ggml-opencl.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. #include "ggml-opencl.h"
  2. #define CL_TARGET_OPENCL_VERSION 110
  3. #include <clblast_c.h>
  4. #include <stdlib.h>
  5. #include <stdio.h>
  6. #include <string.h>
  7. #include "ggml.h"
  8. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  9. const char * clblast_dequant = MULTILINE_QUOTE(
  10. typedef uchar uint8_t;
  11. typedef int int32_t;
  12. typedef uint uint32_t;
  13. constant uint QK4_0 = 32;
  14. struct block_q4_0
  15. {
  16. float d;
  17. uint8_t qs[QK4_0 / 2];
  18. };
  19. constant uint QK4_1 = 32;
  20. struct block_q4_1
  21. {
  22. float d;
  23. float m;
  24. uint8_t qs[QK4_1 / 2];
  25. };
  26. constant uint QK5_0 = 32;
  27. struct __attribute__ ((packed)) block_q5_0
  28. {
  29. half d;
  30. uint32_t qh;
  31. uint8_t qs[QK5_0 / 2];
  32. };
  33. constant uint QK5_1 = 32;
  34. struct block_q5_1
  35. {
  36. half d;
  37. half m;
  38. uint32_t qh;
  39. uint8_t qs[QK5_1 / 2];
  40. };
  41. constant uint QK8_0 = 32;
  42. struct block_q8_0
  43. {
  44. float d;
  45. uint8_t qs[QK8_0];
  46. };
  47. __kernel void dequantize_row_q4_0(__global struct block_q4_0* x, __global float* y) {
  48. constant uint qk = QK4_0;
  49. const uint i = get_global_id(0) / qk;
  50. const uint j = get_local_id(0);
  51. const float d = x[i].d;
  52. const int x0 = (x[i].qs[j] & 0xf) - 8;
  53. const int x1 = (x[i].qs[j] >> 4) - 8;
  54. y[i*qk + j + 0 ] = x0*d;
  55. y[i*qk + j + qk/2] = x1*d;
  56. }
  57. __kernel void dequantize_row_q4_1(__global struct block_q4_1* x, __global float* y) {
  58. constant uint qk = QK4_1;
  59. const uint i = get_global_id(0) / qk;
  60. const uint j = get_local_id(0);
  61. const float d = x[i].d;
  62. const float m = x[i].m;
  63. const int x0 = (x[i].qs[j] & 0xf);
  64. const int x1 = (x[i].qs[j] >> 4);
  65. y[i*qk + j + 0 ] = x0*d + m;
  66. y[i*qk + j + qk/2] = x1*d + m;
  67. }
  68. __kernel void dequantize_row_q5_0(__global struct block_q5_0* x, __global float* y) {
  69. constant uint qk = QK5_0;
  70. const uint i = get_global_id(0) / qk;
  71. const uint j = get_local_id(0);
  72. const float d = vload_half(0, (__global half*) &x[i].d);
  73. uint32_t qh = x[i].qh;
  74. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  75. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  76. const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16;
  77. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  78. y[i*qk + j + 0 ] = x0*d;
  79. y[i*qk + j + qk/2] = x1*d;
  80. }
  81. __kernel void dequantize_row_q5_1(__global struct block_q5_1* x, __global float* y) {
  82. constant uint qk = QK5_1;
  83. const uint i = get_global_id(0) / qk;
  84. const uint j = get_local_id(0);
  85. const float d = vload_half(0, (__global half*) &x[i].d);
  86. const float m = vload_half(0, (__global half*) &x[i].m);
  87. uint32_t qh = x[i].qh;
  88. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  89. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  90. const int x0 = (x[i].qs[j] & 0xf) | xh_0;
  91. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  92. y[i*qk + j + 0 ] = x0*d + m;
  93. y[i*qk + j + qk/2] = x1*d + m;
  94. }
  95. __kernel void dequantize_row_q8_0(__global struct block_q8_0* x, __global float* y) {
  96. constant uint qk = QK8_0;
  97. const uint i = get_global_id(0) / qk;
  98. const uint j = get_local_id(0);
  99. const float d = x[i].d;
  100. y[i*qk + j] = x[i].qs[j]*d;
  101. }
  102. );
  103. #define CL_CHECK(err, name) \
  104. do { \
  105. cl_int err_ = (err); \
  106. if (err_ != CL_SUCCESS) { \
  107. fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \
  108. exit(1); \
  109. } \
  110. } while (0)
  111. static cl_platform_id platform;
  112. static cl_device_id device;
  113. static cl_context context;
  114. static cl_command_queue queue;
  115. static cl_program program;
  116. static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q5_0, kernel_q5_1, kernel_q8_0;
  117. static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
  118. static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0;
  119. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  120. cl_program p;
  121. char *program_log;
  122. size_t program_size, log_size;
  123. int err;
  124. program_size = strlen(program_buffer);
  125. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  126. if(err < 0) {
  127. fprintf(stderr, "OpenCL error creating program");
  128. exit(1);
  129. }
  130. err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL);
  131. if(err < 0) {
  132. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  133. program_log = (char*) malloc(log_size + 1);
  134. program_log[log_size] = '\0';
  135. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  136. printf("%s\n", program_log);
  137. free(program_log);
  138. exit(1);
  139. }
  140. return p;
  141. }
  142. void ggml_cl_init(void) {
  143. cl_int err = 0;
  144. char * GGML_CLBLAST_PLATFORM = getenv("GGML_CLBLAST_PLATFORM");
  145. char * GGML_CLBLAST_DEVICE = getenv("GGML_CLBLAST_DEVICE");
  146. int plat_num = (GGML_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_CLBLAST_PLATFORM));
  147. int dev_num = (GGML_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_CLBLAST_DEVICE));
  148. printf("\nInitializing CLBlast (First Run)...");
  149. printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num);
  150. cl_uint num_platforms;
  151. clGetPlatformIDs(0, NULL, &num_platforms);
  152. cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id));
  153. clGetPlatformIDs(num_platforms, platforms, NULL);
  154. platform = platforms[plat_num];
  155. char platform_buffer[1024];
  156. clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL);
  157. cl_uint num_devices;
  158. clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
  159. cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id));
  160. clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
  161. device = devices[dev_num];
  162. char device_buffer[1024];
  163. clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL);
  164. printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer);
  165. context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
  166. CL_CHECK(err, "clCreateContext");
  167. queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
  168. CL_CHECK(err, "clCreateCommandQueue");
  169. free(platforms);
  170. free(devices);
  171. program = build_program_from_source(context, device, clblast_dequant);
  172. // Prepare dequantize kernels
  173. kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err);
  174. CL_CHECK(err, "clCreateKernel");
  175. kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err);
  176. CL_CHECK(err, "clCreateKernel");
  177. kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err);
  178. CL_CHECK(err, "clCreateKernel");
  179. kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err);
  180. CL_CHECK(err, "clCreateKernel");
  181. kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err);
  182. CL_CHECK(err, "clCreateKernel");
  183. }
  184. static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) {
  185. if (req_size <= *cur_size) {
  186. return;
  187. }
  188. // Reallocate buffer with enough space
  189. if (*cur_size > 0) {
  190. clReleaseMemObject(*buf);
  191. }
  192. cl_int err;
  193. *buf = clCreateBuffer(context, flags, req_size, NULL, &err);
  194. *cur_size = req_size;
  195. CL_CHECK(err, "clCreateBuffer");
  196. }
  197. void ggml_cl_sgemm_wrapper(
  198. const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b,
  199. const int m, const int n, const int k,
  200. const float alpha, const void *host_a, const int lda,
  201. const float *host_b, const int ldb, const float beta,
  202. float *host_c, const int ldc, const int btype) {
  203. cl_int err = 0;
  204. cl_kernel kernel;
  205. size_t global = n * k, local, size_qb;
  206. bool dequant;
  207. switch (btype) {
  208. case GGML_TYPE_F32:
  209. dequant = false;
  210. break;
  211. case GGML_TYPE_Q4_0:
  212. dequant = true;
  213. kernel = kernel_q4_0;
  214. local = 16;
  215. size_qb = global * (sizeof(float) + local) / 32;
  216. break;
  217. case GGML_TYPE_Q4_1:
  218. dequant = true;
  219. kernel = kernel_q4_1;
  220. local = 16;
  221. size_qb = global * (sizeof(float) * 2 + local) / 32;
  222. break;
  223. case GGML_TYPE_Q5_0:
  224. dequant = true;
  225. kernel = kernel_q5_0;
  226. local = 16;
  227. size_qb = global * (sizeof(ggml_fp16_t) + sizeof(uint32_t) + local) / 32;
  228. break;
  229. case GGML_TYPE_Q5_1:
  230. dequant = true;
  231. kernel = kernel_q5_1;
  232. local = 16;
  233. size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32;
  234. break;
  235. case GGML_TYPE_Q8_0:
  236. dequant = true;
  237. kernel = kernel_q8_0;
  238. local = 32;
  239. size_qb = global * (sizeof(float) + local) / 32;
  240. break;
  241. default:
  242. fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype);
  243. abort();
  244. }
  245. const size_t size_a = m * k * sizeof(float);
  246. const size_t size_b = n * k * sizeof(float);
  247. const size_t size_c = m * n * sizeof(float);
  248. // Prepare buffers
  249. ggml_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a);
  250. if (dequant) {
  251. ggml_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb);
  252. }
  253. ggml_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b);
  254. ggml_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c);
  255. cl_event ev_a, ev_qb, ev_b;
  256. if (dequant) {
  257. err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
  258. err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b);
  259. CL_CHECK(err, "clSetKernelArg");
  260. err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb);
  261. CL_CHECK(err, "clEnqueueWriteBuffer qb");
  262. } else {
  263. err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b);
  264. CL_CHECK(err, "clEnqueueWriteBuffer b");
  265. }
  266. err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a);
  267. CL_CHECK(err, "clEnqueueWriteBuffer a");
  268. if (dequant) {
  269. err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b);
  270. CL_CHECK(err, "clEnqueueNDRangeKernel");
  271. clReleaseEvent(ev_qb);
  272. }
  273. clWaitForEvents(1, &ev_a);
  274. clWaitForEvents(1, &ev_b);
  275. clReleaseEvent(ev_a);
  276. clReleaseEvent(ev_b);
  277. cl_event ev_sgemm;
  278. CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order,
  279. (CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b,
  280. m, n, k,
  281. alpha,
  282. cl_buffer_a, 0, lda,
  283. cl_buffer_b, 0, ldb,
  284. beta,
  285. cl_buffer_c, 0, ldc,
  286. &queue, &ev_sgemm);
  287. if (status != CLBlastSuccess) {
  288. fprintf(stderr, "Error: CLBlast SGEMM %d\n", status);
  289. abort();
  290. }
  291. cl_event ev_c;
  292. clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c);
  293. // Wait for completion
  294. clWaitForEvents(1, &ev_c);
  295. clReleaseEvent(ev_sgemm);
  296. clReleaseEvent(ev_c);
  297. }