| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925 |
- #include <cstddef>
- #include <cstdint>
- #include <stdint.h>
- #include <stdio.h>
- #include <atomic>
- #include <cuda_runtime.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #include "ggml-cuda.h"
- #include "ggml.h"
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- #define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- exit(1); \
- } \
- } while (0)
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
- typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
- typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- #define QK4_0 32
- #define QR4_0 2
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- #define CUDA_MUL_BLOCK_SIZE 256
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- #define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec
- static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] * y[i%ky];
- }
- static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const float d = x[ib].d;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = (vi0 - 8)*d;
- v1 = (vi1 - 8)*d;
- }
- static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = vi0*d + m;
- v1 = vi1*d + m;
- }
- static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const float d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
- v0 = x0*d;
- v1 = x1*d;
- }
- static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
- v0 = x0*d + m;
- v1 = x1*d + m;
- }
- static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const float d = x[ib].d;
- const int8_t vi0 = x[ib].qs[iqs + 0];
- const int8_t vi1 = x[ib].qs[iqs + 1];
- v0 = vi0*d;
- v1 = vi1*d;
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const half * x = (const half *) vx;
- v0 = __half2float(x[ib + 0]);
- v1 = __half2float(x[ib + 1]);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_block(const void * vx, float * y, const int k) {
- const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- float & v0 = y[iybs + iqs + 0];
- float & v1 = y[iybs + iqs + y_offset];
- dequantize_kernel(vx, ib, iqs, v0, v1);
- }
- template <int block_size, int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) {
- const int row = blockIdx.x;
- const int tid = threadIdx.x;
- const int y_offset = qr == 1 ? 1 : qk/2;
- __shared__ float tmp[block_size]; // separate sum for each thread
- tmp[tid] = 0;
- for (int i = 0; i < ncols/block_size; i += 2) {
- const int col = i*block_size + 2*tid;
- const int ib = (row*ncols + col)/qk; // block index
- const int iqs = (col%qk)/qr; // quant index
- const int iybs = col - col%qk; // y block start index
- // dequantize
- float v0, v1;
- dequantize_kernel(vx, ib, iqs, v0, v1);
- // matrix multiplication
- tmp[tid] += v0 * y[iybs + iqs + 0];
- tmp[tid] += v1 * y[iybs + iqs + y_offset];
- }
- // sum up partial sums and write back result
- __syncthreads();
- for (int s=block_size/2; s>0; s>>=1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- __syncthreads();
- }
- if (tid == 0) {
- dst[row] = tmp[0];
- }
- }
- static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
- mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
- dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_0, QR4_0, dequantize_q4_0>
- <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
- dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_1, QR4_1, dequantize_q4_1>
- <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
- dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_0, QR5_0, dequantize_q5_0>
- <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
- dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_1, QR5_1, dequantize_q5_1>
- <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
- dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK8_0, QR8_0, dequantize_q8_0>
- <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
- }
- static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
- dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, 32, 1, convert_f16>
- <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_row_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_row_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_row_q8_0_cuda;
- case GGML_TYPE_F16:
- return convert_fp16_to_fp32_cuda;
- default:
- return nullptr;
- }
- }
- static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_mul_mat_vec_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_mul_mat_vec_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_mul_mat_vec_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_mul_mat_vec_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_mul_mat_vec_q8_0_cuda;
- case GGML_TYPE_F16:
- return convert_mul_mat_vec_f16_cuda;
- default:
- return nullptr;
- }
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[i];
- if (b.size >= size && b.ptr != nullptr) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- void * ptr;
- CUDA_CHECK(cudaMalloc((void **) &ptr, size));
- *actual_size = size;
- return ptr;
- }
- static void ggml_cuda_pool_free(void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- CUDA_CHECK(cudaFree(ptr));
- }
- #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
- #define GGML_CUDA_MAX_EVENTS 64
- static cublasHandle_t g_cublasH = nullptr;
- static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
- void ggml_init_cublas() {
- if (g_cublasH == nullptr) {
- // create streams
- for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
- }
- // create events
- for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
- CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
- }
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublasH));
- CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- }
- }
- void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
- const uint64_t ne0 = src->ne[0];
- const uint64_t ne1 = src->ne[1];
- const uint64_t nb0 = src->nb[0];
- const uint64_t nb1 = src->nb[1];
- const uint64_t nb2 = src->nb[2];
- const uint64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const size_t ts = ggml_type_size(type);
- const size_t bs = ggml_blck_size(type);
- const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
- } else {
- for (uint64_t i1 = 0; i1 < ne1; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[2];
- const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- size_t x_size, d_size;
- float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0
- float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted.
- float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const int i0 = i03*ne02 + i02;
- float * c_X2 = d_X + i0*ne01*ne00;
- float * c_D2 = d_D + i0*ne01*ne00;
- cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS];
- cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS];
- cudaEvent_t cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS];
- // copy src0 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2));
- CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
- // wait for data
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const int64_t i13 = i03%ne13;
- const int64_t i12 = i02%ne12;
- const int64_t i11 = i01%ne11;
- const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
- float * c_X1 = c_X2 + i01*ne00;
- float * c_Y = d_Y + i1*ne10;
- float * c_D1 = c_D2 + i01*ne00;
- // compute
- mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream);
- CUDA_CHECK(cudaGetLastError());
- }
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_D, d_size);
- }
- static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- const int n_mm = ne03 * ne02;
- size_t x_size, y_size, d_size;
- float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
- float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
- float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- int i = i03*ne02 + i02;
- cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
- float * c_X = d_X + i * x_ne;
- float * c_Y = d_Y + i * y_ne;
- float * c_D = d_D + i * d_ne;
- // copy data to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
- // compute
- CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
- CUBLAS_CHECK(
- cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, c_X, ne00,
- c_Y, ne10,
- &beta, c_D, ne01));
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
- }
- static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- const int n_mm = ne03 * ne02;
- size_t x_size, y_size, d_size;
- half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
- half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
- float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
- bool src1_cont_rows = nb10 == sizeof(float);
- bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- int i = i03*ne02 + i02;
- cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
- half * c_X = d_X + i * x_ne;
- half * c_Y = d_Y + i * y_ne;
- float * c_D = d_D + i * d_ne;
- // copy src0 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
- // convert src1 to fp16
- // TODO: use multiple threads
- ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
- char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
- if (src1_cont_rows) {
- if (src1_cont_cols) {
- ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
- }
- else {
- for (int64_t i01 = 0; i01 < ne11; i01++) {
- ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
- }
- }
- }
- else {
- for (int64_t i01 = 0; i01 < ne11; i01++) {
- for (int64_t i00 = 0; i00 < ne10; i00++) {
- // very slow due to no inlining
- tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
- }
- }
- }
- // copy src1 to device
- CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
- // compute
- CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
- CUBLAS_CHECK(
- cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, c_X, CUDA_R_16F, ne00,
- c_Y, CUDA_R_16F, ne10,
- &beta, c_D, CUDA_R_32F, ne01,
- CUBLAS_COMPUTE_32F_FAST_16F,
- CUBLAS_GEMM_DEFAULT));
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- ggml_cuda_pool_free(d_X, x_size);
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
- }
- static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- const ggml_type type = src0->type;
- const bool mul_mat_vec = ne11 == 1;
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int x_ne = ne01 * ne00;
- const int y_ne = ne11 * ne10;
- const int d_ne = ne11 * ne01;
- const int n_mm = ne03 * ne02;
- const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
- size_t x_size, y_size, d_size, q_size;
- float * d_X = nullptr;
- if (!mul_mat_vec) {
- d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
- }
- float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
- float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
- char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
- dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- int i = i03*ne02 + i02;
- cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
- cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
- cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
- float * c_Y = d_Y + i * y_ne;
- float * c_D = d_D + i * d_ne;
- char * c_Q = d_Q + i * q_sz;
- // copy src0 to device if necessary
- if (src0->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
- } else if (src0->backend == GGML_BACKEND_CUDA) {
- c_Q = ((char *) src0->data) + i * q_sz;
- } else {
- GGML_ASSERT(false);
- }
- if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
- CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
- // copy src1 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
- // wait for data
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
- // compute
- dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream);
- CUDA_CHECK(cudaGetLastError());
- } else { // general dequantization kernel + cuBLAS matrix matrix multiplication
- float * c_X = d_X + i * x_ne;
- // convert src0 to fp32 on device
- to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
- CUDA_CHECK(cudaGetLastError());
- CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
- // copy src1 to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
- // wait for conversion
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
- // compute
- CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
- CUBLAS_CHECK(
- cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha, c_X, ne00,
- c_Y, ne10,
- &beta, c_D, ne01));
- }
- // copy dst to host
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
- }
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- if (!mul_mat_vec) {
- ggml_cuda_pool_free(d_X, x_size);
- }
- ggml_cuda_pool_free(d_Y, y_size);
- ggml_cuda_pool_free(d_D, d_size);
- ggml_cuda_pool_free(d_Q, q_size);
- }
- void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_mul_f32(src0, src1, dst);
- }
- bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) {
- return true;
- }
- return false;
- }
- bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
- size_t src0_sz = ggml_nbytes(src0);
- size_t src1_sz = ggml_nbytes(src1);
- // mul_mat_q: src0 is converted to fp32 on device
- size_t mul_mat_q_transfer = src0_sz + src1_sz;
- // mul_mat_f16: src1 is converted to fp16 on cpu
- size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
- // choose the smaller one to transfer to the device
- // TODO: this is not always the best choice due to the overhead of converting to fp16
- return mul_mat_f16_transfer < mul_mat_q_transfer;
- }
- void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
- GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
- if (src0->type == GGML_TYPE_F32) {
- ggml_cuda_mul_mat_f32(src0, src1, dst);
- }
- else if (src0->type == GGML_TYPE_F16) {
- if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
- ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
- }
- else {
- ggml_cuda_mul_mat_q_f32(src0, src1, dst);
- }
- }
- else if (ggml_is_quantized(src0->type)) {
- ggml_cuda_mul_mat_q_f32(src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- }
- size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
- return ggml_nelements(src1) * sizeof(ggml_fp16_t);
- }
- else {
- return 0;
- }
- }
- void ggml_cuda_transform_tensor(ggml_tensor * tensor) {
- const int64_t ne0 = tensor->ne[0];
- const int64_t ne1 = tensor->ne[1];
- const int64_t ne2 = tensor->ne[2];
- const int64_t ne3 = tensor->ne[3];
- const ggml_type type = tensor->type;
- const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
- size_t q_size;
- char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
- cudaStream_t cudaStream2 = g_cudaStreams2[0];
- // copy tensor to device
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- int i = i3*ne2 + i2;
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2));
- }
- }
- tensor->data = dst;
- tensor->backend = GGML_BACKEND_CUDA;
- }
- void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
- FILE * fp = fopen(fname, "rb");
- const size_t size = ggml_nbytes(tensor);
- void * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- void * buf_host = malloc(size);
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
- #else
- int ret = fseek(fp, (long) offset, SEEK_SET);
- #endif
- GGML_ASSERT(ret == 0); // same
- size_t ret2 = fread(buf_host, size, 1, fp);
- if (ret2 != 1) {
- fprintf(stderr, "unexpectedly reached end of file");
- exit(1);
- }
- cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
- cudaDeviceSynchronize();
- tensor->data = buf;
- free(buf_host);
- fclose(fp);
- }
|