result->nb[1]*ne1;
  3364. result->nb[3] = result->nb[2];
  3365. result->op = GGML_OP_VIEW;
  3366. result->grad = NULL;
  3367. result->src0 = a;
  3368. result->src1 = NULL; // TODO: maybe store the offset here?
  3369. return result;
  3370. }
  3371. // ggml_permute
  3372. struct ggml_tensor * ggml_permute(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a,
  3375. int axis0,
  3376. int axis1,
  3377. int axis2,
  3378. int axis3) {
  3379. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3380. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3381. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3382. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3383. GGML_ASSERT(axis0 != axis1);
  3384. GGML_ASSERT(axis0 != axis2);
  3385. GGML_ASSERT(axis0 != axis3);
  3386. GGML_ASSERT(axis1 != axis2);
  3387. GGML_ASSERT(axis1 != axis3);
  3388. GGML_ASSERT(axis2 != axis3);
  3389. bool is_node = false;
  3390. if (a->grad) {
  3391. GGML_ASSERT(false); // TODO: implement backward
  3392. is_node = true;
  3393. }
  3394. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3395. int ne[GGML_MAX_DIMS];
  3396. int nb[GGML_MAX_DIMS];
  3397. ne[axis0] = a->ne[0];
  3398. ne[axis1] = a->ne[1];
  3399. ne[axis2] = a->ne[2];
  3400. ne[axis3] = a->ne[3];
  3401. nb[axis0] = a->nb[0];
  3402. nb[axis1] = a->nb[1];
  3403. nb[axis2] = a->nb[2];
  3404. nb[axis3] = a->nb[3];
  3405. result->ne[0] = ne[0];
  3406. result->ne[1] = ne[1];
  3407. result->ne[2] = ne[2];
  3408. result->ne[3] = ne[3];
  3409. result->nb[0] = nb[0];
  3410. result->nb[1] = nb[1];
  3411. result->nb[2] = nb[2];
  3412. result->nb[3] = nb[3];
  3413. result->op = GGML_OP_PERMUTE;
  3414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3415. result->src0 = a;
  3416. result->src1 = NULL; // TODO: maybe store the permutation here?
  3417. return result;
  3418. }
  3419. // ggml_transpose
  3420. struct ggml_tensor * ggml_transpose(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a) {
  3423. bool is_node = false;
  3424. if (a->grad) {
  3425. GGML_ASSERT(false); // TODO: implement backward
  3426. is_node = true;
  3427. }
  3428. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3429. result->ne[0] = a->ne[1];
  3430. result->ne[1] = a->ne[0];
  3431. result->nb[0] = a->nb[1];
  3432. result->nb[1] = a->nb[0];
  3433. result->op = GGML_OP_TRANSPOSE;
  3434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3435. result->src0 = a;
  3436. result->src1 = NULL;
  3437. return result;
  3438. }
  3439. // ggml_get_rows
  3440. struct ggml_tensor * ggml_get_rows(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b) {
  3444. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3445. bool is_node = false;
  3446. if (a->grad || b->grad) {
  3447. GGML_ASSERT(false); // TODO: implement backward
  3448. is_node = true;
  3449. }
  3450. // TODO: implement non F32 return
  3451. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3452. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3453. result->op = GGML_OP_GET_ROWS;
  3454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3455. result->src0 = a;
  3456. result->src1 = b;
  3457. return result;
  3458. }
  3459. // ggml_diag_mask_inf
  3460. struct ggml_tensor * ggml_diag_mask_inf(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. int n_past) {
  3464. bool is_node = false;
  3465. if (a->grad) {
  3466. GGML_ASSERT(false); // TODO: implement backward
  3467. is_node = true;
  3468. }
  3469. // TODO: when implement backward, fix this:
  3470. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3471. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3472. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3473. result->op = GGML_OP_DIAG_MASK_INF;
  3474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3475. result->src0 = a;
  3476. result->src1 = b;
  3477. return result;
  3478. }
  3479. // ggml_soft_max
  3480. struct ggml_tensor * ggml_soft_max(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a) {
  3483. bool is_node = false;
  3484. if (a->grad) {
  3485. GGML_ASSERT(false); // TODO: implement backward
  3486. is_node = true;
  3487. }
  3488. // TODO: when implement backward, fix this:
  3489. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3490. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3491. result->op = GGML_OP_SOFT_MAX;
  3492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3493. result->src0 = a;
  3494. result->src1 = NULL;
  3495. return result;
  3496. }
  3497. // ggml_rope
  3498. struct ggml_tensor * ggml_rope(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. int n_past,
  3502. int n_dims,
  3503. int mode) {
  3504. GGML_ASSERT(n_past >= 0);
  3505. bool is_node = false;
  3506. if (a->grad) {
  3507. GGML_ASSERT(false); // TODO: implement backward
  3508. is_node = true;
  3509. }
  3510. // TODO: when implement backward, fix this:
  3511. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3512. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3513. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3514. ((int32_t *) b->data)[0] = n_past;
  3515. ((int32_t *) b->data)[1] = n_dims;
  3516. ((int32_t *) b->data)[2] = mode;
  3517. result->op = GGML_OP_ROPE;
  3518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3519. result->src0 = a;
  3520. result->src1 = b;
  3521. return result;
  3522. }
  3523. // ggml_conv_1d_1s
  3524. struct ggml_tensor * ggml_conv_1d_1s(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. struct ggml_tensor * b) {
  3528. GGML_ASSERT(ggml_is_matrix(b));
  3529. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3530. GGML_ASSERT(a->ne[3] == 1);
  3531. bool is_node = false;
  3532. if (a->grad || b->grad) {
  3533. GGML_ASSERT(false); // TODO: implement backward
  3534. is_node = true;
  3535. }
  3536. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3537. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3538. result->op = GGML_OP_CONV_1D_1S;
  3539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3540. result->src0 = a;
  3541. result->src1 = b;
  3542. return result;
  3543. }
  3544. // ggml_conv_1d_2s
  3545. struct ggml_tensor * ggml_conv_1d_2s(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a,
  3548. struct ggml_tensor * b) {
  3549. GGML_ASSERT(ggml_is_matrix(b));
  3550. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3551. GGML_ASSERT(a->ne[3] == 1);
  3552. bool is_node = false;
  3553. if (a->grad || b->grad) {
  3554. GGML_ASSERT(false); // TODO: implement backward
  3555. is_node = true;
  3556. }
  3557. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3558. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3559. result->op = GGML_OP_CONV_1D_2S;
  3560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3561. result->src0 = a;
  3562. result->src1 = b;
  3563. return result;
  3564. }
  3565. // ggml_flash_attn
  3566. struct ggml_tensor * ggml_flash_attn(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * q,
  3569. struct ggml_tensor * k,
  3570. struct ggml_tensor * v,
  3571. bool masked) {
  3572. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3573. // TODO: check if vT can be multiplied by (k*qT)
  3574. bool is_node = false;
  3575. if (q->grad || k->grad || v->grad) {
  3576. GGML_ASSERT(false); // TODO: implement backward
  3577. is_node = true;
  3578. }
  3579. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3580. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3581. result->op = GGML_OP_FLASH_ATTN;
  3582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3583. result->src0 = q;
  3584. result->src1 = k;
  3585. result->opt[0] = v;
  3586. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3587. return result;
  3588. }
  3589. // ggml_flash_ff
  3590. struct ggml_tensor * ggml_flash_ff(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. struct ggml_tensor * b0,
  3594. struct ggml_tensor * b1,
  3595. struct ggml_tensor * c0,
  3596. struct ggml_tensor * c1) {
  3597. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3598. // TODO: more checks
  3599. bool is_node = false;
  3600. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3601. GGML_ASSERT(false); // TODO: implement backward
  3602. is_node = true;
  3603. }
  3604. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3605. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3606. result->op = GGML_OP_FLASH_FF;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src0 = a;
  3609. result->src1 = b0;
  3610. result->opt[0] = b1;
  3611. result->opt[1] = c0;
  3612. result->opt[2] = c1;
  3613. return result;
  3614. }
  3615. ////////////////////////////////////////////////////////////////////////////////
  3616. void ggml_set_param(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * tensor) {
  3619. tensor->is_param = true;
  3620. GGML_ASSERT(tensor->grad == NULL);
  3621. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3622. }
  3623. // ggml_compute_forward_dup
  3624. static void ggml_compute_forward_dup_f16(
  3625. const struct ggml_compute_params * params,
  3626. const struct ggml_tensor * src0,
  3627. struct ggml_tensor * dst) {
  3628. GGML_ASSERT(params->ith == 0);
  3629. GGML_ASSERT(ggml_is_contiguous(dst));
  3630. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3632. return;
  3633. }
  3634. const int ne00 = src0->ne[0];
  3635. const int ne01 = src0->ne[1];
  3636. const int ne02 = src0->ne[2];
  3637. const int ne03 = src0->ne[3];
  3638. const size_t nb00 = src0->nb[0];
  3639. const size_t nb01 = src0->nb[1];
  3640. const size_t nb02 = src0->nb[2];
  3641. const size_t nb03 = src0->nb[3];
  3642. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3643. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3644. return;
  3645. }
  3646. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3647. if (dst->type == GGML_TYPE_F16) {
  3648. int id = 0;
  3649. const size_t rs = ne00*nb00;
  3650. for (int i03 = 0; i03 < ne03; i03++) {
  3651. for (int i02 = 0; i02 < ne02; i02++) {
  3652. for (int i01 = 0; i01 < ne01; i01++) {
  3653. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3654. char * dst_ptr = (char *) dst->data + id*rs;
  3655. memcpy(dst_ptr, src0_ptr, rs);
  3656. id++;
  3657. }
  3658. }
  3659. }
  3660. } else if (dst->type == GGML_TYPE_F32) {
  3661. int id = 0;
  3662. float * dst_ptr = (float *) dst->data;
  3663. for (int i03 = 0; i03 < ne03; i03++) {
  3664. for (int i02 = 0; i02 < ne02; i02++) {
  3665. for (int i01 = 0; i01 < ne01; i01++) {
  3666. for (int i00 = 0; i00 < ne00; i00++) {
  3667. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3668. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3669. id++;
  3670. }
  3671. }
  3672. }
  3673. }
  3674. } else {
  3675. GGML_ASSERT(false); // TODO: implement
  3676. }
  3677. } else {
  3678. //printf("%s: this is not optimal - fix me\n", __func__);
  3679. if (dst->type == GGML_TYPE_F32) {
  3680. int id = 0;
  3681. float * dst_ptr = (float *) dst->data;
  3682. for (int i03 = 0; i03 < ne03; i03++) {
  3683. for (int i02 = 0; i02 < ne02; i02++) {
  3684. for (int i01 = 0; i01 < ne01; i01++) {
  3685. for (int i00 = 0; i00 < ne00; i00++) {
  3686. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3687. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3688. id++;
  3689. }
  3690. }
  3691. }
  3692. }
  3693. } else if (dst->type == GGML_TYPE_F16) {
  3694. int id = 0;
  3695. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3696. for (int i03 = 0; i03 < ne03; i03++) {
  3697. for (int i02 = 0; i02 < ne02; i02++) {
  3698. for (int i01 = 0; i01 < ne01; i01++) {
  3699. for (int i00 = 0; i00 < ne00; i00++) {
  3700. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3701. dst_ptr[id] = *src0_ptr;
  3702. id++;
  3703. }
  3704. }
  3705. }
  3706. }
  3707. } else {
  3708. GGML_ASSERT(false); // TODO: implement
  3709. }
  3710. }
  3711. }
  3712. static void ggml_compute_forward_dup_f32(
  3713. const struct ggml_compute_params * params,
  3714. const struct ggml_tensor * src0,
  3715. struct ggml_tensor * dst) {
  3716. GGML_ASSERT(params->ith == 0);
  3717. GGML_ASSERT(ggml_is_contiguous(dst));
  3718. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3719. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3720. return;
  3721. }
  3722. const int ne00 = src0->ne[0];
  3723. const int ne01 = src0->ne[1];
  3724. const int ne02 = src0->ne[2];
  3725. const int ne03 = src0->ne[3];
  3726. const size_t nb00 = src0->nb[0];
  3727. const size_t nb01 = src0->nb[1];
  3728. const size_t nb02 = src0->nb[2];
  3729. const size_t nb03 = src0->nb[3];
  3730. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3731. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3732. return;
  3733. }
  3734. if (src0->nb[0] == sizeof(float)) {
  3735. if (dst->type == GGML_TYPE_F32) {
  3736. int id = 0;
  3737. const size_t rs = ne00*nb00;
  3738. for (int i03 = 0; i03 < ne03; i03++) {
  3739. for (int i02 = 0; i02 < ne02; i02++) {
  3740. for (int i01 = 0; i01 < ne01; i01++) {
  3741. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3742. char * dst_ptr = (char *) dst->data + id*rs;
  3743. memcpy(dst_ptr, src0_ptr, rs);
  3744. id++;
  3745. }
  3746. }
  3747. }
  3748. } else if (dst->type == GGML_TYPE_F16) {
  3749. int id = 0;
  3750. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3751. for (int i03 = 0; i03 < ne03; i03++) {
  3752. for (int i02 = 0; i02 < ne02; i02++) {
  3753. for (int i01 = 0; i01 < ne01; i01++) {
  3754. for (int i00 = 0; i00 < ne00; i00++) {
  3755. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3756. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3757. id++;
  3758. }
  3759. }
  3760. }
  3761. }
  3762. } else {
  3763. GGML_ASSERT(false); // TODO: implement
  3764. }
  3765. } else {
  3766. //printf("%s: this is not optimal - fix me\n", __func__);
  3767. if (dst->type == GGML_TYPE_F32) {
  3768. int id = 0;
  3769. float * dst_ptr = (float *) dst->data;
  3770. for (int i03 = 0; i03 < ne03; i03++) {
  3771. for (int i02 = 0; i02 < ne02; i02++) {
  3772. for (int i01 = 0; i01 < ne01; i01++) {
  3773. for (int i00 = 0; i00 < ne00; i00++) {
  3774. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3775. dst_ptr[id] = *src0_ptr;
  3776. id++;
  3777. }
  3778. }
  3779. }
  3780. }
  3781. } else if (dst->type == GGML_TYPE_F16) {
  3782. int id = 0;
  3783. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3784. for (int i03 = 0; i03 < ne03; i03++) {
  3785. for (int i02 = 0; i02 < ne02; i02++) {
  3786. for (int i01 = 0; i01 < ne01; i01++) {
  3787. for (int i00 = 0; i00 < ne00; i00++) {
  3788. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3789. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3790. id++;
  3791. }
  3792. }
  3793. }
  3794. }
  3795. } else {
  3796. GGML_ASSERT(false); // TODO: implement
  3797. }
  3798. }
  3799. }
  3800. static void ggml_compute_forward_dup(
  3801. const struct ggml_compute_params * params,
  3802. const struct ggml_tensor * src0,
  3803. struct ggml_tensor * dst) {
  3804. switch (src0->type) {
  3805. case GGML_TYPE_F16:
  3806. {
  3807. ggml_compute_forward_dup_f16(params, src0, dst);
  3808. } break;
  3809. case GGML_TYPE_F32:
  3810. {
  3811. ggml_compute_forward_dup_f32(params, src0, dst);
  3812. } break;
  3813. case GGML_TYPE_Q4_0:
  3814. case GGML_TYPE_Q4_1:
  3815. case GGML_TYPE_I8:
  3816. case GGML_TYPE_I16:
  3817. case GGML_TYPE_I32:
  3818. case GGML_TYPE_COUNT:
  3819. {
  3820. GGML_ASSERT(false);
  3821. } break;
  3822. }
  3823. }
  3824. // ggml_compute_forward_add
  3825. static void ggml_compute_forward_add_f32(
  3826. const struct ggml_compute_params * params,
  3827. const struct ggml_tensor * src0,
  3828. const struct ggml_tensor * src1,
  3829. struct ggml_tensor * dst) {
  3830. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3832. return;
  3833. }
  3834. const int ith = params->ith;
  3835. const int nth = params->nth;
  3836. const int n = ggml_nrows(src0);
  3837. const int nc = src0->ne[0];
  3838. const size_t nb00 = src0->nb[0];
  3839. const size_t nb01 = src0->nb[1];
  3840. const size_t nb10 = src1->nb[0];
  3841. const size_t nb11 = src1->nb[1];
  3842. const size_t nb0 = dst->nb[0];
  3843. const size_t nb1 = dst->nb[1];
  3844. GGML_ASSERT( nb0 == sizeof(float));
  3845. GGML_ASSERT(nb00 == sizeof(float));
  3846. if (nb10 == sizeof(float)) {
  3847. const int j0 = (n/nth)*ith;
  3848. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3849. for (int j = j0; j < j1; j++) {
  3850. ggml_vec_add_f32(nc,
  3851. (float *) ((char *) dst->data + j*nb1),
  3852. (float *) ((char *) src0->data + j*nb01),
  3853. (float *) ((char *) src1->data + j*nb11));
  3854. }
  3855. } else {
  3856. // src1 is not contiguous
  3857. for (int j = ith; j < n; j += nth) {
  3858. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3859. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3860. for (int i = 0; i < nc; i++) {
  3861. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3862. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3863. }
  3864. }
  3865. }
  3866. }
  3867. static void ggml_compute_forward_add(
  3868. const struct ggml_compute_params * params,
  3869. const struct ggml_tensor * src0,
  3870. const struct ggml_tensor * src1,
  3871. struct ggml_tensor * dst) {
  3872. switch (src0->type) {
  3873. case GGML_TYPE_F32:
  3874. {
  3875. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3876. } break;
  3877. case GGML_TYPE_Q4_0:
  3878. case GGML_TYPE_Q4_1:
  3879. case GGML_TYPE_I8:
  3880. case GGML_TYPE_I16:
  3881. case GGML_TYPE_I32:
  3882. case GGML_TYPE_F16:
  3883. case GGML_TYPE_COUNT:
  3884. {
  3885. GGML_ASSERT(false);
  3886. } break;
  3887. }
  3888. }
  3889. // ggml_compute_forward_sub
  3890. static void ggml_compute_forward_sub_f32(
  3891. const struct ggml_compute_params * params,
  3892. const struct ggml_tensor * src0,
  3893. const struct ggml_tensor * src1,
  3894. struct ggml_tensor * dst) {
  3895. assert(params->ith == 0);
  3896. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3898. return;
  3899. }
  3900. const int n = ggml_nrows(src0);
  3901. const int nc = src0->ne[0];
  3902. assert( dst->nb[0] == sizeof(float));
  3903. assert(src0->nb[0] == sizeof(float));
  3904. assert(src1->nb[0] == sizeof(float));
  3905. for (int i = 0; i < n; i++) {
  3906. ggml_vec_sub_f32(nc,
  3907. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3908. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3909. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3910. }
  3911. }
  3912. static void ggml_compute_forward_sub(
  3913. const struct ggml_compute_params * params,
  3914. const struct ggml_tensor * src0,
  3915. const struct ggml_tensor * src1,
  3916. struct ggml_tensor * dst) {
  3917. switch (src0->type) {
  3918. case GGML_TYPE_F32:
  3919. {
  3920. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3921. } break;
  3922. case GGML_TYPE_Q4_0:
  3923. case GGML_TYPE_Q4_1:
  3924. case GGML_TYPE_I8:
  3925. case GGML_TYPE_I16:
  3926. case GGML_TYPE_I32:
  3927. case GGML_TYPE_F16:
  3928. case GGML_TYPE_COUNT:
  3929. {
  3930. GGML_ASSERT(false);
  3931. } break;
  3932. }
  3933. }
  3934. // ggml_compute_forward_mul
  3935. static void ggml_compute_forward_mul_f32(
  3936. const struct ggml_compute_params * params,
  3937. const struct ggml_tensor * src0,
  3938. const struct ggml_tensor * src1,
  3939. struct ggml_tensor * dst) {
  3940. assert(params->ith == 0);
  3941. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3942. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3943. return;
  3944. }
  3945. const int n = ggml_nrows(src0);
  3946. const int nc = src0->ne[0];
  3947. assert( dst->nb[0] == sizeof(float));
  3948. assert(src0->nb[0] == sizeof(float));
  3949. assert(src1->nb[0] == sizeof(float));
  3950. for (int i = 0; i < n; i++) {
  3951. ggml_vec_mul_f32(nc,
  3952. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3953. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3954. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3955. }
  3956. }
  3957. static void ggml_compute_forward_mul(
  3958. const struct ggml_compute_params * params,
  3959. const struct ggml_tensor * src0,
  3960. const struct ggml_tensor * src1,
  3961. struct ggml_tensor * dst) {
  3962. switch (src0->type) {
  3963. case GGML_TYPE_F32:
  3964. {
  3965. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3966. } break;
  3967. case GGML_TYPE_Q4_0:
  3968. case GGML_TYPE_Q4_1:
  3969. case GGML_TYPE_I8:
  3970. case GGML_TYPE_I16:
  3971. case GGML_TYPE_I32:
  3972. case GGML_TYPE_F16:
  3973. case GGML_TYPE_COUNT:
  3974. {
  3975. GGML_ASSERT(false);
  3976. } break;
  3977. }
  3978. }
  3979. // ggml_compute_forward_div
  3980. static void ggml_compute_forward_div_f32(
  3981. const struct ggml_compute_params * params,
  3982. const struct ggml_tensor * src0,
  3983. const struct ggml_tensor * src1,
  3984. struct ggml_tensor * dst) {
  3985. assert(params->ith == 0);
  3986. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3988. return;
  3989. }
  3990. const int n = ggml_nrows(src0);
  3991. const int nc = src0->ne[0];
  3992. assert( dst->nb[0] == sizeof(float));
  3993. assert(src0->nb[0] == sizeof(float));
  3994. assert(src1->nb[0] == sizeof(float));
  3995. for (int i = 0; i < n; i++) {
  3996. ggml_vec_div_f32(nc,
  3997. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3998. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3999. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4000. }
  4001. }
  4002. static void ggml_compute_forward_div(
  4003. const struct ggml_compute_params * params,
  4004. const struct ggml_tensor * src0,
  4005. const struct ggml_tensor * src1,
  4006. struct ggml_tensor * dst) {
  4007. switch (src0->type) {
  4008. case GGML_TYPE_F32:
  4009. {
  4010. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4011. } break;
  4012. case GGML_TYPE_Q4_0:
  4013. case GGML_TYPE_Q4_1:
  4014. case GGML_TYPE_I8:
  4015. case GGML_TYPE_I16:
  4016. case GGML_TYPE_I32:
  4017. case GGML_TYPE_F16:
  4018. case GGML_TYPE_COUNT:
  4019. {
  4020. GGML_ASSERT(false);
  4021. } break;
  4022. }
  4023. }
  4024. // ggml_compute_forward_sqr
  4025. static void ggml_compute_forward_sqr_f32(
  4026. const struct ggml_compute_params * params,
  4027. const struct ggml_tensor * src0,
  4028. struct ggml_tensor * dst) {
  4029. assert(params->ith == 0);
  4030. assert(ggml_are_same_shape(src0, dst));
  4031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4032. return;
  4033. }
  4034. const int n = ggml_nrows(src0);
  4035. const int nc = src0->ne[0];
  4036. assert( dst->nb[0] == sizeof(float));
  4037. assert(src0->nb[0] == sizeof(float));
  4038. for (int i = 0; i < n; i++) {
  4039. ggml_vec_sqr_f32(nc,
  4040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4042. }
  4043. }
  4044. static void ggml_compute_forward_sqr(
  4045. const struct ggml_compute_params * params,
  4046. const struct ggml_tensor * src0,
  4047. struct ggml_tensor * dst) {
  4048. switch (src0->type) {
  4049. case GGML_TYPE_F32:
  4050. {
  4051. ggml_compute_forward_sqr_f32(params, src0, dst);
  4052. } break;
  4053. case GGML_TYPE_Q4_0:
  4054. case GGML_TYPE_Q4_1:
  4055. case GGML_TYPE_I8:
  4056. case GGML_TYPE_I16:
  4057. case GGML_TYPE_I32:
  4058. case GGML_TYPE_F16:
  4059. case GGML_TYPE_COUNT:
  4060. {
  4061. GGML_ASSERT(false);
  4062. } break;
  4063. }
  4064. }
  4065. // ggml_compute_forward_sqrt
  4066. static void ggml_compute_forward_sqrt_f32(
  4067. const struct ggml_compute_params * params,
  4068. const struct ggml_tensor * src0,
  4069. struct ggml_tensor * dst) {
  4070. assert(params->ith == 0);
  4071. assert(ggml_are_same_shape(src0, dst));
  4072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4073. return;
  4074. }
  4075. const int n = ggml_nrows(src0);
  4076. const int nc = src0->ne[0];
  4077. assert( dst->nb[0] == sizeof(float));
  4078. assert(src0->nb[0] == sizeof(float));
  4079. for (int i = 0; i < n; i++) {
  4080. ggml_vec_sqrt_f32(nc,
  4081. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4082. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4083. }
  4084. }
  4085. static void ggml_compute_forward_sqrt(
  4086. const struct ggml_compute_params * params,
  4087. const struct ggml_tensor * src0,
  4088. struct ggml_tensor * dst) {
  4089. switch (src0->type) {
  4090. case GGML_TYPE_F32:
  4091. {
  4092. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4093. } break;
  4094. case GGML_TYPE_Q4_0:
  4095. case GGML_TYPE_Q4_1:
  4096. case GGML_TYPE_I8:
  4097. case GGML_TYPE_I16:
  4098. case GGML_TYPE_I32:
  4099. case GGML_TYPE_F16:
  4100. case GGML_TYPE_COUNT:
  4101. {
  4102. GGML_ASSERT(false);
  4103. } break;
  4104. }
  4105. }
  4106. // ggml_compute_forward_sum
  4107. static void ggml_compute_forward_sum_f32(
  4108. const struct ggml_compute_params * params,
  4109. const struct ggml_tensor * src0,
  4110. struct ggml_tensor * dst) {
  4111. assert(params->ith == 0);
  4112. assert(ggml_is_scalar(dst));
  4113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4114. return;
  4115. }
  4116. assert(ggml_is_scalar(dst));
  4117. assert(src0->nb[0] == sizeof(float));
  4118. const int ne00 = src0->ne[0];
  4119. const int ne01 = src0->ne[1];
  4120. const int ne02 = src0->ne[2];
  4121. const int ne03 = src0->ne[3];
  4122. const size_t nb01 = src0->nb[1];
  4123. const size_t nb02 = src0->nb[2];
  4124. const size_t nb03 = src0->nb[3];
  4125. for (int i03 = 0; i03 < ne03; i03++) {
  4126. for (int i02 = 0; i02 < ne02; i02++) {
  4127. for (int i01 = 0; i01 < ne01; i01++) {
  4128. ggml_vec_sum_f32(ne00,
  4129. (float *) (dst->data),
  4130. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4131. }
  4132. }
  4133. }
  4134. }
  4135. static void ggml_compute_forward_sum(
  4136. const struct ggml_compute_params * params,
  4137. const struct ggml_tensor * src0,
  4138. struct ggml_tensor * dst) {
  4139. switch (src0->type) {
  4140. case GGML_TYPE_F32:
  4141. {
  4142. ggml_compute_forward_sum_f32(params, src0, dst);
  4143. } break;
  4144. case GGML_TYPE_Q4_0:
  4145. case GGML_TYPE_Q4_1:
  4146. case GGML_TYPE_I8:
  4147. case GGML_TYPE_I16:
  4148. case GGML_TYPE_I32:
  4149. case GGML_TYPE_F16:
  4150. case GGML_TYPE_COUNT:
  4151. {
  4152. GGML_ASSERT(false);
  4153. } break;
  4154. }
  4155. }
  4156. // ggml_compute_forward_mean
  4157. static void ggml_compute_forward_mean_f32(
  4158. const struct ggml_compute_params * params,
  4159. const struct ggml_tensor * src0,
  4160. struct ggml_tensor * dst) {
  4161. assert(params->ith == 0);
  4162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4163. return;
  4164. }
  4165. assert(src0->nb[0] == sizeof(float));
  4166. const int ne00 = src0->ne[0];
  4167. const int ne01 = src0->ne[1];
  4168. const int ne02 = src0->ne[2];
  4169. const int ne03 = src0->ne[3];
  4170. const size_t nb01 = src0->nb[1];
  4171. const size_t nb02 = src0->nb[2];
  4172. const size_t nb03 = src0->nb[3];
  4173. const int ne0 = dst->ne[0];
  4174. const int ne1 = dst->ne[1];
  4175. const int ne2 = dst->ne[2];
  4176. const int ne3 = dst->ne[3];
  4177. assert(ne0 == 1);
  4178. assert(ne1 == ne01);
  4179. assert(ne2 == ne02);
  4180. assert(ne3 == ne03);
  4181. UNUSED(ne0);
  4182. UNUSED(ne1);
  4183. UNUSED(ne2);
  4184. UNUSED(ne3);
  4185. const size_t nb1 = dst->nb[1];
  4186. const size_t nb2 = dst->nb[2];
  4187. const size_t nb3 = dst->nb[3];
  4188. for (int i03 = 0; i03 < ne03; i03++) {
  4189. for (int i02 = 0; i02 < ne02; i02++) {
  4190. for (int i01 = 0; i01 < ne01; i01++) {
  4191. ggml_vec_sum_f32(ne00,
  4192. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4193. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4194. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4195. }
  4196. }
  4197. }
  4198. }
  4199. static void ggml_compute_forward_mean(
  4200. const struct ggml_compute_params * params,
  4201. const struct ggml_tensor * src0,
  4202. struct ggml_tensor * dst) {
  4203. switch (src0->type) {
  4204. case GGML_TYPE_F32:
  4205. {
  4206. ggml_compute_forward_mean_f32(params, src0, dst);
  4207. } break;
  4208. case GGML_TYPE_Q4_0:
  4209. case GGML_TYPE_Q4_1:
  4210. case GGML_TYPE_I8:
  4211. case GGML_TYPE_I16:
  4212. case GGML_TYPE_I32:
  4213. case GGML_TYPE_F16:
  4214. case GGML_TYPE_COUNT:
  4215. {
  4216. GGML_ASSERT(false);
  4217. } break;
  4218. }
  4219. }
  4220. // ggml_compute_forward_repeat
  4221. static void ggml_compute_forward_repeat_f32(
  4222. const struct ggml_compute_params * params,
  4223. const struct ggml_tensor * src0,
  4224. struct ggml_tensor * dst) {
  4225. assert(params->ith == 0);
  4226. assert(ggml_can_repeat(src0, dst));
  4227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4228. return;
  4229. }
  4230. // TODO: implement support for rank > 2 tensors
  4231. assert(src0->ne[2] == 1);
  4232. assert(src0->ne[3] == 1);
  4233. assert( dst->ne[2] == 1);
  4234. assert( dst->ne[3] == 1);
  4235. const int nc = dst->ne[0];
  4236. const int nr = dst->ne[1];
  4237. const int nc0 = src0->ne[0];
  4238. const int nr0 = src0->ne[1];
  4239. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4240. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4241. // TODO: support for transposed / permuted tensors
  4242. assert( dst->nb[0] == sizeof(float));
  4243. assert(src0->nb[0] == sizeof(float));
  4244. // TODO: maybe this is not optimal?
  4245. for (int i = 0; i < nrr; i++) {
  4246. for (int j = 0; j < ncr; j++) {
  4247. for (int k = 0; k < nr0; k++) {
  4248. ggml_vec_cpy_f32(nc0,
  4249. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4250. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4251. }
  4252. }
  4253. }
  4254. }
  4255. static void ggml_compute_forward_repeat(
  4256. const struct ggml_compute_params * params,
  4257. const struct ggml_tensor * src0,
  4258. struct ggml_tensor * dst) {
  4259. switch (src0->type) {
  4260. case GGML_TYPE_F32:
  4261. {
  4262. ggml_compute_forward_repeat_f32(params, src0, dst);
  4263. } break;
  4264. case GGML_TYPE_Q4_0:
  4265. case GGML_TYPE_Q4_1:
  4266. case GGML_TYPE_I8:
  4267. case GGML_TYPE_I16:
  4268. case GGML_TYPE_I32:
  4269. case GGML_TYPE_F16:
  4270. case GGML_TYPE_COUNT:
  4271. {
  4272. GGML_ASSERT(false);
  4273. } break;
  4274. }
  4275. }
  4276. // ggml_compute_forward_abs
  4277. static void ggml_compute_forward_abs_f32(
  4278. const struct ggml_compute_params * params,
  4279. const struct ggml_tensor * src0,
  4280. struct ggml_tensor * dst) {
  4281. assert(params->ith == 0);
  4282. assert(ggml_are_same_shape(src0, dst));
  4283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4284. return;
  4285. }
  4286. const int n = ggml_nrows(src0);
  4287. const int nc = src0->ne[0];
  4288. assert(dst->nb[0] == sizeof(float));
  4289. assert(src0->nb[0] == sizeof(float));
  4290. for (int i = 0; i < n; i++) {
  4291. ggml_vec_abs_f32(nc,
  4292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4294. }
  4295. }
  4296. static void ggml_compute_forward_abs(
  4297. const struct ggml_compute_params * params,
  4298. const struct ggml_tensor * src0,
  4299. struct ggml_tensor * dst) {
  4300. switch (src0->type) {
  4301. case GGML_TYPE_F32:
  4302. {
  4303. ggml_compute_forward_abs_f32(params, src0, dst);
  4304. } break;
  4305. case GGML_TYPE_Q4_0:
  4306. case GGML_TYPE_Q4_1:
  4307. case GGML_TYPE_I8:
  4308. case GGML_TYPE_I16:
  4309. case GGML_TYPE_I32:
  4310. case GGML_TYPE_F16:
  4311. case GGML_TYPE_COUNT:
  4312. {
  4313. GGML_ASSERT(false);
  4314. } break;
  4315. }
  4316. }
  4317. // ggml_compute_forward_sgn
  4318. static void ggml_compute_forward_sgn_f32(
  4319. const struct ggml_compute_params * params,
  4320. const struct ggml_tensor * src0,
  4321. struct ggml_tensor * dst) {
  4322. assert(params->ith == 0);
  4323. assert(ggml_are_same_shape(src0, dst));
  4324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4325. return;
  4326. }
  4327. const int n = ggml_nrows(src0);
  4328. const int nc = src0->ne[0];
  4329. assert(dst->nb[0] == sizeof(float));
  4330. assert(src0->nb[0] == sizeof(float));
  4331. for (int i = 0; i < n; i++) {
  4332. ggml_vec_sgn_f32(nc,
  4333. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4334. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4335. }
  4336. }
  4337. static void ggml_compute_forward_sgn(
  4338. const struct ggml_compute_params * params,
  4339. const struct ggml_tensor * src0,
  4340. struct ggml_tensor * dst) {
  4341. switch (src0->type) {
  4342. case GGML_TYPE_F32:
  4343. {
  4344. ggml_compute_forward_sgn_f32(params, src0, dst);
  4345. } break;
  4346. case GGML_TYPE_Q4_0:
  4347. case GGML_TYPE_Q4_1:
  4348. case GGML_TYPE_I8:
  4349. case GGML_TYPE_I16:
  4350. case GGML_TYPE_I32:
  4351. case GGML_TYPE_F16:
  4352. case GGML_TYPE_COUNT:
  4353. {
  4354. GGML_ASSERT(false);
  4355. } break;
  4356. }
  4357. }
  4358. // ggml_compute_forward_neg
  4359. static void ggml_compute_forward_neg_f32(
  4360. const struct ggml_compute_params * params,
  4361. const struct ggml_tensor * src0,
  4362. struct ggml_tensor * dst) {
  4363. assert(params->ith == 0);
  4364. assert(ggml_are_same_shape(src0, dst));
  4365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4366. return;
  4367. }
  4368. const int n = ggml_nrows(src0);
  4369. const int nc = src0->ne[0];
  4370. assert(dst->nb[0] == sizeof(float));
  4371. assert(src0->nb[0] == sizeof(float));
  4372. for (int i = 0; i < n; i++) {
  4373. ggml_vec_neg_f32(nc,
  4374. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4375. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4376. }
  4377. }
  4378. static void ggml_compute_forward_neg(
  4379. const struct ggml_compute_params * params,
  4380. const struct ggml_tensor * src0,
  4381. struct ggml_tensor * dst) {
  4382. switch (src0->type) {
  4383. case GGML_TYPE_F32:
  4384. {
  4385. ggml_compute_forward_neg_f32(params, src0, dst);
  4386. } break;
  4387. case GGML_TYPE_Q4_0:
  4388. case GGML_TYPE_Q4_1:
  4389. case GGML_TYPE_I8:
  4390. case GGML_TYPE_I16:
  4391. case GGML_TYPE_I32:
  4392. case GGML_TYPE_F16:
  4393. case GGML_TYPE_COUNT:
  4394. {
  4395. GGML_ASSERT(false);
  4396. } break;
  4397. }
  4398. }
  4399. // ggml_compute_forward_step
  4400. static void ggml_compute_forward_step_f32(
  4401. const struct ggml_compute_params * params,
  4402. const struct ggml_tensor * src0,
  4403. struct ggml_tensor * dst) {
  4404. assert(params->ith == 0);
  4405. assert(ggml_are_same_shape(src0, dst));
  4406. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4407. return;
  4408. }
  4409. const int n = ggml_nrows(src0);
  4410. const int nc = src0->ne[0];
  4411. assert(dst->nb[0] == sizeof(float));
  4412. assert(src0->nb[0] == sizeof(float));
  4413. for (int i = 0; i < n; i++) {
  4414. ggml_vec_step_f32(nc,
  4415. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4416. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4417. }
  4418. }
  4419. static void ggml_compute_forward_step(
  4420. const struct ggml_compute_params * params,
  4421. const struct ggml_tensor * src0,
  4422. struct ggml_tensor * dst) {
  4423. switch (src0->type) {
  4424. case GGML_TYPE_F32:
  4425. {
  4426. ggml_compute_forward_step_f32(params, src0, dst);
  4427. } break;
  4428. case GGML_TYPE_Q4_0:
  4429. case GGML_TYPE_Q4_1:
  4430. case GGML_TYPE_I8:
  4431. case GGML_TYPE_I16:
  4432. case GGML_TYPE_I32:
  4433. case GGML_TYPE_F16:
  4434. case GGML_TYPE_COUNT:
  4435. {
  4436. GGML_ASSERT(false);
  4437. } break;
  4438. }
  4439. }
  4440. // ggml_compute_forward_relu
  4441. static void ggml_compute_forward_relu_f32(
  4442. const struct ggml_compute_params * params,
  4443. const struct ggml_tensor * src0,
  4444. struct ggml_tensor * dst) {
  4445. assert(params->ith == 0);
  4446. assert(ggml_are_same_shape(src0, dst));
  4447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4448. return;
  4449. }
  4450. const int n = ggml_nrows(src0);
  4451. const int nc = src0->ne[0];
  4452. assert(dst->nb[0] == sizeof(float));
  4453. assert(src0->nb[0] == sizeof(float));
  4454. for (int i = 0; i < n; i++) {
  4455. ggml_vec_relu_f32(nc,
  4456. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4457. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4458. }
  4459. }
  4460. static void ggml_compute_forward_relu(
  4461. const struct ggml_compute_params * params,
  4462. const struct ggml_tensor * src0,
  4463. struct ggml_tensor * dst) {
  4464. switch (src0->type) {
  4465. case GGML_TYPE_F32:
  4466. {
  4467. ggml_compute_forward_relu_f32(params, src0, dst);
  4468. } break;
  4469. case GGML_TYPE_Q4_0:
  4470. case GGML_TYPE_Q4_1:
  4471. case GGML_TYPE_I8:
  4472. case GGML_TYPE_I16:
  4473. case GGML_TYPE_I32:
  4474. case GGML_TYPE_F16:
  4475. case GGML_TYPE_COUNT:
  4476. {
  4477. GGML_ASSERT(false);
  4478. } break;
  4479. }
  4480. }
  4481. // ggml_compute_forward_gelu
  4482. static void ggml_compute_forward_gelu_f32(
  4483. const struct ggml_compute_params * params,
  4484. const struct ggml_tensor * src0,
  4485. struct ggml_tensor * dst) {
  4486. GGML_ASSERT(ggml_is_contiguous(src0));
  4487. GGML_ASSERT(ggml_is_contiguous(dst));
  4488. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4490. return;
  4491. }
  4492. const int ith = params->ith;
  4493. const int nth = params->nth;
  4494. const int nc = src0->ne[0];
  4495. const int nr = ggml_nrows(src0);
  4496. // rows per thread
  4497. const int dr = (nr + nth - 1)/nth;
  4498. // row range for this thread
  4499. const int ir0 = dr*ith;
  4500. const int ir1 = MIN(ir0 + dr, nr);
  4501. for (int i1 = ir0; i1 < ir1; i1++) {
  4502. ggml_vec_gelu_f32(nc,
  4503. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4504. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4505. #ifndef NDEBUG
  4506. for (int k = 0; k < nc; k++) {
  4507. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4508. UNUSED(x);
  4509. assert(!isnan(x));
  4510. assert(!isinf(x));
  4511. }
  4512. #endif
  4513. }
  4514. }
  4515. static void ggml_compute_forward_gelu(
  4516. const struct ggml_compute_params * params,
  4517. const struct ggml_tensor * src0,
  4518. struct ggml_tensor * dst) {
  4519. switch (src0->type) {
  4520. case GGML_TYPE_F32:
  4521. {
  4522. ggml_compute_forward_gelu_f32(params, src0, dst);
  4523. } break;
  4524. case GGML_TYPE_Q4_0:
  4525. case GGML_TYPE_Q4_1:
  4526. case GGML_TYPE_I8:
  4527. case GGML_TYPE_I16:
  4528. case GGML_TYPE_I32:
  4529. case GGML_TYPE_F16:
  4530. case GGML_TYPE_COUNT:
  4531. {
  4532. GGML_ASSERT(false);
  4533. } break;
  4534. }
  4535. //printf("XXXXXXXX gelu\n");
  4536. }
  4537. // ggml_compute_forward_silu
  4538. static void ggml_compute_forward_silu_f32(
  4539. const struct ggml_compute_params * params,
  4540. const struct ggml_tensor * src0,
  4541. struct ggml_tensor * dst) {
  4542. GGML_ASSERT(ggml_is_contiguous(src0));
  4543. GGML_ASSERT(ggml_is_contiguous(dst));
  4544. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4546. return;
  4547. }
  4548. const int ith = params->ith;
  4549. const int nth = params->nth;
  4550. const int nc = src0->ne[0];
  4551. const int nr = ggml_nrows(src0);
  4552. // rows per thread
  4553. const int dr = (nr + nth - 1)/nth;
  4554. // row range for this thread
  4555. const int ir0 = dr*ith;
  4556. const int ir1 = MIN(ir0 + dr, nr);
  4557. for (int i1 = ir0; i1 < ir1; i1++) {
  4558. ggml_vec_silu_f32(nc,
  4559. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4560. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4561. #ifndef NDEBUG
  4562. for (int k = 0; k < nc; k++) {
  4563. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4564. UNUSED(x);
  4565. assert(!isnan(x));
  4566. assert(!isinf(x));
  4567. }
  4568. #endif
  4569. }
  4570. }
  4571. static void ggml_compute_forward_silu(
  4572. const struct ggml_compute_params * params,
  4573. const struct ggml_tensor * src0,
  4574. struct ggml_tensor * dst) {
  4575. switch (src0->type) {
  4576. case GGML_TYPE_F32:
  4577. {
  4578. ggml_compute_forward_silu_f32(params, src0, dst);
  4579. } break;
  4580. case GGML_TYPE_Q4_0:
  4581. case GGML_TYPE_Q4_1:
  4582. case GGML_TYPE_I8:
  4583. case GGML_TYPE_I16:
  4584. case GGML_TYPE_I32:
  4585. case GGML_TYPE_F16:
  4586. case GGML_TYPE_COUNT:
  4587. {
  4588. GGML_ASSERT(false);
  4589. } break;
  4590. }
  4591. }
  4592. // ggml_compute_forward_norm
  4593. static void ggml_compute_forward_norm_f32(
  4594. const struct ggml_compute_params * params,
  4595. const struct ggml_tensor * src0,
  4596. struct ggml_tensor * dst) {
  4597. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4599. return;
  4600. }
  4601. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4602. const int ith = params->ith;
  4603. const int nth = params->nth;
  4604. const int ne00 = src0->ne[0];
  4605. const int ne01 = src0->ne[1];
  4606. const int ne02 = src0->ne[2];
  4607. const int ne03 = src0->ne[3];
  4608. const size_t nb01 = src0->nb[1];
  4609. const size_t nb02 = src0->nb[2];
  4610. const size_t nb03 = src0->nb[3];
  4611. const size_t nb1 = dst->nb[1];
  4612. const size_t nb2 = dst->nb[2];
  4613. const size_t nb3 = dst->nb[3];
  4614. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4615. // TODO: optimize
  4616. for (int i03 = 0; i03 < ne03; i03++) {
  4617. for (int i02 = 0; i02 < ne02; i02++) {
  4618. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4619. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4620. ggml_float mean = 0.0;
  4621. for (int i00 = 0; i00 < ne00; i00++) {
  4622. mean += x[i00];
  4623. }
  4624. mean /= ne00;
  4625. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4626. ggml_float sum2 = 0.0;
  4627. for (int i00 = 0; i00 < ne00; i00++) {
  4628. ggml_float v = x[i00] - mean;
  4629. y[i00] = v;
  4630. sum2 += v*v;
  4631. }
  4632. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4633. ggml_vec_scale_f32(ne00, y, scale);
  4634. }
  4635. }
  4636. }
  4637. }
  4638. static void ggml_compute_forward_norm(
  4639. const struct ggml_compute_params * params,
  4640. const struct ggml_tensor * src0,
  4641. struct ggml_tensor * dst) {
  4642. switch (src0->type) {
  4643. case GGML_TYPE_F32:
  4644. {
  4645. ggml_compute_forward_norm_f32(params, src0, dst);
  4646. } break;
  4647. case GGML_TYPE_Q4_0:
  4648. case GGML_TYPE_Q4_1:
  4649. case GGML_TYPE_I8:
  4650. case GGML_TYPE_I16:
  4651. case GGML_TYPE_I32:
  4652. case GGML_TYPE_F16:
  4653. case GGML_TYPE_COUNT:
  4654. {
  4655. GGML_ASSERT(false);
  4656. } break;
  4657. }
  4658. }
  4659. static void ggml_compute_forward_rms_norm_f32(
  4660. const struct ggml_compute_params * params,
  4661. const struct ggml_tensor * src0,
  4662. struct ggml_tensor * dst) {
  4663. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4665. return;
  4666. }
  4667. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4668. const int ith = params->ith;
  4669. const int nth = params->nth;
  4670. const int ne00 = src0->ne[0];
  4671. const int ne01 = src0->ne[1];
  4672. const int ne02 = src0->ne[2];
  4673. const int ne03 = src0->ne[3];
  4674. const size_t nb01 = src0->nb[1];
  4675. const size_t nb02 = src0->nb[2];
  4676. const size_t nb03 = src0->nb[3];
  4677. const size_t nb1 = dst->nb[1];
  4678. const size_t nb2 = dst->nb[2];
  4679. const size_t nb3 = dst->nb[3];
  4680. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4681. // TODO: optimize
  4682. for (int i03 = 0; i03 < ne03; i03++) {
  4683. for (int i02 = 0; i02 < ne02; i02++) {
  4684. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4685. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4686. ggml_float mean = 0.0;
  4687. for (int i00 = 0; i00 < ne00; i00++) {
  4688. mean += x[i00] * x[i00];
  4689. }
  4690. mean /= ne00;
  4691. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4692. memcpy(y, x, ne00 * sizeof(float));
  4693. // for (int i00 = 0; i00 < ne00; i00++) {
  4694. // y[i00] = x[i00];
  4695. // }
  4696. const float scale = 1.0/sqrt(mean + eps);
  4697. ggml_vec_scale_f32(ne00, y, scale);
  4698. }
  4699. }
  4700. }
  4701. }
  4702. static void ggml_compute_forward_rms_norm(
  4703. const struct ggml_compute_params * params,
  4704. const struct ggml_tensor * src0,
  4705. struct ggml_tensor * dst) {
  4706. switch (src0->type) {
  4707. case GGML_TYPE_F32:
  4708. {
  4709. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4710. } break;
  4711. case GGML_TYPE_Q4_0:
  4712. case GGML_TYPE_Q4_1:
  4713. case GGML_TYPE_I8:
  4714. case GGML_TYPE_I16:
  4715. case GGML_TYPE_I32:
  4716. case GGML_TYPE_F16:
  4717. case GGML_TYPE_COUNT:
  4718. {
  4719. GGML_ASSERT(false);
  4720. } break;
  4721. }
  4722. }
  4723. // ggml_compute_forward_mul_mat
  4724. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4725. // helper function to determine if it is better to use BLAS or not
  4726. // for large matrices, BLAS is faster
  4727. static bool ggml_compute_forward_mul_mat_use_blas(
  4728. const struct ggml_tensor * src0,
  4729. const struct ggml_tensor * src1,
  4730. struct ggml_tensor * dst) {
  4731. UNUSED(src0);
  4732. const int ne10 = src1->ne[0];
  4733. const int ne0 = dst->ne[0];
  4734. const int ne1 = dst->ne[1];
  4735. // TODO: find the optimal values for these
  4736. if (ggml_is_contiguous(src0) &&
  4737. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4738. //printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
  4739. return true;
  4740. }
  4741. return false;
  4742. }
  4743. #endif
  4744. static void ggml_compute_forward_mul_mat_f32(
  4745. const struct ggml_compute_params * params,
  4746. const struct ggml_tensor * src0,
  4747. const struct ggml_tensor * src1,
  4748. struct ggml_tensor * dst) {
  4749. int64_t t0 = ggml_perf_time_us();
  4750. UNUSED(t0);
  4751. const int ne00 = src0->ne[0];
  4752. const int ne01 = src0->ne[1];
  4753. const int ne02 = src0->ne[2];
  4754. const int ne03 = src0->ne[3];
  4755. const int ne10 = src1->ne[0];
  4756. const int ne11 = src1->ne[1];
  4757. const int ne12 = src1->ne[2];
  4758. const int ne13 = src1->ne[3];
  4759. const int ne0 = dst->ne[0];
  4760. const int ne1 = dst->ne[1];
  4761. const int ne2 = dst->ne[2];
  4762. const int ne3 = dst->ne[3];
  4763. const int ne = ne0*ne1*ne2*ne3;
  4764. const int nb00 = src0->nb[0];
  4765. const int nb01 = src0->nb[1];
  4766. const int nb02 = src0->nb[2];
  4767. const int nb03 = src0->nb[3];
  4768. const int nb10 = src1->nb[0];
  4769. const int nb11 = src1->nb[1];
  4770. const int nb12 = src1->nb[2];
  4771. const int nb13 = src1->nb[3];
  4772. const int nb0 = dst->nb[0];
  4773. const int nb1 = dst->nb[1];
  4774. const int nb2 = dst->nb[2];
  4775. const int nb3 = dst->nb[3];
  4776. const int ith = params->ith;
  4777. const int nth = params->nth;
  4778. assert(ne02 == ne12);
  4779. assert(ne03 == ne13);
  4780. assert(ne2 == ne12);
  4781. assert(ne3 == ne13);
  4782. // TODO: we don't support permuted src0
  4783. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4784. // dst cannot be transposed or permuted
  4785. assert(nb0 == sizeof(float));
  4786. assert(nb0 <= nb1);
  4787. assert(nb1 <= nb2);
  4788. assert(nb2 <= nb3);
  4789. assert(ne0 == ne01);
  4790. assert(ne1 == ne11);
  4791. assert(ne2 == ne02);
  4792. assert(ne3 == ne03);
  4793. // nb01 >= nb00 - src0 is not transposed
  4794. // compute by src0 rows
  4795. //
  4796. // nb00 < nb01 - src0 is transposed
  4797. // compute by src0 columns
  4798. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4799. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4800. GGML_ASSERT(nb10 == sizeof(float));
  4801. if (params->ith != 0) {
  4802. return;
  4803. }
  4804. if (params->type == GGML_TASK_INIT) {
  4805. return;
  4806. }
  4807. if (params->type == GGML_TASK_FINALIZE) {
  4808. return;
  4809. }
  4810. for (int i03 = 0; i03 < ne03; i03++) {
  4811. for (int i02 = 0; i02 < ne02; i02++) {
  4812. const float * x = (float *) (src0->data);
  4813. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4814. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4815. // zT = y * xT
  4816. {
  4817. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4818. ne11, ne01, ne10,
  4819. 1.0f, y, ne10,
  4820. x, ne10,
  4821. 0.0f, d, ne01);
  4822. }
  4823. }
  4824. }
  4825. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4826. return;
  4827. }
  4828. #endif
  4829. if (params->type == GGML_TASK_INIT) {
  4830. if (nb01 >= nb00) {
  4831. return;
  4832. }
  4833. // TODO: fix this memset (wsize is overestimated)
  4834. memset(params->wdata, 0, params->wsize);
  4835. return;
  4836. }
  4837. if (params->type == GGML_TASK_FINALIZE) {
  4838. if (nb01 >= nb00) {
  4839. return;
  4840. }
  4841. // TODO: fix this memset (wsize is overestimated)
  4842. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4843. float * const wdata = params->wdata;
  4844. // cols per thread
  4845. const int dc = (ne + nth - 1)/nth;
  4846. // col range for this thread
  4847. const int ic0 = dc*ith;
  4848. const int ic1 = MIN(ic0 + dc, ne);
  4849. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4850. for (int k = 1; k < nth; k++) {
  4851. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4852. }
  4853. return;
  4854. }
  4855. if (nb01 >= nb00) {
  4856. // TODO: do not support transposed src1
  4857. assert(nb10 == sizeof(float));
  4858. // parallelize by src0 rows using ggml_vec_dot_f32
  4859. // total rows in src0
  4860. const int nr = ne01*ne02*ne03;
  4861. // rows per thread
  4862. const int dr = (nr + nth - 1)/nth;
  4863. // row range for this thread
  4864. const int ir0 = dr*ith;
  4865. const int ir1 = MIN(ir0 + dr, nr);
  4866. for (int ir = ir0; ir < ir1; ++ir) {
  4867. // src0 indices
  4868. const int i03 = ir/(ne02*ne01);
  4869. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4870. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4871. for (int ic = 0; ic < ne11; ++ic) {
  4872. // src1 indices
  4873. const int i13 = i03;
  4874. const int i12 = i02;
  4875. const int i11 = ic;
  4876. // dst indices
  4877. const int i0 = i01;
  4878. const int i1 = i11;
  4879. const int i2 = i02;
  4880. const int i3 = i03;
  4881. ggml_vec_dot_f32(ne00,
  4882. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4883. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4884. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4885. }
  4886. }
  4887. } else {
  4888. // parallelize by src1 columns using ggml_vec_mad_f32
  4889. // each thread has its own work data
  4890. // during FINALIZE we accumulate all work data into dst
  4891. // total columns in src1
  4892. const int nc = ne10;
  4893. // columns per thread
  4894. const int dc = (nc + nth - 1)/nth;
  4895. // column range for this thread
  4896. const int ic0 = dc*ith;
  4897. const int ic1 = MIN(ic0 + dc, nc);
  4898. // work data for thread
  4899. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4900. float * const wdata = params->wdata;
  4901. for (int i13 = 0; i13 < ne13; ++i13) {
  4902. for (int i12 = 0; i12 < ne12; ++i12) {
  4903. for (int i11 = 0; i11 < ne11; ++i11) {
  4904. for (int ic = ic0; ic < ic1; ++ic) {
  4905. // src1 indices
  4906. const int i10 = ic;
  4907. // src0 indices
  4908. const int i03 = i13;
  4909. const int i02 = i12;
  4910. const int i00 = ic;
  4911. // dst indices
  4912. const int i1 = i11;
  4913. const int i2 = i12;
  4914. const int i3 = i13;
  4915. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4916. ggml_vec_mad_f32(ne01,
  4917. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4918. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4919. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4920. }
  4921. }
  4922. }
  4923. }
  4924. }
  4925. //int64_t t1 = ggml_perf_time_us();
  4926. //static int64_t acc = 0;
  4927. //acc += t1 - t0;
  4928. //if (t1 - t0 > 10) {
  4929. // printf("\n");
  4930. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4931. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4932. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4933. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4934. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4935. //}
  4936. }
  4937. static void ggml_compute_forward_mul_mat_f16_f32(
  4938. const struct ggml_compute_params * params,
  4939. const struct ggml_tensor * src0,
  4940. const struct ggml_tensor * src1,
  4941. struct ggml_tensor * dst) {
  4942. int64_t t0 = ggml_perf_time_us();
  4943. UNUSED(t0);
  4944. const int ne00 = src0->ne[0];
  4945. const int ne01 = src0->ne[1];
  4946. const int ne02 = src0->ne[2];
  4947. const int ne03 = src0->ne[3];
  4948. const int ne10 = src1->ne[0];
  4949. const int ne11 = src1->ne[1];
  4950. const int ne12 = src1->ne[2];
  4951. const int ne13 = src1->ne[3];
  4952. const int ne0 = dst->ne[0];
  4953. const int ne1 = dst->ne[1];
  4954. const int ne2 = dst->ne[2];
  4955. const int ne3 = dst->ne[3];
  4956. const int ne = ne0*ne1*ne2*ne3;
  4957. const int nb00 = src0->nb[0];
  4958. const int nb01 = src0->nb[1];
  4959. const int nb02 = src0->nb[2];
  4960. const int nb03 = src0->nb[3];
  4961. const int nb10 = src1->nb[0];
  4962. const int nb11 = src1->nb[1];
  4963. const int nb12 = src1->nb[2];
  4964. const int nb13 = src1->nb[3];
  4965. const int nb0 = dst->nb[0];
  4966. const int nb1 = dst->nb[1];
  4967. const int nb2 = dst->nb[2];
  4968. const int nb3 = dst->nb[3];
  4969. const int ith = params->ith;
  4970. const int nth = params->nth;
  4971. GGML_ASSERT(ne02 == ne12);
  4972. GGML_ASSERT(ne03 == ne13);
  4973. GGML_ASSERT(ne2 == ne12);
  4974. GGML_ASSERT(ne3 == ne13);
  4975. // TODO: we don't support permuted src0
  4976. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  4977. // dst cannot be transposed or permuted
  4978. GGML_ASSERT(nb0 == sizeof(float));
  4979. GGML_ASSERT(nb0 <= nb1);
  4980. GGML_ASSERT(nb1 <= nb2);
  4981. GGML_ASSERT(nb2 <= nb3);
  4982. GGML_ASSERT(ne0 == ne01);
  4983. GGML_ASSERT(ne1 == ne11);
  4984. GGML_ASSERT(ne2 == ne02);
  4985. GGML_ASSERT(ne3 == ne03);
  4986. // nb01 >= nb00 - src0 is not transposed
  4987. // compute by src0 rows
  4988. //
  4989. // nb00 < nb01 - src0 is transposed
  4990. // compute by src0 columns
  4991. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4992. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4993. GGML_ASSERT(nb10 == sizeof(float));
  4994. if (params->ith != 0) {
  4995. return;
  4996. }
  4997. if (params->type == GGML_TASK_INIT) {
  4998. return;
  4999. }
  5000. if (params->type == GGML_TASK_FINALIZE) {
  5001. return;
  5002. }
  5003. float * const wdata = params->wdata;
  5004. for (int i03 = 0; i03 < ne03; i03++) {
  5005. for (int i02 = 0; i02 < ne02; i02++) {
  5006. {
  5007. int id = 0;
  5008. for (int i01 = 0; i01 < ne01; ++i01) {
  5009. for (int i00 = 0; i00 < ne00; ++i00) {
  5010. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5011. }
  5012. }
  5013. }
  5014. const float * x = wdata;
  5015. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5016. // float * z = wdata + ne00*ne01;
  5017. // z = x * yT
  5018. //{
  5019. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5020. // ne01, ne11, ne00,
  5021. // 1.0f, x, ne00,
  5022. // y, ne00,
  5023. // 0.0f, z, ne11);
  5024. //}
  5025. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5026. // transpose z
  5027. //for (int j = 0; j < ne11; ++j) {
  5028. // for (int i = 0; i < ne01; ++i) {
  5029. // d[j*ne01 + i] = z[i*ne11 + j];
  5030. // }
  5031. //}
  5032. {
  5033. #if 1
  5034. // zT = y * xT
  5035. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5036. ne11, ne01, ne10,
  5037. 1.0f, y, ne00,
  5038. x, ne00,
  5039. 0.0f, d, ne01);
  5040. #else
  5041. // zT = (xT * y)T
  5042. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5043. ne01, ne11, ne10,
  5044. 1.0f, x, ne00,
  5045. y, ne00,
  5046. 0.0f, d, ne01);
  5047. #endif
  5048. }
  5049. }
  5050. }
  5051. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5052. return;
  5053. }
  5054. #endif
  5055. if (params->type == GGML_TASK_INIT) {
  5056. if (nb01 >= nb00) {
  5057. ggml_fp16_t * const wdata = params->wdata;
  5058. int id = 0;
  5059. for (int i13 = 0; i13 < ne13; ++i13) {
  5060. for (int i12 = 0; i12 < ne12; ++i12) {
  5061. for (int i11 = 0; i11 < ne11; ++i11) {
  5062. for (int i10 = 0; i10 < ne10; ++i10) {
  5063. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5064. }
  5065. }
  5066. }
  5067. }
  5068. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5069. return;
  5070. }
  5071. // TODO: fix this memset (wsize is overestimated)
  5072. memset(params->wdata, 0, params->wsize);
  5073. return;
  5074. }
  5075. if (params->type == GGML_TASK_FINALIZE) {
  5076. if (nb01 >= nb00) {
  5077. return;
  5078. }
  5079. // TODO: fix this memset (wsize is overestimated)
  5080. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  5081. ggml_fp16_t * const wdata = params->wdata;
  5082. // cols per thread
  5083. const int dc = (ne + nth - 1)/nth;
  5084. // col range for this thread
  5085. const int ic0 = dc*ith;
  5086. const int ic1 = MIN(ic0 + dc, ne);
  5087. for (int i = ic0; i < ic1; ++i) {
  5088. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  5089. }
  5090. for (int k = 1; k < nth; k++) {
  5091. for (int i = ic0; i < ic1; ++i) {
  5092. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  5093. }
  5094. }
  5095. return;
  5096. }
  5097. if (nb01 >= nb00) {
  5098. // fp16 -> half the size, so divide by 2
  5099. // TODO: do not support transposed src1
  5100. assert(nb10/2 == sizeof(ggml_fp16_t));
  5101. // parallelize by src0 rows using ggml_vec_dot_f16
  5102. // total rows in src0
  5103. const int nr = ne01*ne02*ne03;
  5104. // rows per thread
  5105. const int dr = (nr + nth - 1)/nth;
  5106. // row range for this thread
  5107. const int ir0 = dr*ith;
  5108. const int ir1 = MIN(ir0 + dr, nr);
  5109. ggml_fp16_t * wdata = params->wdata;
  5110. for (int ir = ir0; ir < ir1; ++ir) {
  5111. // src0 indices
  5112. const int i03 = ir/(ne02*ne01);
  5113. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5114. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5115. const int i13 = i03;
  5116. const int i12 = i02;
  5117. const int i0 = i01;
  5118. const int i2 = i02;
  5119. const int i3 = i03;
  5120. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5121. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5122. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5123. assert(ne00 % 32 == 0);
  5124. for (int ic = 0; ic < ne11; ++ic) {
  5125. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5126. }
  5127. }
  5128. } else {
  5129. // parallelize by src1 columns using ggml_vec_mad_f16
  5130. // each thread has its own work data
  5131. // during FINALIZE we accumulate all work data into dst
  5132. // total columns in src1
  5133. const int nc = ne10;
  5134. // columns per thread
  5135. const int dc = (nc + nth - 1)/nth;
  5136. // column range for this thread
  5137. const int ic0 = dc*ith;
  5138. const int ic1 = MIN(ic0 + dc, nc);
  5139. // work data for thread
  5140. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5141. ggml_fp16_t * const wdata = params->wdata;
  5142. for (int i13 = 0; i13 < ne13; ++i13) {
  5143. for (int i12 = 0; i12 < ne12; ++i12) {
  5144. for (int i11 = 0; i11 < ne11; ++i11) {
  5145. // dst indices
  5146. const int i1 = i11;
  5147. const int i2 = i12;
  5148. const int i3 = i13;
  5149. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5150. for (int ic = ic0; ic < ic1; ++ic) {
  5151. // src1 indices
  5152. const int i10 = ic;
  5153. // src0 indices
  5154. const int i03 = i13;
  5155. const int i02 = i12;
  5156. const int i00 = ic;
  5157. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5158. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5159. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5160. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  5161. }
  5162. }
  5163. }
  5164. }
  5165. }
  5166. //int64_t t1 = ggml_time_us();
  5167. //static int64_t acc = 0;
  5168. //acc += t1 - t0;
  5169. //if (t1 - t0 > 10) {
  5170. // printf("\n");
  5171. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5172. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5173. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5174. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5175. //}
  5176. }
  5177. static void ggml_compute_forward_mul_mat_q4_0_f32(
  5178. const struct ggml_compute_params * params,
  5179. const struct ggml_tensor * src0,
  5180. const struct ggml_tensor * src1,
  5181. struct ggml_tensor * dst) {
  5182. int64_t t0 = ggml_perf_time_us();
  5183. UNUSED(t0);
  5184. const int ne00 = src0->ne[0];
  5185. const int ne01 = src0->ne[1];
  5186. const int ne02 = src0->ne[2];
  5187. const int ne03 = src0->ne[3];
  5188. const int ne10 = src1->ne[0];
  5189. const int ne11 = src1->ne[1];
  5190. const int ne12 = src1->ne[2];
  5191. const int ne13 = src1->ne[3];
  5192. const int ne0 = dst->ne[0];
  5193. const int ne1 = dst->ne[1];
  5194. const int ne2 = dst->ne[2];
  5195. const int ne3 = dst->ne[3];
  5196. const int ne = ne0*ne1*ne2*ne3;
  5197. const int nb00 = src0->nb[0];
  5198. const int nb01 = src0->nb[1];
  5199. const int nb02 = src0->nb[2];
  5200. const int nb03 = src0->nb[3];
  5201. const int nb10 = src1->nb[0];
  5202. const int nb11 = src1->nb[1];
  5203. const int nb12 = src1->nb[2];
  5204. const int nb13 = src1->nb[3];
  5205. const int nb0 = dst->nb[0];
  5206. const int nb1 = dst->nb[1];
  5207. const int nb2 = dst->nb[2];
  5208. const int nb3 = dst->nb[3];
  5209. const int ith = params->ith;
  5210. const int nth = params->nth;
  5211. GGML_ASSERT(ne02 == ne12);
  5212. GGML_ASSERT(ne03 == ne13);
  5213. GGML_ASSERT(ne2 == ne12);
  5214. GGML_ASSERT(ne3 == ne13);
  5215. // TODO: we don't support permuted src0
  5216. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5217. // dst cannot be transposed or permuted
  5218. GGML_ASSERT(nb0 == sizeof(float));
  5219. GGML_ASSERT(nb0 <= nb1);
  5220. GGML_ASSERT(nb1 <= nb2);
  5221. GGML_ASSERT(nb2 <= nb3);
  5222. GGML_ASSERT(ne0 == ne01);
  5223. GGML_ASSERT(ne1 == ne11);
  5224. GGML_ASSERT(ne2 == ne02);
  5225. GGML_ASSERT(ne3 == ne03);
  5226. // nb01 >= nb00 - src0 is not transposed
  5227. // compute by src0 rows
  5228. //
  5229. // nb00 < nb01 - src0 is transposed
  5230. // compute by src0 columns
  5231. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5232. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5233. GGML_ASSERT(nb10 == sizeof(float));
  5234. if (params->ith != 0) {
  5235. return;
  5236. }
  5237. if (params->type == GGML_TASK_INIT) {
  5238. return;
  5239. }
  5240. if (params->type == GGML_TASK_FINALIZE) {
  5241. return;
  5242. }
  5243. float * const wdata = params->wdata;
  5244. for (int i03 = 0; i03 < ne03; i03++) {
  5245. for (int i02 = 0; i02 < ne02; i02++) {
  5246. {
  5247. int id = 0;
  5248. for (int i01 = 0; i01 < ne01; ++i01) {
  5249. //for (int i00 = 0; i00 < ne00; ++i00) {
  5250. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5251. //}
  5252. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5253. id += ne00;
  5254. }
  5255. }
  5256. const float * x = wdata;
  5257. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5258. // float * z = wdata + ne00*ne01;
  5259. // z = x * yT
  5260. //{
  5261. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5262. // ne01, ne11, ne00,
  5263. // 1.0f, x, ne00,
  5264. // y, ne00,
  5265. // 0.0f, z, ne11);
  5266. //}
  5267. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5268. // transpose z
  5269. //for (int j = 0; j < ne11; ++j) {
  5270. // for (int i = 0; i < ne01; ++i) {
  5271. // d[j*ne01 + i] = z[i*ne11 + j];
  5272. // }
  5273. //}
  5274. {
  5275. #if 1
  5276. // zT = y * xT
  5277. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5278. ne11, ne01, ne10,
  5279. 1.0f, y, ne00,
  5280. x, ne00,
  5281. 0.0f, d, ne01);
  5282. #else
  5283. // zT = (xT * y)T
  5284. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5285. ne01, ne11, ne10,
  5286. 1.0f, x, ne00,
  5287. y, ne00,
  5288. 0.0f, d, ne01);
  5289. #endif
  5290. }
  5291. }
  5292. }
  5293. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5294. return;
  5295. }
  5296. #endif
  5297. if (params->type == GGML_TASK_INIT) {
  5298. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5299. if (nb01 >= nb00) {
  5300. char * wdata = params->wdata;
  5301. for (int i13 = 0; i13 < ne13; ++i13) {
  5302. for (int i12 = 0; i12 < ne12; ++i12) {
  5303. for (int i11 = 0; i11 < ne11; ++i11) {
  5304. //for (int i10 = 0; i10 < ne10; ++i10) {
  5305. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5306. //}
  5307. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5308. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5309. }
  5310. }
  5311. }
  5312. return;
  5313. }
  5314. // TODO: fix this memset (wsize is overestimated)
  5315. memset(params->wdata, 0, params->wsize);
  5316. return;
  5317. }
  5318. if (params->type == GGML_TASK_FINALIZE) {
  5319. if (nb01 >= nb00) {
  5320. return;
  5321. }
  5322. float * const wdata = params->wdata;
  5323. // cols per thread
  5324. const int dc = (ne + nth - 1)/nth;
  5325. // col range for this thread
  5326. const int ic0 = dc*ith;
  5327. const int ic1 = MIN(ic0 + dc, ne);
  5328. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5329. for (int k = 1; k < nth; k++) {
  5330. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5331. }
  5332. return;
  5333. }
  5334. if (nb01 >= nb00) {
  5335. // TODO: do not support transposed src1
  5336. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5337. // total rows in src0
  5338. const int nr = ne01*ne02*ne03;
  5339. // rows per thread
  5340. const int dr = (nr + nth - 1)/nth;
  5341. // row range for this thread
  5342. const int ir0 = dr*ith;
  5343. const int ir1 = MIN(ir0 + dr, nr);
  5344. void * wdata = params->wdata;
  5345. for (int ir = ir0; ir < ir1; ++ir) {
  5346. // src0 indices
  5347. const int i03 = ir/(ne02*ne01);
  5348. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5349. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5350. const int i13 = i03;
  5351. const int i12 = i02;
  5352. const int i0 = i01;
  5353. const int i2 = i02;
  5354. const int i3 = i03;
  5355. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5356. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5357. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5358. assert(ne00 % 32 == 0);
  5359. for (int ic = 0; ic < ne11; ++ic) {
  5360. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5361. }
  5362. }
  5363. } else {
  5364. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5365. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5366. // each thread has its own work data
  5367. // during FINALIZE we accumulate all work data into dst
  5368. // total columns in src1
  5369. const int nc = ne10;
  5370. // columns per thread
  5371. const int dc = (nc + nth - 1)/nth;
  5372. // column range for this thread
  5373. const int ic0 = dc*ith;
  5374. const int ic1 = MIN(ic0 + dc, nc);
  5375. // work data for thread
  5376. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5377. float * const wdata = params->wdata;
  5378. for (int i13 = 0; i13 < ne13; ++i13) {
  5379. for (int i12 = 0; i12 < ne12; ++i12) {
  5380. for (int i11 = 0; i11 < ne11; ++i11) {
  5381. // dst indices
  5382. const int i1 = i11;
  5383. const int i2 = i12;
  5384. const int i3 = i13;
  5385. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5386. for (int ic = ic0; ic < ic1; ++ic) {
  5387. // src1 indices
  5388. const int i10 = ic;
  5389. // src0 indices
  5390. const int i03 = i13;
  5391. const int i02 = i12;
  5392. const int i00 = ic;
  5393. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5394. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5395. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5396. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5397. }
  5398. }
  5399. }
  5400. }
  5401. }
  5402. //int64_t t1 = ggml_time_us();
  5403. //static int64_t acc = 0;
  5404. //acc += t1 - t0;
  5405. //if (t1 - t0 > 10) {
  5406. // printf("\n");
  5407. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5408. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5409. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5410. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5411. //}
  5412. }
  5413. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5414. const struct ggml_compute_params * params,
  5415. const struct ggml_tensor * src0,
  5416. const struct ggml_tensor * src1,
  5417. struct ggml_tensor * dst) {
  5418. int64_t t0 = ggml_perf_time_us();
  5419. UNUSED(t0);
  5420. const int ne00 = src0->ne[0];
  5421. const int ne01 = src0->ne[1];
  5422. const int ne02 = src0->ne[2];
  5423. const int ne03 = src0->ne[3];
  5424. const int ne10 = src1->ne[0];
  5425. const int ne11 = src1->ne[1];
  5426. const int ne12 = src1->ne[2];
  5427. const int ne13 = src1->ne[3];
  5428. const int ne0 = dst->ne[0];
  5429. const int ne1 = dst->ne[1];
  5430. const int ne2 = dst->ne[2];
  5431. const int ne3 = dst->ne[3];
  5432. const int ne = ne0*ne1*ne2*ne3;
  5433. const int nb00 = src0->nb[0];
  5434. const int nb01 = src0->nb[1];
  5435. const int nb02 = src0->nb[2];
  5436. const int nb03 = src0->nb[3];
  5437. const int nb10 = src1->nb[0];
  5438. const int nb11 = src1->nb[1];
  5439. const int nb12 = src1->nb[2];
  5440. const int nb13 = src1->nb[3];
  5441. const int nb0 = dst->nb[0];
  5442. const int nb1 = dst->nb[1];
  5443. const int nb2 = dst->nb[2];
  5444. const int nb3 = dst->nb[3];
  5445. const int ith = params->ith;
  5446. const int nth = params->nth;
  5447. GGML_ASSERT(ne02 == ne12);
  5448. GGML_ASSERT(ne03 == ne13);
  5449. GGML_ASSERT(ne2 == ne12);
  5450. GGML_ASSERT(ne3 == ne13);
  5451. // TODO: we don't support permuted src0
  5452. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5453. // dst cannot be transposed or permuted
  5454. GGML_ASSERT(nb0 == sizeof(float));
  5455. GGML_ASSERT(nb0 <= nb1);
  5456. GGML_ASSERT(nb1 <= nb2);
  5457. GGML_ASSERT(nb2 <= nb3);
  5458. GGML_ASSERT(ne0 == ne01);
  5459. GGML_ASSERT(ne1 == ne11);
  5460. GGML_ASSERT(ne2 == ne02);
  5461. GGML_ASSERT(ne3 == ne03);
  5462. // nb01 >= nb00 - src0 is not transposed
  5463. // compute by src0 rows
  5464. //
  5465. // nb00 < nb01 - src0 is transposed
  5466. // compute by src0 columns
  5467. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5468. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5469. GGML_ASSERT(nb10 == sizeof(float));
  5470. if (params->ith != 0) {
  5471. return;
  5472. }
  5473. if (params->type == GGML_TASK_INIT) {
  5474. return;
  5475. }
  5476. if (params->type == GGML_TASK_FINALIZE) {
  5477. return;
  5478. }
  5479. float * const wdata = params->wdata;
  5480. for (int i03 = 0; i03 < ne03; i03++) {
  5481. for (int i02 = 0; i02 < ne02; i02++) {
  5482. {
  5483. int id = 0;
  5484. for (int i01 = 0; i01 < ne01; ++i01) {
  5485. //for (int i00 = 0; i00 < ne00; ++i00) {
  5486. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5487. //}
  5488. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5489. id += ne00;
  5490. }
  5491. }
  5492. const float * x = wdata;
  5493. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5494. // float * z = wdata + ne00*ne01;
  5495. // z = x * yT
  5496. //{
  5497. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5498. // ne01, ne11, ne00,
  5499. // 1.0f, x, ne00,
  5500. // y, ne00,
  5501. // 0.0f, z, ne11);
  5502. //}
  5503. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5504. // transpose z
  5505. //for (int j = 0; j < ne11; ++j) {
  5506. // for (int i = 0; i < ne01; ++i) {
  5507. // d[j*ne01 + i] = z[i*ne11 + j];
  5508. // }
  5509. //}
  5510. {
  5511. #if 1
  5512. // zT = y * xT
  5513. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5514. ne11, ne01, ne10,
  5515. 1.0f, y, ne00,
  5516. x, ne00,
  5517. 0.0f, d, ne01);
  5518. #else
  5519. // zT = (xT * y)T
  5520. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5521. ne01, ne11, ne10,
  5522. 1.0f, x, ne00,
  5523. y, ne00,
  5524. 0.0f, d, ne01);
  5525. #endif
  5526. }
  5527. }
  5528. }
  5529. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5530. return;
  5531. }
  5532. #endif
  5533. if (params->type == GGML_TASK_INIT) {
  5534. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5535. if (nb01 >= nb00) {
  5536. char * wdata = params->wdata;
  5537. for (int i13 = 0; i13 < ne13; ++i13) {
  5538. for (int i12 = 0; i12 < ne12; ++i12) {
  5539. for (int i11 = 0; i11 < ne11; ++i11) {
  5540. //for (int i10 = 0; i10 < ne10; ++i10) {
  5541. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5542. //}
  5543. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5544. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5545. }
  5546. }
  5547. }
  5548. return;
  5549. }
  5550. // TODO: fix this memset (wsize is overestimated)
  5551. memset(params->wdata, 0, params->wsize);
  5552. return;
  5553. }
  5554. if (params->type == GGML_TASK_FINALIZE) {
  5555. if (nb01 >= nb00) {
  5556. return;
  5557. }
  5558. float * const wdata = params->wdata;
  5559. // cols per thread
  5560. const int dc = (ne + nth - 1)/nth;
  5561. // col range for this thread
  5562. const int ic0 = dc*ith;
  5563. const int ic1 = MIN(ic0 + dc, ne);
  5564. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5565. for (int k = 1; k < nth; k++) {
  5566. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5567. }
  5568. return;
  5569. }
  5570. if (nb01 >= nb00) {
  5571. // TODO: do not support transposed src1
  5572. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5573. // total rows in src0
  5574. const int nr = ne01*ne02*ne03;
  5575. // rows per thread
  5576. const int dr = (nr + nth - 1)/nth;
  5577. // row range for this thread
  5578. const int ir0 = dr*ith;
  5579. const int ir1 = MIN(ir0 + dr, nr);
  5580. void * wdata = params->wdata;
  5581. for (int ir = ir0; ir < ir1; ++ir) {
  5582. // src0 indices
  5583. const int i03 = ir/(ne02*ne01);
  5584. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5585. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5586. const int i13 = i03;
  5587. const int i12 = i02;
  5588. const int i0 = i01;
  5589. const int i2 = i02;
  5590. const int i3 = i03;
  5591. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5592. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5593. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5594. assert(ne00 % 32 == 0);
  5595. for (int ic = 0; ic < ne11; ++ic) {
  5596. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5597. }
  5598. }
  5599. } else {
  5600. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5601. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5602. // each thread has its own work data
  5603. // during FINALIZE we accumulate all work data into dst
  5604. // total columns in src1
  5605. const int nc = ne10;
  5606. // columns per thread
  5607. const int dc = (nc + nth - 1)/nth;
  5608. // column range for this thread
  5609. const int ic0 = dc*ith;
  5610. const int ic1 = MIN(ic0 + dc, nc);
  5611. // work data for thread
  5612. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5613. float * const wdata = params->wdata;
  5614. for (int i13 = 0; i13 < ne13; ++i13) {
  5615. for (int i12 = 0; i12 < ne12; ++i12) {
  5616. for (int i11 = 0; i11 < ne11; ++i11) {
  5617. // dst indices
  5618. const int i1 = i11;
  5619. const int i2 = i12;
  5620. const int i3 = i13;
  5621. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5622. for (int ic = ic0; ic < ic1; ++ic) {
  5623. // src1 indices
  5624. const int i10 = ic;
  5625. // src0 indices
  5626. const int i03 = i13;
  5627. const int i02 = i12;
  5628. const int i00 = ic;
  5629. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5630. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5631. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5632. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5633. }
  5634. }
  5635. }
  5636. }
  5637. }
  5638. //int64_t t1 = ggml_time_us();
  5639. //static int64_t acc = 0;
  5640. //acc += t1 - t0;
  5641. //if (t1 - t0 > 10) {
  5642. // printf("\n");
  5643. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5644. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5645. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5646. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5647. //}
  5648. }
  5649. static void ggml_compute_forward_mul_mat(
  5650. const struct ggml_compute_params * params,
  5651. const struct ggml_tensor * src0,
  5652. const struct ggml_tensor * src1,
  5653. struct ggml_tensor * dst) {
  5654. switch (src0->type) {
  5655. case GGML_TYPE_Q4_0:
  5656. {
  5657. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5658. } break;
  5659. case GGML_TYPE_Q4_1:
  5660. {
  5661. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5662. } break;
  5663. case GGML_TYPE_F16:
  5664. {
  5665. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5666. } break;
  5667. case GGML_TYPE_F32:
  5668. {
  5669. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5670. } break;
  5671. case GGML_TYPE_I8:
  5672. case GGML_TYPE_I16:
  5673. case GGML_TYPE_I32:
  5674. case GGML_TYPE_COUNT:
  5675. {
  5676. GGML_ASSERT(false);
  5677. } break;
  5678. }
  5679. #if 0
  5680. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5681. static int first = 8;
  5682. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5683. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5684. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5685. if (first) {
  5686. --first;
  5687. } else {
  5688. for (int k = 0; k < dst->ne[1]; ++k) {
  5689. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5690. for (int i = 0; i < 16; ++i) {
  5691. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5692. }
  5693. printf("\n");
  5694. }
  5695. printf("\n");
  5696. }
  5697. printf("\n");
  5698. exit(0);
  5699. }
  5700. } else {
  5701. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5702. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5703. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5704. }
  5705. #endif
  5706. }
  5707. // ggml_compute_forward_scale
  5708. static void ggml_compute_forward_scale_f32(
  5709. const struct ggml_compute_params * params,
  5710. const struct ggml_tensor * src0,
  5711. const struct ggml_tensor * src1,
  5712. struct ggml_tensor * dst) {
  5713. GGML_ASSERT(ggml_is_contiguous(src0));
  5714. GGML_ASSERT(ggml_is_contiguous(dst));
  5715. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5716. GGML_ASSERT(ggml_is_scalar(src1));
  5717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5718. return;
  5719. }
  5720. // scale factor
  5721. const float v = *(float *) src1->data;
  5722. const int ith = params->ith;
  5723. const int nth = params->nth;
  5724. const int nc = src0->ne[0];
  5725. const int nr = ggml_nrows(src0);
  5726. // rows per thread
  5727. const int dr = (nr + nth - 1)/nth;
  5728. // row range for this thread
  5729. const int ir0 = dr*ith;
  5730. const int ir1 = MIN(ir0 + dr, nr);
  5731. for (int i1 = ir0; i1 < ir1; i1++) {
  5732. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5733. }
  5734. }
  5735. static void ggml_compute_forward_scale(
  5736. const struct ggml_compute_params * params,
  5737. const struct ggml_tensor * src0,
  5738. const struct ggml_tensor * src1,
  5739. struct ggml_tensor * dst) {
  5740. switch (src0->type) {
  5741. case GGML_TYPE_F32:
  5742. {
  5743. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5744. } break;
  5745. case GGML_TYPE_Q4_0:
  5746. case GGML_TYPE_Q4_1:
  5747. case GGML_TYPE_I8:
  5748. case GGML_TYPE_I16:
  5749. case GGML_TYPE_I32:
  5750. case GGML_TYPE_F16:
  5751. case GGML_TYPE_COUNT:
  5752. {
  5753. GGML_ASSERT(false);
  5754. } break;
  5755. }
  5756. }
  5757. // ggml_compute_forward_cpy
  5758. static void ggml_compute_forward_cpy(
  5759. const struct ggml_compute_params * params,
  5760. const struct ggml_tensor * src0,
  5761. struct ggml_tensor * dst) {
  5762. ggml_compute_forward_dup(params, src0, dst);
  5763. }
  5764. // ggml_compute_forward_reshape
  5765. static void ggml_compute_forward_reshape(
  5766. const struct ggml_compute_params * params,
  5767. const struct ggml_tensor * src0,
  5768. struct ggml_tensor * dst) {
  5769. // NOP
  5770. UNUSED(params);
  5771. UNUSED(src0);
  5772. UNUSED(dst);
  5773. }
  5774. // ggml_compute_forward_view
  5775. static void ggml_compute_forward_view(
  5776. const struct ggml_compute_params * params,
  5777. const struct ggml_tensor * src0) {
  5778. // NOP
  5779. UNUSED(params);
  5780. UNUSED(src0);
  5781. }
  5782. // ggml_compute_forward_permute
  5783. static void ggml_compute_forward_permute(
  5784. const struct ggml_compute_params * params,
  5785. const struct ggml_tensor * src0) {
  5786. // NOP
  5787. UNUSED(params);
  5788. UNUSED(src0);
  5789. }
  5790. // ggml_compute_forward_transpose
  5791. static void ggml_compute_forward_transpose(
  5792. const struct ggml_compute_params * params,
  5793. const struct ggml_tensor * src0) {
  5794. // NOP
  5795. UNUSED(params);
  5796. UNUSED(src0);
  5797. }
  5798. // ggml_compute_forward_get_rows
  5799. static void ggml_compute_forward_get_rows_q4_0(
  5800. const struct ggml_compute_params * params,
  5801. const struct ggml_tensor * src0,
  5802. const struct ggml_tensor * src1,
  5803. struct ggml_tensor * dst) {
  5804. assert(params->ith == 0);
  5805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5806. return;
  5807. }
  5808. const int nc = src0->ne[0];
  5809. const int nr = ggml_nelements(src1);
  5810. assert( dst->ne[0] == nc);
  5811. assert( dst->ne[1] == nr);
  5812. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5813. for (int i = 0; i < nr; ++i) {
  5814. const int r = ((int32_t *) src1->data)[i];
  5815. dequantize_row_q4_0(
  5816. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5817. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5818. }
  5819. }
  5820. static void ggml_compute_forward_get_rows_q4_1(
  5821. const struct ggml_compute_params * params,
  5822. const struct ggml_tensor * src0,
  5823. const struct ggml_tensor * src1,
  5824. struct ggml_tensor * dst) {
  5825. assert(params->ith == 0);
  5826. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5827. return;
  5828. }
  5829. const int nc = src0->ne[0];
  5830. const int nr = ggml_nelements(src1);
  5831. assert( dst->ne[0] == nc);
  5832. assert( dst->ne[1] == nr);
  5833. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5834. for (int i = 0; i < nr; ++i) {
  5835. const int r = ((int32_t *) src1->data)[i];
  5836. dequantize_row_q4_1(
  5837. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5838. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5839. }
  5840. }
  5841. static void ggml_compute_forward_get_rows_f16(
  5842. const struct ggml_compute_params * params,
  5843. const struct ggml_tensor * src0,
  5844. const struct ggml_tensor * src1,
  5845. struct ggml_tensor * dst) {
  5846. assert(params->ith == 0);
  5847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5848. return;
  5849. }
  5850. const int nc = src0->ne[0];
  5851. const int nr = ggml_nelements(src1);
  5852. assert( dst->ne[0] == nc);
  5853. assert( dst->ne[1] == nr);
  5854. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5855. for (int i = 0; i < nr; ++i) {
  5856. const int r = ((int32_t *) src1->data)[i];
  5857. for (int j = 0; j < nc; ++j) {
  5858. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5859. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5860. }
  5861. }
  5862. }
  5863. static void ggml_compute_forward_get_rows_f32(
  5864. const struct ggml_compute_params * params,
  5865. const struct ggml_tensor * src0,
  5866. const struct ggml_tensor * src1,
  5867. struct ggml_tensor * dst) {
  5868. assert(params->ith == 0);
  5869. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5870. return;
  5871. }
  5872. const int nc = src0->ne[0];
  5873. const int nr = ggml_nelements(src1);
  5874. assert( dst->ne[0] == nc);
  5875. assert( dst->ne[1] == nr);
  5876. assert(src0->nb[0] == sizeof(float));
  5877. for (int i = 0; i < nr; ++i) {
  5878. const int r = ((int32_t *) src1->data)[i];
  5879. ggml_vec_cpy_f32(nc,
  5880. (float *) ((char *) dst->data + i*dst->nb[1]),
  5881. (float *) ((char *) src0->data + r*src0->nb[1]));
  5882. }
  5883. }
  5884. static void ggml_compute_forward_get_rows(
  5885. const struct ggml_compute_params * params,
  5886. const struct ggml_tensor * src0,
  5887. const struct ggml_tensor * src1,
  5888. struct ggml_tensor * dst) {
  5889. switch (src0->type) {
  5890. case GGML_TYPE_Q4_0:
  5891. {
  5892. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5893. } break;
  5894. case GGML_TYPE_Q4_1:
  5895. {
  5896. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5897. } break;
  5898. case GGML_TYPE_F16:
  5899. {
  5900. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5901. } break;
  5902. case GGML_TYPE_F32:
  5903. {
  5904. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5905. } break;
  5906. case GGML_TYPE_I8:
  5907. case GGML_TYPE_I16:
  5908. case GGML_TYPE_I32:
  5909. case GGML_TYPE_COUNT:
  5910. {
  5911. GGML_ASSERT(false);
  5912. } break;
  5913. }
  5914. //static bool first = true;
  5915. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5916. //if (first) {
  5917. // first = false;
  5918. //} else {
  5919. // for (int k = 0; k < dst->ne[1]; ++k) {
  5920. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5921. // for (int i = 0; i < 16; ++i) {
  5922. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5923. // }
  5924. // printf("\n");
  5925. // }
  5926. // printf("\n");
  5927. // }
  5928. // printf("\n");
  5929. // exit(0);
  5930. //}
  5931. }
  5932. // ggml_compute_forward_diag_mask_inf
  5933. static void ggml_compute_forward_diag_mask_inf_f32(
  5934. const struct ggml_compute_params * params,
  5935. const struct ggml_tensor * src0,
  5936. const struct ggml_tensor * src1,
  5937. struct ggml_tensor * dst) {
  5938. assert(params->ith == 0);
  5939. assert(src1->type == GGML_TYPE_I32);
  5940. assert(ggml_nelements(src1) == 1);
  5941. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5942. return;
  5943. }
  5944. const int n_past = ((int32_t *) src1->data)[0];
  5945. // TODO: handle transposed/permuted matrices
  5946. const int n = ggml_nrows(src0);
  5947. const int nc = src0->ne[0];
  5948. const int nr = src0->ne[1];
  5949. const int nz = n/nr;
  5950. assert( dst->nb[0] == sizeof(float));
  5951. assert(src0->nb[0] == sizeof(float));
  5952. for (int k = 0; k < nz; k++) {
  5953. for (int j = 0; j < nr; j++) {
  5954. for (int i = n_past; i < nc; i++) {
  5955. if (i > n_past + j) {
  5956. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5957. }
  5958. }
  5959. }
  5960. }
  5961. }
  5962. static void ggml_compute_forward_diag_mask_inf(
  5963. const struct ggml_compute_params * params,
  5964. const struct ggml_tensor * src0,
  5965. const struct ggml_tensor * src1,
  5966. struct ggml_tensor * dst) {
  5967. switch (src0->type) {
  5968. case GGML_TYPE_F32:
  5969. {
  5970. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5971. } break;
  5972. case GGML_TYPE_Q4_0:
  5973. case GGML_TYPE_Q4_1:
  5974. case GGML_TYPE_I8:
  5975. case GGML_TYPE_I16:
  5976. case GGML_TYPE_I32:
  5977. case GGML_TYPE_F16:
  5978. case GGML_TYPE_COUNT:
  5979. {
  5980. GGML_ASSERT(false);
  5981. } break;
  5982. }
  5983. }
  5984. // ggml_compute_forward_soft_max
  5985. static void ggml_compute_forward_soft_max_f32(
  5986. const struct ggml_compute_params * params,
  5987. const struct ggml_tensor * src0,
  5988. struct ggml_tensor * dst) {
  5989. GGML_ASSERT(ggml_is_contiguous(src0));
  5990. GGML_ASSERT(ggml_is_contiguous(dst));
  5991. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5993. return;
  5994. }
  5995. // TODO: handle transposed/permuted matrices
  5996. const int ith = params->ith;
  5997. const int nth = params->nth;
  5998. const int nc = src0->ne[0];
  5999. const int nr = ggml_nrows(src0);
  6000. // rows per thread
  6001. const int dr = (nr + nth - 1)/nth;
  6002. // row range for this thread
  6003. const int ir0 = dr*ith;
  6004. const int ir1 = MIN(ir0 + dr, nr);
  6005. for (int i1 = ir0; i1 < ir1; i1++) {
  6006. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6007. #ifndef NDEBUG
  6008. for (int i = 0; i < nc; ++i) {
  6009. //printf("p[%d] = %f\n", i, p[i]);
  6010. assert(!isnan(p[i]));
  6011. }
  6012. #endif
  6013. float max = -INFINITY;
  6014. ggml_vec_max_f32(nc, &max, p);
  6015. ggml_float sum = 0.0;
  6016. uint16_t scvt;
  6017. for (int i = 0; i < nc; i++) {
  6018. if (p[i] == -INFINITY) {
  6019. p[i] = 0.0f;
  6020. } else {
  6021. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6022. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6023. memcpy(&scvt, &s, sizeof(scvt));
  6024. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6025. sum += val;
  6026. p[i] = val;
  6027. }
  6028. }
  6029. assert(sum > 0.0f);
  6030. sum = 1.0/sum;
  6031. ggml_vec_scale_f32(nc, p, sum);
  6032. #ifndef NDEBUG
  6033. for (int i = 0; i < nc; ++i) {
  6034. assert(!isnan(p[i]));
  6035. assert(!isinf(p[i]));
  6036. }
  6037. #endif
  6038. }
  6039. }
  6040. static void ggml_compute_forward_soft_max(
  6041. const struct ggml_compute_params * params,
  6042. const struct ggml_tensor * src0,
  6043. struct ggml_tensor * dst) {
  6044. switch (src0->type) {
  6045. case GGML_TYPE_F32:
  6046. {
  6047. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6048. } break;
  6049. case GGML_TYPE_Q4_0:
  6050. case GGML_TYPE_Q4_1:
  6051. case GGML_TYPE_I8:
  6052. case GGML_TYPE_I16:
  6053. case GGML_TYPE_I32:
  6054. case GGML_TYPE_F16:
  6055. case GGML_TYPE_COUNT:
  6056. {
  6057. GGML_ASSERT(false);
  6058. } break;
  6059. }
  6060. }
  6061. // ggml_compute_forward_rope
  6062. static void ggml_compute_forward_rope_f32(
  6063. const struct ggml_compute_params * params,
  6064. const struct ggml_tensor * src0,
  6065. const struct ggml_tensor * src1,
  6066. struct ggml_tensor * dst) {
  6067. assert(params->ith == 0);
  6068. assert(src1->type == GGML_TYPE_I32);
  6069. assert(ggml_nelements(src1) == 3);
  6070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6071. return;
  6072. }
  6073. const int n_past = ((int32_t *) src1->data)[0];
  6074. const int n_dims = ((int32_t *) src1->data)[1];
  6075. const int mode = ((int32_t *) src1->data)[2];
  6076. //const int ne0 = src0->ne[0];
  6077. const int ne1 = src0->ne[1];
  6078. const int ne2 = src0->ne[2];
  6079. const int ne3 = src0->ne[3];
  6080. const int nb0 = src0->nb[0];
  6081. const int nb1 = src0->nb[1];
  6082. const int nb2 = src0->nb[2];
  6083. const int nb3 = src0->nb[3];
  6084. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6085. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6086. assert(nb0 == sizeof(float));
  6087. // TODO: optimize
  6088. for (int i3 = 0; i3 < ne3; i3++) {
  6089. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6090. const int p = (mode == 0 ? n_past + i2 : i2);
  6091. for (int i1 = 0; i1 < ne1; i1++) {
  6092. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6093. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6094. const double cos_theta = cos(p*theta);
  6095. const double sin_theta = sin(p*theta);
  6096. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6097. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6098. double x0 = src[0];
  6099. double x1 = src[1];
  6100. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6101. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6102. }
  6103. }
  6104. }
  6105. }
  6106. }
  6107. static void ggml_compute_forward_rope_f16(
  6108. const struct ggml_compute_params * params,
  6109. const struct ggml_tensor * src0,
  6110. const struct ggml_tensor * src1,
  6111. struct ggml_tensor * dst) {
  6112. assert(params->ith == 0);
  6113. assert(src1->type == GGML_TYPE_I32);
  6114. assert(ggml_nelements(src1) == 3);
  6115. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6116. return;
  6117. }
  6118. const int n_past = ((int32_t *) src1->data)[0];
  6119. const int n_dims = ((int32_t *) src1->data)[1];
  6120. const int mode = ((int32_t *) src1->data)[2];
  6121. //const int ne0 = src0->ne[0];
  6122. const int ne1 = src0->ne[1];
  6123. const int ne2 = src0->ne[2];
  6124. const int ne3 = src0->ne[3];
  6125. const int nb0 = src0->nb[0];
  6126. const int nb1 = src0->nb[1];
  6127. const int nb2 = src0->nb[2];
  6128. const int nb3 = src0->nb[3];
  6129. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6130. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6131. assert(nb0 == sizeof(ggml_fp16_t));
  6132. for (int i3 = 0; i3 < ne3; i3++) {
  6133. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6134. const int p = (mode == 0 ? n_past + i2 : i2);
  6135. for (int i1 = 0; i1 < ne1; i1++) {
  6136. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6137. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6138. const double cos_theta = cos(p*theta);
  6139. const double sin_theta = sin(p*theta);
  6140. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6141. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6142. double x0 = ggml_fp16_to_fp32(src[0]);
  6143. double x1 = ggml_fp16_to_fp32(src[1]);
  6144. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6145. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6146. }
  6147. }
  6148. }
  6149. }
  6150. }
  6151. static void ggml_compute_forward_rope(
  6152. const struct ggml_compute_params * params,
  6153. const struct ggml_tensor * src0,
  6154. const struct ggml_tensor * src1,
  6155. struct ggml_tensor * dst) {
  6156. switch (src0->type) {
  6157. case GGML_TYPE_F16:
  6158. {
  6159. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6160. } break;
  6161. case GGML_TYPE_F32:
  6162. {
  6163. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6164. } break;
  6165. case GGML_TYPE_Q4_0:
  6166. case GGML_TYPE_Q4_1:
  6167. case GGML_TYPE_I8:
  6168. case GGML_TYPE_I16:
  6169. case GGML_TYPE_I32:
  6170. case GGML_TYPE_COUNT:
  6171. {
  6172. GGML_ASSERT(false);
  6173. } break;
  6174. }
  6175. }
  6176. // ggml_compute_forward_conv_1d_1s
  6177. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6178. const struct ggml_compute_params * params,
  6179. const struct ggml_tensor * src0,
  6180. const struct ggml_tensor * src1,
  6181. struct ggml_tensor * dst) {
  6182. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6183. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6184. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6185. int64_t t0 = ggml_perf_time_us();
  6186. UNUSED(t0);
  6187. const int ne00 = src0->ne[0];
  6188. const int ne01 = src0->ne[1];
  6189. const int ne02 = src0->ne[2];
  6190. //const int ne03 = src0->ne[3];
  6191. const int ne10 = src1->ne[0];
  6192. const int ne11 = src1->ne[1];
  6193. //const int ne12 = src1->ne[2];
  6194. //const int ne13 = src1->ne[3];
  6195. //const int ne0 = dst->ne[0];
  6196. //const int ne1 = dst->ne[1];
  6197. //const int ne2 = dst->ne[2];
  6198. //const int ne3 = dst->ne[3];
  6199. //const int ne = ne0*ne1*ne2*ne3;
  6200. const int nb00 = src0->nb[0];
  6201. const int nb01 = src0->nb[1];
  6202. const int nb02 = src0->nb[2];
  6203. //const int nb03 = src0->nb[3];
  6204. const int nb10 = src1->nb[0];
  6205. const int nb11 = src1->nb[1];
  6206. //const int nb12 = src1->nb[2];
  6207. //const int nb13 = src1->nb[3];
  6208. //const int nb0 = dst->nb[0];
  6209. const int nb1 = dst->nb[1];
  6210. //const int nb2 = dst->nb[2];
  6211. //const int nb3 = dst->nb[3];
  6212. const int ith = params->ith;
  6213. const int nth = params->nth;
  6214. const int nk = ne00;
  6215. const int nh = nk/2;
  6216. const int ew0 = ggml_up32(ne01);
  6217. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6218. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6219. GGML_ASSERT(nb10 == sizeof(float));
  6220. if (params->type == GGML_TASK_INIT) {
  6221. // TODO: fix this memset (wsize is overestimated)
  6222. memset(params->wdata, 0, params->wsize);
  6223. // prepare kernel data (src0)
  6224. {
  6225. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6226. for (int i02 = 0; i02 < ne02; i02++) {
  6227. for (int i01 = 0; i01 < ne01; i01++) {
  6228. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6229. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6230. for (int i00 = 0; i00 < ne00; i00++) {
  6231. dst_data[i00*ew0 + i01] = src[i00];
  6232. }
  6233. }
  6234. }
  6235. }
  6236. // prepare source data (src1)
  6237. {
  6238. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6239. for (int i11 = 0; i11 < ne11; i11++) {
  6240. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6241. ggml_fp16_t * dst_data = wdata;
  6242. for (int i10 = 0; i10 < ne10; i10++) {
  6243. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6244. }
  6245. }
  6246. }
  6247. return;
  6248. }
  6249. if (params->type == GGML_TASK_FINALIZE) {
  6250. return;
  6251. }
  6252. // total rows in dst
  6253. const int nr = ne02;
  6254. // rows per thread
  6255. const int dr = (nr + nth - 1)/nth;
  6256. // row range for this thread
  6257. const int ir0 = dr*ith;
  6258. const int ir1 = MIN(ir0 + dr, nr);
  6259. for (int i1 = ir0; i1 < ir1; i1++) {
  6260. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6261. for (int i0 = 0; i0 < ne10; ++i0) {
  6262. dst_data[i0] = 0;
  6263. for (int k = -nh; k <= nh; k++) {
  6264. float v = 0.0f;
  6265. ggml_vec_dot_f16(ew0, &v,
  6266. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6267. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6268. dst_data[i0] += v;
  6269. }
  6270. }
  6271. }
  6272. }
  6273. static void ggml_compute_forward_conv_1d_1s_f32(
  6274. const struct ggml_compute_params * params,
  6275. const struct ggml_tensor * src0,
  6276. const struct ggml_tensor * src1,
  6277. struct ggml_tensor * dst) {
  6278. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6279. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6280. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6281. int64_t t0 = ggml_perf_time_us();
  6282. UNUSED(t0);
  6283. const int ne00 = src0->ne[0];
  6284. const int ne01 = src0->ne[1];
  6285. const int ne02 = src0->ne[2];
  6286. //const int ne03 = src0->ne[3];
  6287. const int ne10 = src1->ne[0];
  6288. const int ne11 = src1->ne[1];
  6289. //const int ne12 = src1->ne[2];
  6290. //const int ne13 = src1->ne[3];
  6291. //const int ne0 = dst->ne[0];
  6292. //const int ne1 = dst->ne[1];
  6293. //const int ne2 = dst->ne[2];
  6294. //const int ne3 = dst->ne[3];
  6295. //const int ne = ne0*ne1*ne2*ne3;
  6296. const int nb00 = src0->nb[0];
  6297. const int nb01 = src0->nb[1];
  6298. const int nb02 = src0->nb[2];
  6299. //const int nb03 = src0->nb[3];
  6300. const int nb10 = src1->nb[0];
  6301. const int nb11 = src1->nb[1];
  6302. //const int nb12 = src1->nb[2];
  6303. //const int nb13 = src1->nb[3];
  6304. //const int nb0 = dst->nb[0];
  6305. const int nb1 = dst->nb[1];
  6306. //const int nb2 = dst->nb[2];
  6307. //const int nb3 = dst->nb[3];
  6308. const int ith = params->ith;
  6309. const int nth = params->nth;
  6310. const int nk = ne00;
  6311. const int nh = nk/2;
  6312. const int ew0 = ggml_up32(ne01);
  6313. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6314. GGML_ASSERT(nb00 == sizeof(float));
  6315. GGML_ASSERT(nb10 == sizeof(float));
  6316. if (params->type == GGML_TASK_INIT) {
  6317. // TODO: fix this memset (wsize is overestimated)
  6318. memset(params->wdata, 0, params->wsize);
  6319. // prepare kernel data (src0)
  6320. {
  6321. float * const wdata = (float *) params->wdata + 0;
  6322. for (int i02 = 0; i02 < ne02; i02++) {
  6323. for (int i01 = 0; i01 < ne01; i01++) {
  6324. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6325. float * dst_data = wdata + i02*ew0*ne00;
  6326. for (int i00 = 0; i00 < ne00; i00++) {
  6327. dst_data[i00*ew0 + i01] = src[i00];
  6328. }
  6329. }
  6330. }
  6331. }
  6332. // prepare source data (src1)
  6333. {
  6334. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6335. for (int i11 = 0; i11 < ne11; i11++) {
  6336. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6337. float * dst_data = wdata;
  6338. for (int i10 = 0; i10 < ne10; i10++) {
  6339. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6340. }
  6341. }
  6342. }
  6343. return;
  6344. }
  6345. if (params->type == GGML_TASK_FINALIZE) {
  6346. return;
  6347. }
  6348. // total rows in dst
  6349. const int nr = ne02;
  6350. // rows per thread
  6351. const int dr = (nr + nth - 1)/nth;
  6352. // row range for this thread
  6353. const int ir0 = dr*ith;
  6354. const int ir1 = MIN(ir0 + dr, nr);
  6355. for (int i1 = ir0; i1 < ir1; i1++) {
  6356. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6357. for (int i0 = 0; i0 < ne10; ++i0) {
  6358. dst_data[i0] = 0;
  6359. for (int k = -nh; k <= nh; k++) {
  6360. float v = 0.0f;
  6361. ggml_vec_dot_f32(ew0, &v,
  6362. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6363. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6364. dst_data[i0] += v;
  6365. }
  6366. }
  6367. }
  6368. }
  6369. static void ggml_compute_forward_conv_1d_1s(
  6370. const struct ggml_compute_params * params,
  6371. const struct ggml_tensor * src0,
  6372. const struct ggml_tensor * src1,
  6373. struct ggml_tensor * dst) {
  6374. switch (src0->type) {
  6375. case GGML_TYPE_F16:
  6376. {
  6377. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6378. } break;
  6379. case GGML_TYPE_F32:
  6380. {
  6381. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6382. } break;
  6383. case GGML_TYPE_Q4_0:
  6384. case GGML_TYPE_Q4_1:
  6385. case GGML_TYPE_I8:
  6386. case GGML_TYPE_I16:
  6387. case GGML_TYPE_I32:
  6388. case GGML_TYPE_COUNT:
  6389. {
  6390. GGML_ASSERT(false);
  6391. } break;
  6392. }
  6393. }
  6394. // ggml_compute_forward_conv_1d_2s
  6395. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6396. const struct ggml_compute_params * params,
  6397. const struct ggml_tensor * src0,
  6398. const struct ggml_tensor * src1,
  6399. struct ggml_tensor * dst) {
  6400. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6401. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6402. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6403. int64_t t0 = ggml_perf_time_us();
  6404. UNUSED(t0);
  6405. const int ne00 = src0->ne[0];
  6406. const int ne01 = src0->ne[1];
  6407. const int ne02 = src0->ne[2];
  6408. //const int ne03 = src0->ne[3];
  6409. const int ne10 = src1->ne[0];
  6410. const int ne11 = src1->ne[1];
  6411. //const int ne12 = src1->ne[2];
  6412. //const int ne13 = src1->ne[3];
  6413. //const int ne0 = dst->ne[0];
  6414. //const int ne1 = dst->ne[1];
  6415. //const int ne2 = dst->ne[2];
  6416. //const int ne3 = dst->ne[3];
  6417. //const int ne = ne0*ne1*ne2*ne3;
  6418. const int nb00 = src0->nb[0];
  6419. const int nb01 = src0->nb[1];
  6420. const int nb02 = src0->nb[2];
  6421. //const int nb03 = src0->nb[3];
  6422. const int nb10 = src1->nb[0];
  6423. const int nb11 = src1->nb[1];
  6424. //const int nb12 = src1->nb[2];
  6425. //const int nb13 = src1->nb[3];
  6426. //const int nb0 = dst->nb[0];
  6427. const int nb1 = dst->nb[1];
  6428. //const int nb2 = dst->nb[2];
  6429. //const int nb3 = dst->nb[3];
  6430. const int ith = params->ith;
  6431. const int nth = params->nth;
  6432. const int nk = ne00;
  6433. const int nh = nk/2;
  6434. const int ew0 = ggml_up32(ne01);
  6435. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6436. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6437. GGML_ASSERT(nb10 == sizeof(float));
  6438. if (params->type == GGML_TASK_INIT) {
  6439. // TODO: fix this memset (wsize is overestimated)
  6440. memset(params->wdata, 0, params->wsize);
  6441. // prepare kernel data (src0)
  6442. {
  6443. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6444. for (int i02 = 0; i02 < ne02; i02++) {
  6445. for (int i01 = 0; i01 < ne01; i01++) {
  6446. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6447. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6448. for (int i00 = 0; i00 < ne00; i00++) {
  6449. dst_data[i00*ew0 + i01] = src[i00];
  6450. }
  6451. }
  6452. }
  6453. }
  6454. // prepare source data (src1)
  6455. {
  6456. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6457. for (int i11 = 0; i11 < ne11; i11++) {
  6458. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6459. ggml_fp16_t * dst_data = wdata;
  6460. for (int i10 = 0; i10 < ne10; i10++) {
  6461. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6462. }
  6463. }
  6464. }
  6465. return;
  6466. }
  6467. if (params->type == GGML_TASK_FINALIZE) {
  6468. return;
  6469. }
  6470. // total rows in dst
  6471. const int nr = ne02;
  6472. // rows per thread
  6473. const int dr = (nr + nth - 1)/nth;
  6474. // row range for this thread
  6475. const int ir0 = dr*ith;
  6476. const int ir1 = MIN(ir0 + dr, nr);
  6477. for (int i1 = ir0; i1 < ir1; i1++) {
  6478. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6479. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6480. dst_data[i0/2] = 0;
  6481. for (int k = -nh; k <= nh; k++) {
  6482. float v = 0.0f;
  6483. ggml_vec_dot_f16(ew0, &v,
  6484. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6485. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6486. dst_data[i0/2] += v;
  6487. }
  6488. }
  6489. }
  6490. }
  6491. static void ggml_compute_forward_conv_1d_2s_f32(
  6492. const struct ggml_compute_params * params,
  6493. const struct ggml_tensor * src0,
  6494. const struct ggml_tensor * src1,
  6495. struct ggml_tensor * dst) {
  6496. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6497. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6498. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6499. int64_t t0 = ggml_perf_time_us();
  6500. UNUSED(t0);
  6501. const int ne00 = src0->ne[0];
  6502. const int ne01 = src0->ne[1];
  6503. const int ne02 = src0->ne[2];
  6504. //const int ne03 = src0->ne[3];
  6505. const int ne10 = src1->ne[0];
  6506. const int ne11 = src1->ne[1];
  6507. //const int ne12 = src1->ne[2];
  6508. //const int ne13 = src1->ne[3];
  6509. //const int ne0 = dst->ne[0];
  6510. //const int ne1 = dst->ne[1];
  6511. //const int ne2 = dst->ne[2];
  6512. //const int ne3 = dst->ne[3];
  6513. //const int ne = ne0*ne1*ne2*ne3;
  6514. const int nb00 = src0->nb[0];
  6515. const int nb01 = src0->nb[1];
  6516. const int nb02 = src0->nb[2];
  6517. //const int nb03 = src0->nb[3];
  6518. const int nb10 = src1->nb[0];
  6519. const int nb11 = src1->nb[1];
  6520. //const int nb12 = src1->nb[2];
  6521. //const int nb13 = src1->nb[3];
  6522. //const int nb0 = dst->nb[0];
  6523. const int nb1 = dst->nb[1];
  6524. //const int nb2 = dst->nb[2];
  6525. //const int nb3 = dst->nb[3];
  6526. const int ith = params->ith;
  6527. const int nth = params->nth;
  6528. const int nk = ne00;
  6529. const int nh = nk/2;
  6530. const int ew0 = ggml_up32(ne01);
  6531. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6532. GGML_ASSERT(nb00 == sizeof(float));
  6533. GGML_ASSERT(nb10 == sizeof(float));
  6534. if (params->type == GGML_TASK_INIT) {
  6535. // TODO: fix this memset (wsize is overestimated)
  6536. memset(params->wdata, 0, params->wsize);
  6537. // prepare kernel data (src0)
  6538. {
  6539. float * const wdata = (float *) params->wdata + 0;
  6540. for (int i02 = 0; i02 < ne02; i02++) {
  6541. for (int i01 = 0; i01 < ne01; i01++) {
  6542. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6543. float * dst_data = wdata + i02*ew0*ne00;
  6544. for (int i00 = 0; i00 < ne00; i00++) {
  6545. dst_data[i00*ew0 + i01] = src[i00];
  6546. }
  6547. }
  6548. }
  6549. }
  6550. // prepare source data (src1)
  6551. {
  6552. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6553. for (int i11 = 0; i11 < ne11; i11++) {
  6554. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6555. float * dst_data = wdata;
  6556. for (int i10 = 0; i10 < ne10; i10++) {
  6557. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6558. }
  6559. }
  6560. }
  6561. return;
  6562. }
  6563. if (params->type == GGML_TASK_FINALIZE) {
  6564. return;
  6565. }
  6566. // total rows in dst
  6567. const int nr = ne02;
  6568. // rows per thread
  6569. const int dr = (nr + nth - 1)/nth;
  6570. // row range for this thread
  6571. const int ir0 = dr*ith;
  6572. const int ir1 = MIN(ir0 + dr, nr);
  6573. for (int i1 = ir0; i1 < ir1; i1++) {
  6574. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6575. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6576. dst_data[i0/2] = 0;
  6577. for (int k = -nh; k <= nh; k++) {
  6578. float v = 0.0f;
  6579. ggml_vec_dot_f32(ew0, &v,
  6580. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6581. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6582. dst_data[i0/2] += v;
  6583. }
  6584. }
  6585. }
  6586. }
  6587. static void ggml_compute_forward_conv_1d_2s(
  6588. const struct ggml_compute_params * params,
  6589. const struct ggml_tensor * src0,
  6590. const struct ggml_tensor * src1,
  6591. struct ggml_tensor * dst) {
  6592. switch (src0->type) {
  6593. case GGML_TYPE_F16:
  6594. {
  6595. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6596. } break;
  6597. case GGML_TYPE_F32:
  6598. {
  6599. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6600. } break;
  6601. case GGML_TYPE_Q4_0:
  6602. case GGML_TYPE_Q4_1:
  6603. case GGML_TYPE_I8:
  6604. case GGML_TYPE_I16:
  6605. case GGML_TYPE_I32:
  6606. case GGML_TYPE_COUNT:
  6607. {
  6608. GGML_ASSERT(false);
  6609. } break;
  6610. }
  6611. }
  6612. // ggml_compute_forward_flash_attn
  6613. static void ggml_compute_forward_flash_attn_f32(
  6614. const struct ggml_compute_params * params,
  6615. const struct ggml_tensor * q,
  6616. const struct ggml_tensor * k,
  6617. const struct ggml_tensor * v,
  6618. const bool masked,
  6619. struct ggml_tensor * dst) {
  6620. int64_t t0 = ggml_perf_time_us();
  6621. UNUSED(t0);
  6622. const int neq0 = q->ne[0];
  6623. const int neq1 = q->ne[1];
  6624. const int neq2 = q->ne[2];
  6625. const int neq3 = q->ne[3];
  6626. const int nek0 = k->ne[0];
  6627. const int nek1 = k->ne[1];
  6628. //const int nek2 = k->ne[2];
  6629. //const int nek3 = k->ne[3];
  6630. //const int nev0 = v->ne[0];
  6631. const int nev1 = v->ne[1];
  6632. //const int nev2 = v->ne[2];
  6633. //const int nev3 = v->ne[3];
  6634. const int ne0 = dst->ne[0];
  6635. const int ne1 = dst->ne[1];
  6636. //const int ne2 = dst->ne[2];
  6637. //const int ne3 = dst->ne[3];
  6638. const int nbk0 = k->nb[0];
  6639. const int nbk1 = k->nb[1];
  6640. const int nbk2 = k->nb[2];
  6641. const int nbk3 = k->nb[3];
  6642. const int nbq0 = q->nb[0];
  6643. const int nbq1 = q->nb[1];
  6644. const int nbq2 = q->nb[2];
  6645. const int nbq3 = q->nb[3];
  6646. const int nbv0 = v->nb[0];
  6647. const int nbv1 = v->nb[1];
  6648. const int nbv2 = v->nb[2];
  6649. const int nbv3 = v->nb[3];
  6650. const int nb0 = dst->nb[0];
  6651. const int nb1 = dst->nb[1];
  6652. const int nb2 = dst->nb[2];
  6653. const int nb3 = dst->nb[3];
  6654. const int ith = params->ith;
  6655. const int nth = params->nth;
  6656. const int D = neq0;
  6657. const int N = neq1;
  6658. const int P = nek1 - N;
  6659. const int M = P + N;
  6660. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6661. GGML_ASSERT(ne0 == D);
  6662. GGML_ASSERT(ne1 == N);
  6663. GGML_ASSERT(P >= 0);
  6664. GGML_ASSERT(nbq0 == sizeof(float));
  6665. GGML_ASSERT(nbk0 == sizeof(float));
  6666. GGML_ASSERT(nbv0 == sizeof(float));
  6667. GGML_ASSERT(neq0 == D);
  6668. GGML_ASSERT(nek0 == D);
  6669. GGML_ASSERT(nev1 == D);
  6670. GGML_ASSERT(neq1 == N);
  6671. GGML_ASSERT(nek1 == N + P);
  6672. GGML_ASSERT(nev1 == D);
  6673. // dst cannot be transposed or permuted
  6674. GGML_ASSERT(nb0 == sizeof(float));
  6675. GGML_ASSERT(nb0 <= nb1);
  6676. GGML_ASSERT(nb1 <= nb2);
  6677. GGML_ASSERT(nb2 <= nb3);
  6678. if (params->type == GGML_TASK_INIT) {
  6679. return;
  6680. }
  6681. if (params->type == GGML_TASK_FINALIZE) {
  6682. return;
  6683. }
  6684. // parallelize by q rows using ggml_vec_dot_f32
  6685. // total rows in q
  6686. const int nr = neq1*neq2*neq3;
  6687. // rows per thread
  6688. const int dr = (nr + nth - 1)/nth;
  6689. // row range for this thread
  6690. const int ir0 = dr*ith;
  6691. const int ir1 = MIN(ir0 + dr, nr);
  6692. const float scale = 1.0/sqrt((double) D);
  6693. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6694. for (int ir = ir0; ir < ir1; ++ir) {
  6695. // q indices
  6696. const int iq3 = ir/(neq2*neq1);
  6697. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6698. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6699. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6700. for (int i = M; i < Mup; ++i) {
  6701. S[i] = -INFINITY;
  6702. }
  6703. for (int ic = 0; ic < nek1; ++ic) {
  6704. // k indices
  6705. const int ik3 = iq3;
  6706. const int ik2 = iq2;
  6707. const int ik1 = ic;
  6708. // S indices
  6709. const int i1 = ik1;
  6710. ggml_vec_dot_f32(neq0,
  6711. S + i1,
  6712. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6713. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6714. }
  6715. // scale
  6716. ggml_vec_scale_f32(nek1, S, scale);
  6717. if (masked) {
  6718. for (int i = P; i < M; i++) {
  6719. if (i > P + iq1) {
  6720. S[i] = -INFINITY;
  6721. }
  6722. }
  6723. }
  6724. // softmax
  6725. {
  6726. float max = -INFINITY;
  6727. ggml_vec_max_f32(M, &max, S);
  6728. float sum = 0.0f;
  6729. {
  6730. #ifdef GGML_SOFT_MAX_ACCELERATE
  6731. max = -max;
  6732. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6733. vvexpf(S, S, &Mup);
  6734. ggml_vec_sum_f32(Mup, &sum, S);
  6735. #else
  6736. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6737. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6738. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6739. float * SS = S + i;
  6740. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6741. if (SS[j] == -INFINITY) {
  6742. SS[j] = 0.0f;
  6743. } else {
  6744. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6745. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6746. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6747. sump[j] += val;
  6748. SS[j] = val;
  6749. }
  6750. }
  6751. }
  6752. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6753. sum += sump[i];
  6754. }
  6755. #endif
  6756. }
  6757. assert(sum > 0.0f);
  6758. sum = 1.0/sum;
  6759. ggml_vec_scale_f32(M, S, sum);
  6760. #ifndef NDEBUG
  6761. for (int i = 0; i < M; ++i) {
  6762. assert(!isnan(S[i]));
  6763. assert(!isinf(S[i]));
  6764. }
  6765. #endif
  6766. }
  6767. for (int ic = 0; ic < nev1; ++ic) {
  6768. // dst indices
  6769. const int i1 = iq1;
  6770. const int i2 = iq2;
  6771. const int i3 = iq3;
  6772. ggml_vec_dot_f32(nek1,
  6773. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6774. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6775. S);
  6776. }
  6777. }
  6778. }
  6779. static void ggml_compute_forward_flash_attn_f16(
  6780. const struct ggml_compute_params * params,
  6781. const struct ggml_tensor * q,
  6782. const struct ggml_tensor * k,
  6783. const struct ggml_tensor * v,
  6784. const bool masked,
  6785. struct ggml_tensor * dst) {
  6786. int64_t t0 = ggml_perf_time_us();
  6787. UNUSED(t0);
  6788. const int neq0 = q->ne[0];
  6789. const int neq1 = q->ne[1];
  6790. const int neq2 = q->ne[2];
  6791. const int neq3 = q->ne[3];
  6792. const int nek0 = k->ne[0];
  6793. const int nek1 = k->ne[1];
  6794. //const int nek2 = k->ne[2];
  6795. //const int nek3 = k->ne[3];
  6796. //const int nev0 = v->ne[0];
  6797. const int nev1 = v->ne[1];
  6798. //const int nev2 = v->ne[2];
  6799. //const int nev3 = v->ne[3];
  6800. const int ne0 = dst->ne[0];
  6801. const int ne1 = dst->ne[1];
  6802. //const int ne2 = dst->ne[2];
  6803. //const int ne3 = dst->ne[3];
  6804. const int nbk0 = k->nb[0];
  6805. const int nbk1 = k->nb[1];
  6806. const int nbk2 = k->nb[2];
  6807. const int nbk3 = k->nb[3];
  6808. const int nbq0 = q->nb[0];
  6809. const int nbq1 = q->nb[1];
  6810. const int nbq2 = q->nb[2];
  6811. const int nbq3 = q->nb[3];
  6812. const int nbv0 = v->nb[0];
  6813. const int nbv1 = v->nb[1];
  6814. const int nbv2 = v->nb[2];
  6815. const int nbv3 = v->nb[3];
  6816. const int nb0 = dst->nb[0];
  6817. const int nb1 = dst->nb[1];
  6818. const int nb2 = dst->nb[2];
  6819. const int nb3 = dst->nb[3];
  6820. const int ith = params->ith;
  6821. const int nth = params->nth;
  6822. const int D = neq0;
  6823. const int N = neq1;
  6824. const int P = nek1 - N;
  6825. const int M = P + N;
  6826. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6827. GGML_ASSERT(ne0 == D);
  6828. GGML_ASSERT(ne1 == N);
  6829. GGML_ASSERT(P >= 0);
  6830. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6831. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6832. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6833. GGML_ASSERT(neq0 == D);
  6834. GGML_ASSERT(nek0 == D);
  6835. GGML_ASSERT(nev1 == D);
  6836. GGML_ASSERT(neq1 == N);
  6837. GGML_ASSERT(nek1 == N + P);
  6838. GGML_ASSERT(nev1 == D);
  6839. // dst cannot be transposed or permuted
  6840. GGML_ASSERT(nb0 == sizeof(float));
  6841. GGML_ASSERT(nb0 <= nb1);
  6842. GGML_ASSERT(nb1 <= nb2);
  6843. GGML_ASSERT(nb2 <= nb3);
  6844. if (params->type == GGML_TASK_INIT) {
  6845. return;
  6846. }
  6847. if (params->type == GGML_TASK_FINALIZE) {
  6848. return;
  6849. }
  6850. // parallelize by q rows using ggml_vec_dot_f32
  6851. // total rows in q
  6852. const int nr = neq1*neq2*neq3;
  6853. // rows per thread
  6854. const int dr = (nr + nth - 1)/nth;
  6855. // row range for this thread
  6856. const int ir0 = dr*ith;
  6857. const int ir1 = MIN(ir0 + dr, nr);
  6858. const float scale = 1.0/sqrt((double) D);
  6859. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6860. for (int ir = ir0; ir < ir1; ++ir) {
  6861. // q indices
  6862. const int iq3 = ir/(neq2*neq1);
  6863. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6864. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6865. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6866. for (int i = M; i < Mup; ++i) {
  6867. S[i] = -INFINITY;
  6868. }
  6869. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6870. for (int ic = 0; ic < nek1; ++ic) {
  6871. // k indices
  6872. const int ik3 = iq3;
  6873. const int ik2 = iq2;
  6874. const int ik1 = ic;
  6875. // S indices
  6876. const int i1 = ik1;
  6877. ggml_vec_dot_f16(neq0,
  6878. S + i1,
  6879. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6880. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6881. }
  6882. } else {
  6883. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6884. // k indices
  6885. const int ik3 = iq3;
  6886. const int ik2 = iq2;
  6887. const int ik1 = ic;
  6888. // S indices
  6889. const int i1 = ik1;
  6890. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6891. S + i1,
  6892. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6893. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6894. }
  6895. }
  6896. // scale
  6897. ggml_vec_scale_f32(nek1, S, scale);
  6898. if (masked) {
  6899. for (int i = P; i < M; i++) {
  6900. if (i > P + iq1) {
  6901. S[i] = -INFINITY;
  6902. }
  6903. }
  6904. }
  6905. // softmax
  6906. {
  6907. float max = -INFINITY;
  6908. ggml_vec_max_f32(M, &max, S);
  6909. float sum = 0.0f;
  6910. {
  6911. #ifdef GGML_SOFT_MAX_ACCELERATE
  6912. max = -max;
  6913. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6914. vvexpf(S, S, &Mup);
  6915. ggml_vec_sum_f32(Mup, &sum, S);
  6916. #else
  6917. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6918. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6919. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6920. float * SS = S + i;
  6921. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6922. if (SS[j] == -INFINITY) {
  6923. SS[j] = 0.0f;
  6924. } else {
  6925. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6926. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6927. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6928. sump[j] += val;
  6929. SS[j] = val;
  6930. }
  6931. }
  6932. }
  6933. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6934. sum += sump[i];
  6935. }
  6936. #endif
  6937. }
  6938. assert(sum > 0.0f);
  6939. sum = 1.0/sum;
  6940. ggml_vec_scale_f32(M, S, sum);
  6941. #ifndef NDEBUG
  6942. for (int i = 0; i < M; ++i) {
  6943. assert(!isnan(S[i]));
  6944. assert(!isinf(S[i]));
  6945. }
  6946. #endif
  6947. }
  6948. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6949. for (int i = 0; i < M; i++) {
  6950. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6951. }
  6952. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6953. for (int ic = 0; ic < nev1; ++ic) {
  6954. // dst indices
  6955. const int i1 = iq1;
  6956. const int i2 = iq2;
  6957. const int i3 = iq3;
  6958. ggml_vec_dot_f16(nek1,
  6959. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6960. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6961. S16);
  6962. }
  6963. } else {
  6964. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6965. // dst indices
  6966. const int i1 = iq1;
  6967. const int i2 = iq2;
  6968. const int i3 = iq3;
  6969. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6970. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6971. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6972. S16);
  6973. }
  6974. }
  6975. }
  6976. }
  6977. static void ggml_compute_forward_flash_attn(
  6978. const struct ggml_compute_params * params,
  6979. const struct ggml_tensor * q,
  6980. const struct ggml_tensor * k,
  6981. const struct ggml_tensor * v,
  6982. const bool masked,
  6983. struct ggml_tensor * dst) {
  6984. switch (q->type) {
  6985. case GGML_TYPE_F16:
  6986. {
  6987. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6988. } break;
  6989. case GGML_TYPE_F32:
  6990. {
  6991. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6992. } break;
  6993. case GGML_TYPE_Q4_0:
  6994. case GGML_TYPE_Q4_1:
  6995. case GGML_TYPE_I8:
  6996. case GGML_TYPE_I16:
  6997. case GGML_TYPE_I32:
  6998. case GGML_TYPE_COUNT:
  6999. {
  7000. GGML_ASSERT(false);
  7001. } break;
  7002. }
  7003. }
  7004. // ggml_compute_forward_flash_ff
  7005. static void ggml_compute_forward_flash_ff_f16(
  7006. const struct ggml_compute_params * params,
  7007. const struct ggml_tensor * a, // F16
  7008. const struct ggml_tensor * b0, // F16 fc_w
  7009. const struct ggml_tensor * b1, // F32 fc_b
  7010. const struct ggml_tensor * c0, // F16 proj_w
  7011. const struct ggml_tensor * c1, // F32 proj_b
  7012. struct ggml_tensor * dst) {
  7013. int64_t t0 = ggml_perf_time_us();
  7014. UNUSED(t0);
  7015. const int nea0 = a->ne[0];
  7016. const int nea1 = a->ne[1];
  7017. const int nea2 = a->ne[2];
  7018. const int nea3 = a->ne[3];
  7019. const int neb00 = b0->ne[0];
  7020. const int neb01 = b0->ne[1];
  7021. //const int neb02 = b0->ne[2];
  7022. //const int neb03 = b0->ne[3];
  7023. const int neb10 = b1->ne[0];
  7024. const int neb11 = b1->ne[1];
  7025. //const int neb12 = b1->ne[2];
  7026. //const int neb13 = b1->ne[3];
  7027. const int nec00 = c0->ne[0];
  7028. const int nec01 = c0->ne[1];
  7029. //const int nec02 = c0->ne[2];
  7030. //const int nec03 = c0->ne[3];
  7031. const int nec10 = c1->ne[0];
  7032. const int nec11 = c1->ne[1];
  7033. //const int nec12 = c1->ne[2];
  7034. //const int nec13 = c1->ne[3];
  7035. const int ne0 = dst->ne[0];
  7036. const int ne1 = dst->ne[1];
  7037. const int ne2 = dst->ne[2];
  7038. //const int ne3 = dst->ne[3];
  7039. const int nba0 = a->nb[0];
  7040. const int nba1 = a->nb[1];
  7041. const int nba2 = a->nb[2];
  7042. const int nba3 = a->nb[3];
  7043. const int nbb00 = b0->nb[0];
  7044. const int nbb01 = b0->nb[1];
  7045. const int nbb02 = b0->nb[2];
  7046. const int nbb03 = b0->nb[3];
  7047. const int nbb10 = b1->nb[0];
  7048. //const int nbb11 = b1->nb[1];
  7049. //const int nbb12 = b1->nb[2];
  7050. //const int nbb13 = b1->nb[3];
  7051. const int nbc00 = c0->nb[0];
  7052. const int nbc01 = c0->nb[1];
  7053. const int nbc02 = c0->nb[2];
  7054. const int nbc03 = c0->nb[3];
  7055. const int nbc10 = c1->nb[0];
  7056. //const int nbc11 = c1->nb[1];
  7057. //const int nbc12 = c1->nb[2];
  7058. //const int nbc13 = c1->nb[3];
  7059. const int nb0 = dst->nb[0];
  7060. const int nb1 = dst->nb[1];
  7061. const int nb2 = dst->nb[2];
  7062. const int nb3 = dst->nb[3];
  7063. const int ith = params->ith;
  7064. const int nth = params->nth;
  7065. const int D = nea0;
  7066. //const int N = nea1;
  7067. const int M = neb01;
  7068. GGML_ASSERT(ne0 == nea0);
  7069. GGML_ASSERT(ne1 == nea1);
  7070. GGML_ASSERT(ne2 == nea2);
  7071. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7072. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7073. GGML_ASSERT(nbb10 == sizeof(float));
  7074. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7075. GGML_ASSERT(nbc10 == sizeof(float));
  7076. GGML_ASSERT(neb00 == D);
  7077. GGML_ASSERT(neb01 == M);
  7078. GGML_ASSERT(neb10 == M);
  7079. GGML_ASSERT(neb11 == 1);
  7080. GGML_ASSERT(nec00 == M);
  7081. GGML_ASSERT(nec01 == D);
  7082. GGML_ASSERT(nec10 == D);
  7083. GGML_ASSERT(nec11 == 1);
  7084. // dst cannot be transposed or permuted
  7085. GGML_ASSERT(nb0 == sizeof(float));
  7086. GGML_ASSERT(nb0 <= nb1);
  7087. GGML_ASSERT(nb1 <= nb2);
  7088. GGML_ASSERT(nb2 <= nb3);
  7089. if (params->type == GGML_TASK_INIT) {
  7090. return;
  7091. }
  7092. if (params->type == GGML_TASK_FINALIZE) {
  7093. return;
  7094. }
  7095. // parallelize by a rows using ggml_vec_dot_f32
  7096. // total rows in a
  7097. const int nr = nea1*nea2*nea3;
  7098. // rows per thread
  7099. const int dr = (nr + nth - 1)/nth;
  7100. // row range for this thread
  7101. const int ir0 = dr*ith;
  7102. const int ir1 = MIN(ir0 + dr, nr);
  7103. for (int ir = ir0; ir < ir1; ++ir) {
  7104. // a indices
  7105. const int ia3 = ir/(nea2*nea1);
  7106. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7107. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7108. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7109. for (int ic = 0; ic < neb01; ++ic) {
  7110. // b0 indices
  7111. const int ib03 = ia3;
  7112. const int ib02 = ia2;
  7113. const int ib01 = ic;
  7114. // S indices
  7115. const int i1 = ib01;
  7116. ggml_vec_dot_f16(nea0,
  7117. S + i1,
  7118. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7119. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7120. }
  7121. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7122. //ggml_vec_gelu_f32(neb01, S, S);
  7123. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7124. for (int i = 0; i < M; i++) {
  7125. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7126. }
  7127. ggml_vec_gelu_f16(neb01, S16, S16);
  7128. {
  7129. // dst indices
  7130. const int i1 = ia1;
  7131. const int i2 = ia2;
  7132. const int i3 = ia3;
  7133. for (int ic = 0; ic < nec01; ++ic) {
  7134. ggml_vec_dot_f16(neb01,
  7135. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7136. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7137. S16);
  7138. }
  7139. ggml_vec_add_f32(nec01,
  7140. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7141. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7142. (float *) c1->data);
  7143. }
  7144. }
  7145. }
  7146. static void ggml_compute_forward_flash_ff(
  7147. const struct ggml_compute_params * params,
  7148. const struct ggml_tensor * a,
  7149. const struct ggml_tensor * b0,
  7150. const struct ggml_tensor * b1,
  7151. const struct ggml_tensor * c0,
  7152. const struct ggml_tensor * c1,
  7153. struct ggml_tensor * dst) {
  7154. switch (b0->type) {
  7155. case GGML_TYPE_F16:
  7156. {
  7157. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7158. } break;
  7159. case GGML_TYPE_F32:
  7160. {
  7161. GGML_ASSERT(false); // TODO
  7162. } break;
  7163. case GGML_TYPE_Q4_0:
  7164. case GGML_TYPE_Q4_1:
  7165. case GGML_TYPE_I8:
  7166. case GGML_TYPE_I16:
  7167. case GGML_TYPE_I32:
  7168. case GGML_TYPE_COUNT:
  7169. {
  7170. GGML_ASSERT(false);
  7171. } break;
  7172. }
  7173. }
  7174. /////////////////////////////////
  7175. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7176. GGML_ASSERT(params);
  7177. switch (tensor->op) {
  7178. case GGML_OP_DUP:
  7179. {
  7180. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7181. } break;
  7182. case GGML_OP_ADD:
  7183. {
  7184. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7185. } break;
  7186. case GGML_OP_SUB:
  7187. {
  7188. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7189. } break;
  7190. case GGML_OP_MUL:
  7191. {
  7192. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7193. } break;
  7194. case GGML_OP_DIV:
  7195. {
  7196. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7197. } break;
  7198. case GGML_OP_SQR:
  7199. {
  7200. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7201. } break;
  7202. case GGML_OP_SQRT:
  7203. {
  7204. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7205. } break;
  7206. case GGML_OP_SUM:
  7207. {
  7208. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7209. } break;
  7210. case GGML_OP_MEAN:
  7211. {
  7212. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7213. } break;
  7214. case GGML_OP_REPEAT:
  7215. {
  7216. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7217. } break;
  7218. case GGML_OP_ABS:
  7219. {
  7220. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7221. } break;
  7222. case GGML_OP_SGN:
  7223. {
  7224. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7225. } break;
  7226. case GGML_OP_NEG:
  7227. {
  7228. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7229. } break;
  7230. case GGML_OP_STEP:
  7231. {
  7232. ggml_compute_forward_step(params, tensor->src0, tensor);
  7233. } break;
  7234. case GGML_OP_RELU:
  7235. {
  7236. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7237. } break;
  7238. case GGML_OP_GELU:
  7239. {
  7240. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7241. } break;
  7242. case GGML_OP_SILU:
  7243. {
  7244. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7245. } break;
  7246. case GGML_OP_NORM:
  7247. {
  7248. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7249. } break;
  7250. case GGML_OP_RMS_NORM:
  7251. {
  7252. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7253. } break;
  7254. case GGML_OP_MUL_MAT:
  7255. {
  7256. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7257. } break;
  7258. case GGML_OP_SCALE:
  7259. {
  7260. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7261. } break;
  7262. case GGML_OP_CPY:
  7263. {
  7264. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7265. } break;
  7266. case GGML_OP_RESHAPE:
  7267. {
  7268. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7269. } break;
  7270. case GGML_OP_VIEW:
  7271. {
  7272. ggml_compute_forward_view(params, tensor->src0);
  7273. } break;
  7274. case GGML_OP_PERMUTE:
  7275. {
  7276. ggml_compute_forward_permute(params, tensor->src0);
  7277. } break;
  7278. case GGML_OP_TRANSPOSE:
  7279. {
  7280. ggml_compute_forward_transpose(params, tensor->src0);
  7281. } break;
  7282. case GGML_OP_GET_ROWS:
  7283. {
  7284. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7285. } break;
  7286. case GGML_OP_DIAG_MASK_INF:
  7287. {
  7288. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7289. } break;
  7290. case GGML_OP_SOFT_MAX:
  7291. {
  7292. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7293. } break;
  7294. case GGML_OP_ROPE:
  7295. {
  7296. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7297. } break;
  7298. case GGML_OP_CONV_1D_1S:
  7299. {
  7300. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7301. } break;
  7302. case GGML_OP_CONV_1D_2S:
  7303. {
  7304. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7305. } break;
  7306. case GGML_OP_FLASH_ATTN:
  7307. {
  7308. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7309. GGML_ASSERT(t == 0 || t == 1);
  7310. bool masked = t != 0;
  7311. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7312. } break;
  7313. case GGML_OP_FLASH_FF:
  7314. {
  7315. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7316. } break;
  7317. case GGML_OP_NONE:
  7318. {
  7319. // nop
  7320. } break;
  7321. case GGML_OP_COUNT:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. ////////////////////////////////////////////////////////////////////////////////
  7328. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7329. struct ggml_tensor * src0 = tensor->src0;
  7330. struct ggml_tensor * src1 = tensor->src1;
  7331. switch (tensor->op) {
  7332. case GGML_OP_DUP:
  7333. {
  7334. if (src0->grad) {
  7335. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7336. }
  7337. } break;
  7338. case GGML_OP_ADD:
  7339. {
  7340. if (src0->grad) {
  7341. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7342. }
  7343. if (src1->grad) {
  7344. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7345. }
  7346. } break;
  7347. case GGML_OP_SUB:
  7348. {
  7349. if (src0->grad) {
  7350. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7351. }
  7352. if (src1->grad) {
  7353. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7354. }
  7355. } break;
  7356. case GGML_OP_MUL:
  7357. {
  7358. if (src0->grad) {
  7359. src0->grad =
  7360. ggml_add_impl(ctx,
  7361. src0->grad,
  7362. ggml_mul(ctx, src1, tensor->grad),
  7363. inplace);
  7364. }
  7365. if (src1->grad) {
  7366. src1->grad =
  7367. ggml_add_impl(ctx,
  7368. src1->grad,
  7369. ggml_mul(ctx, src0, tensor->grad),
  7370. inplace);
  7371. }
  7372. } break;
  7373. case GGML_OP_DIV:
  7374. {
  7375. if (src0->grad) {
  7376. src0->grad =
  7377. ggml_add_impl(ctx,
  7378. src0->grad,
  7379. ggml_div(ctx, tensor->grad, src1),
  7380. inplace);
  7381. }
  7382. if (src1->grad) {
  7383. src1->grad =
  7384. ggml_sub_impl(ctx,
  7385. src1->grad,
  7386. ggml_mul(ctx,
  7387. tensor->grad,
  7388. ggml_div(ctx, tensor, src1)),
  7389. inplace);
  7390. }
  7391. } break;
  7392. case GGML_OP_SQR:
  7393. {
  7394. if (src0->grad) {
  7395. src0->grad =
  7396. ggml_add_impl(ctx,
  7397. src0->grad,
  7398. ggml_mul(ctx,
  7399. ggml_mul(ctx, src0, tensor->grad),
  7400. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7401. inplace);
  7402. }
  7403. } break;
  7404. case GGML_OP_SQRT:
  7405. {
  7406. if (src0->grad) {
  7407. src0->grad =
  7408. ggml_add_impl(ctx,
  7409. src0->grad,
  7410. ggml_div(ctx,
  7411. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7412. tensor),
  7413. inplace);
  7414. }
  7415. } break;
  7416. case GGML_OP_SUM:
  7417. {
  7418. if (src0->grad) {
  7419. src0->grad =
  7420. ggml_add_impl(ctx,
  7421. src0->grad,
  7422. ggml_repeat(ctx, tensor->grad, src0->grad),
  7423. inplace);
  7424. }
  7425. } break;
  7426. case GGML_OP_MEAN:
  7427. {
  7428. GGML_ASSERT(false); // TODO: implement
  7429. } break;
  7430. case GGML_OP_REPEAT:
  7431. {
  7432. if (src0->grad) {
  7433. src0->grad =
  7434. ggml_add_impl(ctx,
  7435. src0->grad,
  7436. ggml_sum(ctx, tensor->grad),
  7437. inplace);
  7438. }
  7439. } break;
  7440. case GGML_OP_ABS:
  7441. {
  7442. if (src0->grad) {
  7443. src0->grad =
  7444. ggml_add_impl(ctx,
  7445. src0->grad,
  7446. ggml_mul(ctx,
  7447. ggml_sgn(ctx, src0),
  7448. tensor->grad),
  7449. inplace);
  7450. }
  7451. } break;
  7452. case GGML_OP_SGN:
  7453. {
  7454. if (src0->grad) {
  7455. // noop
  7456. }
  7457. } break;
  7458. case GGML_OP_NEG:
  7459. {
  7460. if (src0->grad) {
  7461. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7462. }
  7463. } break;
  7464. case GGML_OP_STEP:
  7465. {
  7466. if (src0->grad) {
  7467. // noop
  7468. }
  7469. } break;
  7470. case GGML_OP_RELU:
  7471. {
  7472. if (src0->grad) {
  7473. src0->grad = ggml_sub_impl(ctx,
  7474. src0->grad,
  7475. ggml_mul(ctx,
  7476. ggml_step(ctx, src0),
  7477. tensor->grad),
  7478. inplace);
  7479. }
  7480. } break;
  7481. case GGML_OP_GELU:
  7482. {
  7483. GGML_ASSERT(false); // TODO: not implemented
  7484. } break;
  7485. case GGML_OP_SILU:
  7486. {
  7487. GGML_ASSERT(false); // TODO: not implemented
  7488. } break;
  7489. case GGML_OP_NORM:
  7490. {
  7491. GGML_ASSERT(false); // TODO: not implemented
  7492. } break;
  7493. case GGML_OP_RMS_NORM:
  7494. {
  7495. GGML_ASSERT(false); // TODO: not implemented
  7496. } break;
  7497. case GGML_OP_MUL_MAT:
  7498. {
  7499. if (src0->grad) {
  7500. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7501. GGML_ASSERT(false);
  7502. }
  7503. if (src1->grad) {
  7504. src1->grad =
  7505. ggml_add_impl(ctx,
  7506. src1->grad,
  7507. // TODO: fix transpose, the node will break the graph connections
  7508. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7509. inplace);
  7510. }
  7511. } break;
  7512. case GGML_OP_SCALE:
  7513. {
  7514. GGML_ASSERT(false); // TODO: not implemented
  7515. } break;
  7516. case GGML_OP_CPY:
  7517. {
  7518. GGML_ASSERT(false); // TODO: not implemented
  7519. } break;
  7520. case GGML_OP_RESHAPE:
  7521. {
  7522. GGML_ASSERT(false); // TODO: not implemented
  7523. } break;
  7524. case GGML_OP_VIEW:
  7525. {
  7526. GGML_ASSERT(false); // not supported
  7527. } break;
  7528. case GGML_OP_PERMUTE:
  7529. {
  7530. GGML_ASSERT(false); // TODO: not implemented
  7531. } break;
  7532. case GGML_OP_TRANSPOSE:
  7533. {
  7534. GGML_ASSERT(false); // TODO: not implemented
  7535. } break;
  7536. case GGML_OP_GET_ROWS:
  7537. {
  7538. GGML_ASSERT(false); // TODO: not implemented
  7539. } break;
  7540. case GGML_OP_DIAG_MASK_INF:
  7541. {
  7542. GGML_ASSERT(false); // TODO: not implemented
  7543. } break;
  7544. case GGML_OP_SOFT_MAX:
  7545. {
  7546. GGML_ASSERT(false); // TODO: not implemented
  7547. } break;
  7548. case GGML_OP_ROPE:
  7549. {
  7550. GGML_ASSERT(false); // TODO: not implemented
  7551. } break;
  7552. case GGML_OP_CONV_1D_1S:
  7553. {
  7554. GGML_ASSERT(false); // TODO: not implemented
  7555. } break;
  7556. case GGML_OP_CONV_1D_2S:
  7557. {
  7558. GGML_ASSERT(false); // TODO: not implemented
  7559. } break;
  7560. case GGML_OP_FLASH_ATTN:
  7561. {
  7562. GGML_ASSERT(false); // not supported
  7563. } break;
  7564. case GGML_OP_FLASH_FF:
  7565. {
  7566. GGML_ASSERT(false); // not supported
  7567. } break;
  7568. case GGML_OP_NONE:
  7569. {
  7570. // nop
  7571. } break;
  7572. case GGML_OP_COUNT:
  7573. {
  7574. GGML_ASSERT(false);
  7575. } break;
  7576. }
  7577. }
  7578. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7579. if (node->grad == NULL) {
  7580. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7581. // it can also happen during forward pass, if the user performs computations with constants
  7582. if (node->op != GGML_OP_NONE) {
  7583. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7584. }
  7585. }
  7586. // check if already visited
  7587. for (int i = 0; i < cgraph->n_nodes; i++) {
  7588. if (cgraph->nodes[i] == node) {
  7589. return;
  7590. }
  7591. }
  7592. for (int i = 0; i < cgraph->n_leafs; i++) {
  7593. if (cgraph->leafs[i] == node) {
  7594. return;
  7595. }
  7596. }
  7597. if (node->src0) {
  7598. ggml_visit_parents(cgraph, node->src0);
  7599. }
  7600. if (node->src1) {
  7601. ggml_visit_parents(cgraph, node->src1);
  7602. }
  7603. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7604. if (node->opt[i]) {
  7605. ggml_visit_parents(cgraph, node->opt[i]);
  7606. }
  7607. }
  7608. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7609. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7610. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7611. cgraph->leafs[cgraph->n_leafs] = node;
  7612. cgraph->n_leafs++;
  7613. } else {
  7614. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7615. cgraph->nodes[cgraph->n_nodes] = node;
  7616. cgraph->grads[cgraph->n_nodes] = node->grad;
  7617. cgraph->n_nodes++;
  7618. }
  7619. }
  7620. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7621. if (!expand) {
  7622. cgraph->n_nodes = 0;
  7623. cgraph->n_leafs = 0;
  7624. }
  7625. const int n0 = cgraph->n_nodes;
  7626. UNUSED(n0);
  7627. ggml_visit_parents(cgraph, tensor);
  7628. const int n_new = cgraph->n_nodes - n0;
  7629. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7630. if (n_new > 0) {
  7631. // the last added node should always be starting point
  7632. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7633. }
  7634. }
  7635. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7636. ggml_build_forward_impl(cgraph, tensor, true);
  7637. }
  7638. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7639. struct ggml_cgraph result = {
  7640. /*.n_nodes =*/ 0,
  7641. /*.n_leafs =*/ 0,
  7642. /*.n_threads =*/ 0,
  7643. /*.work_size =*/ 0,
  7644. /*.work =*/ NULL,
  7645. /*.nodes =*/ { NULL },
  7646. /*.grads =*/ { NULL },
  7647. /*.leafs =*/ { NULL },
  7648. /*.perf_runs =*/ 0,
  7649. /*.perf_cycles =*/ 0,
  7650. /*.perf_time_us =*/ 0,
  7651. };
  7652. ggml_build_forward_impl(&result, tensor, false);
  7653. return result;
  7654. }
  7655. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7656. struct ggml_cgraph result = *gf;
  7657. GGML_ASSERT(gf->n_nodes > 0);
  7658. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7659. if (keep) {
  7660. for (int i = 0; i < gf->n_nodes; i++) {
  7661. struct ggml_tensor * node = gf->nodes[i];
  7662. if (node->grad) {
  7663. node->grad = ggml_dup_tensor(ctx, node);
  7664. gf->grads[i] = node->grad;
  7665. }
  7666. }
  7667. }
  7668. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7669. struct ggml_tensor * node = gf->nodes[i];
  7670. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7671. if (node->grad) {
  7672. ggml_compute_backward(ctx, node, keep);
  7673. }
  7674. }
  7675. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7676. struct ggml_tensor * node = gf->nodes[i];
  7677. if (node->is_param) {
  7678. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7679. ggml_build_forward_impl(&result, node->grad, true);
  7680. }
  7681. }
  7682. return result;
  7683. }
  7684. //
  7685. // thread data
  7686. //
  7687. // synchronization is done via busy loops
  7688. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7689. //
  7690. #ifdef __APPLE__
  7691. //#include <os/lock.h>
  7692. //
  7693. //typedef os_unfair_lock ggml_lock_t;
  7694. //
  7695. //#define ggml_lock_init(x) UNUSED(x)
  7696. //#define ggml_lock_destroy(x) UNUSED(x)
  7697. //#define ggml_lock_lock os_unfair_lock_lock
  7698. //#define ggml_lock_unlock os_unfair_lock_unlock
  7699. //
  7700. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7701. typedef int ggml_lock_t;
  7702. #define ggml_lock_init(x) UNUSED(x)
  7703. #define ggml_lock_destroy(x) UNUSED(x)
  7704. #define ggml_lock_lock(x) UNUSED(x)
  7705. #define ggml_lock_unlock(x) UNUSED(x)
  7706. #define GGML_LOCK_INITIALIZER 0
  7707. typedef pthread_t ggml_thread_t;
  7708. #define ggml_thread_create pthread_create
  7709. #define ggml_thread_join pthread_join
  7710. #else
  7711. //typedef pthread_spinlock_t ggml_lock_t;
  7712. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7713. //#define ggml_lock_destroy pthread_spin_destroy
  7714. //#define ggml_lock_lock pthread_spin_lock
  7715. //#define ggml_lock_unlock pthread_spin_unlock
  7716. typedef int ggml_lock_t;
  7717. #define ggml_lock_init(x) UNUSED(x)
  7718. #define ggml_lock_destroy(x) UNUSED(x)
  7719. #define ggml_lock_lock(x) UNUSED(x)
  7720. #define ggml_lock_unlock(x) UNUSED(x)
  7721. #define GGML_LOCK_INITIALIZER 0
  7722. typedef pthread_t ggml_thread_t;
  7723. #define ggml_thread_create pthread_create
  7724. #define ggml_thread_join pthread_join
  7725. #endif
  7726. struct ggml_compute_state_shared {
  7727. ggml_lock_t spin;
  7728. int n_threads;
  7729. // synchronization primitives
  7730. atomic_int n_ready;
  7731. atomic_bool has_work;
  7732. atomic_bool stop; // stop all threads
  7733. };
  7734. struct ggml_compute_state {
  7735. ggml_thread_t thrd;
  7736. struct ggml_compute_params params;
  7737. struct ggml_tensor * node;
  7738. struct ggml_compute_state_shared * shared;
  7739. };
  7740. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7741. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7742. const int n_threads = state->shared->n_threads;
  7743. while (true) {
  7744. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7745. atomic_store(&state->shared->has_work, false);
  7746. } else {
  7747. while (atomic_load(&state->shared->has_work)) {
  7748. if (atomic_load(&state->shared->stop)) {
  7749. return 0;
  7750. }
  7751. ggml_lock_lock (&state->shared->spin);
  7752. ggml_lock_unlock(&state->shared->spin);
  7753. }
  7754. }
  7755. atomic_fetch_sub(&state->shared->n_ready, 1);
  7756. // wait for work
  7757. while (!atomic_load(&state->shared->has_work)) {
  7758. if (atomic_load(&state->shared->stop)) {
  7759. return 0;
  7760. }
  7761. ggml_lock_lock (&state->shared->spin);
  7762. ggml_lock_unlock(&state->shared->spin);
  7763. }
  7764. // check if we should stop
  7765. if (atomic_load(&state->shared->stop)) {
  7766. break;
  7767. }
  7768. if (state->node) {
  7769. if (state->params.ith < state->params.nth) {
  7770. ggml_compute_forward(&state->params, state->node);
  7771. }
  7772. state->node = NULL;
  7773. } else {
  7774. break;
  7775. }
  7776. }
  7777. return 0;
  7778. }
  7779. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7780. const int n_threads = cgraph->n_threads;
  7781. struct ggml_compute_state_shared state_shared = {
  7782. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7783. /*.n_threads =*/ n_threads,
  7784. /*.n_ready =*/ 0,
  7785. /*.has_work =*/ false,
  7786. /*.stop =*/ false,
  7787. };
  7788. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7789. // create thread pool
  7790. if (n_threads > 1) {
  7791. ggml_lock_init(&state_shared.spin);
  7792. atomic_store(&state_shared.has_work, true);
  7793. for (int j = 0; j < n_threads - 1; j++) {
  7794. workers[j] = (struct ggml_compute_state) {
  7795. .thrd = 0,
  7796. .params = {
  7797. .type = GGML_TASK_COMPUTE,
  7798. .ith = j + 1,
  7799. .nth = n_threads,
  7800. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7801. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7802. },
  7803. .node = NULL,
  7804. .shared = &state_shared,
  7805. };
  7806. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7807. GGML_ASSERT(rc == 0);
  7808. UNUSED(rc);
  7809. }
  7810. }
  7811. // initialize tasks + work buffer
  7812. {
  7813. size_t work_size = 0;
  7814. // thread scheduling for the different operations
  7815. for (int i = 0; i < cgraph->n_nodes; i++) {
  7816. struct ggml_tensor * node = cgraph->nodes[i];
  7817. switch (node->op) {
  7818. case GGML_OP_DUP:
  7819. {
  7820. node->n_tasks = 1;
  7821. } break;
  7822. case GGML_OP_ADD:
  7823. {
  7824. node->n_tasks = n_threads;
  7825. } break;
  7826. case GGML_OP_SUB:
  7827. case GGML_OP_MUL:
  7828. case GGML_OP_DIV:
  7829. case GGML_OP_SQR:
  7830. case GGML_OP_SQRT:
  7831. case GGML_OP_SUM:
  7832. case GGML_OP_MEAN:
  7833. case GGML_OP_REPEAT:
  7834. case GGML_OP_ABS:
  7835. case GGML_OP_SGN:
  7836. case GGML_OP_NEG:
  7837. case GGML_OP_STEP:
  7838. case GGML_OP_RELU:
  7839. {
  7840. node->n_tasks = 1;
  7841. } break;
  7842. case GGML_OP_GELU:
  7843. {
  7844. node->n_tasks = n_threads;
  7845. } break;
  7846. case GGML_OP_SILU:
  7847. {
  7848. node->n_tasks = n_threads;
  7849. } break;
  7850. case GGML_OP_NORM:
  7851. case GGML_OP_RMS_NORM:
  7852. {
  7853. node->n_tasks = n_threads;
  7854. } break;
  7855. case GGML_OP_MUL_MAT:
  7856. {
  7857. node->n_tasks = n_threads;
  7858. // TODO: use different scheduling for different matrix sizes
  7859. //const int nr0 = ggml_nrows(node->src0);
  7860. //const int nr1 = ggml_nrows(node->src1);
  7861. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7862. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7863. size_t cur = 0;
  7864. // TODO: better way to determine if the matrix is transposed
  7865. if (node->src0->nb[1] < node->src0->nb[0]) {
  7866. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7867. // TODO: overestimated by factor of x2 for FP16
  7868. } else {
  7869. if (node->src0->type == GGML_TYPE_F16 &&
  7870. node->src1->type == GGML_TYPE_F32) {
  7871. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7872. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7873. node->n_tasks = 1; // TODO: this actually is doing nothing
  7874. // the threads are still spinning
  7875. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7876. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7877. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7878. //printf("cur = %zu\n", cur);
  7879. } else {
  7880. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7881. }
  7882. #else
  7883. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7884. #endif
  7885. } else if (node->src0->type == GGML_TYPE_F32 &&
  7886. node->src1->type == GGML_TYPE_F32) {
  7887. cur = 0;
  7888. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7889. node->src1->type == GGML_TYPE_F32) {
  7890. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7891. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7892. node->n_tasks = 1;
  7893. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7894. } else {
  7895. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7896. }
  7897. #else
  7898. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7899. #endif
  7900. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7901. node->src1->type == GGML_TYPE_F32) {
  7902. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7903. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7904. node->n_tasks = 1;
  7905. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7906. } else {
  7907. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7908. }
  7909. #else
  7910. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7911. #endif
  7912. } else {
  7913. GGML_ASSERT(false);
  7914. }
  7915. }
  7916. work_size = MAX(work_size, cur);
  7917. } break;
  7918. case GGML_OP_SCALE:
  7919. {
  7920. node->n_tasks = n_threads;
  7921. } break;
  7922. case GGML_OP_CPY:
  7923. case GGML_OP_RESHAPE:
  7924. case GGML_OP_VIEW:
  7925. case GGML_OP_PERMUTE:
  7926. case GGML_OP_TRANSPOSE:
  7927. case GGML_OP_GET_ROWS:
  7928. case GGML_OP_DIAG_MASK_INF:
  7929. {
  7930. node->n_tasks = 1;
  7931. } break;
  7932. case GGML_OP_SOFT_MAX:
  7933. {
  7934. node->n_tasks = n_threads;
  7935. } break;
  7936. case GGML_OP_ROPE:
  7937. {
  7938. node->n_tasks = 1;
  7939. } break;
  7940. case GGML_OP_CONV_1D_1S:
  7941. case GGML_OP_CONV_1D_2S:
  7942. {
  7943. node->n_tasks = n_threads;
  7944. GGML_ASSERT(node->src0->ne[3] == 1);
  7945. GGML_ASSERT(node->src1->ne[2] == 1);
  7946. GGML_ASSERT(node->src1->ne[3] == 1);
  7947. size_t cur = 0;
  7948. const int nk = node->src0->ne[0];
  7949. if (node->src0->type == GGML_TYPE_F16 &&
  7950. node->src1->type == GGML_TYPE_F32) {
  7951. cur = sizeof(ggml_fp16_t)*(
  7952. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7953. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7954. );
  7955. } else if (node->src0->type == GGML_TYPE_F32 &&
  7956. node->src1->type == GGML_TYPE_F32) {
  7957. cur = sizeof(float)*(
  7958. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7959. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7960. );
  7961. } else {
  7962. GGML_ASSERT(false);
  7963. }
  7964. work_size = MAX(work_size, cur);
  7965. } break;
  7966. case GGML_OP_FLASH_ATTN:
  7967. {
  7968. node->n_tasks = n_threads;
  7969. size_t cur = 0;
  7970. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7971. if (node->src1->type == GGML_TYPE_F32) {
  7972. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7973. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7974. }
  7975. if (node->src1->type == GGML_TYPE_F16) {
  7976. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7977. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7978. }
  7979. work_size = MAX(work_size, cur);
  7980. } break;
  7981. case GGML_OP_FLASH_FF:
  7982. {
  7983. node->n_tasks = n_threads;
  7984. size_t cur = 0;
  7985. if (node->src1->type == GGML_TYPE_F32) {
  7986. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7987. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7988. }
  7989. if (node->src1->type == GGML_TYPE_F16) {
  7990. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7991. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7992. }
  7993. work_size = MAX(work_size, cur);
  7994. } break;
  7995. case GGML_OP_NONE:
  7996. {
  7997. node->n_tasks = 1;
  7998. } break;
  7999. case GGML_OP_COUNT:
  8000. {
  8001. GGML_ASSERT(false);
  8002. } break;
  8003. }
  8004. }
  8005. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8006. GGML_ASSERT(false); // TODO: better handling
  8007. }
  8008. if (work_size > 0 && cgraph->work == NULL) {
  8009. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8010. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8011. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8012. }
  8013. }
  8014. const int64_t perf_start_cycles = ggml_perf_cycles();
  8015. const int64_t perf_start_time_us = ggml_perf_time_us();
  8016. for (int i = 0; i < cgraph->n_nodes; i++) {
  8017. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8018. struct ggml_tensor * node = cgraph->nodes[i];
  8019. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8020. //if (node->grad == NULL && node->perf_runs > 0) {
  8021. // continue;
  8022. //}
  8023. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8024. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8025. // INIT
  8026. struct ggml_compute_params params = {
  8027. /*.type =*/ GGML_TASK_INIT,
  8028. /*.ith =*/ 0,
  8029. /*.nth =*/ node->n_tasks,
  8030. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8031. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8032. };
  8033. ggml_compute_forward(&params, node);
  8034. // COMPUTE
  8035. if (node->n_tasks > 1) {
  8036. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8037. atomic_store(&state_shared.has_work, false);
  8038. }
  8039. while (atomic_load(&state_shared.has_work)) {
  8040. ggml_lock_lock (&state_shared.spin);
  8041. ggml_lock_unlock(&state_shared.spin);
  8042. }
  8043. // launch thread pool
  8044. for (int j = 0; j < n_threads - 1; j++) {
  8045. workers[j].params = (struct ggml_compute_params) {
  8046. .type = GGML_TASK_COMPUTE,
  8047. .ith = j + 1,
  8048. .nth = node->n_tasks,
  8049. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8050. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8051. };
  8052. workers[j].node = node;
  8053. }
  8054. atomic_fetch_sub(&state_shared.n_ready, 1);
  8055. while (atomic_load(&state_shared.n_ready) > 0) {
  8056. ggml_lock_lock (&state_shared.spin);
  8057. ggml_lock_unlock(&state_shared.spin);
  8058. }
  8059. atomic_store(&state_shared.has_work, true);
  8060. }
  8061. params.type = GGML_TASK_COMPUTE;
  8062. ggml_compute_forward(&params, node);
  8063. // wait for thread pool
  8064. if (node->n_tasks > 1) {
  8065. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8066. atomic_store(&state_shared.has_work, false);
  8067. }
  8068. while (atomic_load(&state_shared.has_work)) {
  8069. ggml_lock_lock (&state_shared.spin);
  8070. ggml_lock_unlock(&state_shared.spin);
  8071. }
  8072. atomic_fetch_sub(&state_shared.n_ready, 1);
  8073. while (atomic_load(&state_shared.n_ready) != 0) {
  8074. ggml_lock_lock (&state_shared.spin);
  8075. ggml_lock_unlock(&state_shared.spin);
  8076. }
  8077. }
  8078. // FINALIZE
  8079. if (node->n_tasks > 1) {
  8080. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8081. atomic_store(&state_shared.has_work, false);
  8082. }
  8083. while (atomic_load(&state_shared.has_work)) {
  8084. ggml_lock_lock (&state_shared.spin);
  8085. ggml_lock_unlock(&state_shared.spin);
  8086. }
  8087. // launch thread pool
  8088. for (int j = 0; j < n_threads - 1; j++) {
  8089. workers[j].params = (struct ggml_compute_params) {
  8090. .type = GGML_TASK_FINALIZE,
  8091. .ith = j + 1,
  8092. .nth = node->n_tasks,
  8093. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8094. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8095. };
  8096. workers[j].node = node;
  8097. }
  8098. atomic_fetch_sub(&state_shared.n_ready, 1);
  8099. while (atomic_load(&state_shared.n_ready) > 0) {
  8100. ggml_lock_lock (&state_shared.spin);
  8101. ggml_lock_unlock(&state_shared.spin);
  8102. }
  8103. atomic_store(&state_shared.has_work, true);
  8104. }
  8105. params.type = GGML_TASK_FINALIZE;
  8106. ggml_compute_forward(&params, node);
  8107. // wait for thread pool
  8108. if (node->n_tasks > 1) {
  8109. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8110. atomic_store(&state_shared.has_work, false);
  8111. }
  8112. while (atomic_load(&state_shared.has_work)) {
  8113. ggml_lock_lock (&state_shared.spin);
  8114. ggml_lock_unlock(&state_shared.spin);
  8115. }
  8116. atomic_fetch_sub(&state_shared.n_ready, 1);
  8117. while (atomic_load(&state_shared.n_ready) != 0) {
  8118. ggml_lock_lock (&state_shared.spin);
  8119. ggml_lock_unlock(&state_shared.spin);
  8120. }
  8121. }
  8122. // performance stats (node)
  8123. {
  8124. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8125. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8126. node->perf_runs++;
  8127. node->perf_cycles += perf_cycles_cur;
  8128. node->perf_time_us += perf_time_us_cur;
  8129. }
  8130. }
  8131. // join thread pool
  8132. if (n_threads > 1) {
  8133. atomic_store(&state_shared.stop, true);
  8134. atomic_store(&state_shared.has_work, true);
  8135. for (int j = 0; j < n_threads - 1; j++) {
  8136. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8137. GGML_ASSERT(rc == 0);
  8138. UNUSED(rc);
  8139. }
  8140. ggml_lock_destroy(&state_shared.spin);
  8141. }
  8142. // performance stats (graph)
  8143. {
  8144. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8145. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8146. cgraph->perf_runs++;
  8147. cgraph->perf_cycles += perf_cycles_cur;
  8148. cgraph->perf_time_us += perf_time_us_cur;
  8149. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8150. __func__, cgraph->perf_runs,
  8151. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8152. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8153. (double) perf_time_us_cur / 1000.0,
  8154. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8155. }
  8156. }
  8157. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8158. for (int i = 0; i < cgraph->n_nodes; i++) {
  8159. struct ggml_tensor * grad = cgraph->grads[i];
  8160. if (grad) {
  8161. ggml_set_zero(grad);
  8162. }
  8163. }
  8164. }
  8165. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8166. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8167. GGML_PRINT("=== GRAPH ===\n");
  8168. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8169. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8170. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8171. for (int i = 0; i < cgraph->n_nodes; i++) {
  8172. struct ggml_tensor * node = cgraph->nodes[i];
  8173. perf_total_per_op_us[node->op] += node->perf_time_us;
  8174. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8175. i,
  8176. node->ne[0], node->ne[1], node->ne[2],
  8177. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8178. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8179. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8180. (double) node->perf_time_us / 1000.0,
  8181. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8182. }
  8183. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8184. for (int i = 0; i < cgraph->n_leafs; i++) {
  8185. struct ggml_tensor * node = cgraph->leafs[i];
  8186. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  8187. i,
  8188. node->ne[0], node->ne[1],
  8189. GGML_OP_LABEL[node->op]);
  8190. }
  8191. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8192. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8193. }
  8194. GGML_PRINT("========================================\n");
  8195. }
  8196. // check if node is part of the graph
  8197. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8198. if (cgraph == NULL) {
  8199. return true;
  8200. }
  8201. for (int i = 0; i < cgraph->n_nodes; i++) {
  8202. if (cgraph->nodes[i] == node) {
  8203. return true;
  8204. }
  8205. }
  8206. return false;
  8207. }
  8208. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8209. for (int i = 0; i < cgraph->n_nodes; i++) {
  8210. struct ggml_tensor * parent = cgraph->nodes[i];
  8211. if (parent->grad == node) {
  8212. return parent;
  8213. }
  8214. }
  8215. return NULL;
  8216. }
  8217. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8218. char color[16];
  8219. FILE * fp = fopen(filename, "w");
  8220. GGML_ASSERT(fp);
  8221. fprintf(fp, "digraph G {\n");
  8222. fprintf(fp, " newrank = true;\n");
  8223. fprintf(fp, " rankdir = LR;\n");
  8224. for (int i = 0; i < gb->n_nodes; i++) {
  8225. struct ggml_tensor * node = gb->nodes[i];
  8226. if (ggml_graph_get_parent(gb, node) != NULL) {
  8227. continue;
  8228. }
  8229. if (node->is_param) {
  8230. snprintf(color, sizeof(color), "yellow");
  8231. } else if (node->grad) {
  8232. if (ggml_graph_find(gf, node)) {
  8233. snprintf(color, sizeof(color), "green");
  8234. } else {
  8235. snprintf(color, sizeof(color), "lightblue");
  8236. }
  8237. } else {
  8238. snprintf(color, sizeof(color), "white");
  8239. }
  8240. fprintf(fp, " \"%p\" [ \
  8241. style = filled; fillcolor = %s; shape = record; \
  8242. label=\"%d [%d, %d] | <x>%s",
  8243. (void *) node, color,
  8244. i, node->ne[0], node->ne[1],
  8245. GGML_OP_SYMBOL[node->op]);
  8246. if (node->grad) {
  8247. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8248. } else {
  8249. fprintf(fp, "\"; ]\n");
  8250. }
  8251. }
  8252. for (int i = 0; i < gb->n_leafs; i++) {
  8253. struct ggml_tensor * node = gb->leafs[i];
  8254. snprintf(color, sizeof(color), "pink");
  8255. if (ggml_nelements(node) == 1) {
  8256. fprintf(fp, " \"%p\" [ \
  8257. style = filled; fillcolor = %s; shape = record; \
  8258. label=\"<x>%.1e\"; ]\n",
  8259. (void *) node, color, ggml_get_f32_1d(node, 0));
  8260. } else {
  8261. fprintf(fp, " \"%p\" [ \
  8262. style = filled; fillcolor = %s; shape = record; \
  8263. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8264. (void *) node, color,
  8265. i, node->ne[0], node->ne[1]);
  8266. }
  8267. }
  8268. for (int i = 0; i < gb->n_nodes; i++) {
  8269. struct ggml_tensor * node = gb->nodes[i];
  8270. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8271. if (node->src0) {
  8272. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8273. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8274. parent0 ? (void *) parent0 : (void *) node->src0,
  8275. parent0 ? "g" : "x",
  8276. parent ? (void *) parent : (void *) node,
  8277. parent ? "g" : "x",
  8278. parent ? "empty" : "vee",
  8279. parent ? "dashed" : "solid");
  8280. }
  8281. if (node->src1) {
  8282. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8283. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8284. parent1 ? (void *) parent1 : (void *) node->src1,
  8285. parent1 ? "g" : "x",
  8286. parent ? (void *) parent : (void *) node,
  8287. parent ? "g" : "x",
  8288. parent ? "empty" : "vee",
  8289. parent ? "dashed" : "solid");
  8290. }
  8291. }
  8292. for (int i = 0; i < gb->n_leafs; i++) {
  8293. struct ggml_tensor * node = gb->leafs[i];
  8294. if (node->src0) {
  8295. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8296. (void *) node->src0, "x",
  8297. (void *) node, "x");
  8298. }
  8299. if (node->src1) {
  8300. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8301. (void *) node->src1, "x",
  8302. (void *) node, "x");
  8303. }
  8304. }
  8305. fprintf(fp, "}\n");
  8306. fclose(fp);
  8307. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8308. }
  8309. ////////////////////////////////////////////////////////////////////////////////
  8310. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8311. int i = 0;
  8312. for (int p = 0; p < np; ++p) {
  8313. const int ne = ggml_nelements(ps[p]) ;
  8314. // TODO: add function to set tensor from array
  8315. for (int j = 0; j < ne; ++j) {
  8316. ggml_set_f32_1d(ps[p], j, x[i++]);
  8317. }
  8318. }
  8319. }
  8320. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8321. int i = 0;
  8322. for (int p = 0; p < np; ++p) {
  8323. const int ne = ggml_nelements(ps[p]) ;
  8324. // TODO: add function to get all elements at once
  8325. for (int j = 0; j < ne; ++j) {
  8326. x[i++] = ggml_get_f32_1d(ps[p], j);
  8327. }
  8328. }
  8329. }
  8330. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8331. int i = 0;
  8332. for (int p = 0; p < np; ++p) {
  8333. const int ne = ggml_nelements(ps[p]) ;
  8334. // TODO: add function to get all elements at once
  8335. for (int j = 0; j < ne; ++j) {
  8336. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8337. }
  8338. }
  8339. }
  8340. //
  8341. // ADAM
  8342. //
  8343. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8344. //
  8345. static enum ggml_opt_result ggml_opt_adam(
  8346. struct ggml_context * ctx,
  8347. struct ggml_opt_params params,
  8348. struct ggml_tensor * f,
  8349. struct ggml_cgraph * gf,
  8350. struct ggml_cgraph * gb) {
  8351. GGML_ASSERT(ggml_is_scalar(f));
  8352. gf->n_threads = params.n_threads;
  8353. gb->n_threads = params.n_threads;
  8354. // these will store the parameters we want to optimize
  8355. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8356. int np = 0;
  8357. int nx = 0;
  8358. for (int i = 0; i < gf->n_nodes; ++i) {
  8359. if (gf->nodes[i]->is_param) {
  8360. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8361. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8362. ps[np++] = gf->nodes[i];
  8363. nx += ggml_nelements(gf->nodes[i]);
  8364. }
  8365. }
  8366. // constants
  8367. const float alpha = params.adam.alpha;
  8368. const float beta1 = params.adam.beta1;
  8369. const float beta2 = params.adam.beta2;
  8370. const float eps = params.adam.eps;
  8371. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8372. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8373. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8374. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8375. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8376. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8377. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8378. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8379. // initialize
  8380. ggml_vec_set_f32(nx, m, 0.0f);
  8381. ggml_vec_set_f32(nx, v, 0.0f);
  8382. // update view
  8383. ggml_opt_get_params(np, ps, x);
  8384. // compute the function value
  8385. ggml_graph_reset (gf);
  8386. ggml_set_f32 (f->grad, 1.0f);
  8387. ggml_graph_compute(ctx, gb);
  8388. float fx_prev = ggml_get_f32_1d(f, 0);
  8389. if (pf) {
  8390. pf[0] = fx_prev;
  8391. }
  8392. int n_no_improvement = 0;
  8393. float fx_best = fx_prev;
  8394. // run the optimizer
  8395. for (int t = 0; t < params.adam.n_iter; ++t) {
  8396. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8397. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8398. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8399. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8400. for (int i = 0; i < np; ++i) {
  8401. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8402. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8403. }
  8404. const int64_t t_start_wall = ggml_time_us();
  8405. const int64_t t_start_cpu = ggml_cycles();
  8406. UNUSED(t_start_wall);
  8407. UNUSED(t_start_cpu);
  8408. {
  8409. // update the gradient
  8410. ggml_opt_get_grad(np, ps, g1);
  8411. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8412. ggml_vec_scale_f32(nx, m, beta1);
  8413. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8414. // g2 = g1^2
  8415. ggml_vec_sqr_f32 (nx, g2, g1);
  8416. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8417. ggml_vec_scale_f32(nx, v, beta2);
  8418. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8419. // m^hat = m_t / (1 - beta1^t)
  8420. // v^hat = v_t / (1 - beta2^t)
  8421. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8422. ggml_vec_cpy_f32 (nx, mh, m);
  8423. ggml_vec_cpy_f32 (nx, vh, v);
  8424. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8425. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8426. ggml_vec_sqrt_f32 (nx, vh, vh);
  8427. ggml_vec_acc1_f32 (nx, vh, eps);
  8428. ggml_vec_div_f32 (nx, mh, mh, vh);
  8429. ggml_vec_sub_f32 (nx, x, x, mh);
  8430. // update the parameters
  8431. ggml_opt_set_params(np, ps, x);
  8432. }
  8433. ggml_graph_reset (gf);
  8434. ggml_set_f32 (f->grad, 1.0f);
  8435. ggml_graph_compute(ctx, gb);
  8436. const float fx = ggml_get_f32_1d(f, 0);
  8437. // check convergence
  8438. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8439. GGML_PRINT_DEBUG("converged\n");
  8440. return GGML_OPT_OK;
  8441. }
  8442. // delta-based convergence test
  8443. if (pf != NULL) {
  8444. // need at least params.past iterations to start checking for convergence
  8445. if (params.past <= t) {
  8446. const float rate = (pf[t%params.past] - fx)/fx;
  8447. if (fabs(rate) < params.delta) {
  8448. return GGML_OPT_OK;
  8449. }
  8450. }
  8451. pf[t%params.past] = fx;
  8452. }
  8453. // check for improvement
  8454. if (params.max_no_improvement > 0) {
  8455. if (fx_best > fx) {
  8456. fx_best = fx;
  8457. n_no_improvement = 0;
  8458. } else {
  8459. ++n_no_improvement;
  8460. if (n_no_improvement >= params.max_no_improvement) {
  8461. return GGML_OPT_OK;
  8462. }
  8463. }
  8464. }
  8465. fx_prev = fx;
  8466. {
  8467. const int64_t t_end_cpu = ggml_cycles();
  8468. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8469. UNUSED(t_end_cpu);
  8470. const int64_t t_end_wall = ggml_time_us();
  8471. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8472. UNUSED(t_end_wall);
  8473. }
  8474. }
  8475. return GGML_OPT_DID_NOT_CONVERGE;
  8476. }
  8477. //
  8478. // L-BFGS
  8479. //
  8480. // the L-BFGS implementation below is based on the following implementation:
  8481. //
  8482. // https://github.com/chokkan/liblbfgs
  8483. //
  8484. struct ggml_lbfgs_iteration_data {
  8485. float alpha;
  8486. float ys;
  8487. float * s;
  8488. float * y;
  8489. };
  8490. static enum ggml_opt_result linesearch_backtracking(
  8491. struct ggml_context * ctx,
  8492. const struct ggml_opt_params * params,
  8493. int nx,
  8494. float * x,
  8495. float * fx,
  8496. float * g,
  8497. float * d,
  8498. float * step,
  8499. const float * xp,
  8500. struct ggml_tensor * f,
  8501. struct ggml_cgraph * gf,
  8502. struct ggml_cgraph * gb,
  8503. const int np,
  8504. struct ggml_tensor * ps[]) {
  8505. int count = 0;
  8506. float width = 0.0f;
  8507. float dg = 0.0f;
  8508. float finit = 0.0f;
  8509. float dginit = 0.0f;
  8510. float dgtest = 0.0f;
  8511. const float dec = 0.5f;
  8512. const float inc = 2.1f;
  8513. if (*step <= 0.) {
  8514. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8515. }
  8516. // compute the initial gradient in the search direction
  8517. ggml_vec_dot_f32(nx, &dginit, g, d);
  8518. // make sure that d points to a descent direction
  8519. if (0 < dginit) {
  8520. return GGML_LINESEARCH_FAIL;
  8521. }
  8522. // initialize local variables
  8523. finit = *fx;
  8524. dgtest = params->lbfgs.ftol*dginit;
  8525. while (true) {
  8526. ggml_vec_cpy_f32(nx, x, xp);
  8527. ggml_vec_mad_f32(nx, x, d, *step);
  8528. // evaluate the function and gradient values
  8529. {
  8530. ggml_opt_set_params(np, ps, x);
  8531. ggml_graph_reset (gf);
  8532. ggml_set_f32 (f->grad, 1.0f);
  8533. ggml_graph_compute(ctx, gb);
  8534. ggml_opt_get_grad(np, ps, g);
  8535. *fx = ggml_get_f32_1d(f, 0);
  8536. }
  8537. ++count;
  8538. if (*fx > finit + (*step)*dgtest) {
  8539. width = dec;
  8540. } else {
  8541. // Armijo condition is satisfied
  8542. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8543. return count;
  8544. }
  8545. ggml_vec_dot_f32(nx, &dg, g, d);
  8546. // check the Wolfe condition
  8547. if (dg < params->lbfgs.wolfe * dginit) {
  8548. width = inc;
  8549. } else {
  8550. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8551. // regular Wolfe conditions
  8552. return count;
  8553. }
  8554. if(dg > -params->lbfgs.wolfe*dginit) {
  8555. width = dec;
  8556. } else {
  8557. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8558. return count;
  8559. }
  8560. return count;
  8561. }
  8562. }
  8563. if (*step < params->lbfgs.min_step) {
  8564. return GGML_LINESEARCH_MINIMUM_STEP;
  8565. }
  8566. if (*step > params->lbfgs.max_step) {
  8567. return GGML_LINESEARCH_MAXIMUM_STEP;
  8568. }
  8569. if (params->lbfgs.max_linesearch <= count) {
  8570. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8571. }
  8572. (*step) *= width;
  8573. }
  8574. return GGML_LINESEARCH_FAIL;
  8575. }
  8576. static enum ggml_opt_result ggml_opt_lbfgs(
  8577. struct ggml_context * ctx,
  8578. struct ggml_opt_params params,
  8579. struct ggml_tensor * f,
  8580. struct ggml_cgraph * gf,
  8581. struct ggml_cgraph * gb) {
  8582. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8583. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8584. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8585. return GGML_OPT_INVALID_WOLFE;
  8586. }
  8587. }
  8588. gf->n_threads = params.n_threads;
  8589. gb->n_threads = params.n_threads;
  8590. const int m = params.lbfgs.m;
  8591. // these will store the parameters we want to optimize
  8592. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8593. int np = 0;
  8594. int nx = 0;
  8595. for (int i = 0; i < gf->n_nodes; ++i) {
  8596. if (gf->nodes[i]->is_param) {
  8597. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8598. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8599. ps[np++] = gf->nodes[i];
  8600. nx += ggml_nelements(gf->nodes[i]);
  8601. }
  8602. }
  8603. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8604. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8605. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8606. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8607. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8608. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8609. float fx = 0.0f; // cost function value
  8610. float xnorm = 0.0f; // ||x||
  8611. float gnorm = 0.0f; // ||g||
  8612. float step = 0.0f;
  8613. // initialize x from the graph nodes
  8614. ggml_opt_get_params(np, ps, x);
  8615. // the L-BFGS memory
  8616. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8617. for (int i = 0; i < m; ++i) {
  8618. lm[i].alpha = 0.0f;
  8619. lm[i].ys = 0.0f;
  8620. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8621. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8622. }
  8623. // evaluate the function value and its gradient
  8624. {
  8625. ggml_opt_set_params(np, ps, x);
  8626. ggml_graph_reset (gf);
  8627. ggml_set_f32 (f->grad, 1.0f);
  8628. ggml_graph_compute(ctx, gb);
  8629. ggml_opt_get_grad(np, ps, g);
  8630. fx = ggml_get_f32_1d(f, 0);
  8631. }
  8632. if (pf) {
  8633. pf[0] = fx;
  8634. }
  8635. float fx_best = fx;
  8636. // search direction = -gradient
  8637. ggml_vec_neg_f32(nx, d, g);
  8638. // ||x||, ||g||
  8639. ggml_vec_norm_f32(nx, &xnorm, x);
  8640. ggml_vec_norm_f32(nx, &gnorm, g);
  8641. if (xnorm < 1.0f) {
  8642. xnorm = 1.0f;
  8643. }
  8644. // already optimized
  8645. if (gnorm/xnorm <= params.lbfgs.eps) {
  8646. return GGML_OPT_OK;
  8647. }
  8648. // initial step
  8649. ggml_vec_norm_inv_f32(nx, &step, d);
  8650. int j = 0;
  8651. int k = 1;
  8652. int ls = 0;
  8653. int end = 0;
  8654. int bound = 0;
  8655. int n_no_improvement = 0;
  8656. float ys = 0.0f;
  8657. float yy = 0.0f;
  8658. float beta = 0.0f;
  8659. while (true) {
  8660. // store the current position and gradient vectors
  8661. ggml_vec_cpy_f32(nx, xp, x);
  8662. ggml_vec_cpy_f32(nx, gp, g);
  8663. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8664. if (ls < 0) {
  8665. // linesearch failed - go back to the previous point and return
  8666. ggml_vec_cpy_f32(nx, x, xp);
  8667. ggml_vec_cpy_f32(nx, g, gp);
  8668. return ls;
  8669. }
  8670. ggml_vec_norm_f32(nx, &xnorm, x);
  8671. ggml_vec_norm_f32(nx, &gnorm, g);
  8672. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8673. if (xnorm < 1.0) {
  8674. xnorm = 1.0;
  8675. }
  8676. if (gnorm/xnorm <= params.lbfgs.eps) {
  8677. // converged
  8678. return GGML_OPT_OK;
  8679. }
  8680. // delta-based convergence test
  8681. if (pf != NULL) {
  8682. // need at least params.past iterations to start checking for convergence
  8683. if (params.past <= k) {
  8684. const float rate = (pf[k%params.past] - fx)/fx;
  8685. if (fabs(rate) < params.delta) {
  8686. return GGML_OPT_OK;
  8687. }
  8688. }
  8689. pf[k%params.past] = fx;
  8690. }
  8691. // check for improvement
  8692. if (params.max_no_improvement > 0) {
  8693. if (fx < fx_best) {
  8694. fx_best = fx;
  8695. n_no_improvement = 0;
  8696. } else {
  8697. n_no_improvement++;
  8698. if (n_no_improvement >= params.max_no_improvement) {
  8699. return GGML_OPT_OK;
  8700. }
  8701. }
  8702. }
  8703. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8704. // reached the maximum number of iterations
  8705. return GGML_OPT_DID_NOT_CONVERGE;
  8706. }
  8707. // update vectors s and y:
  8708. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8709. // y_{k+1} = g_{k+1} - g_{k}.
  8710. //
  8711. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8712. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8713. // compute scalars ys and yy:
  8714. // ys = y^t \cdot s -> 1 / \rho.
  8715. // yy = y^t \cdot y.
  8716. //
  8717. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8718. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8719. lm[end].ys = ys;
  8720. // find new search direction
  8721. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8722. bound = (m <= k) ? m : k;
  8723. k++;
  8724. end = (end + 1)%m;
  8725. // initialize search direction with -g
  8726. ggml_vec_neg_f32(nx, d, g);
  8727. j = end;
  8728. for (int i = 0; i < bound; ++i) {
  8729. j = (j + m - 1) % m;
  8730. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8731. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8732. lm[j].alpha /= lm[j].ys;
  8733. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8734. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8735. }
  8736. ggml_vec_scale_f32(nx, d, ys/yy);
  8737. for (int i = 0; i < bound; ++i) {
  8738. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8739. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8740. beta /= lm[j].ys;
  8741. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8742. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8743. j = (j + 1)%m;
  8744. }
  8745. step = 1.0;
  8746. }
  8747. return GGML_OPT_DID_NOT_CONVERGE;
  8748. }
  8749. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8750. struct ggml_opt_params result;
  8751. switch (type) {
  8752. case GGML_OPT_ADAM:
  8753. {
  8754. result = (struct ggml_opt_params) {
  8755. .type = GGML_OPT_ADAM,
  8756. .n_threads = 1,
  8757. .past = 0,
  8758. .delta = 1e-5f,
  8759. .max_no_improvement = 100,
  8760. .print_forward_graph = true,
  8761. .print_backward_graph = true,
  8762. .adam = {
  8763. .n_iter = 10000,
  8764. .alpha = 0.001f,
  8765. .beta1 = 0.9f,
  8766. .beta2 = 0.999f,
  8767. .eps = 1e-8f,
  8768. .eps_f = 1e-5f,
  8769. .eps_g = 1e-3f,
  8770. },
  8771. };
  8772. } break;
  8773. case GGML_OPT_LBFGS:
  8774. {
  8775. result = (struct ggml_opt_params) {
  8776. .type = GGML_OPT_LBFGS,
  8777. .n_threads = 1,
  8778. .past = 0,
  8779. .delta = 1e-5f,
  8780. .max_no_improvement = 0,
  8781. .print_forward_graph = true,
  8782. .print_backward_graph = true,
  8783. .lbfgs = {
  8784. .m = 6,
  8785. .n_iter = 100,
  8786. .max_linesearch = 20,
  8787. .eps = 1e-5f,
  8788. .ftol = 1e-4f,
  8789. .wolfe = 0.9f,
  8790. .min_step = 1e-20f,
  8791. .max_step = 1e+20f,
  8792. .linesearch = GGML_LINESEARCH_DEFAULT,
  8793. },
  8794. };
  8795. } break;
  8796. }
  8797. return result;
  8798. }
  8799. enum ggml_opt_result ggml_opt(
  8800. struct ggml_context * ctx,
  8801. struct ggml_opt_params params,
  8802. struct ggml_tensor * f) {
  8803. bool free_ctx = false;
  8804. if (ctx == NULL) {
  8805. struct ggml_init_params params_ctx = {
  8806. .mem_size = 16*1024*1024,
  8807. .mem_buffer = NULL,
  8808. };
  8809. ctx = ggml_init(params_ctx);
  8810. if (ctx == NULL) {
  8811. return GGML_OPT_NO_CONTEXT;
  8812. }
  8813. free_ctx = true;
  8814. }
  8815. enum ggml_opt_result result = GGML_OPT_OK;
  8816. // build forward + backward compute graphs
  8817. struct ggml_cgraph gf = ggml_build_forward (f);
  8818. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8819. switch (params.type) {
  8820. case GGML_OPT_ADAM:
  8821. {
  8822. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8823. } break;
  8824. case GGML_OPT_LBFGS:
  8825. {
  8826. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8827. } break;
  8828. }
  8829. if (params.print_forward_graph) {
  8830. ggml_graph_print (&gf);
  8831. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8832. }
  8833. if (params.print_backward_graph) {
  8834. ggml_graph_print (&gb);
  8835. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8836. }
  8837. if (free_ctx) {
  8838. ggml_free(ctx);
  8839. }
  8840. return result;
  8841. }
  8842. ////////////////////////////////////////////////////////////////////////////////
  8843. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8844. const int nb = k / qk;
  8845. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8846. const size_t row_size = nb*bs;
  8847. assert(k % qk == 0);
  8848. char * pdst = (char *) dst;
  8849. for (int j = 0; j < n; j += k) {
  8850. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8851. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8852. quantize_row_q4_0_reference(src + j, pd, k);
  8853. for (int i = 0; i < nb; i++) {
  8854. for (int l = 0; l < qk; l += 2) {
  8855. const uint8_t vi0 = pb[l/2] & 0xF;
  8856. const uint8_t vi1 = pb[l/2] >> 4;
  8857. hist[vi0]++;
  8858. hist[vi1]++;
  8859. }
  8860. pb += bs;
  8861. }
  8862. }
  8863. return (n/k)*row_size;
  8864. }
  8865. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8866. const int nb = k / qk;
  8867. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8868. const size_t row_size = nb*bs;
  8869. assert(k % qk == 0);
  8870. char * pdst = (char *) dst;
  8871. for (int j = 0; j < n; j += k) {
  8872. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8873. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8874. quantize_row_q4_1(src + j, pd, k);
  8875. for (int i = 0; i < nb; i++) {
  8876. for (int l = 0; l < qk; l += 2) {
  8877. const uint8_t vi0 = pb[l/2] & 0xF;
  8878. const uint8_t vi1 = pb[l/2] >> 4;
  8879. hist[vi0]++;
  8880. hist[vi1]++;
  8881. }
  8882. pb += bs;
  8883. }
  8884. }
  8885. return (n/k)*row_size;
  8886. }
  8887. ////////////////////////////////////////////////////////////////////////////////
  8888. int ggml_cpu_has_avx(void) {
  8889. #if defined(__AVX__)
  8890. return 1;
  8891. #else
  8892. return 0;
  8893. #endif
  8894. }
  8895. int ggml_cpu_has_avx2(void) {
  8896. #if defined(__AVX2__)
  8897. return 1;
  8898. #else
  8899. return 0;
  8900. #endif
  8901. }
  8902. int ggml_cpu_has_avx512(void) {
  8903. #if defined(__AVX512F__)
  8904. return 1;
  8905. #else
  8906. return 0;
  8907. #endif
  8908. }
  8909. int ggml_cpu_has_fma(void) {
  8910. #if defined(__FMA__)
  8911. return 1;
  8912. #else
  8913. return 0;
  8914. #endif
  8915. }
  8916. int ggml_cpu_has_neon(void) {
  8917. #if defined(__ARM_NEON)
  8918. return 1;
  8919. #else
  8920. return 0;
  8921. #endif
  8922. }
  8923. int ggml_cpu_has_arm_fma(void) {
  8924. #if defined(__ARM_FEATURE_FMA)
  8925. return 1;
  8926. #else
  8927. return 0;
  8928. #endif
  8929. }
  8930. int ggml_cpu_has_f16c(void) {
  8931. #if defined(__F16C__)
  8932. return 1;
  8933. #else
  8934. return 0;
  8935. #endif
  8936. }
  8937. int ggml_cpu_has_fp16_va(void) {
  8938. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8939. return 1;
  8940. #else
  8941. return 0;
  8942. #endif
  8943. }
  8944. int ggml_cpu_has_wasm_simd(void) {
  8945. #if defined(__wasm_simd128__)
  8946. return 1;
  8947. #else
  8948. return 0;
  8949. #endif
  8950. }
  8951. int ggml_cpu_has_blas(void) {
  8952. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8953. return 1;
  8954. #else
  8955. return 0;
  8956. #endif
  8957. }
  8958. int ggml_cpu_has_sse3(void) {
  8959. #if defined(__SSE3__)
  8960. return 1;
  8961. #else
  8962. return 0;
  8963. #endif
  8964. }
  8965. int ggml_cpu_has_vsx(void) {
  8966. #if defined(__POWER9_VECTOR__)
  8967. return 1;
  8968. #else
  8969. return 0;
  8970. #endif
  8971. }
  8972. ////////////////////////////////////////////////////////////////////////////////