| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- #include "common.h"
- #include "llama.h"
- #include <algorithm>
- #include <fstream>
- static void print_usage(int argc, char ** argv, const gpt_params & params) {
- gpt_params_print_usage(argc, argv, params);
- LOG_TEE("\nexample usage:\n");
- LOG_TEE("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
- LOG_TEE("\n");
- }
- struct chunk {
- // filename
- std::string filename;
- // original file position
- size_t filepos;
- // original text data
- std::string textdata = "";
- // tokenized text data
- std::vector<llama_token> tokens;
- // embedding
- std::vector<float> embedding;
- };
- // chunk file data to chunks of size >= chunk_size
- // chunk_separator is the separator between chunks
- static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
- std::vector<chunk> chunks;
- std::ifstream f(filename.c_str());
- if (!f.is_open()) {
- fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
- return chunks;
- }
- chunk current_chunk;
- char buffer[1024];
- int64_t filepos = 0;
- std::string current = "";
- while (f.read(buffer, 1024)) {
- current += std::string(buffer, f.gcount());
- size_t pos;
- while ((pos = current.find(chunk_separator)) != std::string::npos) {
- current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
- if ((int) current_chunk.textdata.size() > chunk_size) {
- // save chunk
- current_chunk.filepos = filepos;
- current_chunk.filename = filename;
- chunks.push_back(current_chunk);
- // update filepos
- filepos += (int) current_chunk.textdata.size();
- // reset current_chunk
- current_chunk = chunk();
- }
- current = current.substr(pos + chunk_separator.size());
- }
- }
- // add leftover data to last chunk
- if (current_chunk.textdata.size() > 0) {
- if (chunks.empty()) {
- current_chunk.filepos = filepos;
- current_chunk.filename = filename;
- chunks.push_back(current_chunk);
- } else {
- chunks.back().textdata += current_chunk.textdata;
- }
- }
- f.close();
- return chunks;
- }
- static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
- size_t n_tokens = tokens.size();
- for (size_t i = 0; i < n_tokens; i++) {
- llama_batch_add(batch, tokens[i], i, { seq_id }, true);
- }
- }
- static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
- // clear previous kv_cache values (irrelevant for embeddings)
- llama_kv_cache_clear(ctx);
- // run model
- fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
- if (llama_decode(ctx, batch) < 0) {
- fprintf(stderr, "%s : failed to decode\n", __func__);
- }
- for (int i = 0; i < batch.n_tokens; i++) {
- if (!batch.logits[i]) {
- continue;
- }
- // try to get sequence embeddings - supported only when pooling_type is not NONE
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- if (embd == NULL) {
- fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
- continue;
- }
- }
- float * out = output + batch.seq_id[i][0] * n_embd;
- llama_embd_normalize(embd, out, n_embd);
- }
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- if (!gpt_params_parse(argc, argv, params)) {
- print_usage(argc, argv, params);
- return 1;
- }
- // For BERT models, batch size must be equal to ubatch size
- params.n_ubatch = params.n_batch;
- params.embedding = true;
- if (params.chunk_size <= 0) {
- fprintf(stderr, "chunk_size must be positive\n");
- return 1;
- }
- if (params.context_files.empty()) {
- fprintf(stderr, "context_files must be specified\n");
- return 1;
- }
- print_build_info();
- printf("processing files:\n");
- for (auto & context_file : params.context_files) {
- printf("%s\n", context_file.c_str());
- }
- std::vector<chunk> chunks;
- for (auto & context_file : params.context_files) {
- std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
- chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
- }
- printf("Number of chunks: %ld\n", chunks.size());
- llama_backend_init();
- llama_numa_init(params.numa);
- // load the model
- llama_init_result llama_init = llama_init_from_gpt_params(params);
- llama_model * model = llama_init.model;
- llama_context * ctx = llama_init.context;
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return 1;
- }
- const int n_ctx_train = llama_n_ctx_train(model);
- const int n_ctx = llama_n_ctx(ctx);
- const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
- if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
- fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
- return 1;
- }
- if (n_ctx > n_ctx_train) {
- fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
- __func__, n_ctx_train, n_ctx);
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
- }
- // max batch size
- const uint64_t n_batch = params.n_batch;
- GGML_ASSERT(params.n_batch >= params.n_ctx);
- // tokenize the prompts and trim
- for (auto & chunk : chunks) {
- auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
- if (inp.size() > n_batch) {
- fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
- __func__, (long long int) inp.size(), (long long int) n_batch);
- return 1;
- }
- // add eos if not present
- if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
- inp.push_back(llama_token_eos(model));
- }
- chunk.tokens = inp;
- }
- // tokenization stats
- if (params.verbose_prompt) {
- for (int i = 0; i < (int) chunks.size(); i++) {
- fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
- fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
- for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
- fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
- }
- fprintf(stderr, "\n\n");
- }
- }
- // initialize batch
- const int n_chunks = chunks.size();
- struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
- // allocate output
- const int n_embd = llama_n_embd(model);
- std::vector<float> embeddings(n_chunks * n_embd, 0);
- float * emb = embeddings.data();
- // break into batches
- int p = 0; // number of prompts processed already
- int s = 0; // number of prompts in current batch
- for (int k = 0; k < n_chunks; k++) {
- // clamp to n_batch tokens
- auto & inp = chunks[k].tokens;
- const uint64_t n_toks = inp.size();
- // encode if at capacity
- if (batch.n_tokens + n_toks > n_batch) {
- float * out = emb + p * n_embd;
- batch_decode(ctx, batch, out, s, n_embd);
- llama_batch_clear(batch);
- p += s;
- s = 0;
- }
- // add to batch
- batch_add_seq(batch, inp, s);
- s += 1;
- }
- // final batch
- float * out = emb + p * n_embd;
- batch_decode(ctx, batch, out, s, n_embd);
- // save embeddings to chunks
- for (int i = 0; i < n_chunks; i++) {
- chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
- // clear tokens as they are no longer needed
- chunks[i].tokens.clear();
- }
- // start loop, receive query and return top k similar chunks based on cosine similarity
- std::string query;
- while (true) {
- printf("Enter query: ");
- std::getline(std::cin, query);
- std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
- struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
- batch_add_seq(query_batch, query_tokens, 0);
- std::vector<float> query_emb(n_embd, 0);
- batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
- llama_batch_clear(query_batch);
- // compute cosine similarities
- {
- std::vector<std::pair<int, float>> similarities;
- for (int i = 0; i < n_chunks; i++) {
- float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
- similarities.push_back(std::make_pair(i, sim));
- }
- // sort similarities
- std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
- return a.second > b.second;
- });
- printf("Top %d similar chunks:\n", params.sparams.top_k);
- for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
- printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
- printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
- printf("similarity: %f\n", similarities[i].second);
- printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
- printf("--------------------\n");
- }
- }
- }
- // clean up
- llama_print_timings(ctx);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- }
|