qwen2vl.cpp 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. #include "models.h"
  2. llm_build_qwen2vl::llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  3. const int64_t n_embd_head = hparams.n_embd_head_v;
  4. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6. ggml_tensor * cur;
  7. ggml_tensor * inpL;
  8. inpL = build_inp_embd(model.tok_embd);
  9. // inp_pos - contains the positions
  10. ggml_tensor * inp_pos = build_inp_pos();
  11. auto * inp_attn = build_attn_inp_kv();
  12. int sections[4];
  13. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  14. ggml_tensor * inp_out_ids = build_inp_out_ids();
  15. for (int il = 0; il < n_layer; ++il) {
  16. ggml_tensor * inpSA = inpL;
  17. // norm
  18. cur = build_norm(inpL,
  19. model.layers[il].attn_norm, NULL,
  20. LLM_NORM_RMS, il);
  21. cb(cur, "attn_norm", il);
  22. // self-attention
  23. {
  24. // compute Q and K and RoPE them
  25. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  26. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  27. cb(Qcur, "Qcur", il);
  28. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  29. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  30. cb(Kcur, "Kcur", il);
  31. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  32. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  33. cb(Vcur, "Vcur", il);
  34. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  35. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  36. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  37. Qcur = ggml_rope_multi(
  38. ctx0, Qcur, inp_pos, nullptr,
  39. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  40. ext_factor, attn_factor, beta_fast, beta_slow
  41. );
  42. Kcur = ggml_rope_multi(
  43. ctx0, Kcur, inp_pos, nullptr,
  44. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  45. ext_factor, attn_factor, beta_fast, beta_slow
  46. );
  47. cb(Qcur, "Qcur", il);
  48. cb(Kcur, "Kcur", il);
  49. cb(Vcur, "Vcur", il);
  50. cur = build_attn(inp_attn,
  51. model.layers[il].wo, model.layers[il].bo,
  52. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  53. }
  54. if (il == n_layer - 1 && inp_out_ids) {
  55. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  56. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  57. }
  58. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  59. cb(ffn_inp, "ffn_inp", il);
  60. // feed-forward network
  61. cur = build_norm(ffn_inp,
  62. model.layers[il].ffn_norm, NULL,
  63. LLM_NORM_RMS, il);
  64. cb(cur, "ffn_norm", il);
  65. cur = build_ffn(cur,
  66. model.layers[il].ffn_up, NULL, NULL,
  67. model.layers[il].ffn_gate, NULL, NULL,
  68. model.layers[il].ffn_down, NULL, NULL,
  69. NULL,
  70. LLM_FFN_SILU, LLM_FFN_PAR, il);
  71. cb(cur, "ffn_out", il);
  72. cur = ggml_add(ctx0, cur, ffn_inp);
  73. cur = build_cvec(cur, il);
  74. cb(cur, "l_out", il);
  75. // input for next layer
  76. inpL = cur;
  77. }
  78. cur = inpL;
  79. cur = build_norm(cur,
  80. model.output_norm, NULL,
  81. LLM_NORM_RMS, -1);
  82. cb(cur, "result_norm", -1);
  83. res->t_embd = cur;
  84. // lm_head
  85. cur = build_lora_mm(model.output, cur);
  86. cb(cur, "result_output", -1);
  87. res->t_logits = cur;
  88. ggml_build_forward_expand(gf, cur);
  89. }