hunyuan-moe.cpp 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. #include "models.h"
  2. llm_build_hunyuan_moe::llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  3. const int64_t n_embd_head = hparams.n_embd_head_v;
  4. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6. ggml_tensor * cur;
  7. ggml_tensor * inpL;
  8. inpL = build_inp_embd(model.tok_embd);
  9. // inp_pos - contains the positions
  10. ggml_tensor * inp_pos = build_inp_pos();
  11. auto * inp_attn = build_attn_inp_kv();
  12. const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
  13. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14. for (int il = 0; il < n_layer; ++il) {
  15. ggml_tensor * inpSA = inpL;
  16. // norm
  17. cur = build_norm(inpL,
  18. model.layers[il].attn_norm, NULL,
  19. LLM_NORM_RMS, il);
  20. cb(cur, "attn_norm", il);
  21. // self-attention
  22. {
  23. // rope freq factors for llama3; may return nullptr for llama2 and other models
  24. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  25. // compute Q and K and RoPE them
  26. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  27. cb(Qcur, "Qcur", il);
  28. if (model.layers[il].bq) {
  29. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  30. cb(Qcur, "Qcur", il);
  31. }
  32. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  33. cb(Kcur, "Kcur", il);
  34. if (model.layers[il].bk) {
  35. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  36. cb(Kcur, "Kcur", il);
  37. }
  38. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  39. cb(Vcur, "Vcur", il);
  40. if (model.layers[il].bv) {
  41. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  42. cb(Vcur, "Vcur", il);
  43. }
  44. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  45. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  46. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  47. Qcur = ggml_rope_ext(
  48. ctx0, Qcur, inp_pos, rope_factors,
  49. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  50. ext_factor, attn_factor, beta_fast, beta_slow
  51. );
  52. cb(Qcur, "Qcur", il);
  53. cb(Kcur, "Kcur", il);
  54. cb(Vcur, "Vcur", il);
  55. Kcur = ggml_rope_ext(
  56. ctx0, Kcur, inp_pos, rope_factors,
  57. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  58. ext_factor, attn_factor, beta_fast, beta_slow
  59. );
  60. Kcur = build_norm(Kcur,
  61. model.layers[il].attn_k_norm, nullptr,
  62. LLM_NORM_RMS, il);
  63. cb(Kcur, "Kcur_norm", il);
  64. Qcur = build_norm(Qcur,
  65. model.layers[il].attn_q_norm, nullptr,
  66. LLM_NORM_RMS, il);
  67. cb(Qcur, "Qcur_norm", il);
  68. cur = build_attn(inp_attn,
  69. model.layers[il].wo, model.layers[il].bo,
  70. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  71. cb(cur, "attn_out", il);
  72. }
  73. if (il == n_layer - 1 && inp_out_ids) {
  74. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  75. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  76. }
  77. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  78. cb(ffn_inp, "ffn_inp", il);
  79. cur = build_norm(ffn_inp,
  80. model.layers[il].ffn_norm, NULL,
  81. LLM_NORM_RMS, il);
  82. cb(cur, "ffn_norm", il);
  83. // feed-forward network (non-MoE)
  84. ggml_tensor * cur_mlp = build_ffn(cur,
  85. model.layers[il].ffn_up_shexp, NULL, NULL,
  86. model.layers[il].ffn_gate_shexp, NULL, NULL,
  87. model.layers[il].ffn_down_shexp, NULL, NULL,
  88. NULL,
  89. LLM_FFN_SILU, LLM_FFN_PAR, il);
  90. cb(cur_mlp, "ffn_mlp", il);
  91. // MoE branch
  92. ggml_tensor * cur_moe = build_moe_ffn(cur,
  93. model.layers[il].ffn_gate_inp,
  94. model.layers[il].ffn_up_exps,
  95. model.layers[il].ffn_gate_exps,
  96. model.layers[il].ffn_down_exps,
  97. nullptr,
  98. n_expert, n_expert_used,
  99. LLM_FFN_SILU,
  100. true, // norm_topk_prob
  101. false,
  102. 0.0,
  103. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  104. il);
  105. cb(cur_moe, "ffn_moe_out", il);
  106. ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
  107. cb(ffn_out, "ffn_out", il);
  108. cur = ggml_add(ctx0, ffn_out, ffn_inp);
  109. cur = build_cvec(cur, il);
  110. cb(cur, "l_out", il);
  111. // input for next layer
  112. inpL = cur;
  113. }
  114. cur = inpL;
  115. cur = build_norm(cur,
  116. model.output_norm, NULL,
  117. LLM_NORM_RMS, -1);
  118. cb(cur, "result_norm", -1);
  119. res->t_embd = cur;
  120. // lm_head
  121. cur = build_lora_mm(model.output, cur);
  122. cb(cur, "result_output", -1);
  123. res->t_logits = cur;
  124. ggml_build_forward_expand(gf, cur);
  125. }