ggml.c 689 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. const char * ggml_status_to_string(enum ggml_status status) {
  271. switch (status) {
  272. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  273. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  274. case GGML_STATUS_SUCCESS: return "GGML status: success";
  275. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  276. }
  277. return "GGML status: unknown";
  278. }
  279. // note: do not use these inside ggml.c
  280. // these are meant to be used via the ggml.h API
  281. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. return GGML_FP32_TO_FP16(x);
  286. }
  287. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  288. for (int i = 0; i < n; i++) {
  289. y[i] = GGML_FP16_TO_FP32(x[i]);
  290. }
  291. }
  292. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  293. int i = 0;
  294. #if defined(__F16C__)
  295. for (; i + 7 < n; i += 8) {
  296. __m256 x_vec = _mm256_loadu_ps(x + i);
  297. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  298. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  299. }
  300. for(; i + 3 < n; i += 4) {
  301. __m128 x_vec = _mm_loadu_ps(x + i);
  302. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  304. }
  305. #endif
  306. for (; i < n; i++) {
  307. y[i] = GGML_FP32_TO_FP16(x[i]);
  308. }
  309. }
  310. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  311. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  312. }
  313. //
  314. // timing
  315. //
  316. #if defined(_MSC_VER) || defined(__MINGW32__)
  317. static int64_t timer_freq, timer_start;
  318. void ggml_time_init(void) {
  319. LARGE_INTEGER t;
  320. QueryPerformanceFrequency(&t);
  321. timer_freq = t.QuadPart;
  322. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  323. // and the uptime is high enough.
  324. // We subtract the program start time to reduce the likelihood of that happening.
  325. QueryPerformanceCounter(&t);
  326. timer_start = t.QuadPart;
  327. }
  328. int64_t ggml_time_ms(void) {
  329. LARGE_INTEGER t;
  330. QueryPerformanceCounter(&t);
  331. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  332. }
  333. int64_t ggml_time_us(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  337. }
  338. #else
  339. void ggml_time_init(void) {}
  340. int64_t ggml_time_ms(void) {
  341. struct timespec ts;
  342. clock_gettime(CLOCK_MONOTONIC, &ts);
  343. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  344. }
  345. int64_t ggml_time_us(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  349. }
  350. #endif
  351. int64_t ggml_cycles(void) {
  352. return clock();
  353. }
  354. int64_t ggml_cycles_per_ms(void) {
  355. return CLOCKS_PER_SEC/1000;
  356. }
  357. #ifdef GGML_PERF
  358. #define ggml_perf_time_ms() ggml_time_ms()
  359. #define ggml_perf_time_us() ggml_time_us()
  360. #define ggml_perf_cycles() ggml_cycles()
  361. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  362. #else
  363. #define ggml_perf_time_ms() 0
  364. #define ggml_perf_time_us() 0
  365. #define ggml_perf_cycles() 0
  366. #define ggml_perf_cycles_per_ms() 0
  367. #endif
  368. //
  369. // cache line
  370. //
  371. #if defined(__cpp_lib_hardware_interference_size)
  372. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  373. #else
  374. #if defined(__POWER9_VECTOR__)
  375. #define CACHE_LINE_SIZE 128
  376. #else
  377. #define CACHE_LINE_SIZE 64
  378. #endif
  379. #endif
  380. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  381. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  382. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  383. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  384. [GGML_TYPE_I8] = {
  385. .type_name = "i8",
  386. .blck_size = 1,
  387. .type_size = sizeof(int8_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_I16] = {
  391. .type_name = "i16",
  392. .blck_size = 1,
  393. .type_size = sizeof(int16_t),
  394. .is_quantized = false,
  395. },
  396. [GGML_TYPE_I32] = {
  397. .type_name = "i32",
  398. .blck_size = 1,
  399. .type_size = sizeof(int32_t),
  400. .is_quantized = false,
  401. },
  402. [GGML_TYPE_F32] = {
  403. .type_name = "f32",
  404. .blck_size = 1,
  405. .type_size = sizeof(float),
  406. .is_quantized = false,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  408. .vec_dot_type = GGML_TYPE_F32,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_F16] = {
  412. .type_name = "f16",
  413. .blck_size = 1,
  414. .type_size = sizeof(ggml_fp16_t),
  415. .is_quantized = false,
  416. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  417. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  418. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  419. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  420. .vec_dot_type = GGML_TYPE_F16,
  421. .nrows = 1,
  422. },
  423. [GGML_TYPE_Q4_0] = {
  424. .type_name = "q4_0",
  425. .blck_size = QK4_0,
  426. .type_size = sizeof(block_q4_0),
  427. .is_quantized = true,
  428. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  429. .from_float = quantize_row_q4_0,
  430. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  431. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  432. .vec_dot_type = GGML_TYPE_Q8_0,
  433. #if defined (__ARM_FEATURE_MATMUL_INT8)
  434. .nrows = 2,
  435. #else
  436. .nrows = 1,
  437. #endif
  438. },
  439. [GGML_TYPE_Q4_1] = {
  440. .type_name = "q4_1",
  441. .blck_size = QK4_1,
  442. .type_size = sizeof(block_q4_1),
  443. .is_quantized = true,
  444. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  445. .from_float = quantize_row_q4_1,
  446. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  447. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  448. .vec_dot_type = GGML_TYPE_Q8_1,
  449. #if defined (__ARM_FEATURE_MATMUL_INT8)
  450. .nrows = 2,
  451. #else
  452. .nrows = 1,
  453. #endif
  454. },
  455. [4] = { // GGML_TYPE_Q4_2
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [5] = { // GGML_TYPE_Q4_3
  468. .type_name = "DEPRECATED",
  469. .blck_size = 0,
  470. .type_size = 0,
  471. .is_quantized = false,
  472. .to_float = NULL,
  473. .from_float = NULL,
  474. .from_float_reference = NULL,
  475. .vec_dot = NULL,
  476. .vec_dot_type = GGML_TYPE_COUNT,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_0] = {
  480. .type_name = "q5_0",
  481. .blck_size = QK5_0,
  482. .type_size = sizeof(block_q5_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  485. .from_float = quantize_row_q5_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  487. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q5_1] = {
  492. .type_name = "q5_1",
  493. .blck_size = QK5_1,
  494. .type_size = sizeof(block_q5_1),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  497. .from_float = quantize_row_q5_1,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  499. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  500. .vec_dot_type = GGML_TYPE_Q8_1,
  501. .nrows = 1,
  502. },
  503. [GGML_TYPE_Q8_0] = {
  504. .type_name = "q8_0",
  505. .blck_size = QK8_0,
  506. .type_size = sizeof(block_q8_0),
  507. .is_quantized = true,
  508. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  509. .from_float = quantize_row_q8_0,
  510. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  511. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  512. .vec_dot_type = GGML_TYPE_Q8_0,
  513. #if defined (__ARM_FEATURE_MATMUL_INT8)
  514. .nrows = 2,
  515. #else
  516. .nrows = 1,
  517. #endif
  518. },
  519. [GGML_TYPE_Q8_1] = {
  520. .type_name = "q8_1",
  521. .blck_size = QK8_1,
  522. .type_size = sizeof(block_q8_1),
  523. .is_quantized = true,
  524. .from_float = quantize_row_q8_1,
  525. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  526. .vec_dot_type = GGML_TYPE_Q8_1,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q2_K] = {
  530. .type_name = "q2_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q2_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  535. .from_float = quantize_row_q2_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  537. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q3_K] = {
  542. .type_name = "q3_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q3_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  547. .from_float = quantize_row_q3_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  549. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q4_K] = {
  554. .type_name = "q4_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q4_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  559. .from_float = quantize_row_q4_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  561. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q5_K] = {
  566. .type_name = "q5_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q5_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  571. .from_float = quantize_row_q5_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  573. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_Q6_K] = {
  578. .type_name = "q6_K",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_q6_K),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  583. .from_float = quantize_row_q6_K,
  584. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  585. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XXS] = {
  590. .type_name = "iq2_xxs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xxs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ2_XS] = {
  602. .type_name = "iq2_xs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq2_xs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  607. .from_float = NULL,
  608. .from_float_reference = NULL,
  609. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ3_XXS] = {
  614. .type_name = "iq3_xxs",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq3_xxs),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  619. .from_float = quantize_row_iq3_xxs,
  620. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  621. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_IQ3_S] = {
  626. .type_name = "iq3_s",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_iq3_s),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  631. .from_float = quantize_row_iq3_s,
  632. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  633. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_IQ2_S] = {
  638. .type_name = "iq2_s",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_iq2_s),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  643. .from_float = quantize_row_iq2_s,
  644. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  645. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_IQ1_S] = {
  650. .type_name = "iq1_s",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_iq1_s),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  655. .from_float = NULL,
  656. .from_float_reference = NULL,
  657. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_IQ4_NL] = {
  662. .type_name = "iq4_nl",
  663. .blck_size = QK4_NL,
  664. .type_size = sizeof(block_iq4_nl),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  667. .from_float = quantize_row_iq4_nl,
  668. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  669. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  670. .vec_dot_type = GGML_TYPE_Q8_0,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_IQ4_XS] = {
  674. .type_name = "iq4_xs",
  675. #if QK_K == 64
  676. .blck_size = QK4_NL,
  677. #else
  678. .blck_size = QK_K,
  679. #endif
  680. .type_size = sizeof(block_iq4_xs),
  681. .is_quantized = true,
  682. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  683. .from_float = quantize_row_iq4_xs,
  684. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  685. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  686. #if QK_K == 64
  687. .vec_dot_type = GGML_TYPE_Q8_0,
  688. #else
  689. .vec_dot_type = GGML_TYPE_Q8_K,
  690. #endif
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_Q8_K] = {
  694. .type_name = "q8_K",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_q8_K),
  697. .is_quantized = true,
  698. .from_float = quantize_row_q8_K,
  699. }
  700. };
  701. // For internal test use
  702. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  703. GGML_ASSERT(type < GGML_TYPE_COUNT);
  704. return type_traits[type];
  705. }
  706. //
  707. // simd mappings
  708. //
  709. #if defined(__ARM_NEON)
  710. #if !defined(__aarch64__)
  711. // 64-bit compatibility
  712. inline static float vaddvq_f32(float32x4_t v) {
  713. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  714. }
  715. #endif
  716. #endif
  717. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  718. // we then implement the fundamental computation operations below using only these macros
  719. // adding support for new architectures requires to define the corresponding SIMD macros
  720. //
  721. // GGML_F32_STEP / GGML_F16_STEP
  722. // number of elements to process in a single step
  723. //
  724. // GGML_F32_EPR / GGML_F16_EPR
  725. // number of elements to fit in a single register
  726. //
  727. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  728. #define GGML_SIMD
  729. // F32 NEON
  730. #define GGML_F32_STEP 16
  731. #define GGML_F32_EPR 4
  732. #define GGML_F32x4 float32x4_t
  733. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  734. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  735. #define GGML_F32x4_LOAD vld1q_f32
  736. #define GGML_F32x4_STORE vst1q_f32
  737. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  738. #define GGML_F32x4_ADD vaddq_f32
  739. #define GGML_F32x4_MUL vmulq_f32
  740. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  741. #define GGML_F32x4_REDUCE(res, x) \
  742. { \
  743. int offset = GGML_F32_ARR >> 1; \
  744. for (int i = 0; i < offset; ++i) { \
  745. x[i] = vaddq_f32(x[i], x[offset+i]); \
  746. } \
  747. offset >>= 1; \
  748. for (int i = 0; i < offset; ++i) { \
  749. x[i] = vaddq_f32(x[i], x[offset+i]); \
  750. } \
  751. offset >>= 1; \
  752. for (int i = 0; i < offset; ++i) { \
  753. x[i] = vaddq_f32(x[i], x[offset+i]); \
  754. } \
  755. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  756. }
  757. #define GGML_F32_VEC GGML_F32x4
  758. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  759. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  760. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  761. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  762. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  763. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  764. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  765. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  766. // F16 NEON
  767. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  768. #define GGML_F16_STEP 32
  769. #define GGML_F16_EPR 8
  770. #define GGML_F16x8 float16x8_t
  771. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  772. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  773. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  774. #define GGML_F16x8_STORE vst1q_f16
  775. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  776. #define GGML_F16x8_ADD vaddq_f16
  777. #define GGML_F16x8_MUL vmulq_f16
  778. #define GGML_F16x8_REDUCE(res, x) \
  779. do { \
  780. int offset = GGML_F16_ARR >> 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vaddq_f16(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = vaddq_f16(x[i], x[offset+i]); \
  787. } \
  788. offset >>= 1; \
  789. for (int i = 0; i < offset; ++i) { \
  790. x[i] = vaddq_f16(x[i], x[offset+i]); \
  791. } \
  792. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  793. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  794. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  795. } while (0)
  796. #define GGML_F16_VEC GGML_F16x8
  797. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  798. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  799. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  800. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  801. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  802. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  803. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  804. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  805. #else
  806. // if FP16 vector arithmetic is not supported, we use FP32 instead
  807. // and take advantage of the vcvt_ functions to convert to/from FP16
  808. #define GGML_F16_STEP 16
  809. #define GGML_F16_EPR 4
  810. #define GGML_F32Cx4 float32x4_t
  811. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  812. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  813. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  814. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  815. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  816. #define GGML_F32Cx4_ADD vaddq_f32
  817. #define GGML_F32Cx4_MUL vmulq_f32
  818. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  819. #define GGML_F16_VEC GGML_F32Cx4
  820. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  821. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  822. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  823. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  824. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  825. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  826. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  827. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  828. #endif
  829. #elif defined(__AVX__)
  830. #define GGML_SIMD
  831. // F32 AVX
  832. #define GGML_F32_STEP 32
  833. #define GGML_F32_EPR 8
  834. #define GGML_F32x8 __m256
  835. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  836. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  837. #define GGML_F32x8_LOAD _mm256_loadu_ps
  838. #define GGML_F32x8_STORE _mm256_storeu_ps
  839. #if defined(__FMA__)
  840. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  841. #else
  842. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  843. #endif
  844. #define GGML_F32x8_ADD _mm256_add_ps
  845. #define GGML_F32x8_MUL _mm256_mul_ps
  846. #define GGML_F32x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F32_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  859. } \
  860. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  861. _mm256_extractf128_ps(x[0], 1)); \
  862. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  863. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  864. } while (0)
  865. // TODO: is this optimal ?
  866. #define GGML_F32_VEC GGML_F32x8
  867. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  868. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  869. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  870. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  871. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  872. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  873. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  874. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  875. // F16 AVX
  876. #define GGML_F16_STEP 32
  877. #define GGML_F16_EPR 8
  878. // F16 arithmetic is not supported by AVX, so we use F32 instead
  879. #define GGML_F32Cx8 __m256
  880. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  881. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  882. #if defined(__F16C__)
  883. // the _mm256_cvt intrinsics require F16C
  884. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  885. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  886. #else
  887. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  888. float tmp[8];
  889. for (int i = 0; i < 8; i++) {
  890. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  891. }
  892. return _mm256_loadu_ps(tmp);
  893. }
  894. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  895. float arr[8];
  896. _mm256_storeu_ps(arr, y);
  897. for (int i = 0; i < 8; i++)
  898. x[i] = GGML_FP32_TO_FP16(arr[i]);
  899. }
  900. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  901. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  902. #endif
  903. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  904. #define GGML_F32Cx8_ADD _mm256_add_ps
  905. #define GGML_F32Cx8_MUL _mm256_mul_ps
  906. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  907. #define GGML_F16_VEC GGML_F32Cx8
  908. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  909. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  910. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  911. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  912. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  913. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  914. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  915. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  916. #elif defined(__POWER9_VECTOR__)
  917. #define GGML_SIMD
  918. // F32 POWER9
  919. #define GGML_F32_STEP 32
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 vector float
  922. #define GGML_F32x4_ZERO 0.0f
  923. #define GGML_F32x4_SET1 vec_splats
  924. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  925. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  926. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  927. #define GGML_F32x4_ADD vec_add
  928. #define GGML_F32x4_MUL vec_mul
  929. #define GGML_F32x4_REDUCE(res, x) \
  930. { \
  931. int offset = GGML_F32_ARR >> 1; \
  932. for (int i = 0; i < offset; ++i) { \
  933. x[i] = vec_add(x[i], x[offset+i]); \
  934. } \
  935. offset >>= 1; \
  936. for (int i = 0; i < offset; ++i) { \
  937. x[i] = vec_add(x[i], x[offset+i]); \
  938. } \
  939. offset >>= 1; \
  940. for (int i = 0; i < offset; ++i) { \
  941. x[i] = vec_add(x[i], x[offset+i]); \
  942. } \
  943. res = vec_extract(x[0], 0) + \
  944. vec_extract(x[0], 1) + \
  945. vec_extract(x[0], 2) + \
  946. vec_extract(x[0], 3); \
  947. }
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 POWER9
  958. #define GGML_F16_STEP GGML_F32_STEP
  959. #define GGML_F16_EPR GGML_F32_EPR
  960. #define GGML_F16_VEC GGML_F32x4
  961. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  962. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  963. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  964. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  965. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  966. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  967. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  968. vec_extract_fp32_from_shortl(vec_xl(0, p))
  969. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  970. #define GGML_F16_VEC_STORE(p, r, i) \
  971. if (i & 0x1) \
  972. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  973. r[i - GGML_ENDIAN_BYTE(0)]), \
  974. 0, p - GGML_F16_EPR)
  975. #elif defined(__wasm_simd128__)
  976. #define GGML_SIMD
  977. // F32 WASM
  978. #define GGML_F32_STEP 16
  979. #define GGML_F32_EPR 4
  980. #define GGML_F32x4 v128_t
  981. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  982. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  983. #define GGML_F32x4_LOAD wasm_v128_load
  984. #define GGML_F32x4_STORE wasm_v128_store
  985. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  986. #define GGML_F32x4_ADD wasm_f32x4_add
  987. #define GGML_F32x4_MUL wasm_f32x4_mul
  988. #define GGML_F32x4_REDUCE(res, x) \
  989. { \
  990. int offset = GGML_F32_ARR >> 1; \
  991. for (int i = 0; i < offset; ++i) { \
  992. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  993. } \
  994. offset >>= 1; \
  995. for (int i = 0; i < offset; ++i) { \
  996. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  997. } \
  998. offset >>= 1; \
  999. for (int i = 0; i < offset; ++i) { \
  1000. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1001. } \
  1002. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1003. wasm_f32x4_extract_lane(x[0], 1) + \
  1004. wasm_f32x4_extract_lane(x[0], 2) + \
  1005. wasm_f32x4_extract_lane(x[0], 3); \
  1006. }
  1007. #define GGML_F32_VEC GGML_F32x4
  1008. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1009. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1010. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1011. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1012. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1013. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1014. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1015. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1016. // F16 WASM
  1017. #define GGML_F16_STEP 16
  1018. #define GGML_F16_EPR 4
  1019. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1020. float tmp[4];
  1021. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1022. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1023. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1024. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1025. return wasm_v128_load(tmp);
  1026. }
  1027. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1028. float tmp[4];
  1029. wasm_v128_store(tmp, x);
  1030. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1031. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1032. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1033. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1034. }
  1035. #define GGML_F16x4 v128_t
  1036. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1037. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1038. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1039. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1040. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1041. #define GGML_F16x4_ADD wasm_f32x4_add
  1042. #define GGML_F16x4_MUL wasm_f32x4_mul
  1043. #define GGML_F16x4_REDUCE(res, x) \
  1044. { \
  1045. int offset = GGML_F16_ARR >> 1; \
  1046. for (int i = 0; i < offset; ++i) { \
  1047. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1048. } \
  1049. offset >>= 1; \
  1050. for (int i = 0; i < offset; ++i) { \
  1051. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1052. } \
  1053. offset >>= 1; \
  1054. for (int i = 0; i < offset; ++i) { \
  1055. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1056. } \
  1057. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1058. wasm_f32x4_extract_lane(x[0], 1) + \
  1059. wasm_f32x4_extract_lane(x[0], 2) + \
  1060. wasm_f32x4_extract_lane(x[0], 3); \
  1061. }
  1062. #define GGML_F16_VEC GGML_F16x4
  1063. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1071. #elif defined(__SSE3__)
  1072. #define GGML_SIMD
  1073. // F32 SSE
  1074. #define GGML_F32_STEP 32
  1075. #define GGML_F32_EPR 4
  1076. #define GGML_F32x4 __m128
  1077. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1078. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1079. #define GGML_F32x4_LOAD _mm_loadu_ps
  1080. #define GGML_F32x4_STORE _mm_storeu_ps
  1081. #if defined(__FMA__)
  1082. // TODO: Does this work?
  1083. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1084. #else
  1085. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1086. #endif
  1087. #define GGML_F32x4_ADD _mm_add_ps
  1088. #define GGML_F32x4_MUL _mm_mul_ps
  1089. #define GGML_F32x4_REDUCE(res, x) \
  1090. { \
  1091. int offset = GGML_F32_ARR >> 1; \
  1092. for (int i = 0; i < offset; ++i) { \
  1093. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1094. } \
  1095. offset >>= 1; \
  1096. for (int i = 0; i < offset; ++i) { \
  1097. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1098. } \
  1099. offset >>= 1; \
  1100. for (int i = 0; i < offset; ++i) { \
  1101. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1102. } \
  1103. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1104. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1105. }
  1106. // TODO: is this optimal ?
  1107. #define GGML_F32_VEC GGML_F32x4
  1108. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1109. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1110. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1111. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1112. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1113. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1114. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1115. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1116. // F16 SSE
  1117. #define GGML_F16_STEP 32
  1118. #define GGML_F16_EPR 4
  1119. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1120. float tmp[4];
  1121. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1122. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1123. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1124. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1125. return _mm_loadu_ps(tmp);
  1126. }
  1127. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1128. float arr[4];
  1129. _mm_storeu_ps(arr, y);
  1130. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1131. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1132. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1133. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1134. }
  1135. #define GGML_F32Cx4 __m128
  1136. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1137. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1138. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1139. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1140. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1141. #define GGML_F32Cx4_ADD _mm_add_ps
  1142. #define GGML_F32Cx4_MUL _mm_mul_ps
  1143. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1144. #define GGML_F16_VEC GGML_F32Cx4
  1145. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1146. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1147. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1148. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1149. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1150. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1151. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1152. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1153. #endif
  1154. // GGML_F32_ARR / GGML_F16_ARR
  1155. // number of registers to use per step
  1156. #ifdef GGML_SIMD
  1157. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1158. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1159. #endif
  1160. //
  1161. // fundamental operations
  1162. //
  1163. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1165. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1166. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1167. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1168. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1169. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1170. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1171. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1172. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1173. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1174. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1175. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1176. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1177. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1178. assert(nrc == 1);
  1179. UNUSED(nrc);
  1180. UNUSED(bx);
  1181. UNUSED(by);
  1182. UNUSED(bs);
  1183. #ifdef GGML_SIMD
  1184. float sumf = 0.0f;
  1185. const int np = (n & ~(GGML_F32_STEP - 1));
  1186. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1187. GGML_F32_VEC ax[GGML_F32_ARR];
  1188. GGML_F32_VEC ay[GGML_F32_ARR];
  1189. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1190. for (int j = 0; j < GGML_F32_ARR; j++) {
  1191. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1192. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1193. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1194. }
  1195. }
  1196. // reduce sum0..sum3 to sum0
  1197. GGML_F32_VEC_REDUCE(sumf, sum);
  1198. // leftovers
  1199. for (int i = np; i < n; ++i) {
  1200. sumf += x[i]*y[i];
  1201. }
  1202. #else
  1203. // scalar
  1204. ggml_float sumf = 0.0;
  1205. for (int i = 0; i < n; ++i) {
  1206. sumf += (ggml_float)(x[i]*y[i]);
  1207. }
  1208. #endif
  1209. *s = sumf;
  1210. }
  1211. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1212. assert(nrc == 1);
  1213. UNUSED(nrc);
  1214. UNUSED(bx);
  1215. UNUSED(by);
  1216. UNUSED(bs);
  1217. ggml_float sumf = 0.0;
  1218. #if defined(GGML_SIMD)
  1219. const int np = (n & ~(GGML_F16_STEP - 1));
  1220. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1221. GGML_F16_VEC ax[GGML_F16_ARR];
  1222. GGML_F16_VEC ay[GGML_F16_ARR];
  1223. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1224. for (int j = 0; j < GGML_F16_ARR; j++) {
  1225. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1226. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1227. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1228. }
  1229. }
  1230. // reduce sum0..sum3 to sum0
  1231. GGML_F16_VEC_REDUCE(sumf, sum);
  1232. // leftovers
  1233. for (int i = np; i < n; ++i) {
  1234. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1235. }
  1236. #else
  1237. for (int i = 0; i < n; ++i) {
  1238. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1239. }
  1240. #endif
  1241. *s = sumf;
  1242. }
  1243. // compute GGML_VEC_DOT_UNROLL dot products at once
  1244. // xs - x row stride in bytes
  1245. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1246. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1247. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1248. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1249. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1250. }
  1251. #if defined(GGML_SIMD)
  1252. const int np = (n & ~(GGML_F16_STEP - 1));
  1253. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1254. GGML_F16_VEC ax[GGML_F16_ARR];
  1255. GGML_F16_VEC ay[GGML_F16_ARR];
  1256. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1257. for (int j = 0; j < GGML_F16_ARR; j++) {
  1258. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1259. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1260. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1261. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1262. }
  1263. }
  1264. }
  1265. // reduce sum0..sum3 to sum0
  1266. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1267. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1268. }
  1269. // leftovers
  1270. for (int i = np; i < n; ++i) {
  1271. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1272. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1273. }
  1274. }
  1275. #else
  1276. for (int i = 0; i < n; ++i) {
  1277. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1278. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1279. }
  1280. }
  1281. #endif
  1282. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1283. s[i] = sumf[i];
  1284. }
  1285. }
  1286. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1287. #if defined(GGML_SIMD)
  1288. const int np = (n & ~(GGML_F32_STEP - 1));
  1289. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1290. GGML_F32_VEC ax[GGML_F32_ARR];
  1291. GGML_F32_VEC ay[GGML_F32_ARR];
  1292. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1293. for (int j = 0; j < GGML_F32_ARR; j++) {
  1294. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1295. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1296. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1297. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1298. }
  1299. }
  1300. // leftovers
  1301. for (int i = np; i < n; ++i) {
  1302. y[i] += x[i]*v;
  1303. }
  1304. #else
  1305. // scalar
  1306. for (int i = 0; i < n; ++i) {
  1307. y[i] += x[i]*v;
  1308. }
  1309. #endif
  1310. }
  1311. // xs and vs are byte strides of x and v
  1312. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1313. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1314. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1315. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1316. x[i] = (const float *) ((const char *) xv + i*xs);
  1317. v[i] = (const float *) ((const char *) vv + i*vs);
  1318. }
  1319. #if defined(GGML_SIMD)
  1320. const int np = (n & ~(GGML_F32_STEP - 1));
  1321. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1322. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1323. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1324. }
  1325. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1326. GGML_F32_VEC ay[GGML_F32_ARR];
  1327. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1328. for (int j = 0; j < GGML_F32_ARR; j++) {
  1329. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1330. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1331. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1332. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1333. }
  1334. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1335. }
  1336. }
  1337. // leftovers
  1338. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1339. for (int i = np; i < n; ++i) {
  1340. y[i] += x[k][i]*v[k][0];
  1341. }
  1342. }
  1343. #else
  1344. // scalar
  1345. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1346. for (int i = 0; i < n; ++i) {
  1347. y[i] += x[k][i]*v[k][0];
  1348. }
  1349. }
  1350. #endif
  1351. }
  1352. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1353. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1354. #if defined(GGML_USE_ACCELERATE)
  1355. vDSP_vsmul(y, 1, &v, y, 1, n);
  1356. #elif defined(GGML_SIMD)
  1357. const int np = (n & ~(GGML_F32_STEP - 1));
  1358. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1359. GGML_F32_VEC ay[GGML_F32_ARR];
  1360. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1361. for (int j = 0; j < GGML_F32_ARR; j++) {
  1362. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1363. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1364. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1365. }
  1366. }
  1367. // leftovers
  1368. for (int i = np; i < n; ++i) {
  1369. y[i] *= v;
  1370. }
  1371. #else
  1372. // scalar
  1373. for (int i = 0; i < n; ++i) {
  1374. y[i] *= v;
  1375. }
  1376. #endif
  1377. }
  1378. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1379. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1380. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1381. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1382. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1383. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1384. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1385. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1386. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1387. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1388. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1389. // TODO: optimize performance
  1390. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1391. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1392. static const float GELU_COEF_A = 0.044715f;
  1393. static const float GELU_QUICK_COEF = -1.702f;
  1394. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1395. inline static float ggml_gelu_f32(float x) {
  1396. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1397. }
  1398. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1399. const uint16_t * i16 = (const uint16_t *) x;
  1400. for (int i = 0; i < n; ++i) {
  1401. y[i] = ggml_table_gelu_f16[i16[i]];
  1402. }
  1403. }
  1404. #ifdef GGML_GELU_FP16
  1405. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1406. uint16_t t;
  1407. for (int i = 0; i < n; ++i) {
  1408. if (x[i] <= -10.0f) {
  1409. y[i] = 0.0f;
  1410. } else if (x[i] >= 10.0f) {
  1411. y[i] = x[i];
  1412. } else {
  1413. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1414. memcpy(&t, &fp16, sizeof(uint16_t));
  1415. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1416. }
  1417. }
  1418. }
  1419. #else
  1420. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1421. for (int i = 0; i < n; ++i) {
  1422. y[i] = ggml_gelu_f32(x[i]);
  1423. }
  1424. }
  1425. #endif
  1426. inline static float ggml_gelu_quick_f32(float x) {
  1427. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1428. }
  1429. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1430. // const uint16_t * i16 = (const uint16_t *) x;
  1431. // for (int i = 0; i < n; ++i) {
  1432. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1433. // }
  1434. //}
  1435. #ifdef GGML_GELU_QUICK_FP16
  1436. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1437. uint16_t t;
  1438. for (int i = 0; i < n; ++i) {
  1439. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1440. memcpy(&t, &fp16, sizeof(uint16_t));
  1441. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1442. }
  1443. }
  1444. #else
  1445. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1446. for (int i = 0; i < n; ++i) {
  1447. y[i] = ggml_gelu_quick_f32(x[i]);
  1448. }
  1449. }
  1450. #endif
  1451. // Sigmoid Linear Unit (SiLU) function
  1452. inline static float ggml_silu_f32(float x) {
  1453. return x/(1.0f + expf(-x));
  1454. }
  1455. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1456. // const uint16_t * i16 = (const uint16_t *) x;
  1457. // for (int i = 0; i < n; ++i) {
  1458. // y[i] = ggml_table_silu_f16[i16[i]];
  1459. // }
  1460. //}
  1461. #ifdef GGML_SILU_FP16
  1462. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1463. uint16_t t;
  1464. for (int i = 0; i < n; ++i) {
  1465. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1466. memcpy(&t, &fp16, sizeof(uint16_t));
  1467. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1468. }
  1469. }
  1470. #else
  1471. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1472. for (int i = 0; i < n; ++i) {
  1473. y[i] = ggml_silu_f32(x[i]);
  1474. }
  1475. }
  1476. #endif
  1477. inline static float ggml_silu_backward_f32(float x, float dy) {
  1478. const float s = 1.0f/(1.0f + expf(-x));
  1479. return dy*s*(1.0f + x*(1.0f - s));
  1480. }
  1481. #ifdef GGML_SILU_FP16
  1482. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1483. for (int i = 0; i < n; ++i) {
  1484. // we did not use x[i] to compute forward silu but its f16 equivalent
  1485. // take derivative at f16 of x[i]:
  1486. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1487. float usedx = GGML_FP16_TO_FP32(fp16);
  1488. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1489. }
  1490. }
  1491. #else
  1492. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1493. for (int i = 0; i < n; ++i) {
  1494. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1495. }
  1496. }
  1497. #endif
  1498. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1499. #ifndef GGML_USE_ACCELERATE
  1500. ggml_float sum = 0.0;
  1501. for (int i = 0; i < n; ++i) {
  1502. sum += (ggml_float)x[i];
  1503. }
  1504. *s = sum;
  1505. #else
  1506. vDSP_sve(x, 1, s, n);
  1507. #endif
  1508. }
  1509. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1510. ggml_float sum = 0.0;
  1511. for (int i = 0; i < n; ++i) {
  1512. sum += (ggml_float)x[i];
  1513. }
  1514. *s = sum;
  1515. }
  1516. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1517. float sum = 0.0f;
  1518. for (int i = 0; i < n; ++i) {
  1519. sum += GGML_FP16_TO_FP32(x[i]);
  1520. }
  1521. *s = sum;
  1522. }
  1523. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1524. #ifndef GGML_USE_ACCELERATE
  1525. float max = -INFINITY;
  1526. for (int i = 0; i < n; ++i) {
  1527. max = MAX(max, x[i]);
  1528. }
  1529. *s = max;
  1530. #else
  1531. vDSP_maxv(x, 1, s, n);
  1532. #endif
  1533. }
  1534. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1535. ggml_vec_norm_f32(n, s, x);
  1536. *s = 1.f/(*s);
  1537. }
  1538. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1539. float max = -INFINITY;
  1540. int idx = 0;
  1541. for (int i = 0; i < n; ++i) {
  1542. max = MAX(max, x[i]);
  1543. if (max == x[i]) { idx = i; }
  1544. }
  1545. *s = idx;
  1546. }
  1547. //
  1548. // data types
  1549. //
  1550. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1551. "NONE",
  1552. "DUP",
  1553. "ADD",
  1554. "ADD1",
  1555. "ACC",
  1556. "SUB",
  1557. "MUL",
  1558. "DIV",
  1559. "SQR",
  1560. "SQRT",
  1561. "LOG",
  1562. "SUM",
  1563. "SUM_ROWS",
  1564. "MEAN",
  1565. "ARGMAX",
  1566. "REPEAT",
  1567. "REPEAT_BACK",
  1568. "CONCAT",
  1569. "SILU_BACK",
  1570. "NORM",
  1571. "RMS_NORM",
  1572. "RMS_NORM_BACK",
  1573. "GROUP_NORM",
  1574. "MUL_MAT",
  1575. "MUL_MAT_ID",
  1576. "OUT_PROD",
  1577. "SCALE",
  1578. "SET",
  1579. "CPY",
  1580. "CONT",
  1581. "RESHAPE",
  1582. "VIEW",
  1583. "PERMUTE",
  1584. "TRANSPOSE",
  1585. "GET_ROWS",
  1586. "GET_ROWS_BACK",
  1587. "DIAG",
  1588. "DIAG_MASK_INF",
  1589. "DIAG_MASK_ZERO",
  1590. "SOFT_MAX",
  1591. "SOFT_MAX_BACK",
  1592. "ROPE",
  1593. "ROPE_BACK",
  1594. "ALIBI",
  1595. "CLAMP",
  1596. "CONV_TRANSPOSE_1D",
  1597. "IM2COL",
  1598. "CONV_TRANSPOSE_2D",
  1599. "POOL_1D",
  1600. "POOL_2D",
  1601. "UPSCALE",
  1602. "PAD",
  1603. "ARANGE",
  1604. "TIMESTEP_EMBEDDING",
  1605. "ARGSORT",
  1606. "LEAKY_RELU",
  1607. "FLASH_ATTN",
  1608. "FLASH_FF",
  1609. "FLASH_ATTN_BACK",
  1610. "SSM_CONV",
  1611. "SSM_SCAN",
  1612. "WIN_PART",
  1613. "WIN_UNPART",
  1614. "GET_REL_POS",
  1615. "ADD_REL_POS",
  1616. "UNARY",
  1617. "MAP_UNARY",
  1618. "MAP_BINARY",
  1619. "MAP_CUSTOM1_F32",
  1620. "MAP_CUSTOM2_F32",
  1621. "MAP_CUSTOM3_F32",
  1622. "MAP_CUSTOM1",
  1623. "MAP_CUSTOM2",
  1624. "MAP_CUSTOM3",
  1625. "CROSS_ENTROPY_LOSS",
  1626. "CROSS_ENTROPY_LOSS_BACK",
  1627. };
  1628. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1629. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1630. "none",
  1631. "x",
  1632. "x+y",
  1633. "x+y",
  1634. "view(x,nb,offset)+=y->x",
  1635. "x-y",
  1636. "x*y",
  1637. "x/y",
  1638. "x^2",
  1639. "√x",
  1640. "log(x)",
  1641. "Σx",
  1642. "Σx_k",
  1643. "Σx/n",
  1644. "argmax(x)",
  1645. "repeat(x)",
  1646. "repeat_back(x)",
  1647. "concat(x, y)",
  1648. "silu_back(x)",
  1649. "norm(x)",
  1650. "rms_norm(x)",
  1651. "rms_norm_back(x)",
  1652. "group_norm(x)",
  1653. "X*Y",
  1654. "X[i]*Y",
  1655. "X*Y",
  1656. "x*v",
  1657. "y-\\>view(x)",
  1658. "x-\\>y",
  1659. "cont(x)",
  1660. "reshape(x)",
  1661. "view(x)",
  1662. "permute(x)",
  1663. "transpose(x)",
  1664. "get_rows(x)",
  1665. "get_rows_back(x)",
  1666. "diag(x)",
  1667. "diag_mask_inf(x)",
  1668. "diag_mask_zero(x)",
  1669. "soft_max(x)",
  1670. "soft_max_back(x)",
  1671. "rope(x)",
  1672. "rope_back(x)",
  1673. "alibi(x)",
  1674. "clamp(x)",
  1675. "conv_transpose_1d(x)",
  1676. "im2col(x)",
  1677. "conv_transpose_2d(x)",
  1678. "pool_1d(x)",
  1679. "pool_2d(x)",
  1680. "upscale(x)",
  1681. "pad(x)",
  1682. "arange(start, stop, step)",
  1683. "timestep_embedding(timesteps, dim, max_period)",
  1684. "argsort(x)",
  1685. "leaky_relu(x)",
  1686. "flash_attn(x)",
  1687. "flash_ff(x)",
  1688. "flash_attn_back(x)",
  1689. "ssm_conv(x)",
  1690. "ssm_scan(x)",
  1691. "win_part(x)",
  1692. "win_unpart(x)",
  1693. "get_rel_pos(x)",
  1694. "add_rel_pos(x)",
  1695. "unary(x)",
  1696. "f(x)",
  1697. "f(x,y)",
  1698. "custom_f32(x)",
  1699. "custom_f32(x,y)",
  1700. "custom_f32(x,y,z)",
  1701. "custom(x)",
  1702. "custom(x,y)",
  1703. "custom(x,y,z)",
  1704. "cross_entropy_loss(x,y)",
  1705. "cross_entropy_loss_back(x,y)",
  1706. };
  1707. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1708. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1709. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1710. "ABS",
  1711. "SGN",
  1712. "NEG",
  1713. "STEP",
  1714. "TANH",
  1715. "ELU",
  1716. "RELU",
  1717. "GELU",
  1718. "GELU_QUICK",
  1719. "SILU",
  1720. "HARDSWISH",
  1721. "HARDSIGMOID",
  1722. };
  1723. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1724. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1725. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1726. // WARN:
  1727. // Mis-configuration can lead to problem that's hard to reason about:
  1728. // * At best it crash or talks nosense.
  1729. // * At worst it talks slightly difference but hard to perceive.
  1730. //
  1731. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1732. // Take care about compile options (e.g., GGML_USE_xxx).
  1733. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1734. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1735. static void ggml_setup_op_has_task_pass(void) {
  1736. { // INIT
  1737. bool * p = GGML_OP_HAS_INIT;
  1738. p[GGML_OP_ACC ] = true;
  1739. p[GGML_OP_MUL_MAT ] = true;
  1740. p[GGML_OP_MUL_MAT_ID ] = true;
  1741. p[GGML_OP_OUT_PROD ] = true;
  1742. p[GGML_OP_SET ] = true;
  1743. p[GGML_OP_GET_ROWS_BACK ] = true;
  1744. p[GGML_OP_DIAG_MASK_INF ] = true;
  1745. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1746. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1747. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1748. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1749. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1750. p[GGML_OP_ADD_REL_POS ] = true;
  1751. }
  1752. { // FINALIZE
  1753. bool * p = GGML_OP_HAS_FINALIZE;
  1754. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1755. }
  1756. }
  1757. //
  1758. // ggml context
  1759. //
  1760. struct ggml_context {
  1761. size_t mem_size;
  1762. void * mem_buffer;
  1763. bool mem_buffer_owned;
  1764. bool no_alloc;
  1765. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1766. int n_objects;
  1767. struct ggml_object * objects_begin;
  1768. struct ggml_object * objects_end;
  1769. struct ggml_scratch scratch;
  1770. struct ggml_scratch scratch_save;
  1771. };
  1772. struct ggml_context_container {
  1773. bool used;
  1774. struct ggml_context context;
  1775. };
  1776. //
  1777. // NUMA support
  1778. //
  1779. #define GGML_NUMA_MAX_NODES 8
  1780. #define GGML_NUMA_MAX_CPUS 512
  1781. struct ggml_numa_node {
  1782. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1783. uint32_t n_cpus;
  1784. };
  1785. struct ggml_numa_nodes {
  1786. enum ggml_numa_strategy numa_strategy;
  1787. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1788. uint32_t n_nodes;
  1789. uint32_t total_cpus; // hardware threads on system
  1790. uint32_t current_node; // node on which main process is execting
  1791. #if defined(__gnu_linux__)
  1792. cpu_set_t cpuset; // cpuset from numactl
  1793. #else
  1794. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1795. #endif
  1796. };
  1797. //
  1798. // ggml state
  1799. //
  1800. struct ggml_state {
  1801. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1802. struct ggml_numa_nodes numa;
  1803. };
  1804. // global state
  1805. static struct ggml_state g_state;
  1806. static atomic_int g_state_barrier = 0;
  1807. // barrier via spin lock
  1808. inline static void ggml_critical_section_start(void) {
  1809. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1810. while (processing > 0) {
  1811. // wait for other threads to finish
  1812. atomic_fetch_sub(&g_state_barrier, 1);
  1813. sched_yield(); // TODO: reconsider this
  1814. processing = atomic_fetch_add(&g_state_barrier, 1);
  1815. }
  1816. }
  1817. // TODO: make this somehow automatically executed
  1818. // some sort of "sentry" mechanism
  1819. inline static void ggml_critical_section_end(void) {
  1820. atomic_fetch_sub(&g_state_barrier, 1);
  1821. }
  1822. #if defined(__gnu_linux__)
  1823. static cpu_set_t ggml_get_numa_affinity(void) {
  1824. cpu_set_t cpuset;
  1825. pthread_t thread;
  1826. thread = pthread_self();
  1827. CPU_ZERO(&cpuset);
  1828. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1829. return cpuset;
  1830. }
  1831. #else
  1832. static uint32_t ggml_get_numa_affinity(void) {
  1833. return 0; // no NUMA support
  1834. }
  1835. #endif
  1836. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1837. if (g_state.numa.n_nodes > 0) {
  1838. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1839. return;
  1840. }
  1841. #if defined(__gnu_linux__)
  1842. struct stat st;
  1843. char path[256];
  1844. int rv;
  1845. // set numa scheme
  1846. g_state.numa.numa_strategy = numa_flag;
  1847. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1848. g_state.numa.cpuset = ggml_get_numa_affinity();
  1849. // enumerate nodes
  1850. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1851. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1852. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1853. if (stat(path, &st) != 0) { break; }
  1854. ++g_state.numa.n_nodes;
  1855. }
  1856. // enumerate CPUs
  1857. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1858. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1859. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1860. if (stat(path, &st) != 0) { break; }
  1861. ++g_state.numa.total_cpus;
  1862. }
  1863. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1864. // figure out which node we're on
  1865. uint current_cpu;
  1866. int getcpu_ret = 0;
  1867. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1868. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1869. #else
  1870. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1871. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  1872. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  1873. # endif
  1874. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  1875. #endif
  1876. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1877. g_state.numa.n_nodes = 0;
  1878. return;
  1879. }
  1880. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1881. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1882. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1883. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1884. node->n_cpus = 0;
  1885. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1886. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1887. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1888. if (stat(path, &st) == 0) {
  1889. node->cpus[node->n_cpus++] = c;
  1890. GGML_PRINT_DEBUG(" %u", c);
  1891. }
  1892. }
  1893. GGML_PRINT_DEBUG("\n");
  1894. }
  1895. if (ggml_is_numa()) {
  1896. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1897. if (fptr != NULL) {
  1898. char buf[42];
  1899. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1900. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1901. }
  1902. fclose(fptr);
  1903. }
  1904. }
  1905. #else
  1906. GGML_UNUSED(numa_flag);
  1907. // TODO
  1908. #endif
  1909. }
  1910. bool ggml_is_numa(void) {
  1911. return g_state.numa.n_nodes > 1;
  1912. }
  1913. ////////////////////////////////////////////////////////////////////////////////
  1914. void ggml_print_object(const struct ggml_object * obj) {
  1915. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1916. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1917. }
  1918. void ggml_print_objects(const struct ggml_context * ctx) {
  1919. struct ggml_object * obj = ctx->objects_begin;
  1920. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1921. while (obj != NULL) {
  1922. ggml_print_object(obj);
  1923. obj = obj->next;
  1924. }
  1925. GGML_PRINT("%s: --- end ---\n", __func__);
  1926. }
  1927. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1928. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1929. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1930. }
  1931. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1932. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1933. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1934. }
  1935. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1936. size_t nbytes;
  1937. size_t blck_size = ggml_blck_size(tensor->type);
  1938. if (blck_size == 1) {
  1939. nbytes = ggml_type_size(tensor->type);
  1940. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1941. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1942. }
  1943. }
  1944. else {
  1945. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1946. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1947. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1948. }
  1949. }
  1950. return nbytes;
  1951. }
  1952. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1953. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1954. }
  1955. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1956. return type_traits[type].blck_size;
  1957. }
  1958. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1959. return type_traits[type].type_size;
  1960. }
  1961. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1962. assert(ne % ggml_blck_size(type) == 0);
  1963. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1964. }
  1965. double ggml_type_sizef(enum ggml_type type) {
  1966. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1967. }
  1968. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1969. return type_traits[type].type_name;
  1970. }
  1971. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1972. return type_traits[type].is_quantized;
  1973. }
  1974. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1975. return GGML_OP_NAME[op];
  1976. }
  1977. const char * ggml_op_symbol(enum ggml_op op) {
  1978. return GGML_OP_SYMBOL[op];
  1979. }
  1980. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1981. return GGML_UNARY_OP_NAME[op];
  1982. }
  1983. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1984. if (t->op == GGML_OP_UNARY) {
  1985. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1986. return ggml_unary_op_name(uop);
  1987. }
  1988. else {
  1989. return ggml_op_name(t->op);
  1990. }
  1991. }
  1992. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1993. return ggml_type_size(tensor->type);
  1994. }
  1995. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1998. }
  1999. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2000. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2001. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2002. }
  2003. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2004. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2005. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2006. }
  2007. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2008. return tensor->ne[3] == 1;
  2009. }
  2010. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2011. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2012. if (tensor->ne[i] > 1) {
  2013. return i + 1;
  2014. }
  2015. }
  2016. return 1;
  2017. }
  2018. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2020. return (t0->ne[0] == t1->ne[0]) &&
  2021. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2022. (t1->ne[3]%t0->ne[3] == 0);
  2023. }
  2024. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2026. return (t0->ne[1] == t1->ne[1]) &&
  2027. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2028. (t1->ne[3]%t0->ne[3] == 0);
  2029. }
  2030. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2031. enum ggml_type wtype = GGML_TYPE_COUNT;
  2032. switch (ftype) {
  2033. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2034. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2035. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2036. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2037. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2038. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2039. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2040. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2041. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2042. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2043. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2044. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2045. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2046. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2047. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2048. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2049. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2050. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2051. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2052. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2053. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2054. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2055. }
  2056. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2057. return wtype;
  2058. }
  2059. size_t ggml_tensor_overhead(void) {
  2060. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2061. }
  2062. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2063. return tensor->nb[0] > tensor->nb[1];
  2064. }
  2065. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2066. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2067. return
  2068. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2069. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2070. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2071. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2072. }
  2073. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2074. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2075. return
  2076. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2077. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2078. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2079. }
  2080. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2081. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2082. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2083. }
  2084. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2085. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2086. return
  2087. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2088. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2089. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2090. }
  2091. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2092. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2093. return
  2094. (t0->ne[0] == t1->ne[0] ) &&
  2095. (t0->ne[1] == t1->ne[1] ) &&
  2096. (t0->ne[2] == t1->ne[2] ) &&
  2097. (t0->ne[3] == t1->ne[3] );
  2098. }
  2099. // check if t1 can be represented as a repeatition of t0
  2100. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2101. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2102. return
  2103. (t1->ne[0]%t0->ne[0] == 0) &&
  2104. (t1->ne[1]%t0->ne[1] == 0) &&
  2105. (t1->ne[2]%t0->ne[2] == 0) &&
  2106. (t1->ne[3]%t0->ne[3] == 0);
  2107. }
  2108. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2109. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2110. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2111. }
  2112. static inline int ggml_up32(int n) {
  2113. return (n + 31) & ~31;
  2114. }
  2115. //static inline int ggml_up64(int n) {
  2116. // return (n + 63) & ~63;
  2117. //}
  2118. static inline int ggml_up(int n, int m) {
  2119. // assert m is a power of 2
  2120. GGML_ASSERT((m & (m - 1)) == 0);
  2121. return (n + m - 1) & ~(m - 1);
  2122. }
  2123. // assert that pointer is aligned to GGML_MEM_ALIGN
  2124. #define ggml_assert_aligned(ptr) \
  2125. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2126. ////////////////////////////////////////////////////////////////////////////////
  2127. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2128. // make this function thread safe
  2129. ggml_critical_section_start();
  2130. static bool is_first_call = true;
  2131. if (is_first_call) {
  2132. // initialize time system (required on Windows)
  2133. ggml_time_init();
  2134. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2135. {
  2136. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2137. ggml_fp16_t ii;
  2138. for (int i = 0; i < (1 << 16); ++i) {
  2139. uint16_t ui = i;
  2140. memcpy(&ii, &ui, sizeof(ii));
  2141. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2142. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2143. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2144. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2145. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2146. }
  2147. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2148. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2149. }
  2150. // initialize g_state
  2151. {
  2152. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2153. g_state = (struct ggml_state) {
  2154. /*.contexts =*/ { { 0 } },
  2155. /*.numa =*/ {
  2156. .n_nodes = 0,
  2157. .total_cpus = 0,
  2158. },
  2159. };
  2160. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2161. g_state.contexts[i].used = false;
  2162. }
  2163. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2164. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2165. }
  2166. #if defined(GGML_USE_CUBLAS)
  2167. ggml_init_cublas();
  2168. #elif defined(GGML_USE_CLBLAST)
  2169. ggml_cl_init();
  2170. #elif defined(GGML_USE_VULKAN)
  2171. ggml_vk_init_cpu_assist();
  2172. #elif defined(GGML_USE_SYCL)
  2173. ggml_init_sycl();
  2174. #endif
  2175. ggml_setup_op_has_task_pass();
  2176. is_first_call = false;
  2177. }
  2178. // find non-used context in g_state
  2179. struct ggml_context * ctx = NULL;
  2180. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2181. if (!g_state.contexts[i].used) {
  2182. g_state.contexts[i].used = true;
  2183. ctx = &g_state.contexts[i].context;
  2184. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2185. break;
  2186. }
  2187. }
  2188. if (ctx == NULL) {
  2189. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2190. ggml_critical_section_end();
  2191. return NULL;
  2192. }
  2193. // allow to call ggml_init with 0 size
  2194. if (params.mem_size == 0) {
  2195. params.mem_size = GGML_MEM_ALIGN;
  2196. }
  2197. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2198. *ctx = (struct ggml_context) {
  2199. /*.mem_size =*/ mem_size,
  2200. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2201. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2202. /*.no_alloc =*/ params.no_alloc,
  2203. /*.no_alloc_save =*/ params.no_alloc,
  2204. /*.n_objects =*/ 0,
  2205. /*.objects_begin =*/ NULL,
  2206. /*.objects_end =*/ NULL,
  2207. /*.scratch =*/ { 0, 0, NULL, },
  2208. /*.scratch_save =*/ { 0, 0, NULL, },
  2209. };
  2210. GGML_ASSERT(ctx->mem_buffer != NULL);
  2211. ggml_assert_aligned(ctx->mem_buffer);
  2212. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2213. ggml_critical_section_end();
  2214. return ctx;
  2215. }
  2216. void ggml_free(struct ggml_context * ctx) {
  2217. if (ctx == NULL) {
  2218. return;
  2219. }
  2220. // make this function thread safe
  2221. ggml_critical_section_start();
  2222. bool found = false;
  2223. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2224. if (&g_state.contexts[i].context == ctx) {
  2225. g_state.contexts[i].used = false;
  2226. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2227. __func__, i, ggml_used_mem(ctx));
  2228. if (ctx->mem_buffer_owned) {
  2229. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2230. }
  2231. found = true;
  2232. break;
  2233. }
  2234. }
  2235. if (!found) {
  2236. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2237. }
  2238. ggml_critical_section_end();
  2239. }
  2240. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2241. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2242. }
  2243. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2244. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2245. ctx->scratch = scratch;
  2246. return result;
  2247. }
  2248. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2249. return ctx->no_alloc;
  2250. }
  2251. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2252. ctx->no_alloc = no_alloc;
  2253. }
  2254. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2255. return ctx->mem_buffer;
  2256. }
  2257. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2258. return ctx->mem_size;
  2259. }
  2260. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2261. size_t max_size = 0;
  2262. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2263. size_t bytes = ggml_nbytes(tensor);
  2264. max_size = MAX(max_size, bytes);
  2265. }
  2266. return max_size;
  2267. }
  2268. // IMPORTANT:
  2269. // when creating "opt" tensors, always save and load the scratch buffer
  2270. // this is an error prone process, but it is necessary to support inplace
  2271. // operators when using scratch buffers
  2272. // TODO: implement a better way
  2273. static void ggml_scratch_save(struct ggml_context * ctx) {
  2274. // this is needed to allow opt tensors to store their data
  2275. // TODO: again, need to find a better way
  2276. ctx->no_alloc_save = ctx->no_alloc;
  2277. ctx->no_alloc = false;
  2278. ctx->scratch_save = ctx->scratch;
  2279. ctx->scratch.data = NULL;
  2280. }
  2281. static void ggml_scratch_load(struct ggml_context * ctx) {
  2282. ctx->no_alloc = ctx->no_alloc_save;
  2283. ctx->scratch = ctx->scratch_save;
  2284. }
  2285. ////////////////////////////////////////////////////////////////////////////////
  2286. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2287. // always insert objects at the end of the context's memory pool
  2288. struct ggml_object * obj_cur = ctx->objects_end;
  2289. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2290. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2291. const size_t cur_end = cur_offs + cur_size;
  2292. // align to GGML_MEM_ALIGN
  2293. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2294. char * const mem_buffer = ctx->mem_buffer;
  2295. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2296. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2297. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2298. __func__, cur_end + size_needed, ctx->mem_size);
  2299. assert(false);
  2300. return NULL;
  2301. }
  2302. *obj_new = (struct ggml_object) {
  2303. .offs = cur_end + GGML_OBJECT_SIZE,
  2304. .size = size_needed,
  2305. .next = NULL,
  2306. .type = type,
  2307. };
  2308. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2309. if (obj_cur != NULL) {
  2310. obj_cur->next = obj_new;
  2311. } else {
  2312. // this is the first object in this context
  2313. ctx->objects_begin = obj_new;
  2314. }
  2315. ctx->objects_end = obj_new;
  2316. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2317. return obj_new;
  2318. }
  2319. static struct ggml_tensor * ggml_new_tensor_impl(
  2320. struct ggml_context * ctx,
  2321. enum ggml_type type,
  2322. int n_dims,
  2323. const int64_t * ne,
  2324. struct ggml_tensor * view_src,
  2325. size_t view_offs) {
  2326. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2327. // find the base tensor and absolute offset
  2328. if (view_src != NULL && view_src->view_src != NULL) {
  2329. view_offs += view_src->view_offs;
  2330. view_src = view_src->view_src;
  2331. }
  2332. size_t data_size = ggml_row_size(type, ne[0]);
  2333. for (int i = 1; i < n_dims; i++) {
  2334. data_size *= ne[i];
  2335. }
  2336. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2337. void * data = view_src != NULL ? view_src->data : NULL;
  2338. if (data != NULL) {
  2339. data = (char *) data + view_offs;
  2340. }
  2341. size_t obj_alloc_size = 0;
  2342. if (view_src == NULL && !ctx->no_alloc) {
  2343. if (ctx->scratch.data != NULL) {
  2344. // allocate tensor data in the scratch buffer
  2345. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2346. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2347. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2348. assert(false);
  2349. return NULL;
  2350. }
  2351. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2352. ctx->scratch.offs += data_size;
  2353. } else {
  2354. // allocate tensor data in the context's memory pool
  2355. obj_alloc_size = data_size;
  2356. }
  2357. }
  2358. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2359. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2360. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2361. *result = (struct ggml_tensor) {
  2362. /*.type =*/ type,
  2363. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2364. /*.buffer =*/ NULL,
  2365. /*.ne =*/ { 1, 1, 1, 1 },
  2366. /*.nb =*/ { 0, 0, 0, 0 },
  2367. /*.op =*/ GGML_OP_NONE,
  2368. /*.op_params =*/ { 0 },
  2369. /*.flags =*/ 0,
  2370. /*.grad =*/ NULL,
  2371. /*.src =*/ { NULL },
  2372. /*.perf_runs =*/ 0,
  2373. /*.perf_cycles =*/ 0,
  2374. /*.perf_time_us =*/ 0,
  2375. /*.view_src =*/ view_src,
  2376. /*.view_offs =*/ view_offs,
  2377. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2378. /*.name =*/ { 0 },
  2379. /*.extra =*/ NULL,
  2380. /*.padding =*/ { 0 },
  2381. };
  2382. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2383. //ggml_assert_aligned(result->data);
  2384. for (int i = 0; i < n_dims; i++) {
  2385. result->ne[i] = ne[i];
  2386. }
  2387. result->nb[0] = ggml_type_size(type);
  2388. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2389. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2390. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2391. }
  2392. ctx->n_objects++;
  2393. return result;
  2394. }
  2395. struct ggml_tensor * ggml_new_tensor(
  2396. struct ggml_context * ctx,
  2397. enum ggml_type type,
  2398. int n_dims,
  2399. const int64_t * ne) {
  2400. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2401. }
  2402. struct ggml_tensor * ggml_new_tensor_1d(
  2403. struct ggml_context * ctx,
  2404. enum ggml_type type,
  2405. int64_t ne0) {
  2406. return ggml_new_tensor(ctx, type, 1, &ne0);
  2407. }
  2408. struct ggml_tensor * ggml_new_tensor_2d(
  2409. struct ggml_context * ctx,
  2410. enum ggml_type type,
  2411. int64_t ne0,
  2412. int64_t ne1) {
  2413. const int64_t ne[2] = { ne0, ne1 };
  2414. return ggml_new_tensor(ctx, type, 2, ne);
  2415. }
  2416. struct ggml_tensor * ggml_new_tensor_3d(
  2417. struct ggml_context * ctx,
  2418. enum ggml_type type,
  2419. int64_t ne0,
  2420. int64_t ne1,
  2421. int64_t ne2) {
  2422. const int64_t ne[3] = { ne0, ne1, ne2 };
  2423. return ggml_new_tensor(ctx, type, 3, ne);
  2424. }
  2425. struct ggml_tensor * ggml_new_tensor_4d(
  2426. struct ggml_context * ctx,
  2427. enum ggml_type type,
  2428. int64_t ne0,
  2429. int64_t ne1,
  2430. int64_t ne2,
  2431. int64_t ne3) {
  2432. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2433. return ggml_new_tensor(ctx, type, 4, ne);
  2434. }
  2435. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2436. ggml_scratch_save(ctx);
  2437. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2438. ggml_scratch_load(ctx);
  2439. ggml_set_i32(result, value);
  2440. return result;
  2441. }
  2442. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2443. ggml_scratch_save(ctx);
  2444. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2445. ggml_scratch_load(ctx);
  2446. ggml_set_f32(result, value);
  2447. return result;
  2448. }
  2449. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2450. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2451. }
  2452. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2453. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2454. assert(params_size <= GGML_MAX_OP_PARAMS);
  2455. memcpy(tensor->op_params, params, params_size);
  2456. }
  2457. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2458. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2459. return ((const int32_t *)(tensor->op_params))[i];
  2460. }
  2461. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2462. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2463. return ((const float *)(tensor->op_params))[i];
  2464. }
  2465. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2466. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2467. ((int32_t *)(tensor->op_params))[i] = value;
  2468. }
  2469. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2470. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2471. ((float *)(tensor->op_params))[i] = value;
  2472. }
  2473. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2474. memset(tensor->data, 0, ggml_nbytes(tensor));
  2475. return tensor;
  2476. }
  2477. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2478. const int n = ggml_nrows(tensor);
  2479. const int nc = tensor->ne[0];
  2480. const size_t n1 = tensor->nb[1];
  2481. char * const data = tensor->data;
  2482. switch (tensor->type) {
  2483. case GGML_TYPE_I8:
  2484. {
  2485. assert(tensor->nb[0] == sizeof(int8_t));
  2486. for (int i = 0; i < n; i++) {
  2487. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2488. }
  2489. } break;
  2490. case GGML_TYPE_I16:
  2491. {
  2492. assert(tensor->nb[0] == sizeof(int16_t));
  2493. for (int i = 0; i < n; i++) {
  2494. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2495. }
  2496. } break;
  2497. case GGML_TYPE_I32:
  2498. {
  2499. assert(tensor->nb[0] == sizeof(int32_t));
  2500. for (int i = 0; i < n; i++) {
  2501. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2502. }
  2503. } break;
  2504. case GGML_TYPE_F16:
  2505. {
  2506. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2507. for (int i = 0; i < n; i++) {
  2508. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2509. }
  2510. } break;
  2511. case GGML_TYPE_F32:
  2512. {
  2513. assert(tensor->nb[0] == sizeof(float));
  2514. for (int i = 0; i < n; i++) {
  2515. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2516. }
  2517. } break;
  2518. default:
  2519. {
  2520. GGML_ASSERT(false);
  2521. } break;
  2522. }
  2523. return tensor;
  2524. }
  2525. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2526. const int n = ggml_nrows(tensor);
  2527. const int nc = tensor->ne[0];
  2528. const size_t n1 = tensor->nb[1];
  2529. char * const data = tensor->data;
  2530. switch (tensor->type) {
  2531. case GGML_TYPE_I8:
  2532. {
  2533. assert(tensor->nb[0] == sizeof(int8_t));
  2534. for (int i = 0; i < n; i++) {
  2535. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2536. }
  2537. } break;
  2538. case GGML_TYPE_I16:
  2539. {
  2540. assert(tensor->nb[0] == sizeof(int16_t));
  2541. for (int i = 0; i < n; i++) {
  2542. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2543. }
  2544. } break;
  2545. case GGML_TYPE_I32:
  2546. {
  2547. assert(tensor->nb[0] == sizeof(int32_t));
  2548. for (int i = 0; i < n; i++) {
  2549. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2550. }
  2551. } break;
  2552. case GGML_TYPE_F16:
  2553. {
  2554. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2555. for (int i = 0; i < n; i++) {
  2556. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2557. }
  2558. } break;
  2559. case GGML_TYPE_F32:
  2560. {
  2561. assert(tensor->nb[0] == sizeof(float));
  2562. for (int i = 0; i < n; i++) {
  2563. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2564. }
  2565. } break;
  2566. default:
  2567. {
  2568. GGML_ASSERT(false);
  2569. } break;
  2570. }
  2571. return tensor;
  2572. }
  2573. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2574. const int64_t ne2 = tensor->ne[2];
  2575. const int64_t ne1 = tensor->ne[1];
  2576. const int64_t ne0 = tensor->ne[0];
  2577. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2578. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2579. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2580. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2581. if (i0) {
  2582. * i0 = i0_;
  2583. }
  2584. if (i1) {
  2585. * i1 = i1_;
  2586. }
  2587. if (i2) {
  2588. * i2 = i2_;
  2589. }
  2590. if (i3) {
  2591. * i3 = i3_;
  2592. }
  2593. }
  2594. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2595. if (!ggml_is_contiguous(tensor)) {
  2596. int64_t id[4] = { 0, 0, 0, 0 };
  2597. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2598. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2599. }
  2600. switch (tensor->type) {
  2601. case GGML_TYPE_I8:
  2602. {
  2603. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2604. return ((int8_t *)(tensor->data))[i];
  2605. }
  2606. case GGML_TYPE_I16:
  2607. {
  2608. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2609. return ((int16_t *)(tensor->data))[i];
  2610. }
  2611. case GGML_TYPE_I32:
  2612. {
  2613. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2614. return ((int32_t *)(tensor->data))[i];
  2615. }
  2616. case GGML_TYPE_F16:
  2617. {
  2618. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2619. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2620. }
  2621. case GGML_TYPE_F32:
  2622. {
  2623. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2624. return ((float *)(tensor->data))[i];
  2625. }
  2626. default:
  2627. {
  2628. GGML_ASSERT(false);
  2629. }
  2630. }
  2631. return 0.0f;
  2632. }
  2633. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2634. if (!ggml_is_contiguous(tensor)) {
  2635. int64_t id[4] = { 0, 0, 0, 0 };
  2636. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2637. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2638. return;
  2639. }
  2640. switch (tensor->type) {
  2641. case GGML_TYPE_I8:
  2642. {
  2643. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2644. ((int8_t *)(tensor->data))[i] = value;
  2645. } break;
  2646. case GGML_TYPE_I16:
  2647. {
  2648. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2649. ((int16_t *)(tensor->data))[i] = value;
  2650. } break;
  2651. case GGML_TYPE_I32:
  2652. {
  2653. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2654. ((int32_t *)(tensor->data))[i] = value;
  2655. } break;
  2656. case GGML_TYPE_F16:
  2657. {
  2658. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2659. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2660. } break;
  2661. case GGML_TYPE_F32:
  2662. {
  2663. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2664. ((float *)(tensor->data))[i] = value;
  2665. } break;
  2666. default:
  2667. {
  2668. GGML_ASSERT(false);
  2669. } break;
  2670. }
  2671. }
  2672. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2673. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2674. switch (tensor->type) {
  2675. case GGML_TYPE_I8:
  2676. return ((int8_t *) data)[0];
  2677. case GGML_TYPE_I16:
  2678. return ((int16_t *) data)[0];
  2679. case GGML_TYPE_I32:
  2680. return ((int32_t *) data)[0];
  2681. case GGML_TYPE_F16:
  2682. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2683. case GGML_TYPE_F32:
  2684. return ((float *) data)[0];
  2685. default:
  2686. GGML_ASSERT(false);
  2687. }
  2688. return 0.0f;
  2689. }
  2690. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2691. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2692. switch (tensor->type) {
  2693. case GGML_TYPE_I8:
  2694. {
  2695. ((int8_t *)(data))[0] = value;
  2696. } break;
  2697. case GGML_TYPE_I16:
  2698. {
  2699. ((int16_t *)(data))[0] = value;
  2700. } break;
  2701. case GGML_TYPE_I32:
  2702. {
  2703. ((int32_t *)(data))[0] = value;
  2704. } break;
  2705. case GGML_TYPE_F16:
  2706. {
  2707. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2708. } break;
  2709. case GGML_TYPE_F32:
  2710. {
  2711. ((float *)(data))[0] = value;
  2712. } break;
  2713. default:
  2714. {
  2715. GGML_ASSERT(false);
  2716. } break;
  2717. }
  2718. }
  2719. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2720. if (!ggml_is_contiguous(tensor)) {
  2721. int64_t id[4] = { 0, 0, 0, 0 };
  2722. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2723. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2724. }
  2725. switch (tensor->type) {
  2726. case GGML_TYPE_I8:
  2727. {
  2728. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2729. return ((int8_t *)(tensor->data))[i];
  2730. }
  2731. case GGML_TYPE_I16:
  2732. {
  2733. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2734. return ((int16_t *)(tensor->data))[i];
  2735. }
  2736. case GGML_TYPE_I32:
  2737. {
  2738. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2739. return ((int32_t *)(tensor->data))[i];
  2740. }
  2741. case GGML_TYPE_F16:
  2742. {
  2743. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2744. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2745. }
  2746. case GGML_TYPE_F32:
  2747. {
  2748. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2749. return ((float *)(tensor->data))[i];
  2750. }
  2751. default:
  2752. {
  2753. GGML_ASSERT(false);
  2754. }
  2755. }
  2756. return 0.0f;
  2757. }
  2758. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2759. if (!ggml_is_contiguous(tensor)) {
  2760. int64_t id[4] = { 0, 0, 0, 0 };
  2761. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2762. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2763. return;
  2764. }
  2765. switch (tensor->type) {
  2766. case GGML_TYPE_I8:
  2767. {
  2768. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2769. ((int8_t *)(tensor->data))[i] = value;
  2770. } break;
  2771. case GGML_TYPE_I16:
  2772. {
  2773. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2774. ((int16_t *)(tensor->data))[i] = value;
  2775. } break;
  2776. case GGML_TYPE_I32:
  2777. {
  2778. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2779. ((int32_t *)(tensor->data))[i] = value;
  2780. } break;
  2781. case GGML_TYPE_F16:
  2782. {
  2783. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2784. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2785. } break;
  2786. case GGML_TYPE_F32:
  2787. {
  2788. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2789. ((float *)(tensor->data))[i] = value;
  2790. } break;
  2791. default:
  2792. {
  2793. GGML_ASSERT(false);
  2794. } break;
  2795. }
  2796. }
  2797. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2798. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2799. switch (tensor->type) {
  2800. case GGML_TYPE_I8:
  2801. return ((int8_t *) data)[0];
  2802. case GGML_TYPE_I16:
  2803. return ((int16_t *) data)[0];
  2804. case GGML_TYPE_I32:
  2805. return ((int32_t *) data)[0];
  2806. case GGML_TYPE_F16:
  2807. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2808. case GGML_TYPE_F32:
  2809. return ((float *) data)[0];
  2810. default:
  2811. GGML_ASSERT(false);
  2812. }
  2813. return 0.0f;
  2814. }
  2815. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2816. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2817. switch (tensor->type) {
  2818. case GGML_TYPE_I8:
  2819. {
  2820. ((int8_t *)(data))[0] = value;
  2821. } break;
  2822. case GGML_TYPE_I16:
  2823. {
  2824. ((int16_t *)(data))[0] = value;
  2825. } break;
  2826. case GGML_TYPE_I32:
  2827. {
  2828. ((int32_t *)(data))[0] = value;
  2829. } break;
  2830. case GGML_TYPE_F16:
  2831. {
  2832. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2833. } break;
  2834. case GGML_TYPE_F32:
  2835. {
  2836. ((float *)(data))[0] = value;
  2837. } break;
  2838. default:
  2839. {
  2840. GGML_ASSERT(false);
  2841. } break;
  2842. }
  2843. }
  2844. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2845. return tensor->data;
  2846. }
  2847. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2848. assert(tensor->type == GGML_TYPE_F32);
  2849. return (float *)(tensor->data);
  2850. }
  2851. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2852. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2853. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2854. }
  2855. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2856. return tensor->name;
  2857. }
  2858. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2859. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2860. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2861. return tensor;
  2862. }
  2863. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2864. va_list args;
  2865. va_start(args, fmt);
  2866. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2867. va_end(args);
  2868. return tensor;
  2869. }
  2870. struct ggml_tensor * ggml_view_tensor(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * src) {
  2873. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2874. ggml_format_name(result, "%s (view)", src->name);
  2875. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2876. result->nb[i] = src->nb[i];
  2877. }
  2878. return result;
  2879. }
  2880. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2881. struct ggml_object * obj = ctx->objects_begin;
  2882. char * const mem_buffer = ctx->mem_buffer;
  2883. while (obj != NULL) {
  2884. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2885. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2886. }
  2887. obj = obj->next;
  2888. }
  2889. return NULL;
  2890. }
  2891. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2892. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2893. obj = obj->next;
  2894. char * const mem_buffer = ctx->mem_buffer;
  2895. while (obj != NULL) {
  2896. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2897. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2898. }
  2899. obj = obj->next;
  2900. }
  2901. return NULL;
  2902. }
  2903. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2904. struct ggml_object * obj = ctx->objects_begin;
  2905. char * const mem_buffer = ctx->mem_buffer;
  2906. while (obj != NULL) {
  2907. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2908. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2909. if (strcmp(cur->name, name) == 0) {
  2910. return cur;
  2911. }
  2912. }
  2913. obj = obj->next;
  2914. }
  2915. return NULL;
  2916. }
  2917. ////////////////////////////////////////////////////////////////////////////////
  2918. // ggml_dup
  2919. static struct ggml_tensor * ggml_dup_impl(
  2920. struct ggml_context * ctx,
  2921. struct ggml_tensor * a,
  2922. bool inplace) {
  2923. bool is_node = false;
  2924. if (!inplace && (a->grad)) {
  2925. is_node = true;
  2926. }
  2927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2928. result->op = GGML_OP_DUP;
  2929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2930. result->src[0] = a;
  2931. return result;
  2932. }
  2933. struct ggml_tensor * ggml_dup(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a) {
  2936. return ggml_dup_impl(ctx, a, false);
  2937. }
  2938. struct ggml_tensor * ggml_dup_inplace(
  2939. struct ggml_context * ctx,
  2940. struct ggml_tensor * a) {
  2941. return ggml_dup_impl(ctx, a, true);
  2942. }
  2943. // ggml_add
  2944. static struct ggml_tensor * ggml_add_impl(
  2945. struct ggml_context * ctx,
  2946. struct ggml_tensor * a,
  2947. struct ggml_tensor * b,
  2948. bool inplace) {
  2949. GGML_ASSERT(ggml_can_repeat(b, a));
  2950. bool is_node = false;
  2951. if (!inplace && (a->grad || b->grad)) {
  2952. // TODO: support backward pass for broadcasting
  2953. GGML_ASSERT(ggml_are_same_shape(a, b));
  2954. is_node = true;
  2955. }
  2956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2957. result->op = GGML_OP_ADD;
  2958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2959. result->src[0] = a;
  2960. result->src[1] = b;
  2961. return result;
  2962. }
  2963. struct ggml_tensor * ggml_add(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a,
  2966. struct ggml_tensor * b) {
  2967. return ggml_add_impl(ctx, a, b, false);
  2968. }
  2969. struct ggml_tensor * ggml_add_inplace(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a,
  2972. struct ggml_tensor * b) {
  2973. return ggml_add_impl(ctx, a, b, true);
  2974. }
  2975. // ggml_add_cast
  2976. static struct ggml_tensor * ggml_add_cast_impl(
  2977. struct ggml_context * ctx,
  2978. struct ggml_tensor * a,
  2979. struct ggml_tensor * b,
  2980. enum ggml_type type) {
  2981. // TODO: support less-strict constraint
  2982. // GGML_ASSERT(ggml_can_repeat(b, a));
  2983. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2984. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2985. bool is_node = false;
  2986. if (a->grad || b->grad) {
  2987. // TODO: support backward pass for broadcasting
  2988. GGML_ASSERT(ggml_are_same_shape(a, b));
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2992. result->op = GGML_OP_ADD;
  2993. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2994. result->src[0] = a;
  2995. result->src[1] = b;
  2996. return result;
  2997. }
  2998. struct ggml_tensor * ggml_add_cast(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a,
  3001. struct ggml_tensor * b,
  3002. enum ggml_type type) {
  3003. return ggml_add_cast_impl(ctx, a, b, type);
  3004. }
  3005. // ggml_add1
  3006. static struct ggml_tensor * ggml_add1_impl(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * a,
  3009. struct ggml_tensor * b,
  3010. bool inplace) {
  3011. GGML_ASSERT(ggml_is_scalar(b));
  3012. GGML_ASSERT(ggml_is_padded_1d(a));
  3013. bool is_node = false;
  3014. if (a->grad || b->grad) {
  3015. is_node = true;
  3016. }
  3017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3018. result->op = GGML_OP_ADD1;
  3019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3020. result->src[0] = a;
  3021. result->src[1] = b;
  3022. return result;
  3023. }
  3024. struct ggml_tensor * ggml_add1(
  3025. struct ggml_context * ctx,
  3026. struct ggml_tensor * a,
  3027. struct ggml_tensor * b) {
  3028. return ggml_add1_impl(ctx, a, b, false);
  3029. }
  3030. struct ggml_tensor * ggml_add1_inplace(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a,
  3033. struct ggml_tensor * b) {
  3034. return ggml_add1_impl(ctx, a, b, true);
  3035. }
  3036. // ggml_acc
  3037. static struct ggml_tensor * ggml_acc_impl(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. struct ggml_tensor * b,
  3041. size_t nb1,
  3042. size_t nb2,
  3043. size_t nb3,
  3044. size_t offset,
  3045. bool inplace) {
  3046. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3047. GGML_ASSERT(ggml_is_contiguous(a));
  3048. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3049. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3050. bool is_node = false;
  3051. if (!inplace && (a->grad || b->grad)) {
  3052. is_node = true;
  3053. }
  3054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3055. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3056. ggml_set_op_params(result, params, sizeof(params));
  3057. result->op = GGML_OP_ACC;
  3058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3059. result->src[0] = a;
  3060. result->src[1] = b;
  3061. return result;
  3062. }
  3063. struct ggml_tensor * ggml_acc(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a,
  3066. struct ggml_tensor * b,
  3067. size_t nb1,
  3068. size_t nb2,
  3069. size_t nb3,
  3070. size_t offset) {
  3071. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3072. }
  3073. struct ggml_tensor * ggml_acc_inplace(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. struct ggml_tensor * b,
  3077. size_t nb1,
  3078. size_t nb2,
  3079. size_t nb3,
  3080. size_t offset) {
  3081. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3082. }
  3083. // ggml_sub
  3084. static struct ggml_tensor * ggml_sub_impl(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a,
  3087. struct ggml_tensor * b,
  3088. bool inplace) {
  3089. GGML_ASSERT(ggml_are_same_shape(a, b));
  3090. bool is_node = false;
  3091. if (!inplace && (a->grad || b->grad)) {
  3092. is_node = true;
  3093. }
  3094. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3095. result->op = GGML_OP_SUB;
  3096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3097. result->src[0] = a;
  3098. result->src[1] = b;
  3099. return result;
  3100. }
  3101. struct ggml_tensor * ggml_sub(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a,
  3104. struct ggml_tensor * b) {
  3105. return ggml_sub_impl(ctx, a, b, false);
  3106. }
  3107. struct ggml_tensor * ggml_sub_inplace(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a,
  3110. struct ggml_tensor * b) {
  3111. return ggml_sub_impl(ctx, a, b, true);
  3112. }
  3113. // ggml_mul
  3114. static struct ggml_tensor * ggml_mul_impl(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a,
  3117. struct ggml_tensor * b,
  3118. bool inplace) {
  3119. GGML_ASSERT(ggml_can_repeat(b, a));
  3120. bool is_node = false;
  3121. if (!inplace && (a->grad || b->grad)) {
  3122. // TODO: support backward pass for broadcasting
  3123. GGML_ASSERT(ggml_are_same_shape(a, b));
  3124. is_node = true;
  3125. }
  3126. if (inplace) {
  3127. GGML_ASSERT(!is_node);
  3128. }
  3129. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3130. result->op = GGML_OP_MUL;
  3131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3132. result->src[0] = a;
  3133. result->src[1] = b;
  3134. return result;
  3135. }
  3136. struct ggml_tensor * ggml_mul(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a,
  3139. struct ggml_tensor * b) {
  3140. return ggml_mul_impl(ctx, a, b, false);
  3141. }
  3142. struct ggml_tensor * ggml_mul_inplace(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a,
  3145. struct ggml_tensor * b) {
  3146. return ggml_mul_impl(ctx, a, b, true);
  3147. }
  3148. // ggml_div
  3149. static struct ggml_tensor * ggml_div_impl(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a,
  3152. struct ggml_tensor * b,
  3153. bool inplace) {
  3154. GGML_ASSERT(ggml_can_repeat(b, a));
  3155. bool is_node = false;
  3156. if (!inplace && (a->grad || b->grad)) {
  3157. is_node = true;
  3158. }
  3159. if (inplace) {
  3160. GGML_ASSERT(!is_node);
  3161. }
  3162. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3163. result->op = GGML_OP_DIV;
  3164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3165. result->src[0] = a;
  3166. result->src[1] = b;
  3167. return result;
  3168. }
  3169. struct ggml_tensor * ggml_div(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a,
  3172. struct ggml_tensor * b) {
  3173. return ggml_div_impl(ctx, a, b, false);
  3174. }
  3175. struct ggml_tensor * ggml_div_inplace(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a,
  3178. struct ggml_tensor * b) {
  3179. return ggml_div_impl(ctx, a, b, true);
  3180. }
  3181. // ggml_sqr
  3182. static struct ggml_tensor * ggml_sqr_impl(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. bool inplace) {
  3186. bool is_node = false;
  3187. if (!inplace && (a->grad)) {
  3188. is_node = true;
  3189. }
  3190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3191. result->op = GGML_OP_SQR;
  3192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3193. result->src[0] = a;
  3194. return result;
  3195. }
  3196. struct ggml_tensor * ggml_sqr(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a) {
  3199. return ggml_sqr_impl(ctx, a, false);
  3200. }
  3201. struct ggml_tensor * ggml_sqr_inplace(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_sqr_impl(ctx, a, true);
  3205. }
  3206. // ggml_sqrt
  3207. static struct ggml_tensor * ggml_sqrt_impl(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. bool inplace) {
  3211. bool is_node = false;
  3212. if (!inplace && (a->grad)) {
  3213. is_node = true;
  3214. }
  3215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3216. result->op = GGML_OP_SQRT;
  3217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3218. result->src[0] = a;
  3219. return result;
  3220. }
  3221. struct ggml_tensor * ggml_sqrt(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a) {
  3224. return ggml_sqrt_impl(ctx, a, false);
  3225. }
  3226. struct ggml_tensor * ggml_sqrt_inplace(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a) {
  3229. return ggml_sqrt_impl(ctx, a, true);
  3230. }
  3231. // ggml_log
  3232. static struct ggml_tensor * ggml_log_impl(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a,
  3235. bool inplace) {
  3236. bool is_node = false;
  3237. if (!inplace && (a->grad)) {
  3238. is_node = true;
  3239. }
  3240. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3241. result->op = GGML_OP_LOG;
  3242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3243. result->src[0] = a;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_log(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_log_impl(ctx, a, false);
  3250. }
  3251. struct ggml_tensor * ggml_log_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_log_impl(ctx, a, true);
  3255. }
  3256. // ggml_sum
  3257. struct ggml_tensor * ggml_sum(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a) {
  3260. bool is_node = false;
  3261. if (a->grad) {
  3262. is_node = true;
  3263. }
  3264. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3265. result->op = GGML_OP_SUM;
  3266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3267. result->src[0] = a;
  3268. return result;
  3269. }
  3270. // ggml_sum_rows
  3271. struct ggml_tensor * ggml_sum_rows(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a) {
  3274. bool is_node = false;
  3275. if (a->grad) {
  3276. is_node = true;
  3277. }
  3278. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3279. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3280. ne[i] = a->ne[i];
  3281. }
  3282. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3283. result->op = GGML_OP_SUM_ROWS;
  3284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3285. result->src[0] = a;
  3286. return result;
  3287. }
  3288. // ggml_mean
  3289. struct ggml_tensor * ggml_mean(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a) {
  3292. bool is_node = false;
  3293. if (a->grad) {
  3294. GGML_ASSERT(false); // TODO: implement
  3295. is_node = true;
  3296. }
  3297. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3298. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3299. result->op = GGML_OP_MEAN;
  3300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3301. result->src[0] = a;
  3302. return result;
  3303. }
  3304. // ggml_argmax
  3305. struct ggml_tensor * ggml_argmax(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a) {
  3308. GGML_ASSERT(ggml_is_matrix(a));
  3309. bool is_node = false;
  3310. if (a->grad) {
  3311. GGML_ASSERT(false);
  3312. is_node = true;
  3313. }
  3314. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3315. result->op = GGML_OP_ARGMAX;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src[0] = a;
  3318. return result;
  3319. }
  3320. // ggml_repeat
  3321. struct ggml_tensor * ggml_repeat(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. struct ggml_tensor * b) {
  3325. GGML_ASSERT(ggml_can_repeat(a, b));
  3326. bool is_node = false;
  3327. if (a->grad) {
  3328. is_node = true;
  3329. }
  3330. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3331. result->op = GGML_OP_REPEAT;
  3332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3333. result->src[0] = a;
  3334. return result;
  3335. }
  3336. // ggml_repeat_back
  3337. struct ggml_tensor * ggml_repeat_back(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. struct ggml_tensor * b) {
  3341. GGML_ASSERT(ggml_can_repeat(b, a));
  3342. bool is_node = false;
  3343. if (a->grad) {
  3344. is_node = true;
  3345. }
  3346. if (ggml_are_same_shape(a, b) && !is_node) {
  3347. return a;
  3348. }
  3349. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3350. result->op = GGML_OP_REPEAT_BACK;
  3351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3352. result->src[0] = a;
  3353. return result;
  3354. }
  3355. // ggml_concat
  3356. struct ggml_tensor * ggml_concat(
  3357. struct ggml_context* ctx,
  3358. struct ggml_tensor* a,
  3359. struct ggml_tensor* b) {
  3360. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3361. bool is_node = false;
  3362. if (a->grad || b->grad) {
  3363. is_node = true;
  3364. }
  3365. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3366. result->op = GGML_OP_CONCAT;
  3367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3368. result->src[0] = a;
  3369. result->src[1] = b;
  3370. return result;
  3371. }
  3372. // ggml_abs
  3373. struct ggml_tensor * ggml_abs(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3377. }
  3378. struct ggml_tensor * ggml_abs_inplace(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3382. }
  3383. // ggml_sgn
  3384. struct ggml_tensor * ggml_sgn(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a) {
  3387. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3388. }
  3389. struct ggml_tensor * ggml_sgn_inplace(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a) {
  3392. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3393. }
  3394. // ggml_neg
  3395. struct ggml_tensor * ggml_neg(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a) {
  3398. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3399. }
  3400. struct ggml_tensor * ggml_neg_inplace(
  3401. struct ggml_context * ctx,
  3402. struct ggml_tensor * a) {
  3403. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3404. }
  3405. // ggml_step
  3406. struct ggml_tensor * ggml_step(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a) {
  3409. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3410. }
  3411. struct ggml_tensor * ggml_step_inplace(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a) {
  3414. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3415. }
  3416. // ggml_tanh
  3417. struct ggml_tensor * ggml_tanh(
  3418. struct ggml_context * ctx,
  3419. struct ggml_tensor * a) {
  3420. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3421. }
  3422. struct ggml_tensor * ggml_tanh_inplace(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a) {
  3425. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3426. }
  3427. // ggml_elu
  3428. struct ggml_tensor * ggml_elu(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a) {
  3431. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3432. }
  3433. struct ggml_tensor * ggml_elu_inplace(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a) {
  3436. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3437. }
  3438. // ggml_relu
  3439. struct ggml_tensor * ggml_relu(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a) {
  3442. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3443. }
  3444. struct ggml_tensor * ggml_relu_inplace(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a) {
  3447. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3448. }
  3449. // ggml_leaky_relu
  3450. struct ggml_tensor * ggml_leaky_relu(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3453. bool is_node = false;
  3454. if (!inplace && (a->grad)) {
  3455. is_node = true;
  3456. }
  3457. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3458. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3459. result->op = GGML_OP_LEAKY_RELU;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src[0] = a;
  3462. return result;
  3463. }
  3464. // ggml_gelu
  3465. struct ggml_tensor * ggml_gelu(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a) {
  3468. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3469. }
  3470. struct ggml_tensor * ggml_gelu_inplace(
  3471. struct ggml_context * ctx,
  3472. struct ggml_tensor * a) {
  3473. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3474. }
  3475. // ggml_gelu_quick
  3476. struct ggml_tensor * ggml_gelu_quick(
  3477. struct ggml_context * ctx,
  3478. struct ggml_tensor * a) {
  3479. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3480. }
  3481. struct ggml_tensor * ggml_gelu_quick_inplace(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a) {
  3484. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3485. }
  3486. // ggml_silu
  3487. struct ggml_tensor * ggml_silu(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a) {
  3490. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3491. }
  3492. struct ggml_tensor * ggml_silu_inplace(
  3493. struct ggml_context * ctx,
  3494. struct ggml_tensor * a) {
  3495. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3496. }
  3497. // ggml_silu_back
  3498. struct ggml_tensor * ggml_silu_back(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. struct ggml_tensor * b) {
  3502. bool is_node = false;
  3503. if (a->grad || b->grad) {
  3504. // TODO: implement backward
  3505. is_node = true;
  3506. }
  3507. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3508. result->op = GGML_OP_SILU_BACK;
  3509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3510. result->src[0] = a;
  3511. result->src[1] = b;
  3512. return result;
  3513. }
  3514. // ggml hardswish
  3515. struct ggml_tensor * ggml_hardswish(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a) {
  3518. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3519. }
  3520. // ggml hardsigmoid
  3521. struct ggml_tensor * ggml_hardsigmoid(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a) {
  3524. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3525. }
  3526. // ggml_norm
  3527. static struct ggml_tensor * ggml_norm_impl(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a,
  3530. float eps,
  3531. bool inplace) {
  3532. bool is_node = false;
  3533. if (!inplace && (a->grad)) {
  3534. GGML_ASSERT(false); // TODO: implement backward
  3535. is_node = true;
  3536. }
  3537. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3538. ggml_set_op_params(result, &eps, sizeof(eps));
  3539. result->op = GGML_OP_NORM;
  3540. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3541. result->src[0] = a;
  3542. return result;
  3543. }
  3544. struct ggml_tensor * ggml_norm(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. float eps) {
  3548. return ggml_norm_impl(ctx, a, eps, false);
  3549. }
  3550. struct ggml_tensor * ggml_norm_inplace(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. float eps) {
  3554. return ggml_norm_impl(ctx, a, eps, true);
  3555. }
  3556. // ggml_rms_norm
  3557. static struct ggml_tensor * ggml_rms_norm_impl(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. float eps,
  3561. bool inplace) {
  3562. bool is_node = false;
  3563. if (!inplace && (a->grad)) {
  3564. is_node = true;
  3565. }
  3566. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3567. ggml_set_op_params(result, &eps, sizeof(eps));
  3568. result->op = GGML_OP_RMS_NORM;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src[0] = a;
  3571. return result;
  3572. }
  3573. struct ggml_tensor * ggml_rms_norm(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. float eps) {
  3577. return ggml_rms_norm_impl(ctx, a, eps, false);
  3578. }
  3579. struct ggml_tensor * ggml_rms_norm_inplace(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a,
  3582. float eps) {
  3583. return ggml_rms_norm_impl(ctx, a, eps, true);
  3584. }
  3585. // ggml_rms_norm_back
  3586. struct ggml_tensor * ggml_rms_norm_back(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a,
  3589. struct ggml_tensor * b,
  3590. float eps) {
  3591. bool is_node = false;
  3592. if (a->grad) {
  3593. // TODO: implement backward
  3594. is_node = true;
  3595. }
  3596. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3597. ggml_set_op_params(result, &eps, sizeof(eps));
  3598. result->op = GGML_OP_RMS_NORM_BACK;
  3599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3600. result->src[0] = a;
  3601. result->src[1] = b;
  3602. return result;
  3603. }
  3604. // ggml_group_norm
  3605. static struct ggml_tensor * ggml_group_norm_impl(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. int n_groups,
  3609. bool inplace) {
  3610. bool is_node = false;
  3611. if (!inplace && (a->grad)) {
  3612. GGML_ASSERT(false); // TODO: implement backward
  3613. is_node = true;
  3614. }
  3615. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3616. result->op_params[0] = n_groups;
  3617. result->op = GGML_OP_GROUP_NORM;
  3618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3619. result->src[0] = a;
  3620. return result;
  3621. }
  3622. struct ggml_tensor * ggml_group_norm(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. int n_groups) {
  3626. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3627. }
  3628. struct ggml_tensor * ggml_group_norm_inplace(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. int n_groups) {
  3632. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3633. }
  3634. // ggml_mul_mat
  3635. struct ggml_tensor * ggml_mul_mat(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. struct ggml_tensor * b) {
  3639. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3640. GGML_ASSERT(!ggml_is_transposed(a));
  3641. bool is_node = false;
  3642. if (a->grad || b->grad) {
  3643. is_node = true;
  3644. }
  3645. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3646. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3647. result->op = GGML_OP_MUL_MAT;
  3648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3649. result->src[0] = a;
  3650. result->src[1] = b;
  3651. return result;
  3652. }
  3653. void ggml_mul_mat_set_prec(
  3654. struct ggml_tensor * a,
  3655. enum ggml_prec prec) {
  3656. const int32_t prec_i32 = (int32_t) prec;
  3657. ggml_set_op_params_i32(a, 0, prec_i32);
  3658. }
  3659. // ggml_mul_mat_id
  3660. struct ggml_tensor * ggml_mul_mat_id(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * const as[],
  3663. int n_as,
  3664. struct ggml_tensor * ids,
  3665. int id,
  3666. struct ggml_tensor * b) {
  3667. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3668. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3669. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3670. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3671. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3672. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3673. bool is_node = false;
  3674. if (as[0]->grad || b->grad) {
  3675. is_node = true;
  3676. }
  3677. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3678. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3679. ggml_set_op_params_i32(result, 0, id);
  3680. ggml_set_op_params_i32(result, 1, n_as);
  3681. result->op = GGML_OP_MUL_MAT_ID;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src[0] = ids;
  3684. result->src[1] = b;
  3685. for (int i = 0; i < n_as; i++) {
  3686. struct ggml_tensor * a = as[i];
  3687. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3688. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3689. GGML_ASSERT(!ggml_is_transposed(a));
  3690. result->src[i + 2] = a;
  3691. }
  3692. return result;
  3693. }
  3694. // ggml_out_prod
  3695. struct ggml_tensor * ggml_out_prod(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. struct ggml_tensor * b) {
  3699. GGML_ASSERT(ggml_can_out_prod(a, b));
  3700. GGML_ASSERT(!ggml_is_transposed(a));
  3701. bool is_node = false;
  3702. if (a->grad || b->grad) {
  3703. is_node = true;
  3704. }
  3705. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3706. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3707. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3708. result->op = GGML_OP_OUT_PROD;
  3709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3710. result->src[0] = a;
  3711. result->src[1] = b;
  3712. return result;
  3713. }
  3714. // ggml_scale
  3715. static struct ggml_tensor * ggml_scale_impl(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. float s,
  3719. bool inplace) {
  3720. GGML_ASSERT(ggml_is_padded_1d(a));
  3721. bool is_node = false;
  3722. if (a->grad) {
  3723. is_node = true;
  3724. }
  3725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3726. ggml_set_op_params(result, &s, sizeof(s));
  3727. result->op = GGML_OP_SCALE;
  3728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3729. result->src[0] = a;
  3730. return result;
  3731. }
  3732. struct ggml_tensor * ggml_scale(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. float s) {
  3736. return ggml_scale_impl(ctx, a, s, false);
  3737. }
  3738. struct ggml_tensor * ggml_scale_inplace(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. float s) {
  3742. return ggml_scale_impl(ctx, a, s, true);
  3743. }
  3744. // ggml_set
  3745. static struct ggml_tensor * ggml_set_impl(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b,
  3749. size_t nb1,
  3750. size_t nb2,
  3751. size_t nb3,
  3752. size_t offset,
  3753. bool inplace) {
  3754. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3755. bool is_node = false;
  3756. if (a->grad || b->grad) {
  3757. is_node = true;
  3758. }
  3759. // make a view of the destination
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3762. ggml_set_op_params(result, params, sizeof(params));
  3763. result->op = GGML_OP_SET;
  3764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3765. result->src[0] = a;
  3766. result->src[1] = b;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_set(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. struct ggml_tensor * b,
  3773. size_t nb1,
  3774. size_t nb2,
  3775. size_t nb3,
  3776. size_t offset) {
  3777. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3778. }
  3779. struct ggml_tensor * ggml_set_inplace(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b,
  3783. size_t nb1,
  3784. size_t nb2,
  3785. size_t nb3,
  3786. size_t offset) {
  3787. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3788. }
  3789. struct ggml_tensor * ggml_set_1d(
  3790. struct ggml_context * ctx,
  3791. struct ggml_tensor * a,
  3792. struct ggml_tensor * b,
  3793. size_t offset) {
  3794. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3795. }
  3796. struct ggml_tensor * ggml_set_1d_inplace(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * a,
  3799. struct ggml_tensor * b,
  3800. size_t offset) {
  3801. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3802. }
  3803. struct ggml_tensor * ggml_set_2d(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a,
  3806. struct ggml_tensor * b,
  3807. size_t nb1,
  3808. size_t offset) {
  3809. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3810. }
  3811. struct ggml_tensor * ggml_set_2d_inplace(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. struct ggml_tensor * b,
  3815. size_t nb1,
  3816. size_t offset) {
  3817. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3818. }
  3819. // ggml_cpy
  3820. static struct ggml_tensor * ggml_cpy_impl(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a,
  3823. struct ggml_tensor * b) {
  3824. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3825. bool is_node = false;
  3826. if (a->grad || b->grad) {
  3827. // inplace is false and either one have a grad
  3828. is_node = true;
  3829. }
  3830. // make a view of the destination
  3831. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3832. if (strlen(b->name) > 0) {
  3833. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3834. } else {
  3835. ggml_format_name(result, "%s (copy)", a->name);
  3836. }
  3837. result->op = GGML_OP_CPY;
  3838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3839. result->src[0] = a;
  3840. result->src[1] = b;
  3841. return result;
  3842. }
  3843. struct ggml_tensor * ggml_cpy(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b) {
  3847. return ggml_cpy_impl(ctx, a, b);
  3848. }
  3849. struct ggml_tensor * ggml_cast(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. enum ggml_type type) {
  3853. bool is_node = false;
  3854. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3855. ggml_format_name(result, "%s (copy)", a->name);
  3856. result->op = GGML_OP_CPY;
  3857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3858. result->src[0] = a;
  3859. result->src[1] = result;
  3860. return result;
  3861. }
  3862. // ggml_cont
  3863. static struct ggml_tensor * ggml_cont_impl(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3871. ggml_format_name(result, "%s (cont)", a->name);
  3872. result->op = GGML_OP_CONT;
  3873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3874. result->src[0] = a;
  3875. return result;
  3876. }
  3877. struct ggml_tensor * ggml_cont(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a) {
  3880. return ggml_cont_impl(ctx, a);
  3881. }
  3882. // make contiguous, with new shape
  3883. GGML_API struct ggml_tensor * ggml_cont_1d(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. int64_t ne0) {
  3887. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3888. }
  3889. GGML_API struct ggml_tensor * ggml_cont_2d(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int64_t ne0,
  3893. int64_t ne1) {
  3894. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3895. }
  3896. GGML_API struct ggml_tensor * ggml_cont_3d(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. int64_t ne0,
  3900. int64_t ne1,
  3901. int64_t ne2) {
  3902. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3903. }
  3904. struct ggml_tensor * ggml_cont_4d(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. int64_t ne0,
  3908. int64_t ne1,
  3909. int64_t ne2,
  3910. int64_t ne3) {
  3911. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3912. bool is_node = false;
  3913. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3914. ggml_format_name(result, "%s (cont)", a->name);
  3915. result->op = GGML_OP_CONT;
  3916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3917. result->src[0] = a;
  3918. return result;
  3919. }
  3920. // ggml_reshape
  3921. struct ggml_tensor * ggml_reshape(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b) {
  3925. GGML_ASSERT(ggml_is_contiguous(a));
  3926. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3927. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3928. bool is_node = false;
  3929. if (a->grad) {
  3930. is_node = true;
  3931. }
  3932. if (b->grad) {
  3933. // gradient propagation is not supported
  3934. //GGML_ASSERT(false);
  3935. }
  3936. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3937. ggml_format_name(result, "%s (reshaped)", a->name);
  3938. result->op = GGML_OP_RESHAPE;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src[0] = a;
  3941. return result;
  3942. }
  3943. struct ggml_tensor * ggml_reshape_1d(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int64_t ne0) {
  3947. GGML_ASSERT(ggml_is_contiguous(a));
  3948. GGML_ASSERT(ggml_nelements(a) == ne0);
  3949. bool is_node = false;
  3950. if (a->grad) {
  3951. is_node = true;
  3952. }
  3953. const int64_t ne[1] = { ne0 };
  3954. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3955. ggml_format_name(result, "%s (reshaped)", a->name);
  3956. result->op = GGML_OP_RESHAPE;
  3957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3958. result->src[0] = a;
  3959. return result;
  3960. }
  3961. struct ggml_tensor * ggml_reshape_2d(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. int64_t ne0,
  3965. int64_t ne1) {
  3966. GGML_ASSERT(ggml_is_contiguous(a));
  3967. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3968. bool is_node = false;
  3969. if (a->grad) {
  3970. is_node = true;
  3971. }
  3972. const int64_t ne[2] = { ne0, ne1 };
  3973. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3974. ggml_format_name(result, "%s (reshaped)", a->name);
  3975. result->op = GGML_OP_RESHAPE;
  3976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3977. result->src[0] = a;
  3978. return result;
  3979. }
  3980. struct ggml_tensor * ggml_reshape_3d(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a,
  3983. int64_t ne0,
  3984. int64_t ne1,
  3985. int64_t ne2) {
  3986. GGML_ASSERT(ggml_is_contiguous(a));
  3987. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3988. bool is_node = false;
  3989. if (a->grad) {
  3990. is_node = true;
  3991. }
  3992. const int64_t ne[3] = { ne0, ne1, ne2 };
  3993. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3994. ggml_format_name(result, "%s (reshaped)", a->name);
  3995. result->op = GGML_OP_RESHAPE;
  3996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3997. result->src[0] = a;
  3998. return result;
  3999. }
  4000. struct ggml_tensor * ggml_reshape_4d(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. int64_t ne0,
  4004. int64_t ne1,
  4005. int64_t ne2,
  4006. int64_t ne3) {
  4007. GGML_ASSERT(ggml_is_contiguous(a));
  4008. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4009. bool is_node = false;
  4010. if (a->grad) {
  4011. is_node = true;
  4012. }
  4013. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4014. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4015. ggml_format_name(result, "%s (reshaped)", a->name);
  4016. result->op = GGML_OP_RESHAPE;
  4017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4018. result->src[0] = a;
  4019. return result;
  4020. }
  4021. static struct ggml_tensor * ggml_view_impl(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. int n_dims,
  4025. const int64_t * ne,
  4026. size_t offset) {
  4027. bool is_node = false;
  4028. if (a->grad) {
  4029. is_node = true;
  4030. }
  4031. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4032. ggml_format_name(result, "%s (view)", a->name);
  4033. ggml_set_op_params(result, &offset, sizeof(offset));
  4034. result->op = GGML_OP_VIEW;
  4035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4036. result->src[0] = a;
  4037. return result;
  4038. }
  4039. // ggml_view_1d
  4040. struct ggml_tensor * ggml_view_1d(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. int64_t ne0,
  4044. size_t offset) {
  4045. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4046. return result;
  4047. }
  4048. // ggml_view_2d
  4049. struct ggml_tensor * ggml_view_2d(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int64_t ne0,
  4053. int64_t ne1,
  4054. size_t nb1,
  4055. size_t offset) {
  4056. const int64_t ne[2] = { ne0, ne1 };
  4057. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4058. result->nb[1] = nb1;
  4059. result->nb[2] = result->nb[1]*ne1;
  4060. result->nb[3] = result->nb[2];
  4061. return result;
  4062. }
  4063. // ggml_view_3d
  4064. struct ggml_tensor * ggml_view_3d(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a,
  4067. int64_t ne0,
  4068. int64_t ne1,
  4069. int64_t ne2,
  4070. size_t nb1,
  4071. size_t nb2,
  4072. size_t offset) {
  4073. const int64_t ne[3] = { ne0, ne1, ne2 };
  4074. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4075. result->nb[1] = nb1;
  4076. result->nb[2] = nb2;
  4077. result->nb[3] = result->nb[2]*ne2;
  4078. return result;
  4079. }
  4080. // ggml_view_4d
  4081. struct ggml_tensor * ggml_view_4d(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. int64_t ne0,
  4085. int64_t ne1,
  4086. int64_t ne2,
  4087. int64_t ne3,
  4088. size_t nb1,
  4089. size_t nb2,
  4090. size_t nb3,
  4091. size_t offset) {
  4092. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4093. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4094. result->nb[1] = nb1;
  4095. result->nb[2] = nb2;
  4096. result->nb[3] = nb3;
  4097. return result;
  4098. }
  4099. // ggml_permute
  4100. struct ggml_tensor * ggml_permute(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. int axis0,
  4104. int axis1,
  4105. int axis2,
  4106. int axis3) {
  4107. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4108. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4109. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4110. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4111. GGML_ASSERT(axis0 != axis1);
  4112. GGML_ASSERT(axis0 != axis2);
  4113. GGML_ASSERT(axis0 != axis3);
  4114. GGML_ASSERT(axis1 != axis2);
  4115. GGML_ASSERT(axis1 != axis3);
  4116. GGML_ASSERT(axis2 != axis3);
  4117. bool is_node = false;
  4118. if (a->grad) {
  4119. is_node = true;
  4120. }
  4121. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4122. ggml_format_name(result, "%s (permuted)", a->name);
  4123. int ne[GGML_MAX_DIMS];
  4124. int nb[GGML_MAX_DIMS];
  4125. ne[axis0] = a->ne[0];
  4126. ne[axis1] = a->ne[1];
  4127. ne[axis2] = a->ne[2];
  4128. ne[axis3] = a->ne[3];
  4129. nb[axis0] = a->nb[0];
  4130. nb[axis1] = a->nb[1];
  4131. nb[axis2] = a->nb[2];
  4132. nb[axis3] = a->nb[3];
  4133. result->ne[0] = ne[0];
  4134. result->ne[1] = ne[1];
  4135. result->ne[2] = ne[2];
  4136. result->ne[3] = ne[3];
  4137. result->nb[0] = nb[0];
  4138. result->nb[1] = nb[1];
  4139. result->nb[2] = nb[2];
  4140. result->nb[3] = nb[3];
  4141. result->op = GGML_OP_PERMUTE;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src[0] = a;
  4144. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4145. ggml_set_op_params(result, params, sizeof(params));
  4146. return result;
  4147. }
  4148. // ggml_transpose
  4149. struct ggml_tensor * ggml_transpose(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. bool is_node = false;
  4153. if (a->grad) {
  4154. is_node = true;
  4155. }
  4156. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4157. ggml_format_name(result, "%s (transposed)", a->name);
  4158. result->ne[0] = a->ne[1];
  4159. result->ne[1] = a->ne[0];
  4160. result->nb[0] = a->nb[1];
  4161. result->nb[1] = a->nb[0];
  4162. result->op = GGML_OP_TRANSPOSE;
  4163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4164. result->src[0] = a;
  4165. return result;
  4166. }
  4167. // ggml_get_rows
  4168. struct ggml_tensor * ggml_get_rows(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * b) {
  4172. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4173. GGML_ASSERT(b->ne[3] == 1);
  4174. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4175. bool is_node = false;
  4176. if (a->grad || b->grad) {
  4177. is_node = true;
  4178. }
  4179. // TODO: implement non F32 return
  4180. enum ggml_type type = GGML_TYPE_F32;
  4181. if (a->type == GGML_TYPE_I32) {
  4182. type = a->type;
  4183. }
  4184. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4185. result->op = GGML_OP_GET_ROWS;
  4186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4187. result->src[0] = a;
  4188. result->src[1] = b;
  4189. return result;
  4190. }
  4191. // ggml_get_rows_back
  4192. struct ggml_tensor * ggml_get_rows_back(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * b,
  4196. struct ggml_tensor * c) {
  4197. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4198. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4199. bool is_node = false;
  4200. if (a->grad || b->grad) {
  4201. is_node = true;
  4202. }
  4203. // TODO: implement non F32 return
  4204. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4205. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4206. result->op = GGML_OP_GET_ROWS_BACK;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src[0] = a;
  4209. result->src[1] = b;
  4210. return result;
  4211. }
  4212. // ggml_diag
  4213. struct ggml_tensor * ggml_diag(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. GGML_ASSERT(a->ne[1] == 1);
  4217. bool is_node = false;
  4218. if (a->grad) {
  4219. is_node = true;
  4220. }
  4221. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4222. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4223. result->op = GGML_OP_DIAG;
  4224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4225. result->src[0] = a;
  4226. return result;
  4227. }
  4228. // ggml_diag_mask_inf
  4229. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. int n_past,
  4233. bool inplace) {
  4234. bool is_node = false;
  4235. if (a->grad) {
  4236. is_node = true;
  4237. }
  4238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4239. int32_t params[] = { n_past };
  4240. ggml_set_op_params(result, params, sizeof(params));
  4241. result->op = GGML_OP_DIAG_MASK_INF;
  4242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4243. result->src[0] = a;
  4244. return result;
  4245. }
  4246. struct ggml_tensor * ggml_diag_mask_inf(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. int n_past) {
  4250. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4251. }
  4252. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. int n_past) {
  4256. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4257. }
  4258. // ggml_diag_mask_zero
  4259. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. int n_past,
  4263. bool inplace) {
  4264. bool is_node = false;
  4265. if (a->grad) {
  4266. is_node = true;
  4267. }
  4268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4269. int32_t params[] = { n_past };
  4270. ggml_set_op_params(result, params, sizeof(params));
  4271. result->op = GGML_OP_DIAG_MASK_ZERO;
  4272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4273. result->src[0] = a;
  4274. return result;
  4275. }
  4276. struct ggml_tensor * ggml_diag_mask_zero(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. int n_past) {
  4280. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4281. }
  4282. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. int n_past) {
  4286. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4287. }
  4288. // ggml_soft_max
  4289. static struct ggml_tensor * ggml_soft_max_impl(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * mask,
  4293. struct ggml_tensor * pos,
  4294. float scale,
  4295. float max_bias,
  4296. bool inplace) {
  4297. GGML_ASSERT(ggml_is_contiguous(a));
  4298. if (mask) {
  4299. GGML_ASSERT(ggml_is_contiguous(mask));
  4300. GGML_ASSERT(ggml_is_matrix(mask));
  4301. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4302. }
  4303. if (pos) {
  4304. GGML_ASSERT(ggml_is_vector(pos));
  4305. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4306. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4307. }
  4308. if (max_bias > 0.0f) {
  4309. GGML_ASSERT(pos);
  4310. }
  4311. bool is_node = false;
  4312. if (a->grad) {
  4313. is_node = true;
  4314. }
  4315. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4316. float params[] = { scale, max_bias };
  4317. ggml_set_op_params(result, params, sizeof(params));
  4318. result->op = GGML_OP_SOFT_MAX;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = mask;
  4322. result->src[2] = pos;
  4323. return result;
  4324. }
  4325. struct ggml_tensor * ggml_soft_max(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a) {
  4328. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4329. }
  4330. struct ggml_tensor * ggml_soft_max_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a) {
  4333. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4334. }
  4335. struct ggml_tensor * ggml_soft_max_ext(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * mask,
  4339. struct ggml_tensor * pos,
  4340. float scale,
  4341. float max_bias) {
  4342. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4343. }
  4344. // ggml_soft_max_back
  4345. static struct ggml_tensor * ggml_soft_max_back_impl(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b,
  4349. bool inplace) {
  4350. bool is_node = false;
  4351. if (a->grad || b->grad) {
  4352. is_node = true; // TODO : implement backward pass
  4353. }
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_SOFT_MAX_BACK;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src[0] = a;
  4358. result->src[1] = b;
  4359. return result;
  4360. }
  4361. struct ggml_tensor * ggml_soft_max_back(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. struct ggml_tensor * b) {
  4365. return ggml_soft_max_back_impl(ctx, a, b, false);
  4366. }
  4367. struct ggml_tensor * ggml_soft_max_back_inplace(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. struct ggml_tensor * b) {
  4371. return ggml_soft_max_back_impl(ctx, a, b, true);
  4372. }
  4373. // ggml_rope
  4374. static struct ggml_tensor * ggml_rope_impl(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b,
  4378. int n_dims,
  4379. int mode,
  4380. int n_ctx,
  4381. int n_orig_ctx,
  4382. float freq_base,
  4383. float freq_scale,
  4384. float ext_factor,
  4385. float attn_factor,
  4386. float beta_fast,
  4387. float beta_slow,
  4388. float xpos_base,
  4389. bool xpos_down,
  4390. bool inplace) {
  4391. GGML_ASSERT(ggml_is_vector(b));
  4392. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4393. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4394. bool is_node = false;
  4395. if (a->grad) {
  4396. is_node = true;
  4397. }
  4398. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4399. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4400. memcpy(params + 5, &freq_base, sizeof(float));
  4401. memcpy(params + 6, &freq_scale, sizeof(float));
  4402. memcpy(params + 7, &ext_factor, sizeof(float));
  4403. memcpy(params + 8, &attn_factor, sizeof(float));
  4404. memcpy(params + 9, &beta_fast, sizeof(float));
  4405. memcpy(params + 10, &beta_slow, sizeof(float));
  4406. memcpy(params + 11, &xpos_base, sizeof(float));
  4407. memcpy(params + 12, &xpos_down, sizeof(bool));
  4408. ggml_set_op_params(result, params, sizeof(params));
  4409. result->op = GGML_OP_ROPE;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src[0] = a;
  4412. result->src[1] = b;
  4413. return result;
  4414. }
  4415. struct ggml_tensor * ggml_rope(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b,
  4419. int n_dims,
  4420. int mode,
  4421. int n_ctx) {
  4422. return ggml_rope_impl(
  4423. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4424. );
  4425. }
  4426. struct ggml_tensor * ggml_rope_inplace(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. struct ggml_tensor * b,
  4430. int n_dims,
  4431. int mode,
  4432. int n_ctx) {
  4433. return ggml_rope_impl(
  4434. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4435. );
  4436. }
  4437. struct ggml_tensor * ggml_rope_custom(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. struct ggml_tensor * b,
  4441. int n_dims,
  4442. int mode,
  4443. int n_ctx,
  4444. int n_orig_ctx,
  4445. float freq_base,
  4446. float freq_scale,
  4447. float ext_factor,
  4448. float attn_factor,
  4449. float beta_fast,
  4450. float beta_slow) {
  4451. return ggml_rope_impl(
  4452. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4453. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4454. );
  4455. }
  4456. struct ggml_tensor * ggml_rope_custom_inplace(
  4457. struct ggml_context * ctx,
  4458. struct ggml_tensor * a,
  4459. struct ggml_tensor * b,
  4460. int n_dims,
  4461. int mode,
  4462. int n_ctx,
  4463. int n_orig_ctx,
  4464. float freq_base,
  4465. float freq_scale,
  4466. float ext_factor,
  4467. float attn_factor,
  4468. float beta_fast,
  4469. float beta_slow) {
  4470. return ggml_rope_impl(
  4471. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4472. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4473. );
  4474. }
  4475. struct ggml_tensor * ggml_rope_xpos_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b,
  4479. int n_dims,
  4480. float base,
  4481. bool down) {
  4482. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4483. }
  4484. // ggml_rope_back
  4485. struct ggml_tensor * ggml_rope_back(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * b,
  4489. int n_dims,
  4490. int mode,
  4491. int n_ctx,
  4492. int n_orig_ctx,
  4493. float freq_base,
  4494. float freq_scale,
  4495. float ext_factor,
  4496. float attn_factor,
  4497. float beta_fast,
  4498. float beta_slow,
  4499. float xpos_base,
  4500. bool xpos_down) {
  4501. GGML_ASSERT(ggml_is_vector(b));
  4502. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4503. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4504. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4505. bool is_node = false;
  4506. if (a->grad) {
  4507. is_node = false; // TODO: implement backward
  4508. }
  4509. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4510. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4511. memcpy(params + 5, &freq_base, sizeof(float));
  4512. memcpy(params + 6, &freq_scale, sizeof(float));
  4513. memcpy(params + 7, &ext_factor, sizeof(float));
  4514. memcpy(params + 8, &attn_factor, sizeof(float));
  4515. memcpy(params + 9, &beta_fast, sizeof(float));
  4516. memcpy(params + 10, &beta_slow, sizeof(float));
  4517. memcpy(params + 11, &xpos_base, sizeof(float));
  4518. memcpy(params + 12, &xpos_down, sizeof(bool));
  4519. ggml_set_op_params(result, params, sizeof(params));
  4520. result->op = GGML_OP_ROPE_BACK;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. result->src[1] = b;
  4524. return result;
  4525. }
  4526. // ggml_alibi
  4527. struct ggml_tensor * ggml_alibi(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. int n_past,
  4531. int n_head,
  4532. float bias_max) {
  4533. GGML_ASSERT(n_past >= 0);
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. GGML_ASSERT(false); // TODO: implement backward
  4537. is_node = true;
  4538. }
  4539. // TODO: when implement backward, fix this:
  4540. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4541. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4542. int32_t op_params[3] = { n_past, n_head };
  4543. memcpy(op_params + 2, &bias_max, sizeof(float));
  4544. ggml_set_op_params(result, op_params, sizeof(op_params));
  4545. result->op = GGML_OP_ALIBI;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src[0] = a;
  4548. return result;
  4549. }
  4550. // ggml_clamp
  4551. struct ggml_tensor * ggml_clamp(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. float min,
  4555. float max) {
  4556. bool is_node = false;
  4557. if (a->grad) {
  4558. GGML_ASSERT(false); // TODO: implement backward
  4559. is_node = true;
  4560. }
  4561. // TODO: when implement backward, fix this:
  4562. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4563. float params[] = { min, max };
  4564. ggml_set_op_params(result, params, sizeof(params));
  4565. result->op = GGML_OP_CLAMP;
  4566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4567. result->src[0] = a;
  4568. return result;
  4569. }
  4570. // ggml_conv_1d
  4571. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4572. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4573. }
  4574. GGML_API struct ggml_tensor * ggml_conv_1d(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b,
  4578. int s0,
  4579. int p0,
  4580. int d0) {
  4581. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4582. struct ggml_tensor * result =
  4583. ggml_mul_mat(ctx,
  4584. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4585. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4586. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4587. return result;
  4588. }
  4589. // ggml_conv_1d_ph
  4590. struct ggml_tensor* ggml_conv_1d_ph(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. struct ggml_tensor * b,
  4594. int s,
  4595. int d) {
  4596. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4597. }
  4598. // ggml_conv_transpose_1d
  4599. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4600. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4601. }
  4602. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b,
  4606. int s0,
  4607. int p0,
  4608. int d0) {
  4609. GGML_ASSERT(ggml_is_matrix(b));
  4610. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4611. GGML_ASSERT(a->ne[3] == 1);
  4612. GGML_ASSERT(p0 == 0);
  4613. GGML_ASSERT(d0 == 1);
  4614. bool is_node = false;
  4615. if (a->grad || b->grad) {
  4616. GGML_ASSERT(false); // TODO: implement backward
  4617. is_node = true;
  4618. }
  4619. const int64_t ne[4] = {
  4620. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4621. a->ne[1], b->ne[2], 1,
  4622. };
  4623. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4624. int32_t params[] = { s0, p0, d0 };
  4625. ggml_set_op_params(result, params, sizeof(params));
  4626. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4628. result->src[0] = a;
  4629. result->src[1] = b;
  4630. return result;
  4631. }
  4632. // ggml_conv_depthwise
  4633. struct ggml_tensor * ggml_conv_depthwise_2d(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a,
  4636. struct ggml_tensor * b,
  4637. int s0,
  4638. int s1,
  4639. int p0,
  4640. int p1,
  4641. int d0,
  4642. int d1) {
  4643. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4644. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4645. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4646. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4647. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4648. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4649. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4650. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4651. return result;
  4652. }
  4653. // ggml_conv_2d
  4654. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4655. // a: [OC,IC, KH, KW]
  4656. // b: [N, IC, IH, IW]
  4657. // result: [N, OH, OW, IC*KH*KW]
  4658. struct ggml_tensor * ggml_im2col(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. struct ggml_tensor * b,
  4662. int s0,
  4663. int s1,
  4664. int p0,
  4665. int p1,
  4666. int d0,
  4667. int d1,
  4668. bool is_2D,
  4669. enum ggml_type dst_type) {
  4670. if(is_2D) {
  4671. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4672. } else {
  4673. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4674. }
  4675. bool is_node = false;
  4676. if (a->grad || b->grad) {
  4677. GGML_ASSERT(false); // TODO: implement backward
  4678. is_node = true;
  4679. }
  4680. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4681. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4682. const int64_t ne[4] = {
  4683. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4684. OW,
  4685. is_2D ? OH : b->ne[2],
  4686. is_2D ? b->ne[3] : 1,
  4687. };
  4688. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4689. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4690. ggml_set_op_params(result, params, sizeof(params));
  4691. result->op = GGML_OP_IM2COL;
  4692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4693. result->src[0] = a;
  4694. result->src[1] = b;
  4695. return result;
  4696. }
  4697. // a: [OC,IC, KH, KW]
  4698. // b: [N, IC, IH, IW]
  4699. // result: [N, OC, OH, OW]
  4700. struct ggml_tensor * ggml_conv_2d(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. struct ggml_tensor * b,
  4704. int s0,
  4705. int s1,
  4706. int p0,
  4707. int p1,
  4708. int d0,
  4709. int d1) {
  4710. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4711. struct ggml_tensor * result =
  4712. ggml_mul_mat(ctx,
  4713. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4714. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4715. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4716. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4717. return result;
  4718. }
  4719. // ggml_conv_2d_sk_p0
  4720. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b) {
  4724. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4725. }
  4726. // ggml_conv_2d_s1_ph
  4727. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. struct ggml_tensor * b) {
  4731. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4732. }
  4733. // ggml_conv_transpose_2d_p0
  4734. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4735. return (ins - 1) * s - 2 * p + ks;
  4736. }
  4737. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. struct ggml_tensor * b,
  4741. int stride) {
  4742. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4743. bool is_node = false;
  4744. if (a->grad || b->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. const int64_t ne[4] = {
  4749. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4750. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4751. a->ne[2], b->ne[3],
  4752. };
  4753. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4754. ggml_set_op_params_i32(result, 0, stride);
  4755. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src[0] = a;
  4758. result->src[1] = b;
  4759. return result;
  4760. }
  4761. // ggml_pool_*
  4762. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4763. return (ins + 2 * p - ks) / s + 1;
  4764. }
  4765. // ggml_pool_1d
  4766. struct ggml_tensor * ggml_pool_1d(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. enum ggml_op_pool op,
  4770. int k0,
  4771. int s0,
  4772. int p0) {
  4773. bool is_node = false;
  4774. if (a->grad) {
  4775. GGML_ASSERT(false); // TODO: implement backward
  4776. is_node = true;
  4777. }
  4778. const int64_t ne[4] = {
  4779. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4780. a->ne[1],
  4781. a->ne[2],
  4782. a->ne[3],
  4783. };
  4784. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4785. int32_t params[] = { op, k0, s0, p0 };
  4786. ggml_set_op_params(result, params, sizeof(params));
  4787. result->op = GGML_OP_POOL_1D;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. return result;
  4791. }
  4792. // ggml_pool_2d
  4793. struct ggml_tensor * ggml_pool_2d(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. enum ggml_op_pool op,
  4797. int k0,
  4798. int k1,
  4799. int s0,
  4800. int s1,
  4801. float p0,
  4802. float p1) {
  4803. bool is_node = false;
  4804. if (a->grad) {
  4805. GGML_ASSERT(false); // TODO: implement backward
  4806. is_node = true;
  4807. }
  4808. struct ggml_tensor * result;
  4809. const int64_t ne[3] = {
  4810. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4811. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4812. a->ne[2],
  4813. };
  4814. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4815. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4816. ggml_set_op_params(result, params, sizeof(params));
  4817. result->op = GGML_OP_POOL_2D;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src[0] = a;
  4820. return result;
  4821. }
  4822. // ggml_upscale
  4823. static struct ggml_tensor * ggml_upscale_impl(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. int scale_factor) {
  4827. bool is_node = false;
  4828. if (a->grad) {
  4829. GGML_ASSERT(false); // TODO: implement backward
  4830. is_node = true;
  4831. }
  4832. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4833. a->ne[0] * scale_factor,
  4834. a->ne[1] * scale_factor,
  4835. a->ne[2], a->ne[3]);
  4836. result->op = GGML_OP_UPSCALE;
  4837. result->op_params[0] = scale_factor;
  4838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4839. result->src[0] = a;
  4840. return result;
  4841. }
  4842. struct ggml_tensor * ggml_pad(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. int p0, int p1, int p2, int p3) {
  4846. bool is_node = false;
  4847. if (a->grad) {
  4848. GGML_ASSERT(false); // TODO: implement backward
  4849. is_node = true;
  4850. }
  4851. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4852. a->ne[0] + p0,
  4853. a->ne[1] + p1,
  4854. a->ne[2] + p2,
  4855. a->ne[3] + p3);
  4856. result->op = GGML_OP_PAD;
  4857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4858. result->src[0] = a;
  4859. return result;
  4860. }
  4861. struct ggml_tensor * ggml_upscale(
  4862. struct ggml_context * ctx,
  4863. struct ggml_tensor * a,
  4864. int scale_factor) {
  4865. return ggml_upscale_impl(ctx, a, scale_factor);
  4866. }
  4867. struct ggml_tensor * ggml_arange(
  4868. struct ggml_context * ctx,
  4869. float start,
  4870. float stop,
  4871. float step) {
  4872. GGML_ASSERT(stop > start);
  4873. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  4874. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  4875. result->op = GGML_OP_ARANGE;
  4876. ggml_set_op_params_f32(result, 0, start);
  4877. ggml_set_op_params_f32(result, 1, stop);
  4878. ggml_set_op_params_f32(result, 2, step);
  4879. return result;
  4880. }
  4881. struct ggml_tensor * ggml_timestep_embedding(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * timesteps,
  4884. int dim,
  4885. int max_period) {
  4886. bool is_node = false;
  4887. if (timesteps->grad) {
  4888. GGML_ASSERT(false); // TODO: implement backward
  4889. is_node = true;
  4890. }
  4891. int actual_dim = dim;
  4892. if (dim % 2 != 0) {
  4893. actual_dim = dim + 1;
  4894. }
  4895. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  4896. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  4897. ggml_set_op_params_i32(result, 0, dim);
  4898. ggml_set_op_params_i32(result, 1, max_period);
  4899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4900. result->src[0] = timesteps;
  4901. return result;
  4902. }
  4903. // ggml_argsort
  4904. struct ggml_tensor * ggml_argsort(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. enum ggml_sort_order order) {
  4908. bool is_node = false;
  4909. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4910. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4911. result->op = GGML_OP_ARGSORT;
  4912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4913. result->src[0] = a;
  4914. return result;
  4915. }
  4916. // ggml_top_k
  4917. struct ggml_tensor * ggml_top_k(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. int k) {
  4921. GGML_ASSERT(a->ne[0] >= k);
  4922. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4923. result = ggml_view_4d(ctx, result,
  4924. k, result->ne[1], result->ne[2], result->ne[3],
  4925. result->nb[1], result->nb[2], result->nb[3],
  4926. 0);
  4927. return result;
  4928. }
  4929. // ggml_flash_attn
  4930. struct ggml_tensor * ggml_flash_attn(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * q,
  4933. struct ggml_tensor * k,
  4934. struct ggml_tensor * v,
  4935. bool masked) {
  4936. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4937. // TODO: check if vT can be multiplied by (k*qT)
  4938. bool is_node = false;
  4939. if (q->grad || k->grad || v->grad) {
  4940. is_node = true;
  4941. }
  4942. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4944. int32_t t = masked ? 1 : 0;
  4945. ggml_set_op_params(result, &t, sizeof(t));
  4946. result->op = GGML_OP_FLASH_ATTN;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src[0] = q;
  4949. result->src[1] = k;
  4950. result->src[2] = v;
  4951. return result;
  4952. }
  4953. // ggml_flash_ff
  4954. struct ggml_tensor * ggml_flash_ff(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b0,
  4958. struct ggml_tensor * b1,
  4959. struct ggml_tensor * c0,
  4960. struct ggml_tensor * c1) {
  4961. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4962. // TODO: more checks
  4963. bool is_node = false;
  4964. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4965. is_node = true;
  4966. }
  4967. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4968. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4969. result->op = GGML_OP_FLASH_FF;
  4970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4971. result->src[0] = a;
  4972. result->src[1] = b0;
  4973. result->src[2] = b1;
  4974. result->src[3] = c0;
  4975. result->src[4] = c1;
  4976. return result;
  4977. }
  4978. // ggml_flash_attn_back
  4979. struct ggml_tensor * ggml_flash_attn_back(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * q,
  4982. struct ggml_tensor * k,
  4983. struct ggml_tensor * v,
  4984. struct ggml_tensor * d,
  4985. bool masked) {
  4986. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4987. // TODO: check if vT can be multiplied by (k*qT)
  4988. // d shape [D,N,ne2,ne3]
  4989. // q shape [D,N,ne2,ne3]
  4990. // k shape [D,M,kvne2,ne3]
  4991. // v shape [M,D,kvne2,ne3]
  4992. const int64_t D = q->ne[0];
  4993. const int64_t N = q->ne[1];
  4994. const int64_t M = k->ne[1];
  4995. const int64_t ne2 = q->ne[2];
  4996. const int64_t ne3 = q->ne[3];
  4997. const int64_t kvne2 = k->ne[2];
  4998. GGML_ASSERT(k->ne[0] == D);
  4999. GGML_ASSERT(v->ne[0] == M);
  5000. GGML_ASSERT(v->ne[1] == D);
  5001. GGML_ASSERT(d->ne[0] == D);
  5002. GGML_ASSERT(d->ne[1] == N);
  5003. GGML_ASSERT(k->ne[2] == kvne2);
  5004. GGML_ASSERT(k->ne[3] == ne3);
  5005. GGML_ASSERT(v->ne[2] == kvne2);
  5006. GGML_ASSERT(v->ne[3] == ne3);
  5007. GGML_ASSERT(d->ne[2] == ne2);
  5008. GGML_ASSERT(d->ne[3] == ne3);
  5009. GGML_ASSERT(ne2 % kvne2 == 0);
  5010. bool is_node = false;
  5011. if (q->grad || k->grad || v->grad) {
  5012. // when using this operation (in backwards pass) these grads are set.
  5013. // we don't want to create (big) grad of our result, so is_node is false.
  5014. is_node = false;
  5015. }
  5016. // store gradients of q, k and v as continuous tensors concatenated in result.
  5017. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5018. const int64_t elem_q = ggml_nelements(q);
  5019. const int64_t elem_k = ggml_nelements(k);
  5020. const int64_t elem_v = ggml_nelements(v);
  5021. enum ggml_type result_type = GGML_TYPE_F32;
  5022. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5023. const size_t tsize = ggml_type_size(result_type);
  5024. const size_t offs_q = 0;
  5025. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5026. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5027. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5028. const size_t nelements = (end + tsize - 1)/tsize;
  5029. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5030. int32_t masked_i = masked ? 1 : 0;
  5031. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5032. result->op = GGML_OP_FLASH_ATTN_BACK;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = q;
  5035. result->src[1] = k;
  5036. result->src[2] = v;
  5037. result->src[3] = d;
  5038. return result;
  5039. }
  5040. // ggml_ssm_conv
  5041. struct ggml_tensor * ggml_ssm_conv(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * s,
  5044. struct ggml_tensor * x,
  5045. struct ggml_tensor * c,
  5046. struct ggml_tensor * sq) {
  5047. GGML_ASSERT(ggml_is_3d(s));
  5048. GGML_ASSERT(ggml_is_matrix(x));
  5049. GGML_ASSERT(ggml_is_matrix(c));
  5050. GGML_ASSERT(ggml_is_matrix(sq));
  5051. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5052. const int64_t d_conv = c->ne[0];
  5053. const int64_t d_inner = c->ne[1];
  5054. const int64_t n_tokens = x->ne[1];
  5055. const int64_t n_kv = s->ne[2];
  5056. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5057. GGML_ASSERT( s->ne[1] == d_inner);
  5058. GGML_ASSERT( x->ne[0] == d_inner);
  5059. GGML_ASSERT(sq->ne[0] == n_kv);
  5060. GGML_ASSERT(sq->ne[1] == n_tokens);
  5061. bool is_node = false;
  5062. if (s->grad || x->grad || c->grad || sq->grad) {
  5063. GGML_ASSERT(false); // TODO: implement
  5064. is_node = true;
  5065. }
  5066. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5067. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5068. result->op = GGML_OP_SSM_CONV;
  5069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5070. result->src[0] = s;
  5071. result->src[1] = x;
  5072. result->src[2] = c;
  5073. result->src[3] = sq;
  5074. return result;
  5075. }
  5076. // ggml_ssm_scan
  5077. struct ggml_tensor * ggml_ssm_scan(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * s,
  5080. struct ggml_tensor * x,
  5081. struct ggml_tensor * dt,
  5082. struct ggml_tensor * A,
  5083. struct ggml_tensor * B,
  5084. struct ggml_tensor * C,
  5085. struct ggml_tensor * sq) {
  5086. GGML_ASSERT(ggml_is_contiguous(s));
  5087. GGML_ASSERT(ggml_is_contiguous(x));
  5088. GGML_ASSERT(ggml_is_contiguous(dt));
  5089. GGML_ASSERT(ggml_is_contiguous(A));
  5090. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5091. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5092. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5093. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5094. {
  5095. const int64_t d_state = s->ne[0];
  5096. const int64_t d_inner = s->ne[1];
  5097. const int64_t n_tokens = x->ne[1];
  5098. GGML_ASSERT(x->ne[0] == d_inner);
  5099. GGML_ASSERT(A->ne[0] == d_state);
  5100. GGML_ASSERT(A->ne[1] == d_inner);
  5101. GGML_ASSERT(B->ne[0] == d_state);
  5102. GGML_ASSERT(B->ne[1] == n_tokens);
  5103. GGML_ASSERT(C->ne[0] == d_state);
  5104. GGML_ASSERT(C->ne[1] == n_tokens);
  5105. }
  5106. bool is_node = false;
  5107. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5108. GGML_ASSERT(false); // TODO: implement
  5109. is_node = true;
  5110. }
  5111. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5112. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5113. result->op = GGML_OP_SSM_SCAN;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src[0] = s;
  5116. result->src[1] = x;
  5117. result->src[2] = dt;
  5118. result->src[3] = A;
  5119. result->src[4] = B;
  5120. result->src[5] = C;
  5121. result->src[6] = sq;
  5122. return result;
  5123. }
  5124. // ggml_win_part
  5125. struct ggml_tensor * ggml_win_part(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. int w) {
  5129. GGML_ASSERT(a->ne[3] == 1);
  5130. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5131. bool is_node = false;
  5132. if (a->grad) {
  5133. GGML_ASSERT(false); // TODO: implement backward
  5134. is_node = true;
  5135. }
  5136. // padding
  5137. const int px = (w - a->ne[1]%w)%w;
  5138. const int py = (w - a->ne[2]%w)%w;
  5139. const int npx = (px + a->ne[1])/w;
  5140. const int npy = (py + a->ne[2])/w;
  5141. const int np = npx*npy;
  5142. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5143. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5144. int32_t params[] = { npx, npy, w };
  5145. ggml_set_op_params(result, params, sizeof(params));
  5146. result->op = GGML_OP_WIN_PART;
  5147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5148. result->src[0] = a;
  5149. return result;
  5150. }
  5151. // ggml_win_unpart
  5152. struct ggml_tensor * ggml_win_unpart(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. int w0,
  5156. int h0,
  5157. int w) {
  5158. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5159. bool is_node = false;
  5160. if (a->grad) {
  5161. GGML_ASSERT(false); // TODO: implement backward
  5162. is_node = true;
  5163. }
  5164. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5165. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5166. int32_t params[] = { w };
  5167. ggml_set_op_params(result, params, sizeof(params));
  5168. result->op = GGML_OP_WIN_UNPART;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = a;
  5171. return result;
  5172. }
  5173. // ggml_get_rel_pos
  5174. struct ggml_tensor * ggml_get_rel_pos(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * a,
  5177. int qh,
  5178. int kh) {
  5179. GGML_ASSERT(qh == kh);
  5180. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5181. bool is_node = false;
  5182. if (a->grad) {
  5183. GGML_ASSERT(false); // TODO: implement backward
  5184. is_node = true;
  5185. }
  5186. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5187. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5188. result->op = GGML_OP_GET_REL_POS;
  5189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5190. result->src[0] = a;
  5191. return result;
  5192. }
  5193. // ggml_add_rel_pos
  5194. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5195. struct ggml_context * ctx,
  5196. struct ggml_tensor * a,
  5197. struct ggml_tensor * pw,
  5198. struct ggml_tensor * ph,
  5199. bool inplace) {
  5200. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5201. GGML_ASSERT(ggml_is_contiguous(a));
  5202. GGML_ASSERT(ggml_is_contiguous(pw));
  5203. GGML_ASSERT(ggml_is_contiguous(ph));
  5204. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5205. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5206. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5207. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5208. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5209. bool is_node = false;
  5210. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5211. is_node = true;
  5212. }
  5213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5214. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5215. result->op = GGML_OP_ADD_REL_POS;
  5216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5217. result->src[0] = a;
  5218. result->src[1] = pw;
  5219. result->src[2] = ph;
  5220. return result;
  5221. }
  5222. struct ggml_tensor * ggml_add_rel_pos(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * a,
  5225. struct ggml_tensor * pw,
  5226. struct ggml_tensor * ph) {
  5227. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5228. }
  5229. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. struct ggml_tensor * pw,
  5233. struct ggml_tensor * ph) {
  5234. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5235. }
  5236. // gmml_unary
  5237. static struct ggml_tensor * ggml_unary_impl(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. enum ggml_unary_op op,
  5241. bool inplace) {
  5242. bool is_node = false;
  5243. if (!inplace && (a->grad)) {
  5244. is_node = true;
  5245. }
  5246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5247. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5248. result->op = GGML_OP_UNARY;
  5249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5250. result->src[0] = a;
  5251. return result;
  5252. }
  5253. struct ggml_tensor * ggml_unary(
  5254. struct ggml_context * ctx,
  5255. struct ggml_tensor * a,
  5256. enum ggml_unary_op op) {
  5257. return ggml_unary_impl(ctx, a, op, false);
  5258. }
  5259. struct ggml_tensor * ggml_unary_inplace(
  5260. struct ggml_context * ctx,
  5261. struct ggml_tensor * a,
  5262. enum ggml_unary_op op) {
  5263. return ggml_unary_impl(ctx, a, op, true);
  5264. }
  5265. // ggml_map_unary
  5266. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5267. struct ggml_context * ctx,
  5268. struct ggml_tensor * a,
  5269. const ggml_unary_op_f32_t fun,
  5270. bool inplace) {
  5271. bool is_node = false;
  5272. if (!inplace && a->grad) {
  5273. is_node = true;
  5274. }
  5275. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5276. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5277. result->op = GGML_OP_MAP_UNARY;
  5278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5279. result->src[0] = a;
  5280. return result;
  5281. }
  5282. struct ggml_tensor * ggml_map_unary_f32(
  5283. struct ggml_context * ctx,
  5284. struct ggml_tensor * a,
  5285. const ggml_unary_op_f32_t fun) {
  5286. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5287. }
  5288. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5289. struct ggml_context * ctx,
  5290. struct ggml_tensor * a,
  5291. const ggml_unary_op_f32_t fun) {
  5292. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5293. }
  5294. // ggml_map_binary
  5295. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. struct ggml_tensor * b,
  5299. const ggml_binary_op_f32_t fun,
  5300. bool inplace) {
  5301. GGML_ASSERT(ggml_are_same_shape(a, b));
  5302. bool is_node = false;
  5303. if (!inplace && (a->grad || b->grad)) {
  5304. is_node = true;
  5305. }
  5306. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5307. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5308. result->op = GGML_OP_MAP_BINARY;
  5309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5310. result->src[0] = a;
  5311. result->src[1] = b;
  5312. return result;
  5313. }
  5314. struct ggml_tensor * ggml_map_binary_f32(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * a,
  5317. struct ggml_tensor * b,
  5318. const ggml_binary_op_f32_t fun) {
  5319. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5320. }
  5321. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. struct ggml_tensor * b,
  5325. const ggml_binary_op_f32_t fun) {
  5326. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5327. }
  5328. // ggml_map_custom1_f32
  5329. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5330. struct ggml_context * ctx,
  5331. struct ggml_tensor * a,
  5332. const ggml_custom1_op_f32_t fun,
  5333. bool inplace) {
  5334. bool is_node = false;
  5335. if (!inplace && a->grad) {
  5336. is_node = true;
  5337. }
  5338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5339. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5340. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5342. result->src[0] = a;
  5343. return result;
  5344. }
  5345. struct ggml_tensor * ggml_map_custom1_f32(
  5346. struct ggml_context * ctx,
  5347. struct ggml_tensor * a,
  5348. const ggml_custom1_op_f32_t fun) {
  5349. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5350. }
  5351. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. const ggml_custom1_op_f32_t fun) {
  5355. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5356. }
  5357. // ggml_map_custom2_f32
  5358. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * b,
  5362. const ggml_custom2_op_f32_t fun,
  5363. bool inplace) {
  5364. bool is_node = false;
  5365. if (!inplace && (a->grad || b->grad)) {
  5366. is_node = true;
  5367. }
  5368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5369. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5370. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5372. result->src[0] = a;
  5373. result->src[1] = b;
  5374. return result;
  5375. }
  5376. struct ggml_tensor * ggml_map_custom2_f32(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * b,
  5380. const ggml_custom2_op_f32_t fun) {
  5381. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5382. }
  5383. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * b,
  5387. const ggml_custom2_op_f32_t fun) {
  5388. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5389. }
  5390. // ggml_map_custom3_f32
  5391. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * a,
  5394. struct ggml_tensor * b,
  5395. struct ggml_tensor * c,
  5396. const ggml_custom3_op_f32_t fun,
  5397. bool inplace) {
  5398. bool is_node = false;
  5399. if (!inplace && (a->grad || b->grad || c->grad)) {
  5400. is_node = true;
  5401. }
  5402. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5403. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5404. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5406. result->src[0] = a;
  5407. result->src[1] = b;
  5408. result->src[2] = c;
  5409. return result;
  5410. }
  5411. struct ggml_tensor * ggml_map_custom3_f32(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b,
  5415. struct ggml_tensor * c,
  5416. const ggml_custom3_op_f32_t fun) {
  5417. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5418. }
  5419. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. struct ggml_tensor * b,
  5423. struct ggml_tensor * c,
  5424. const ggml_custom3_op_f32_t fun) {
  5425. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5426. }
  5427. // ggml_map_custom1
  5428. struct ggml_map_custom1_op_params {
  5429. ggml_custom1_op_t fun;
  5430. int n_tasks;
  5431. void * userdata;
  5432. };
  5433. static struct ggml_tensor * ggml_map_custom1_impl(
  5434. struct ggml_context * ctx,
  5435. struct ggml_tensor * a,
  5436. const ggml_custom1_op_t fun,
  5437. int n_tasks,
  5438. void * userdata,
  5439. bool inplace) {
  5440. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5441. bool is_node = false;
  5442. if (!inplace && a->grad) {
  5443. is_node = true;
  5444. }
  5445. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5446. struct ggml_map_custom1_op_params params = {
  5447. /*.fun =*/ fun,
  5448. /*.n_tasks =*/ n_tasks,
  5449. /*.userdata =*/ userdata
  5450. };
  5451. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5452. result->op = GGML_OP_MAP_CUSTOM1;
  5453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5454. result->src[0] = a;
  5455. return result;
  5456. }
  5457. struct ggml_tensor * ggml_map_custom1(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. const ggml_custom1_op_t fun,
  5461. int n_tasks,
  5462. void * userdata) {
  5463. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5464. }
  5465. struct ggml_tensor * ggml_map_custom1_inplace(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. const ggml_custom1_op_t fun,
  5469. int n_tasks,
  5470. void * userdata) {
  5471. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5472. }
  5473. // ggml_map_custom2
  5474. struct ggml_map_custom2_op_params {
  5475. ggml_custom2_op_t fun;
  5476. int n_tasks;
  5477. void * userdata;
  5478. };
  5479. static struct ggml_tensor * ggml_map_custom2_impl(
  5480. struct ggml_context * ctx,
  5481. struct ggml_tensor * a,
  5482. struct ggml_tensor * b,
  5483. const ggml_custom2_op_t fun,
  5484. int n_tasks,
  5485. void * userdata,
  5486. bool inplace) {
  5487. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5488. bool is_node = false;
  5489. if (!inplace && (a->grad || b->grad)) {
  5490. is_node = true;
  5491. }
  5492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5493. struct ggml_map_custom2_op_params params = {
  5494. /*.fun =*/ fun,
  5495. /*.n_tasks =*/ n_tasks,
  5496. /*.userdata =*/ userdata
  5497. };
  5498. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5499. result->op = GGML_OP_MAP_CUSTOM2;
  5500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5501. result->src[0] = a;
  5502. result->src[1] = b;
  5503. return result;
  5504. }
  5505. struct ggml_tensor * ggml_map_custom2(
  5506. struct ggml_context * ctx,
  5507. struct ggml_tensor * a,
  5508. struct ggml_tensor * b,
  5509. const ggml_custom2_op_t fun,
  5510. int n_tasks,
  5511. void * userdata) {
  5512. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5513. }
  5514. struct ggml_tensor * ggml_map_custom2_inplace(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a,
  5517. struct ggml_tensor * b,
  5518. const ggml_custom2_op_t fun,
  5519. int n_tasks,
  5520. void * userdata) {
  5521. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5522. }
  5523. // ggml_map_custom3
  5524. struct ggml_map_custom3_op_params {
  5525. ggml_custom3_op_t fun;
  5526. int n_tasks;
  5527. void * userdata;
  5528. };
  5529. static struct ggml_tensor * ggml_map_custom3_impl(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. struct ggml_tensor * c,
  5534. const ggml_custom3_op_t fun,
  5535. int n_tasks,
  5536. void * userdata,
  5537. bool inplace) {
  5538. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5539. bool is_node = false;
  5540. if (!inplace && (a->grad || b->grad || c->grad)) {
  5541. is_node = true;
  5542. }
  5543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5544. struct ggml_map_custom3_op_params params = {
  5545. /*.fun =*/ fun,
  5546. /*.n_tasks =*/ n_tasks,
  5547. /*.userdata =*/ userdata
  5548. };
  5549. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5550. result->op = GGML_OP_MAP_CUSTOM3;
  5551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5552. result->src[0] = a;
  5553. result->src[1] = b;
  5554. result->src[2] = c;
  5555. return result;
  5556. }
  5557. struct ggml_tensor * ggml_map_custom3(
  5558. struct ggml_context * ctx,
  5559. struct ggml_tensor * a,
  5560. struct ggml_tensor * b,
  5561. struct ggml_tensor * c,
  5562. const ggml_custom3_op_t fun,
  5563. int n_tasks,
  5564. void * userdata) {
  5565. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5566. }
  5567. struct ggml_tensor * ggml_map_custom3_inplace(
  5568. struct ggml_context * ctx,
  5569. struct ggml_tensor * a,
  5570. struct ggml_tensor * b,
  5571. struct ggml_tensor * c,
  5572. const ggml_custom3_op_t fun,
  5573. int n_tasks,
  5574. void * userdata) {
  5575. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5576. }
  5577. // ggml_cross_entropy_loss
  5578. struct ggml_tensor * ggml_cross_entropy_loss(
  5579. struct ggml_context * ctx,
  5580. struct ggml_tensor * a,
  5581. struct ggml_tensor * b) {
  5582. GGML_ASSERT(ggml_are_same_shape(a, b));
  5583. bool is_node = false;
  5584. if (a->grad || b->grad) {
  5585. is_node = true;
  5586. }
  5587. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5588. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5590. result->src[0] = a;
  5591. result->src[1] = b;
  5592. return result;
  5593. }
  5594. // ggml_cross_entropy_loss_back
  5595. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5596. struct ggml_context * ctx,
  5597. struct ggml_tensor * a,
  5598. struct ggml_tensor * b,
  5599. struct ggml_tensor * c) {
  5600. GGML_ASSERT(ggml_are_same_shape(a, b));
  5601. GGML_ASSERT(ggml_is_scalar(c));
  5602. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5603. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5604. result->grad = NULL;
  5605. result->src[0] = a;
  5606. result->src[1] = b;
  5607. result->src[2] = c;
  5608. return result;
  5609. }
  5610. ////////////////////////////////////////////////////////////////////////////////
  5611. void ggml_set_param(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * tensor) {
  5614. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5615. GGML_ASSERT(tensor->grad == NULL);
  5616. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5617. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5618. }
  5619. // ggml_compute_forward_dup
  5620. static void ggml_compute_forward_dup_same_cont(
  5621. const struct ggml_compute_params * params,
  5622. struct ggml_tensor * dst) {
  5623. const struct ggml_tensor * src0 = dst->src[0];
  5624. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5625. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5626. GGML_ASSERT(src0->type == dst->type);
  5627. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5628. return;
  5629. }
  5630. const size_t nb00 = src0->nb[0];
  5631. const size_t nb0 = dst->nb[0];
  5632. const int ith = params->ith; // thread index
  5633. const int nth = params->nth; // number of threads
  5634. // parallelize by elements
  5635. const int ne = ggml_nelements(dst);
  5636. const int dr = (ne + nth - 1) / nth;
  5637. const int ie0 = dr * ith;
  5638. const int ie1 = MIN(ie0 + dr, ne);
  5639. if (ie0 < ie1) {
  5640. memcpy(
  5641. ((char *) dst->data + ie0*nb0),
  5642. ((char *) src0->data + ie0*nb00),
  5643. (ie1 - ie0) * ggml_type_size(src0->type));
  5644. }
  5645. }
  5646. static void ggml_compute_forward_dup_f16(
  5647. const struct ggml_compute_params * params,
  5648. struct ggml_tensor * dst) {
  5649. const struct ggml_tensor * src0 = dst->src[0];
  5650. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5651. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5652. return;
  5653. }
  5654. GGML_TENSOR_UNARY_OP_LOCALS
  5655. const int ith = params->ith; // thread index
  5656. const int nth = params->nth; // number of threads
  5657. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5658. ggml_compute_forward_dup_same_cont(params, dst);
  5659. return;
  5660. }
  5661. // parallelize by rows
  5662. const int nr = ne01;
  5663. // number of rows per thread
  5664. const int dr = (nr + nth - 1) / nth;
  5665. // row range for this thread
  5666. const int ir0 = dr * ith;
  5667. const int ir1 = MIN(ir0 + dr, nr);
  5668. if (src0->type == dst->type &&
  5669. ne00 == ne0 &&
  5670. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5671. // copy by rows
  5672. const size_t rs = ne00*nb00;
  5673. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5674. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5675. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5676. memcpy(
  5677. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5678. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5679. rs);
  5680. }
  5681. }
  5682. }
  5683. return;
  5684. }
  5685. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5686. if (ggml_is_contiguous(dst)) {
  5687. if (nb00 == sizeof(ggml_fp16_t)) {
  5688. if (dst->type == GGML_TYPE_F16) {
  5689. size_t id = 0;
  5690. const size_t rs = ne00 * nb00;
  5691. char * dst_ptr = (char *) dst->data;
  5692. for (int i03 = 0; i03 < ne03; i03++) {
  5693. for (int i02 = 0; i02 < ne02; i02++) {
  5694. id += rs * ir0;
  5695. for (int i01 = ir0; i01 < ir1; i01++) {
  5696. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5697. memcpy(dst_ptr + id, src0_ptr, rs);
  5698. id += rs;
  5699. }
  5700. id += rs * (ne01 - ir1);
  5701. }
  5702. }
  5703. } else if (dst->type == GGML_TYPE_F32) {
  5704. size_t id = 0;
  5705. float * dst_ptr = (float *) dst->data;
  5706. for (int i03 = 0; i03 < ne03; i03++) {
  5707. for (int i02 = 0; i02 < ne02; i02++) {
  5708. id += ne00 * ir0;
  5709. for (int i01 = ir0; i01 < ir1; i01++) {
  5710. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5711. for (int i00 = 0; i00 < ne00; i00++) {
  5712. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5713. id++;
  5714. }
  5715. }
  5716. id += ne00 * (ne01 - ir1);
  5717. }
  5718. }
  5719. } else if (type_traits[dst->type].from_float) {
  5720. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5721. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5722. size_t id = 0;
  5723. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5724. char * dst_ptr = (char *) dst->data;
  5725. for (int i03 = 0; i03 < ne03; i03++) {
  5726. for (int i02 = 0; i02 < ne02; i02++) {
  5727. id += rs * ir0;
  5728. for (int i01 = ir0; i01 < ir1; i01++) {
  5729. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5730. for (int i00 = 0; i00 < ne00; i00++) {
  5731. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5732. }
  5733. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5734. id += rs;
  5735. }
  5736. id += rs * (ne01 - ir1);
  5737. }
  5738. }
  5739. } else {
  5740. GGML_ASSERT(false); // TODO: implement
  5741. }
  5742. } else {
  5743. //printf("%s: this is not optimal - fix me\n", __func__);
  5744. if (dst->type == GGML_TYPE_F32) {
  5745. size_t id = 0;
  5746. float * dst_ptr = (float *) dst->data;
  5747. for (int i03 = 0; i03 < ne03; i03++) {
  5748. for (int i02 = 0; i02 < ne02; i02++) {
  5749. id += ne00 * ir0;
  5750. for (int i01 = ir0; i01 < ir1; i01++) {
  5751. for (int i00 = 0; i00 < ne00; i00++) {
  5752. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5753. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5754. id++;
  5755. }
  5756. }
  5757. id += ne00 * (ne01 - ir1);
  5758. }
  5759. }
  5760. } else if (dst->type == GGML_TYPE_F16) {
  5761. size_t id = 0;
  5762. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5763. for (int i03 = 0; i03 < ne03; i03++) {
  5764. for (int i02 = 0; i02 < ne02; i02++) {
  5765. id += ne00 * ir0;
  5766. for (int i01 = ir0; i01 < ir1; i01++) {
  5767. for (int i00 = 0; i00 < ne00; i00++) {
  5768. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5769. dst_ptr[id] = *src0_ptr;
  5770. id++;
  5771. }
  5772. }
  5773. id += ne00 * (ne01 - ir1);
  5774. }
  5775. }
  5776. } else {
  5777. GGML_ASSERT(false); // TODO: implement
  5778. }
  5779. }
  5780. return;
  5781. }
  5782. // dst counters
  5783. int64_t i10 = 0;
  5784. int64_t i11 = 0;
  5785. int64_t i12 = 0;
  5786. int64_t i13 = 0;
  5787. if (dst->type == GGML_TYPE_F16) {
  5788. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5789. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5790. i10 += ne00 * ir0;
  5791. while (i10 >= ne0) {
  5792. i10 -= ne0;
  5793. if (++i11 == ne1) {
  5794. i11 = 0;
  5795. if (++i12 == ne2) {
  5796. i12 = 0;
  5797. if (++i13 == ne3) {
  5798. i13 = 0;
  5799. }
  5800. }
  5801. }
  5802. }
  5803. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5804. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5805. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5806. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5807. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5808. if (++i10 == ne00) {
  5809. i10 = 0;
  5810. if (++i11 == ne01) {
  5811. i11 = 0;
  5812. if (++i12 == ne02) {
  5813. i12 = 0;
  5814. if (++i13 == ne03) {
  5815. i13 = 0;
  5816. }
  5817. }
  5818. }
  5819. }
  5820. }
  5821. }
  5822. i10 += ne00 * (ne01 - ir1);
  5823. while (i10 >= ne0) {
  5824. i10 -= ne0;
  5825. if (++i11 == ne1) {
  5826. i11 = 0;
  5827. if (++i12 == ne2) {
  5828. i12 = 0;
  5829. if (++i13 == ne3) {
  5830. i13 = 0;
  5831. }
  5832. }
  5833. }
  5834. }
  5835. }
  5836. }
  5837. } else if (dst->type == GGML_TYPE_F32) {
  5838. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5839. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5840. i10 += ne00 * ir0;
  5841. while (i10 >= ne0) {
  5842. i10 -= ne0;
  5843. if (++i11 == ne1) {
  5844. i11 = 0;
  5845. if (++i12 == ne2) {
  5846. i12 = 0;
  5847. if (++i13 == ne3) {
  5848. i13 = 0;
  5849. }
  5850. }
  5851. }
  5852. }
  5853. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5854. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5855. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5856. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5857. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5858. if (++i10 == ne0) {
  5859. i10 = 0;
  5860. if (++i11 == ne1) {
  5861. i11 = 0;
  5862. if (++i12 == ne2) {
  5863. i12 = 0;
  5864. if (++i13 == ne3) {
  5865. i13 = 0;
  5866. }
  5867. }
  5868. }
  5869. }
  5870. }
  5871. }
  5872. i10 += ne00 * (ne01 - ir1);
  5873. while (i10 >= ne0) {
  5874. i10 -= ne0;
  5875. if (++i11 == ne1) {
  5876. i11 = 0;
  5877. if (++i12 == ne2) {
  5878. i12 = 0;
  5879. if (++i13 == ne3) {
  5880. i13 = 0;
  5881. }
  5882. }
  5883. }
  5884. }
  5885. }
  5886. }
  5887. } else {
  5888. GGML_ASSERT(false); // TODO: implement
  5889. }
  5890. }
  5891. static void ggml_compute_forward_dup_f32(
  5892. const struct ggml_compute_params * params,
  5893. struct ggml_tensor * dst) {
  5894. const struct ggml_tensor * src0 = dst->src[0];
  5895. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5896. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5897. return;
  5898. }
  5899. GGML_TENSOR_UNARY_OP_LOCALS
  5900. const int ith = params->ith; // thread index
  5901. const int nth = params->nth; // number of threads
  5902. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5903. ggml_compute_forward_dup_same_cont(params, dst);
  5904. return;
  5905. }
  5906. // parallelize by rows
  5907. const int nr = ne01;
  5908. // number of rows per thread
  5909. const int dr = (nr + nth - 1) / nth;
  5910. // row range for this thread
  5911. const int ir0 = dr * ith;
  5912. const int ir1 = MIN(ir0 + dr, nr);
  5913. if (src0->type == dst->type &&
  5914. ne00 == ne0 &&
  5915. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5916. // copy by rows
  5917. const size_t rs = ne00*nb00;
  5918. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5920. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5921. memcpy(
  5922. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5923. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5924. rs);
  5925. }
  5926. }
  5927. }
  5928. return;
  5929. }
  5930. if (ggml_is_contiguous(dst)) {
  5931. // TODO: simplify
  5932. if (nb00 == sizeof(float)) {
  5933. if (dst->type == GGML_TYPE_F32) {
  5934. size_t id = 0;
  5935. const size_t rs = ne00 * nb00;
  5936. char * dst_ptr = (char *) dst->data;
  5937. for (int i03 = 0; i03 < ne03; i03++) {
  5938. for (int i02 = 0; i02 < ne02; i02++) {
  5939. id += rs * ir0;
  5940. for (int i01 = ir0; i01 < ir1; i01++) {
  5941. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5942. memcpy(dst_ptr + id, src0_ptr, rs);
  5943. id += rs;
  5944. }
  5945. id += rs * (ne01 - ir1);
  5946. }
  5947. }
  5948. } else if (type_traits[dst->type].from_float) {
  5949. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5950. size_t id = 0;
  5951. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5952. char * dst_ptr = (char *) dst->data;
  5953. for (int i03 = 0; i03 < ne03; i03++) {
  5954. for (int i02 = 0; i02 < ne02; i02++) {
  5955. id += rs * ir0;
  5956. for (int i01 = ir0; i01 < ir1; i01++) {
  5957. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5958. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5959. id += rs;
  5960. }
  5961. id += rs * (ne01 - ir1);
  5962. }
  5963. }
  5964. } else {
  5965. GGML_ASSERT(false); // TODO: implement
  5966. }
  5967. } else {
  5968. //printf("%s: this is not optimal - fix me\n", __func__);
  5969. if (dst->type == GGML_TYPE_F32) {
  5970. size_t id = 0;
  5971. float * dst_ptr = (float *) dst->data;
  5972. for (int i03 = 0; i03 < ne03; i03++) {
  5973. for (int i02 = 0; i02 < ne02; i02++) {
  5974. id += ne00 * ir0;
  5975. for (int i01 = ir0; i01 < ir1; i01++) {
  5976. for (int i00 = 0; i00 < ne00; i00++) {
  5977. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5978. dst_ptr[id] = *src0_ptr;
  5979. id++;
  5980. }
  5981. }
  5982. id += ne00 * (ne01 - ir1);
  5983. }
  5984. }
  5985. } else if (dst->type == GGML_TYPE_F16) {
  5986. size_t id = 0;
  5987. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5988. for (int i03 = 0; i03 < ne03; i03++) {
  5989. for (int i02 = 0; i02 < ne02; i02++) {
  5990. id += ne00 * ir0;
  5991. for (int i01 = ir0; i01 < ir1; i01++) {
  5992. for (int i00 = 0; i00 < ne00; i00++) {
  5993. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5994. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5995. id++;
  5996. }
  5997. }
  5998. id += ne00 * (ne01 - ir1);
  5999. }
  6000. }
  6001. } else {
  6002. GGML_ASSERT(false); // TODO: implement
  6003. }
  6004. }
  6005. return;
  6006. }
  6007. // dst counters
  6008. int64_t i10 = 0;
  6009. int64_t i11 = 0;
  6010. int64_t i12 = 0;
  6011. int64_t i13 = 0;
  6012. if (dst->type == GGML_TYPE_F32) {
  6013. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6014. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6015. i10 += ne00 * ir0;
  6016. while (i10 >= ne0) {
  6017. i10 -= ne0;
  6018. if (++i11 == ne1) {
  6019. i11 = 0;
  6020. if (++i12 == ne2) {
  6021. i12 = 0;
  6022. if (++i13 == ne3) {
  6023. i13 = 0;
  6024. }
  6025. }
  6026. }
  6027. }
  6028. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6029. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6030. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6031. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6032. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6033. if (++i10 == ne0) {
  6034. i10 = 0;
  6035. if (++i11 == ne1) {
  6036. i11 = 0;
  6037. if (++i12 == ne2) {
  6038. i12 = 0;
  6039. if (++i13 == ne3) {
  6040. i13 = 0;
  6041. }
  6042. }
  6043. }
  6044. }
  6045. }
  6046. }
  6047. i10 += ne00 * (ne01 - ir1);
  6048. while (i10 >= ne0) {
  6049. i10 -= ne0;
  6050. if (++i11 == ne1) {
  6051. i11 = 0;
  6052. if (++i12 == ne2) {
  6053. i12 = 0;
  6054. if (++i13 == ne3) {
  6055. i13 = 0;
  6056. }
  6057. }
  6058. }
  6059. }
  6060. }
  6061. }
  6062. } else if (dst->type == GGML_TYPE_F16) {
  6063. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6064. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6065. i10 += ne00 * ir0;
  6066. while (i10 >= ne0) {
  6067. i10 -= ne0;
  6068. if (++i11 == ne1) {
  6069. i11 = 0;
  6070. if (++i12 == ne2) {
  6071. i12 = 0;
  6072. if (++i13 == ne3) {
  6073. i13 = 0;
  6074. }
  6075. }
  6076. }
  6077. }
  6078. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6079. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6080. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6081. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6082. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6083. if (++i10 == ne0) {
  6084. i10 = 0;
  6085. if (++i11 == ne1) {
  6086. i11 = 0;
  6087. if (++i12 == ne2) {
  6088. i12 = 0;
  6089. if (++i13 == ne3) {
  6090. i13 = 0;
  6091. }
  6092. }
  6093. }
  6094. }
  6095. }
  6096. }
  6097. i10 += ne00 * (ne01 - ir1);
  6098. while (i10 >= ne0) {
  6099. i10 -= ne0;
  6100. if (++i11 == ne1) {
  6101. i11 = 0;
  6102. if (++i12 == ne2) {
  6103. i12 = 0;
  6104. if (++i13 == ne3) {
  6105. i13 = 0;
  6106. }
  6107. }
  6108. }
  6109. }
  6110. }
  6111. }
  6112. } else {
  6113. GGML_ASSERT(false); // TODO: implement
  6114. }
  6115. }
  6116. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6117. static void ggml_compute_forward_dup_bytes(
  6118. const struct ggml_compute_params * params,
  6119. struct ggml_tensor * dst) {
  6120. const struct ggml_tensor * src0 = dst->src[0];
  6121. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6122. GGML_ASSERT(src0->type == dst->type);
  6123. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6124. return;
  6125. }
  6126. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6127. ggml_compute_forward_dup_same_cont(params, dst);
  6128. return;
  6129. }
  6130. GGML_TENSOR_UNARY_OP_LOCALS;
  6131. const size_t type_size = ggml_type_size(src0->type);
  6132. const int ith = params->ith; // thread index
  6133. const int nth = params->nth; // number of threads
  6134. // parallelize by rows
  6135. const int nr = ne01;
  6136. // number of rows per thread
  6137. const int dr = (nr + nth - 1) / nth;
  6138. // row range for this thread
  6139. const int ir0 = dr * ith;
  6140. const int ir1 = MIN(ir0 + dr, nr);
  6141. if (src0->type == dst->type &&
  6142. ne00 == ne0 &&
  6143. nb00 == type_size && nb0 == type_size) {
  6144. // copy by rows
  6145. const size_t rs = ne00 * type_size;
  6146. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6147. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6148. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6149. memcpy(
  6150. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6151. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6152. rs);
  6153. }
  6154. }
  6155. }
  6156. return;
  6157. }
  6158. if (ggml_is_contiguous(dst)) {
  6159. size_t id = 0;
  6160. char * dst_ptr = (char *) dst->data;
  6161. const size_t rs = ne00 * type_size;
  6162. if (nb00 == type_size) {
  6163. // src0 is contigous on first dimension, copy by rows
  6164. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6165. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6166. id += rs * ir0;
  6167. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6168. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6169. memcpy(dst_ptr + id, src0_ptr, rs);
  6170. id += rs;
  6171. }
  6172. id += rs * (ne01 - ir1);
  6173. }
  6174. }
  6175. } else {
  6176. //printf("%s: this is not optimal - fix me\n", __func__);
  6177. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6178. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6179. id += rs * ir0;
  6180. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6181. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6182. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6183. memcpy(dst_ptr + id, src0_ptr, type_size);
  6184. id += type_size;
  6185. }
  6186. }
  6187. id += rs * (ne01 - ir1);
  6188. }
  6189. }
  6190. }
  6191. return;
  6192. }
  6193. // dst counters
  6194. int64_t i10 = 0;
  6195. int64_t i11 = 0;
  6196. int64_t i12 = 0;
  6197. int64_t i13 = 0;
  6198. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6199. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6200. i10 += ne00 * ir0;
  6201. while (i10 >= ne0) {
  6202. i10 -= ne0;
  6203. if (++i11 == ne1) {
  6204. i11 = 0;
  6205. if (++i12 == ne2) {
  6206. i12 = 0;
  6207. if (++i13 == ne3) {
  6208. i13 = 0;
  6209. }
  6210. }
  6211. }
  6212. }
  6213. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6214. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6215. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6216. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6217. memcpy(dst_ptr, src0_ptr, type_size);
  6218. if (++i10 == ne0) {
  6219. i10 = 0;
  6220. if (++i11 == ne1) {
  6221. i11 = 0;
  6222. if (++i12 == ne2) {
  6223. i12 = 0;
  6224. if (++i13 == ne3) {
  6225. i13 = 0;
  6226. }
  6227. }
  6228. }
  6229. }
  6230. }
  6231. }
  6232. i10 += ne00 * (ne01 - ir1);
  6233. while (i10 >= ne0) {
  6234. i10 -= ne0;
  6235. if (++i11 == ne1) {
  6236. i11 = 0;
  6237. if (++i12 == ne2) {
  6238. i12 = 0;
  6239. if (++i13 == ne3) {
  6240. i13 = 0;
  6241. }
  6242. }
  6243. }
  6244. }
  6245. }
  6246. }
  6247. }
  6248. static void ggml_compute_forward_dup(
  6249. const struct ggml_compute_params * params,
  6250. struct ggml_tensor * dst) {
  6251. const struct ggml_tensor * src0 = dst->src[0];
  6252. if (src0->type == dst->type) {
  6253. ggml_compute_forward_dup_bytes(params, dst);
  6254. return;
  6255. }
  6256. switch (src0->type) {
  6257. case GGML_TYPE_F16:
  6258. {
  6259. ggml_compute_forward_dup_f16(params, dst);
  6260. } break;
  6261. case GGML_TYPE_F32:
  6262. {
  6263. ggml_compute_forward_dup_f32(params, dst);
  6264. } break;
  6265. default:
  6266. {
  6267. GGML_ASSERT(false);
  6268. } break;
  6269. }
  6270. }
  6271. // ggml_compute_forward_add
  6272. static void ggml_compute_forward_add_f32(
  6273. const struct ggml_compute_params * params,
  6274. struct ggml_tensor * dst) {
  6275. const struct ggml_tensor * src0 = dst->src[0];
  6276. const struct ggml_tensor * src1 = dst->src[1];
  6277. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6278. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6279. return;
  6280. }
  6281. const int ith = params->ith;
  6282. const int nth = params->nth;
  6283. #ifdef GGML_USE_CLBLAST
  6284. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6285. // TODO: OpenCL kernel support full broadcast
  6286. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6287. if (ith == 0) {
  6288. ggml_cl_add(src0, src1, dst);
  6289. }
  6290. return;
  6291. }
  6292. #endif
  6293. const int nr = ggml_nrows(src0);
  6294. GGML_TENSOR_BINARY_OP_LOCALS
  6295. GGML_ASSERT( nb0 == sizeof(float));
  6296. GGML_ASSERT(nb00 == sizeof(float));
  6297. // rows per thread
  6298. const int dr = (nr + nth - 1)/nth;
  6299. // row range for this thread
  6300. const int ir0 = dr*ith;
  6301. const int ir1 = MIN(ir0 + dr, nr);
  6302. if (nb10 == sizeof(float)) {
  6303. for (int ir = ir0; ir < ir1; ++ir) {
  6304. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6305. const int64_t i03 = ir/(ne02*ne01);
  6306. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6307. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6308. const int64_t i13 = i03 % ne13;
  6309. const int64_t i12 = i02 % ne12;
  6310. const int64_t i11 = i01 % ne11;
  6311. const int64_t nr0 = ne00 / ne10;
  6312. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6313. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6314. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6315. for (int64_t r = 0; r < nr0; ++r) {
  6316. #ifdef GGML_USE_ACCELERATE
  6317. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6318. #else
  6319. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6320. #endif
  6321. }
  6322. }
  6323. } else {
  6324. // src1 is not contiguous
  6325. for (int ir = ir0; ir < ir1; ++ir) {
  6326. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6327. const int64_t i03 = ir/(ne02*ne01);
  6328. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6329. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6330. const int64_t i13 = i03 % ne13;
  6331. const int64_t i12 = i02 % ne12;
  6332. const int64_t i11 = i01 % ne11;
  6333. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6334. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6335. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6336. const int64_t i10 = i0 % ne10;
  6337. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6338. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6339. }
  6340. }
  6341. }
  6342. }
  6343. static void ggml_compute_forward_add_f16_f32(
  6344. const struct ggml_compute_params * params,
  6345. struct ggml_tensor * dst) {
  6346. const struct ggml_tensor * src0 = dst->src[0];
  6347. const struct ggml_tensor * src1 = dst->src[1];
  6348. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6349. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6350. return;
  6351. }
  6352. const int ith = params->ith;
  6353. const int nth = params->nth;
  6354. const int nr = ggml_nrows(src0);
  6355. GGML_TENSOR_BINARY_OP_LOCALS
  6356. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6357. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6358. if (dst->type == GGML_TYPE_F32) {
  6359. GGML_ASSERT( nb0 == sizeof(float));
  6360. }
  6361. else {
  6362. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6363. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6364. }
  6365. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6366. // rows per thread
  6367. const int dr = (nr + nth - 1)/nth;
  6368. // row range for this thread
  6369. const int ir0 = dr*ith;
  6370. const int ir1 = MIN(ir0 + dr, nr);
  6371. if (nb10 == sizeof(float)) {
  6372. if (dst->type == GGML_TYPE_F16) {
  6373. for (int ir = ir0; ir < ir1; ++ir) {
  6374. // src0, src1 and dst are same shape => same indices
  6375. const int i3 = ir/(ne2*ne1);
  6376. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6377. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6378. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6379. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6380. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6381. for (int i = 0; i < ne0; i++) {
  6382. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6383. }
  6384. }
  6385. } else {
  6386. for (int ir = ir0; ir < ir1; ++ir) {
  6387. // src0, src1 and dst are same shape => same indices
  6388. const int i3 = ir/(ne2*ne1);
  6389. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6390. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6391. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6392. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6393. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6394. for (int i = 0; i < ne0; i++) {
  6395. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6396. }
  6397. }
  6398. }
  6399. }
  6400. else {
  6401. // src1 is not contiguous
  6402. GGML_ASSERT(false);
  6403. }
  6404. }
  6405. static void ggml_compute_forward_add_f16_f16(
  6406. const struct ggml_compute_params * params,
  6407. struct ggml_tensor * dst) {
  6408. const struct ggml_tensor * src0 = dst->src[0];
  6409. const struct ggml_tensor * src1 = dst->src[1];
  6410. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6411. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6412. return;
  6413. }
  6414. const int ith = params->ith;
  6415. const int nth = params->nth;
  6416. const int nr = ggml_nrows(src0);
  6417. GGML_TENSOR_BINARY_OP_LOCALS
  6418. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6419. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6420. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6421. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6422. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6423. // rows per thread
  6424. const int dr = (nr + nth - 1)/nth;
  6425. // row range for this thread
  6426. const int ir0 = dr*ith;
  6427. const int ir1 = MIN(ir0 + dr, nr);
  6428. if (nb10 == sizeof(ggml_fp16_t)) {
  6429. for (int ir = ir0; ir < ir1; ++ir) {
  6430. // src0, src1 and dst are same shape => same indices
  6431. const int i3 = ir/(ne2*ne1);
  6432. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6433. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6434. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6435. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6436. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6437. for (int i = 0; i < ne0; i++) {
  6438. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6439. }
  6440. }
  6441. }
  6442. else {
  6443. // src1 is not contiguous
  6444. GGML_ASSERT(false);
  6445. }
  6446. }
  6447. static void ggml_compute_forward_add_q_f32(
  6448. const struct ggml_compute_params * params,
  6449. struct ggml_tensor * dst) {
  6450. const struct ggml_tensor * src0 = dst->src[0];
  6451. const struct ggml_tensor * src1 = dst->src[1];
  6452. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6453. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6454. return;
  6455. }
  6456. const int nr = ggml_nrows(src0);
  6457. GGML_TENSOR_BINARY_OP_LOCALS
  6458. const int ith = params->ith;
  6459. const int nth = params->nth;
  6460. const enum ggml_type type = src0->type;
  6461. const enum ggml_type dtype = dst->type;
  6462. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6463. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6464. // we don't support permuted src0 or src1
  6465. GGML_ASSERT(nb00 == ggml_type_size(type));
  6466. GGML_ASSERT(nb10 == sizeof(float));
  6467. // dst cannot be transposed or permuted
  6468. GGML_ASSERT(nb0 <= nb1);
  6469. GGML_ASSERT(nb1 <= nb2);
  6470. GGML_ASSERT(nb2 <= nb3);
  6471. GGML_ASSERT(ggml_is_quantized(src0->type));
  6472. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6473. // rows per thread
  6474. const int dr = (nr + nth - 1)/nth;
  6475. // row range for this thread
  6476. const int ir0 = dr*ith;
  6477. const int ir1 = MIN(ir0 + dr, nr);
  6478. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6479. for (int ir = ir0; ir < ir1; ++ir) {
  6480. // src0 indices
  6481. const int i03 = ir/(ne02*ne01);
  6482. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6483. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6484. // src1 and dst are same shape as src0 => same indices
  6485. const int i13 = i03;
  6486. const int i12 = i02;
  6487. const int i11 = i01;
  6488. const int i3 = i03;
  6489. const int i2 = i02;
  6490. const int i1 = i01;
  6491. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6492. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6493. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6494. assert(ne00 % 32 == 0);
  6495. // unquantize row from src0 to temp buffer
  6496. dequantize_row_q(src0_row, wdata, ne00);
  6497. // add src1
  6498. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6499. // quantize row to dst
  6500. if (quantize_row_q != NULL) {
  6501. quantize_row_q(wdata, dst_row, ne00);
  6502. } else {
  6503. memcpy(dst_row, wdata, ne0*nb0);
  6504. }
  6505. }
  6506. }
  6507. static void ggml_compute_forward_add(
  6508. const struct ggml_compute_params * params,
  6509. struct ggml_tensor * dst) {
  6510. const struct ggml_tensor * src0 = dst->src[0];
  6511. const struct ggml_tensor * src1 = dst->src[1];
  6512. switch (src0->type) {
  6513. case GGML_TYPE_F32:
  6514. {
  6515. if (src1->type == GGML_TYPE_F32) {
  6516. ggml_compute_forward_add_f32(params, dst);
  6517. }
  6518. else {
  6519. GGML_ASSERT(false);
  6520. }
  6521. } break;
  6522. case GGML_TYPE_F16:
  6523. {
  6524. if (src1->type == GGML_TYPE_F16) {
  6525. ggml_compute_forward_add_f16_f16(params, dst);
  6526. }
  6527. else if (src1->type == GGML_TYPE_F32) {
  6528. ggml_compute_forward_add_f16_f32(params, dst);
  6529. }
  6530. else {
  6531. GGML_ASSERT(false);
  6532. }
  6533. } break;
  6534. case GGML_TYPE_Q4_0:
  6535. case GGML_TYPE_Q4_1:
  6536. case GGML_TYPE_Q5_0:
  6537. case GGML_TYPE_Q5_1:
  6538. case GGML_TYPE_Q8_0:
  6539. case GGML_TYPE_Q2_K:
  6540. case GGML_TYPE_Q3_K:
  6541. case GGML_TYPE_Q4_K:
  6542. case GGML_TYPE_Q5_K:
  6543. case GGML_TYPE_Q6_K:
  6544. case GGML_TYPE_IQ2_XXS:
  6545. case GGML_TYPE_IQ2_XS:
  6546. case GGML_TYPE_IQ3_XXS:
  6547. case GGML_TYPE_IQ1_S:
  6548. case GGML_TYPE_IQ4_NL:
  6549. case GGML_TYPE_IQ4_XS:
  6550. case GGML_TYPE_IQ3_S:
  6551. case GGML_TYPE_IQ2_S:
  6552. {
  6553. ggml_compute_forward_add_q_f32(params, dst);
  6554. } break;
  6555. default:
  6556. {
  6557. GGML_ASSERT(false);
  6558. } break;
  6559. }
  6560. }
  6561. // ggml_compute_forward_add1
  6562. static void ggml_compute_forward_add1_f32(
  6563. const struct ggml_compute_params * params,
  6564. struct ggml_tensor * dst) {
  6565. const struct ggml_tensor * src0 = dst->src[0];
  6566. const struct ggml_tensor * src1 = dst->src[1];
  6567. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6568. GGML_ASSERT(ggml_is_scalar(src1));
  6569. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6570. return;
  6571. }
  6572. const int ith = params->ith;
  6573. const int nth = params->nth;
  6574. const int nr = ggml_nrows(src0);
  6575. GGML_TENSOR_UNARY_OP_LOCALS
  6576. GGML_ASSERT( nb0 == sizeof(float));
  6577. GGML_ASSERT(nb00 == sizeof(float));
  6578. // rows per thread
  6579. const int dr = (nr + nth - 1)/nth;
  6580. // row range for this thread
  6581. const int ir0 = dr*ith;
  6582. const int ir1 = MIN(ir0 + dr, nr);
  6583. for (int ir = ir0; ir < ir1; ++ir) {
  6584. // src0 and dst are same shape => same indices
  6585. const int i3 = ir/(ne2*ne1);
  6586. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6587. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6588. #ifdef GGML_USE_ACCELERATE
  6589. UNUSED(ggml_vec_add1_f32);
  6590. vDSP_vadd(
  6591. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6592. (float *) ((char *) src1->data), 0,
  6593. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6594. ne0);
  6595. #else
  6596. ggml_vec_add1_f32(ne0,
  6597. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6598. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6599. *(float *) src1->data);
  6600. #endif
  6601. }
  6602. }
  6603. static void ggml_compute_forward_add1_f16_f32(
  6604. const struct ggml_compute_params * params,
  6605. struct ggml_tensor * dst) {
  6606. const struct ggml_tensor * src0 = dst->src[0];
  6607. const struct ggml_tensor * src1 = dst->src[1];
  6608. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6609. GGML_ASSERT(ggml_is_scalar(src1));
  6610. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6611. return;
  6612. }
  6613. // scalar to add
  6614. const float v = *(float *) src1->data;
  6615. const int ith = params->ith;
  6616. const int nth = params->nth;
  6617. const int nr = ggml_nrows(src0);
  6618. GGML_TENSOR_UNARY_OP_LOCALS
  6619. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6620. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6621. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6622. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6623. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6624. // rows per thread
  6625. const int dr = (nr + nth - 1)/nth;
  6626. // row range for this thread
  6627. const int ir0 = dr*ith;
  6628. const int ir1 = MIN(ir0 + dr, nr);
  6629. for (int ir = ir0; ir < ir1; ++ir) {
  6630. // src0 and dst are same shape => same indices
  6631. const int i3 = ir/(ne2*ne1);
  6632. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6633. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6634. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6635. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6636. for (int i = 0; i < ne0; i++) {
  6637. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6638. }
  6639. }
  6640. }
  6641. static void ggml_compute_forward_add1_f16_f16(
  6642. const struct ggml_compute_params * params,
  6643. struct ggml_tensor * dst) {
  6644. const struct ggml_tensor * src0 = dst->src[0];
  6645. const struct ggml_tensor * src1 = dst->src[1];
  6646. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6647. GGML_ASSERT(ggml_is_scalar(src1));
  6648. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6649. return;
  6650. }
  6651. // scalar to add
  6652. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6653. const int ith = params->ith;
  6654. const int nth = params->nth;
  6655. const int nr = ggml_nrows(src0);
  6656. GGML_TENSOR_UNARY_OP_LOCALS
  6657. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6658. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6659. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6660. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6661. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6662. // rows per thread
  6663. const int dr = (nr + nth - 1)/nth;
  6664. // row range for this thread
  6665. const int ir0 = dr*ith;
  6666. const int ir1 = MIN(ir0 + dr, nr);
  6667. for (int ir = ir0; ir < ir1; ++ir) {
  6668. // src0 and dst are same shape => same indices
  6669. const int i3 = ir/(ne2*ne1);
  6670. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6671. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6672. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6673. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6674. for (int i = 0; i < ne0; i++) {
  6675. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6676. }
  6677. }
  6678. }
  6679. static void ggml_compute_forward_add1_q_f32(
  6680. const struct ggml_compute_params * params,
  6681. struct ggml_tensor * dst) {
  6682. const struct ggml_tensor * src0 = dst->src[0];
  6683. const struct ggml_tensor * src1 = dst->src[1];
  6684. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6685. GGML_ASSERT(ggml_is_scalar(src1));
  6686. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6687. return;
  6688. }
  6689. // scalar to add
  6690. const float v = *(float *) src1->data;
  6691. const int ith = params->ith;
  6692. const int nth = params->nth;
  6693. const int nr = ggml_nrows(src0);
  6694. GGML_TENSOR_UNARY_OP_LOCALS
  6695. const enum ggml_type type = src0->type;
  6696. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6697. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6698. // we don't support permuted src0
  6699. GGML_ASSERT(nb00 == ggml_type_size(type));
  6700. // dst cannot be transposed or permuted
  6701. GGML_ASSERT(nb0 <= nb1);
  6702. GGML_ASSERT(nb1 <= nb2);
  6703. GGML_ASSERT(nb2 <= nb3);
  6704. GGML_ASSERT(ggml_is_quantized(src0->type));
  6705. GGML_ASSERT(dst->type == src0->type);
  6706. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6707. // rows per thread
  6708. const int dr = (nr + nth - 1)/nth;
  6709. // row range for this thread
  6710. const int ir0 = dr*ith;
  6711. const int ir1 = MIN(ir0 + dr, nr);
  6712. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6713. for (int ir = ir0; ir < ir1; ++ir) {
  6714. // src0 and dst are same shape => same indices
  6715. const int i3 = ir/(ne2*ne1);
  6716. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6717. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6718. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6719. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6720. assert(ne0 % 32 == 0);
  6721. // unquantize row from src0 to temp buffer
  6722. dequantize_row_q(src0_row, wdata, ne0);
  6723. // add src1
  6724. ggml_vec_acc1_f32(ne0, wdata, v);
  6725. // quantize row to dst
  6726. quantize_row_q(wdata, dst_row, ne0);
  6727. }
  6728. }
  6729. static void ggml_compute_forward_add1(
  6730. const struct ggml_compute_params * params,
  6731. struct ggml_tensor * dst) {
  6732. const struct ggml_tensor * src0 = dst->src[0];
  6733. const struct ggml_tensor * src1 = dst->src[1];
  6734. switch (src0->type) {
  6735. case GGML_TYPE_F32:
  6736. {
  6737. ggml_compute_forward_add1_f32(params, dst);
  6738. } break;
  6739. case GGML_TYPE_F16:
  6740. {
  6741. if (src1->type == GGML_TYPE_F16) {
  6742. ggml_compute_forward_add1_f16_f16(params, dst);
  6743. }
  6744. else if (src1->type == GGML_TYPE_F32) {
  6745. ggml_compute_forward_add1_f16_f32(params, dst);
  6746. }
  6747. else {
  6748. GGML_ASSERT(false);
  6749. }
  6750. } break;
  6751. case GGML_TYPE_Q4_0:
  6752. case GGML_TYPE_Q4_1:
  6753. case GGML_TYPE_Q5_0:
  6754. case GGML_TYPE_Q5_1:
  6755. case GGML_TYPE_Q8_0:
  6756. case GGML_TYPE_Q8_1:
  6757. case GGML_TYPE_Q2_K:
  6758. case GGML_TYPE_Q3_K:
  6759. case GGML_TYPE_Q4_K:
  6760. case GGML_TYPE_Q5_K:
  6761. case GGML_TYPE_Q6_K:
  6762. case GGML_TYPE_IQ2_XXS:
  6763. case GGML_TYPE_IQ2_XS:
  6764. case GGML_TYPE_IQ3_XXS:
  6765. case GGML_TYPE_IQ1_S:
  6766. case GGML_TYPE_IQ4_NL:
  6767. case GGML_TYPE_IQ4_XS:
  6768. case GGML_TYPE_IQ3_S:
  6769. case GGML_TYPE_IQ2_S:
  6770. {
  6771. ggml_compute_forward_add1_q_f32(params, dst);
  6772. } break;
  6773. default:
  6774. {
  6775. GGML_ASSERT(false);
  6776. } break;
  6777. }
  6778. }
  6779. // ggml_compute_forward_acc
  6780. static void ggml_compute_forward_acc_f32(
  6781. const struct ggml_compute_params * params,
  6782. struct ggml_tensor * dst) {
  6783. const struct ggml_tensor * src0 = dst->src[0];
  6784. const struct ggml_tensor * src1 = dst->src[1];
  6785. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6786. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6787. // view src0 and dst with these strides and data offset inbytes during acc
  6788. // nb0 is implicitly element_size because src0 and dst are contiguous
  6789. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6790. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6791. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6792. size_t offset = ((int32_t *) dst->op_params)[3];
  6793. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6794. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6795. if (params->ith != 0) {
  6796. return;
  6797. }
  6798. // memcpy needs to be synchronized across threads to avoid race conditions.
  6799. // => do it in INIT phase
  6800. memcpy(
  6801. ((char *) dst->data),
  6802. ((char *) src0->data),
  6803. ggml_nbytes(dst));
  6804. }
  6805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6806. return;
  6807. }
  6808. const int ith = params->ith;
  6809. const int nth = params->nth;
  6810. const int nr = ggml_nrows(src1);
  6811. const int nc = src1->ne[0];
  6812. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6813. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6814. // src0 and dst as viewed during acc
  6815. const size_t nb0 = ggml_element_size(src0);
  6816. const size_t nb00 = nb0;
  6817. const size_t nb01 = nb1;
  6818. const size_t nb02 = nb2;
  6819. const size_t nb03 = nb3;
  6820. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6821. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6822. GGML_ASSERT(nb10 == sizeof(float));
  6823. // rows per thread
  6824. const int dr = (nr + nth - 1)/nth;
  6825. // row range for this thread
  6826. const int ir0 = dr*ith;
  6827. const int ir1 = MIN(ir0 + dr, nr);
  6828. for (int ir = ir0; ir < ir1; ++ir) {
  6829. // src0 and dst are viewed with shape of src1 and offset
  6830. // => same indices
  6831. const int i3 = ir/(ne12*ne11);
  6832. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6833. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6834. #ifdef GGML_USE_ACCELERATE
  6835. vDSP_vadd(
  6836. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6837. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6838. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6839. #else
  6840. ggml_vec_add_f32(nc,
  6841. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6842. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6843. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6844. #endif
  6845. }
  6846. }
  6847. static void ggml_compute_forward_acc(
  6848. const struct ggml_compute_params * params,
  6849. struct ggml_tensor * dst) {
  6850. const struct ggml_tensor * src0 = dst->src[0];
  6851. switch (src0->type) {
  6852. case GGML_TYPE_F32:
  6853. {
  6854. ggml_compute_forward_acc_f32(params, dst);
  6855. } break;
  6856. case GGML_TYPE_F16:
  6857. case GGML_TYPE_Q4_0:
  6858. case GGML_TYPE_Q4_1:
  6859. case GGML_TYPE_Q5_0:
  6860. case GGML_TYPE_Q5_1:
  6861. case GGML_TYPE_Q8_0:
  6862. case GGML_TYPE_Q8_1:
  6863. case GGML_TYPE_Q2_K:
  6864. case GGML_TYPE_Q3_K:
  6865. case GGML_TYPE_Q4_K:
  6866. case GGML_TYPE_Q5_K:
  6867. case GGML_TYPE_Q6_K:
  6868. case GGML_TYPE_IQ2_XXS:
  6869. case GGML_TYPE_IQ2_XS:
  6870. case GGML_TYPE_IQ3_XXS:
  6871. case GGML_TYPE_IQ1_S:
  6872. case GGML_TYPE_IQ4_NL:
  6873. case GGML_TYPE_IQ4_XS:
  6874. case GGML_TYPE_IQ3_S:
  6875. case GGML_TYPE_IQ2_S:
  6876. default:
  6877. {
  6878. GGML_ASSERT(false);
  6879. } break;
  6880. }
  6881. }
  6882. // ggml_compute_forward_sub
  6883. static void ggml_compute_forward_sub_f32(
  6884. const struct ggml_compute_params * params,
  6885. struct ggml_tensor * dst) {
  6886. const struct ggml_tensor * src0 = dst->src[0];
  6887. const struct ggml_tensor * src1 = dst->src[1];
  6888. assert(params->ith == 0);
  6889. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6890. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6891. return;
  6892. }
  6893. const int nr = ggml_nrows(src0);
  6894. GGML_TENSOR_BINARY_OP_LOCALS
  6895. GGML_ASSERT( nb0 == sizeof(float));
  6896. GGML_ASSERT(nb00 == sizeof(float));
  6897. if (nb10 == sizeof(float)) {
  6898. for (int ir = 0; ir < nr; ++ir) {
  6899. // src0, src1 and dst are same shape => same indices
  6900. const int i3 = ir/(ne2*ne1);
  6901. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6902. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6903. #ifdef GGML_USE_ACCELERATE
  6904. vDSP_vsub(
  6905. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6906. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6907. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6908. ne0);
  6909. #else
  6910. ggml_vec_sub_f32(ne0,
  6911. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6912. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6913. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6914. #endif
  6915. // }
  6916. // }
  6917. }
  6918. } else {
  6919. // src1 is not contiguous
  6920. for (int ir = 0; ir < nr; ++ir) {
  6921. // src0, src1 and dst are same shape => same indices
  6922. const int i3 = ir/(ne2*ne1);
  6923. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6924. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6925. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6926. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6927. for (int i0 = 0; i0 < ne0; i0++) {
  6928. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6929. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6930. }
  6931. }
  6932. }
  6933. }
  6934. static void ggml_compute_forward_sub(
  6935. const struct ggml_compute_params * params,
  6936. struct ggml_tensor * dst) {
  6937. const struct ggml_tensor * src0 = dst->src[0];
  6938. switch (src0->type) {
  6939. case GGML_TYPE_F32:
  6940. {
  6941. ggml_compute_forward_sub_f32(params, dst);
  6942. } break;
  6943. default:
  6944. {
  6945. GGML_ASSERT(false);
  6946. } break;
  6947. }
  6948. }
  6949. // ggml_compute_forward_mul
  6950. static void ggml_compute_forward_mul_f32(
  6951. const struct ggml_compute_params * params,
  6952. struct ggml_tensor * dst) {
  6953. const struct ggml_tensor * src0 = dst->src[0];
  6954. const struct ggml_tensor * src1 = dst->src[1];
  6955. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6956. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6957. return;
  6958. }
  6959. const int ith = params->ith;
  6960. const int nth = params->nth;
  6961. #if defined(GGML_USE_CLBLAST)
  6962. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6963. // TODO: OpenCL kernel support full broadcast
  6964. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6965. if (ith == 0) {
  6966. ggml_cl_mul(src0, src1, dst);
  6967. }
  6968. return;
  6969. }
  6970. #endif
  6971. const int64_t nr = ggml_nrows(src0);
  6972. GGML_TENSOR_BINARY_OP_LOCALS
  6973. GGML_ASSERT( nb0 == sizeof(float));
  6974. GGML_ASSERT(nb00 == sizeof(float));
  6975. if (nb10 == sizeof(float)) {
  6976. for (int64_t ir = ith; ir < nr; ir += nth) {
  6977. // src0 and dst are same shape => same indices
  6978. const int64_t i03 = ir/(ne02*ne01);
  6979. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6980. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6981. const int64_t i13 = i03 % ne13;
  6982. const int64_t i12 = i02 % ne12;
  6983. const int64_t i11 = i01 % ne11;
  6984. const int64_t nr0 = ne00 / ne10;
  6985. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6986. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6987. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6988. for (int64_t r = 0 ; r < nr0; ++r) {
  6989. #ifdef GGML_USE_ACCELERATE
  6990. UNUSED(ggml_vec_mul_f32);
  6991. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6992. #else
  6993. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6994. #endif
  6995. }
  6996. }
  6997. } else {
  6998. // src1 is not contiguous
  6999. for (int64_t ir = ith; ir < nr; ir += nth) {
  7000. // src0 and dst are same shape => same indices
  7001. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7002. const int64_t i03 = ir/(ne02*ne01);
  7003. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7004. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7005. const int64_t i13 = i03 % ne13;
  7006. const int64_t i12 = i02 % ne12;
  7007. const int64_t i11 = i01 % ne11;
  7008. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7009. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7010. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7011. const int64_t i10 = i0 % ne10;
  7012. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7013. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7014. }
  7015. }
  7016. }
  7017. }
  7018. static void ggml_compute_forward_mul(
  7019. const struct ggml_compute_params * params,
  7020. struct ggml_tensor * dst) {
  7021. const struct ggml_tensor * src0 = dst->src[0];
  7022. const struct ggml_tensor * src1 = dst->src[1];
  7023. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7024. switch (src0->type) {
  7025. case GGML_TYPE_F32:
  7026. {
  7027. ggml_compute_forward_mul_f32(params, dst);
  7028. } break;
  7029. default:
  7030. {
  7031. GGML_ASSERT(false);
  7032. } break;
  7033. }
  7034. }
  7035. // ggml_compute_forward_div
  7036. static void ggml_compute_forward_div_f32(
  7037. const struct ggml_compute_params * params,
  7038. struct ggml_tensor * dst) {
  7039. const struct ggml_tensor * src0 = dst->src[0];
  7040. const struct ggml_tensor * src1 = dst->src[1];
  7041. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7042. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7043. return;
  7044. }
  7045. const int ith = params->ith;
  7046. const int nth = params->nth;
  7047. const int64_t nr = ggml_nrows(src0);
  7048. GGML_TENSOR_BINARY_OP_LOCALS
  7049. GGML_ASSERT( nb0 == sizeof(float));
  7050. GGML_ASSERT(nb00 == sizeof(float));
  7051. if (nb10 == sizeof(float)) {
  7052. for (int64_t ir = ith; ir < nr; ir += nth) {
  7053. // src0 and dst are same shape => same indices
  7054. const int64_t i03 = ir/(ne02*ne01);
  7055. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7056. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7057. const int64_t i13 = i03 % ne13;
  7058. const int64_t i12 = i02 % ne12;
  7059. const int64_t i11 = i01 % ne11;
  7060. const int64_t nr0 = ne00 / ne10;
  7061. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7062. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7063. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7064. for (int64_t r = 0; r < nr0; ++r) {
  7065. #ifdef GGML_USE_ACCELERATE
  7066. UNUSED(ggml_vec_div_f32);
  7067. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7068. #else
  7069. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7070. #endif
  7071. }
  7072. }
  7073. } else {
  7074. // src1 is not contiguous
  7075. for (int64_t ir = ith; ir < nr; ir += nth) {
  7076. // src0 and dst are same shape => same indices
  7077. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7078. const int64_t i03 = ir/(ne02*ne01);
  7079. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7080. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7081. const int64_t i13 = i03 % ne13;
  7082. const int64_t i12 = i02 % ne12;
  7083. const int64_t i11 = i01 % ne11;
  7084. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7085. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7086. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7087. const int64_t i10 = i0 % ne10;
  7088. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7089. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7090. }
  7091. }
  7092. }
  7093. }
  7094. static void ggml_compute_forward_div(
  7095. const struct ggml_compute_params * params,
  7096. struct ggml_tensor * dst) {
  7097. const struct ggml_tensor * src0 = dst->src[0];
  7098. switch (src0->type) {
  7099. case GGML_TYPE_F32:
  7100. {
  7101. ggml_compute_forward_div_f32(params, dst);
  7102. } break;
  7103. default:
  7104. {
  7105. GGML_ASSERT(false);
  7106. } break;
  7107. }
  7108. }
  7109. // ggml_compute_forward_sqr
  7110. static void ggml_compute_forward_sqr_f32(
  7111. const struct ggml_compute_params * params,
  7112. struct ggml_tensor * dst) {
  7113. const struct ggml_tensor * src0 = dst->src[0];
  7114. assert(params->ith == 0);
  7115. assert(ggml_are_same_shape(src0, dst));
  7116. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7117. return;
  7118. }
  7119. const int n = ggml_nrows(src0);
  7120. const int nc = src0->ne[0];
  7121. assert( dst->nb[0] == sizeof(float));
  7122. assert(src0->nb[0] == sizeof(float));
  7123. for (int i = 0; i < n; i++) {
  7124. ggml_vec_sqr_f32(nc,
  7125. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7126. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7127. }
  7128. }
  7129. static void ggml_compute_forward_sqr(
  7130. const struct ggml_compute_params * params,
  7131. struct ggml_tensor * dst) {
  7132. const struct ggml_tensor * src0 = dst->src[0];
  7133. switch (src0->type) {
  7134. case GGML_TYPE_F32:
  7135. {
  7136. ggml_compute_forward_sqr_f32(params, dst);
  7137. } break;
  7138. default:
  7139. {
  7140. GGML_ASSERT(false);
  7141. } break;
  7142. }
  7143. }
  7144. // ggml_compute_forward_sqrt
  7145. static void ggml_compute_forward_sqrt_f32(
  7146. const struct ggml_compute_params * params,
  7147. struct ggml_tensor * dst) {
  7148. const struct ggml_tensor * src0 = dst->src[0];
  7149. assert(params->ith == 0);
  7150. assert(ggml_are_same_shape(src0, dst));
  7151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7152. return;
  7153. }
  7154. const int n = ggml_nrows(src0);
  7155. const int nc = src0->ne[0];
  7156. assert( dst->nb[0] == sizeof(float));
  7157. assert(src0->nb[0] == sizeof(float));
  7158. for (int i = 0; i < n; i++) {
  7159. ggml_vec_sqrt_f32(nc,
  7160. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7161. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7162. }
  7163. }
  7164. static void ggml_compute_forward_sqrt(
  7165. const struct ggml_compute_params * params,
  7166. struct ggml_tensor * dst) {
  7167. const struct ggml_tensor * src0 = dst->src[0];
  7168. switch (src0->type) {
  7169. case GGML_TYPE_F32:
  7170. {
  7171. ggml_compute_forward_sqrt_f32(params, dst);
  7172. } break;
  7173. default:
  7174. {
  7175. GGML_ASSERT(false);
  7176. } break;
  7177. }
  7178. }
  7179. // ggml_compute_forward_log
  7180. static void ggml_compute_forward_log_f32(
  7181. const struct ggml_compute_params * params,
  7182. struct ggml_tensor * dst) {
  7183. const struct ggml_tensor * src0 = dst->src[0];
  7184. GGML_ASSERT(params->ith == 0);
  7185. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7186. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7187. return;
  7188. }
  7189. const int n = ggml_nrows(src0);
  7190. const int nc = src0->ne[0];
  7191. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7192. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7193. for (int i = 0; i < n; i++) {
  7194. ggml_vec_log_f32(nc,
  7195. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7196. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7197. }
  7198. }
  7199. static void ggml_compute_forward_log(
  7200. const struct ggml_compute_params * params,
  7201. struct ggml_tensor * dst) {
  7202. const struct ggml_tensor * src0 = dst->src[0];
  7203. switch (src0->type) {
  7204. case GGML_TYPE_F32:
  7205. {
  7206. ggml_compute_forward_log_f32(params, dst);
  7207. } break;
  7208. default:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. // ggml_compute_forward_sum
  7215. static void ggml_compute_forward_sum_f32(
  7216. const struct ggml_compute_params * params,
  7217. struct ggml_tensor * dst) {
  7218. const struct ggml_tensor * src0 = dst->src[0];
  7219. assert(params->ith == 0);
  7220. assert(ggml_is_scalar(dst));
  7221. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7222. return;
  7223. }
  7224. assert(ggml_is_scalar(dst));
  7225. assert(src0->nb[0] == sizeof(float));
  7226. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7227. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7228. ggml_float sum = 0;
  7229. ggml_float row_sum = 0;
  7230. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7231. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7232. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7233. ggml_vec_sum_f32_ggf(ne00,
  7234. &row_sum,
  7235. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7236. sum += row_sum;
  7237. }
  7238. }
  7239. }
  7240. ((float *) dst->data)[0] = sum;
  7241. }
  7242. static void ggml_compute_forward_sum_f16(
  7243. const struct ggml_compute_params * params,
  7244. struct ggml_tensor * dst) {
  7245. const struct ggml_tensor * src0 = dst->src[0];
  7246. assert(params->ith == 0);
  7247. assert(ggml_is_scalar(dst));
  7248. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7249. return;
  7250. }
  7251. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7252. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7253. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7254. float sum = 0;
  7255. float row_sum = 0;
  7256. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7257. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7258. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7259. ggml_vec_sum_f16_ggf(ne00,
  7260. &row_sum,
  7261. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7262. sum += row_sum;
  7263. }
  7264. }
  7265. }
  7266. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7267. }
  7268. static void ggml_compute_forward_sum(
  7269. const struct ggml_compute_params * params,
  7270. struct ggml_tensor * dst) {
  7271. const struct ggml_tensor * src0 = dst->src[0];
  7272. switch (src0->type) {
  7273. case GGML_TYPE_F32:
  7274. {
  7275. ggml_compute_forward_sum_f32(params, dst);
  7276. } break;
  7277. case GGML_TYPE_F16:
  7278. {
  7279. ggml_compute_forward_sum_f16(params, dst);
  7280. } break;
  7281. default:
  7282. {
  7283. GGML_ASSERT(false);
  7284. } break;
  7285. }
  7286. }
  7287. // ggml_compute_forward_sum_rows
  7288. static void ggml_compute_forward_sum_rows_f32(
  7289. const struct ggml_compute_params * params,
  7290. struct ggml_tensor * dst) {
  7291. const struct ggml_tensor * src0 = dst->src[0];
  7292. GGML_ASSERT(params->ith == 0);
  7293. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7294. return;
  7295. }
  7296. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7297. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7298. GGML_TENSOR_UNARY_OP_LOCALS
  7299. GGML_ASSERT(ne0 == 1);
  7300. GGML_ASSERT(ne1 == ne01);
  7301. GGML_ASSERT(ne2 == ne02);
  7302. GGML_ASSERT(ne3 == ne03);
  7303. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7304. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7305. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7306. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7307. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7308. float row_sum = 0;
  7309. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7310. dst_row[0] = row_sum;
  7311. }
  7312. }
  7313. }
  7314. }
  7315. static void ggml_compute_forward_sum_rows(
  7316. const struct ggml_compute_params * params,
  7317. struct ggml_tensor * dst) {
  7318. const struct ggml_tensor * src0 = dst->src[0];
  7319. switch (src0->type) {
  7320. case GGML_TYPE_F32:
  7321. {
  7322. ggml_compute_forward_sum_rows_f32(params, dst);
  7323. } break;
  7324. default:
  7325. {
  7326. GGML_ASSERT(false);
  7327. } break;
  7328. }
  7329. }
  7330. // ggml_compute_forward_mean
  7331. static void ggml_compute_forward_mean_f32(
  7332. const struct ggml_compute_params * params,
  7333. struct ggml_tensor * dst) {
  7334. const struct ggml_tensor * src0 = dst->src[0];
  7335. assert(params->ith == 0);
  7336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7337. return;
  7338. }
  7339. assert(src0->nb[0] == sizeof(float));
  7340. GGML_TENSOR_UNARY_OP_LOCALS
  7341. assert(ne0 == 1);
  7342. assert(ne1 == ne01);
  7343. assert(ne2 == ne02);
  7344. assert(ne3 == ne03);
  7345. UNUSED(ne0);
  7346. UNUSED(ne1);
  7347. UNUSED(ne2);
  7348. UNUSED(ne3);
  7349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7351. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7352. ggml_vec_sum_f32(ne00,
  7353. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7354. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7355. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7356. }
  7357. }
  7358. }
  7359. }
  7360. static void ggml_compute_forward_mean(
  7361. const struct ggml_compute_params * params,
  7362. struct ggml_tensor * dst) {
  7363. const struct ggml_tensor * src0 = dst->src[0];
  7364. switch (src0->type) {
  7365. case GGML_TYPE_F32:
  7366. {
  7367. ggml_compute_forward_mean_f32(params, dst);
  7368. } break;
  7369. default:
  7370. {
  7371. GGML_ASSERT(false);
  7372. } break;
  7373. }
  7374. }
  7375. // ggml_compute_forward_argmax
  7376. static void ggml_compute_forward_argmax_f32(
  7377. const struct ggml_compute_params * params,
  7378. struct ggml_tensor * dst) {
  7379. const struct ggml_tensor * src0 = dst->src[0];
  7380. assert(params->ith == 0);
  7381. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7382. return;
  7383. }
  7384. assert(src0->nb[0] == sizeof(float));
  7385. assert(dst->nb[0] == sizeof(float));
  7386. const int64_t ne00 = src0->ne[0];
  7387. const int64_t ne01 = src0->ne[1];
  7388. const size_t nb01 = src0->nb[1];
  7389. const size_t nb0 = dst->nb[0];
  7390. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7391. float * src = (float *) ((char *) src0->data + i1*nb01);
  7392. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7393. int v = 0;
  7394. ggml_vec_argmax_f32(ne00, &v, src);
  7395. dst_[0] = v;
  7396. }
  7397. }
  7398. static void ggml_compute_forward_argmax(
  7399. const struct ggml_compute_params * params,
  7400. struct ggml_tensor * dst) {
  7401. const struct ggml_tensor * src0 = dst->src[0];
  7402. switch (src0->type) {
  7403. case GGML_TYPE_F32:
  7404. {
  7405. ggml_compute_forward_argmax_f32(params, dst);
  7406. } break;
  7407. default:
  7408. {
  7409. GGML_ASSERT(false);
  7410. } break;
  7411. }
  7412. }
  7413. // ggml_compute_forward_repeat
  7414. static void ggml_compute_forward_repeat_f32(
  7415. const struct ggml_compute_params * params,
  7416. struct ggml_tensor * dst) {
  7417. const struct ggml_tensor * src0 = dst->src[0];
  7418. GGML_ASSERT(params->ith == 0);
  7419. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7420. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7421. return;
  7422. }
  7423. GGML_TENSOR_UNARY_OP_LOCALS
  7424. // guaranteed to be an integer due to the check in ggml_can_repeat
  7425. const int nr0 = (int)(ne0/ne00);
  7426. const int nr1 = (int)(ne1/ne01);
  7427. const int nr2 = (int)(ne2/ne02);
  7428. const int nr3 = (int)(ne3/ne03);
  7429. // TODO: support for transposed / permuted tensors
  7430. GGML_ASSERT(nb0 == sizeof(float));
  7431. GGML_ASSERT(nb00 == sizeof(float));
  7432. // TODO: maybe this is not optimal?
  7433. for (int i3 = 0; i3 < nr3; i3++) {
  7434. for (int k3 = 0; k3 < ne03; k3++) {
  7435. for (int i2 = 0; i2 < nr2; i2++) {
  7436. for (int k2 = 0; k2 < ne02; k2++) {
  7437. for (int i1 = 0; i1 < nr1; i1++) {
  7438. for (int k1 = 0; k1 < ne01; k1++) {
  7439. for (int i0 = 0; i0 < nr0; i0++) {
  7440. ggml_vec_cpy_f32(ne00,
  7441. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7442. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7443. }
  7444. }
  7445. }
  7446. }
  7447. }
  7448. }
  7449. }
  7450. }
  7451. static void ggml_compute_forward_repeat_f16(
  7452. const struct ggml_compute_params * params,
  7453. struct ggml_tensor * dst) {
  7454. const struct ggml_tensor * src0 = dst->src[0];
  7455. GGML_ASSERT(params->ith == 0);
  7456. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7457. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7458. return;
  7459. }
  7460. GGML_TENSOR_UNARY_OP_LOCALS
  7461. // guaranteed to be an integer due to the check in ggml_can_repeat
  7462. const int nr0 = (int)(ne0/ne00);
  7463. const int nr1 = (int)(ne1/ne01);
  7464. const int nr2 = (int)(ne2/ne02);
  7465. const int nr3 = (int)(ne3/ne03);
  7466. // TODO: support for transposed / permuted tensors
  7467. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7468. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7469. // TODO: maybe this is not optimal?
  7470. for (int i3 = 0; i3 < nr3; i3++) {
  7471. for (int k3 = 0; k3 < ne03; k3++) {
  7472. for (int i2 = 0; i2 < nr2; i2++) {
  7473. for (int k2 = 0; k2 < ne02; k2++) {
  7474. for (int i1 = 0; i1 < nr1; i1++) {
  7475. for (int k1 = 0; k1 < ne01; k1++) {
  7476. for (int i0 = 0; i0 < nr0; i0++) {
  7477. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7478. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7479. // ggml_vec_cpy_f16(ne00, y, x)
  7480. for (int i = 0; i < ne00; ++i) {
  7481. y[i] = x[i];
  7482. }
  7483. }
  7484. }
  7485. }
  7486. }
  7487. }
  7488. }
  7489. }
  7490. }
  7491. static void ggml_compute_forward_repeat(
  7492. const struct ggml_compute_params * params,
  7493. struct ggml_tensor * dst) {
  7494. const struct ggml_tensor * src0 = dst->src[0];
  7495. switch (src0->type) {
  7496. case GGML_TYPE_F16:
  7497. case GGML_TYPE_I16:
  7498. {
  7499. ggml_compute_forward_repeat_f16(params, dst);
  7500. } break;
  7501. case GGML_TYPE_F32:
  7502. case GGML_TYPE_I32:
  7503. {
  7504. ggml_compute_forward_repeat_f32(params, dst);
  7505. } break;
  7506. default:
  7507. {
  7508. GGML_ASSERT(false);
  7509. } break;
  7510. }
  7511. }
  7512. // ggml_compute_forward_repeat_back
  7513. static void ggml_compute_forward_repeat_back_f32(
  7514. const struct ggml_compute_params * params,
  7515. struct ggml_tensor * dst) {
  7516. const struct ggml_tensor * src0 = dst->src[0];
  7517. GGML_ASSERT(params->ith == 0);
  7518. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7519. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7520. return;
  7521. }
  7522. GGML_TENSOR_UNARY_OP_LOCALS
  7523. // guaranteed to be an integer due to the check in ggml_can_repeat
  7524. const int nr0 = (int)(ne00/ne0);
  7525. const int nr1 = (int)(ne01/ne1);
  7526. const int nr2 = (int)(ne02/ne2);
  7527. const int nr3 = (int)(ne03/ne3);
  7528. // TODO: support for transposed / permuted tensors
  7529. GGML_ASSERT(nb0 == sizeof(float));
  7530. GGML_ASSERT(nb00 == sizeof(float));
  7531. if (ggml_is_contiguous(dst)) {
  7532. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7533. } else {
  7534. for (int k3 = 0; k3 < ne3; k3++) {
  7535. for (int k2 = 0; k2 < ne2; k2++) {
  7536. for (int k1 = 0; k1 < ne1; k1++) {
  7537. ggml_vec_set_f32(ne0,
  7538. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7539. 0);
  7540. }
  7541. }
  7542. }
  7543. }
  7544. // TODO: maybe this is not optimal?
  7545. for (int i3 = 0; i3 < nr3; i3++) {
  7546. for (int k3 = 0; k3 < ne3; k3++) {
  7547. for (int i2 = 0; i2 < nr2; i2++) {
  7548. for (int k2 = 0; k2 < ne2; k2++) {
  7549. for (int i1 = 0; i1 < nr1; i1++) {
  7550. for (int k1 = 0; k1 < ne1; k1++) {
  7551. for (int i0 = 0; i0 < nr0; i0++) {
  7552. ggml_vec_acc_f32(ne0,
  7553. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7554. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7555. }
  7556. }
  7557. }
  7558. }
  7559. }
  7560. }
  7561. }
  7562. }
  7563. static void ggml_compute_forward_repeat_back(
  7564. const struct ggml_compute_params * params,
  7565. struct ggml_tensor * dst) {
  7566. const struct ggml_tensor * src0 = dst->src[0];
  7567. switch (src0->type) {
  7568. case GGML_TYPE_F32:
  7569. {
  7570. ggml_compute_forward_repeat_back_f32(params, dst);
  7571. } break;
  7572. default:
  7573. {
  7574. GGML_ASSERT(false);
  7575. } break;
  7576. }
  7577. }
  7578. // ggml_compute_forward_concat
  7579. static void ggml_compute_forward_concat_f32(
  7580. const struct ggml_compute_params * params,
  7581. struct ggml_tensor * dst) {
  7582. const struct ggml_tensor * src0 = dst->src[0];
  7583. const struct ggml_tensor * src1 = dst->src[1];
  7584. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7585. return;
  7586. }
  7587. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7588. const int ith = params->ith;
  7589. const int nth = params->nth;
  7590. GGML_TENSOR_BINARY_OP_LOCALS
  7591. // TODO: support for transposed / permuted tensors
  7592. GGML_ASSERT(nb0 == sizeof(float));
  7593. GGML_ASSERT(nb00 == sizeof(float));
  7594. GGML_ASSERT(nb10 == sizeof(float));
  7595. for (int i3 = 0; i3 < ne3; i3++) {
  7596. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7597. if (i2 < ne02) { // src0
  7598. for (int i1 = 0; i1 < ne1; i1++) {
  7599. for (int i0 = 0; i0 < ne0; i0++) {
  7600. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7601. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7602. *y = *x;
  7603. }
  7604. }
  7605. } // src1
  7606. else {
  7607. for (int i1 = 0; i1 < ne1; i1++) {
  7608. for (int i0 = 0; i0 < ne0; i0++) {
  7609. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7610. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7611. *y = *x;
  7612. }
  7613. }
  7614. }
  7615. }
  7616. }
  7617. }
  7618. static void ggml_compute_forward_concat(
  7619. const struct ggml_compute_params* params,
  7620. struct ggml_tensor* dst) {
  7621. const struct ggml_tensor * src0 = dst->src[0];
  7622. switch (src0->type) {
  7623. case GGML_TYPE_F32:
  7624. case GGML_TYPE_I32:
  7625. {
  7626. ggml_compute_forward_concat_f32(params, dst);
  7627. } break;
  7628. default:
  7629. {
  7630. GGML_ASSERT(false);
  7631. } break;
  7632. }
  7633. }
  7634. // ggml_compute_forward_abs
  7635. static void ggml_compute_forward_abs_f32(
  7636. const struct ggml_compute_params * params,
  7637. struct ggml_tensor * dst) {
  7638. const struct ggml_tensor * src0 = dst->src[0];
  7639. assert(params->ith == 0);
  7640. assert(ggml_are_same_shape(src0, dst));
  7641. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7642. return;
  7643. }
  7644. const int n = ggml_nrows(src0);
  7645. const int nc = src0->ne[0];
  7646. assert(dst->nb[0] == sizeof(float));
  7647. assert(src0->nb[0] == sizeof(float));
  7648. for (int i = 0; i < n; i++) {
  7649. ggml_vec_abs_f32(nc,
  7650. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7651. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7652. }
  7653. }
  7654. static void ggml_compute_forward_abs(
  7655. const struct ggml_compute_params * params,
  7656. struct ggml_tensor * dst) {
  7657. const struct ggml_tensor * src0 = dst->src[0];
  7658. switch (src0->type) {
  7659. case GGML_TYPE_F32:
  7660. {
  7661. ggml_compute_forward_abs_f32(params, dst);
  7662. } break;
  7663. default:
  7664. {
  7665. GGML_ASSERT(false);
  7666. } break;
  7667. }
  7668. }
  7669. // ggml_compute_forward_sgn
  7670. static void ggml_compute_forward_sgn_f32(
  7671. const struct ggml_compute_params * params,
  7672. struct ggml_tensor * dst) {
  7673. const struct ggml_tensor * src0 = dst->src[0];
  7674. assert(params->ith == 0);
  7675. assert(ggml_are_same_shape(src0, dst));
  7676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7677. return;
  7678. }
  7679. const int n = ggml_nrows(src0);
  7680. const int nc = src0->ne[0];
  7681. assert(dst->nb[0] == sizeof(float));
  7682. assert(src0->nb[0] == sizeof(float));
  7683. for (int i = 0; i < n; i++) {
  7684. ggml_vec_sgn_f32(nc,
  7685. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7686. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7687. }
  7688. }
  7689. static void ggml_compute_forward_sgn(
  7690. const struct ggml_compute_params * params,
  7691. struct ggml_tensor * dst) {
  7692. const struct ggml_tensor * src0 = dst->src[0];
  7693. switch (src0->type) {
  7694. case GGML_TYPE_F32:
  7695. {
  7696. ggml_compute_forward_sgn_f32(params, dst);
  7697. } break;
  7698. default:
  7699. {
  7700. GGML_ASSERT(false);
  7701. } break;
  7702. }
  7703. }
  7704. // ggml_compute_forward_neg
  7705. static void ggml_compute_forward_neg_f32(
  7706. const struct ggml_compute_params * params,
  7707. struct ggml_tensor * dst) {
  7708. const struct ggml_tensor * src0 = dst->src[0];
  7709. assert(params->ith == 0);
  7710. assert(ggml_are_same_shape(src0, dst));
  7711. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7712. return;
  7713. }
  7714. const int n = ggml_nrows(src0);
  7715. const int nc = src0->ne[0];
  7716. assert(dst->nb[0] == sizeof(float));
  7717. assert(src0->nb[0] == sizeof(float));
  7718. for (int i = 0; i < n; i++) {
  7719. ggml_vec_neg_f32(nc,
  7720. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7721. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7722. }
  7723. }
  7724. static void ggml_compute_forward_neg(
  7725. const struct ggml_compute_params * params,
  7726. struct ggml_tensor * dst) {
  7727. const struct ggml_tensor * src0 = dst->src[0];
  7728. switch (src0->type) {
  7729. case GGML_TYPE_F32:
  7730. {
  7731. ggml_compute_forward_neg_f32(params, dst);
  7732. } break;
  7733. default:
  7734. {
  7735. GGML_ASSERT(false);
  7736. } break;
  7737. }
  7738. }
  7739. // ggml_compute_forward_step
  7740. static void ggml_compute_forward_step_f32(
  7741. const struct ggml_compute_params * params,
  7742. struct ggml_tensor * dst) {
  7743. const struct ggml_tensor * src0 = dst->src[0];
  7744. assert(params->ith == 0);
  7745. assert(ggml_are_same_shape(src0, dst));
  7746. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7747. return;
  7748. }
  7749. const int n = ggml_nrows(src0);
  7750. const int nc = src0->ne[0];
  7751. assert(dst->nb[0] == sizeof(float));
  7752. assert(src0->nb[0] == sizeof(float));
  7753. for (int i = 0; i < n; i++) {
  7754. ggml_vec_step_f32(nc,
  7755. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7756. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7757. }
  7758. }
  7759. static void ggml_compute_forward_step(
  7760. const struct ggml_compute_params * params,
  7761. struct ggml_tensor * dst) {
  7762. const struct ggml_tensor * src0 = dst->src[0];
  7763. switch (src0->type) {
  7764. case GGML_TYPE_F32:
  7765. {
  7766. ggml_compute_forward_step_f32(params, dst);
  7767. } break;
  7768. default:
  7769. {
  7770. GGML_ASSERT(false);
  7771. } break;
  7772. }
  7773. }
  7774. // ggml_compute_forward_tanh
  7775. static void ggml_compute_forward_tanh_f32(
  7776. const struct ggml_compute_params * params,
  7777. struct ggml_tensor * dst) {
  7778. const struct ggml_tensor * src0 = dst->src[0];
  7779. assert(params->ith == 0);
  7780. assert(ggml_are_same_shape(src0, dst));
  7781. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7782. return;
  7783. }
  7784. const int n = ggml_nrows(src0);
  7785. const int nc = src0->ne[0];
  7786. assert(dst->nb[0] == sizeof(float));
  7787. assert(src0->nb[0] == sizeof(float));
  7788. for (int i = 0; i < n; i++) {
  7789. ggml_vec_tanh_f32(nc,
  7790. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7791. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7792. }
  7793. }
  7794. static void ggml_compute_forward_tanh(
  7795. const struct ggml_compute_params * params,
  7796. struct ggml_tensor * dst) {
  7797. const struct ggml_tensor * src0 = dst->src[0];
  7798. switch (src0->type) {
  7799. case GGML_TYPE_F32:
  7800. {
  7801. ggml_compute_forward_tanh_f32(params, dst);
  7802. } break;
  7803. default:
  7804. {
  7805. GGML_ASSERT(false);
  7806. } break;
  7807. }
  7808. }
  7809. // ggml_compute_forward_elu
  7810. static void ggml_compute_forward_elu_f32(
  7811. const struct ggml_compute_params * params,
  7812. struct ggml_tensor * dst) {
  7813. const struct ggml_tensor * src0 = dst->src[0];
  7814. assert(params->ith == 0);
  7815. assert(ggml_are_same_shape(src0, dst));
  7816. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7817. return;
  7818. }
  7819. const int n = ggml_nrows(src0);
  7820. const int nc = src0->ne[0];
  7821. assert(dst->nb[0] == sizeof(float));
  7822. assert(src0->nb[0] == sizeof(float));
  7823. for (int i = 0; i < n; i++) {
  7824. ggml_vec_elu_f32(nc,
  7825. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7826. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7827. }
  7828. }
  7829. static void ggml_compute_forward_elu(
  7830. const struct ggml_compute_params * params,
  7831. struct ggml_tensor * dst) {
  7832. const struct ggml_tensor * src0 = dst->src[0];
  7833. switch (src0->type) {
  7834. case GGML_TYPE_F32:
  7835. {
  7836. ggml_compute_forward_elu_f32(params, dst);
  7837. } break;
  7838. default:
  7839. {
  7840. GGML_ASSERT(false);
  7841. } break;
  7842. }
  7843. }
  7844. // ggml_compute_forward_relu
  7845. static void ggml_compute_forward_relu_f32(
  7846. const struct ggml_compute_params * params,
  7847. struct ggml_tensor * dst) {
  7848. const struct ggml_tensor * src0 = dst->src[0];
  7849. assert(params->ith == 0);
  7850. assert(ggml_are_same_shape(src0, dst));
  7851. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7852. return;
  7853. }
  7854. const int n = ggml_nrows(src0);
  7855. const int nc = src0->ne[0];
  7856. assert(dst->nb[0] == sizeof(float));
  7857. assert(src0->nb[0] == sizeof(float));
  7858. for (int i = 0; i < n; i++) {
  7859. ggml_vec_relu_f32(nc,
  7860. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7861. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7862. }
  7863. }
  7864. static void ggml_compute_forward_relu(
  7865. const struct ggml_compute_params * params,
  7866. struct ggml_tensor * dst) {
  7867. const struct ggml_tensor * src0 = dst->src[0];
  7868. switch (src0->type) {
  7869. case GGML_TYPE_F32:
  7870. {
  7871. ggml_compute_forward_relu_f32(params, dst);
  7872. } break;
  7873. default:
  7874. {
  7875. GGML_ASSERT(false);
  7876. } break;
  7877. }
  7878. }
  7879. // ggml_compute_forward_gelu
  7880. static void ggml_compute_forward_gelu_f32(
  7881. const struct ggml_compute_params * params,
  7882. struct ggml_tensor * dst) {
  7883. const struct ggml_tensor * src0 = dst->src[0];
  7884. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7885. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7886. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7887. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7888. return;
  7889. }
  7890. const int ith = params->ith;
  7891. const int nth = params->nth;
  7892. const int nc = src0->ne[0];
  7893. const int nr = ggml_nrows(src0);
  7894. // rows per thread
  7895. const int dr = (nr + nth - 1)/nth;
  7896. // row range for this thread
  7897. const int ir0 = dr*ith;
  7898. const int ir1 = MIN(ir0 + dr, nr);
  7899. for (int i1 = ir0; i1 < ir1; i1++) {
  7900. ggml_vec_gelu_f32(nc,
  7901. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7902. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7903. #ifndef NDEBUG
  7904. for (int k = 0; k < nc; k++) {
  7905. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7906. UNUSED(x);
  7907. assert(!isnan(x));
  7908. assert(!isinf(x));
  7909. }
  7910. #endif
  7911. }
  7912. }
  7913. static void ggml_compute_forward_gelu(
  7914. const struct ggml_compute_params * params,
  7915. struct ggml_tensor * dst) {
  7916. const struct ggml_tensor * src0 = dst->src[0];
  7917. switch (src0->type) {
  7918. case GGML_TYPE_F32:
  7919. {
  7920. ggml_compute_forward_gelu_f32(params, dst);
  7921. } break;
  7922. default:
  7923. {
  7924. GGML_ASSERT(false);
  7925. } break;
  7926. }
  7927. }
  7928. // ggml_compute_forward_gelu_quick
  7929. static void ggml_compute_forward_gelu_quick_f32(
  7930. const struct ggml_compute_params * params,
  7931. struct ggml_tensor * dst) {
  7932. const struct ggml_tensor * src0 = dst->src[0];
  7933. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7934. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7935. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7936. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7937. return;
  7938. }
  7939. const int ith = params->ith;
  7940. const int nth = params->nth;
  7941. const int nc = src0->ne[0];
  7942. const int nr = ggml_nrows(src0);
  7943. // rows per thread
  7944. const int dr = (nr + nth - 1)/nth;
  7945. // row range for this thread
  7946. const int ir0 = dr*ith;
  7947. const int ir1 = MIN(ir0 + dr, nr);
  7948. for (int i1 = ir0; i1 < ir1; i1++) {
  7949. ggml_vec_gelu_quick_f32(nc,
  7950. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7951. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7952. #ifndef NDEBUG
  7953. for (int k = 0; k < nc; k++) {
  7954. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7955. UNUSED(x);
  7956. assert(!isnan(x));
  7957. assert(!isinf(x));
  7958. }
  7959. #endif
  7960. }
  7961. }
  7962. static void ggml_compute_forward_gelu_quick(
  7963. const struct ggml_compute_params * params,
  7964. struct ggml_tensor * dst) {
  7965. const struct ggml_tensor * src0 = dst->src[0];
  7966. switch (src0->type) {
  7967. case GGML_TYPE_F32:
  7968. {
  7969. ggml_compute_forward_gelu_quick_f32(params, dst);
  7970. } break;
  7971. default:
  7972. {
  7973. GGML_ASSERT(false);
  7974. } break;
  7975. }
  7976. }
  7977. // ggml_compute_forward_silu
  7978. static void ggml_compute_forward_silu_f32(
  7979. const struct ggml_compute_params * params,
  7980. struct ggml_tensor * dst) {
  7981. const struct ggml_tensor * src0 = dst->src[0];
  7982. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7983. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7984. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7986. return;
  7987. }
  7988. const int ith = params->ith;
  7989. const int nth = params->nth;
  7990. const int nc = src0->ne[0];
  7991. const int nr = ggml_nrows(src0);
  7992. // rows per thread
  7993. const int dr = (nr + nth - 1)/nth;
  7994. // row range for this thread
  7995. const int ir0 = dr*ith;
  7996. const int ir1 = MIN(ir0 + dr, nr);
  7997. for (int i1 = ir0; i1 < ir1; i1++) {
  7998. ggml_vec_silu_f32(nc,
  7999. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8000. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8001. #ifndef NDEBUG
  8002. for (int k = 0; k < nc; k++) {
  8003. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8004. UNUSED(x);
  8005. assert(!isnan(x));
  8006. assert(!isinf(x));
  8007. }
  8008. #endif
  8009. }
  8010. }
  8011. static void ggml_compute_forward_silu(
  8012. const struct ggml_compute_params * params,
  8013. struct ggml_tensor * dst) {
  8014. const struct ggml_tensor * src0 = dst->src[0];
  8015. switch (src0->type) {
  8016. case GGML_TYPE_F32:
  8017. {
  8018. ggml_compute_forward_silu_f32(params, dst);
  8019. } break;
  8020. default:
  8021. {
  8022. GGML_ASSERT(false);
  8023. } break;
  8024. }
  8025. }
  8026. // ggml_compute_forward_leaky_relu
  8027. static void ggml_compute_forward_leaky_relu_f32(
  8028. const struct ggml_compute_params * params,
  8029. struct ggml_tensor * dst) {
  8030. const struct ggml_tensor * src0 = dst->src[0];
  8031. assert(params->ith == 0);
  8032. assert(ggml_are_same_shape(src0, dst));
  8033. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8034. return;
  8035. }
  8036. const int n = ggml_nrows(src0);
  8037. const int nc = src0->ne[0];
  8038. float negative_slope;
  8039. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8040. assert(dst->nb[0] == sizeof(float));
  8041. assert(src0->nb[0] == sizeof(float));
  8042. for (int i = 0; i < n; i++) {
  8043. ggml_vec_leaky_relu_f32(nc,
  8044. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8045. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8046. }
  8047. }
  8048. static void ggml_compute_forward_leaky_relu(
  8049. const struct ggml_compute_params * params,
  8050. struct ggml_tensor * dst) {
  8051. const struct ggml_tensor * src0 = dst->src[0];
  8052. switch (src0->type) {
  8053. case GGML_TYPE_F32:
  8054. {
  8055. ggml_compute_forward_leaky_relu_f32(params, dst);
  8056. } break;
  8057. default:
  8058. {
  8059. GGML_ASSERT(false);
  8060. } break;
  8061. }
  8062. }
  8063. // ggml_compute_forward_silu_back
  8064. static void ggml_compute_forward_silu_back_f32(
  8065. const struct ggml_compute_params * params,
  8066. struct ggml_tensor * dst) {
  8067. const struct ggml_tensor * src0 = dst->src[0];
  8068. const struct ggml_tensor * grad = dst->src[1];
  8069. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8070. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8071. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8072. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8073. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8074. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8075. return;
  8076. }
  8077. const int ith = params->ith;
  8078. const int nth = params->nth;
  8079. const int nc = src0->ne[0];
  8080. const int nr = ggml_nrows(src0);
  8081. // rows per thread
  8082. const int dr = (nr + nth - 1)/nth;
  8083. // row range for this thread
  8084. const int ir0 = dr*ith;
  8085. const int ir1 = MIN(ir0 + dr, nr);
  8086. for (int i1 = ir0; i1 < ir1; i1++) {
  8087. ggml_vec_silu_backward_f32(nc,
  8088. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8089. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8090. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8091. #ifndef NDEBUG
  8092. for (int k = 0; k < nc; k++) {
  8093. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8094. UNUSED(x);
  8095. assert(!isnan(x));
  8096. assert(!isinf(x));
  8097. }
  8098. #endif
  8099. }
  8100. }
  8101. static void ggml_compute_forward_silu_back(
  8102. const struct ggml_compute_params * params,
  8103. struct ggml_tensor * dst) {
  8104. const struct ggml_tensor * src0 = dst->src[0];
  8105. switch (src0->type) {
  8106. case GGML_TYPE_F32:
  8107. {
  8108. ggml_compute_forward_silu_back_f32(params, dst);
  8109. } break;
  8110. default:
  8111. {
  8112. GGML_ASSERT(false);
  8113. } break;
  8114. }
  8115. }
  8116. static void ggml_compute_forward_hardswish_f32(
  8117. const struct ggml_compute_params * params,
  8118. struct ggml_tensor * dst) {
  8119. const struct ggml_tensor * src0 = dst->src[0];
  8120. assert(params->ith == 0);
  8121. assert(ggml_are_same_shape(src0, dst));
  8122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8123. return;
  8124. }
  8125. const int n = ggml_nrows(src0);
  8126. const int nc = src0->ne[0];
  8127. assert(dst->nb[0] == sizeof(float));
  8128. assert(src0->nb[0] == sizeof(float));
  8129. for (int i = 0; i < n; i++) {
  8130. ggml_vec_hardswish_f32(nc,
  8131. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8132. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8133. }
  8134. }
  8135. static void ggml_compute_forward_hardswish(
  8136. const struct ggml_compute_params * params,
  8137. struct ggml_tensor * dst) {
  8138. const struct ggml_tensor * src0 = dst->src[0];
  8139. switch (src0->type) {
  8140. case GGML_TYPE_F32:
  8141. {
  8142. ggml_compute_forward_hardswish_f32(params, dst);
  8143. } break;
  8144. default:
  8145. {
  8146. GGML_ASSERT(false);
  8147. } break;
  8148. }
  8149. }
  8150. static void ggml_compute_forward_hardsigmoid_f32(
  8151. const struct ggml_compute_params * params,
  8152. struct ggml_tensor * dst) {
  8153. const struct ggml_tensor * src0 = dst->src[0];
  8154. assert(params->ith == 0);
  8155. assert(ggml_are_same_shape(src0, dst));
  8156. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8157. return;
  8158. }
  8159. const int n = ggml_nrows(src0);
  8160. const int nc = src0->ne[0];
  8161. assert(dst->nb[0] == sizeof(float));
  8162. assert(src0->nb[0] == sizeof(float));
  8163. for (int i = 0; i < n; i++) {
  8164. ggml_vec_hardsigmoid_f32(nc,
  8165. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8166. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8167. }
  8168. }
  8169. static void ggml_compute_forward_hardsigmoid(
  8170. const struct ggml_compute_params * params,
  8171. struct ggml_tensor * dst) {
  8172. const struct ggml_tensor * src0 = dst->src[0];
  8173. switch (src0->type) {
  8174. case GGML_TYPE_F32:
  8175. {
  8176. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8177. } break;
  8178. default:
  8179. {
  8180. GGML_ASSERT(false);
  8181. } break;
  8182. }
  8183. }
  8184. // ggml_compute_forward_norm
  8185. static void ggml_compute_forward_norm_f32(
  8186. const struct ggml_compute_params * params,
  8187. struct ggml_tensor * dst) {
  8188. const struct ggml_tensor * src0 = dst->src[0];
  8189. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8191. return;
  8192. }
  8193. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8194. const int ith = params->ith;
  8195. const int nth = params->nth;
  8196. GGML_TENSOR_UNARY_OP_LOCALS
  8197. float eps;
  8198. memcpy(&eps, dst->op_params, sizeof(float));
  8199. GGML_ASSERT(eps > 0.0f);
  8200. // TODO: optimize
  8201. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8202. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8203. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8204. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8205. ggml_float sum = 0.0;
  8206. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8207. sum += (ggml_float)x[i00];
  8208. }
  8209. float mean = sum/ne00;
  8210. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8211. ggml_float sum2 = 0.0;
  8212. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8213. float v = x[i00] - mean;
  8214. y[i00] = v;
  8215. sum2 += (ggml_float)(v*v);
  8216. }
  8217. float variance = sum2/ne00;
  8218. const float scale = 1.0f/sqrtf(variance + eps);
  8219. ggml_vec_scale_f32(ne00, y, scale);
  8220. }
  8221. }
  8222. }
  8223. }
  8224. static void ggml_compute_forward_norm(
  8225. const struct ggml_compute_params * params,
  8226. struct ggml_tensor * dst) {
  8227. const struct ggml_tensor * src0 = dst->src[0];
  8228. switch (src0->type) {
  8229. case GGML_TYPE_F32:
  8230. {
  8231. ggml_compute_forward_norm_f32(params, dst);
  8232. } break;
  8233. default:
  8234. {
  8235. GGML_ASSERT(false);
  8236. } break;
  8237. }
  8238. }
  8239. // ggml_compute_forward_group_rms_norm
  8240. static void ggml_compute_forward_rms_norm_f32(
  8241. const struct ggml_compute_params * params,
  8242. struct ggml_tensor * dst) {
  8243. const struct ggml_tensor * src0 = dst->src[0];
  8244. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8245. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8246. return;
  8247. }
  8248. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8249. const int ith = params->ith;
  8250. const int nth = params->nth;
  8251. GGML_TENSOR_UNARY_OP_LOCALS
  8252. float eps;
  8253. memcpy(&eps, dst->op_params, sizeof(float));
  8254. GGML_ASSERT(eps > 0.0f);
  8255. // TODO: optimize
  8256. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8257. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8258. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8259. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8260. ggml_float sum = 0.0;
  8261. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8262. sum += (ggml_float)(x[i00] * x[i00]);
  8263. }
  8264. const float mean = sum/ne00;
  8265. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8266. memcpy(y, x, ne00 * sizeof(float));
  8267. // for (int i00 = 0; i00 < ne00; i00++) {
  8268. // y[i00] = x[i00];
  8269. // }
  8270. const float scale = 1.0f/sqrtf(mean + eps);
  8271. ggml_vec_scale_f32(ne00, y, scale);
  8272. }
  8273. }
  8274. }
  8275. }
  8276. static void ggml_compute_forward_rms_norm(
  8277. const struct ggml_compute_params * params,
  8278. struct ggml_tensor * dst) {
  8279. const struct ggml_tensor * src0 = dst->src[0];
  8280. switch (src0->type) {
  8281. case GGML_TYPE_F32:
  8282. {
  8283. ggml_compute_forward_rms_norm_f32(params, dst);
  8284. } break;
  8285. default:
  8286. {
  8287. GGML_ASSERT(false);
  8288. } break;
  8289. }
  8290. }
  8291. static void ggml_compute_forward_rms_norm_back_f32(
  8292. const struct ggml_compute_params * params,
  8293. struct ggml_tensor * dst) {
  8294. const struct ggml_tensor * src0 = dst->src[0];
  8295. const struct ggml_tensor * src1 = dst->src[1];
  8296. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8297. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8298. return;
  8299. }
  8300. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8301. const int ith = params->ith;
  8302. const int nth = params->nth;
  8303. GGML_TENSOR_BINARY_OP_LOCALS
  8304. float eps;
  8305. memcpy(&eps, dst->op_params, sizeof(float));
  8306. // TODO: optimize
  8307. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8308. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8309. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8310. // src1 is same shape as src0 => same indices
  8311. const int64_t i11 = i01;
  8312. const int64_t i12 = i02;
  8313. const int64_t i13 = i03;
  8314. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8315. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8316. ggml_float sum_xx = 0.0;
  8317. ggml_float sum_xdz = 0.0;
  8318. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8319. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8320. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8321. }
  8322. //const float mean = (float)(sum_xx)/ne00;
  8323. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8324. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8325. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8326. // we could cache rms from forward pass to improve performance.
  8327. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8328. //const float rms = sqrtf(mean_eps);
  8329. const float rrms = 1.0f / sqrtf(mean_eps);
  8330. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8331. {
  8332. // z = rms_norm(x)
  8333. //
  8334. // rms_norm(src0) =
  8335. // scale(
  8336. // src0,
  8337. // div(
  8338. // 1,
  8339. // sqrt(
  8340. // add(
  8341. // scale(
  8342. // sum(
  8343. // sqr(
  8344. // src0)),
  8345. // (1.0/N)),
  8346. // eps))));
  8347. // postorder:
  8348. // ## op args grad
  8349. // 00 param src0 grad[#00]
  8350. // 01 const 1
  8351. // 02 sqr (#00) grad[#02]
  8352. // 03 sum (#02) grad[#03]
  8353. // 04 const 1/N
  8354. // 05 scale (#03, #04) grad[#05]
  8355. // 06 const eps
  8356. // 07 add (#05, #06) grad[#07]
  8357. // 08 sqrt (#07) grad[#08]
  8358. // 09 div (#01,#08) grad[#09]
  8359. // 10 scale (#00,#09) grad[#10]
  8360. //
  8361. // backward pass, given grad[#10]
  8362. // #10: scale
  8363. // grad[#00] += scale(grad[#10],#09)
  8364. // grad[#09] += sum(mul(grad[#10],#00))
  8365. // #09: div
  8366. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8367. // #08: sqrt
  8368. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8369. // #07: add
  8370. // grad[#05] += grad[#07]
  8371. // #05: scale
  8372. // grad[#03] += scale(grad[#05],#04)
  8373. // #03: sum
  8374. // grad[#02] += repeat(grad[#03], #02)
  8375. // #02:
  8376. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8377. //
  8378. // substitute and simplify:
  8379. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8380. // grad[#02] = repeat(grad[#03], #02)
  8381. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8382. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8383. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8384. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8385. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8386. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8387. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8388. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8389. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8390. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8391. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8392. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8393. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8394. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8395. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8396. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8397. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8398. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8399. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8400. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8401. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8402. // a = b*c + d*e
  8403. // a = b*c*f/f + d*e*f/f
  8404. // a = (b*c*f + d*e*f)*(1/f)
  8405. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8406. // a = (b + d*e/c)*c
  8407. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8408. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8409. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8410. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8411. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8412. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8413. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8414. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8415. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8416. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8417. }
  8418. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8419. // post-order:
  8420. // dx := x
  8421. // dx := scale(dx,-mean_xdz/mean_eps)
  8422. // dx := add(dx, dz)
  8423. // dx := scale(dx, rrms)
  8424. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8425. ggml_vec_cpy_f32 (ne00, dx, x);
  8426. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8427. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8428. ggml_vec_acc_f32 (ne00, dx, dz);
  8429. ggml_vec_scale_f32(ne00, dx, rrms);
  8430. }
  8431. }
  8432. }
  8433. }
  8434. static void ggml_compute_forward_rms_norm_back(
  8435. const struct ggml_compute_params * params,
  8436. struct ggml_tensor * dst) {
  8437. const struct ggml_tensor * src0 = dst->src[0];
  8438. switch (src0->type) {
  8439. case GGML_TYPE_F32:
  8440. {
  8441. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8442. } break;
  8443. default:
  8444. {
  8445. GGML_ASSERT(false);
  8446. } break;
  8447. }
  8448. }
  8449. // ggml_compute_forward_group_norm
  8450. static void ggml_compute_forward_group_norm_f32(
  8451. const struct ggml_compute_params * params,
  8452. struct ggml_tensor * dst) {
  8453. const struct ggml_tensor * src0 = dst->src[0];
  8454. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8455. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8456. return;
  8457. }
  8458. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8459. const int ith = params->ith;
  8460. const int nth = params->nth;
  8461. GGML_TENSOR_UNARY_OP_LOCALS
  8462. const float eps = 1e-6f; // TODO: make this a parameter
  8463. // TODO: optimize
  8464. int n_channels = src0->ne[2];
  8465. int n_groups = dst->op_params[0];
  8466. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8467. for (int i = ith; i < n_groups; i += nth) {
  8468. int start = i * n_channels_per_group;
  8469. int end = start + n_channels_per_group;
  8470. if (end > n_channels) {
  8471. end = n_channels;
  8472. }
  8473. int step = end - start;
  8474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8475. ggml_float sum = 0.0;
  8476. for (int64_t i02 = start; i02 < end; i02++) {
  8477. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8478. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8479. ggml_float sumr = 0.0;
  8480. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8481. sumr += (ggml_float)x[i00];
  8482. }
  8483. sum += sumr;
  8484. }
  8485. }
  8486. const float mean = sum / (ne00 * ne01 * step);
  8487. ggml_float sum2 = 0.0;
  8488. for (int64_t i02 = start; i02 < end; i02++) {
  8489. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8490. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8491. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8492. ggml_float sumr = 0.0;
  8493. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8494. float v = x[i00] - mean;
  8495. y[i00] = v;
  8496. sumr += (ggml_float)(v * v);
  8497. }
  8498. sum2 += sumr;
  8499. }
  8500. }
  8501. const float variance = sum2 / (ne00 * ne01 * step);
  8502. const float scale = 1.0f / sqrtf(variance + eps);
  8503. for (int64_t i02 = start; i02 < end; i02++) {
  8504. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8505. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8506. ggml_vec_scale_f32(ne00, y, scale);
  8507. }
  8508. }
  8509. }
  8510. }
  8511. }
  8512. static void ggml_compute_forward_group_norm(
  8513. const struct ggml_compute_params * params,
  8514. struct ggml_tensor * dst) {
  8515. const struct ggml_tensor * src0 = dst->src[0];
  8516. switch (src0->type) {
  8517. case GGML_TYPE_F32:
  8518. {
  8519. ggml_compute_forward_group_norm_f32(params, dst);
  8520. } break;
  8521. default:
  8522. {
  8523. GGML_ASSERT(false);
  8524. } break;
  8525. }
  8526. }
  8527. // ggml_compute_forward_mul_mat
  8528. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8529. // helper function to determine if it is better to use BLAS or not
  8530. // for large matrices, BLAS is faster
  8531. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8532. const struct ggml_tensor * src0 = dst->src[0];
  8533. const struct ggml_tensor * src1 = dst->src[1];
  8534. //const int64_t ne00 = src0->ne[0];
  8535. //const int64_t ne01 = src0->ne[1];
  8536. const int64_t ne10 = src1->ne[0];
  8537. const int64_t ne0 = dst->ne[0];
  8538. const int64_t ne1 = dst->ne[1];
  8539. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8540. // all the experts for each batch element and the processing would become incredibly slow
  8541. // TODO: find the optimal values for these
  8542. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8543. ggml_is_contiguous(src0) &&
  8544. ggml_is_contiguous(src1) &&
  8545. //src0->type == GGML_TYPE_F32 &&
  8546. src1->type == GGML_TYPE_F32 &&
  8547. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8548. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8549. return true;
  8550. }
  8551. return false;
  8552. }
  8553. #endif
  8554. static void ggml_compute_forward_mul_mat(
  8555. const struct ggml_compute_params * params,
  8556. struct ggml_tensor * dst) {
  8557. const struct ggml_tensor * src0 = dst->src[0];
  8558. const struct ggml_tensor * src1 = dst->src[1];
  8559. int64_t t0 = ggml_perf_time_us();
  8560. UNUSED(t0);
  8561. GGML_TENSOR_BINARY_OP_LOCALS
  8562. const int ith = params->ith;
  8563. const int nth = params->nth;
  8564. const enum ggml_type type = src0->type;
  8565. const bool src1_cont = ggml_is_contiguous(src1);
  8566. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8567. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8568. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8569. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8570. GGML_ASSERT(ne0 == ne01);
  8571. GGML_ASSERT(ne1 == ne11);
  8572. GGML_ASSERT(ne2 == ne12);
  8573. GGML_ASSERT(ne3 == ne13);
  8574. // we don't support permuted src0 or src1
  8575. GGML_ASSERT(nb00 == ggml_type_size(type));
  8576. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8577. // dst cannot be transposed or permuted
  8578. GGML_ASSERT(nb0 == sizeof(float));
  8579. GGML_ASSERT(nb0 <= nb1);
  8580. GGML_ASSERT(nb1 <= nb2);
  8581. GGML_ASSERT(nb2 <= nb3);
  8582. // broadcast factors
  8583. const int64_t r2 = ne12/ne02;
  8584. const int64_t r3 = ne13/ne03;
  8585. // nb01 >= nb00 - src0 is not transposed
  8586. // compute by src0 rows
  8587. #if defined(GGML_USE_CLBLAST)
  8588. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8589. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8590. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8591. }
  8592. return;
  8593. }
  8594. #endif
  8595. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8596. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8597. const int64_t ne_plane = ne01*ne00;
  8598. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8599. UNUSED(desired_wsize);
  8600. if (params->type == GGML_TASK_TYPE_INIT) {
  8601. if (type != GGML_TYPE_F32) {
  8602. assert(params->wsize >= desired_wsize);
  8603. // parallelize by src0 rows
  8604. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8605. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8606. // broadcast src0 into src1 across 2nd,3rd dimension
  8607. const int64_t i03 = i13/r3;
  8608. const int64_t i02 = i12/r2;
  8609. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8610. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8611. ggml_to_float_t const to_float = type_traits[type].to_float;
  8612. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8613. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8614. }
  8615. }
  8616. }
  8617. }
  8618. return;
  8619. }
  8620. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8621. return;
  8622. }
  8623. // perform sgemm, parallelization controlled by blas lib
  8624. if (ith != 0) {
  8625. return;
  8626. }
  8627. //const int64_t tgemm0 = ggml_perf_time_us();
  8628. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8629. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8630. const int64_t i03 = i13/r3;
  8631. const int64_t i02 = i12/r2;
  8632. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8633. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8634. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8635. if (type != GGML_TYPE_F32) {
  8636. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8637. }
  8638. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8639. ne1, ne01, ne10,
  8640. 1.0f, y, ne10,
  8641. x, ne00,
  8642. 0.0f, d, ne01);
  8643. }
  8644. }
  8645. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8646. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8647. return;
  8648. }
  8649. #endif
  8650. if (params->type == GGML_TASK_TYPE_INIT) {
  8651. if (ith != 0) {
  8652. return;
  8653. }
  8654. if (src1->type != vec_dot_type) {
  8655. char * wdata = params->wdata;
  8656. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8657. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8658. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8659. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8660. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8661. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8662. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8663. wdata += row_size;
  8664. }
  8665. }
  8666. }
  8667. }
  8668. return;
  8669. }
  8670. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8671. return;
  8672. }
  8673. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8674. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8675. const int64_t nr0 = ne01; // src0 rows
  8676. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8677. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8678. // distribute the thread work across the inner or outer loop based on which one is larger
  8679. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8680. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8681. const int64_t ith0 = ith % nth0;
  8682. const int64_t ith1 = ith / nth0;
  8683. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8684. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8685. const int64_t ir010 = dr0*ith0;
  8686. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8687. const int64_t ir110 = dr1*ith1;
  8688. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8689. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8690. // threads with no work simply yield (not sure if it helps)
  8691. if (ir010 >= ir011 || ir110 >= ir111) {
  8692. sched_yield();
  8693. return;
  8694. }
  8695. assert(ne12 % ne02 == 0);
  8696. assert(ne13 % ne03 == 0);
  8697. // block-tiling attempt
  8698. const int64_t blck_0 = 16;
  8699. const int64_t blck_1 = 16;
  8700. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8701. int64_t nrc = vec_dot_num_rows;
  8702. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8703. // this check can be removed once they are extended to support odd numbered rows/cols too
  8704. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8705. nrc = 1;
  8706. }
  8707. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8708. // attempt to reduce false-sharing (does not seem to make a difference)
  8709. // 16 * 2, accounting for mmla kernels
  8710. float tmp[32];
  8711. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8712. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8713. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8714. const int64_t i13 = (ir1/(ne12*ne1));
  8715. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8716. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8717. // broadcast src0 into src1
  8718. const int64_t i03 = i13/r3;
  8719. const int64_t i02 = i12/r2;
  8720. const int64_t i1 = i11;
  8721. const int64_t i2 = i12;
  8722. const int64_t i3 = i13;
  8723. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8724. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8725. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8726. // the original src1 data pointer, so we should index using the indices directly
  8727. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8728. const char * src1_col = (const char *) wdata +
  8729. (src1_cont || src1->type != vec_dot_type
  8730. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8731. : (i11*nb11 + i12*nb12 + i13*nb13));
  8732. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8733. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8734. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8735. //}
  8736. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8737. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8738. }
  8739. for (int cn = 0; cn < nrc; ++cn) {
  8740. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8741. }
  8742. }
  8743. }
  8744. }
  8745. }
  8746. // ggml_compute_forward_mul_mat_id
  8747. static void ggml_compute_forward_mul_mat_id(
  8748. const struct ggml_compute_params * params,
  8749. struct ggml_tensor * dst) {
  8750. const struct ggml_tensor * ids = dst->src[0];
  8751. const struct ggml_tensor * src1 = dst->src[1];
  8752. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8753. GGML_TENSOR_BINARY_OP_LOCALS
  8754. const int ith = params->ith;
  8755. const int nth = params->nth;
  8756. const enum ggml_type type = src0->type;
  8757. const bool src1_cont = ggml_is_contiguous(src1);
  8758. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8759. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8760. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8761. GGML_ASSERT(ne0 == ne01);
  8762. GGML_ASSERT(ne1 == ne11);
  8763. GGML_ASSERT(ne2 == ne12);
  8764. GGML_ASSERT(ne3 == ne13);
  8765. // we don't support permuted src0 or src1
  8766. GGML_ASSERT(nb00 == ggml_type_size(type));
  8767. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8768. // dst cannot be transposed or permuted
  8769. GGML_ASSERT(nb0 == sizeof(float));
  8770. GGML_ASSERT(nb0 <= nb1);
  8771. GGML_ASSERT(nb1 <= nb2);
  8772. GGML_ASSERT(nb2 <= nb3);
  8773. // broadcast factors
  8774. const int64_t r2 = ne12/ne02;
  8775. const int64_t r3 = ne13/ne03;
  8776. // row groups
  8777. const int id = ggml_get_op_params_i32(dst, 0);
  8778. const int n_as = ggml_get_op_params_i32(dst, 1);
  8779. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8780. (char *) params->wdata :
  8781. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8782. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8783. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8784. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8785. if (params->type == GGML_TASK_TYPE_INIT) {
  8786. if (ith != 0) {
  8787. return;
  8788. }
  8789. char * wdata = params->wdata;
  8790. if (src1->type != vec_dot_type) {
  8791. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8792. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8793. assert(src1->type == GGML_TYPE_F32);
  8794. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8795. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8796. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8797. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8798. wdata += row_size;
  8799. }
  8800. }
  8801. }
  8802. }
  8803. // initialize matrix_row_counts
  8804. GGML_ASSERT(wdata == wdata_src1_end);
  8805. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8806. // group rows by src0 matrix
  8807. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8808. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8809. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8810. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8811. matrix_row_counts[row_id] += 1;
  8812. }
  8813. return;
  8814. }
  8815. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8816. return;
  8817. }
  8818. // compute each matrix multiplication in sequence
  8819. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8820. const int64_t cne1 = matrix_row_counts[cur_a];
  8821. if (cne1 == 0) {
  8822. continue;
  8823. }
  8824. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8825. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8826. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8827. const int64_t nr0 = ne01; // src0 rows
  8828. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8829. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8830. // distribute the thread work across the inner or outer loop based on which one is larger
  8831. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8832. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8833. const int64_t ith0 = ith % nth0;
  8834. const int64_t ith1 = ith / nth0;
  8835. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8836. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8837. const int64_t ir010 = dr0*ith0;
  8838. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8839. const int64_t ir110 = dr1*ith1;
  8840. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8841. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8842. // threads with no work simply yield (not sure if it helps)
  8843. if (ir010 >= ir011 || ir110 >= ir111) {
  8844. sched_yield();
  8845. continue;
  8846. }
  8847. assert(ne12 % ne02 == 0);
  8848. assert(ne13 % ne03 == 0);
  8849. // block-tiling attempt
  8850. const int64_t blck_0 = 16;
  8851. const int64_t blck_1 = 16;
  8852. // attempt to reduce false-sharing (does not seem to make a difference)
  8853. float tmp[16];
  8854. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8855. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8856. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8857. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8858. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8859. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8860. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8861. // broadcast src0 into src1
  8862. const int64_t i03 = i13/r3;
  8863. const int64_t i02 = i12/r2;
  8864. const int64_t i1 = i11;
  8865. const int64_t i2 = i12;
  8866. const int64_t i3 = i13;
  8867. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8868. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8869. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8870. // the original src1 data pointer, so we should index using the indices directly
  8871. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8872. const char * src1_col = (const char *) wdata +
  8873. (src1_cont || src1->type != vec_dot_type
  8874. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8875. : (i11*nb11 + i12*nb12 + i13*nb13));
  8876. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8877. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8878. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8879. //}
  8880. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8881. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8882. }
  8883. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8884. }
  8885. }
  8886. }
  8887. }
  8888. #undef MMID_MATRIX_ROW
  8889. }
  8890. // ggml_compute_forward_out_prod
  8891. static void ggml_compute_forward_out_prod_f32(
  8892. const struct ggml_compute_params * params,
  8893. struct ggml_tensor * dst) {
  8894. const struct ggml_tensor * src0 = dst->src[0];
  8895. const struct ggml_tensor * src1 = dst->src[1];
  8896. // int64_t t0 = ggml_perf_time_us();
  8897. // UNUSED(t0);
  8898. GGML_TENSOR_BINARY_OP_LOCALS
  8899. const int ith = params->ith;
  8900. const int nth = params->nth;
  8901. GGML_ASSERT(ne0 == ne00);
  8902. GGML_ASSERT(ne1 == ne10);
  8903. GGML_ASSERT(ne2 == ne02);
  8904. GGML_ASSERT(ne02 == ne12);
  8905. GGML_ASSERT(ne3 == ne13);
  8906. GGML_ASSERT(ne03 == ne13);
  8907. // we don't support permuted src0 or src1
  8908. GGML_ASSERT(nb00 == sizeof(float));
  8909. // dst cannot be transposed or permuted
  8910. GGML_ASSERT(nb0 == sizeof(float));
  8911. // GGML_ASSERT(nb0 <= nb1);
  8912. // GGML_ASSERT(nb1 <= nb2);
  8913. // GGML_ASSERT(nb2 <= nb3);
  8914. // nb01 >= nb00 - src0 is not transposed
  8915. // compute by src0 rows
  8916. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8917. // TODO: #if defined(GGML_USE_CLBLAST)
  8918. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8919. bool use_blas = ggml_is_matrix(src0) &&
  8920. ggml_is_matrix(src1) &&
  8921. ggml_is_contiguous(src0) &&
  8922. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8923. #endif
  8924. if (params->type == GGML_TASK_TYPE_INIT) {
  8925. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8926. if (use_blas) {
  8927. return;
  8928. }
  8929. #endif
  8930. if (ith != 0) {
  8931. return;
  8932. }
  8933. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8934. return;
  8935. }
  8936. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8937. return;
  8938. }
  8939. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8940. if (use_blas) {
  8941. if (params->ith != 0) { // All threads other than the first do no work.
  8942. return;
  8943. }
  8944. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8945. // src0: (k,n)
  8946. // src1: (k,m)
  8947. // dst: (m,n)
  8948. //
  8949. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8950. // Also expressed as (major,minor)
  8951. // a: (m,k): so src1 transposed
  8952. // b: (k,n): so src0
  8953. // c: (m,n)
  8954. //
  8955. // However, if ggml_is_transposed(src1) is true, then
  8956. // src1->data already contains a transposed version, so sgemm mustn't
  8957. // transpose it further.
  8958. int n = src0->ne[0];
  8959. int k = src0->ne[1];
  8960. int m = src1->ne[0];
  8961. int transposeA, lda;
  8962. if (!ggml_is_transposed(src1)) {
  8963. transposeA = CblasTrans;
  8964. lda = m;
  8965. } else {
  8966. transposeA = CblasNoTrans;
  8967. lda = k;
  8968. }
  8969. float * a = (float *) ((char *) src1->data);
  8970. float * b = (float *) ((char *) src0->data);
  8971. float * c = (float *) ((char *) dst->data);
  8972. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8973. return;
  8974. }
  8975. #endif
  8976. // dst[:,:,:,:] = 0
  8977. // for i2,i3:
  8978. // for i1:
  8979. // for i01:
  8980. // for i0:
  8981. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8982. // parallelize by last three dimensions
  8983. // total rows in dst
  8984. const int64_t nr = ne1*ne2*ne3;
  8985. // rows per thread
  8986. const int64_t dr = (nr + nth - 1)/nth;
  8987. // row range for this thread
  8988. const int64_t ir0 = dr*ith;
  8989. const int64_t ir1 = MIN(ir0 + dr, nr);
  8990. // block-tiling attempt
  8991. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8992. const int64_t blck_1 = 16;
  8993. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8994. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8995. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8996. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8997. for (int64_t ir = bir; ir < bir1; ++ir) {
  8998. // dst indices
  8999. const int64_t i3 = ir/(ne2*ne1);
  9000. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9001. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9002. const int64_t i02 = i2;
  9003. const int64_t i03 = i3;
  9004. //const int64_t i10 = i1;
  9005. const int64_t i12 = i2;
  9006. const int64_t i13 = i3;
  9007. #if GGML_VEC_MAD_UNROLL > 2
  9008. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9009. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9010. const int64_t i11 = i01;
  9011. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9012. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9013. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9014. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9015. }
  9016. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9017. const int64_t i11 = i01;
  9018. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9019. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9020. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9021. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9022. }
  9023. #else
  9024. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9025. const int64_t i11 = i01;
  9026. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9027. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9028. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9029. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9030. }
  9031. #endif
  9032. }
  9033. }
  9034. }
  9035. //int64_t t1 = ggml_perf_time_us();
  9036. //static int64_t acc = 0;
  9037. //acc += t1 - t0;
  9038. //if (t1 - t0 > 10) {
  9039. // printf("\n");
  9040. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9041. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9042. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9043. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9044. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9045. //}
  9046. }
  9047. static void ggml_compute_forward_out_prod_q_f32(
  9048. const struct ggml_compute_params * params,
  9049. struct ggml_tensor * dst) {
  9050. const struct ggml_tensor * src0 = dst->src[0];
  9051. const struct ggml_tensor * src1 = dst->src[1];
  9052. // int64_t t0 = ggml_perf_time_us();
  9053. // UNUSED(t0);
  9054. GGML_TENSOR_BINARY_OP_LOCALS;
  9055. const int ith = params->ith;
  9056. const int nth = params->nth;
  9057. const enum ggml_type type = src0->type;
  9058. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9059. GGML_ASSERT(ne02 == ne12);
  9060. GGML_ASSERT(ne03 == ne13);
  9061. GGML_ASSERT(ne2 == ne12);
  9062. GGML_ASSERT(ne3 == ne13);
  9063. // we don't support permuted src0 dim0
  9064. GGML_ASSERT(nb00 == ggml_type_size(type));
  9065. // dst dim0 cannot be transposed or permuted
  9066. GGML_ASSERT(nb0 == sizeof(float));
  9067. // GGML_ASSERT(nb0 <= nb1);
  9068. // GGML_ASSERT(nb1 <= nb2);
  9069. // GGML_ASSERT(nb2 <= nb3);
  9070. GGML_ASSERT(ne0 == ne00);
  9071. GGML_ASSERT(ne1 == ne10);
  9072. GGML_ASSERT(ne2 == ne02);
  9073. GGML_ASSERT(ne3 == ne03);
  9074. // nb01 >= nb00 - src0 is not transposed
  9075. // compute by src0 rows
  9076. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9077. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9078. if (params->type == GGML_TASK_TYPE_INIT) {
  9079. if (ith != 0) {
  9080. return;
  9081. }
  9082. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9083. return;
  9084. }
  9085. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9086. return;
  9087. }
  9088. // parallelize by last three dimensions
  9089. // total rows in dst
  9090. const int64_t nr = ne1*ne2*ne3;
  9091. // rows per thread
  9092. const int64_t dr = (nr + nth - 1)/nth;
  9093. // row range for this thread
  9094. const int64_t ir0 = dr*ith;
  9095. const int64_t ir1 = MIN(ir0 + dr, nr);
  9096. // dst[:,:,:,:] = 0
  9097. // for i2,i3:
  9098. // for i1:
  9099. // for i01:
  9100. // for i0:
  9101. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9102. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9103. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9104. // dst indices
  9105. const int64_t i3 = ir/(ne2*ne1);
  9106. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9107. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9108. const int64_t i02 = i2;
  9109. const int64_t i03 = i3;
  9110. //const int64_t i10 = i1;
  9111. const int64_t i12 = i2;
  9112. const int64_t i13 = i3;
  9113. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9114. const int64_t i11 = i01;
  9115. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9116. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9117. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9118. dequantize_row_q(s0, wdata, ne0);
  9119. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9120. }
  9121. }
  9122. //int64_t t1 = ggml_perf_time_us();
  9123. //static int64_t acc = 0;
  9124. //acc += t1 - t0;
  9125. //if (t1 - t0 > 10) {
  9126. // printf("\n");
  9127. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9128. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9129. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9130. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9131. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9132. //}
  9133. }
  9134. static void ggml_compute_forward_out_prod(
  9135. const struct ggml_compute_params * params,
  9136. struct ggml_tensor * dst) {
  9137. const struct ggml_tensor * src0 = dst->src[0];
  9138. switch (src0->type) {
  9139. case GGML_TYPE_Q4_0:
  9140. case GGML_TYPE_Q4_1:
  9141. case GGML_TYPE_Q5_0:
  9142. case GGML_TYPE_Q5_1:
  9143. case GGML_TYPE_Q8_0:
  9144. case GGML_TYPE_Q2_K:
  9145. case GGML_TYPE_Q3_K:
  9146. case GGML_TYPE_Q4_K:
  9147. case GGML_TYPE_Q5_K:
  9148. case GGML_TYPE_Q6_K:
  9149. case GGML_TYPE_IQ2_XXS:
  9150. case GGML_TYPE_IQ2_XS:
  9151. case GGML_TYPE_IQ3_XXS:
  9152. case GGML_TYPE_IQ1_S:
  9153. case GGML_TYPE_IQ4_NL:
  9154. case GGML_TYPE_IQ4_XS:
  9155. case GGML_TYPE_IQ3_S:
  9156. case GGML_TYPE_IQ2_S:
  9157. {
  9158. ggml_compute_forward_out_prod_q_f32(params, dst);
  9159. } break;
  9160. case GGML_TYPE_F16:
  9161. {
  9162. GGML_ASSERT(false); // todo
  9163. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9164. } break;
  9165. case GGML_TYPE_F32:
  9166. {
  9167. ggml_compute_forward_out_prod_f32(params, dst);
  9168. } break;
  9169. default:
  9170. {
  9171. GGML_ASSERT(false);
  9172. } break;
  9173. }
  9174. }
  9175. // ggml_compute_forward_scale
  9176. static void ggml_compute_forward_scale_f32(
  9177. const struct ggml_compute_params * params,
  9178. struct ggml_tensor * dst) {
  9179. const struct ggml_tensor * src0 = dst->src[0];
  9180. GGML_ASSERT(ggml_is_contiguous(src0));
  9181. GGML_ASSERT(ggml_is_contiguous(dst));
  9182. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9183. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9184. return;
  9185. }
  9186. // scale factor
  9187. float v;
  9188. memcpy(&v, dst->op_params, sizeof(float));
  9189. const int ith = params->ith;
  9190. const int nth = params->nth;
  9191. const int nc = src0->ne[0];
  9192. const int nr = ggml_nrows(src0);
  9193. // rows per thread
  9194. const int dr = (nr + nth - 1)/nth;
  9195. // row range for this thread
  9196. const int ir0 = dr*ith;
  9197. const int ir1 = MIN(ir0 + dr, nr);
  9198. const size_t nb01 = src0->nb[1];
  9199. const size_t nb1 = dst->nb[1];
  9200. for (int i1 = ir0; i1 < ir1; i1++) {
  9201. if (dst->data != src0->data) {
  9202. // src0 is same shape as dst => same indices
  9203. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9204. }
  9205. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9206. }
  9207. }
  9208. static void ggml_compute_forward_scale(
  9209. const struct ggml_compute_params * params,
  9210. struct ggml_tensor * dst) {
  9211. const struct ggml_tensor * src0 = dst->src[0];
  9212. switch (src0->type) {
  9213. case GGML_TYPE_F32:
  9214. {
  9215. ggml_compute_forward_scale_f32(params, dst);
  9216. } break;
  9217. default:
  9218. {
  9219. GGML_ASSERT(false);
  9220. } break;
  9221. }
  9222. }
  9223. // ggml_compute_forward_set
  9224. static void ggml_compute_forward_set_f32(
  9225. const struct ggml_compute_params * params,
  9226. struct ggml_tensor * dst) {
  9227. const struct ggml_tensor * src0 = dst->src[0];
  9228. const struct ggml_tensor * src1 = dst->src[1];
  9229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9230. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9231. // view src0 and dst with these strides and data offset inbytes during set
  9232. // nb0 is implicitly element_size because src0 and dst are contiguous
  9233. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9234. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9235. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9236. size_t offset = ((int32_t *) dst->op_params)[3];
  9237. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9238. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9239. if (params->ith != 0) {
  9240. return;
  9241. }
  9242. // memcpy needs to be synchronized across threads to avoid race conditions.
  9243. // => do it in INIT phase
  9244. memcpy(
  9245. ((char *) dst->data),
  9246. ((char *) src0->data),
  9247. ggml_nbytes(dst));
  9248. }
  9249. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9250. return;
  9251. }
  9252. const int ith = params->ith;
  9253. const int nth = params->nth;
  9254. const int nr = ggml_nrows(src1);
  9255. const int nc = src1->ne[0];
  9256. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9257. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9258. // src0 and dst as viewed during set
  9259. const size_t nb0 = ggml_element_size(src0);
  9260. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9261. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9262. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9263. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9264. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9265. GGML_ASSERT(nb10 == sizeof(float));
  9266. // rows per thread
  9267. const int dr = (nr + nth - 1)/nth;
  9268. // row range for this thread
  9269. const int ir0 = dr*ith;
  9270. const int ir1 = MIN(ir0 + dr, nr);
  9271. for (int ir = ir0; ir < ir1; ++ir) {
  9272. // src0 and dst are viewed with shape of src1 and offset
  9273. // => same indices
  9274. const int i3 = ir/(ne12*ne11);
  9275. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9276. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9277. ggml_vec_cpy_f32(nc,
  9278. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9279. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9280. }
  9281. }
  9282. static void ggml_compute_forward_set(
  9283. const struct ggml_compute_params * params,
  9284. struct ggml_tensor * dst) {
  9285. const struct ggml_tensor * src0 = dst->src[0];
  9286. switch (src0->type) {
  9287. case GGML_TYPE_F32:
  9288. {
  9289. ggml_compute_forward_set_f32(params, dst);
  9290. } break;
  9291. case GGML_TYPE_F16:
  9292. case GGML_TYPE_Q4_0:
  9293. case GGML_TYPE_Q4_1:
  9294. case GGML_TYPE_Q5_0:
  9295. case GGML_TYPE_Q5_1:
  9296. case GGML_TYPE_Q8_0:
  9297. case GGML_TYPE_Q8_1:
  9298. case GGML_TYPE_Q2_K:
  9299. case GGML_TYPE_Q3_K:
  9300. case GGML_TYPE_Q4_K:
  9301. case GGML_TYPE_Q5_K:
  9302. case GGML_TYPE_Q6_K:
  9303. case GGML_TYPE_IQ2_XXS:
  9304. case GGML_TYPE_IQ2_XS:
  9305. case GGML_TYPE_IQ3_XXS:
  9306. case GGML_TYPE_IQ1_S:
  9307. case GGML_TYPE_IQ4_NL:
  9308. case GGML_TYPE_IQ4_XS:
  9309. case GGML_TYPE_IQ3_S:
  9310. case GGML_TYPE_IQ2_S:
  9311. default:
  9312. {
  9313. GGML_ASSERT(false);
  9314. } break;
  9315. }
  9316. }
  9317. // ggml_compute_forward_cpy
  9318. static void ggml_compute_forward_cpy(
  9319. const struct ggml_compute_params * params,
  9320. struct ggml_tensor * dst) {
  9321. ggml_compute_forward_dup(params, dst);
  9322. }
  9323. // ggml_compute_forward_cont
  9324. static void ggml_compute_forward_cont(
  9325. const struct ggml_compute_params * params,
  9326. struct ggml_tensor * dst) {
  9327. ggml_compute_forward_dup(params, dst);
  9328. }
  9329. // ggml_compute_forward_reshape
  9330. static void ggml_compute_forward_reshape(
  9331. const struct ggml_compute_params * params,
  9332. struct ggml_tensor * dst) {
  9333. // NOP
  9334. UNUSED(params);
  9335. UNUSED(dst);
  9336. }
  9337. // ggml_compute_forward_view
  9338. static void ggml_compute_forward_view(
  9339. const struct ggml_compute_params * params,
  9340. const struct ggml_tensor * dst) {
  9341. // NOP
  9342. UNUSED(params);
  9343. UNUSED(dst);
  9344. }
  9345. // ggml_compute_forward_permute
  9346. static void ggml_compute_forward_permute(
  9347. const struct ggml_compute_params * params,
  9348. const struct ggml_tensor * dst) {
  9349. // NOP
  9350. UNUSED(params);
  9351. UNUSED(dst);
  9352. }
  9353. // ggml_compute_forward_transpose
  9354. static void ggml_compute_forward_transpose(
  9355. const struct ggml_compute_params * params,
  9356. const struct ggml_tensor * dst) {
  9357. // NOP
  9358. UNUSED(params);
  9359. UNUSED(dst);
  9360. }
  9361. // ggml_compute_forward_get_rows
  9362. static void ggml_compute_forward_get_rows_q(
  9363. const struct ggml_compute_params * params,
  9364. struct ggml_tensor * dst) {
  9365. const struct ggml_tensor * src0 = dst->src[0];
  9366. const struct ggml_tensor * src1 = dst->src[1];
  9367. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9368. return;
  9369. }
  9370. GGML_TENSOR_BINARY_OP_LOCALS
  9371. const int64_t nc = ne00;
  9372. const int64_t nr = ggml_nelements(src1);
  9373. const enum ggml_type type = src0->type;
  9374. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9375. assert(ne0 == nc);
  9376. assert(ne02 == ne11);
  9377. assert(nb00 == ggml_type_size(type));
  9378. assert(ggml_nrows(dst) == nr);
  9379. const int ith = params->ith;
  9380. const int nth = params->nth;
  9381. // rows per thread
  9382. const int dr = (nr + nth - 1)/nth;
  9383. // row range for this thread
  9384. const int ir0 = dr*ith;
  9385. const int ir1 = MIN(ir0 + dr, nr);
  9386. for (int64_t i = ir0; i < ir1; ++i) {
  9387. const int64_t i12 = i/(ne11*ne10);
  9388. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9389. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9390. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9391. dequantize_row_q(
  9392. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9393. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9394. }
  9395. }
  9396. static void ggml_compute_forward_get_rows_f16(
  9397. const struct ggml_compute_params * params,
  9398. struct ggml_tensor * dst) {
  9399. const struct ggml_tensor * src0 = dst->src[0];
  9400. const struct ggml_tensor * src1 = dst->src[1];
  9401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9402. return;
  9403. }
  9404. GGML_TENSOR_BINARY_OP_LOCALS
  9405. const int64_t nc = ne00;
  9406. const int64_t nr = ggml_nelements(src1);
  9407. assert(ne0 == nc);
  9408. assert(ne02 == ne11);
  9409. assert(nb00 == sizeof(ggml_fp16_t));
  9410. assert(ggml_nrows(dst) == nr);
  9411. const int ith = params->ith;
  9412. const int nth = params->nth;
  9413. // rows per thread
  9414. const int dr = (nr + nth - 1)/nth;
  9415. // row range for this thread
  9416. const int ir0 = dr*ith;
  9417. const int ir1 = MIN(ir0 + dr, nr);
  9418. for (int64_t i = ir0; i < ir1; ++i) {
  9419. const int64_t i12 = i/(ne11*ne10);
  9420. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9421. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9422. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9423. ggml_fp16_to_fp32_row(
  9424. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9425. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9426. }
  9427. }
  9428. static void ggml_compute_forward_get_rows_f32(
  9429. const struct ggml_compute_params * params,
  9430. struct ggml_tensor * dst) {
  9431. const struct ggml_tensor * src0 = dst->src[0];
  9432. const struct ggml_tensor * src1 = dst->src[1];
  9433. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9434. return;
  9435. }
  9436. GGML_TENSOR_BINARY_OP_LOCALS
  9437. const int64_t nc = ne00;
  9438. const int64_t nr = ggml_nelements(src1);
  9439. assert(ne0 == nc);
  9440. assert(ne02 == ne11);
  9441. assert(nb00 == sizeof(float));
  9442. assert(ggml_nrows(dst) == nr);
  9443. const int ith = params->ith;
  9444. const int nth = params->nth;
  9445. // rows per thread
  9446. const int dr = (nr + nth - 1)/nth;
  9447. // row range for this thread
  9448. const int ir0 = dr*ith;
  9449. const int ir1 = MIN(ir0 + dr, nr);
  9450. for (int64_t i = ir0; i < ir1; ++i) {
  9451. const int64_t i12 = i/(ne11*ne10);
  9452. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9453. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9454. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9455. ggml_vec_cpy_f32(nc,
  9456. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9457. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9458. }
  9459. }
  9460. static void ggml_compute_forward_get_rows(
  9461. const struct ggml_compute_params * params,
  9462. struct ggml_tensor * dst) {
  9463. const struct ggml_tensor * src0 = dst->src[0];
  9464. switch (src0->type) {
  9465. case GGML_TYPE_Q4_0:
  9466. case GGML_TYPE_Q4_1:
  9467. case GGML_TYPE_Q5_0:
  9468. case GGML_TYPE_Q5_1:
  9469. case GGML_TYPE_Q8_0:
  9470. case GGML_TYPE_Q8_1:
  9471. case GGML_TYPE_Q2_K:
  9472. case GGML_TYPE_Q3_K:
  9473. case GGML_TYPE_Q4_K:
  9474. case GGML_TYPE_Q5_K:
  9475. case GGML_TYPE_Q6_K:
  9476. case GGML_TYPE_IQ2_XXS:
  9477. case GGML_TYPE_IQ2_XS:
  9478. case GGML_TYPE_IQ3_XXS:
  9479. case GGML_TYPE_IQ1_S:
  9480. case GGML_TYPE_IQ4_NL:
  9481. case GGML_TYPE_IQ4_XS:
  9482. case GGML_TYPE_IQ3_S:
  9483. case GGML_TYPE_IQ2_S:
  9484. {
  9485. ggml_compute_forward_get_rows_q(params, dst);
  9486. } break;
  9487. case GGML_TYPE_F16:
  9488. {
  9489. ggml_compute_forward_get_rows_f16(params, dst);
  9490. } break;
  9491. case GGML_TYPE_F32:
  9492. case GGML_TYPE_I32:
  9493. {
  9494. ggml_compute_forward_get_rows_f32(params, dst);
  9495. } break;
  9496. default:
  9497. {
  9498. GGML_ASSERT(false);
  9499. } break;
  9500. }
  9501. //static bool first = true;
  9502. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9503. //if (first) {
  9504. // first = false;
  9505. //} else {
  9506. // for (int k = 0; k < dst->ne[1]; ++k) {
  9507. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9508. // for (int i = 0; i < 16; ++i) {
  9509. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9510. // }
  9511. // printf("\n");
  9512. // }
  9513. // printf("\n");
  9514. // }
  9515. // printf("\n");
  9516. // exit(0);
  9517. //}
  9518. }
  9519. // ggml_compute_forward_get_rows_back
  9520. static void ggml_compute_forward_get_rows_back_f32_f16(
  9521. const struct ggml_compute_params * params,
  9522. struct ggml_tensor * dst) {
  9523. const struct ggml_tensor * src0 = dst->src[0];
  9524. const struct ggml_tensor * src1 = dst->src[1];
  9525. GGML_ASSERT(params->ith == 0);
  9526. GGML_ASSERT(ggml_is_contiguous(dst));
  9527. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9528. if (params->type == GGML_TASK_TYPE_INIT) {
  9529. if (params->ith != 0) {
  9530. return;
  9531. }
  9532. memset(dst->data, 0, ggml_nbytes(dst));
  9533. }
  9534. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9535. return;
  9536. }
  9537. const int nc = src0->ne[0];
  9538. const int nr = ggml_nelements(src1);
  9539. GGML_ASSERT( dst->ne[0] == nc);
  9540. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9541. for (int i = 0; i < nr; ++i) {
  9542. const int r = ((int32_t *) src1->data)[i];
  9543. for (int j = 0; j < nc; ++j) {
  9544. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9545. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9546. }
  9547. }
  9548. }
  9549. static void ggml_compute_forward_get_rows_back_f32(
  9550. const struct ggml_compute_params * params,
  9551. struct ggml_tensor * dst) {
  9552. const struct ggml_tensor * src0 = dst->src[0];
  9553. const struct ggml_tensor * src1 = dst->src[1];
  9554. GGML_ASSERT(params->ith == 0);
  9555. GGML_ASSERT(ggml_is_contiguous(dst));
  9556. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9557. if (params->type == GGML_TASK_TYPE_INIT) {
  9558. if (params->ith != 0) {
  9559. return;
  9560. }
  9561. memset(dst->data, 0, ggml_nbytes(dst));
  9562. }
  9563. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9564. return;
  9565. }
  9566. const int nc = src0->ne[0];
  9567. const int nr = ggml_nelements(src1);
  9568. GGML_ASSERT( dst->ne[0] == nc);
  9569. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9570. for (int i = 0; i < nr; ++i) {
  9571. const int r = ((int32_t *) src1->data)[i];
  9572. ggml_vec_add_f32(nc,
  9573. (float *) ((char *) dst->data + r*dst->nb[1]),
  9574. (float *) ((char *) dst->data + r*dst->nb[1]),
  9575. (float *) ((char *) src0->data + i*src0->nb[1]));
  9576. }
  9577. }
  9578. static void ggml_compute_forward_get_rows_back(
  9579. const struct ggml_compute_params * params,
  9580. struct ggml_tensor * dst) {
  9581. const struct ggml_tensor * src0 = dst->src[0];
  9582. switch (src0->type) {
  9583. case GGML_TYPE_F16:
  9584. {
  9585. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9586. } break;
  9587. case GGML_TYPE_F32:
  9588. {
  9589. ggml_compute_forward_get_rows_back_f32(params, dst);
  9590. } break;
  9591. default:
  9592. {
  9593. GGML_ASSERT(false);
  9594. } break;
  9595. }
  9596. //static bool first = true;
  9597. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9598. //if (first) {
  9599. // first = false;
  9600. //} else {
  9601. // for (int k = 0; k < dst->ne[1]; ++k) {
  9602. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9603. // for (int i = 0; i < 16; ++i) {
  9604. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9605. // }
  9606. // printf("\n");
  9607. // }
  9608. // printf("\n");
  9609. // }
  9610. // printf("\n");
  9611. // exit(0);
  9612. //}
  9613. }
  9614. // ggml_compute_forward_diag
  9615. static void ggml_compute_forward_diag_f32(
  9616. const struct ggml_compute_params * params,
  9617. struct ggml_tensor * dst) {
  9618. const struct ggml_tensor * src0 = dst->src[0];
  9619. GGML_ASSERT(params->ith == 0);
  9620. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9621. return;
  9622. }
  9623. // TODO: handle transposed/permuted matrices
  9624. GGML_TENSOR_UNARY_OP_LOCALS
  9625. GGML_ASSERT(ne00 == ne0);
  9626. GGML_ASSERT(ne00 == ne1);
  9627. GGML_ASSERT(ne01 == 1);
  9628. GGML_ASSERT(ne02 == ne2);
  9629. GGML_ASSERT(ne03 == ne3);
  9630. GGML_ASSERT(nb00 == sizeof(float));
  9631. GGML_ASSERT(nb0 == sizeof(float));
  9632. for (int i3 = 0; i3 < ne3; i3++) {
  9633. for (int i2 = 0; i2 < ne2; i2++) {
  9634. for (int i1 = 0; i1 < ne1; i1++) {
  9635. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9636. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9637. for (int i0 = 0; i0 < i1; i0++) {
  9638. d[i0] = 0;
  9639. }
  9640. d[i1] = s[i1];
  9641. for (int i0 = i1+1; i0 < ne0; i0++) {
  9642. d[i0] = 0;
  9643. }
  9644. }
  9645. }
  9646. }
  9647. }
  9648. static void ggml_compute_forward_diag(
  9649. const struct ggml_compute_params * params,
  9650. struct ggml_tensor * dst) {
  9651. const struct ggml_tensor * src0 = dst->src[0];
  9652. switch (src0->type) {
  9653. case GGML_TYPE_F32:
  9654. {
  9655. ggml_compute_forward_diag_f32(params, dst);
  9656. } break;
  9657. default:
  9658. {
  9659. GGML_ASSERT(false);
  9660. } break;
  9661. }
  9662. }
  9663. // ggml_compute_forward_diag_mask_inf
  9664. static void ggml_compute_forward_diag_mask_f32(
  9665. const struct ggml_compute_params * params,
  9666. struct ggml_tensor * dst,
  9667. const float value) {
  9668. const struct ggml_tensor * src0 = dst->src[0];
  9669. const int ith = params->ith;
  9670. const int nth = params->nth;
  9671. const int n_past = ((int32_t *) dst->op_params)[0];
  9672. const bool inplace = src0->data == dst->data;
  9673. GGML_ASSERT(n_past >= 0);
  9674. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9675. if (ith != 0) {
  9676. return;
  9677. }
  9678. // memcpy needs to be synchronized across threads to avoid race conditions.
  9679. // => do it in INIT phase
  9680. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9681. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9682. memcpy(
  9683. ((char *) dst->data),
  9684. ((char *) src0->data),
  9685. ggml_nbytes(dst));
  9686. }
  9687. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9688. return;
  9689. }
  9690. // TODO: handle transposed/permuted matrices
  9691. const int n = ggml_nrows(src0);
  9692. const int nc = src0->ne[0];
  9693. const int nr = src0->ne[1];
  9694. const int nz = n/nr;
  9695. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9696. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9697. for (int k = 0; k < nz; k++) {
  9698. for (int j = ith; j < nr; j += nth) {
  9699. for (int i = n_past; i < nc; i++) {
  9700. if (i > n_past + j) {
  9701. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9702. }
  9703. }
  9704. }
  9705. }
  9706. }
  9707. static void ggml_compute_forward_diag_mask_inf(
  9708. const struct ggml_compute_params * params,
  9709. struct ggml_tensor * dst) {
  9710. const struct ggml_tensor * src0 = dst->src[0];
  9711. switch (src0->type) {
  9712. case GGML_TYPE_F32:
  9713. {
  9714. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9715. } break;
  9716. default:
  9717. {
  9718. GGML_ASSERT(false);
  9719. } break;
  9720. }
  9721. }
  9722. static void ggml_compute_forward_diag_mask_zero(
  9723. const struct ggml_compute_params * params,
  9724. struct ggml_tensor * dst) {
  9725. const struct ggml_tensor * src0 = dst->src[0];
  9726. switch (src0->type) {
  9727. case GGML_TYPE_F32:
  9728. {
  9729. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9730. } break;
  9731. default:
  9732. {
  9733. GGML_ASSERT(false);
  9734. } break;
  9735. }
  9736. }
  9737. // ggml_compute_forward_soft_max
  9738. static void ggml_compute_forward_soft_max_f32(
  9739. const struct ggml_compute_params * params,
  9740. struct ggml_tensor * dst) {
  9741. const struct ggml_tensor * src0 = dst->src[0];
  9742. const struct ggml_tensor * src1 = dst->src[1];
  9743. const struct ggml_tensor * src2 = dst->src[2];
  9744. assert(ggml_is_contiguous(dst));
  9745. assert(ggml_are_same_shape(src0, dst));
  9746. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9747. return;
  9748. }
  9749. float scale = 1.0f;
  9750. float max_bias = 0.0f;
  9751. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9752. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9753. // TODO: handle transposed/permuted matrices
  9754. const int ith = params->ith;
  9755. const int nth = params->nth;
  9756. GGML_TENSOR_UNARY_OP_LOCALS
  9757. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9758. // TODO: is this supposed to be ceil instead of floor?
  9759. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9760. const uint32_t n_head_kv = ne02;
  9761. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9762. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9763. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9764. const int nc = src0->ne[0];
  9765. const int nr = ggml_nrows(src0);
  9766. // rows per thread
  9767. const int dr = (nr + nth - 1)/nth;
  9768. // row range for this thread
  9769. const int ir0 = dr*ith;
  9770. const int ir1 = MIN(ir0 + dr, nr);
  9771. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9772. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9773. float * pos = src2 ? (float *) src2->data : src0->data;
  9774. for (int i1 = ir0; i1 < ir1; i1++) {
  9775. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9776. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9777. // broadcast the mask across rows
  9778. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9779. ggml_vec_cpy_f32 (nc, wp, sp);
  9780. ggml_vec_scale_f32(nc, wp, scale);
  9781. if (mp) {
  9782. ggml_vec_acc_f32(nc, wp, mp);
  9783. }
  9784. // ALiBi bias
  9785. if (max_bias > 0.0f) {
  9786. const uint32_t h = (i1/ne01)%ne02; // head
  9787. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9788. for (int i = 0; i < nc; i++) {
  9789. wp[i] = wp[i] + slope*pos[i];
  9790. }
  9791. }
  9792. #ifndef NDEBUG
  9793. for (int i = 0; i < nc; ++i) {
  9794. //printf("p[%d] = %f\n", i, p[i]);
  9795. assert(!isnan(wp[i]));
  9796. }
  9797. #endif
  9798. float max = -INFINITY;
  9799. ggml_vec_max_f32(nc, &max, wp);
  9800. ggml_float sum = 0.0;
  9801. uint16_t scvt;
  9802. for (int i = 0; i < nc; i++) {
  9803. if (wp[i] == -INFINITY) {
  9804. dp[i] = 0.0f;
  9805. } else {
  9806. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9807. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9808. memcpy(&scvt, &s, sizeof(scvt));
  9809. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9810. sum += (ggml_float)val;
  9811. dp[i] = val;
  9812. }
  9813. }
  9814. assert(sum > 0.0);
  9815. sum = 1.0/sum;
  9816. ggml_vec_scale_f32(nc, dp, sum);
  9817. #ifndef NDEBUG
  9818. for (int i = 0; i < nc; ++i) {
  9819. assert(!isnan(dp[i]));
  9820. assert(!isinf(dp[i]));
  9821. }
  9822. #endif
  9823. }
  9824. }
  9825. static void ggml_compute_forward_soft_max(
  9826. const struct ggml_compute_params * params,
  9827. struct ggml_tensor * dst) {
  9828. const struct ggml_tensor * src0 = dst->src[0];
  9829. switch (src0->type) {
  9830. case GGML_TYPE_F32:
  9831. {
  9832. ggml_compute_forward_soft_max_f32(params, dst);
  9833. } break;
  9834. default:
  9835. {
  9836. GGML_ASSERT(false);
  9837. } break;
  9838. }
  9839. }
  9840. // ggml_compute_forward_soft_max_back
  9841. static void ggml_compute_forward_soft_max_back_f32(
  9842. const struct ggml_compute_params * params,
  9843. struct ggml_tensor * dst) {
  9844. const struct ggml_tensor * src0 = dst->src[0];
  9845. const struct ggml_tensor * src1 = dst->src[1];
  9846. GGML_ASSERT(ggml_is_contiguous(src0));
  9847. GGML_ASSERT(ggml_is_contiguous(src1));
  9848. GGML_ASSERT(ggml_is_contiguous(dst));
  9849. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9850. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9851. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9852. return;
  9853. }
  9854. // TODO: handle transposed/permuted matrices
  9855. const int ith = params->ith;
  9856. const int nth = params->nth;
  9857. const int nc = src0->ne[0];
  9858. const int nr = ggml_nrows(src0);
  9859. // rows per thread
  9860. const int dr = (nr + nth - 1)/nth;
  9861. // row range for this thread
  9862. const int ir0 = dr*ith;
  9863. const int ir1 = MIN(ir0 + dr, nr);
  9864. for (int i1 = ir0; i1 < ir1; i1++) {
  9865. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9866. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9867. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9868. #ifndef NDEBUG
  9869. for (int i = 0; i < nc; ++i) {
  9870. //printf("p[%d] = %f\n", i, p[i]);
  9871. assert(!isnan(dy[i]));
  9872. assert(!isnan(y[i]));
  9873. }
  9874. #endif
  9875. // Jii = yi - yi*yi
  9876. // Jij = -yi*yj
  9877. // J = diag(y)-y.T*y
  9878. // dx = J * dy
  9879. // dxk = sum_i(Jki * dyi)
  9880. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9881. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9882. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9883. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9884. // dxk = -yk * dot(y, dy) + yk*dyk
  9885. // dxk = yk * (- dot(y, dy) + dyk)
  9886. // dxk = yk * (dyk - dot(y, dy))
  9887. //
  9888. // post-order:
  9889. // dot_y_dy := dot(y, dy)
  9890. // dx := dy
  9891. // dx := dx - dot_y_dy
  9892. // dx := dx * y
  9893. // linear runtime, no additional memory
  9894. float dot_y_dy = 0;
  9895. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9896. ggml_vec_cpy_f32 (nc, dx, dy);
  9897. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9898. ggml_vec_mul_f32 (nc, dx, dx, y);
  9899. #ifndef NDEBUG
  9900. for (int i = 0; i < nc; ++i) {
  9901. assert(!isnan(dx[i]));
  9902. assert(!isinf(dx[i]));
  9903. }
  9904. #endif
  9905. }
  9906. }
  9907. static void ggml_compute_forward_soft_max_back(
  9908. const struct ggml_compute_params * params,
  9909. struct ggml_tensor * dst) {
  9910. const struct ggml_tensor * src0 = dst->src[0];
  9911. switch (src0->type) {
  9912. case GGML_TYPE_F32:
  9913. {
  9914. ggml_compute_forward_soft_max_back_f32(params, dst);
  9915. } break;
  9916. default:
  9917. {
  9918. GGML_ASSERT(false);
  9919. } break;
  9920. }
  9921. }
  9922. // ggml_compute_forward_alibi
  9923. static void ggml_compute_forward_alibi_f32(
  9924. const struct ggml_compute_params * params,
  9925. struct ggml_tensor * dst) {
  9926. const struct ggml_tensor * src0 = dst->src[0];
  9927. assert(params->ith == 0);
  9928. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9929. return;
  9930. }
  9931. //const int n_past = ((int32_t *) dst->op_params)[0];
  9932. const int n_head = ((int32_t *) dst->op_params)[1];
  9933. float max_bias;
  9934. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9935. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9936. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9937. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9938. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9939. const int64_t n = ggml_nrows(src0);
  9940. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9941. const size_t nb0 = src0->nb[0];
  9942. const size_t nb1 = src0->nb[1];
  9943. const size_t nb2 = src0->nb[2];
  9944. //const int nb3 = src0->nb[3];
  9945. GGML_ASSERT(nb0 == sizeof(float));
  9946. GGML_ASSERT(n_head == ne2);
  9947. // add alibi to src0 (KQ_scaled)
  9948. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9949. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9950. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9951. for (int64_t k = 0; k < ne2_ne3; k++) {
  9952. // TODO: k*nb2 or k*nb3
  9953. float m_k;
  9954. if (k < n_heads_log2_floor) {
  9955. m_k = powf(m0, k + 1);
  9956. } else {
  9957. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9958. }
  9959. for (int64_t i = 0; i < ne0; i++) {
  9960. for (int64_t j = 0; j < ne1; j++) {
  9961. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9962. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9963. pdst[0] = i * m_k + src[0];
  9964. }
  9965. }
  9966. }
  9967. }
  9968. static void ggml_compute_forward_alibi_f16(
  9969. const struct ggml_compute_params * params,
  9970. struct ggml_tensor * dst) {
  9971. const struct ggml_tensor * src0 = dst->src[0];
  9972. assert(params->ith == 0);
  9973. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9974. return;
  9975. }
  9976. //const int n_past = ((int32_t *) dst->op_params)[0];
  9977. const int n_head = ((int32_t *) dst->op_params)[1];
  9978. float max_bias;
  9979. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9980. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9981. const int ne1 = src0->ne[1]; // seq_len_without_past
  9982. const int ne2 = src0->ne[2]; // n_head -> this is k
  9983. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9984. const int n = ggml_nrows(src0);
  9985. const int ne2_ne3 = n/ne1; // ne2*ne3
  9986. const int nb0 = src0->nb[0];
  9987. const int nb1 = src0->nb[1];
  9988. const int nb2 = src0->nb[2];
  9989. //const int nb3 = src0->nb[3];
  9990. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9991. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9992. GGML_ASSERT(n_head == ne2);
  9993. // add alibi to src0 (KQ_scaled)
  9994. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9995. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9996. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9997. for (int k = 0; k < ne2_ne3; k++) {
  9998. // TODO: k*nb2 or k*nb3
  9999. float m_k;
  10000. if (k < n_heads_log2_floor) {
  10001. m_k = powf(m0, k + 1);
  10002. } else {
  10003. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10004. }
  10005. for (int i = 0; i < ne0; i++) {
  10006. for (int j = 0; j < ne1; j++) {
  10007. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10008. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10009. // we return F32
  10010. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10011. }
  10012. }
  10013. }
  10014. }
  10015. static void ggml_compute_forward_alibi(
  10016. const struct ggml_compute_params * params,
  10017. struct ggml_tensor * dst) {
  10018. const struct ggml_tensor * src0 = dst->src[0];
  10019. switch (src0->type) {
  10020. case GGML_TYPE_F16:
  10021. {
  10022. ggml_compute_forward_alibi_f16(params, dst);
  10023. } break;
  10024. case GGML_TYPE_F32:
  10025. {
  10026. ggml_compute_forward_alibi_f32(params, dst);
  10027. } break;
  10028. case GGML_TYPE_Q4_0:
  10029. case GGML_TYPE_Q4_1:
  10030. case GGML_TYPE_Q5_0:
  10031. case GGML_TYPE_Q5_1:
  10032. case GGML_TYPE_Q8_0:
  10033. case GGML_TYPE_Q8_1:
  10034. case GGML_TYPE_Q2_K:
  10035. case GGML_TYPE_Q3_K:
  10036. case GGML_TYPE_Q4_K:
  10037. case GGML_TYPE_Q5_K:
  10038. case GGML_TYPE_Q6_K:
  10039. case GGML_TYPE_IQ2_XXS:
  10040. case GGML_TYPE_IQ2_XS:
  10041. case GGML_TYPE_IQ3_XXS:
  10042. case GGML_TYPE_IQ1_S:
  10043. case GGML_TYPE_IQ4_NL:
  10044. case GGML_TYPE_IQ4_XS:
  10045. case GGML_TYPE_IQ3_S:
  10046. case GGML_TYPE_IQ2_S:
  10047. case GGML_TYPE_Q8_K:
  10048. case GGML_TYPE_I8:
  10049. case GGML_TYPE_I16:
  10050. case GGML_TYPE_I32:
  10051. case GGML_TYPE_COUNT:
  10052. {
  10053. GGML_ASSERT(false);
  10054. } break;
  10055. }
  10056. }
  10057. // ggml_compute_forward_clamp
  10058. static void ggml_compute_forward_clamp_f32(
  10059. const struct ggml_compute_params * params,
  10060. struct ggml_tensor * dst) {
  10061. const struct ggml_tensor * src0 = dst->src[0];
  10062. assert(params->ith == 0);
  10063. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10064. return;
  10065. }
  10066. float min;
  10067. float max;
  10068. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10069. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10070. const int ith = params->ith;
  10071. const int nth = params->nth;
  10072. const int n = ggml_nrows(src0);
  10073. const int nc = src0->ne[0];
  10074. const size_t nb00 = src0->nb[0];
  10075. const size_t nb01 = src0->nb[1];
  10076. const size_t nb0 = dst->nb[0];
  10077. const size_t nb1 = dst->nb[1];
  10078. GGML_ASSERT( nb0 == sizeof(float));
  10079. GGML_ASSERT(nb00 == sizeof(float));
  10080. for (int j = ith; j < n; j += nth) {
  10081. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10082. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10083. for (int i = 0; i < nc; i++) {
  10084. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10085. }
  10086. }
  10087. }
  10088. static void ggml_compute_forward_clamp(
  10089. const struct ggml_compute_params * params,
  10090. struct ggml_tensor * dst) {
  10091. const struct ggml_tensor * src0 = dst->src[0];
  10092. switch (src0->type) {
  10093. case GGML_TYPE_F32:
  10094. {
  10095. ggml_compute_forward_clamp_f32(params, dst);
  10096. } break;
  10097. case GGML_TYPE_F16:
  10098. case GGML_TYPE_Q4_0:
  10099. case GGML_TYPE_Q4_1:
  10100. case GGML_TYPE_Q5_0:
  10101. case GGML_TYPE_Q5_1:
  10102. case GGML_TYPE_Q8_0:
  10103. case GGML_TYPE_Q8_1:
  10104. case GGML_TYPE_Q2_K:
  10105. case GGML_TYPE_Q3_K:
  10106. case GGML_TYPE_Q4_K:
  10107. case GGML_TYPE_Q5_K:
  10108. case GGML_TYPE_Q6_K:
  10109. case GGML_TYPE_IQ2_XXS:
  10110. case GGML_TYPE_IQ2_XS:
  10111. case GGML_TYPE_IQ3_XXS:
  10112. case GGML_TYPE_IQ1_S:
  10113. case GGML_TYPE_IQ4_NL:
  10114. case GGML_TYPE_IQ4_XS:
  10115. case GGML_TYPE_IQ3_S:
  10116. case GGML_TYPE_IQ2_S:
  10117. case GGML_TYPE_Q8_K:
  10118. case GGML_TYPE_I8:
  10119. case GGML_TYPE_I16:
  10120. case GGML_TYPE_I32:
  10121. case GGML_TYPE_COUNT:
  10122. {
  10123. GGML_ASSERT(false);
  10124. } break;
  10125. }
  10126. }
  10127. // ggml_compute_forward_rope
  10128. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10129. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10130. return 1 - MIN(1, MAX(0, y));
  10131. }
  10132. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10133. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10134. static void rope_yarn(
  10135. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10136. float * cos_theta, float * sin_theta
  10137. ) {
  10138. // Get n-d rotational scaling corrected for extrapolation
  10139. float theta_interp = freq_scale * theta_extrap;
  10140. float theta = theta_interp;
  10141. if (ext_factor != 0.0f) {
  10142. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10143. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10144. // Get n-d magnitude scaling corrected for interpolation
  10145. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10146. }
  10147. *cos_theta = cosf(theta) * mscale;
  10148. *sin_theta = sinf(theta) * mscale;
  10149. }
  10150. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10151. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10152. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10153. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10154. }
  10155. static void ggml_rope_cache_init(
  10156. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10157. float * cache, float sin_sign, float theta_scale
  10158. ) {
  10159. float theta = theta_base;
  10160. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10161. rope_yarn(
  10162. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10163. );
  10164. cache[i0 + 1] *= sin_sign;
  10165. theta *= theta_scale;
  10166. }
  10167. }
  10168. GGML_CALL void ggml_rope_yarn_corr_dims(
  10169. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10170. ) {
  10171. // start and end correction dims
  10172. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10173. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10174. dims[0] = MAX(0, start);
  10175. dims[1] = MIN(n_dims - 1, end);
  10176. }
  10177. static void ggml_compute_forward_rope_f32(
  10178. const struct ggml_compute_params * params,
  10179. struct ggml_tensor * dst,
  10180. const bool forward) {
  10181. const struct ggml_tensor * src0 = dst->src[0];
  10182. const struct ggml_tensor * src1 = dst->src[1];
  10183. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10184. return;
  10185. }
  10186. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10187. // these two only relevant for xPos RoPE:
  10188. float xpos_base;
  10189. bool xpos_down;
  10190. //const int n_past = ((int32_t *) dst->op_params)[0];
  10191. const int n_dims = ((int32_t *) dst->op_params)[1];
  10192. const int mode = ((int32_t *) dst->op_params)[2];
  10193. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10194. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10195. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10196. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10197. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10198. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10199. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10200. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10201. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10202. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10203. GGML_TENSOR_UNARY_OP_LOCALS
  10204. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10205. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10206. GGML_ASSERT(nb00 == sizeof(float));
  10207. const int ith = params->ith;
  10208. const int nth = params->nth;
  10209. const int nr = ggml_nrows(dst);
  10210. GGML_ASSERT(n_dims <= ne0);
  10211. GGML_ASSERT(n_dims % 2 == 0);
  10212. // rows per thread
  10213. const int dr = (nr + nth - 1)/nth;
  10214. // row range for this thread
  10215. const int ir0 = dr*ith;
  10216. const int ir1 = MIN(ir0 + dr, nr);
  10217. // row index used to determine which thread to use
  10218. int ir = 0;
  10219. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10220. const float inv_ndims = -1.f/n_dims;
  10221. float corr_dims[2];
  10222. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10223. const bool is_neox = mode & 2;
  10224. const bool is_glm = mode & 4;
  10225. // backward process uses inverse rotation by cos and sin.
  10226. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10227. // this essentially just switches the sign of sin.
  10228. const float sin_sign = forward ? 1.0f : -1.0f;
  10229. const int32_t * pos = (const int32_t *) src1->data;
  10230. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10231. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10232. const int64_t p = pos[i2];
  10233. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10234. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10235. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10236. }
  10237. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10238. if (ir++ < ir0) continue;
  10239. if (ir > ir1) break;
  10240. float theta_base = (float)p;
  10241. if (is_glm) {
  10242. theta_base = MIN(p, n_ctx - 2);
  10243. float block_theta = MAX(p - (n_ctx - 2), 0);
  10244. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10245. const float cos_theta = cosf(theta_base);
  10246. const float sin_theta = sinf(theta_base) * sin_sign;
  10247. const float cos_block_theta = cosf(block_theta);
  10248. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10249. theta_base *= theta_scale;
  10250. block_theta *= theta_scale;
  10251. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10252. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10253. const float x0 = src[0];
  10254. const float x1 = src[n_dims/2];
  10255. const float x2 = src[n_dims];
  10256. const float x3 = src[n_dims/2*3];
  10257. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10258. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10259. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10260. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10261. }
  10262. } else if (!is_neox) {
  10263. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10264. const float cos_theta = cache[i0 + 0];
  10265. const float sin_theta = cache[i0 + 1];
  10266. // zeta scaling for xPos only:
  10267. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10268. if (xpos_down) zeta = 1.0f / zeta;
  10269. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10270. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10271. const float x0 = src[0];
  10272. const float x1 = src[1];
  10273. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10274. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10275. }
  10276. } else {
  10277. // TODO: this might be wrong for ne0 != n_dims - need double check
  10278. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10279. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10280. theta_base *= freq_scale;
  10281. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10282. if (ic < n_dims) {
  10283. const int64_t ib = 0;
  10284. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10285. float cur_rot = inv_ndims * ic - ib;
  10286. float cos_theta, sin_theta;
  10287. rope_yarn(
  10288. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10289. &cos_theta, &sin_theta
  10290. );
  10291. sin_theta *= sin_sign;
  10292. theta_base *= theta_scale;
  10293. const int64_t i0 = ib*n_dims + ic/2;
  10294. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10295. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10296. const float x0 = src[0];
  10297. const float x1 = src[n_dims/2];
  10298. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10299. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10300. } else {
  10301. const int64_t i0 = ic;
  10302. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10303. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10304. dst_data[0] = src[0];
  10305. dst_data[1] = src[1];
  10306. }
  10307. }
  10308. }
  10309. }
  10310. }
  10311. }
  10312. }
  10313. static void ggml_compute_forward_rope_f16(
  10314. const struct ggml_compute_params * params,
  10315. struct ggml_tensor * dst,
  10316. const bool forward) {
  10317. const struct ggml_tensor * src0 = dst->src[0];
  10318. const struct ggml_tensor * src1 = dst->src[1];
  10319. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10320. return;
  10321. }
  10322. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10323. //const int n_past = ((int32_t *) dst->op_params)[0];
  10324. const int n_dims = ((int32_t *) dst->op_params)[1];
  10325. const int mode = ((int32_t *) dst->op_params)[2];
  10326. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10327. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10328. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10329. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10330. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10331. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10332. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10333. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10334. GGML_TENSOR_UNARY_OP_LOCALS
  10335. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10336. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10337. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10338. const int ith = params->ith;
  10339. const int nth = params->nth;
  10340. const int nr = ggml_nrows(dst);
  10341. GGML_ASSERT(n_dims <= ne0);
  10342. GGML_ASSERT(n_dims % 2 == 0);
  10343. // rows per thread
  10344. const int dr = (nr + nth - 1)/nth;
  10345. // row range for this thread
  10346. const int ir0 = dr*ith;
  10347. const int ir1 = MIN(ir0 + dr, nr);
  10348. // row index used to determine which thread to use
  10349. int ir = 0;
  10350. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10351. const float inv_ndims = -1.f/n_dims;
  10352. float corr_dims[2];
  10353. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10354. const bool is_neox = mode & 2;
  10355. const bool is_glm = mode & 4;
  10356. // backward process uses inverse rotation by cos and sin.
  10357. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10358. // this essentially just switches the sign of sin.
  10359. const float sin_sign = forward ? 1.0f : -1.0f;
  10360. const int32_t * pos = (const int32_t *) src1->data;
  10361. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10362. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10363. const int64_t p = pos[i2];
  10364. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10365. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10366. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10367. }
  10368. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10369. if (ir++ < ir0) continue;
  10370. if (ir > ir1) break;
  10371. float theta_base = (float)p;
  10372. if (is_glm) {
  10373. theta_base = MIN(p, n_ctx - 2);
  10374. float block_theta = MAX(p - (n_ctx - 2), 0);
  10375. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10376. const float cos_theta = cosf(theta_base);
  10377. const float sin_theta = sinf(theta_base) * sin_sign;
  10378. const float cos_block_theta = cosf(block_theta);
  10379. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10380. theta_base *= theta_scale;
  10381. block_theta *= theta_scale;
  10382. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10383. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10384. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10385. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10386. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10387. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10388. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10389. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10390. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10391. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10392. }
  10393. } else if (!is_neox) {
  10394. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10395. const float cos_theta = cache[i0 + 0];
  10396. const float sin_theta = cache[i0 + 1];
  10397. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10398. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10399. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10400. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10401. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10402. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10403. }
  10404. } else {
  10405. // TODO: this might be wrong for ne0 != n_dims - need double check
  10406. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10407. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10408. theta_base *= freq_scale;
  10409. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10410. if (ic < n_dims) {
  10411. const int64_t ib = 0;
  10412. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10413. float cur_rot = inv_ndims * ic - ib;
  10414. float cos_theta, sin_theta;
  10415. rope_yarn(
  10416. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10417. &cos_theta, &sin_theta
  10418. );
  10419. sin_theta *= sin_sign;
  10420. theta_base *= theta_scale;
  10421. const int64_t i0 = ib*n_dims + ic/2;
  10422. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10423. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10424. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10425. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10426. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10427. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10428. } else {
  10429. const int64_t i0 = ic;
  10430. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10431. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10432. dst_data[0] = src[0];
  10433. dst_data[1] = src[1];
  10434. }
  10435. }
  10436. }
  10437. }
  10438. }
  10439. }
  10440. }
  10441. static void ggml_compute_forward_rope(
  10442. const struct ggml_compute_params * params,
  10443. struct ggml_tensor * dst) {
  10444. const struct ggml_tensor * src0 = dst->src[0];
  10445. switch (src0->type) {
  10446. case GGML_TYPE_F16:
  10447. {
  10448. ggml_compute_forward_rope_f16(params, dst, true);
  10449. } break;
  10450. case GGML_TYPE_F32:
  10451. {
  10452. ggml_compute_forward_rope_f32(params, dst, true);
  10453. } break;
  10454. default:
  10455. {
  10456. GGML_ASSERT(false);
  10457. } break;
  10458. }
  10459. }
  10460. // ggml_compute_forward_rope_back
  10461. static void ggml_compute_forward_rope_back(
  10462. const struct ggml_compute_params * params,
  10463. struct ggml_tensor * dst) {
  10464. const struct ggml_tensor * src0 = dst->src[0];
  10465. switch (src0->type) {
  10466. case GGML_TYPE_F16:
  10467. {
  10468. ggml_compute_forward_rope_f16(params, dst, false);
  10469. } break;
  10470. case GGML_TYPE_F32:
  10471. {
  10472. ggml_compute_forward_rope_f32(params, dst, false);
  10473. } break;
  10474. default:
  10475. {
  10476. GGML_ASSERT(false);
  10477. } break;
  10478. }
  10479. }
  10480. // ggml_compute_forward_conv_transpose_1d
  10481. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10482. const struct ggml_compute_params * params,
  10483. struct ggml_tensor * dst) {
  10484. const struct ggml_tensor * src0 = dst->src[0];
  10485. const struct ggml_tensor * src1 = dst->src[1];
  10486. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10487. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10488. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10489. int64_t t0 = ggml_perf_time_us();
  10490. UNUSED(t0);
  10491. GGML_TENSOR_BINARY_OP_LOCALS
  10492. const int ith = params->ith;
  10493. const int nth = params->nth;
  10494. const int nk = ne00*ne01*ne02;
  10495. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10496. GGML_ASSERT(nb10 == sizeof(float));
  10497. if (params->type == GGML_TASK_TYPE_INIT) {
  10498. if (ith != 0) {
  10499. return;
  10500. }
  10501. memset(params->wdata, 0, params->wsize);
  10502. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10503. {
  10504. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10505. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10506. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10507. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10508. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10509. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10510. dst_data[i00*ne02 + i02] = src[i00];
  10511. }
  10512. }
  10513. }
  10514. }
  10515. // permute source data (src1) from (L x Cin) to (Cin x L)
  10516. {
  10517. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10518. ggml_fp16_t * dst_data = wdata;
  10519. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10520. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10521. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10522. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10523. }
  10524. }
  10525. }
  10526. // need to zero dst since we are accumulating into it
  10527. memset(dst->data, 0, ggml_nbytes(dst));
  10528. return;
  10529. }
  10530. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10531. return;
  10532. }
  10533. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10534. // total rows in dst
  10535. const int nr = ne1;
  10536. // rows per thread
  10537. const int dr = (nr + nth - 1)/nth;
  10538. // row range for this thread
  10539. const int ir0 = dr*ith;
  10540. const int ir1 = MIN(ir0 + dr, nr);
  10541. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10542. ggml_fp16_t * const wdata_src = wdata + nk;
  10543. for (int i1 = ir0; i1 < ir1; i1++) {
  10544. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10545. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10546. for (int i10 = 0; i10 < ne10; i10++) {
  10547. const int i1n = i10*ne11;
  10548. for (int i00 = 0; i00 < ne00; i00++) {
  10549. float v = 0;
  10550. ggml_vec_dot_f16(ne02, &v, 0,
  10551. (ggml_fp16_t *) wdata_src + i1n, 0,
  10552. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10553. dst_data[i10*s0 + i00] += v;
  10554. }
  10555. }
  10556. }
  10557. }
  10558. static void ggml_compute_forward_conv_transpose_1d_f32(
  10559. const struct ggml_compute_params * params,
  10560. struct ggml_tensor * dst) {
  10561. const struct ggml_tensor * src0 = dst->src[0];
  10562. const struct ggml_tensor * src1 = dst->src[1];
  10563. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10564. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10565. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10566. int64_t t0 = ggml_perf_time_us();
  10567. UNUSED(t0);
  10568. GGML_TENSOR_BINARY_OP_LOCALS
  10569. const int ith = params->ith;
  10570. const int nth = params->nth;
  10571. const int nk = ne00*ne01*ne02;
  10572. GGML_ASSERT(nb00 == sizeof(float));
  10573. GGML_ASSERT(nb10 == sizeof(float));
  10574. if (params->type == GGML_TASK_TYPE_INIT) {
  10575. if (ith != 0) {
  10576. return;
  10577. }
  10578. memset(params->wdata, 0, params->wsize);
  10579. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10580. {
  10581. float * const wdata = (float *) params->wdata + 0;
  10582. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10583. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10584. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10585. float * dst_data = wdata + i01*ne00*ne02;
  10586. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10587. dst_data[i00*ne02 + i02] = src[i00];
  10588. }
  10589. }
  10590. }
  10591. }
  10592. // prepare source data (src1)
  10593. {
  10594. float * const wdata = (float *) params->wdata + nk;
  10595. float * dst_data = wdata;
  10596. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10597. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10598. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10599. dst_data[i10*ne11 + i11] = src[i10];
  10600. }
  10601. }
  10602. }
  10603. // need to zero dst since we are accumulating into it
  10604. memset(dst->data, 0, ggml_nbytes(dst));
  10605. return;
  10606. }
  10607. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10608. return;
  10609. }
  10610. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10611. // total rows in dst
  10612. const int nr = ne1;
  10613. // rows per thread
  10614. const int dr = (nr + nth - 1)/nth;
  10615. // row range for this thread
  10616. const int ir0 = dr*ith;
  10617. const int ir1 = MIN(ir0 + dr, nr);
  10618. float * const wdata = (float *) params->wdata + 0;
  10619. float * const wdata_src = wdata + nk;
  10620. for (int i1 = ir0; i1 < ir1; i1++) {
  10621. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10622. float * wdata_kernel = wdata + i1*ne02*ne00;
  10623. for (int i10 = 0; i10 < ne10; i10++) {
  10624. const int i1n = i10*ne11;
  10625. for (int i00 = 0; i00 < ne00; i00++) {
  10626. float v = 0;
  10627. ggml_vec_dot_f32(ne02, &v, 0,
  10628. wdata_src + i1n, 0,
  10629. wdata_kernel + i00*ne02, 0, 1);
  10630. dst_data[i10*s0 + i00] += v;
  10631. }
  10632. }
  10633. }
  10634. }
  10635. static void ggml_compute_forward_conv_transpose_1d(
  10636. const struct ggml_compute_params * params,
  10637. struct ggml_tensor * dst) {
  10638. const struct ggml_tensor * src0 = dst->src[0];
  10639. switch (src0->type) {
  10640. case GGML_TYPE_F16:
  10641. {
  10642. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10643. } break;
  10644. case GGML_TYPE_F32:
  10645. {
  10646. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10647. } break;
  10648. default:
  10649. {
  10650. GGML_ASSERT(false);
  10651. } break;
  10652. }
  10653. }
  10654. // src0: kernel [OC, IC, KH, KW]
  10655. // src1: image [N, IC, IH, IW]
  10656. // dst: result [N, OH, OW, IC*KH*KW]
  10657. static void ggml_compute_forward_im2col_f32(
  10658. const struct ggml_compute_params * params,
  10659. struct ggml_tensor * dst) {
  10660. const struct ggml_tensor * src0 = dst->src[0];
  10661. const struct ggml_tensor * src1 = dst->src[1];
  10662. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10663. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10664. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10665. int64_t t0 = ggml_perf_time_us();
  10666. UNUSED(t0);
  10667. GGML_TENSOR_BINARY_OP_LOCALS;
  10668. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10669. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10670. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10671. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10672. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10673. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10674. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10675. const int ith = params->ith;
  10676. const int nth = params->nth;
  10677. const int64_t N = is_2D ? ne13 : ne12;
  10678. const int64_t IC = is_2D ? ne12 : ne11;
  10679. const int64_t IH = is_2D ? ne11 : 1;
  10680. const int64_t IW = ne10;
  10681. const int64_t KH = is_2D ? ne01 : 1;
  10682. const int64_t KW = ne00;
  10683. const int64_t OH = is_2D ? ne2 : 1;
  10684. const int64_t OW = ne1;
  10685. int ofs0 = is_2D ? nb13 : nb12;
  10686. int ofs1 = is_2D ? nb12 : nb11;
  10687. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10688. GGML_ASSERT(nb10 == sizeof(float));
  10689. if (params->type == GGML_TASK_TYPE_INIT) {
  10690. return;
  10691. }
  10692. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10693. return;
  10694. }
  10695. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10696. {
  10697. float * const wdata = (float *) dst->data;
  10698. for (int64_t in = 0; in < N; in++) {
  10699. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10700. for (int64_t iow = 0; iow < OW; iow++) {
  10701. for (int64_t iic = ith; iic < IC; iic += nth) {
  10702. // micro kernel
  10703. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10704. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10705. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10706. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10707. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10708. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10709. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10710. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10711. } else {
  10712. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10713. }
  10714. }
  10715. }
  10716. }
  10717. }
  10718. }
  10719. }
  10720. }
  10721. }
  10722. // src0: kernel [OC, IC, KH, KW]
  10723. // src1: image [N, IC, IH, IW]
  10724. // dst: result [N, OH, OW, IC*KH*KW]
  10725. static void ggml_compute_forward_im2col_f16(
  10726. const struct ggml_compute_params * params,
  10727. struct ggml_tensor * dst) {
  10728. const struct ggml_tensor * src0 = dst->src[0];
  10729. const struct ggml_tensor * src1 = dst->src[1];
  10730. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10731. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10732. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10733. int64_t t0 = ggml_perf_time_us();
  10734. UNUSED(t0);
  10735. GGML_TENSOR_BINARY_OP_LOCALS;
  10736. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10737. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10738. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10739. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10740. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10741. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10742. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10743. const int ith = params->ith;
  10744. const int nth = params->nth;
  10745. const int64_t N = is_2D ? ne13 : ne12;
  10746. const int64_t IC = is_2D ? ne12 : ne11;
  10747. const int64_t IH = is_2D ? ne11 : 1;
  10748. const int64_t IW = ne10;
  10749. const int64_t KH = is_2D ? ne01 : 1;
  10750. const int64_t KW = ne00;
  10751. const int64_t OH = is_2D ? ne2 : 1;
  10752. const int64_t OW = ne1;
  10753. int ofs0 = is_2D ? nb13 : nb12;
  10754. int ofs1 = is_2D ? nb12 : nb11;
  10755. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10756. GGML_ASSERT(nb10 == sizeof(float));
  10757. if (params->type == GGML_TASK_TYPE_INIT) {
  10758. return;
  10759. }
  10760. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10761. return;
  10762. }
  10763. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10764. {
  10765. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10766. for (int64_t in = 0; in < N; in++) {
  10767. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10768. for (int64_t iow = 0; iow < OW; iow++) {
  10769. for (int64_t iic = ith; iic < IC; iic += nth) {
  10770. // micro kernel
  10771. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10772. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10773. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10774. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10775. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10776. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10777. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10778. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10779. } else {
  10780. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10781. }
  10782. }
  10783. }
  10784. }
  10785. }
  10786. }
  10787. }
  10788. }
  10789. }
  10790. static void ggml_compute_forward_im2col(
  10791. const struct ggml_compute_params * params,
  10792. struct ggml_tensor * dst) {
  10793. switch (dst->type) {
  10794. case GGML_TYPE_F16:
  10795. {
  10796. ggml_compute_forward_im2col_f16(params, dst);
  10797. } break;
  10798. case GGML_TYPE_F32:
  10799. {
  10800. ggml_compute_forward_im2col_f32(params, dst);
  10801. } break;
  10802. default:
  10803. {
  10804. GGML_ASSERT(false);
  10805. } break;
  10806. }
  10807. }
  10808. // ggml_compute_forward_conv_transpose_2d
  10809. static void ggml_compute_forward_conv_transpose_2d(
  10810. const struct ggml_compute_params * params,
  10811. struct ggml_tensor * dst) {
  10812. const struct ggml_tensor * src0 = dst->src[0];
  10813. const struct ggml_tensor * src1 = dst->src[1];
  10814. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10815. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10816. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10817. int64_t t0 = ggml_perf_time_us();
  10818. UNUSED(t0);
  10819. GGML_TENSOR_BINARY_OP_LOCALS
  10820. const int ith = params->ith;
  10821. const int nth = params->nth;
  10822. const int nk = ne00*ne01*ne02*ne03;
  10823. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10824. GGML_ASSERT(nb10 == sizeof(float));
  10825. if (params->type == GGML_TASK_TYPE_INIT) {
  10826. if (ith != 0) {
  10827. return;
  10828. }
  10829. memset(params->wdata, 0, params->wsize);
  10830. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10831. {
  10832. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10833. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10834. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10835. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10836. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10837. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10838. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10839. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10840. }
  10841. }
  10842. }
  10843. }
  10844. }
  10845. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10846. {
  10847. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10848. for (int i12 = 0; i12 < ne12; i12++) {
  10849. for (int i11 = 0; i11 < ne11; i11++) {
  10850. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10851. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10852. for (int i10 = 0; i10 < ne10; i10++) {
  10853. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10854. }
  10855. }
  10856. }
  10857. }
  10858. memset(dst->data, 0, ggml_nbytes(dst));
  10859. return;
  10860. }
  10861. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10862. return;
  10863. }
  10864. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10865. // total patches in dst
  10866. const int np = ne2;
  10867. // patches per thread
  10868. const int dp = (np + nth - 1)/nth;
  10869. // patch range for this thread
  10870. const int ip0 = dp*ith;
  10871. const int ip1 = MIN(ip0 + dp, np);
  10872. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10873. ggml_fp16_t * const wdata_src = wdata + nk;
  10874. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10875. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10876. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10877. for (int i11 = 0; i11 < ne11; i11++) {
  10878. for (int i10 = 0; i10 < ne10; i10++) {
  10879. const int i1n = i11*ne10*ne12 + i10*ne12;
  10880. for (int i01 = 0; i01 < ne01; i01++) {
  10881. for (int i00 = 0; i00 < ne00; i00++) {
  10882. float v = 0;
  10883. ggml_vec_dot_f16(ne03, &v, 0,
  10884. wdata_src + i1n, 0,
  10885. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10886. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10887. }
  10888. }
  10889. }
  10890. }
  10891. }
  10892. }
  10893. // ggml_compute_forward_pool_1d_sk_p0
  10894. static void ggml_compute_forward_pool_1d_sk_p0(
  10895. const struct ggml_compute_params * params,
  10896. const enum ggml_op_pool op,
  10897. const int k,
  10898. struct ggml_tensor * dst) {
  10899. const struct ggml_tensor * src = dst->src[0];
  10900. assert(src->type == GGML_TYPE_F32);
  10901. assert(params->ith == 0);
  10902. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10903. return;
  10904. }
  10905. const char * cdata = (const char *)src->data;
  10906. const char * const data_end = cdata + ggml_nbytes(src);
  10907. float * drow = (float *)dst->data;
  10908. const int64_t rs = dst->ne[0];
  10909. while (cdata < data_end) {
  10910. const float * const srow = (const float *)cdata;
  10911. int j = 0;
  10912. for (int64_t i = 0; i < rs; ++i) {
  10913. switch (op) {
  10914. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10915. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10916. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10917. }
  10918. for (int ki = 0; ki < k; ++ki) {
  10919. switch (op) {
  10920. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10921. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10922. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10923. }
  10924. ++j;
  10925. }
  10926. switch (op) {
  10927. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10928. case GGML_OP_POOL_MAX: break;
  10929. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10930. }
  10931. }
  10932. cdata += src->nb[1];
  10933. drow += rs;
  10934. }
  10935. }
  10936. // ggml_compute_forward_pool_1d
  10937. static void ggml_compute_forward_pool_1d(
  10938. const struct ggml_compute_params * params,
  10939. struct ggml_tensor * dst) {
  10940. const int32_t * opts = (const int32_t *)dst->op_params;
  10941. enum ggml_op_pool op = opts[0];
  10942. const int k0 = opts[1];
  10943. const int s0 = opts[2];
  10944. const int p0 = opts[3];
  10945. GGML_ASSERT(p0 == 0); // padding not supported
  10946. GGML_ASSERT(k0 == s0); // only s = k supported
  10947. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10948. }
  10949. // ggml_compute_forward_pool_2d
  10950. static void ggml_compute_forward_pool_2d(
  10951. const struct ggml_compute_params * params,
  10952. struct ggml_tensor * dst) {
  10953. const struct ggml_tensor * src = dst->src[0];
  10954. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10955. GGML_ASSERT(params->ith == 0);
  10956. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10957. return;
  10958. }
  10959. const int32_t * opts = (const int32_t *)dst->op_params;
  10960. enum ggml_op_pool op = opts[0];
  10961. const int k0 = opts[1];
  10962. const int k1 = opts[2];
  10963. const int s0 = opts[3];
  10964. const int s1 = opts[4];
  10965. const int p0 = opts[5];
  10966. const int p1 = opts[6];
  10967. const char * cdata = (const char*)src->data;
  10968. const char * const data_end = cdata + ggml_nbytes(src);
  10969. const int64_t px = dst->ne[0];
  10970. const int64_t py = dst->ne[1];
  10971. const int64_t pa = px * py;
  10972. float * dplane = (float *)dst->data;
  10973. const int ka = k0 * k1;
  10974. const int offset0 = -p0;
  10975. const int offset1 = -p1;
  10976. while (cdata < data_end) {
  10977. for (int oy = 0; oy < py; ++oy) {
  10978. float * const drow = dplane + oy * px;
  10979. for (int ox = 0; ox < px; ++ox) {
  10980. float * const out = drow + ox;
  10981. switch (op) {
  10982. case GGML_OP_POOL_AVG: *out = 0; break;
  10983. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10984. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10985. }
  10986. const int ix = offset0 + ox * s0;
  10987. const int iy = offset1 + oy * s1;
  10988. for (int ky = 0; ky < k1; ++ky) {
  10989. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10990. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10991. for (int kx = 0; kx < k0; ++kx) {
  10992. int j = ix + kx;
  10993. if (j < 0 || j >= src->ne[0]) continue;
  10994. switch (op) {
  10995. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10996. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10997. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10998. }
  10999. }
  11000. }
  11001. switch (op) {
  11002. case GGML_OP_POOL_AVG: *out /= ka; break;
  11003. case GGML_OP_POOL_MAX: break;
  11004. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11005. }
  11006. }
  11007. }
  11008. cdata += src->nb[2];
  11009. dplane += pa;
  11010. }
  11011. }
  11012. // ggml_compute_forward_upscale
  11013. static void ggml_compute_forward_upscale_f32(
  11014. const struct ggml_compute_params * params,
  11015. struct ggml_tensor * dst) {
  11016. const struct ggml_tensor * src0 = dst->src[0];
  11017. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11018. return;
  11019. }
  11020. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11021. const int ith = params->ith;
  11022. const int nth = params->nth;
  11023. GGML_TENSOR_UNARY_OP_LOCALS
  11024. const int scale_factor = dst->op_params[0];
  11025. // TODO: optimize
  11026. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11027. const int64_t i03 = i3;
  11028. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11029. const int64_t i02 = i2;
  11030. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11031. const int64_t i01 = i1 / scale_factor;
  11032. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11033. const int64_t i00 = i0 / scale_factor;
  11034. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11035. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11036. *y = *x;
  11037. }
  11038. }
  11039. }
  11040. }
  11041. }
  11042. static void ggml_compute_forward_upscale(
  11043. const struct ggml_compute_params * params,
  11044. struct ggml_tensor * dst) {
  11045. const struct ggml_tensor * src0 = dst->src[0];
  11046. switch (src0->type) {
  11047. case GGML_TYPE_F32:
  11048. {
  11049. ggml_compute_forward_upscale_f32(params, dst);
  11050. } break;
  11051. default:
  11052. {
  11053. GGML_ASSERT(false);
  11054. } break;
  11055. }
  11056. }
  11057. // ggml_compute_forward_pad
  11058. static void ggml_compute_forward_pad_f32(
  11059. const struct ggml_compute_params * params,
  11060. struct ggml_tensor * dst) {
  11061. const struct ggml_tensor * src0 = dst->src[0];
  11062. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11063. return;
  11064. }
  11065. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11066. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11067. const int ith = params->ith;
  11068. const int nth = params->nth;
  11069. GGML_TENSOR_UNARY_OP_LOCALS
  11070. float * dst_ptr = (float *) dst->data;
  11071. // TODO: optimize
  11072. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11073. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11074. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11075. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11076. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11077. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11078. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11079. dst_ptr[dst_idx] = *src_ptr;
  11080. } else {
  11081. dst_ptr[dst_idx] = 0;
  11082. }
  11083. }
  11084. }
  11085. }
  11086. }
  11087. }
  11088. static void ggml_compute_forward_pad(
  11089. const struct ggml_compute_params * params,
  11090. struct ggml_tensor * dst) {
  11091. const struct ggml_tensor * src0 = dst->src[0];
  11092. switch (src0->type) {
  11093. case GGML_TYPE_F32:
  11094. {
  11095. ggml_compute_forward_pad_f32(params, dst);
  11096. } break;
  11097. default:
  11098. {
  11099. GGML_ASSERT(false);
  11100. } break;
  11101. }
  11102. }
  11103. // ggml_compute_forward_arange
  11104. static void ggml_compute_forward_arange_f32(
  11105. const struct ggml_compute_params * params,
  11106. struct ggml_tensor * dst) {
  11107. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11108. return;
  11109. }
  11110. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11111. const int ith = params->ith;
  11112. const int nth = params->nth;
  11113. const float start = ggml_get_op_params_f32(dst, 0);
  11114. const float stop = ggml_get_op_params_f32(dst, 1);
  11115. const float step = ggml_get_op_params_f32(dst, 2);
  11116. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11117. GGML_ASSERT(ggml_nelements(dst) == steps);
  11118. for (int64_t i = ith; i < steps; i+= nth) {
  11119. float value = start + step * i;
  11120. ((float *)dst->data)[i] = value;
  11121. }
  11122. }
  11123. static void ggml_compute_forward_arange(
  11124. const struct ggml_compute_params * params,
  11125. struct ggml_tensor * dst) {
  11126. switch (dst->type) {
  11127. case GGML_TYPE_F32:
  11128. {
  11129. ggml_compute_forward_arange_f32(params, dst);
  11130. } break;
  11131. default:
  11132. {
  11133. GGML_ASSERT(false);
  11134. } break;
  11135. }
  11136. }
  11137. static void ggml_compute_forward_timestep_embedding_f32(
  11138. const struct ggml_compute_params * params,
  11139. struct ggml_tensor * dst) {
  11140. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11141. return;
  11142. }
  11143. const struct ggml_tensor * src0 = dst->src[0];
  11144. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11145. const int ith = params->ith;
  11146. const int nth = params->nth;
  11147. GGML_TENSOR_UNARY_OP_LOCALS
  11148. const int dim = ggml_get_op_params_i32(dst, 0);
  11149. const int max_period = ggml_get_op_params_i32(dst, 1);
  11150. int half = dim / 2;
  11151. for (int64_t i = 0; i < ne00; i++) {
  11152. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11153. for (int64_t j = ith; j < half; j += nth) {
  11154. float timestep = ((float *)src0->data)[i];
  11155. float freq = (float)expf(-logf(max_period) * j / half);
  11156. float arg = timestep * freq;
  11157. embed_data[j] = cosf(arg);
  11158. embed_data[j + half] = sinf(arg);
  11159. }
  11160. if (dim % 2 != 0 && ith == 0) {
  11161. embed_data[dim] = 0.f;
  11162. }
  11163. }
  11164. }
  11165. static void ggml_compute_forward_timestep_embedding(
  11166. const struct ggml_compute_params * params,
  11167. struct ggml_tensor * dst) {
  11168. const struct ggml_tensor * src0 = dst->src[0];
  11169. switch (src0->type) {
  11170. case GGML_TYPE_F32:
  11171. {
  11172. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11173. } break;
  11174. default:
  11175. {
  11176. GGML_ASSERT(false);
  11177. } break;
  11178. }
  11179. }
  11180. // ggml_compute_forward_argsort
  11181. static void ggml_compute_forward_argsort_f32(
  11182. const struct ggml_compute_params * params,
  11183. struct ggml_tensor * dst) {
  11184. const struct ggml_tensor * src0 = dst->src[0];
  11185. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11186. return;
  11187. }
  11188. GGML_TENSOR_UNARY_OP_LOCALS
  11189. GGML_ASSERT(nb0 == sizeof(float));
  11190. const int ith = params->ith;
  11191. const int nth = params->nth;
  11192. const int64_t nr = ggml_nrows(src0);
  11193. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11194. for (int64_t i = ith; i < nr; i += nth) {
  11195. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11196. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11197. for (int64_t j = 0; j < ne0; j++) {
  11198. dst_data[j] = j;
  11199. }
  11200. // C doesn't have a functional sort, so we do a bubble sort instead
  11201. for (int64_t j = 0; j < ne0; j++) {
  11202. for (int64_t k = j + 1; k < ne0; k++) {
  11203. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11204. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11205. int32_t tmp = dst_data[j];
  11206. dst_data[j] = dst_data[k];
  11207. dst_data[k] = tmp;
  11208. }
  11209. }
  11210. }
  11211. }
  11212. }
  11213. static void ggml_compute_forward_argsort(
  11214. const struct ggml_compute_params * params,
  11215. struct ggml_tensor * dst) {
  11216. const struct ggml_tensor * src0 = dst->src[0];
  11217. switch (src0->type) {
  11218. case GGML_TYPE_F32:
  11219. {
  11220. ggml_compute_forward_argsort_f32(params, dst);
  11221. } break;
  11222. default:
  11223. {
  11224. GGML_ASSERT(false);
  11225. } break;
  11226. }
  11227. }
  11228. // ggml_compute_forward_flash_attn
  11229. static void ggml_compute_forward_flash_attn_f32(
  11230. const struct ggml_compute_params * params,
  11231. const bool masked,
  11232. struct ggml_tensor * dst) {
  11233. const struct ggml_tensor * q = dst->src[0];
  11234. const struct ggml_tensor * k = dst->src[1];
  11235. const struct ggml_tensor * v = dst->src[2];
  11236. int64_t t0 = ggml_perf_time_us();
  11237. UNUSED(t0);
  11238. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11239. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11240. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11241. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11242. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11243. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11244. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11245. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11246. const int ith = params->ith;
  11247. const int nth = params->nth;
  11248. const int64_t D = neq0;
  11249. const int64_t N = neq1;
  11250. const int64_t P = nek1 - N;
  11251. const int64_t M = P + N;
  11252. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11253. GGML_ASSERT(ne0 == D);
  11254. GGML_ASSERT(ne1 == N);
  11255. GGML_ASSERT(P >= 0);
  11256. GGML_ASSERT(nbq0 == sizeof(float));
  11257. GGML_ASSERT(nbk0 == sizeof(float));
  11258. GGML_ASSERT(nbv0 == sizeof(float));
  11259. GGML_ASSERT(neq0 == D);
  11260. GGML_ASSERT(nek0 == D);
  11261. GGML_ASSERT(nev1 == D);
  11262. GGML_ASSERT(neq1 == N);
  11263. GGML_ASSERT(nek1 == N + P);
  11264. GGML_ASSERT(nev1 == D);
  11265. // dst cannot be transposed or permuted
  11266. GGML_ASSERT(nb0 == sizeof(float));
  11267. GGML_ASSERT(nb0 <= nb1);
  11268. GGML_ASSERT(nb1 <= nb2);
  11269. GGML_ASSERT(nb2 <= nb3);
  11270. if (params->type == GGML_TASK_TYPE_INIT) {
  11271. return;
  11272. }
  11273. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11274. return;
  11275. }
  11276. // parallelize by q rows using ggml_vec_dot_f32
  11277. // total rows in q
  11278. const int nr = neq1*neq2*neq3;
  11279. // rows per thread
  11280. const int dr = (nr + nth - 1)/nth;
  11281. // row range for this thread
  11282. const int ir0 = dr*ith;
  11283. const int ir1 = MIN(ir0 + dr, nr);
  11284. const float scale = 1.0f/sqrtf(D);
  11285. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11286. for (int ir = ir0; ir < ir1; ++ir) {
  11287. // q indices
  11288. const int iq3 = ir/(neq2*neq1);
  11289. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11290. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11291. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11292. for (int i = M; i < Mup; ++i) {
  11293. S[i] = -INFINITY;
  11294. }
  11295. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11296. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11297. // k indices
  11298. const int ik3 = iq3;
  11299. const int ik2 = iq2 % nek2;
  11300. const int ik1 = ic;
  11301. // S indices
  11302. const int i1 = ik1;
  11303. ggml_vec_dot_f32(neq0,
  11304. S + i1, 0,
  11305. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11306. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11307. }
  11308. // scale
  11309. ggml_vec_scale_f32(masked_begin, S, scale);
  11310. for (int64_t i = masked_begin; i < M; i++) {
  11311. S[i] = -INFINITY;
  11312. }
  11313. // softmax
  11314. // exclude known -INF S[..] values from max and loop
  11315. // dont forget to set their SW values to zero
  11316. {
  11317. float max = -INFINITY;
  11318. ggml_vec_max_f32(masked_begin, &max, S);
  11319. ggml_float sum = 0.0;
  11320. {
  11321. #ifdef GGML_SOFT_MAX_ACCELERATE
  11322. max = -max;
  11323. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11324. vvexpf(S, S, &Mup);
  11325. ggml_vec_sum_f32(Mup, &sum, S);
  11326. #else
  11327. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11328. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11329. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11330. if (i >= masked_begin) {
  11331. break;
  11332. }
  11333. float * SS = S + i;
  11334. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11335. if (i + j >= masked_begin) {
  11336. break;
  11337. } else if (SS[j] == -INFINITY) {
  11338. SS[j] = 0.0f;
  11339. } else {
  11340. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11341. const float val = expf(SS[j] - max);
  11342. #else
  11343. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11344. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11345. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11346. #endif
  11347. sump[j] += (ggml_float)val;
  11348. SS[j] = val;
  11349. }
  11350. }
  11351. }
  11352. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11353. sum += sump[i];
  11354. }
  11355. #endif
  11356. }
  11357. assert(sum > 0.0);
  11358. sum = 1.0/sum;
  11359. ggml_vec_scale_f32(masked_begin, S, sum);
  11360. #ifndef NDEBUG
  11361. for (int i = 0; i < masked_begin; ++i) {
  11362. assert(!isnan(S[i]));
  11363. assert(!isinf(S[i]));
  11364. }
  11365. #endif
  11366. }
  11367. for (int64_t ic = 0; ic < nev1; ++ic) {
  11368. // dst indices
  11369. const int i1 = iq1;
  11370. const int i2 = iq2;
  11371. const int i3 = iq3;
  11372. // v indices
  11373. const int iv2 = iq2 % nev2;
  11374. const int iv3 = iq3;
  11375. ggml_vec_dot_f32(masked_begin,
  11376. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11377. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11378. S, 0, 1);
  11379. }
  11380. }
  11381. }
  11382. static void ggml_compute_forward_flash_attn_f16(
  11383. const struct ggml_compute_params * params,
  11384. const bool masked,
  11385. struct ggml_tensor * dst) {
  11386. const struct ggml_tensor * q = dst->src[0];
  11387. const struct ggml_tensor * k = dst->src[1];
  11388. const struct ggml_tensor * v = dst->src[2];
  11389. int64_t t0 = ggml_perf_time_us();
  11390. UNUSED(t0);
  11391. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11392. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11393. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11394. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11395. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11396. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11397. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11398. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11399. const int ith = params->ith;
  11400. const int nth = params->nth;
  11401. const int64_t D = neq0;
  11402. const int64_t N = neq1;
  11403. const int64_t P = nek1 - N;
  11404. const int64_t M = P + N;
  11405. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11406. GGML_ASSERT(ne0 == D);
  11407. GGML_ASSERT(ne1 == N);
  11408. GGML_ASSERT(P >= 0);
  11409. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11410. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11411. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11412. GGML_ASSERT(neq0 == D);
  11413. GGML_ASSERT(nek0 == D);
  11414. GGML_ASSERT(nev1 == D);
  11415. GGML_ASSERT(neq1 == N);
  11416. GGML_ASSERT(nek1 == N + P);
  11417. GGML_ASSERT(nev1 == D);
  11418. // dst cannot be transposed or permuted
  11419. GGML_ASSERT(nb0 == sizeof(float));
  11420. GGML_ASSERT(nb0 <= nb1);
  11421. GGML_ASSERT(nb1 <= nb2);
  11422. GGML_ASSERT(nb2 <= nb3);
  11423. if (params->type == GGML_TASK_TYPE_INIT) {
  11424. return;
  11425. }
  11426. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11427. return;
  11428. }
  11429. // parallelize by q rows using ggml_vec_dot_f32
  11430. // total rows in q
  11431. const int nr = neq1*neq2*neq3;
  11432. // rows per thread
  11433. const int dr = (nr + nth - 1)/nth;
  11434. // row range for this thread
  11435. const int ir0 = dr*ith;
  11436. const int ir1 = MIN(ir0 + dr, nr);
  11437. const float scale = 1.0f/sqrtf(D);
  11438. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11439. for (int ir = ir0; ir < ir1; ++ir) {
  11440. // q indices
  11441. const int iq3 = ir/(neq2*neq1);
  11442. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11443. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11444. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11445. for (int i = M; i < Mup; ++i) {
  11446. S[i] = -INFINITY;
  11447. }
  11448. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11449. for (int64_t ic = 0; ic < nek1; ++ic) {
  11450. // k indices
  11451. const int ik3 = iq3;
  11452. const int ik2 = iq2 % nek2;
  11453. const int ik1 = ic;
  11454. // S indices
  11455. const int i1 = ik1;
  11456. ggml_vec_dot_f16(neq0,
  11457. S + i1, 0,
  11458. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11459. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11460. }
  11461. } else {
  11462. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11463. // k indices
  11464. const int ik3 = iq3;
  11465. const int ik2 = iq2 % nek2;
  11466. const int ik1 = ic;
  11467. // S indices
  11468. const int i1 = ik1;
  11469. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11470. S + i1,
  11471. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11472. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11473. }
  11474. }
  11475. // scale
  11476. ggml_vec_scale_f32(nek1, S, scale);
  11477. if (masked) {
  11478. for (int64_t i = P; i < M; i++) {
  11479. if (i > P + iq1) {
  11480. S[i] = -INFINITY;
  11481. }
  11482. }
  11483. }
  11484. // softmax
  11485. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11486. // dont forget to set their S values to zero
  11487. {
  11488. float max = -INFINITY;
  11489. ggml_vec_max_f32(M, &max, S);
  11490. ggml_float sum = 0.0;
  11491. {
  11492. #ifdef GGML_SOFT_MAX_ACCELERATE
  11493. max = -max;
  11494. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11495. vvexpf(S, S, &Mup);
  11496. ggml_vec_sum_f32(Mup, &sum, S);
  11497. #else
  11498. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11499. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11500. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11501. float * SS = S + i;
  11502. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11503. if (SS[j] == -INFINITY) {
  11504. SS[j] = 0.0f;
  11505. } else {
  11506. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11507. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11508. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11509. sump[j] += (ggml_float)val;
  11510. SS[j] = val;
  11511. }
  11512. }
  11513. }
  11514. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11515. sum += sump[i];
  11516. }
  11517. #endif
  11518. }
  11519. assert(sum > 0.0);
  11520. sum = 1.0/sum;
  11521. ggml_vec_scale_f32(M, S, sum);
  11522. #ifndef NDEBUG
  11523. for (int i = 0; i < M; ++i) {
  11524. assert(!isnan(S[i]));
  11525. assert(!isinf(S[i]));
  11526. }
  11527. #endif
  11528. }
  11529. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11530. for (int64_t i = 0; i < M; i++) {
  11531. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11532. }
  11533. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11534. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11535. for (int64_t ic = 0; ic < nev1; ++ic) {
  11536. // dst indices
  11537. const int i1 = iq1;
  11538. const int i2 = iq2;
  11539. const int i3 = iq3;
  11540. // v indices
  11541. const int iv2 = iq2 % nev2;
  11542. const int iv3 = iq3;
  11543. ggml_vec_dot_f16(nev0,
  11544. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11545. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11546. S16, 0, 1);
  11547. }
  11548. } else {
  11549. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11550. // dst indices
  11551. const int i1 = iq1;
  11552. const int i2 = iq2;
  11553. const int i3 = iq3;
  11554. // v indices
  11555. const int iv2 = iq2 % nev2;
  11556. const int iv3 = iq3;
  11557. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11558. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11559. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11560. S16);
  11561. }
  11562. }
  11563. }
  11564. }
  11565. static void ggml_compute_forward_flash_attn(
  11566. const struct ggml_compute_params * params,
  11567. const bool masked,
  11568. struct ggml_tensor * dst) {
  11569. const struct ggml_tensor * q = dst->src[0];
  11570. switch (q->type) {
  11571. case GGML_TYPE_F16:
  11572. {
  11573. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11574. } break;
  11575. case GGML_TYPE_F32:
  11576. {
  11577. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11578. } break;
  11579. default:
  11580. {
  11581. GGML_ASSERT(false);
  11582. } break;
  11583. }
  11584. }
  11585. // ggml_compute_forward_flash_ff
  11586. static void ggml_compute_forward_flash_ff_f16(
  11587. const struct ggml_compute_params * params,
  11588. struct ggml_tensor * dst) {
  11589. const struct ggml_tensor * a = dst->src[0]; // F16
  11590. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11591. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11592. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11593. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11594. int64_t t0 = ggml_perf_time_us();
  11595. UNUSED(t0);
  11596. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11597. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11598. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11599. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11600. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11601. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11602. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11603. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11604. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11605. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11606. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11607. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11608. const int ith = params->ith;
  11609. const int nth = params->nth;
  11610. const int64_t D = nea0;
  11611. //const int64_t N = nea1;
  11612. const int64_t M = neb01;
  11613. GGML_ASSERT(ne0 == nea0);
  11614. GGML_ASSERT(ne1 == nea1);
  11615. GGML_ASSERT(ne2 == nea2);
  11616. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11617. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11618. GGML_ASSERT(nbb10 == sizeof(float));
  11619. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11620. GGML_ASSERT(nbc10 == sizeof(float));
  11621. GGML_ASSERT(neb00 == D);
  11622. GGML_ASSERT(neb01 == M);
  11623. GGML_ASSERT(neb10 == M);
  11624. GGML_ASSERT(neb11 == 1);
  11625. GGML_ASSERT(nec00 == M);
  11626. GGML_ASSERT(nec01 == D);
  11627. GGML_ASSERT(nec10 == D);
  11628. GGML_ASSERT(nec11 == 1);
  11629. // dst cannot be transposed or permuted
  11630. GGML_ASSERT(nb0 == sizeof(float));
  11631. GGML_ASSERT(nb0 <= nb1);
  11632. GGML_ASSERT(nb1 <= nb2);
  11633. GGML_ASSERT(nb2 <= nb3);
  11634. if (params->type == GGML_TASK_TYPE_INIT) {
  11635. return;
  11636. }
  11637. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11638. return;
  11639. }
  11640. // parallelize by a rows using ggml_vec_dot_f32
  11641. // total rows in a
  11642. const int nr = nea1*nea2*nea3;
  11643. // rows per thread
  11644. const int dr = (nr + nth - 1)/nth;
  11645. // row range for this thread
  11646. const int ir0 = dr*ith;
  11647. const int ir1 = MIN(ir0 + dr, nr);
  11648. for (int ir = ir0; ir < ir1; ++ir) {
  11649. // a indices
  11650. const int ia3 = ir/(nea2*nea1);
  11651. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11652. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11653. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11654. for (int64_t ic = 0; ic < neb01; ++ic) {
  11655. // b0 indices
  11656. const int ib03 = ia3;
  11657. const int ib02 = ia2;
  11658. const int ib01 = ic;
  11659. // S indices
  11660. const int i1 = ib01;
  11661. ggml_vec_dot_f16(nea0,
  11662. S + i1, 0,
  11663. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11664. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11665. }
  11666. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11667. //ggml_vec_gelu_f32(neb01, S, S);
  11668. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11669. for (int64_t i = 0; i < M; i++) {
  11670. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11671. }
  11672. ggml_vec_gelu_f16(neb01, S16, S16);
  11673. {
  11674. // dst indices
  11675. const int i1 = ia1;
  11676. const int i2 = ia2;
  11677. const int i3 = ia3;
  11678. for (int64_t ic = 0; ic < nec01; ++ic) {
  11679. ggml_vec_dot_f16(neb01,
  11680. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11681. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11682. S16, 0, 1);
  11683. }
  11684. ggml_vec_add_f32(nec01,
  11685. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11686. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11687. (float *) c1->data);
  11688. }
  11689. }
  11690. }
  11691. static void ggml_compute_forward_flash_ff(
  11692. const struct ggml_compute_params * params,
  11693. struct ggml_tensor * dst) {
  11694. const struct ggml_tensor * b0 = dst->src[1];
  11695. switch (b0->type) {
  11696. case GGML_TYPE_F16:
  11697. {
  11698. ggml_compute_forward_flash_ff_f16(params, dst);
  11699. } break;
  11700. case GGML_TYPE_F32:
  11701. {
  11702. GGML_ASSERT(false); // TODO
  11703. } break;
  11704. default:
  11705. {
  11706. GGML_ASSERT(false);
  11707. } break;
  11708. }
  11709. }
  11710. // ggml_compute_forward_flash_attn_back
  11711. static void ggml_compute_forward_flash_attn_back_f32(
  11712. const struct ggml_compute_params * params,
  11713. const bool masked,
  11714. struct ggml_tensor * dst) {
  11715. const struct ggml_tensor * q = dst->src[0];
  11716. const struct ggml_tensor * k = dst->src[1];
  11717. const struct ggml_tensor * v = dst->src[2];
  11718. const struct ggml_tensor * d = dst->src[3];
  11719. int64_t t0 = ggml_perf_time_us();
  11720. UNUSED(t0);
  11721. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11722. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11723. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11724. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11725. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11726. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11727. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11728. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11729. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11730. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11731. const int ith = params->ith;
  11732. const int nth = params->nth;
  11733. const int64_t D = neq0;
  11734. const int64_t N = neq1;
  11735. const int64_t P = nek1 - N;
  11736. const int64_t M = P + N;
  11737. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11738. const int mxDM = MAX(D, Mup);
  11739. // GGML_ASSERT(ne0 == D);
  11740. // GGML_ASSERT(ne1 == N);
  11741. GGML_ASSERT(P >= 0);
  11742. GGML_ASSERT(nbq0 == sizeof(float));
  11743. GGML_ASSERT(nbk0 == sizeof(float));
  11744. GGML_ASSERT(nbv0 == sizeof(float));
  11745. GGML_ASSERT(neq0 == D);
  11746. GGML_ASSERT(nek0 == D);
  11747. GGML_ASSERT(nev1 == D);
  11748. GGML_ASSERT(ned0 == D);
  11749. GGML_ASSERT(neq1 == N);
  11750. GGML_ASSERT(nek1 == N + P);
  11751. GGML_ASSERT(nev1 == D);
  11752. GGML_ASSERT(ned1 == N);
  11753. // dst cannot be transposed or permuted
  11754. GGML_ASSERT(nb0 == sizeof(float));
  11755. GGML_ASSERT(nb0 <= nb1);
  11756. GGML_ASSERT(nb1 <= nb2);
  11757. GGML_ASSERT(nb2 <= nb3);
  11758. if (params->type == GGML_TASK_TYPE_INIT) {
  11759. if (ith == 0) {
  11760. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11761. }
  11762. return;
  11763. }
  11764. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11765. return;
  11766. }
  11767. const int64_t elem_q = ggml_nelements(q);
  11768. const int64_t elem_k = ggml_nelements(k);
  11769. enum ggml_type result_type = dst->type;
  11770. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11771. const size_t tsize = ggml_type_size(result_type);
  11772. const size_t offs_q = 0;
  11773. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11774. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11775. void * grad_q = (char *) dst->data;
  11776. void * grad_k = (char *) dst->data + offs_k;
  11777. void * grad_v = (char *) dst->data + offs_v;
  11778. const size_t nbgq1 = nb0*neq0;
  11779. const size_t nbgq2 = nb0*neq0*neq1;
  11780. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11781. const size_t nbgk1 = nb0*nek0;
  11782. const size_t nbgk2 = nb0*nek0*nek1;
  11783. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11784. const size_t nbgv1 = nb0*nev0;
  11785. const size_t nbgv2 = nb0*nev0*nev1;
  11786. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11787. // parallelize by k rows using ggml_vec_dot_f32
  11788. // total rows in k
  11789. const int nr = nek2*nek3;
  11790. // rows per thread
  11791. const int dr = (nr + nth - 1)/nth;
  11792. // row range for this thread
  11793. const int ir0 = dr*ith;
  11794. const int ir1 = MIN(ir0 + dr, nr);
  11795. const float scale = 1.0f/sqrtf(D);
  11796. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11797. // how often k2 (and v2) is repeated in q2
  11798. int nrep = neq2/nek2;
  11799. for (int ir = ir0; ir < ir1; ++ir) {
  11800. // q indices
  11801. const int ik3 = ir/(nek2);
  11802. const int ik2 = ir - ik3*nek2;
  11803. const int iq3 = ik3;
  11804. const int id3 = ik3;
  11805. const int iv3 = ik3;
  11806. const int iv2 = ik2;
  11807. for (int irep = 0; irep < nrep; ++irep) {
  11808. const int iq2 = ik2 + irep*nek2;
  11809. const int id2 = iq2;
  11810. // (ik2 + irep*nek2) % nek2 == ik2
  11811. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11812. const int id1 = iq1;
  11813. // not sure about CACHE_LINE_SIZE_F32..
  11814. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11815. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11816. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11817. for (int i = M; i < Mup; ++i) {
  11818. S[i] = -INFINITY;
  11819. }
  11820. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11821. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11822. // k indices
  11823. const int ik1 = ic;
  11824. // S indices
  11825. const int i1 = ik1;
  11826. ggml_vec_dot_f32(neq0,
  11827. S + i1, 0,
  11828. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11829. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11830. }
  11831. // scale
  11832. ggml_vec_scale_f32(masked_begin, S, scale);
  11833. for (int64_t i = masked_begin; i < M; i++) {
  11834. S[i] = -INFINITY;
  11835. }
  11836. // softmax
  11837. // exclude known -INF S[..] values from max and loop
  11838. // dont forget to set their SM values to zero
  11839. {
  11840. float max = -INFINITY;
  11841. ggml_vec_max_f32(masked_begin, &max, S);
  11842. ggml_float sum = 0.0;
  11843. {
  11844. #ifdef GGML_SOFT_MAX_ACCELERATE
  11845. max = -max;
  11846. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11847. vvexpf(SM, SM, &Mup);
  11848. ggml_vec_sum_f32(Mup, &sum, SM);
  11849. #else
  11850. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11851. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11852. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11853. if (i >= masked_begin) {
  11854. break;
  11855. }
  11856. float * SR = S + i;
  11857. float * SW = SM + i;
  11858. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11859. if (i + j >= masked_begin) {
  11860. break;
  11861. } else if (SR[j] == -INFINITY) {
  11862. SW[j] = 0.0f;
  11863. } else {
  11864. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11865. const float val = expf(SR[j] - max);
  11866. #else
  11867. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11868. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11869. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11870. #endif
  11871. sump[j] += (ggml_float)val;
  11872. SW[j] = val;
  11873. }
  11874. }
  11875. }
  11876. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11877. sum += sump[i];
  11878. }
  11879. #endif
  11880. }
  11881. assert(sum > 0.0);
  11882. sum = 1.0/sum;
  11883. ggml_vec_scale_f32(masked_begin, SM, sum);
  11884. }
  11885. // step-by-step explanation
  11886. {
  11887. // forward-process shape grads from backward process
  11888. // parallel_for ik2,ik3:
  11889. // for irep:
  11890. // iq2 = ik2 + irep*nek2
  11891. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11892. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11893. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11894. // for iq1:
  11895. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11896. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11897. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11898. // S0 = -Inf [D,1,1,1]
  11899. // ~S1[i] = dot(kcur[:D,i], qcur)
  11900. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11901. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11902. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11903. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11904. // ~S5[i] = dot(vcur[:,i], S4)
  11905. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11906. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11907. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11908. // dst backward-/ grad[dst] = d
  11909. //
  11910. // output gradients with their dependencies:
  11911. //
  11912. // grad[kcur] = grad[S1].T @ qcur
  11913. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11914. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11915. // grad[S4] = grad[S5] @ vcur
  11916. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11917. // grad[qcur] = grad[S1] @ kcur
  11918. // grad[vcur] = grad[S5].T @ S4
  11919. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11920. //
  11921. // in post-order:
  11922. //
  11923. // S1 = qcur @ kcur.T
  11924. // S2 = S1 * scale
  11925. // S3 = diag_mask_inf(S2, P)
  11926. // S4 = softmax(S3)
  11927. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11928. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11929. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11930. // grad[qcur] = grad[S1] @ kcur
  11931. // grad[kcur] = grad[S1].T @ qcur
  11932. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11933. //
  11934. // using less variables (SM=S4):
  11935. //
  11936. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11937. // SM = softmax(S)
  11938. // S = d[:D,iq1,iq2,iq3] @ vcur
  11939. // dot_SM_gradSM = dot(SM, S)
  11940. // S = SM * (S - dot(SM, S))
  11941. // S = diag_mask_zero(S, P) * scale
  11942. //
  11943. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11944. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11945. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11946. }
  11947. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11948. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11949. // for ic:
  11950. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11951. // exclude known future zero S[..] values from operation
  11952. ggml_vec_set_f32(masked_begin, S, 0);
  11953. for (int64_t ic = 0; ic < D; ++ic) {
  11954. ggml_vec_mad_f32(masked_begin,
  11955. S,
  11956. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11957. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11958. }
  11959. // S = SM * (S - dot(SM, S))
  11960. float dot_SM_gradSM = 0;
  11961. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11962. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11963. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11964. // S = diag_mask_zero(S, P) * scale
  11965. // already done by above ggml_vec_set_f32
  11966. // exclude known zero S[..] values from operation
  11967. ggml_vec_scale_f32(masked_begin, S, scale);
  11968. // S shape [M,1]
  11969. // SM shape [M,1]
  11970. // kcur shape [D,M]
  11971. // qcur shape [D,1]
  11972. // vcur shape [M,D]
  11973. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11974. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11975. // for ic:
  11976. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11977. // exclude known zero S[..] values from loop
  11978. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11979. ggml_vec_mad_f32(D,
  11980. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11981. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11982. S[ic]);
  11983. }
  11984. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11985. // for ic:
  11986. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11987. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11988. // exclude known zero S[..] values from loop
  11989. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11990. ggml_vec_mad_f32(D,
  11991. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11992. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11993. S[ic]);
  11994. }
  11995. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11996. // for ic:
  11997. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11998. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11999. // exclude known zero SM[..] values from mad
  12000. for (int64_t ic = 0; ic < D; ++ic) {
  12001. ggml_vec_mad_f32(masked_begin,
  12002. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12003. SM,
  12004. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12005. }
  12006. }
  12007. }
  12008. }
  12009. }
  12010. static void ggml_compute_forward_flash_attn_back(
  12011. const struct ggml_compute_params * params,
  12012. const bool masked,
  12013. struct ggml_tensor * dst) {
  12014. const struct ggml_tensor * q = dst->src[0];
  12015. switch (q->type) {
  12016. case GGML_TYPE_F32:
  12017. {
  12018. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12019. } break;
  12020. default:
  12021. {
  12022. GGML_ASSERT(false);
  12023. } break;
  12024. }
  12025. }
  12026. // ggml_compute_forward_ssm_conv
  12027. static void ggml_compute_forward_ssm_conv_f32(
  12028. const struct ggml_compute_params * params,
  12029. struct ggml_tensor * dst) {
  12030. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12031. return;
  12032. }
  12033. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12034. const struct ggml_tensor * src1 = dst->src[1]; // x
  12035. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12036. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12037. const int ith = params->ith;
  12038. const int nth = params->nth;
  12039. const int nc = src2->ne[0]; // d_conv
  12040. const int nr = src0->ne[1]; // d_inner
  12041. const int n_t = src1->ne[1]; // n_tokens
  12042. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12043. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12044. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12045. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12046. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12047. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12048. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12049. // for use with the destination state offset between sequences
  12050. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12051. // rows per thread
  12052. const int dr = (nr + nth - 1)/nth;
  12053. // row range for this thread
  12054. const int ir0 = dr*ith;
  12055. const int ir1 = MIN(ir0 + dr, nr);
  12056. const int ir = ir1 - ir0;
  12057. if (n_kv > 1) {
  12058. // multiple sequences means it's hard to know when it's the first time a state is read,
  12059. // so copy them all over to the destination, just to be sure.
  12060. for (int i3 = 0; i3 < n_kv; ++i3) {
  12061. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12062. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12063. // can't use memcpy because of d_conv vs d_conv - 1
  12064. for (int i1 = 0; i1 < ir; ++i1) {
  12065. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12066. // copy s0 to last (d_conv - 1) columns of s
  12067. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12068. }
  12069. }
  12070. }
  12071. }
  12072. for (int i2 = 0; i2 < n_t; ++i2) {
  12073. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12074. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12075. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12076. float * s0; // {d_conv - 1, d_inner, n_kv}
  12077. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12078. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12079. int ne0s0;
  12080. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12081. // avoid needing to copy the state for the first token
  12082. if (i2 == 0) {
  12083. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12084. ne0s0 = src0->ne[0];
  12085. } else {
  12086. // the source is the last (d_conv - 1) columns of the destination
  12087. s0 = s + 1;
  12088. ne0s0 = nc;
  12089. }
  12090. // d_inner
  12091. for (int i1 = 0; i1 < ir; ++i1) {
  12092. // shift state left
  12093. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12094. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12095. }
  12096. // insert x on the last column
  12097. s[(nc - 1) + i1*nc] = x0[i1];
  12098. }
  12099. // handle copies when there are multiple output states
  12100. for (int i3 = 1; i3 < n_kv; ++i3) {
  12101. int32_t seq = sq[i3];
  12102. if (0 <= seq && seq < n_kv) {
  12103. float * s1 = s + (seq - sq[0])*nc*nr;
  12104. memcpy(s1, s, nc*ir*sizeof(float));
  12105. } else {
  12106. // stop at negative or too big seq_ids
  12107. break;
  12108. }
  12109. }
  12110. // it seems a little faster when this is separate from the state shift
  12111. for (int i1 = 0; i1 < ir; ++i1) {
  12112. // rowwise dot product
  12113. float sumf = 0.0f;
  12114. for (int i0 = 0; i0 < nc; ++i0) {
  12115. int i = i0 + i1*nc;
  12116. sumf += s[i] * c[i];
  12117. }
  12118. x[i1] = sumf;
  12119. }
  12120. }
  12121. }
  12122. static void ggml_compute_forward_ssm_conv(
  12123. const struct ggml_compute_params * params,
  12124. struct ggml_tensor * dst) {
  12125. switch (dst->src[0]->type) {
  12126. case GGML_TYPE_F32:
  12127. {
  12128. ggml_compute_forward_ssm_conv_f32(params, dst);
  12129. } break;
  12130. default:
  12131. {
  12132. GGML_ASSERT(false);
  12133. } break;
  12134. }
  12135. }
  12136. // ggml_compute_forward_ssm_scan
  12137. static void ggml_compute_forward_ssm_scan_f32(
  12138. const struct ggml_compute_params * params,
  12139. struct ggml_tensor * dst) {
  12140. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12141. return;
  12142. }
  12143. const struct ggml_tensor * src0 = dst->src[0]; // s
  12144. const struct ggml_tensor * src1 = dst->src[1]; // x
  12145. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12146. const struct ggml_tensor * src3 = dst->src[3]; // A
  12147. const struct ggml_tensor * src4 = dst->src[4]; // B
  12148. const struct ggml_tensor * src5 = dst->src[5]; // C
  12149. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12150. const int ith = params->ith;
  12151. const int nth = params->nth;
  12152. const int64_t nc = src0->ne[0]; // d_state
  12153. const int64_t nr = src0->ne[1]; // d_inner
  12154. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12155. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12156. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12157. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12158. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12159. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12160. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12161. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12162. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12163. // required for the dot product between s and C, and when copying the states
  12164. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12165. // required for per-sequence offsets for states
  12166. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12167. // required to get correct offset for state destination (i.e. src1->nb[2])
  12168. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12169. // rows per thread
  12170. const int dr = (nr + nth - 1)/nth;
  12171. // row range for this thread
  12172. const int ir0 = dr*ith;
  12173. const int ir1 = MIN(ir0 + dr, nr);
  12174. const int ir = ir1 - ir0;
  12175. if (n_kv > 1) {
  12176. // it's hard to know if the source states have already been copied
  12177. // when there are multiple, so copy them already.
  12178. for (int i3 = 0; i3 < n_kv; ++i3) {
  12179. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12180. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12181. memcpy(s, s0, nc*ir*sizeof(float));
  12182. }
  12183. }
  12184. for (int i2 = 0; i2 < n_t; ++i2) {
  12185. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12186. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12187. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12188. float * s0;
  12189. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12190. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12191. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12192. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12193. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12194. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12195. // avoid needing to copy the state for the first token
  12196. if (i2 == 0) {
  12197. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12198. } else {
  12199. // otherwise the source is the same as the destination
  12200. s0 = s;
  12201. }
  12202. // d_inner
  12203. for (int i1 = 0; i1 < ir; ++i1) {
  12204. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12205. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12206. float x_dt = x[i1] * dt_soft_plus;
  12207. float sumf = 0.0f;
  12208. // d_state
  12209. for (int i0 = 0; i0 < nc; ++i0) {
  12210. int i = i0 + i1*nc;
  12211. // state = prev_state * dA + dB * x
  12212. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12213. // y = rowwise_dotprod(state, C)
  12214. sumf += state * C[i0];
  12215. s[i] = state;
  12216. }
  12217. y[i1] = sumf;
  12218. }
  12219. // handle copies when there are multiple output states
  12220. for (int i3 = 1; i3 < n_kv; ++i3) {
  12221. int32_t seq = sq[i3];
  12222. if (0 <= seq && seq < n_kv) {
  12223. float * s1 = s + (seq - sq[0])*nc*nr;
  12224. memcpy(s1, s, nc*ir*sizeof(float));
  12225. } else {
  12226. // stop at negative or too big seq_ids
  12227. break;
  12228. }
  12229. }
  12230. }
  12231. }
  12232. static void ggml_compute_forward_ssm_scan(
  12233. const struct ggml_compute_params * params,
  12234. struct ggml_tensor * dst) {
  12235. switch (dst->src[0]->type) {
  12236. case GGML_TYPE_F32:
  12237. {
  12238. ggml_compute_forward_ssm_scan_f32(params, dst);
  12239. } break;
  12240. default:
  12241. {
  12242. GGML_ASSERT(false);
  12243. } break;
  12244. }
  12245. }
  12246. // ggml_compute_forward_win_part
  12247. static void ggml_compute_forward_win_part_f32(
  12248. const struct ggml_compute_params * params,
  12249. struct ggml_tensor * dst) {
  12250. const struct ggml_tensor * src0 = dst->src[0];
  12251. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12252. return;
  12253. }
  12254. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12255. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12256. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12257. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12258. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12259. assert(ne00 == ne0);
  12260. assert(ne3 == nep0*nep1);
  12261. // TODO: optimize / multi-thread
  12262. for (int py = 0; py < nep1; ++py) {
  12263. for (int px = 0; px < nep0; ++px) {
  12264. const int64_t i3 = py*nep0 + px;
  12265. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12266. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12267. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12268. const int64_t i02 = py*w + i2;
  12269. const int64_t i01 = px*w + i1;
  12270. const int64_t i00 = i0;
  12271. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12272. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12273. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12274. ((float *) dst->data)[i] = 0.0f;
  12275. } else {
  12276. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12277. }
  12278. }
  12279. }
  12280. }
  12281. }
  12282. }
  12283. }
  12284. static void ggml_compute_forward_win_part(
  12285. const struct ggml_compute_params * params,
  12286. struct ggml_tensor * dst) {
  12287. const struct ggml_tensor * src0 = dst->src[0];
  12288. switch (src0->type) {
  12289. case GGML_TYPE_F32:
  12290. {
  12291. ggml_compute_forward_win_part_f32(params, dst);
  12292. } break;
  12293. default:
  12294. {
  12295. GGML_ASSERT(false);
  12296. } break;
  12297. }
  12298. }
  12299. // ggml_compute_forward_win_unpart
  12300. static void ggml_compute_forward_win_unpart_f32(
  12301. const struct ggml_compute_params * params,
  12302. struct ggml_tensor * dst) {
  12303. const struct ggml_tensor * src0 = dst->src[0];
  12304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12305. return;
  12306. }
  12307. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12308. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12309. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12310. // padding
  12311. const int px = (w - ne1%w)%w;
  12312. //const int py = (w - ne2%w)%w;
  12313. const int npx = (px + ne1)/w;
  12314. //const int npy = (py + ne2)/w;
  12315. assert(ne0 == ne00);
  12316. // TODO: optimize / multi-thread
  12317. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12318. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12319. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12320. const int ip2 = i2/w;
  12321. const int ip1 = i1/w;
  12322. const int64_t i02 = i2%w;
  12323. const int64_t i01 = i1%w;
  12324. const int64_t i00 = i0;
  12325. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12326. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12327. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12328. }
  12329. }
  12330. }
  12331. }
  12332. static void ggml_compute_forward_win_unpart(
  12333. const struct ggml_compute_params * params,
  12334. struct ggml_tensor * dst) {
  12335. const struct ggml_tensor * src0 = dst->src[0];
  12336. switch (src0->type) {
  12337. case GGML_TYPE_F32:
  12338. {
  12339. ggml_compute_forward_win_unpart_f32(params, dst);
  12340. } break;
  12341. default:
  12342. {
  12343. GGML_ASSERT(false);
  12344. } break;
  12345. }
  12346. }
  12347. //gmml_compute_forward_unary
  12348. static void ggml_compute_forward_unary(
  12349. const struct ggml_compute_params * params,
  12350. struct ggml_tensor * dst) {
  12351. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12352. switch (op) {
  12353. case GGML_UNARY_OP_ABS:
  12354. {
  12355. ggml_compute_forward_abs(params, dst);
  12356. } break;
  12357. case GGML_UNARY_OP_SGN:
  12358. {
  12359. ggml_compute_forward_sgn(params, dst);
  12360. } break;
  12361. case GGML_UNARY_OP_NEG:
  12362. {
  12363. ggml_compute_forward_neg(params, dst);
  12364. } break;
  12365. case GGML_UNARY_OP_STEP:
  12366. {
  12367. ggml_compute_forward_step(params, dst);
  12368. } break;
  12369. case GGML_UNARY_OP_TANH:
  12370. {
  12371. ggml_compute_forward_tanh(params, dst);
  12372. } break;
  12373. case GGML_UNARY_OP_ELU:
  12374. {
  12375. ggml_compute_forward_elu(params, dst);
  12376. } break;
  12377. case GGML_UNARY_OP_RELU:
  12378. {
  12379. ggml_compute_forward_relu(params, dst);
  12380. } break;
  12381. case GGML_UNARY_OP_GELU:
  12382. {
  12383. ggml_compute_forward_gelu(params, dst);
  12384. } break;
  12385. case GGML_UNARY_OP_GELU_QUICK:
  12386. {
  12387. ggml_compute_forward_gelu_quick(params, dst);
  12388. } break;
  12389. case GGML_UNARY_OP_SILU:
  12390. {
  12391. ggml_compute_forward_silu(params, dst);
  12392. } break;
  12393. case GGML_UNARY_OP_HARDSWISH:
  12394. {
  12395. ggml_compute_forward_hardswish(params, dst);
  12396. } break;
  12397. case GGML_UNARY_OP_HARDSIGMOID:
  12398. {
  12399. ggml_compute_forward_hardsigmoid(params, dst);
  12400. } break;
  12401. default:
  12402. {
  12403. GGML_ASSERT(false);
  12404. } break;
  12405. }
  12406. }
  12407. // ggml_compute_forward_get_rel_pos
  12408. static void ggml_compute_forward_get_rel_pos_f16(
  12409. const struct ggml_compute_params * params,
  12410. struct ggml_tensor * dst) {
  12411. const struct ggml_tensor * src0 = dst->src[0];
  12412. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12413. return;
  12414. }
  12415. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12416. GGML_TENSOR_UNARY_OP_LOCALS
  12417. const int64_t w = ne1;
  12418. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12419. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12420. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12421. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12422. const int64_t pos = (w - i1 - 1) + i2;
  12423. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12424. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12425. }
  12426. }
  12427. }
  12428. }
  12429. static void ggml_compute_forward_get_rel_pos(
  12430. const struct ggml_compute_params * params,
  12431. struct ggml_tensor * dst) {
  12432. const struct ggml_tensor * src0 = dst->src[0];
  12433. switch (src0->type) {
  12434. case GGML_TYPE_F16:
  12435. {
  12436. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12437. } break;
  12438. default:
  12439. {
  12440. GGML_ASSERT(false);
  12441. } break;
  12442. }
  12443. }
  12444. // ggml_compute_forward_add_rel_pos
  12445. static void ggml_compute_forward_add_rel_pos_f32(
  12446. const struct ggml_compute_params * params,
  12447. struct ggml_tensor * dst) {
  12448. const struct ggml_tensor * src0 = dst->src[0];
  12449. const struct ggml_tensor * src1 = dst->src[1];
  12450. const struct ggml_tensor * src2 = dst->src[2];
  12451. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12452. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12453. if (params->ith != 0) {
  12454. return;
  12455. }
  12456. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12457. return;
  12458. }
  12459. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12460. return;
  12461. }
  12462. int64_t t0 = ggml_perf_time_us();
  12463. UNUSED(t0);
  12464. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12465. float * src1_data = (float *) src1->data;
  12466. float * src2_data = (float *) src2->data;
  12467. float * dst_data = (float *) dst->data;
  12468. const int64_t ne10 = src1->ne[0];
  12469. const int64_t ne11 = src1->ne[1];
  12470. const int64_t ne12 = src1->ne[2];
  12471. const int64_t ne13 = src1->ne[3];
  12472. const int ith = params->ith;
  12473. const int nth = params->nth;
  12474. // total patches in dst
  12475. const int np = ne13;
  12476. // patches per thread
  12477. const int dp = (np + nth - 1)/nth;
  12478. // patch range for this thread
  12479. const int ip0 = dp*ith;
  12480. const int ip1 = MIN(ip0 + dp, np);
  12481. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12482. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12483. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12484. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12485. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12486. const int64_t jp0 = jp1 + i10;
  12487. const float src1_e = src1_data[jp0];
  12488. const float src2_e = src2_data[jp0];
  12489. const int64_t jdh = jp0 * ne10;
  12490. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12491. for (int64_t j = 0; j < ne10; ++j) {
  12492. dst_data[jdh + j ] += src2_e;
  12493. dst_data[jdw + j*ne10] += src1_e;
  12494. }
  12495. }
  12496. }
  12497. }
  12498. }
  12499. }
  12500. static void ggml_compute_forward_add_rel_pos(
  12501. const struct ggml_compute_params * params,
  12502. struct ggml_tensor * dst) {
  12503. const struct ggml_tensor * src0 = dst->src[0];
  12504. switch (src0->type) {
  12505. case GGML_TYPE_F32:
  12506. {
  12507. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12508. } break;
  12509. default:
  12510. {
  12511. GGML_ASSERT(false);
  12512. } break;
  12513. }
  12514. }
  12515. // ggml_compute_forward_map_unary
  12516. static void ggml_compute_forward_map_unary_f32(
  12517. const struct ggml_compute_params * params,
  12518. struct ggml_tensor * dst,
  12519. const ggml_unary_op_f32_t fun) {
  12520. const struct ggml_tensor * src0 = dst->src[0];
  12521. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12522. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12523. return;
  12524. }
  12525. const int n = ggml_nrows(src0);
  12526. const int nc = src0->ne[0];
  12527. assert( dst->nb[0] == sizeof(float));
  12528. assert(src0->nb[0] == sizeof(float));
  12529. for (int i = 0; i < n; i++) {
  12530. fun(nc,
  12531. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12532. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12533. }
  12534. }
  12535. static void ggml_compute_forward_map_unary(
  12536. const struct ggml_compute_params * params,
  12537. struct ggml_tensor * dst,
  12538. const ggml_unary_op_f32_t fun) {
  12539. const struct ggml_tensor * src0 = dst->src[0];
  12540. switch (src0->type) {
  12541. case GGML_TYPE_F32:
  12542. {
  12543. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12544. } break;
  12545. default:
  12546. {
  12547. GGML_ASSERT(false);
  12548. } break;
  12549. }
  12550. }
  12551. // ggml_compute_forward_map_binary
  12552. static void ggml_compute_forward_map_binary_f32(
  12553. const struct ggml_compute_params * params,
  12554. struct ggml_tensor * dst,
  12555. const ggml_binary_op_f32_t fun) {
  12556. const struct ggml_tensor * src0 = dst->src[0];
  12557. const struct ggml_tensor * src1 = dst->src[1];
  12558. assert(params->ith == 0);
  12559. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12560. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12561. return;
  12562. }
  12563. const int n = ggml_nrows(src0);
  12564. const int nc = src0->ne[0];
  12565. assert( dst->nb[0] == sizeof(float));
  12566. assert(src0->nb[0] == sizeof(float));
  12567. assert(src1->nb[0] == sizeof(float));
  12568. for (int i = 0; i < n; i++) {
  12569. fun(nc,
  12570. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12571. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12572. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12573. }
  12574. }
  12575. static void ggml_compute_forward_map_binary(
  12576. const struct ggml_compute_params * params,
  12577. struct ggml_tensor * dst,
  12578. const ggml_binary_op_f32_t fun) {
  12579. const struct ggml_tensor * src0 = dst->src[0];
  12580. switch (src0->type) {
  12581. case GGML_TYPE_F32:
  12582. {
  12583. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12584. } break;
  12585. default:
  12586. {
  12587. GGML_ASSERT(false);
  12588. } break;
  12589. }
  12590. }
  12591. // ggml_compute_forward_map_custom1
  12592. static void ggml_compute_forward_map_custom1_f32(
  12593. const struct ggml_compute_params * params,
  12594. struct ggml_tensor * dst,
  12595. const ggml_custom1_op_f32_t fun) {
  12596. const struct ggml_tensor * a = dst->src[0];
  12597. assert(params->ith == 0);
  12598. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12599. return;
  12600. }
  12601. fun(dst, a);
  12602. }
  12603. // ggml_compute_forward_map_custom2
  12604. static void ggml_compute_forward_map_custom2_f32(
  12605. const struct ggml_compute_params * params,
  12606. struct ggml_tensor * dst,
  12607. const ggml_custom2_op_f32_t fun) {
  12608. const struct ggml_tensor * a = dst->src[0];
  12609. const struct ggml_tensor * b = dst->src[1];
  12610. assert(params->ith == 0);
  12611. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12612. return;
  12613. }
  12614. fun(dst, a, b);
  12615. }
  12616. // ggml_compute_forward_map_custom3
  12617. static void ggml_compute_forward_map_custom3_f32(
  12618. const struct ggml_compute_params * params,
  12619. struct ggml_tensor * dst,
  12620. const ggml_custom3_op_f32_t fun) {
  12621. const struct ggml_tensor * a = dst->src[0];
  12622. const struct ggml_tensor * b = dst->src[1];
  12623. const struct ggml_tensor * c = dst->src[1];
  12624. assert(params->ith == 0);
  12625. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12626. return;
  12627. }
  12628. fun(dst, a, b, c);
  12629. }
  12630. // ggml_compute_forward_map_custom1
  12631. static void ggml_compute_forward_map_custom1(
  12632. const struct ggml_compute_params * params,
  12633. struct ggml_tensor * dst) {
  12634. const struct ggml_tensor * a = dst->src[0];
  12635. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12636. return;
  12637. }
  12638. struct ggml_map_custom1_op_params p;
  12639. memcpy(&p, dst->op_params, sizeof(p));
  12640. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12641. }
  12642. // ggml_compute_forward_map_custom2
  12643. static void ggml_compute_forward_map_custom2(
  12644. const struct ggml_compute_params * params,
  12645. struct ggml_tensor * dst) {
  12646. const struct ggml_tensor * a = dst->src[0];
  12647. const struct ggml_tensor * b = dst->src[1];
  12648. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12649. return;
  12650. }
  12651. struct ggml_map_custom2_op_params p;
  12652. memcpy(&p, dst->op_params, sizeof(p));
  12653. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12654. }
  12655. // ggml_compute_forward_map_custom3
  12656. static void ggml_compute_forward_map_custom3(
  12657. const struct ggml_compute_params * params,
  12658. struct ggml_tensor * dst) {
  12659. const struct ggml_tensor * a = dst->src[0];
  12660. const struct ggml_tensor * b = dst->src[1];
  12661. const struct ggml_tensor * c = dst->src[2];
  12662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12663. return;
  12664. }
  12665. struct ggml_map_custom3_op_params p;
  12666. memcpy(&p, dst->op_params, sizeof(p));
  12667. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12668. }
  12669. // ggml_compute_forward_cross_entropy_loss
  12670. static void ggml_compute_forward_cross_entropy_loss_f32(
  12671. const struct ggml_compute_params * params,
  12672. struct ggml_tensor * dst) {
  12673. const struct ggml_tensor * src0 = dst->src[0];
  12674. const struct ggml_tensor * src1 = dst->src[1];
  12675. GGML_ASSERT(ggml_is_contiguous(src0));
  12676. GGML_ASSERT(ggml_is_contiguous(src1));
  12677. GGML_ASSERT(ggml_is_scalar(dst));
  12678. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12679. const int ith = params->ith;
  12680. const int nth = params->nth;
  12681. float * sums = (float *) params->wdata;
  12682. // TODO: handle transposed/permuted matrices
  12683. const int nc = src0->ne[0];
  12684. const int nr = ggml_nrows(src0);
  12685. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12686. if (params->type == GGML_TASK_TYPE_INIT) {
  12687. if (ith == 0) {
  12688. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12689. }
  12690. return;
  12691. }
  12692. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12693. if (ith == 0) {
  12694. float * dp = (float *) dst->data;
  12695. ggml_vec_sum_f32(nth, dp, sums);
  12696. dp[0] *= -1.0f / (float) nr;
  12697. }
  12698. return;
  12699. }
  12700. const double eps = 1e-9;
  12701. // rows per thread
  12702. const int dr = (nr + nth - 1)/nth;
  12703. // row range for this thread
  12704. const int ir0 = dr*ith;
  12705. const int ir1 = MIN(ir0 + dr, nr);
  12706. for (int i1 = ir0; i1 < ir1; i1++) {
  12707. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12708. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12709. float * st = ((float *) params->wdata) + nth + ith*nc;
  12710. #ifndef NDEBUG
  12711. for (int i = 0; i < nc; ++i) {
  12712. //printf("p[%d] = %f\n", i, p[i]);
  12713. assert(!isnan(s0[i]));
  12714. assert(!isnan(s1[i]));
  12715. }
  12716. #endif
  12717. // soft_max
  12718. ggml_float sum = 0.0;
  12719. {
  12720. float max = -INFINITY;
  12721. ggml_vec_max_f32(nc, &max, s0);
  12722. uint16_t scvt; UNUSED(scvt);
  12723. for (int i = 0; i < nc; i++) {
  12724. if (s0[i] == -INFINITY) {
  12725. st[i] = 0.0f;
  12726. } else {
  12727. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12728. const float s = s0[i] - max;
  12729. const float val = expf(s);
  12730. #else
  12731. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12732. memcpy(&scvt, &s, sizeof(scvt));
  12733. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12734. #endif
  12735. sum += (ggml_float)val;
  12736. st[i] = val;
  12737. }
  12738. }
  12739. assert(sum > 0.0);
  12740. // sum = 1.0/sum;
  12741. }
  12742. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12743. sum = (1.0 - eps) / sum;
  12744. ggml_vec_scale_f32(nc, st, sum);
  12745. ggml_vec_add1_f32(nc, st, st, eps);
  12746. ggml_vec_log_f32(nc, st, st);
  12747. ggml_vec_mul_f32(nc, st, st, s1);
  12748. float st_sum = 0;
  12749. ggml_vec_sum_f32(nc, &st_sum, st);
  12750. sums[ith] += st_sum;
  12751. #ifndef NDEBUG
  12752. for (int i = 0; i < nc; ++i) {
  12753. assert(!isnan(st[i]));
  12754. assert(!isinf(st[i]));
  12755. }
  12756. #endif
  12757. }
  12758. }
  12759. static void ggml_compute_forward_cross_entropy_loss(
  12760. const struct ggml_compute_params * params,
  12761. struct ggml_tensor * dst) {
  12762. const struct ggml_tensor * src0 = dst->src[0];
  12763. switch (src0->type) {
  12764. case GGML_TYPE_F32:
  12765. {
  12766. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12767. } break;
  12768. default:
  12769. {
  12770. GGML_ASSERT(false);
  12771. } break;
  12772. }
  12773. }
  12774. // ggml_compute_forward_cross_entropy_loss_back
  12775. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12776. const struct ggml_compute_params * params,
  12777. struct ggml_tensor * dst) {
  12778. const struct ggml_tensor * src0 = dst->src[0];
  12779. const struct ggml_tensor * src1 = dst->src[1];
  12780. const struct ggml_tensor * opt0 = dst->src[2];
  12781. GGML_ASSERT(ggml_is_contiguous(dst));
  12782. GGML_ASSERT(ggml_is_contiguous(src0));
  12783. GGML_ASSERT(ggml_is_contiguous(src1));
  12784. GGML_ASSERT(ggml_is_contiguous(opt0));
  12785. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12786. const int64_t ith = params->ith;
  12787. const int64_t nth = params->nth;
  12788. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12789. return;
  12790. }
  12791. const double eps = 1e-9;
  12792. // TODO: handle transposed/permuted matrices
  12793. const int64_t nc = src0->ne[0];
  12794. const int64_t nr = ggml_nrows(src0);
  12795. // rows per thread
  12796. const int64_t dr = (nr + nth - 1)/nth;
  12797. // row range for this thread
  12798. const int64_t ir0 = dr*ith;
  12799. const int64_t ir1 = MIN(ir0 + dr, nr);
  12800. float * d = (float *) opt0->data;
  12801. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12802. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12803. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12804. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12805. #ifndef NDEBUG
  12806. for (int i = 0; i < nc; ++i) {
  12807. //printf("p[%d] = %f\n", i, p[i]);
  12808. assert(!isnan(s0[i]));
  12809. assert(!isnan(s1[i]));
  12810. }
  12811. #endif
  12812. // soft_max
  12813. ggml_float sum = 0.0;
  12814. {
  12815. float max = -INFINITY;
  12816. ggml_vec_max_f32(nc, &max, s0);
  12817. uint16_t scvt; UNUSED(scvt);
  12818. for (int i = 0; i < nc; i++) {
  12819. if (s0[i] == -INFINITY) {
  12820. ds0[i] = 0.0f;
  12821. } else {
  12822. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12823. const float s = s0[i] - max;
  12824. const float val = expf(s);
  12825. #else
  12826. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12827. memcpy(&scvt, &s, sizeof(scvt));
  12828. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12829. #endif
  12830. sum += (ggml_float)val;
  12831. ds0[i] = val;
  12832. }
  12833. }
  12834. assert(sum > 0.0);
  12835. sum = (1.0 - eps)/sum;
  12836. }
  12837. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12838. ggml_vec_scale_f32(nc, ds0, sum);
  12839. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12840. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12841. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12842. #ifndef NDEBUG
  12843. for (int i = 0; i < nc; ++i) {
  12844. assert(!isnan(ds0[i]));
  12845. assert(!isinf(ds0[i]));
  12846. }
  12847. #endif
  12848. }
  12849. }
  12850. static void ggml_compute_forward_cross_entropy_loss_back(
  12851. const struct ggml_compute_params * params,
  12852. struct ggml_tensor * dst) {
  12853. const struct ggml_tensor * src0 = dst->src[0];
  12854. switch (src0->type) {
  12855. case GGML_TYPE_F32:
  12856. {
  12857. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12858. } break;
  12859. default:
  12860. {
  12861. GGML_ASSERT(false);
  12862. } break;
  12863. }
  12864. }
  12865. /////////////////////////////////
  12866. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12867. GGML_ASSERT(params);
  12868. if (tensor->op == GGML_OP_NONE) {
  12869. return;
  12870. }
  12871. #ifdef GGML_USE_CUBLAS
  12872. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12873. if (skip_cpu) {
  12874. return;
  12875. }
  12876. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12877. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12878. #elif defined(GGML_USE_VULKAN)
  12879. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12880. #ifdef GGML_VULKAN_CHECK_RESULTS
  12881. if (skip_cpu) {
  12882. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12883. }
  12884. #endif
  12885. if (skip_cpu) {
  12886. return;
  12887. }
  12888. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12889. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12890. #endif // GGML_USE_CUBLAS
  12891. #ifdef GGML_USE_SYCL
  12892. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12893. if (skip_cpu) {
  12894. return;
  12895. }
  12896. #endif // GGML_USE_SYCL
  12897. switch (tensor->op) {
  12898. case GGML_OP_DUP:
  12899. {
  12900. ggml_compute_forward_dup(params, tensor);
  12901. } break;
  12902. case GGML_OP_ADD:
  12903. {
  12904. ggml_compute_forward_add(params, tensor);
  12905. } break;
  12906. case GGML_OP_ADD1:
  12907. {
  12908. ggml_compute_forward_add1(params, tensor);
  12909. } break;
  12910. case GGML_OP_ACC:
  12911. {
  12912. ggml_compute_forward_acc(params, tensor);
  12913. } break;
  12914. case GGML_OP_SUB:
  12915. {
  12916. ggml_compute_forward_sub(params, tensor);
  12917. } break;
  12918. case GGML_OP_MUL:
  12919. {
  12920. ggml_compute_forward_mul(params, tensor);
  12921. } break;
  12922. case GGML_OP_DIV:
  12923. {
  12924. ggml_compute_forward_div(params, tensor);
  12925. } break;
  12926. case GGML_OP_SQR:
  12927. {
  12928. ggml_compute_forward_sqr(params, tensor);
  12929. } break;
  12930. case GGML_OP_SQRT:
  12931. {
  12932. ggml_compute_forward_sqrt(params, tensor);
  12933. } break;
  12934. case GGML_OP_LOG:
  12935. {
  12936. ggml_compute_forward_log(params, tensor);
  12937. } break;
  12938. case GGML_OP_SUM:
  12939. {
  12940. ggml_compute_forward_sum(params, tensor);
  12941. } break;
  12942. case GGML_OP_SUM_ROWS:
  12943. {
  12944. ggml_compute_forward_sum_rows(params, tensor);
  12945. } break;
  12946. case GGML_OP_MEAN:
  12947. {
  12948. ggml_compute_forward_mean(params, tensor);
  12949. } break;
  12950. case GGML_OP_ARGMAX:
  12951. {
  12952. ggml_compute_forward_argmax(params, tensor);
  12953. } break;
  12954. case GGML_OP_REPEAT:
  12955. {
  12956. ggml_compute_forward_repeat(params, tensor);
  12957. } break;
  12958. case GGML_OP_REPEAT_BACK:
  12959. {
  12960. ggml_compute_forward_repeat_back(params, tensor);
  12961. } break;
  12962. case GGML_OP_CONCAT:
  12963. {
  12964. ggml_compute_forward_concat(params, tensor);
  12965. } break;
  12966. case GGML_OP_SILU_BACK:
  12967. {
  12968. ggml_compute_forward_silu_back(params, tensor);
  12969. } break;
  12970. case GGML_OP_NORM:
  12971. {
  12972. ggml_compute_forward_norm(params, tensor);
  12973. } break;
  12974. case GGML_OP_RMS_NORM:
  12975. {
  12976. ggml_compute_forward_rms_norm(params, tensor);
  12977. } break;
  12978. case GGML_OP_RMS_NORM_BACK:
  12979. {
  12980. ggml_compute_forward_rms_norm_back(params, tensor);
  12981. } break;
  12982. case GGML_OP_GROUP_NORM:
  12983. {
  12984. ggml_compute_forward_group_norm(params, tensor);
  12985. } break;
  12986. case GGML_OP_MUL_MAT:
  12987. {
  12988. ggml_compute_forward_mul_mat(params, tensor);
  12989. } break;
  12990. case GGML_OP_MUL_MAT_ID:
  12991. {
  12992. ggml_compute_forward_mul_mat_id(params, tensor);
  12993. } break;
  12994. case GGML_OP_OUT_PROD:
  12995. {
  12996. ggml_compute_forward_out_prod(params, tensor);
  12997. } break;
  12998. case GGML_OP_SCALE:
  12999. {
  13000. ggml_compute_forward_scale(params, tensor);
  13001. } break;
  13002. case GGML_OP_SET:
  13003. {
  13004. ggml_compute_forward_set(params, tensor);
  13005. } break;
  13006. case GGML_OP_CPY:
  13007. {
  13008. ggml_compute_forward_cpy(params, tensor);
  13009. } break;
  13010. case GGML_OP_CONT:
  13011. {
  13012. ggml_compute_forward_cont(params, tensor);
  13013. } break;
  13014. case GGML_OP_RESHAPE:
  13015. {
  13016. ggml_compute_forward_reshape(params, tensor);
  13017. } break;
  13018. case GGML_OP_VIEW:
  13019. {
  13020. ggml_compute_forward_view(params, tensor);
  13021. } break;
  13022. case GGML_OP_PERMUTE:
  13023. {
  13024. ggml_compute_forward_permute(params, tensor);
  13025. } break;
  13026. case GGML_OP_TRANSPOSE:
  13027. {
  13028. ggml_compute_forward_transpose(params, tensor);
  13029. } break;
  13030. case GGML_OP_GET_ROWS:
  13031. {
  13032. ggml_compute_forward_get_rows(params, tensor);
  13033. } break;
  13034. case GGML_OP_GET_ROWS_BACK:
  13035. {
  13036. ggml_compute_forward_get_rows_back(params, tensor);
  13037. } break;
  13038. case GGML_OP_DIAG:
  13039. {
  13040. ggml_compute_forward_diag(params, tensor);
  13041. } break;
  13042. case GGML_OP_DIAG_MASK_INF:
  13043. {
  13044. ggml_compute_forward_diag_mask_inf(params, tensor);
  13045. } break;
  13046. case GGML_OP_DIAG_MASK_ZERO:
  13047. {
  13048. ggml_compute_forward_diag_mask_zero(params, tensor);
  13049. } break;
  13050. case GGML_OP_SOFT_MAX:
  13051. {
  13052. ggml_compute_forward_soft_max(params, tensor);
  13053. } break;
  13054. case GGML_OP_SOFT_MAX_BACK:
  13055. {
  13056. ggml_compute_forward_soft_max_back(params, tensor);
  13057. } break;
  13058. case GGML_OP_ROPE:
  13059. {
  13060. ggml_compute_forward_rope(params, tensor);
  13061. } break;
  13062. case GGML_OP_ROPE_BACK:
  13063. {
  13064. ggml_compute_forward_rope_back(params, tensor);
  13065. } break;
  13066. case GGML_OP_ALIBI:
  13067. {
  13068. ggml_compute_forward_alibi(params, tensor);
  13069. } break;
  13070. case GGML_OP_CLAMP:
  13071. {
  13072. ggml_compute_forward_clamp(params, tensor);
  13073. } break;
  13074. case GGML_OP_CONV_TRANSPOSE_1D:
  13075. {
  13076. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13077. } break;
  13078. case GGML_OP_IM2COL:
  13079. {
  13080. ggml_compute_forward_im2col(params, tensor);
  13081. } break;
  13082. case GGML_OP_CONV_TRANSPOSE_2D:
  13083. {
  13084. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13085. } break;
  13086. case GGML_OP_POOL_1D:
  13087. {
  13088. ggml_compute_forward_pool_1d(params, tensor);
  13089. } break;
  13090. case GGML_OP_POOL_2D:
  13091. {
  13092. ggml_compute_forward_pool_2d(params, tensor);
  13093. } break;
  13094. case GGML_OP_UPSCALE:
  13095. {
  13096. ggml_compute_forward_upscale(params, tensor);
  13097. } break;
  13098. case GGML_OP_PAD:
  13099. {
  13100. ggml_compute_forward_pad(params, tensor);
  13101. } break;
  13102. case GGML_OP_ARANGE:
  13103. {
  13104. ggml_compute_forward_arange(params, tensor);
  13105. } break;
  13106. case GGML_OP_TIMESTEP_EMBEDDING:
  13107. {
  13108. ggml_compute_forward_timestep_embedding(params, tensor);
  13109. } break;
  13110. case GGML_OP_ARGSORT:
  13111. {
  13112. ggml_compute_forward_argsort(params, tensor);
  13113. } break;
  13114. case GGML_OP_LEAKY_RELU:
  13115. {
  13116. ggml_compute_forward_leaky_relu(params, tensor);
  13117. } break;
  13118. case GGML_OP_FLASH_ATTN:
  13119. {
  13120. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13121. GGML_ASSERT(t == 0 || t == 1);
  13122. const bool masked = t != 0;
  13123. ggml_compute_forward_flash_attn(params, masked, tensor);
  13124. } break;
  13125. case GGML_OP_FLASH_FF:
  13126. {
  13127. ggml_compute_forward_flash_ff(params, tensor);
  13128. } break;
  13129. case GGML_OP_FLASH_ATTN_BACK:
  13130. {
  13131. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13132. GGML_ASSERT(t == 0 || t == 1);
  13133. bool masked = t != 0;
  13134. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13135. } break;
  13136. case GGML_OP_SSM_CONV:
  13137. {
  13138. ggml_compute_forward_ssm_conv(params, tensor);
  13139. } break;
  13140. case GGML_OP_SSM_SCAN:
  13141. {
  13142. ggml_compute_forward_ssm_scan(params, tensor);
  13143. } break;
  13144. case GGML_OP_WIN_PART:
  13145. {
  13146. ggml_compute_forward_win_part(params, tensor);
  13147. } break;
  13148. case GGML_OP_WIN_UNPART:
  13149. {
  13150. ggml_compute_forward_win_unpart(params, tensor);
  13151. } break;
  13152. case GGML_OP_UNARY:
  13153. {
  13154. ggml_compute_forward_unary(params, tensor);
  13155. } break;
  13156. case GGML_OP_GET_REL_POS:
  13157. {
  13158. ggml_compute_forward_get_rel_pos(params, tensor);
  13159. } break;
  13160. case GGML_OP_ADD_REL_POS:
  13161. {
  13162. ggml_compute_forward_add_rel_pos(params, tensor);
  13163. } break;
  13164. case GGML_OP_MAP_UNARY:
  13165. {
  13166. ggml_unary_op_f32_t fun;
  13167. memcpy(&fun, tensor->op_params, sizeof(fun));
  13168. ggml_compute_forward_map_unary(params, tensor, fun);
  13169. }
  13170. break;
  13171. case GGML_OP_MAP_BINARY:
  13172. {
  13173. ggml_binary_op_f32_t fun;
  13174. memcpy(&fun, tensor->op_params, sizeof(fun));
  13175. ggml_compute_forward_map_binary(params, tensor, fun);
  13176. }
  13177. break;
  13178. case GGML_OP_MAP_CUSTOM1_F32:
  13179. {
  13180. ggml_custom1_op_f32_t fun;
  13181. memcpy(&fun, tensor->op_params, sizeof(fun));
  13182. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13183. }
  13184. break;
  13185. case GGML_OP_MAP_CUSTOM2_F32:
  13186. {
  13187. ggml_custom2_op_f32_t fun;
  13188. memcpy(&fun, tensor->op_params, sizeof(fun));
  13189. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13190. }
  13191. break;
  13192. case GGML_OP_MAP_CUSTOM3_F32:
  13193. {
  13194. ggml_custom3_op_f32_t fun;
  13195. memcpy(&fun, tensor->op_params, sizeof(fun));
  13196. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13197. }
  13198. break;
  13199. case GGML_OP_MAP_CUSTOM1:
  13200. {
  13201. ggml_compute_forward_map_custom1(params, tensor);
  13202. }
  13203. break;
  13204. case GGML_OP_MAP_CUSTOM2:
  13205. {
  13206. ggml_compute_forward_map_custom2(params, tensor);
  13207. }
  13208. break;
  13209. case GGML_OP_MAP_CUSTOM3:
  13210. {
  13211. ggml_compute_forward_map_custom3(params, tensor);
  13212. }
  13213. break;
  13214. case GGML_OP_CROSS_ENTROPY_LOSS:
  13215. {
  13216. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13217. }
  13218. break;
  13219. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13220. {
  13221. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13222. }
  13223. break;
  13224. case GGML_OP_NONE:
  13225. {
  13226. // nop
  13227. } break;
  13228. case GGML_OP_COUNT:
  13229. {
  13230. GGML_ASSERT(false);
  13231. } break;
  13232. }
  13233. }
  13234. ////////////////////////////////////////////////////////////////////////////////
  13235. static size_t ggml_hash_size(size_t min_sz) {
  13236. // next primes after powers of two
  13237. static const size_t primes[] = {
  13238. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13239. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13240. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13241. 16777259, 33554467, 67108879, 134217757, 268435459,
  13242. 536870923, 1073741827, 2147483659
  13243. };
  13244. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13245. // find the smallest prime that is larger or equal to min_sz
  13246. size_t l = 0;
  13247. size_t r = n_primes;
  13248. while (l < r) {
  13249. size_t m = (l + r)/2;
  13250. if (primes[m] < min_sz) {
  13251. l = m + 1;
  13252. } else {
  13253. r = m;
  13254. }
  13255. }
  13256. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13257. return sz;
  13258. }
  13259. static size_t ggml_hash(const void * p) {
  13260. return (size_t)p;
  13261. }
  13262. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13263. size_t h = ggml_hash(key) % hash_set.size;
  13264. // linear probing
  13265. size_t i = h;
  13266. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13267. i = (i + 1) % hash_set.size;
  13268. if (i == h) {
  13269. // visited all hash table entries -> not found
  13270. return GGML_HASHTABLE_FULL;
  13271. }
  13272. }
  13273. return i;
  13274. }
  13275. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13276. size_t i = ggml_hash_find(hash_set, key);
  13277. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13278. }
  13279. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13280. size_t i = ggml_hash_find(hash_set, key);
  13281. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13282. if (hash_set.keys[i] == key) {
  13283. return GGML_HASHTABLE_ALREADY_EXISTS;
  13284. }
  13285. // insert
  13286. GGML_ASSERT(hash_set.keys[i] == NULL);
  13287. hash_set.keys[i] = key;
  13288. return i;
  13289. }
  13290. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13291. size_t i = ggml_hash_find(hash_set, key);
  13292. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13293. hash_set.keys[i] = key;
  13294. return i;
  13295. }
  13296. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13297. size = ggml_hash_size(size);
  13298. struct ggml_hash_set result;
  13299. result.size = size;
  13300. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13301. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13302. return result;
  13303. }
  13304. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13305. GGML_FREE(hash_set.keys);
  13306. }
  13307. struct hash_map {
  13308. struct ggml_hash_set set;
  13309. struct ggml_tensor ** vals;
  13310. };
  13311. static struct hash_map * ggml_new_hash_map(size_t size) {
  13312. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13313. result->set = ggml_hash_set_new(size);
  13314. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13315. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13316. return result;
  13317. }
  13318. static void ggml_hash_map_free(struct hash_map * map) {
  13319. ggml_hash_set_free(map->set);
  13320. GGML_FREE(map->vals);
  13321. GGML_FREE(map);
  13322. }
  13323. // gradient checkpointing
  13324. static struct ggml_tensor * ggml_recompute_graph_node(
  13325. struct ggml_context * ctx,
  13326. struct ggml_cgraph * graph,
  13327. struct hash_map * replacements,
  13328. struct ggml_tensor * node) {
  13329. if (node == NULL) {
  13330. return NULL;
  13331. }
  13332. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13333. return node;
  13334. }
  13335. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13336. return node;
  13337. }
  13338. int count_children = 0;
  13339. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13340. if (node->src[k]) {
  13341. ++count_children;
  13342. }
  13343. }
  13344. if (count_children == 0) {
  13345. return node;
  13346. }
  13347. size_t i = ggml_hash_find(replacements->set, node);
  13348. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13349. if (replacements->set.keys[i] == node) {
  13350. return replacements->vals[i];
  13351. }
  13352. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13353. // insert clone into replacements
  13354. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13355. replacements->set.keys[i] = node;
  13356. replacements->vals[i] = clone;
  13357. clone->op = node->op;
  13358. clone->grad = node->grad;
  13359. clone->flags = node->flags;
  13360. clone->extra = node->extra;
  13361. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13362. clone->nb[k] = node->nb[k];
  13363. }
  13364. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13365. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13366. }
  13367. if (node->view_src != NULL) {
  13368. clone->data = (node->view_src->data == NULL)
  13369. ? NULL // view_src not yet allocated
  13370. : (char *) node->view_src->data // view_src already allocated
  13371. + node->view_offs;
  13372. clone->view_src = node->view_src;
  13373. clone->view_offs = node->view_offs;
  13374. }
  13375. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13376. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13377. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13378. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13379. return clone;
  13380. }
  13381. void ggml_build_backward_gradient_checkpointing(
  13382. struct ggml_context * ctx,
  13383. struct ggml_cgraph * gf,
  13384. struct ggml_cgraph * gb,
  13385. struct ggml_cgraph * gb_tmp,
  13386. struct ggml_tensor * * checkpoints,
  13387. int n_checkpoints) {
  13388. ggml_graph_cpy(gf, gb_tmp);
  13389. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13390. if (n_checkpoints <= 0) {
  13391. ggml_graph_cpy(gb_tmp, gb);
  13392. return;
  13393. }
  13394. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13395. // insert checkpoints in replacements
  13396. for (int i = 0; i < n_checkpoints; ++i) {
  13397. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13398. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13399. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13400. replacements->set.keys[k] = checkpoints[i];
  13401. replacements->vals[k] = checkpoints[i];
  13402. }
  13403. ggml_graph_cpy(gf, gb);
  13404. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13405. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13406. // by recomputing them from checkpoints
  13407. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13408. struct ggml_tensor * node = gb_tmp->nodes[i];
  13409. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13410. // insert new tensors recomputing src, reusing already made replacements,
  13411. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13412. // recurse for input tensors,
  13413. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13414. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13415. }
  13416. // insert rewritten backward node with replacements made into resulting backward graph gb
  13417. ggml_build_forward_expand(gb, node);
  13418. }
  13419. ggml_hash_map_free(replacements);
  13420. }
  13421. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13422. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13423. if (ggml_hash_contains(zero_table, a)) {
  13424. return b;
  13425. } else {
  13426. return ggml_add_impl(ctx, a, b, false);
  13427. }
  13428. }
  13429. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13430. if (ggml_hash_contains(zero_table, a)) {
  13431. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13432. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13433. } else {
  13434. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13435. }
  13436. }
  13437. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13438. if (ggml_hash_contains(zero_table, a)) {
  13439. return ggml_repeat(ctx, b, a);
  13440. } else {
  13441. return ggml_add1_impl(ctx, a, b, false);
  13442. }
  13443. }
  13444. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13445. if (ggml_hash_contains(zero_table, a)) {
  13446. return ggml_neg(ctx, b);
  13447. } else {
  13448. return ggml_sub_impl(ctx, a, b, false);
  13449. }
  13450. }
  13451. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13452. struct ggml_tensor * src0 = tensor->src[0];
  13453. struct ggml_tensor * src1 = tensor->src[1];
  13454. switch (tensor->op) {
  13455. case GGML_OP_DUP:
  13456. {
  13457. if (src0->grad) {
  13458. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13459. }
  13460. } break;
  13461. case GGML_OP_ADD:
  13462. {
  13463. if (src0->grad) {
  13464. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13465. }
  13466. if (src1->grad) {
  13467. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13468. }
  13469. } break;
  13470. case GGML_OP_ADD1:
  13471. {
  13472. if (src0->grad) {
  13473. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13474. }
  13475. if (src1->grad) {
  13476. src1->grad = ggml_add_or_set(ctx,
  13477. src1->grad,
  13478. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13479. zero_table);
  13480. }
  13481. } break;
  13482. case GGML_OP_ACC:
  13483. {
  13484. if (src0->grad) {
  13485. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13486. }
  13487. if (src1->grad) {
  13488. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13489. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13490. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13491. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13492. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13493. tensor->grad,
  13494. src1->grad->ne[0],
  13495. src1->grad->ne[1],
  13496. src1->grad->ne[2],
  13497. src1->grad->ne[3],
  13498. nb1, nb2, nb3, offset);
  13499. src1->grad =
  13500. ggml_add_or_set(ctx,
  13501. src1->grad,
  13502. ggml_reshape(ctx,
  13503. ggml_cont(ctx, tensor_grad_view),
  13504. src1->grad),
  13505. zero_table);
  13506. }
  13507. } break;
  13508. case GGML_OP_SUB:
  13509. {
  13510. if (src0->grad) {
  13511. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13512. }
  13513. if (src1->grad) {
  13514. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13515. }
  13516. } break;
  13517. case GGML_OP_MUL:
  13518. {
  13519. if (src0->grad) {
  13520. src0->grad =
  13521. ggml_add_or_set(ctx,
  13522. src0->grad,
  13523. ggml_mul(ctx, src1, tensor->grad),
  13524. zero_table);
  13525. }
  13526. if (src1->grad) {
  13527. src1->grad =
  13528. ggml_add_or_set(ctx,
  13529. src1->grad,
  13530. ggml_mul(ctx, src0, tensor->grad),
  13531. zero_table);
  13532. }
  13533. } break;
  13534. case GGML_OP_DIV:
  13535. {
  13536. if (src0->grad) {
  13537. src0->grad =
  13538. ggml_add_or_set(ctx,
  13539. src0->grad,
  13540. ggml_div(ctx, tensor->grad, src1),
  13541. zero_table);
  13542. }
  13543. if (src1->grad) {
  13544. src1->grad =
  13545. ggml_sub_or_set(ctx,
  13546. src1->grad,
  13547. ggml_mul(ctx,
  13548. tensor->grad,
  13549. ggml_div(ctx, tensor, src1)),
  13550. zero_table);
  13551. }
  13552. } break;
  13553. case GGML_OP_SQR:
  13554. {
  13555. if (src0->grad) {
  13556. src0->grad =
  13557. ggml_add_or_set(ctx,
  13558. src0->grad,
  13559. ggml_scale(ctx,
  13560. ggml_mul(ctx, src0, tensor->grad),
  13561. 2.0f),
  13562. zero_table);
  13563. }
  13564. } break;
  13565. case GGML_OP_SQRT:
  13566. {
  13567. if (src0->grad) {
  13568. src0->grad =
  13569. ggml_add_or_set(ctx,
  13570. src0->grad,
  13571. ggml_scale(ctx,
  13572. ggml_div(ctx,
  13573. tensor->grad,
  13574. tensor),
  13575. 0.5f),
  13576. zero_table);
  13577. }
  13578. } break;
  13579. case GGML_OP_LOG:
  13580. {
  13581. if (src0->grad) {
  13582. src0->grad =
  13583. ggml_add_or_set(ctx,
  13584. src0->grad,
  13585. ggml_div(ctx,
  13586. tensor->grad,
  13587. src0),
  13588. zero_table);
  13589. }
  13590. } break;
  13591. case GGML_OP_SUM:
  13592. {
  13593. if (src0->grad) {
  13594. src0->grad =
  13595. ggml_add1_or_set(ctx,
  13596. src0->grad,
  13597. tensor->grad,
  13598. zero_table);
  13599. }
  13600. } break;
  13601. case GGML_OP_SUM_ROWS:
  13602. {
  13603. if (src0->grad) {
  13604. src0->grad =
  13605. ggml_add_or_set(ctx,
  13606. src0->grad,
  13607. ggml_repeat(ctx,
  13608. tensor->grad,
  13609. src0->grad),
  13610. zero_table);
  13611. }
  13612. } break;
  13613. case GGML_OP_MEAN:
  13614. case GGML_OP_ARGMAX:
  13615. {
  13616. GGML_ASSERT(false); // TODO: implement
  13617. } break;
  13618. case GGML_OP_REPEAT:
  13619. {
  13620. // necessary for llama
  13621. if (src0->grad) {
  13622. src0->grad = ggml_add_or_set(ctx,
  13623. src0->grad,
  13624. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13625. zero_table);
  13626. }
  13627. } break;
  13628. case GGML_OP_REPEAT_BACK:
  13629. {
  13630. if (src0->grad) {
  13631. // TODO: test this
  13632. src0->grad = ggml_add_or_set(ctx,
  13633. src0->grad,
  13634. ggml_repeat(ctx, tensor->grad, src0->grad),
  13635. zero_table);
  13636. }
  13637. } break;
  13638. case GGML_OP_CONCAT:
  13639. {
  13640. GGML_ASSERT(false); // TODO: implement
  13641. } break;
  13642. case GGML_OP_SILU_BACK:
  13643. {
  13644. GGML_ASSERT(false); // TODO: not implemented
  13645. } break;
  13646. case GGML_OP_NORM:
  13647. {
  13648. GGML_ASSERT(false); // TODO: not implemented
  13649. } break;
  13650. case GGML_OP_RMS_NORM:
  13651. {
  13652. // necessary for llama
  13653. if (src0->grad) {
  13654. float eps;
  13655. memcpy(&eps, tensor->op_params, sizeof(float));
  13656. src0->grad = ggml_add_or_set(ctx,
  13657. src0->grad,
  13658. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13659. zero_table);
  13660. }
  13661. } break;
  13662. case GGML_OP_RMS_NORM_BACK:
  13663. {
  13664. GGML_ASSERT(false); // TODO: not implemented
  13665. } break;
  13666. case GGML_OP_GROUP_NORM:
  13667. {
  13668. GGML_ASSERT(false); // TODO: not implemented
  13669. } break;
  13670. case GGML_OP_MUL_MAT:
  13671. {
  13672. // https://cs231n.github.io/optimization-2/#staged
  13673. // # forward pass
  13674. // s0 = np.random.randn(5, 10)
  13675. // s1 = np.random.randn(10, 3)
  13676. // t = s0.dot(s1)
  13677. // # now suppose we had the gradient on t from above in the circuit
  13678. // dt = np.random.randn(*t.shape) # same shape as t
  13679. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13680. // ds1 = t.T.dot(dt)
  13681. // tensor.shape [m,p,qq,rr]
  13682. // src0.shape [n,m,q1,r1]
  13683. // src1.shape [n,p,qq,rr]
  13684. // necessary for llama
  13685. if (src0->grad) {
  13686. struct ggml_tensor * s1_tg =
  13687. ggml_out_prod(ctx, // [n,m,qq,rr]
  13688. src1, // [n,p,qq,rr]
  13689. tensor->grad); // [m,p,qq,rr]
  13690. const int64_t qq = s1_tg->ne[2];
  13691. const int64_t rr = s1_tg->ne[3];
  13692. const int64_t q1 = src0->ne[2];
  13693. const int64_t r1 = src0->ne[3];
  13694. const bool ne2_broadcasted = qq > q1;
  13695. const bool ne3_broadcasted = rr > r1;
  13696. if (ne2_broadcasted || ne3_broadcasted) {
  13697. // sum broadcast repetitions of s1_tg into shape of src0
  13698. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13699. }
  13700. src0->grad =
  13701. ggml_add_or_set(ctx,
  13702. src0->grad, // [n,m,q1,r1]
  13703. s1_tg, // [n,m,q1,r1]
  13704. zero_table);
  13705. }
  13706. if (src1->grad) {
  13707. src1->grad =
  13708. ggml_add_or_set(ctx,
  13709. src1->grad, // [n,p,qq,rr]
  13710. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13711. // ggml_cont(ctx, // [m,n,q1,r1]
  13712. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13713. // tensor->grad), // [m,p,qq,rr]
  13714. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13715. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13716. // // and then use ggml_out_prod
  13717. ggml_out_prod(ctx, // [n,p,qq,rr]
  13718. src0, // [n,m,q1,r1]
  13719. ggml_transpose(ctx, // [p,m,qq,rr]
  13720. tensor->grad)), // [m,p,qq,rr]
  13721. zero_table);
  13722. }
  13723. } break;
  13724. case GGML_OP_MUL_MAT_ID:
  13725. {
  13726. GGML_ASSERT(false); // TODO: not implemented
  13727. } break;
  13728. case GGML_OP_OUT_PROD:
  13729. {
  13730. GGML_ASSERT(false); // TODO: not implemented
  13731. } break;
  13732. case GGML_OP_SCALE:
  13733. {
  13734. // necessary for llama
  13735. if (src0->grad) {
  13736. float s;
  13737. memcpy(&s, tensor->op_params, sizeof(float));
  13738. src0->grad =
  13739. ggml_add_or_set(ctx,
  13740. src0->grad,
  13741. ggml_scale_impl(ctx, tensor->grad, s, false),
  13742. zero_table);
  13743. }
  13744. } break;
  13745. case GGML_OP_SET:
  13746. {
  13747. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13748. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13749. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13750. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13751. struct ggml_tensor * tensor_grad_view = NULL;
  13752. if (src0->grad || src1->grad) {
  13753. GGML_ASSERT(src0->type == tensor->type);
  13754. GGML_ASSERT(tensor->grad->type == tensor->type);
  13755. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13756. tensor_grad_view = ggml_view_4d(ctx,
  13757. tensor->grad,
  13758. src1->grad->ne[0],
  13759. src1->grad->ne[1],
  13760. src1->grad->ne[2],
  13761. src1->grad->ne[3],
  13762. nb1, nb2, nb3, offset);
  13763. }
  13764. if (src0->grad) {
  13765. src0->grad = ggml_add_or_set(ctx,
  13766. src0->grad,
  13767. ggml_acc_impl(ctx,
  13768. tensor->grad,
  13769. ggml_neg(ctx, tensor_grad_view),
  13770. nb1, nb2, nb3, offset, false),
  13771. zero_table);
  13772. }
  13773. if (src1->grad) {
  13774. src1->grad =
  13775. ggml_add_or_set(ctx,
  13776. src1->grad,
  13777. ggml_reshape(ctx,
  13778. ggml_cont(ctx, tensor_grad_view),
  13779. src1->grad),
  13780. zero_table);
  13781. }
  13782. } break;
  13783. case GGML_OP_CPY:
  13784. {
  13785. // necessary for llama
  13786. // cpy overwrites value of src1 by src0 and returns view(src1)
  13787. // the overwriting is mathematically equivalent to:
  13788. // tensor = src0 * 1 + src1 * 0
  13789. if (src0->grad) {
  13790. // dsrc0 = dtensor * 1
  13791. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13792. }
  13793. if (src1->grad) {
  13794. // dsrc1 = dtensor * 0 -> noop
  13795. }
  13796. } break;
  13797. case GGML_OP_CONT:
  13798. {
  13799. // same as cpy
  13800. if (src0->grad) {
  13801. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13802. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13803. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13804. }
  13805. } break;
  13806. case GGML_OP_RESHAPE:
  13807. {
  13808. // necessary for llama
  13809. if (src0->grad) {
  13810. src0->grad =
  13811. ggml_add_or_set(ctx, src0->grad,
  13812. ggml_reshape(ctx,
  13813. ggml_is_contiguous(tensor->grad)
  13814. ? tensor->grad
  13815. : ggml_cont(ctx, tensor->grad),
  13816. src0->grad),
  13817. zero_table);
  13818. }
  13819. } break;
  13820. case GGML_OP_VIEW:
  13821. {
  13822. // necessary for llama
  13823. if (src0->grad) {
  13824. size_t offset;
  13825. memcpy(&offset, tensor->op_params, sizeof(offset));
  13826. size_t nb1 = tensor->nb[1];
  13827. size_t nb2 = tensor->nb[2];
  13828. size_t nb3 = tensor->nb[3];
  13829. if (src0->type != src0->grad->type) {
  13830. // gradient is typically F32, but src0 could be other type
  13831. size_t ng = ggml_element_size(src0->grad);
  13832. size_t n0 = ggml_element_size(src0);
  13833. GGML_ASSERT(offset % n0 == 0);
  13834. GGML_ASSERT(nb1 % n0 == 0);
  13835. GGML_ASSERT(nb2 % n0 == 0);
  13836. GGML_ASSERT(nb3 % n0 == 0);
  13837. offset = (offset / n0) * ng;
  13838. nb1 = (nb1 / n0) * ng;
  13839. nb2 = (nb2 / n0) * ng;
  13840. nb3 = (nb3 / n0) * ng;
  13841. }
  13842. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13843. }
  13844. } break;
  13845. case GGML_OP_PERMUTE:
  13846. {
  13847. // necessary for llama
  13848. if (src0->grad) {
  13849. int32_t * axes = (int32_t *) tensor->op_params;
  13850. int axis0 = axes[0] & 0x3;
  13851. int axis1 = axes[1] & 0x3;
  13852. int axis2 = axes[2] & 0x3;
  13853. int axis3 = axes[3] & 0x3;
  13854. int axes_backward[4] = {0,0,0,0};
  13855. axes_backward[axis0] = 0;
  13856. axes_backward[axis1] = 1;
  13857. axes_backward[axis2] = 2;
  13858. axes_backward[axis3] = 3;
  13859. src0->grad =
  13860. ggml_add_or_set(ctx, src0->grad,
  13861. ggml_permute(ctx,
  13862. tensor->grad,
  13863. axes_backward[0],
  13864. axes_backward[1],
  13865. axes_backward[2],
  13866. axes_backward[3]),
  13867. zero_table);
  13868. }
  13869. } break;
  13870. case GGML_OP_TRANSPOSE:
  13871. {
  13872. // necessary for llama
  13873. if (src0->grad) {
  13874. src0->grad =
  13875. ggml_add_or_set(ctx, src0->grad,
  13876. ggml_transpose(ctx, tensor->grad),
  13877. zero_table);
  13878. }
  13879. } break;
  13880. case GGML_OP_GET_ROWS:
  13881. {
  13882. // necessary for llama (only for tokenizer)
  13883. if (src0->grad) {
  13884. src0->grad =
  13885. ggml_add_or_set(ctx, src0->grad,
  13886. // last ggml_get_rows_back argument src0->grad is only
  13887. // necessary to setup correct output shape
  13888. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13889. zero_table);
  13890. }
  13891. if (src1->grad) {
  13892. // noop
  13893. }
  13894. } break;
  13895. case GGML_OP_GET_ROWS_BACK:
  13896. {
  13897. GGML_ASSERT(false); // TODO: not implemented
  13898. } break;
  13899. case GGML_OP_DIAG:
  13900. {
  13901. GGML_ASSERT(false); // TODO: not implemented
  13902. } break;
  13903. case GGML_OP_DIAG_MASK_INF:
  13904. {
  13905. // necessary for llama
  13906. if (src0->grad) {
  13907. const int n_past = ((int32_t *) tensor->op_params)[0];
  13908. src0->grad =
  13909. ggml_add_or_set(ctx, src0->grad,
  13910. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13911. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13912. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13913. zero_table);
  13914. }
  13915. } break;
  13916. case GGML_OP_DIAG_MASK_ZERO:
  13917. {
  13918. // necessary for llama
  13919. if (src0->grad) {
  13920. const int n_past = ((int32_t *) tensor->op_params)[0];
  13921. src0->grad =
  13922. ggml_add_or_set(ctx, src0->grad,
  13923. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13924. zero_table);
  13925. }
  13926. } break;
  13927. case GGML_OP_SOFT_MAX:
  13928. {
  13929. // necessary for llama
  13930. if (src0->grad) {
  13931. src0->grad =
  13932. ggml_add_or_set(ctx, src0->grad,
  13933. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13934. zero_table);
  13935. }
  13936. } break;
  13937. case GGML_OP_SOFT_MAX_BACK:
  13938. {
  13939. GGML_ASSERT(false); // TODO: not implemented
  13940. } break;
  13941. case GGML_OP_ROPE:
  13942. {
  13943. // necessary for llama
  13944. if (src0->grad) {
  13945. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13946. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13947. const int mode = ((int32_t *) tensor->op_params)[2];
  13948. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13949. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13950. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13951. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13952. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13953. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13954. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13955. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13956. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13957. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13958. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13959. src0->grad = ggml_add_or_set(ctx,
  13960. src0->grad,
  13961. ggml_rope_back(ctx,
  13962. tensor->grad,
  13963. src1,
  13964. n_dims,
  13965. mode,
  13966. n_ctx,
  13967. n_orig_ctx,
  13968. freq_base,
  13969. freq_scale,
  13970. ext_factor,
  13971. attn_factor,
  13972. beta_fast,
  13973. beta_slow,
  13974. xpos_base,
  13975. xpos_down),
  13976. zero_table);
  13977. }
  13978. } break;
  13979. case GGML_OP_ROPE_BACK:
  13980. {
  13981. if (src0->grad) {
  13982. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13983. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13984. const int mode = ((int32_t *) tensor->op_params)[2];
  13985. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13986. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13987. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13988. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13989. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13990. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13991. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13992. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13993. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13994. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13995. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13996. src0->grad = ggml_add_or_set(ctx,
  13997. src0->grad,
  13998. ggml_rope_impl(ctx,
  13999. tensor->grad,
  14000. src1,
  14001. n_dims,
  14002. mode,
  14003. n_ctx,
  14004. n_orig_ctx,
  14005. freq_base,
  14006. freq_scale,
  14007. ext_factor,
  14008. attn_factor,
  14009. beta_fast,
  14010. beta_slow,
  14011. xpos_base,
  14012. xpos_down,
  14013. false),
  14014. zero_table);
  14015. }
  14016. } break;
  14017. case GGML_OP_ALIBI:
  14018. {
  14019. GGML_ASSERT(false); // TODO: not implemented
  14020. } break;
  14021. case GGML_OP_CLAMP:
  14022. {
  14023. GGML_ASSERT(false); // TODO: not implemented
  14024. } break;
  14025. case GGML_OP_CONV_TRANSPOSE_1D:
  14026. {
  14027. GGML_ASSERT(false); // TODO: not implemented
  14028. } break;
  14029. case GGML_OP_IM2COL:
  14030. {
  14031. GGML_ASSERT(false); // TODO: not implemented
  14032. } break;
  14033. case GGML_OP_CONV_TRANSPOSE_2D:
  14034. {
  14035. GGML_ASSERT(false); // TODO: not implemented
  14036. } break;
  14037. case GGML_OP_POOL_1D:
  14038. {
  14039. GGML_ASSERT(false); // TODO: not implemented
  14040. } break;
  14041. case GGML_OP_POOL_2D:
  14042. {
  14043. GGML_ASSERT(false); // TODO: not implemented
  14044. } break;
  14045. case GGML_OP_UPSCALE:
  14046. {
  14047. GGML_ASSERT(false); // TODO: not implemented
  14048. } break;
  14049. case GGML_OP_PAD:
  14050. {
  14051. GGML_ASSERT(false); // TODO: not implemented
  14052. } break;
  14053. case GGML_OP_ARANGE:
  14054. {
  14055. GGML_ASSERT(false); // TODO: not implemented
  14056. } break;
  14057. case GGML_OP_TIMESTEP_EMBEDDING:
  14058. {
  14059. GGML_ASSERT(false); // TODO: not implemented
  14060. } break;
  14061. case GGML_OP_ARGSORT:
  14062. {
  14063. GGML_ASSERT(false); // TODO: not implemented
  14064. } break;
  14065. case GGML_OP_LEAKY_RELU:
  14066. {
  14067. GGML_ASSERT(false); // TODO: not implemented
  14068. } break;
  14069. case GGML_OP_FLASH_ATTN:
  14070. {
  14071. struct ggml_tensor * flash_grad = NULL;
  14072. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14073. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14074. GGML_ASSERT(t == 0 || t == 1);
  14075. bool masked = t != 0;
  14076. flash_grad =
  14077. ggml_flash_attn_back(ctx,
  14078. src0,
  14079. src1,
  14080. tensor->src[2],
  14081. tensor->grad,
  14082. masked);
  14083. }
  14084. struct ggml_tensor * src2 = tensor->src[2];
  14085. const int64_t elem_q = ggml_nelements(src0);
  14086. const int64_t elem_k = ggml_nelements(src1);
  14087. const int64_t elem_v = ggml_nelements(src2);
  14088. enum ggml_type result_type = flash_grad->type;
  14089. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14090. const size_t tsize = ggml_type_size(result_type);
  14091. const size_t offs_q = 0;
  14092. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14093. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14094. if (src0->grad) {
  14095. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14096. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14097. src0->grad = ggml_add_or_set(ctx,
  14098. src0->grad,
  14099. grad_q,
  14100. zero_table);
  14101. }
  14102. if (src1->grad) {
  14103. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14104. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14105. src1->grad = ggml_add_or_set(ctx,
  14106. src1->grad,
  14107. grad_k,
  14108. zero_table);
  14109. }
  14110. if (src2->grad) {
  14111. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14112. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14113. src2->grad = ggml_add_or_set(ctx,
  14114. src2->grad,
  14115. grad_v,
  14116. zero_table);
  14117. }
  14118. } break;
  14119. case GGML_OP_FLASH_FF:
  14120. {
  14121. GGML_ASSERT(false); // not supported
  14122. } break;
  14123. case GGML_OP_FLASH_ATTN_BACK:
  14124. {
  14125. GGML_ASSERT(false); // not supported
  14126. } break;
  14127. case GGML_OP_SSM_CONV:
  14128. case GGML_OP_SSM_SCAN:
  14129. {
  14130. GGML_ASSERT(false); // TODO: not implemented
  14131. } break;
  14132. case GGML_OP_WIN_PART:
  14133. case GGML_OP_WIN_UNPART:
  14134. case GGML_OP_UNARY:
  14135. {
  14136. switch (ggml_get_unary_op(tensor)) {
  14137. case GGML_UNARY_OP_ABS:
  14138. {
  14139. if (src0->grad) {
  14140. src0->grad =
  14141. ggml_add_or_set(ctx,
  14142. src0->grad,
  14143. ggml_mul(ctx,
  14144. ggml_sgn(ctx, src0),
  14145. tensor->grad),
  14146. zero_table);
  14147. }
  14148. } break;
  14149. case GGML_UNARY_OP_SGN:
  14150. {
  14151. if (src0->grad) {
  14152. // noop
  14153. }
  14154. } break;
  14155. case GGML_UNARY_OP_NEG:
  14156. {
  14157. if (src0->grad) {
  14158. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14159. }
  14160. } break;
  14161. case GGML_UNARY_OP_STEP:
  14162. {
  14163. if (src0->grad) {
  14164. // noop
  14165. }
  14166. } break;
  14167. case GGML_UNARY_OP_TANH:
  14168. {
  14169. GGML_ASSERT(false); // TODO: not implemented
  14170. } break;
  14171. case GGML_UNARY_OP_ELU:
  14172. {
  14173. GGML_ASSERT(false); // TODO: not implemented
  14174. } break;
  14175. case GGML_UNARY_OP_RELU:
  14176. {
  14177. if (src0->grad) {
  14178. src0->grad = ggml_add_or_set(ctx,
  14179. src0->grad,
  14180. ggml_mul(ctx,
  14181. ggml_step(ctx, src0),
  14182. tensor->grad),
  14183. zero_table);
  14184. }
  14185. } break;
  14186. case GGML_UNARY_OP_GELU:
  14187. {
  14188. GGML_ASSERT(false); // TODO: not implemented
  14189. } break;
  14190. case GGML_UNARY_OP_GELU_QUICK:
  14191. {
  14192. GGML_ASSERT(false); // TODO: not implemented
  14193. } break;
  14194. case GGML_UNARY_OP_SILU:
  14195. {
  14196. // necessary for llama
  14197. if (src0->grad) {
  14198. src0->grad = ggml_add_or_set(ctx,
  14199. src0->grad,
  14200. ggml_silu_back(ctx, src0, tensor->grad),
  14201. zero_table);
  14202. }
  14203. } break;
  14204. default:
  14205. GGML_ASSERT(false);
  14206. }
  14207. } break;
  14208. case GGML_OP_GET_REL_POS:
  14209. case GGML_OP_ADD_REL_POS:
  14210. case GGML_OP_MAP_UNARY:
  14211. case GGML_OP_MAP_BINARY:
  14212. case GGML_OP_MAP_CUSTOM1_F32:
  14213. case GGML_OP_MAP_CUSTOM2_F32:
  14214. case GGML_OP_MAP_CUSTOM3_F32:
  14215. case GGML_OP_MAP_CUSTOM1:
  14216. case GGML_OP_MAP_CUSTOM2:
  14217. case GGML_OP_MAP_CUSTOM3:
  14218. {
  14219. GGML_ASSERT(false); // not supported
  14220. } break;
  14221. case GGML_OP_CROSS_ENTROPY_LOSS:
  14222. {
  14223. if (src0->grad) {
  14224. src0->grad = ggml_add_or_set(ctx,
  14225. src0->grad,
  14226. ggml_cross_entropy_loss_back(ctx,
  14227. src0,
  14228. src1,
  14229. tensor->grad),
  14230. zero_table);
  14231. }
  14232. } break;
  14233. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14234. {
  14235. GGML_ASSERT(false); // not supported
  14236. } break;
  14237. case GGML_OP_NONE:
  14238. {
  14239. // nop
  14240. } break;
  14241. case GGML_OP_COUNT:
  14242. {
  14243. GGML_ASSERT(false);
  14244. } break;
  14245. }
  14246. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14247. if (tensor->src[i] && tensor->src[i]->grad) {
  14248. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14249. }
  14250. }
  14251. }
  14252. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14253. if (node->grad == NULL) {
  14254. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14255. // it can also happen during forward pass, if the user performs computations with constants
  14256. if (node->op != GGML_OP_NONE) {
  14257. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14258. }
  14259. }
  14260. // check if already visited
  14261. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14262. return;
  14263. }
  14264. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14265. const int k =
  14266. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14267. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14268. /* unknown order, just fall back to using i*/ i;
  14269. if (node->src[k]) {
  14270. ggml_visit_parents(cgraph, node->src[k]);
  14271. }
  14272. }
  14273. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14274. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14275. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14276. if (strlen(node->name) == 0) {
  14277. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14278. }
  14279. cgraph->leafs[cgraph->n_leafs] = node;
  14280. cgraph->n_leafs++;
  14281. } else {
  14282. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14283. if (strlen(node->name) == 0) {
  14284. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14285. }
  14286. cgraph->nodes[cgraph->n_nodes] = node;
  14287. if (cgraph->grads) {
  14288. cgraph->grads[cgraph->n_nodes] = node->grad;
  14289. }
  14290. cgraph->n_nodes++;
  14291. }
  14292. }
  14293. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14294. if (!expand) {
  14295. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14296. ggml_graph_clear(cgraph);
  14297. }
  14298. const int n0 = cgraph->n_nodes;
  14299. UNUSED(n0);
  14300. ggml_visit_parents(cgraph, tensor);
  14301. const int n_new = cgraph->n_nodes - n0;
  14302. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14303. if (n_new > 0) {
  14304. // the last added node should always be starting point
  14305. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14306. }
  14307. }
  14308. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14309. ggml_build_forward_impl(cgraph, tensor, true);
  14310. }
  14311. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14312. GGML_ASSERT(gf->n_nodes > 0);
  14313. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14314. if (keep) {
  14315. for (int i = 0; i < gf->n_nodes; i++) {
  14316. struct ggml_tensor * node = gf->nodes[i];
  14317. if (node->grad) {
  14318. node->grad = ggml_dup_tensor(ctx, node);
  14319. gf->grads[i] = node->grad;
  14320. }
  14321. }
  14322. }
  14323. // remember original gradients which start with zero values
  14324. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14325. for (int i = 0; i < gf->n_nodes; i++) {
  14326. if (gf->grads[i]) {
  14327. ggml_hash_insert(zero_table, gf->grads[i]);
  14328. }
  14329. }
  14330. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14331. struct ggml_tensor * node = gf->nodes[i];
  14332. // inplace operations to add gradients are not created by ggml_compute_backward
  14333. // use allocator to automatically make inplace operations
  14334. if (node->grad) {
  14335. ggml_compute_backward(ctx, node, zero_table);
  14336. }
  14337. }
  14338. for (int i = 0; i < gf->n_nodes; i++) {
  14339. struct ggml_tensor * node = gf->nodes[i];
  14340. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14341. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14342. ggml_build_forward_expand(gb, node->grad);
  14343. }
  14344. }
  14345. ggml_hash_set_free(zero_table);
  14346. }
  14347. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14348. size_t nbytes = sizeof(struct ggml_cgraph);
  14349. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14350. if (grads) {
  14351. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14352. }
  14353. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14354. return nbytes;
  14355. }
  14356. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14357. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14358. }
  14359. size_t ggml_graph_overhead(void) {
  14360. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14361. }
  14362. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14363. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14364. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14365. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14366. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14367. size_t hash_size = ggml_hash_size(size * 2);
  14368. struct ggml_tensor ** nodes_ptr = data_start;
  14369. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14370. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14371. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14372. // check that we allocated the correct amount of memory
  14373. assert(obj_size == (size_t) (
  14374. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14375. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14376. *cgraph = (struct ggml_cgraph) {
  14377. /*.size =*/ size,
  14378. /*.n_nodes =*/ 0,
  14379. /*.n_leafs =*/ 0,
  14380. /*.nodes =*/ nodes_ptr,
  14381. /*.grads =*/ grads_ptr,
  14382. /*.leafs =*/ leafs_ptr,
  14383. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14384. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14385. /*.perf_runs =*/ 0,
  14386. /*.perf_cycles =*/ 0,
  14387. /*.perf_time_us =*/ 0,
  14388. };
  14389. return cgraph;
  14390. }
  14391. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14392. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14393. }
  14394. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14395. struct ggml_cgraph cgraph = {
  14396. /*.size =*/ 0,
  14397. /*.n_nodes =*/ i1 - i0,
  14398. /*.n_leafs =*/ 0,
  14399. /*.nodes =*/ cgraph0->nodes + i0,
  14400. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14401. /*.leafs =*/ NULL,
  14402. /*.hash_table =*/ { 0, NULL },
  14403. /*.order =*/ cgraph0->order,
  14404. /*.perf_runs =*/ 0,
  14405. /*.perf_cycles =*/ 0,
  14406. /*.perf_time_us =*/ 0,
  14407. };
  14408. return cgraph;
  14409. }
  14410. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14411. GGML_ASSERT(dst->size >= src->n_leafs);
  14412. GGML_ASSERT(dst->size >= src->n_nodes);
  14413. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14414. dst->n_leafs = src->n_leafs;
  14415. dst->n_nodes = src->n_nodes;
  14416. dst->order = src->order;
  14417. for (int i = 0; i < src->n_leafs; ++i) {
  14418. dst->leafs[i] = src->leafs[i];
  14419. }
  14420. for (int i = 0; i < src->n_nodes; ++i) {
  14421. dst->nodes[i] = src->nodes[i];
  14422. }
  14423. if (src->grads) {
  14424. GGML_ASSERT(dst->grads != NULL);
  14425. for (int i = 0; i < src->n_nodes; ++i) {
  14426. dst->grads[i] = src->grads[i];
  14427. }
  14428. }
  14429. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14430. if (src->visited_hash_table.keys[i]) {
  14431. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14432. }
  14433. }
  14434. }
  14435. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14436. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14437. ggml_graph_cpy(cgraph, result);
  14438. return result;
  14439. }
  14440. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14441. GGML_ASSERT(cgraph->grads != NULL);
  14442. for (int i = 0; i < cgraph->n_nodes; i++) {
  14443. struct ggml_tensor * grad = cgraph->grads[i];
  14444. if (grad) {
  14445. ggml_set_zero(grad);
  14446. }
  14447. }
  14448. }
  14449. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14450. cgraph->n_leafs = 0;
  14451. cgraph->n_nodes = 0;
  14452. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14453. }
  14454. //
  14455. // thread data
  14456. //
  14457. // synchronization is done via busy loops
  14458. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14459. //
  14460. #ifdef __APPLE__
  14461. //#include <os/lock.h>
  14462. //
  14463. //typedef os_unfair_lock ggml_lock_t;
  14464. //
  14465. //#define ggml_lock_init(x) UNUSED(x)
  14466. //#define ggml_lock_destroy(x) UNUSED(x)
  14467. //#define ggml_lock_lock os_unfair_lock_lock
  14468. //#define ggml_lock_unlock os_unfair_lock_unlock
  14469. //
  14470. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14471. typedef int ggml_lock_t;
  14472. #define ggml_lock_init(x) UNUSED(x)
  14473. #define ggml_lock_destroy(x) UNUSED(x)
  14474. #define ggml_lock_lock(x) UNUSED(x)
  14475. #define ggml_lock_unlock(x) UNUSED(x)
  14476. #define GGML_LOCK_INITIALIZER 0
  14477. typedef pthread_t ggml_thread_t;
  14478. #define ggml_thread_create pthread_create
  14479. #define ggml_thread_join pthread_join
  14480. #else
  14481. //typedef pthread_spinlock_t ggml_lock_t;
  14482. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14483. //#define ggml_lock_destroy pthread_spin_destroy
  14484. //#define ggml_lock_lock pthread_spin_lock
  14485. //#define ggml_lock_unlock pthread_spin_unlock
  14486. typedef int ggml_lock_t;
  14487. #define ggml_lock_init(x) UNUSED(x)
  14488. #define ggml_lock_destroy(x) UNUSED(x)
  14489. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14490. #define ggml_lock_lock(x) _mm_pause()
  14491. #else
  14492. #define ggml_lock_lock(x) UNUSED(x)
  14493. #endif
  14494. #define ggml_lock_unlock(x) UNUSED(x)
  14495. #define GGML_LOCK_INITIALIZER 0
  14496. typedef pthread_t ggml_thread_t;
  14497. #define ggml_thread_create pthread_create
  14498. #define ggml_thread_join pthread_join
  14499. #endif
  14500. // Android's libc implementation "bionic" does not support setting affinity
  14501. #if defined(__gnu_linux__)
  14502. static void set_numa_thread_affinity(int thread_n) {
  14503. if (!ggml_is_numa()) {
  14504. return;
  14505. }
  14506. int node_num;
  14507. int rv;
  14508. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14509. switch(g_state.numa.numa_strategy) {
  14510. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14511. // run thread on node_num thread_n / (threads per node)
  14512. node_num = thread_n % g_state.numa.n_nodes;
  14513. break;
  14514. case GGML_NUMA_STRATEGY_ISOLATE:
  14515. // run thread on current_node
  14516. node_num = g_state.numa.current_node;
  14517. break;
  14518. case GGML_NUMA_STRATEGY_NUMACTL:
  14519. // use the cpuset that numactl gave us
  14520. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14521. if (rv) {
  14522. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14523. }
  14524. return;
  14525. default:
  14526. return;
  14527. }
  14528. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14529. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14530. CPU_ZERO_S(setsize, cpus);
  14531. for (size_t i = 0; i < node->n_cpus; ++i) {
  14532. CPU_SET_S(node->cpus[i], setsize, cpus);
  14533. }
  14534. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14535. if (rv) {
  14536. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14537. }
  14538. CPU_FREE(cpus);
  14539. }
  14540. static void clear_numa_thread_affinity(void) {
  14541. if (!ggml_is_numa()) {
  14542. return;
  14543. }
  14544. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14545. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14546. CPU_ZERO_S(setsize, cpus);
  14547. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14548. CPU_SET_S(i, setsize, cpus);
  14549. }
  14550. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14551. if (rv) {
  14552. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14553. }
  14554. CPU_FREE(cpus);
  14555. }
  14556. #else
  14557. // TODO: Windows etc.
  14558. // (the linux implementation may also work on BSD, someone should test)
  14559. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14560. static void clear_numa_thread_affinity(void) {}
  14561. #endif
  14562. struct ggml_compute_state_shared {
  14563. const struct ggml_cgraph * cgraph;
  14564. const struct ggml_cplan * cplan;
  14565. int64_t perf_node_start_cycles;
  14566. int64_t perf_node_start_time_us;
  14567. const int n_threads;
  14568. // synchronization primitives
  14569. atomic_int n_active; // num active threads
  14570. atomic_int node_n; // active graph node
  14571. atomic_int node_task; // active graph node task phase
  14572. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14573. void * abort_callback_data;
  14574. };
  14575. struct ggml_compute_state {
  14576. ggml_thread_t thrd;
  14577. int ith;
  14578. struct ggml_compute_state_shared * shared;
  14579. enum ggml_status ec;
  14580. };
  14581. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14582. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14583. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14584. node->perf_runs++;
  14585. node->perf_cycles += cycles_cur;
  14586. node->perf_time_us += time_us_cur;
  14587. }
  14588. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14589. int n_tasks = 0;
  14590. switch (node->op) {
  14591. case GGML_OP_CPY:
  14592. case GGML_OP_DUP:
  14593. case GGML_OP_ADD:
  14594. case GGML_OP_ADD1:
  14595. case GGML_OP_ACC:
  14596. {
  14597. n_tasks = n_threads;
  14598. } break;
  14599. case GGML_OP_SUB:
  14600. case GGML_OP_SQR:
  14601. case GGML_OP_SQRT:
  14602. case GGML_OP_LOG:
  14603. case GGML_OP_SUM:
  14604. case GGML_OP_SUM_ROWS:
  14605. case GGML_OP_MEAN:
  14606. case GGML_OP_ARGMAX:
  14607. case GGML_OP_REPEAT:
  14608. case GGML_OP_REPEAT_BACK:
  14609. case GGML_OP_LEAKY_RELU:
  14610. {
  14611. n_tasks = 1;
  14612. } break;
  14613. case GGML_OP_UNARY:
  14614. switch (ggml_get_unary_op(node)) {
  14615. case GGML_UNARY_OP_ABS:
  14616. case GGML_UNARY_OP_SGN:
  14617. case GGML_UNARY_OP_NEG:
  14618. case GGML_UNARY_OP_STEP:
  14619. case GGML_UNARY_OP_TANH:
  14620. case GGML_UNARY_OP_ELU:
  14621. case GGML_UNARY_OP_RELU:
  14622. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14623. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14624. {
  14625. n_tasks = 1;
  14626. } break;
  14627. case GGML_UNARY_OP_GELU:
  14628. case GGML_UNARY_OP_GELU_QUICK:
  14629. case GGML_UNARY_OP_SILU:
  14630. {
  14631. n_tasks = n_threads;
  14632. } break;
  14633. default:
  14634. GGML_ASSERT(false);
  14635. }
  14636. break;
  14637. case GGML_OP_SILU_BACK:
  14638. case GGML_OP_MUL:
  14639. case GGML_OP_DIV:
  14640. case GGML_OP_NORM:
  14641. case GGML_OP_RMS_NORM:
  14642. case GGML_OP_RMS_NORM_BACK:
  14643. case GGML_OP_GROUP_NORM:
  14644. case GGML_OP_CONCAT:
  14645. {
  14646. n_tasks = n_threads;
  14647. } break;
  14648. case GGML_OP_MUL_MAT:
  14649. {
  14650. n_tasks = n_threads;
  14651. // TODO: use different scheduling for different matrix sizes
  14652. //const int nr0 = ggml_nrows(node->src[0]);
  14653. //const int nr1 = ggml_nrows(node->src[1]);
  14654. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14655. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14656. } break;
  14657. case GGML_OP_MUL_MAT_ID:
  14658. {
  14659. n_tasks = n_threads;
  14660. } break;
  14661. case GGML_OP_OUT_PROD:
  14662. {
  14663. n_tasks = n_threads;
  14664. } break;
  14665. case GGML_OP_GET_ROWS:
  14666. {
  14667. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14668. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14669. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14670. } break;
  14671. case GGML_OP_SCALE:
  14672. case GGML_OP_SET:
  14673. case GGML_OP_CONT:
  14674. case GGML_OP_RESHAPE:
  14675. case GGML_OP_VIEW:
  14676. case GGML_OP_PERMUTE:
  14677. case GGML_OP_TRANSPOSE:
  14678. case GGML_OP_GET_ROWS_BACK:
  14679. case GGML_OP_DIAG:
  14680. {
  14681. n_tasks = 1;
  14682. } break;
  14683. case GGML_OP_DIAG_MASK_ZERO:
  14684. case GGML_OP_DIAG_MASK_INF:
  14685. case GGML_OP_SOFT_MAX_BACK:
  14686. case GGML_OP_ROPE:
  14687. case GGML_OP_ROPE_BACK:
  14688. case GGML_OP_ADD_REL_POS:
  14689. {
  14690. n_tasks = n_threads;
  14691. } break;
  14692. case GGML_OP_ALIBI:
  14693. {
  14694. n_tasks = 1; //TODO
  14695. } break;
  14696. case GGML_OP_CLAMP:
  14697. {
  14698. n_tasks = 1; //TODO
  14699. } break;
  14700. case GGML_OP_SOFT_MAX:
  14701. {
  14702. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14703. } break;
  14704. case GGML_OP_CONV_TRANSPOSE_1D:
  14705. {
  14706. n_tasks = n_threads;
  14707. } break;
  14708. case GGML_OP_IM2COL:
  14709. {
  14710. n_tasks = n_threads;
  14711. } break;
  14712. case GGML_OP_CONV_TRANSPOSE_2D:
  14713. {
  14714. n_tasks = n_threads;
  14715. } break;
  14716. case GGML_OP_POOL_1D:
  14717. case GGML_OP_POOL_2D:
  14718. {
  14719. n_tasks = 1;
  14720. } break;
  14721. case GGML_OP_UPSCALE:
  14722. {
  14723. n_tasks = n_threads;
  14724. } break;
  14725. case GGML_OP_PAD:
  14726. {
  14727. n_tasks = n_threads;
  14728. } break;
  14729. case GGML_OP_ARANGE:
  14730. {
  14731. n_tasks = n_threads;
  14732. } break;
  14733. case GGML_OP_TIMESTEP_EMBEDDING:
  14734. {
  14735. n_tasks = n_threads;
  14736. } break;
  14737. case GGML_OP_ARGSORT:
  14738. {
  14739. n_tasks = n_threads;
  14740. } break;
  14741. case GGML_OP_FLASH_ATTN:
  14742. {
  14743. n_tasks = n_threads;
  14744. } break;
  14745. case GGML_OP_FLASH_FF:
  14746. {
  14747. n_tasks = n_threads;
  14748. } break;
  14749. case GGML_OP_FLASH_ATTN_BACK:
  14750. {
  14751. n_tasks = n_threads;
  14752. } break;
  14753. case GGML_OP_SSM_CONV:
  14754. case GGML_OP_SSM_SCAN:
  14755. {
  14756. n_tasks = n_threads;
  14757. } break;
  14758. case GGML_OP_WIN_PART:
  14759. case GGML_OP_WIN_UNPART:
  14760. case GGML_OP_GET_REL_POS:
  14761. case GGML_OP_MAP_UNARY:
  14762. case GGML_OP_MAP_BINARY:
  14763. case GGML_OP_MAP_CUSTOM1_F32:
  14764. case GGML_OP_MAP_CUSTOM2_F32:
  14765. case GGML_OP_MAP_CUSTOM3_F32:
  14766. {
  14767. n_tasks = 1;
  14768. } break;
  14769. case GGML_OP_MAP_CUSTOM1:
  14770. {
  14771. struct ggml_map_custom1_op_params p;
  14772. memcpy(&p, node->op_params, sizeof(p));
  14773. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14774. n_tasks = n_threads;
  14775. } else {
  14776. n_tasks = MIN(p.n_tasks, n_threads);
  14777. }
  14778. } break;
  14779. case GGML_OP_MAP_CUSTOM2:
  14780. {
  14781. struct ggml_map_custom2_op_params p;
  14782. memcpy(&p, node->op_params, sizeof(p));
  14783. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14784. n_tasks = n_threads;
  14785. } else {
  14786. n_tasks = MIN(p.n_tasks, n_threads);
  14787. }
  14788. } break;
  14789. case GGML_OP_MAP_CUSTOM3:
  14790. {
  14791. struct ggml_map_custom3_op_params p;
  14792. memcpy(&p, node->op_params, sizeof(p));
  14793. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14794. n_tasks = n_threads;
  14795. } else {
  14796. n_tasks = MIN(p.n_tasks, n_threads);
  14797. }
  14798. } break;
  14799. case GGML_OP_CROSS_ENTROPY_LOSS:
  14800. {
  14801. n_tasks = n_threads;
  14802. } break;
  14803. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14804. {
  14805. n_tasks = n_threads;
  14806. } break;
  14807. case GGML_OP_NONE:
  14808. {
  14809. n_tasks = 1;
  14810. } break;
  14811. case GGML_OP_COUNT:
  14812. {
  14813. GGML_ASSERT(false);
  14814. } break;
  14815. default:
  14816. {
  14817. fprintf(stderr, "%s: op not implemented: ", __func__);
  14818. if (node->op < GGML_OP_COUNT) {
  14819. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14820. } else {
  14821. fprintf(stderr, "%d\n", node->op);
  14822. }
  14823. GGML_ASSERT(false);
  14824. } break;
  14825. }
  14826. assert(n_tasks > 0);
  14827. return n_tasks;
  14828. }
  14829. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14830. // wait for other threads to finish
  14831. const int last_node_n = * node_n;
  14832. while (true) {
  14833. if (do_yield) {
  14834. sched_yield();
  14835. }
  14836. * node_n = atomic_load(&state->shared->node_n);
  14837. if (* node_n != last_node_n) break;
  14838. }
  14839. }
  14840. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14841. // wait for other threads to finish
  14842. const int last_task_phase = * task_phase;
  14843. while (true) {
  14844. if (do_yield) {
  14845. sched_yield();
  14846. }
  14847. * task_phase = atomic_load(&state->shared->node_task);
  14848. if (* task_phase != last_task_phase) break;
  14849. }
  14850. }
  14851. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14852. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14853. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14854. const struct ggml_cplan * cplan = state->shared->cplan;
  14855. const int n_threads = state->shared->n_threads;
  14856. set_numa_thread_affinity(state->ith);
  14857. int node_n = -1;
  14858. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14859. while (true) {
  14860. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14861. state->shared->node_n += 1;
  14862. state->ec = GGML_STATUS_ABORTED;
  14863. return 0;
  14864. }
  14865. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14866. // all other threads are finished and spinning
  14867. // do finalize and init here so we don't have synchronize again
  14868. struct ggml_compute_params params = {
  14869. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14870. /*.ith =*/ 0,
  14871. /*.nth =*/ 0,
  14872. /*.wsize =*/ cplan->work_size,
  14873. /*.wdata =*/ cplan->work_data,
  14874. };
  14875. if (node_n != -1) {
  14876. /* FINALIZE */
  14877. struct ggml_tensor * node = cgraph->nodes[node_n];
  14878. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14879. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14880. ggml_compute_forward(&params, node);
  14881. }
  14882. ggml_graph_compute_perf_stats_node(node, state->shared);
  14883. }
  14884. // distribute new work or execute it direct if 1T
  14885. while (++node_n < cgraph->n_nodes) {
  14886. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14887. struct ggml_tensor * node = cgraph->nodes[node_n];
  14888. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14889. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14890. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14891. params.nth = n_tasks;
  14892. if (n_tasks == 1) {
  14893. /* INIT */
  14894. if (GGML_OP_HAS_INIT[node->op]) {
  14895. params.type = GGML_TASK_TYPE_INIT;
  14896. ggml_compute_forward(&params, node);
  14897. }
  14898. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14899. // they do something more efficient than spinning (?)
  14900. params.type = GGML_TASK_TYPE_COMPUTE;
  14901. ggml_compute_forward(&params, node);
  14902. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14903. params.type = GGML_TASK_TYPE_FINALIZE;
  14904. ggml_compute_forward(&params, node);
  14905. }
  14906. ggml_graph_compute_perf_stats_node(node, state->shared);
  14907. } else {
  14908. break;
  14909. }
  14910. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14911. break;
  14912. }
  14913. }
  14914. task_phase = GGML_TASK_TYPE_INIT;
  14915. atomic_store(&state->shared->n_active, n_threads);
  14916. atomic_store(&state->shared->node_n, node_n);
  14917. atomic_store(&state->shared->node_task, task_phase);
  14918. } else {
  14919. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14920. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14921. }
  14922. // check if we should stop
  14923. if (node_n >= cgraph->n_nodes) break;
  14924. /* INIT & COMPUTE */
  14925. struct ggml_tensor * node = cgraph->nodes[node_n];
  14926. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14927. struct ggml_compute_params params = {
  14928. /*.type =*/ GGML_TASK_TYPE_INIT,
  14929. /*.ith =*/ state->ith,
  14930. /*.nth =*/ n_tasks,
  14931. /*.wsize =*/ cplan->work_size,
  14932. /*.wdata =*/ cplan->work_data,
  14933. };
  14934. if (state->ith < n_tasks) {
  14935. if (GGML_OP_HAS_INIT[node->op]) {
  14936. ggml_compute_forward(&params, node);
  14937. }
  14938. }
  14939. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14940. task_phase = GGML_TASK_TYPE_COMPUTE;
  14941. atomic_store(&state->shared->n_active, n_threads);
  14942. atomic_store(&state->shared->node_task, task_phase);
  14943. }
  14944. else {
  14945. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14946. // depending on the workload and the operating system.
  14947. // since it is not clear what is the best approach, it should potentially become user-configurable
  14948. // ref: https://github.com/ggerganov/ggml/issues/291
  14949. // UPD: adding the do_yield flag seems to resolve the issue universally
  14950. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14951. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14952. }
  14953. if (state->ith < n_tasks) {
  14954. params.type = GGML_TASK_TYPE_COMPUTE;
  14955. ggml_compute_forward(&params, node);
  14956. }
  14957. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14958. task_phase = GGML_TASK_TYPE_FINALIZE;
  14959. atomic_store(&state->shared->n_active, n_threads);
  14960. atomic_store(&state->shared->node_task, task_phase);
  14961. }
  14962. else {
  14963. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14964. }
  14965. }
  14966. return 0;
  14967. }
  14968. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14969. if (n_threads <= 0) {
  14970. n_threads = GGML_DEFAULT_N_THREADS;
  14971. }
  14972. size_t work_size = 0;
  14973. struct ggml_cplan cplan;
  14974. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14975. int max_tasks = 1;
  14976. // thread scheduling for the different operations + work buffer size estimation
  14977. for (int i = 0; i < cgraph->n_nodes; i++) {
  14978. struct ggml_tensor * node = cgraph->nodes[i];
  14979. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  14980. max_tasks = MAX(max_tasks, n_tasks);
  14981. size_t cur = 0;
  14982. switch (node->op) {
  14983. case GGML_OP_CPY:
  14984. case GGML_OP_DUP:
  14985. {
  14986. if (ggml_is_quantized(node->type)) {
  14987. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14988. }
  14989. } break;
  14990. case GGML_OP_ADD:
  14991. case GGML_OP_ADD1:
  14992. {
  14993. if (ggml_is_quantized(node->src[0]->type)) {
  14994. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14995. }
  14996. } break;
  14997. case GGML_OP_ACC:
  14998. {
  14999. if (ggml_is_quantized(node->src[0]->type)) {
  15000. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15001. }
  15002. } break;
  15003. case GGML_OP_MUL_MAT:
  15004. {
  15005. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15006. #if defined(GGML_USE_CLBLAST)
  15007. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15008. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15009. } else
  15010. #endif
  15011. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15012. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15013. if (node->src[0]->type != GGML_TYPE_F32) {
  15014. // here we need memory for fully dequantized matrix from src0
  15015. // take into account that src0 can be broadcasted into src1[2,3]
  15016. cur = ggml_type_size(GGML_TYPE_F32)
  15017. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15018. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15019. }
  15020. } else
  15021. #endif
  15022. if (node->src[1]->type != vec_dot_type) {
  15023. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15024. }
  15025. } break;
  15026. case GGML_OP_MUL_MAT_ID:
  15027. {
  15028. cur = 0;
  15029. const struct ggml_tensor * src0 = node->src[2];
  15030. const struct ggml_tensor * src1 = node->src[1];
  15031. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15032. if (src1->type != vec_dot_type) {
  15033. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15034. }
  15035. const int n_as = ggml_get_op_params_i32(node, 1);
  15036. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15037. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15038. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15039. } break;
  15040. case GGML_OP_OUT_PROD:
  15041. {
  15042. if (ggml_is_quantized(node->src[0]->type)) {
  15043. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15044. }
  15045. } break;
  15046. case GGML_OP_SOFT_MAX:
  15047. case GGML_OP_ROPE:
  15048. {
  15049. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15050. } break;
  15051. case GGML_OP_CONV_TRANSPOSE_1D:
  15052. {
  15053. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15054. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15055. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15056. const int64_t ne00 = node->src[0]->ne[0]; // K
  15057. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15058. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15059. const int64_t ne10 = node->src[1]->ne[0]; // L
  15060. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15061. if (node->src[0]->type == GGML_TYPE_F16 &&
  15062. node->src[1]->type == GGML_TYPE_F32) {
  15063. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15064. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15065. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15066. node->src[1]->type == GGML_TYPE_F32) {
  15067. cur += sizeof(float)*ne00*ne01*ne02;
  15068. cur += sizeof(float)*ne10*ne11;
  15069. } else {
  15070. GGML_ASSERT(false);
  15071. }
  15072. } break;
  15073. case GGML_OP_CONV_TRANSPOSE_2D:
  15074. {
  15075. const int64_t ne00 = node->src[0]->ne[0]; // W
  15076. const int64_t ne01 = node->src[0]->ne[1]; // H
  15077. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15078. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15079. const int64_t ne10 = node->src[1]->ne[0]; // W
  15080. const int64_t ne11 = node->src[1]->ne[1]; // H
  15081. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15082. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15083. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15084. } break;
  15085. case GGML_OP_FLASH_ATTN:
  15086. {
  15087. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15088. if (node->src[1]->type == GGML_TYPE_F32) {
  15089. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15090. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15091. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15092. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15093. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15094. }
  15095. } break;
  15096. case GGML_OP_FLASH_FF:
  15097. {
  15098. if (node->src[1]->type == GGML_TYPE_F32) {
  15099. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15100. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15101. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15102. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15103. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15104. }
  15105. } break;
  15106. case GGML_OP_FLASH_ATTN_BACK:
  15107. {
  15108. const int64_t D = node->src[0]->ne[0];
  15109. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15110. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15111. if (node->src[1]->type == GGML_TYPE_F32) {
  15112. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15113. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15114. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15115. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15116. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15117. }
  15118. } break;
  15119. case GGML_OP_CROSS_ENTROPY_LOSS:
  15120. {
  15121. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15122. } break;
  15123. case GGML_OP_COUNT:
  15124. {
  15125. GGML_ASSERT(false);
  15126. } break;
  15127. default:
  15128. break;
  15129. }
  15130. work_size = MAX(work_size, cur);
  15131. }
  15132. if (work_size > 0) {
  15133. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15134. }
  15135. cplan.n_threads = MIN(max_tasks, n_threads);
  15136. cplan.work_size = work_size;
  15137. cplan.work_data = NULL;
  15138. return cplan;
  15139. }
  15140. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15141. {
  15142. GGML_ASSERT(cplan);
  15143. GGML_ASSERT(cplan->n_threads > 0);
  15144. if (cplan->work_size > 0) {
  15145. GGML_ASSERT(cplan->work_data);
  15146. }
  15147. }
  15148. #ifdef GGML_USE_VULKAN
  15149. for (int i = 0; i < cgraph->n_nodes; i++) {
  15150. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15151. }
  15152. ggml_vk_preallocate_buffers_cpu_assist();
  15153. for (int i = 0; i < cgraph->n_nodes; i++) {
  15154. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15155. }
  15156. #endif
  15157. const int n_threads = cplan->n_threads;
  15158. struct ggml_compute_state_shared state_shared = {
  15159. /*.cgraph =*/ cgraph,
  15160. /*.cgraph_plan =*/ cplan,
  15161. /*.perf_node_start_cycles =*/ 0,
  15162. /*.perf_node_start_time_us =*/ 0,
  15163. /*.n_threads =*/ n_threads,
  15164. /*.n_active =*/ n_threads,
  15165. /*.node_n =*/ -1,
  15166. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15167. /*.abort_callback =*/ NULL,
  15168. /*.abort_callback_data =*/ NULL,
  15169. };
  15170. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15171. // create thread pool
  15172. if (n_threads > 1) {
  15173. for (int j = 1; j < n_threads; ++j) {
  15174. workers[j] = (struct ggml_compute_state) {
  15175. .thrd = 0,
  15176. .ith = j,
  15177. .shared = &state_shared,
  15178. .ec = GGML_STATUS_SUCCESS,
  15179. };
  15180. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15181. GGML_ASSERT(rc == 0);
  15182. UNUSED(rc);
  15183. }
  15184. }
  15185. workers[0].ith = 0;
  15186. workers[0].shared = &state_shared;
  15187. workers[0].ec = GGML_STATUS_SUCCESS;
  15188. const int64_t perf_start_cycles = ggml_perf_cycles();
  15189. const int64_t perf_start_time_us = ggml_perf_time_us();
  15190. // this is a work thread too
  15191. ggml_graph_compute_thread(&workers[0]);
  15192. enum ggml_status compute_status = workers[0].ec;
  15193. // don't leave affinity set on the main thread
  15194. clear_numa_thread_affinity();
  15195. // join or kill thread pool
  15196. if (n_threads > 1) {
  15197. for (int j = 1; j < n_threads; j++) {
  15198. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15199. GGML_ASSERT(rc == 0);
  15200. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15201. compute_status = workers[j].ec;
  15202. }
  15203. }
  15204. #ifdef GGML_USE_VULKAN
  15205. ggml_vk_graph_cleanup_cpu_assist();
  15206. #endif
  15207. // performance stats (graph)
  15208. {
  15209. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15210. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15211. cgraph->perf_runs++;
  15212. cgraph->perf_cycles += perf_cycles_cur;
  15213. cgraph->perf_time_us += perf_time_us_cur;
  15214. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15215. __func__, cgraph->perf_runs,
  15216. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15217. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15218. (double) perf_time_us_cur / 1000.0,
  15219. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15220. }
  15221. return compute_status;
  15222. }
  15223. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15224. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15225. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15226. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15227. return ggml_graph_compute(cgraph, &cplan);
  15228. }
  15229. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15230. for (int i = 0; i < cgraph->n_leafs; i++) {
  15231. struct ggml_tensor * leaf = cgraph->leafs[i];
  15232. if (strcmp(leaf->name, name) == 0) {
  15233. return leaf;
  15234. }
  15235. }
  15236. for (int i = 0; i < cgraph->n_nodes; i++) {
  15237. struct ggml_tensor * node = cgraph->nodes[i];
  15238. if (strcmp(node->name, name) == 0) {
  15239. return node;
  15240. }
  15241. }
  15242. return NULL;
  15243. }
  15244. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15245. const int64_t * ne = tensor->ne;
  15246. const size_t * nb = tensor->nb;
  15247. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15248. ggml_type_name(tensor->type),
  15249. ggml_op_name (tensor->op),
  15250. ggml_n_dims(tensor),
  15251. ne[0], ne[1], ne[2], ne[3],
  15252. nb[0], nb[1], nb[2], nb[3],
  15253. tensor->data,
  15254. tensor->name);
  15255. }
  15256. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15257. const int64_t * ne = tensor->ne;
  15258. const size_t * nb = tensor->nb;
  15259. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15260. arg,
  15261. ggml_type_name(tensor->type),
  15262. ggml_op_name (tensor->op),
  15263. ggml_n_dims(tensor),
  15264. ne[0], ne[1], ne[2], ne[3],
  15265. nb[0], nb[1], nb[2], nb[3],
  15266. tensor->data,
  15267. tensor->name);
  15268. }
  15269. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15270. uint64_t size_eval = 0;
  15271. // compute size of intermediate results
  15272. // TODO: does not take into account scratch buffers !!!!
  15273. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15274. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15275. }
  15276. // print
  15277. {
  15278. FILE * fout = stdout;
  15279. fprintf(fout, "\n");
  15280. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15281. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15282. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15283. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15284. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15285. // header
  15286. fprintf(fout, "\n");
  15287. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15288. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15289. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15290. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15291. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15292. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15293. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15294. }
  15295. // header
  15296. fprintf(fout, "\n");
  15297. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15298. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15299. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15300. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15301. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15302. if (cgraph->nodes[i]->src[j]) {
  15303. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15304. }
  15305. }
  15306. fprintf(fout, "\n");
  15307. }
  15308. fprintf(fout, "\n");
  15309. }
  15310. // write binary data
  15311. {
  15312. FILE * fout = fopen(fname, "wb");
  15313. if (!fout) {
  15314. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15315. return;
  15316. }
  15317. // header
  15318. {
  15319. const uint32_t magic = GGML_FILE_MAGIC;
  15320. const uint32_t version = GGML_FILE_VERSION;
  15321. const uint32_t n_leafs = cgraph->n_leafs;
  15322. const uint32_t n_nodes = cgraph->n_nodes;
  15323. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15324. fwrite(&version, sizeof(uint32_t), 1, fout);
  15325. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15326. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15327. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15328. }
  15329. // leafs
  15330. {
  15331. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15332. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15333. const uint32_t type = tensor->type;
  15334. const uint32_t op = tensor->op;
  15335. fwrite(&type, sizeof(uint32_t), 1, fout);
  15336. fwrite(&op, sizeof(uint32_t), 1, fout);
  15337. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15338. const uint64_t ne = tensor->ne[j];
  15339. const uint64_t nb = tensor->nb[j];
  15340. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15341. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15342. }
  15343. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15344. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15345. // dump the data
  15346. // TODO: pad this to 32 byte boundary
  15347. {
  15348. const size_t size = ggml_nbytes(tensor);
  15349. fwrite(tensor->data, sizeof(char), size, fout);
  15350. }
  15351. }
  15352. }
  15353. // nodes
  15354. {
  15355. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15356. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15357. const uint32_t type = tensor->type;
  15358. const uint32_t op = tensor->op;
  15359. fwrite(&type, sizeof(uint32_t), 1, fout);
  15360. fwrite(&op, sizeof(uint32_t), 1, fout);
  15361. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15362. const uint64_t ne = tensor->ne[j];
  15363. const uint64_t nb = tensor->nb[j];
  15364. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15365. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15366. }
  15367. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15368. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15369. // output the op arguments
  15370. {
  15371. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15372. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15373. args[j] = tensor->src[j];
  15374. }
  15375. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15376. if (args[j]) {
  15377. int32_t idx = -1;
  15378. // check if leaf
  15379. {
  15380. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15381. if (args[j] == cgraph->leafs[k]) {
  15382. idx = k;
  15383. break;
  15384. }
  15385. }
  15386. }
  15387. // check if node
  15388. if (idx == -1) {
  15389. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15390. if (args[j] == cgraph->nodes[k]) {
  15391. idx = cgraph->n_leafs + k;
  15392. break;
  15393. }
  15394. }
  15395. }
  15396. if (idx == -1) {
  15397. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15398. fclose(fout);
  15399. return;
  15400. }
  15401. fwrite(&idx, sizeof(int32_t), 1, fout);
  15402. } else {
  15403. const int32_t nul = -1;
  15404. fwrite(&nul, sizeof(int32_t), 1, fout);
  15405. }
  15406. }
  15407. }
  15408. }
  15409. }
  15410. fclose(fout);
  15411. }
  15412. }
  15413. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15414. assert(*ctx_data == NULL);
  15415. assert(*ctx_eval == NULL);
  15416. struct ggml_cgraph * result = NULL;
  15417. struct ggml_tensor * data = NULL;
  15418. // read file into data
  15419. {
  15420. FILE * fin = fopen(fname, "rb");
  15421. if (!fin) {
  15422. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15423. return result;
  15424. }
  15425. size_t fsize = 0;
  15426. fseek(fin, 0, SEEK_END);
  15427. fsize = ftell(fin);
  15428. fseek(fin, 0, SEEK_SET);
  15429. // create the data context
  15430. {
  15431. const size_t overhead = 1*ggml_tensor_overhead();
  15432. struct ggml_init_params params = {
  15433. .mem_size = fsize + overhead,
  15434. .mem_buffer = NULL,
  15435. .no_alloc = false,
  15436. };
  15437. *ctx_data = ggml_init(params);
  15438. if (!*ctx_data) {
  15439. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15440. fclose(fin);
  15441. return result;
  15442. }
  15443. }
  15444. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15445. {
  15446. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15447. if (ret != fsize) {
  15448. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15449. fclose(fin);
  15450. return result;
  15451. }
  15452. }
  15453. fclose(fin);
  15454. }
  15455. // populate result
  15456. {
  15457. char * ptr = (char *) data->data;
  15458. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15459. if (magic != GGML_FILE_MAGIC) {
  15460. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15461. return result;
  15462. }
  15463. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15464. if (version != GGML_FILE_VERSION) {
  15465. fprintf(stderr, "%s: invalid version number\n", __func__);
  15466. return result;
  15467. }
  15468. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15469. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15470. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15471. const int graph_size = MAX(n_leafs, n_nodes);
  15472. // create the data context
  15473. {
  15474. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15475. struct ggml_init_params params = {
  15476. .mem_size = size_eval + overhead,
  15477. .mem_buffer = NULL,
  15478. .no_alloc = true,
  15479. };
  15480. *ctx_eval = ggml_init(params);
  15481. if (!*ctx_eval) {
  15482. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15483. return result;
  15484. }
  15485. }
  15486. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15487. result->n_leafs = n_leafs;
  15488. result->n_nodes = n_nodes;
  15489. // leafs
  15490. {
  15491. uint32_t type;
  15492. uint32_t op;
  15493. for (uint32_t i = 0; i < n_leafs; ++i) {
  15494. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15495. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15496. int64_t ne[GGML_MAX_DIMS];
  15497. size_t nb[GGML_MAX_DIMS];
  15498. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15499. uint64_t ne_cur;
  15500. uint64_t nb_cur;
  15501. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15502. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15503. ne[j] = ne_cur;
  15504. nb[j] = nb_cur;
  15505. }
  15506. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15507. tensor->op = (enum ggml_op) op;
  15508. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15509. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15510. tensor->data = (void *) ptr;
  15511. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15512. tensor->nb[j] = nb[j];
  15513. }
  15514. result->leafs[i] = tensor;
  15515. ptr += ggml_nbytes(tensor);
  15516. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15517. }
  15518. }
  15519. ggml_set_no_alloc(*ctx_eval, false);
  15520. // nodes
  15521. {
  15522. uint32_t type;
  15523. uint32_t op;
  15524. for (uint32_t i = 0; i < n_nodes; ++i) {
  15525. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15526. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15527. enum ggml_op eop = (enum ggml_op) op;
  15528. int64_t ne[GGML_MAX_DIMS];
  15529. size_t nb[GGML_MAX_DIMS];
  15530. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15531. uint64_t ne_cur;
  15532. uint64_t nb_cur;
  15533. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15534. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15535. ne[j] = ne_cur;
  15536. nb[j] = nb_cur;
  15537. }
  15538. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15539. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15540. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15541. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15542. // parse args
  15543. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15544. const int32_t arg_idx = ptr_arg_idx[j];
  15545. if (arg_idx == -1) {
  15546. continue;
  15547. }
  15548. if (arg_idx < result->n_leafs) {
  15549. args[j] = result->leafs[arg_idx];
  15550. } else {
  15551. args[j] = result->nodes[arg_idx - result->n_leafs];
  15552. }
  15553. }
  15554. // create the tensor
  15555. // "view" operations are handled differently
  15556. // TODO: handle inplace ops - currently a copy is always made
  15557. struct ggml_tensor * tensor = NULL;
  15558. switch (eop) {
  15559. // TODO: implement other view ops
  15560. case GGML_OP_RESHAPE:
  15561. {
  15562. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15563. } break;
  15564. case GGML_OP_VIEW:
  15565. {
  15566. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15567. size_t offs;
  15568. memcpy(&offs, ptr_op_params, sizeof(offs));
  15569. tensor->data = ((char *) tensor->data) + offs;
  15570. } break;
  15571. case GGML_OP_TRANSPOSE:
  15572. {
  15573. tensor = ggml_transpose(*ctx_eval, args[0]);
  15574. } break;
  15575. case GGML_OP_PERMUTE:
  15576. {
  15577. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15578. } break;
  15579. default:
  15580. {
  15581. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15582. tensor->op = eop;
  15583. } break;
  15584. }
  15585. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15586. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15587. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15588. tensor->nb[j] = nb[j];
  15589. }
  15590. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15591. tensor->src[j] = args[j];
  15592. }
  15593. result->nodes[i] = tensor;
  15594. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15595. }
  15596. }
  15597. }
  15598. return result;
  15599. }
  15600. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15601. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15602. GGML_PRINT("=== GRAPH ===\n");
  15603. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15604. for (int i = 0; i < cgraph->n_nodes; i++) {
  15605. struct ggml_tensor * node = cgraph->nodes[i];
  15606. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15607. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15608. i,
  15609. node->ne[0], node->ne[1], node->ne[2],
  15610. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15611. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15612. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15613. (double) node->perf_time_us / 1000.0,
  15614. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15615. }
  15616. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15617. for (int i = 0; i < cgraph->n_leafs; i++) {
  15618. struct ggml_tensor * node = cgraph->leafs[i];
  15619. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15620. i,
  15621. node->ne[0], node->ne[1],
  15622. ggml_op_name(node->op),
  15623. ggml_get_name(node));
  15624. }
  15625. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15626. if (perf_total_per_op_us[i] == 0) {
  15627. continue;
  15628. }
  15629. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15630. }
  15631. GGML_PRINT("========================================\n");
  15632. }
  15633. // check if node is part of the graph
  15634. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15635. if (cgraph == NULL) {
  15636. return true;
  15637. }
  15638. for (int i = 0; i < cgraph->n_nodes; i++) {
  15639. if (cgraph->nodes[i] == node) {
  15640. return true;
  15641. }
  15642. }
  15643. return false;
  15644. }
  15645. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15646. for (int i = 0; i < cgraph->n_nodes; i++) {
  15647. struct ggml_tensor * parent = cgraph->nodes[i];
  15648. if (parent->grad == node) {
  15649. return parent;
  15650. }
  15651. }
  15652. return NULL;
  15653. }
  15654. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15655. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15656. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15657. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15658. gparent0 ? (void *) gparent0 : (void *) parent,
  15659. gparent0 ? "g" : "x",
  15660. gparent ? (void *) gparent : (void *) node,
  15661. gparent ? "g" : "x",
  15662. gparent ? "empty" : "vee",
  15663. gparent ? "dashed" : "solid",
  15664. label);
  15665. }
  15666. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15667. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15668. (void *) parent, "x",
  15669. (void *) node, "x",
  15670. label);
  15671. }
  15672. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15673. char color[16];
  15674. FILE * fp = fopen(filename, "w");
  15675. GGML_ASSERT(fp);
  15676. fprintf(fp, "digraph G {\n");
  15677. fprintf(fp, " newrank = true;\n");
  15678. fprintf(fp, " rankdir = LR;\n");
  15679. for (int i = 0; i < gb->n_nodes; i++) {
  15680. struct ggml_tensor * node = gb->nodes[i];
  15681. if (ggml_graph_get_parent(gb, node) != NULL) {
  15682. continue;
  15683. }
  15684. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15685. snprintf(color, sizeof(color), "yellow");
  15686. } else if (node->grad) {
  15687. if (ggml_graph_find(gf, node)) {
  15688. snprintf(color, sizeof(color), "green");
  15689. } else {
  15690. snprintf(color, sizeof(color), "lightblue");
  15691. }
  15692. } else {
  15693. snprintf(color, sizeof(color), "white");
  15694. }
  15695. fprintf(fp, " \"%p\" [ "
  15696. "style = filled; fillcolor = %s; shape = record; "
  15697. "label=\"",
  15698. (void *) node, color);
  15699. if (strlen(node->name) > 0) {
  15700. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15701. } else {
  15702. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15703. }
  15704. if (ggml_is_matrix(node)) {
  15705. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15706. } else {
  15707. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15708. }
  15709. if (node->grad) {
  15710. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15711. } else {
  15712. fprintf(fp, "\"; ]\n");
  15713. }
  15714. }
  15715. for (int i = 0; i < gb->n_leafs; i++) {
  15716. struct ggml_tensor * node = gb->leafs[i];
  15717. snprintf(color, sizeof(color), "pink");
  15718. fprintf(fp, " \"%p\" [ "
  15719. "style = filled; fillcolor = %s; shape = record; "
  15720. "label=\"<x>",
  15721. (void *) node, color);
  15722. if (strlen(node->name) > 0) {
  15723. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15724. } else {
  15725. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15726. }
  15727. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15728. if (ggml_nelements(node) < 5) {
  15729. fprintf(fp, " | (");
  15730. for (int j = 0; j < ggml_nelements(node); j++) {
  15731. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15732. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15733. }
  15734. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15735. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15736. }
  15737. else {
  15738. fprintf(fp, "#");
  15739. }
  15740. if (j < ggml_nelements(node) - 1) {
  15741. fprintf(fp, ", ");
  15742. }
  15743. }
  15744. fprintf(fp, ")");
  15745. }
  15746. fprintf(fp, "\"; ]\n");
  15747. }
  15748. for (int i = 0; i < gb->n_nodes; i++) {
  15749. struct ggml_tensor * node = gb->nodes[i];
  15750. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15751. if (node->src[j]) {
  15752. char label[16];
  15753. snprintf(label, sizeof(label), "src %d", j);
  15754. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15755. }
  15756. }
  15757. }
  15758. for (int i = 0; i < gb->n_leafs; i++) {
  15759. struct ggml_tensor * node = gb->leafs[i];
  15760. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15761. if (node->src[j]) {
  15762. char label[16];
  15763. snprintf(label, sizeof(label), "src %d", j);
  15764. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15765. }
  15766. }
  15767. }
  15768. fprintf(fp, "}\n");
  15769. fclose(fp);
  15770. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15771. }
  15772. ////////////////////////////////////////////////////////////////////////////////
  15773. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15774. int i = 0;
  15775. for (int p = 0; p < np; ++p) {
  15776. const int64_t ne = ggml_nelements(ps[p]) ;
  15777. // TODO: add function to set tensor from array
  15778. for (int64_t j = 0; j < ne; ++j) {
  15779. ggml_set_f32_1d(ps[p], j, x[i++]);
  15780. }
  15781. }
  15782. }
  15783. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15784. int i = 0;
  15785. for (int p = 0; p < np; ++p) {
  15786. const int64_t ne = ggml_nelements(ps[p]) ;
  15787. // TODO: add function to get all elements at once
  15788. for (int64_t j = 0; j < ne; ++j) {
  15789. x[i++] = ggml_get_f32_1d(ps[p], j);
  15790. }
  15791. }
  15792. }
  15793. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15794. int64_t i = 0;
  15795. for (int p = 0; p < np; ++p) {
  15796. const int64_t ne = ggml_nelements(ps[p]) ;
  15797. // TODO: add function to get all elements at once
  15798. for (int64_t j = 0; j < ne; ++j) {
  15799. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15800. }
  15801. }
  15802. }
  15803. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15804. int64_t i = 0;
  15805. for (int p = 0; p < np; ++p) {
  15806. const int64_t ne = ggml_nelements(ps[p]) ;
  15807. // TODO: add function to get all elements at once
  15808. for (int64_t j = 0; j < ne; ++j) {
  15809. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15810. }
  15811. }
  15812. }
  15813. //
  15814. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15815. //
  15816. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15817. //
  15818. static enum ggml_opt_result ggml_opt_adam(
  15819. struct ggml_context * ctx,
  15820. struct ggml_opt_context * opt,
  15821. struct ggml_opt_params params,
  15822. struct ggml_tensor * f,
  15823. struct ggml_cgraph * gf,
  15824. struct ggml_cgraph * gb,
  15825. ggml_opt_callback callback,
  15826. void * callback_data) {
  15827. GGML_ASSERT(ggml_is_scalar(f));
  15828. // these will store the parameters we want to optimize
  15829. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15830. int np = 0;
  15831. int64_t nx = 0;
  15832. for (int i = 0; i < gf->n_nodes; ++i) {
  15833. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15834. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15835. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15836. ps[np++] = gf->nodes[i];
  15837. nx += ggml_nelements(gf->nodes[i]);
  15838. }
  15839. }
  15840. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15841. int iter = opt->iter;
  15842. ggml_opt_init(opt->ctx, opt, params, nx);
  15843. opt->iter = iter;
  15844. }
  15845. // constants
  15846. float sched = params.adam.sched;
  15847. const float alpha = params.adam.alpha;
  15848. const float decay = params.adam.decay * alpha;
  15849. const float beta1 = params.adam.beta1;
  15850. const float beta2 = params.adam.beta2;
  15851. const float eps = params.adam.eps;
  15852. const float gclip = params.adam.gclip;
  15853. const int decay_min_ndim = params.adam.decay_min_ndim;
  15854. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15855. const float accum_norm = 1.0f / (float) n_accum;
  15856. float * g = opt->adam.g->data; // gradients
  15857. float * m = opt->adam.m->data; // first moment
  15858. float * v = opt->adam.v->data; // second moment
  15859. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15860. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15861. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15862. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15863. bool cancel = false;
  15864. // compute the function value
  15865. float fx = 0;
  15866. ggml_set_zero(opt->adam.g);
  15867. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15868. if (callback) {
  15869. callback(callback_data, accum_step, &sched, &cancel);
  15870. if (cancel) {
  15871. return GGML_OPT_RESULT_CANCEL;
  15872. }
  15873. }
  15874. // ggml_graph_reset (gf);
  15875. ggml_set_f32 (f->grad, 1.0f);
  15876. ggml_graph_compute(gb, &cplan);
  15877. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15878. fx += ggml_get_f32_1d(f, 0);
  15879. }
  15880. fx *= accum_norm;
  15881. opt->adam.fx_prev = fx;
  15882. opt->adam.fx_best = opt->adam.fx_prev;
  15883. if (pf) {
  15884. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15885. }
  15886. opt->loss_before = opt->adam.fx_prev;
  15887. opt->loss_after = opt->adam.fx_prev;
  15888. // initialize
  15889. if (opt->just_initialized) {
  15890. opt->adam.n_no_improvement = 0;
  15891. opt->just_initialized = false;
  15892. }
  15893. float * fx_best = &opt->adam.fx_best;
  15894. float * fx_prev = &opt->adam.fx_prev;
  15895. int * n_no_improvement = &opt->adam.n_no_improvement;
  15896. int iter0 = opt->iter;
  15897. // run the optimizer
  15898. for (int t = 0; t < params.adam.n_iter; ++t) {
  15899. opt->iter = iter0 + t + 1;
  15900. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15901. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15902. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15903. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15904. for (int i = 0; i < np; ++i) {
  15905. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15906. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15907. }
  15908. const int64_t t_start_wall = ggml_time_us();
  15909. const int64_t t_start_cpu = ggml_cycles();
  15910. UNUSED(t_start_wall);
  15911. UNUSED(t_start_cpu);
  15912. {
  15913. float gnorm = 1.0f;
  15914. if (gclip > 0.0f) {
  15915. // gradient clipping
  15916. ggml_float sum = 0.0;
  15917. for (int64_t i = 0; i < nx; ++i) {
  15918. sum += (ggml_float)(g[i]*g[i]);
  15919. }
  15920. ggml_float norm = sqrt(sum);
  15921. if (norm > (ggml_float) gclip) {
  15922. gnorm = (float) ((ggml_float) gclip / norm);
  15923. }
  15924. }
  15925. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15926. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15927. int64_t i = 0;
  15928. for (int p = 0; p < np; ++p) {
  15929. const int64_t ne = ggml_nelements(ps[p]);
  15930. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15931. for (int64_t j = 0; j < ne; ++j) {
  15932. float x = ggml_get_f32_1d(ps[p], j);
  15933. float g_ = g[i]*gnorm;
  15934. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15935. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15936. float mh = m[i]*beta1h;
  15937. float vh = v[i]*beta2h;
  15938. vh = sqrtf(vh) + eps;
  15939. x = x*(1.0f - p_decay) - mh/vh;
  15940. ggml_set_f32_1d(ps[p], j, x);
  15941. ++i;
  15942. }
  15943. }
  15944. }
  15945. fx = 0;
  15946. ggml_set_zero(opt->adam.g);
  15947. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15948. if (callback) {
  15949. callback(callback_data, accum_step, &sched, &cancel);
  15950. if (cancel) {
  15951. return GGML_OPT_RESULT_CANCEL;;
  15952. }
  15953. }
  15954. // ggml_graph_reset (gf);
  15955. ggml_set_f32 (f->grad, 1.0f);
  15956. ggml_graph_compute(gb, &cplan);
  15957. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15958. fx += ggml_get_f32_1d(f, 0);
  15959. }
  15960. fx *= accum_norm;
  15961. opt->loss_after = fx;
  15962. // check convergence
  15963. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15964. GGML_PRINT_DEBUG("converged\n");
  15965. return GGML_OPT_RESULT_OK;
  15966. }
  15967. // delta-based convergence test
  15968. if (pf != NULL) {
  15969. // need at least params.past iterations to start checking for convergence
  15970. if (params.past <= iter0 + t) {
  15971. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15972. if (fabsf(rate) < params.delta) {
  15973. return GGML_OPT_RESULT_OK;
  15974. }
  15975. }
  15976. pf[(iter0 + t)%params.past] = fx;
  15977. }
  15978. // check for improvement
  15979. if (params.max_no_improvement > 0) {
  15980. if (fx_best[0] > fx) {
  15981. fx_best[0] = fx;
  15982. n_no_improvement[0] = 0;
  15983. } else {
  15984. ++n_no_improvement[0];
  15985. if (n_no_improvement[0] >= params.max_no_improvement) {
  15986. return GGML_OPT_RESULT_OK;
  15987. }
  15988. }
  15989. }
  15990. fx_prev[0] = fx;
  15991. {
  15992. const int64_t t_end_cpu = ggml_cycles();
  15993. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15994. UNUSED(t_end_cpu);
  15995. const int64_t t_end_wall = ggml_time_us();
  15996. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15997. UNUSED(t_end_wall);
  15998. }
  15999. }
  16000. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16001. }
  16002. //
  16003. // L-BFGS
  16004. //
  16005. // the L-BFGS implementation below is based on the following implementation:
  16006. //
  16007. // https://github.com/chokkan/liblbfgs
  16008. //
  16009. struct ggml_lbfgs_iteration_data {
  16010. float alpha;
  16011. float ys;
  16012. float * s;
  16013. float * y;
  16014. };
  16015. static enum ggml_opt_result linesearch_backtracking(
  16016. const struct ggml_opt_params * params,
  16017. int nx,
  16018. float * x,
  16019. float * fx,
  16020. float * g,
  16021. float * d,
  16022. float * step,
  16023. const float * xp,
  16024. struct ggml_tensor * f,
  16025. struct ggml_cgraph * gb,
  16026. struct ggml_cplan * cplan,
  16027. const int np,
  16028. struct ggml_tensor * ps[],
  16029. bool * cancel,
  16030. ggml_opt_callback callback,
  16031. void * callback_data) {
  16032. int count = 0;
  16033. float width = 0.0f;
  16034. float dg = 0.0f;
  16035. float finit = 0.0f;
  16036. float dginit = 0.0f;
  16037. float dgtest = 0.0f;
  16038. const float dec = 0.5f;
  16039. const float inc = 2.1f;
  16040. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16041. const float accum_norm = 1.0f / (float) n_accum;
  16042. if (*step <= 0.f) {
  16043. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16044. }
  16045. // compute the initial gradient in the search direction
  16046. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16047. // make sure that d points to a descent direction
  16048. if (0 < dginit) {
  16049. return GGML_LINESEARCH_FAIL;
  16050. }
  16051. // initialize local variables
  16052. finit = *fx;
  16053. dgtest = params->lbfgs.ftol*dginit;
  16054. while (true) {
  16055. ggml_vec_cpy_f32(nx, x, xp);
  16056. ggml_vec_mad_f32(nx, x, d, *step);
  16057. // evaluate the function and gradient values
  16058. {
  16059. ggml_opt_set_params(np, ps, x);
  16060. *fx = 0;
  16061. memset(g, 0, sizeof(float)*nx);
  16062. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16063. if (callback) {
  16064. // LBFG-S does not support learning rate -> ignore learning schedule
  16065. float sched = 0;
  16066. callback(callback_data, accum_step, &sched, cancel);
  16067. if (*cancel) {
  16068. return GGML_OPT_RESULT_CANCEL;
  16069. }
  16070. }
  16071. // ggml_graph_reset (gf);
  16072. ggml_set_f32 (f->grad, 1.0f);
  16073. ggml_graph_compute(gb, cplan);
  16074. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16075. *fx += ggml_get_f32_1d(f, 0);
  16076. }
  16077. *fx *= accum_norm;
  16078. }
  16079. ++count;
  16080. if (*fx > finit + (*step)*dgtest) {
  16081. width = dec;
  16082. } else {
  16083. // Armijo condition is satisfied
  16084. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16085. return count;
  16086. }
  16087. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16088. // check the Wolfe condition
  16089. if (dg < params->lbfgs.wolfe * dginit) {
  16090. width = inc;
  16091. } else {
  16092. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16093. // regular Wolfe conditions
  16094. return count;
  16095. }
  16096. if(dg > -params->lbfgs.wolfe*dginit) {
  16097. width = dec;
  16098. } else {
  16099. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16100. return count;
  16101. }
  16102. }
  16103. }
  16104. if (*step < params->lbfgs.min_step) {
  16105. return GGML_LINESEARCH_MINIMUM_STEP;
  16106. }
  16107. if (*step > params->lbfgs.max_step) {
  16108. return GGML_LINESEARCH_MAXIMUM_STEP;
  16109. }
  16110. if (params->lbfgs.max_linesearch <= count) {
  16111. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16112. }
  16113. (*step) *= width;
  16114. }
  16115. GGML_ASSERT(false && "line search failed");
  16116. return GGML_LINESEARCH_FAIL;
  16117. }
  16118. static enum ggml_opt_result ggml_opt_lbfgs(
  16119. struct ggml_context * ctx,
  16120. struct ggml_opt_context * opt,
  16121. struct ggml_opt_params params,
  16122. struct ggml_tensor * f,
  16123. struct ggml_cgraph * gf,
  16124. struct ggml_cgraph * gb,
  16125. ggml_opt_callback callback,
  16126. void * callback_data) {
  16127. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16128. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16129. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16130. return GGML_OPT_RESULT_INVALID_WOLFE;
  16131. }
  16132. }
  16133. const int m = params.lbfgs.m;
  16134. // these will store the parameters we want to optimize
  16135. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16136. int np = 0;
  16137. int nx = 0;
  16138. for (int i = 0; i < gf->n_nodes; ++i) {
  16139. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16140. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16141. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16142. ps[np++] = gf->nodes[i];
  16143. nx += ggml_nelements(gf->nodes[i]);
  16144. }
  16145. }
  16146. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16147. int iter = opt->iter;
  16148. ggml_opt_init(ctx, opt, params, nx);
  16149. opt->iter = iter;
  16150. }
  16151. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16152. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16153. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16154. float * x = opt->lbfgs.x->data; // current parameters
  16155. float * xp = opt->lbfgs.xp->data; // previous parameters
  16156. float * g = opt->lbfgs.g->data; // current gradient
  16157. float * gp = opt->lbfgs.gp->data; // previous gradient
  16158. float * d = opt->lbfgs.d->data; // search direction
  16159. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16160. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16161. const float accum_norm = 1.0f / (float) n_accum;
  16162. float fx = 0.0f; // cost function value
  16163. float xnorm = 0.0f; // ||x||
  16164. float gnorm = 0.0f; // ||g||
  16165. // initialize x from the graph nodes
  16166. ggml_opt_get_params(np, ps, x);
  16167. // the L-BFGS memory
  16168. float * lm_alpha = opt->lbfgs.lmal->data;
  16169. float * lm_ys = opt->lbfgs.lmys->data;
  16170. float * lm_s = opt->lbfgs.lms->data;
  16171. float * lm_y = opt->lbfgs.lmy->data;
  16172. bool cancel = false;
  16173. // evaluate the function value and its gradient
  16174. {
  16175. ggml_opt_set_params(np, ps, x);
  16176. fx = 0;
  16177. memset(g, 0, sizeof(float)*nx);
  16178. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16179. if (callback) {
  16180. // LBFG-S does not support learning rate -> ignore learning schedule
  16181. float sched = 0;
  16182. callback(callback_data, accum_step, &sched, &cancel);
  16183. if (cancel) {
  16184. return GGML_OPT_RESULT_CANCEL;
  16185. }
  16186. }
  16187. // ggml_graph_reset (gf);
  16188. ggml_set_f32 (f->grad, 1.0f);
  16189. ggml_graph_compute(gb, &cplan);
  16190. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16191. fx += ggml_get_f32_1d(f, 0);
  16192. }
  16193. fx *= accum_norm;
  16194. opt->loss_before = fx;
  16195. opt->loss_after = fx;
  16196. }
  16197. // search direction = -gradient
  16198. ggml_vec_neg_f32(nx, d, g);
  16199. // ||x||, ||g||
  16200. ggml_vec_norm_f32(nx, &xnorm, x);
  16201. ggml_vec_norm_f32(nx, &gnorm, g);
  16202. if (xnorm < 1.0f) {
  16203. xnorm = 1.0f;
  16204. }
  16205. // already optimized
  16206. if (gnorm/xnorm <= params.lbfgs.eps) {
  16207. return GGML_OPT_RESULT_OK;
  16208. }
  16209. if (opt->just_initialized) {
  16210. if (pf) {
  16211. pf[0] = fx;
  16212. }
  16213. opt->lbfgs.fx_best = fx;
  16214. // initial step
  16215. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16216. opt->lbfgs.j = 0;
  16217. opt->lbfgs.k = 1;
  16218. opt->lbfgs.end = 0;
  16219. opt->lbfgs.n_no_improvement = 0;
  16220. opt->just_initialized = false;
  16221. }
  16222. float * fx_best = &opt->lbfgs.fx_best;
  16223. float * step = &opt->lbfgs.step;
  16224. int * j = &opt->lbfgs.j;
  16225. int * k = &opt->lbfgs.k;
  16226. int * end = &opt->lbfgs.end;
  16227. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16228. int ls = 0;
  16229. int bound = 0;
  16230. float ys = 0.0f;
  16231. float yy = 0.0f;
  16232. float beta = 0.0f;
  16233. int it = 0;
  16234. while (true) {
  16235. // store the current position and gradient vectors
  16236. ggml_vec_cpy_f32(nx, xp, x);
  16237. ggml_vec_cpy_f32(nx, gp, g);
  16238. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16239. // to determine if the optimization should be cancelled
  16240. // this is a simple change, but not doing this atm, since I don't have a nice
  16241. // way to test and don't want to break something with so many changes lined up
  16242. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16243. if (cancel) {
  16244. return GGML_OPT_RESULT_CANCEL;
  16245. }
  16246. if (ls < 0) {
  16247. // linesearch failed - go back to the previous point and return
  16248. ggml_vec_cpy_f32(nx, x, xp);
  16249. ggml_vec_cpy_f32(nx, g, gp);
  16250. return ls;
  16251. }
  16252. opt->loss_after = fx;
  16253. ggml_vec_norm_f32(nx, &xnorm, x);
  16254. ggml_vec_norm_f32(nx, &gnorm, g);
  16255. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16256. if (xnorm < 1.0f) {
  16257. xnorm = 1.0f;
  16258. }
  16259. if (gnorm/xnorm <= params.lbfgs.eps) {
  16260. // converged
  16261. return GGML_OPT_RESULT_OK;
  16262. }
  16263. // delta-based convergence test
  16264. if (pf != NULL) {
  16265. // need at least params.past iterations to start checking for convergence
  16266. if (params.past <= k[0]) {
  16267. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16268. if (fabsf(rate) < params.delta) {
  16269. return GGML_OPT_RESULT_OK;
  16270. }
  16271. }
  16272. pf[k[0]%params.past] = fx;
  16273. }
  16274. // check for improvement
  16275. if (params.max_no_improvement > 0) {
  16276. if (fx < fx_best[0]) {
  16277. fx_best[0] = fx;
  16278. n_no_improvement[0] = 0;
  16279. } else {
  16280. n_no_improvement[0]++;
  16281. if (n_no_improvement[0] >= params.max_no_improvement) {
  16282. return GGML_OPT_RESULT_OK;
  16283. }
  16284. }
  16285. }
  16286. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16287. // reached the maximum number of iterations
  16288. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16289. }
  16290. // update vectors s and y:
  16291. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16292. // y_{k+1} = g_{k+1} - g_{k}.
  16293. //
  16294. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16295. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16296. // compute scalars ys and yy:
  16297. // ys = y^t \cdot s -> 1 / \rho.
  16298. // yy = y^t \cdot y.
  16299. //
  16300. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16301. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16302. lm_ys[end[0]] = ys;
  16303. // find new search direction
  16304. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16305. bound = (m <= k[0]) ? m : k[0];
  16306. k[0]++;
  16307. it++;
  16308. end[0] = (end[0] + 1)%m;
  16309. // initialize search direction with -g
  16310. ggml_vec_neg_f32(nx, d, g);
  16311. j[0] = end[0];
  16312. for (int i = 0; i < bound; ++i) {
  16313. j[0] = (j[0] + m - 1) % m;
  16314. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16315. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16316. lm_alpha[j[0]] /= lm_ys[j[0]];
  16317. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16318. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16319. }
  16320. ggml_vec_scale_f32(nx, d, ys/yy);
  16321. for (int i = 0; i < bound; ++i) {
  16322. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16323. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16324. beta /= lm_ys[j[0]];
  16325. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16326. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16327. j[0] = (j[0] + 1)%m;
  16328. }
  16329. step[0] = 1.0;
  16330. }
  16331. GGML_ASSERT(false && "lbfgs failed");
  16332. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16333. }
  16334. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16335. struct ggml_opt_params result;
  16336. switch (type) {
  16337. case GGML_OPT_TYPE_ADAM:
  16338. {
  16339. result = (struct ggml_opt_params) {
  16340. .type = GGML_OPT_TYPE_ADAM,
  16341. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16342. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16343. .past = 0,
  16344. .delta = 1e-5f,
  16345. .max_no_improvement = 100,
  16346. .print_forward_graph = true,
  16347. .print_backward_graph = true,
  16348. .n_gradient_accumulation = 1,
  16349. .adam = {
  16350. .n_iter = 10000,
  16351. .sched = 1.000f,
  16352. .decay = 0.0f,
  16353. .decay_min_ndim = 2,
  16354. .alpha = 0.001f,
  16355. .beta1 = 0.9f,
  16356. .beta2 = 0.999f,
  16357. .eps = 1e-8f,
  16358. .eps_f = 1e-5f,
  16359. .eps_g = 1e-3f,
  16360. .gclip = 0.0f,
  16361. },
  16362. };
  16363. } break;
  16364. case GGML_OPT_TYPE_LBFGS:
  16365. {
  16366. result = (struct ggml_opt_params) {
  16367. .type = GGML_OPT_TYPE_LBFGS,
  16368. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16369. .n_threads = 1,
  16370. .past = 0,
  16371. .delta = 1e-5f,
  16372. .max_no_improvement = 0,
  16373. .print_forward_graph = true,
  16374. .print_backward_graph = true,
  16375. .n_gradient_accumulation = 1,
  16376. .lbfgs = {
  16377. .m = 6,
  16378. .n_iter = 100,
  16379. .max_linesearch = 20,
  16380. .eps = 1e-5f,
  16381. .ftol = 1e-4f,
  16382. .wolfe = 0.9f,
  16383. .min_step = 1e-20f,
  16384. .max_step = 1e+20f,
  16385. .linesearch = GGML_LINESEARCH_DEFAULT,
  16386. },
  16387. };
  16388. } break;
  16389. }
  16390. return result;
  16391. }
  16392. GGML_API void ggml_opt_init(
  16393. struct ggml_context * ctx,
  16394. struct ggml_opt_context * opt,
  16395. struct ggml_opt_params params,
  16396. int64_t nx) {
  16397. opt->ctx = ctx;
  16398. opt->params = params;
  16399. opt->iter = 0;
  16400. opt->nx = nx;
  16401. opt->just_initialized = true;
  16402. if (opt->ctx == NULL) {
  16403. struct ggml_init_params ctx_opt_params;
  16404. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16405. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16406. if (opt->params.past > 0) {
  16407. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16408. }
  16409. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16410. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16411. if (opt->params.past > 0) {
  16412. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16413. }
  16414. }
  16415. ctx_opt_params.mem_buffer = NULL;
  16416. ctx_opt_params.no_alloc = false;
  16417. opt->ctx = ggml_init(ctx_opt_params);
  16418. }
  16419. switch (opt->params.type) {
  16420. case GGML_OPT_TYPE_ADAM:
  16421. {
  16422. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16423. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16424. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16425. opt->adam.pf = params.past > 0
  16426. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16427. : NULL;
  16428. ggml_set_zero(opt->adam.m);
  16429. ggml_set_zero(opt->adam.v);
  16430. if (opt->adam.pf) {
  16431. ggml_set_zero(opt->adam.pf);
  16432. }
  16433. } break;
  16434. case GGML_OPT_TYPE_LBFGS:
  16435. {
  16436. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16437. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16438. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16439. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16440. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16441. opt->lbfgs.pf = params.past > 0
  16442. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16443. : NULL;
  16444. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16445. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16446. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16447. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16448. ggml_set_zero(opt->lbfgs.x);
  16449. ggml_set_zero(opt->lbfgs.xp);
  16450. ggml_set_zero(opt->lbfgs.g);
  16451. ggml_set_zero(opt->lbfgs.gp);
  16452. ggml_set_zero(opt->lbfgs.d);
  16453. if (opt->lbfgs.pf) {
  16454. ggml_set_zero(opt->lbfgs.pf);
  16455. }
  16456. ggml_set_zero(opt->lbfgs.lmal);
  16457. ggml_set_zero(opt->lbfgs.lmys);
  16458. ggml_set_zero(opt->lbfgs.lms);
  16459. ggml_set_zero(opt->lbfgs.lmy);
  16460. } break;
  16461. }
  16462. }
  16463. enum ggml_opt_result ggml_opt(
  16464. struct ggml_context * ctx,
  16465. struct ggml_opt_params params,
  16466. struct ggml_tensor * f) {
  16467. bool free_ctx = false;
  16468. if (ctx == NULL) {
  16469. struct ggml_init_params params_ctx = {
  16470. .mem_size = 16*1024*1024,
  16471. .mem_buffer = NULL,
  16472. .no_alloc = false,
  16473. };
  16474. ctx = ggml_init(params_ctx);
  16475. if (ctx == NULL) {
  16476. return GGML_OPT_RESULT_NO_CONTEXT;
  16477. }
  16478. free_ctx = true;
  16479. }
  16480. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16481. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16482. ggml_opt_init(ctx, opt, params, 0);
  16483. result = ggml_opt_resume(ctx, opt, f);
  16484. if (free_ctx) {
  16485. ggml_free(ctx);
  16486. }
  16487. return result;
  16488. }
  16489. enum ggml_opt_result ggml_opt_resume(
  16490. struct ggml_context * ctx,
  16491. struct ggml_opt_context * opt,
  16492. struct ggml_tensor * f) {
  16493. // build forward + backward compute graphs
  16494. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16495. ggml_build_forward_expand(gf, f);
  16496. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16497. ggml_build_backward_expand(ctx, gf, gb, true);
  16498. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16499. }
  16500. enum ggml_opt_result ggml_opt_resume_g(
  16501. struct ggml_context * ctx,
  16502. struct ggml_opt_context * opt,
  16503. struct ggml_tensor * f,
  16504. struct ggml_cgraph * gf,
  16505. struct ggml_cgraph * gb,
  16506. ggml_opt_callback callback,
  16507. void * callback_data) {
  16508. // build forward + backward compute graphs
  16509. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16510. switch (opt->params.type) {
  16511. case GGML_OPT_TYPE_ADAM:
  16512. {
  16513. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16514. } break;
  16515. case GGML_OPT_TYPE_LBFGS:
  16516. {
  16517. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16518. } break;
  16519. }
  16520. if (opt->params.print_forward_graph) {
  16521. ggml_graph_print (gf);
  16522. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16523. }
  16524. if (opt->params.print_backward_graph) {
  16525. ggml_graph_print (gb);
  16526. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16527. }
  16528. return result;
  16529. }
  16530. ////////////////////////////////////////////////////////////////////////////////
  16531. void ggml_set_input(struct ggml_tensor * tensor) {
  16532. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16533. }
  16534. void ggml_set_output(struct ggml_tensor * tensor) {
  16535. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16536. }
  16537. ////////////////////////////////////////////////////////////////////////////////
  16538. void ggml_quantize_init(enum ggml_type type) {
  16539. ggml_critical_section_start();
  16540. switch (type) {
  16541. case GGML_TYPE_IQ2_XXS:
  16542. case GGML_TYPE_IQ2_XS:
  16543. case GGML_TYPE_IQ2_S:
  16544. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16545. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16546. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16547. default: // nothing
  16548. break;
  16549. }
  16550. ggml_critical_section_end();
  16551. }
  16552. void ggml_quantize_free(void) {
  16553. ggml_critical_section_start();
  16554. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16555. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16556. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16557. iq3xs_free_impl(256);
  16558. ggml_critical_section_end();
  16559. }
  16560. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16561. return
  16562. type == GGML_TYPE_IQ2_XXS ||
  16563. type == GGML_TYPE_IQ2_XS ||
  16564. type == GGML_TYPE_IQ1_S;
  16565. }
  16566. size_t ggml_quantize_chunk(
  16567. enum ggml_type type,
  16568. const float * src,
  16569. void * dst,
  16570. int start,
  16571. int nrows,
  16572. int n_per_row,
  16573. const float * imatrix) {
  16574. const int n = nrows * n_per_row;
  16575. if (ggml_quantize_requires_imatrix(type)) {
  16576. GGML_ASSERT(imatrix != NULL);
  16577. }
  16578. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16579. GGML_ASSERT(start % n_per_row == 0);
  16580. ggml_quantize_init(type); // this is noop if already initialized
  16581. const size_t start_row = start / n_per_row;
  16582. const size_t row_size = ggml_row_size(type, n_per_row);
  16583. size_t result = 0;
  16584. switch (type) {
  16585. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16586. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16587. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16588. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16589. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16590. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16591. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16592. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16593. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16594. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16595. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16596. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16597. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16598. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16599. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16600. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16601. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16602. #if QK_K == 64
  16603. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16604. #else
  16605. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16606. #endif
  16607. case GGML_TYPE_F16:
  16608. {
  16609. size_t elemsize = sizeof(ggml_fp16_t);
  16610. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16611. result = n * elemsize;
  16612. } break;
  16613. case GGML_TYPE_F32:
  16614. {
  16615. size_t elemsize = sizeof(float);
  16616. result = n * elemsize;
  16617. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16618. } break;
  16619. default:
  16620. assert(false);
  16621. }
  16622. GGML_ASSERT(result == nrows * row_size);
  16623. return result;
  16624. }
  16625. ////////////////////////////////////////////////////////////////////////////////
  16626. struct gguf_str {
  16627. uint64_t n; // GGUFv2
  16628. char * data;
  16629. };
  16630. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16631. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16632. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16633. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16634. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16635. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16636. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16637. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16638. [GGUF_TYPE_BOOL] = sizeof(bool),
  16639. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16640. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16641. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16642. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16643. [GGUF_TYPE_ARRAY] = 0, // undefined
  16644. };
  16645. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16646. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16647. [GGUF_TYPE_UINT8] = "u8",
  16648. [GGUF_TYPE_INT8] = "i8",
  16649. [GGUF_TYPE_UINT16] = "u16",
  16650. [GGUF_TYPE_INT16] = "i16",
  16651. [GGUF_TYPE_UINT32] = "u32",
  16652. [GGUF_TYPE_INT32] = "i32",
  16653. [GGUF_TYPE_FLOAT32] = "f32",
  16654. [GGUF_TYPE_BOOL] = "bool",
  16655. [GGUF_TYPE_STRING] = "str",
  16656. [GGUF_TYPE_ARRAY] = "arr",
  16657. [GGUF_TYPE_UINT64] = "u64",
  16658. [GGUF_TYPE_INT64] = "i64",
  16659. [GGUF_TYPE_FLOAT64] = "f64",
  16660. };
  16661. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16662. union gguf_value {
  16663. uint8_t uint8;
  16664. int8_t int8;
  16665. uint16_t uint16;
  16666. int16_t int16;
  16667. uint32_t uint32;
  16668. int32_t int32;
  16669. float float32;
  16670. uint64_t uint64;
  16671. int64_t int64;
  16672. double float64;
  16673. bool bool_;
  16674. struct gguf_str str;
  16675. struct {
  16676. enum gguf_type type;
  16677. uint64_t n; // GGUFv2
  16678. void * data;
  16679. } arr;
  16680. };
  16681. struct gguf_kv {
  16682. struct gguf_str key;
  16683. enum gguf_type type;
  16684. union gguf_value value;
  16685. };
  16686. struct gguf_header {
  16687. char magic[4];
  16688. uint32_t version;
  16689. uint64_t n_tensors; // GGUFv2
  16690. uint64_t n_kv; // GGUFv2
  16691. };
  16692. struct gguf_tensor_info {
  16693. struct gguf_str name;
  16694. uint32_t n_dims;
  16695. uint64_t ne[GGML_MAX_DIMS];
  16696. enum ggml_type type;
  16697. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16698. // for writing API
  16699. const void * data;
  16700. size_t size;
  16701. };
  16702. struct gguf_context {
  16703. struct gguf_header header;
  16704. struct gguf_kv * kv;
  16705. struct gguf_tensor_info * infos;
  16706. size_t alignment;
  16707. size_t offset; // offset of `data` from beginning of file
  16708. size_t size; // size of `data` in bytes
  16709. //uint8_t * padding;
  16710. void * data;
  16711. };
  16712. static size_t gguf_type_size(enum gguf_type type) {
  16713. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16714. return GGUF_TYPE_SIZE[type];
  16715. }
  16716. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16717. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16718. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16719. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16720. GGML_ASSERT(info->ne[i] > 0);
  16721. }
  16722. // prevent overflow for total number of elements
  16723. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16724. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16725. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16726. }
  16727. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16728. const size_t n = fread(dst, 1, size, file);
  16729. *offset += n;
  16730. return n == size;
  16731. }
  16732. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16733. p->n = 0;
  16734. p->data = NULL;
  16735. bool ok = true;
  16736. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16737. // early exit if string length is invalid, prevents from integer overflow
  16738. if (p->n == SIZE_MAX) {
  16739. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16740. return false;
  16741. }
  16742. p->data = GGML_CALLOC(p->n + 1, 1);
  16743. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16744. return ok;
  16745. }
  16746. struct gguf_context * gguf_init_empty(void) {
  16747. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16748. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16749. ctx->header.version = GGUF_VERSION;
  16750. ctx->header.n_tensors = 0;
  16751. ctx->header.n_kv = 0;
  16752. ctx->kv = NULL;
  16753. ctx->infos = NULL;
  16754. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16755. ctx->offset = 0;
  16756. ctx->size = 0;
  16757. ctx->data = NULL;
  16758. return ctx;
  16759. }
  16760. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16761. FILE * file = fopen(fname, "rb");
  16762. if (!file) {
  16763. return NULL;
  16764. }
  16765. // offset from start of file
  16766. size_t offset = 0;
  16767. char magic[4];
  16768. // check the magic before making allocations
  16769. {
  16770. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16771. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16772. if (magic[i] != GGUF_MAGIC[i]) {
  16773. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16774. fclose(file);
  16775. return NULL;
  16776. }
  16777. }
  16778. }
  16779. bool ok = true;
  16780. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16781. // read the header
  16782. {
  16783. strncpy(ctx->header.magic, magic, 4);
  16784. ctx->kv = NULL;
  16785. ctx->infos = NULL;
  16786. ctx->data = NULL;
  16787. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16788. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16789. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16790. if (ctx->header.version == 1) {
  16791. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16792. fclose(file);
  16793. gguf_free(ctx);
  16794. return NULL;
  16795. }
  16796. // sanity-checks to prevent from integer/buffer overflows
  16797. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16798. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16799. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16800. if (!ok) {
  16801. fprintf(stderr, "%s: failed to read header\n", __func__);
  16802. fclose(file);
  16803. gguf_free(ctx);
  16804. return NULL;
  16805. }
  16806. }
  16807. // read the kv pairs
  16808. {
  16809. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16810. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16811. struct gguf_kv * kv = &ctx->kv[i];
  16812. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16813. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16814. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16815. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16816. switch (kv->type) {
  16817. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16818. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16819. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16820. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16821. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16822. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16823. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16824. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16825. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16826. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16827. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16828. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16829. case GGUF_TYPE_ARRAY:
  16830. {
  16831. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16832. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16833. switch (kv->value.arr.type) {
  16834. case GGUF_TYPE_UINT8:
  16835. case GGUF_TYPE_INT8:
  16836. case GGUF_TYPE_UINT16:
  16837. case GGUF_TYPE_INT16:
  16838. case GGUF_TYPE_UINT32:
  16839. case GGUF_TYPE_INT32:
  16840. case GGUF_TYPE_FLOAT32:
  16841. case GGUF_TYPE_UINT64:
  16842. case GGUF_TYPE_INT64:
  16843. case GGUF_TYPE_FLOAT64:
  16844. case GGUF_TYPE_BOOL:
  16845. {
  16846. // prevent from integer overflow in the malloc below
  16847. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16848. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16849. fclose(file);
  16850. gguf_free(ctx);
  16851. return NULL;
  16852. }
  16853. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16854. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16855. } break;
  16856. case GGUF_TYPE_STRING:
  16857. {
  16858. // prevent from integer overflow in the malloc below
  16859. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16860. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16861. fclose(file);
  16862. gguf_free(ctx);
  16863. return NULL;
  16864. }
  16865. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16866. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16867. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16868. }
  16869. } break;
  16870. case GGUF_TYPE_ARRAY:
  16871. default: GGML_ASSERT(false && "invalid type"); break;
  16872. }
  16873. } break;
  16874. default: GGML_ASSERT(false && "invalid type");
  16875. }
  16876. if (!ok) {
  16877. break;
  16878. }
  16879. }
  16880. if (!ok) {
  16881. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16882. fclose(file);
  16883. gguf_free(ctx);
  16884. return NULL;
  16885. }
  16886. }
  16887. // read the tensor infos
  16888. {
  16889. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16890. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16891. struct gguf_tensor_info * info = &ctx->infos[i];
  16892. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16893. info->ne[j] = 1;
  16894. }
  16895. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16896. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16897. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16898. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16899. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16900. }
  16901. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16902. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16903. gguf_tensor_info_sanitize(info);
  16904. if (!ok) {
  16905. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16906. fclose(file);
  16907. gguf_free(ctx);
  16908. return NULL;
  16909. }
  16910. }
  16911. }
  16912. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16913. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16914. if (alignment_idx != -1) {
  16915. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16916. }
  16917. // we require the data section to be aligned, so take into account any padding
  16918. {
  16919. const size_t offset_pad = offset % ctx->alignment;
  16920. if (offset_pad != 0) {
  16921. offset += ctx->alignment - offset_pad;
  16922. fseek(file, offset, SEEK_SET);
  16923. }
  16924. }
  16925. // store the current file offset - this is where the data section starts
  16926. ctx->offset = offset;
  16927. // compute the total size of the data section, taking into account the alignment
  16928. {
  16929. ctx->size = 0;
  16930. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16931. struct gguf_tensor_info * info = &ctx->infos[i];
  16932. const int64_t ne =
  16933. (int64_t) info->ne[0] *
  16934. (int64_t) info->ne[1] *
  16935. (int64_t) info->ne[2] *
  16936. (int64_t) info->ne[3];
  16937. if (ne % ggml_blck_size(info->type) != 0) {
  16938. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16939. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16940. fclose(file);
  16941. gguf_free(ctx);
  16942. return NULL;
  16943. }
  16944. const size_t size_cur = ggml_row_size(info->type, ne);
  16945. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16946. }
  16947. }
  16948. // load the tensor data only if requested
  16949. if (params.ctx != NULL) {
  16950. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16951. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16952. // the ggml_tensor structs to the appropriate locations in the binary blob
  16953. // compute the exact size needed for the new ggml_context
  16954. const size_t mem_size =
  16955. params.no_alloc ?
  16956. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16957. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16958. struct ggml_init_params pdata = {
  16959. .mem_size = mem_size,
  16960. .mem_buffer = NULL,
  16961. .no_alloc = params.no_alloc,
  16962. };
  16963. *params.ctx = ggml_init(pdata);
  16964. struct ggml_context * ctx_data = *params.ctx;
  16965. struct ggml_tensor * data = NULL;
  16966. if (!params.no_alloc) {
  16967. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16968. ok = ok && data != NULL;
  16969. // read the binary blob with the tensor data
  16970. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16971. if (!ok) {
  16972. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16973. fclose(file);
  16974. ggml_free(ctx_data);
  16975. gguf_free(ctx);
  16976. return NULL;
  16977. }
  16978. ctx->data = data->data;
  16979. }
  16980. ggml_set_no_alloc(ctx_data, true);
  16981. // create the tensors
  16982. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16983. const int64_t ne[GGML_MAX_DIMS] = {
  16984. ctx->infos[i].ne[0],
  16985. ctx->infos[i].ne[1],
  16986. ctx->infos[i].ne[2],
  16987. ctx->infos[i].ne[3],
  16988. };
  16989. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16990. ok = ok && cur != NULL;
  16991. ggml_set_name(cur, ctx->infos[i].name.data);
  16992. if (!ok) {
  16993. break;
  16994. }
  16995. // point the data member to the appropriate location in the binary blob using the tensor infos
  16996. if (!params.no_alloc) {
  16997. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16998. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16999. }
  17000. }
  17001. if (!ok) {
  17002. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17003. fclose(file);
  17004. ggml_free(ctx_data);
  17005. gguf_free(ctx);
  17006. return NULL;
  17007. }
  17008. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17009. }
  17010. fclose(file);
  17011. return ctx;
  17012. }
  17013. void gguf_free(struct gguf_context * ctx) {
  17014. if (ctx == NULL) {
  17015. return;
  17016. }
  17017. if (ctx->kv) {
  17018. // free string memory - not great..
  17019. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17020. struct gguf_kv * kv = &ctx->kv[i];
  17021. if (kv->key.data) {
  17022. GGML_FREE(kv->key.data);
  17023. }
  17024. if (kv->type == GGUF_TYPE_STRING) {
  17025. if (kv->value.str.data) {
  17026. GGML_FREE(kv->value.str.data);
  17027. }
  17028. }
  17029. if (kv->type == GGUF_TYPE_ARRAY) {
  17030. if (kv->value.arr.data) {
  17031. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17032. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17033. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17034. if (str->data) {
  17035. GGML_FREE(str->data);
  17036. }
  17037. }
  17038. }
  17039. GGML_FREE(kv->value.arr.data);
  17040. }
  17041. }
  17042. }
  17043. GGML_FREE(ctx->kv);
  17044. }
  17045. if (ctx->infos) {
  17046. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17047. struct gguf_tensor_info * info = &ctx->infos[i];
  17048. if (info->name.data) {
  17049. GGML_FREE(info->name.data);
  17050. }
  17051. }
  17052. GGML_FREE(ctx->infos);
  17053. }
  17054. GGML_ALIGNED_FREE(ctx);
  17055. }
  17056. const char * gguf_type_name(enum gguf_type type) {
  17057. return GGUF_TYPE_NAME[type];
  17058. }
  17059. int gguf_get_version(const struct gguf_context * ctx) {
  17060. return ctx->header.version;
  17061. }
  17062. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17063. return ctx->alignment;
  17064. }
  17065. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17066. return ctx->offset;
  17067. }
  17068. void * gguf_get_data(const struct gguf_context * ctx) {
  17069. return ctx->data;
  17070. }
  17071. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17072. return ctx->header.n_kv;
  17073. }
  17074. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17075. // return -1 if key not found
  17076. int keyfound = -1;
  17077. const int n_kv = gguf_get_n_kv(ctx);
  17078. for (int i = 0; i < n_kv; ++i) {
  17079. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17080. keyfound = i;
  17081. break;
  17082. }
  17083. }
  17084. return keyfound;
  17085. }
  17086. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17087. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17088. return ctx->kv[key_id].key.data;
  17089. }
  17090. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17091. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17092. return ctx->kv[key_id].type;
  17093. }
  17094. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17095. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17096. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17097. return ctx->kv[key_id].value.arr.type;
  17098. }
  17099. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17100. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17101. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17102. return ctx->kv[key_id].value.arr.data;
  17103. }
  17104. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17105. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17106. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17107. struct gguf_kv * kv = &ctx->kv[key_id];
  17108. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17109. return str->data;
  17110. }
  17111. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17112. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17113. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17114. return ctx->kv[key_id].value.arr.n;
  17115. }
  17116. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17117. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17118. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17119. return ctx->kv[key_id].value.uint8;
  17120. }
  17121. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17122. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17123. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17124. return ctx->kv[key_id].value.int8;
  17125. }
  17126. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17127. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17128. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17129. return ctx->kv[key_id].value.uint16;
  17130. }
  17131. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17132. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17133. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17134. return ctx->kv[key_id].value.int16;
  17135. }
  17136. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17137. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17138. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17139. return ctx->kv[key_id].value.uint32;
  17140. }
  17141. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17142. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17143. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17144. return ctx->kv[key_id].value.int32;
  17145. }
  17146. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17147. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17148. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17149. return ctx->kv[key_id].value.float32;
  17150. }
  17151. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17152. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17153. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17154. return ctx->kv[key_id].value.uint64;
  17155. }
  17156. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17157. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17158. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17159. return ctx->kv[key_id].value.int64;
  17160. }
  17161. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17162. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17163. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17164. return ctx->kv[key_id].value.float64;
  17165. }
  17166. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17167. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17168. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17169. return ctx->kv[key_id].value.bool_;
  17170. }
  17171. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17172. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17173. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17174. return ctx->kv[key_id].value.str.data;
  17175. }
  17176. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17177. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17178. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17179. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17180. return &ctx->kv[key_id].value;
  17181. }
  17182. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17183. return ctx->header.n_tensors;
  17184. }
  17185. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17186. // return -1 if tensor not found
  17187. int tensorfound = -1;
  17188. const int n_tensors = gguf_get_n_tensors(ctx);
  17189. for (int i = 0; i < n_tensors; ++i) {
  17190. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17191. tensorfound = i;
  17192. break;
  17193. }
  17194. }
  17195. return tensorfound;
  17196. }
  17197. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17198. return ctx->infos[i].offset;
  17199. }
  17200. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17201. return ctx->infos[i].name.data;
  17202. }
  17203. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17204. return ctx->infos[i].type;
  17205. }
  17206. // returns the index
  17207. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17208. const int idx = gguf_find_key(ctx, key);
  17209. if (idx >= 0) {
  17210. return idx;
  17211. }
  17212. const int n_kv = gguf_get_n_kv(ctx);
  17213. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17214. ctx->kv[n_kv].key.n = strlen(key);
  17215. ctx->kv[n_kv].key.data = strdup(key);
  17216. ctx->header.n_kv++;
  17217. return n_kv;
  17218. }
  17219. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17220. const int idx = gguf_get_or_add_key(ctx, key);
  17221. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17222. ctx->kv[idx].value.uint8 = val;
  17223. }
  17224. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17225. const int idx = gguf_get_or_add_key(ctx, key);
  17226. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17227. ctx->kv[idx].value.int8 = val;
  17228. }
  17229. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17230. const int idx = gguf_get_or_add_key(ctx, key);
  17231. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17232. ctx->kv[idx].value.uint16 = val;
  17233. }
  17234. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17235. const int idx = gguf_get_or_add_key(ctx, key);
  17236. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17237. ctx->kv[idx].value.int16 = val;
  17238. }
  17239. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17240. const int idx = gguf_get_or_add_key(ctx, key);
  17241. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17242. ctx->kv[idx].value.uint32 = val;
  17243. }
  17244. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17245. const int idx = gguf_get_or_add_key(ctx, key);
  17246. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17247. ctx->kv[idx].value.int32 = val;
  17248. }
  17249. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17250. const int idx = gguf_get_or_add_key(ctx, key);
  17251. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17252. ctx->kv[idx].value.float32 = val;
  17253. }
  17254. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17255. const int idx = gguf_get_or_add_key(ctx, key);
  17256. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17257. ctx->kv[idx].value.uint64 = val;
  17258. }
  17259. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17260. const int idx = gguf_get_or_add_key(ctx, key);
  17261. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17262. ctx->kv[idx].value.int64 = val;
  17263. }
  17264. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17265. const int idx = gguf_get_or_add_key(ctx, key);
  17266. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17267. ctx->kv[idx].value.float64 = val;
  17268. }
  17269. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17270. const int idx = gguf_get_or_add_key(ctx, key);
  17271. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17272. ctx->kv[idx].value.bool_ = val;
  17273. }
  17274. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17275. const int idx = gguf_get_or_add_key(ctx, key);
  17276. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17277. ctx->kv[idx].value.str.n = strlen(val);
  17278. ctx->kv[idx].value.str.data = strdup(val);
  17279. }
  17280. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17281. const int idx = gguf_get_or_add_key(ctx, key);
  17282. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17283. ctx->kv[idx].value.arr.type = type;
  17284. ctx->kv[idx].value.arr.n = n;
  17285. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17286. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17287. }
  17288. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17289. const int idx = gguf_get_or_add_key(ctx, key);
  17290. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17291. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17292. ctx->kv[idx].value.arr.n = n;
  17293. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17294. for (int i = 0; i < n; i++) {
  17295. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17296. str->n = strlen(data[i]);
  17297. str->data = strdup(data[i]);
  17298. }
  17299. }
  17300. // set or add KV pairs from another context
  17301. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17302. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17303. switch (src->kv[i].type) {
  17304. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17305. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17306. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17307. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17308. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17309. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17310. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17311. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17312. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17313. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17314. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17315. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17316. case GGUF_TYPE_ARRAY:
  17317. {
  17318. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17319. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17320. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17321. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17322. }
  17323. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17324. GGML_FREE((void *)data);
  17325. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17326. GGML_ASSERT(false && "nested arrays not supported");
  17327. } else {
  17328. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17329. }
  17330. } break;
  17331. default: GGML_ASSERT(false && "invalid type"); break;
  17332. }
  17333. }
  17334. }
  17335. void gguf_add_tensor(
  17336. struct gguf_context * ctx,
  17337. const struct ggml_tensor * tensor) {
  17338. const int idx = ctx->header.n_tensors;
  17339. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17340. ctx->infos[idx].name.n = strlen(tensor->name);
  17341. ctx->infos[idx].name.data = strdup(tensor->name);
  17342. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17343. ctx->infos[idx].ne[i] = 1;
  17344. }
  17345. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17346. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17347. ctx->infos[idx].ne[i] = tensor->ne[i];
  17348. }
  17349. ctx->infos[idx].type = tensor->type;
  17350. ctx->infos[idx].offset = 0;
  17351. ctx->infos[idx].data = tensor->data;
  17352. ctx->infos[idx].size = ggml_nbytes(tensor);
  17353. if (ctx->header.n_tensors > 0) {
  17354. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17355. }
  17356. ctx->header.n_tensors++;
  17357. }
  17358. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17359. const int idx = gguf_find_tensor(ctx, name);
  17360. if (idx < 0) {
  17361. GGML_ASSERT(false && "tensor not found");
  17362. }
  17363. ctx->infos[idx].type = type;
  17364. }
  17365. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17366. const int idx = gguf_find_tensor(ctx, name);
  17367. if (idx < 0) {
  17368. GGML_ASSERT(false && "tensor not found");
  17369. }
  17370. ctx->infos[idx].data = data;
  17371. ctx->infos[idx].size = size;
  17372. // update offsets
  17373. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17374. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17375. }
  17376. }
  17377. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17378. // fwrite(&val->n, sizeof(val->n), 1, file);
  17379. // fwrite(val->data, sizeof(char), val->n, file);
  17380. //}
  17381. //
  17382. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17383. // fwrite(val, sizeof(char), size, file);
  17384. //}
  17385. struct gguf_buf {
  17386. void * data;
  17387. size_t size;
  17388. size_t offset;
  17389. };
  17390. static struct gguf_buf gguf_buf_init(size_t size) {
  17391. struct gguf_buf buf = {
  17392. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17393. /*buf.size =*/ size,
  17394. /*buf.offset =*/ 0,
  17395. };
  17396. return buf;
  17397. }
  17398. static void gguf_buf_free(struct gguf_buf buf) {
  17399. if (buf.data) {
  17400. GGML_FREE(buf.data);
  17401. }
  17402. }
  17403. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17404. if (buf->offset + size > buf->size) {
  17405. buf->size = 1.5*(buf->offset + size);
  17406. if (buf->data) {
  17407. buf->data = realloc(buf->data, buf->size);
  17408. }
  17409. }
  17410. }
  17411. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17412. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17413. if (buf->data) {
  17414. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17415. }
  17416. buf->offset += sizeof(val->n);
  17417. if (buf->data) {
  17418. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17419. }
  17420. buf->offset += val->n;
  17421. }
  17422. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17423. gguf_buf_grow(buf, el_size);
  17424. if (buf->data) {
  17425. memcpy((char *) buf->data + buf->offset, val, el_size);
  17426. }
  17427. buf->offset += el_size;
  17428. }
  17429. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17430. // write header
  17431. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17432. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17433. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17434. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17435. // write key-value pairs
  17436. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17437. struct gguf_kv * kv = &ctx->kv[i];
  17438. gguf_bwrite_str(buf, &kv->key);
  17439. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17440. switch (kv->type) {
  17441. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17442. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17443. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17444. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17445. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17446. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17447. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17448. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17449. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17450. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17451. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17452. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17453. case GGUF_TYPE_ARRAY:
  17454. {
  17455. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17456. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17457. switch (kv->value.arr.type) {
  17458. case GGUF_TYPE_UINT8:
  17459. case GGUF_TYPE_INT8:
  17460. case GGUF_TYPE_UINT16:
  17461. case GGUF_TYPE_INT16:
  17462. case GGUF_TYPE_UINT32:
  17463. case GGUF_TYPE_INT32:
  17464. case GGUF_TYPE_FLOAT32:
  17465. case GGUF_TYPE_UINT64:
  17466. case GGUF_TYPE_INT64:
  17467. case GGUF_TYPE_FLOAT64:
  17468. case GGUF_TYPE_BOOL:
  17469. {
  17470. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17471. } break;
  17472. case GGUF_TYPE_STRING:
  17473. {
  17474. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17475. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17476. }
  17477. } break;
  17478. case GGUF_TYPE_ARRAY:
  17479. default: GGML_ASSERT(false && "invalid type"); break;
  17480. }
  17481. } break;
  17482. default: GGML_ASSERT(false && "invalid type");
  17483. }
  17484. }
  17485. // write tensor infos
  17486. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17487. struct gguf_tensor_info * info = &ctx->infos[i];
  17488. gguf_bwrite_str(buf, &info->name);
  17489. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17490. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17491. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17492. }
  17493. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17494. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17495. }
  17496. // we require the data section to be aligned, so take into account any padding
  17497. {
  17498. const size_t offset = buf->offset;
  17499. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17500. if (offset_pad != offset) {
  17501. uint8_t pad = 0;
  17502. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17503. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17504. }
  17505. }
  17506. }
  17507. if (only_meta) {
  17508. return;
  17509. }
  17510. size_t offset = 0;
  17511. // write tensor data
  17512. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17513. struct gguf_tensor_info * info = &ctx->infos[i];
  17514. const size_t size = info->size;
  17515. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17516. gguf_bwrite_el(buf, info->data, size);
  17517. if (size_pad != size) {
  17518. uint8_t pad = 0;
  17519. for (size_t j = 0; j < size_pad - size; ++j) {
  17520. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17521. }
  17522. }
  17523. GGML_ASSERT(offset == info->offset);
  17524. offset += size_pad;
  17525. }
  17526. }
  17527. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17528. FILE * file = fopen(fname, "wb");
  17529. if (!file) {
  17530. GGML_ASSERT(false && "failed to open file for writing");
  17531. }
  17532. struct gguf_buf buf = gguf_buf_init(16*1024);
  17533. gguf_write_to_buf(ctx, &buf, only_meta);
  17534. fwrite(buf.data, 1, buf.offset, file);
  17535. gguf_buf_free(buf);
  17536. fclose(file);
  17537. }
  17538. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17539. // no allocs - only compute size
  17540. struct gguf_buf buf = gguf_buf_init(0);
  17541. gguf_write_to_buf(ctx, &buf, true);
  17542. return buf.offset;
  17543. }
  17544. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17545. struct gguf_buf buf = gguf_buf_init(16*1024);
  17546. gguf_write_to_buf(ctx, &buf, true);
  17547. memcpy(data, buf.data, buf.offset);
  17548. gguf_buf_free(buf);
  17549. }
  17550. ////////////////////////////////////////////////////////////////////////////////
  17551. int ggml_cpu_has_avx(void) {
  17552. #if defined(__AVX__)
  17553. return 1;
  17554. #else
  17555. return 0;
  17556. #endif
  17557. }
  17558. int ggml_cpu_has_avx_vnni(void) {
  17559. #if defined(__AVXVNNI__)
  17560. return 1;
  17561. #else
  17562. return 0;
  17563. #endif
  17564. }
  17565. int ggml_cpu_has_avx2(void) {
  17566. #if defined(__AVX2__)
  17567. return 1;
  17568. #else
  17569. return 0;
  17570. #endif
  17571. }
  17572. int ggml_cpu_has_avx512(void) {
  17573. #if defined(__AVX512F__)
  17574. return 1;
  17575. #else
  17576. return 0;
  17577. #endif
  17578. }
  17579. int ggml_cpu_has_avx512_vbmi(void) {
  17580. #if defined(__AVX512VBMI__)
  17581. return 1;
  17582. #else
  17583. return 0;
  17584. #endif
  17585. }
  17586. int ggml_cpu_has_avx512_vnni(void) {
  17587. #if defined(__AVX512VNNI__)
  17588. return 1;
  17589. #else
  17590. return 0;
  17591. #endif
  17592. }
  17593. int ggml_cpu_has_fma(void) {
  17594. #if defined(__FMA__)
  17595. return 1;
  17596. #else
  17597. return 0;
  17598. #endif
  17599. }
  17600. int ggml_cpu_has_neon(void) {
  17601. #if defined(__ARM_NEON)
  17602. return 1;
  17603. #else
  17604. return 0;
  17605. #endif
  17606. }
  17607. int ggml_cpu_has_arm_fma(void) {
  17608. #if defined(__ARM_FEATURE_FMA)
  17609. return 1;
  17610. #else
  17611. return 0;
  17612. #endif
  17613. }
  17614. int ggml_cpu_has_metal(void) {
  17615. #if defined(GGML_USE_METAL)
  17616. return 1;
  17617. #else
  17618. return 0;
  17619. #endif
  17620. }
  17621. int ggml_cpu_has_f16c(void) {
  17622. #if defined(__F16C__)
  17623. return 1;
  17624. #else
  17625. return 0;
  17626. #endif
  17627. }
  17628. int ggml_cpu_has_fp16_va(void) {
  17629. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17630. return 1;
  17631. #else
  17632. return 0;
  17633. #endif
  17634. }
  17635. int ggml_cpu_has_wasm_simd(void) {
  17636. #if defined(__wasm_simd128__)
  17637. return 1;
  17638. #else
  17639. return 0;
  17640. #endif
  17641. }
  17642. int ggml_cpu_has_blas(void) {
  17643. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17644. return 1;
  17645. #else
  17646. return 0;
  17647. #endif
  17648. }
  17649. int ggml_cpu_has_cublas(void) {
  17650. #if defined(GGML_USE_CUBLAS)
  17651. return 1;
  17652. #else
  17653. return 0;
  17654. #endif
  17655. }
  17656. int ggml_cpu_has_clblast(void) {
  17657. #if defined(GGML_USE_CLBLAST)
  17658. return 1;
  17659. #else
  17660. return 0;
  17661. #endif
  17662. }
  17663. int ggml_cpu_has_vulkan(void) {
  17664. #if defined(GGML_USE_VULKAN)
  17665. return 1;
  17666. #else
  17667. return 0;
  17668. #endif
  17669. }
  17670. int ggml_cpu_has_kompute(void) {
  17671. #if defined(GGML_USE_KOMPUTE)
  17672. return 1;
  17673. #else
  17674. return 0;
  17675. #endif
  17676. }
  17677. int ggml_cpu_has_sycl(void) {
  17678. #if defined(GGML_USE_SYCL)
  17679. return 1;
  17680. #else
  17681. return 0;
  17682. #endif
  17683. }
  17684. int ggml_cpu_has_gpublas(void) {
  17685. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17686. ggml_cpu_has_sycl();
  17687. }
  17688. int ggml_cpu_has_sse3(void) {
  17689. #if defined(__SSE3__)
  17690. return 1;
  17691. #else
  17692. return 0;
  17693. #endif
  17694. }
  17695. int ggml_cpu_has_ssse3(void) {
  17696. #if defined(__SSSE3__)
  17697. return 1;
  17698. #else
  17699. return 0;
  17700. #endif
  17701. }
  17702. int ggml_cpu_has_vsx(void) {
  17703. #if defined(__POWER9_VECTOR__)
  17704. return 1;
  17705. #else
  17706. return 0;
  17707. #endif
  17708. }
  17709. int ggml_cpu_has_matmul_int8(void) {
  17710. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17711. return 1;
  17712. #else
  17713. return 0;
  17714. #endif
  17715. }
  17716. ////////////////////////////////////////////////////////////////////////////////