refact.cpp 2.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. #include "models.h"
  2. llm_build_refact::llm_build_refact(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  3. const int64_t n_embd_head = hparams.n_embd_head_v;
  4. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5. ggml_tensor * cur;
  6. ggml_tensor * inpL;
  7. inpL = build_inp_embd(model.tok_embd);
  8. auto * inp_attn = build_attn_inp_kv();
  9. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10. for (int il = 0; il < n_layer; ++il) {
  11. ggml_tensor * inpSA = inpL;
  12. cur = build_norm(inpL,
  13. model.layers[il].attn_norm, NULL,
  14. LLM_NORM_RMS, il);
  15. cb(cur, "attn_norm", il);
  16. // self-attention
  17. {
  18. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  19. cb(Qcur, "Qcur", il);
  20. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  21. cb(Kcur, "Kcur", il);
  22. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  23. cb(Vcur, "Vcur", il);
  24. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  25. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  26. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  27. cb(Qcur, "Qcur", il);
  28. cb(Kcur, "Kcur", il);
  29. cb(Vcur, "Vcur", il);
  30. cur = build_attn(inp_attn,
  31. model.layers[il].wo, NULL,
  32. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  33. }
  34. if (il == n_layer - 1 && inp_out_ids) {
  35. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  36. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  37. }
  38. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  39. cb(ffn_inp, "ffn_inp", il);
  40. // feed-forward network
  41. {
  42. cur = build_norm(ffn_inp,
  43. model.layers[il].ffn_norm, NULL,
  44. LLM_NORM_RMS, il);
  45. cb(cur, "ffn_norm", il);
  46. cur = build_ffn(cur,
  47. model.layers[il].ffn_up, NULL, NULL,
  48. model.layers[il].ffn_gate, NULL, NULL,
  49. model.layers[il].ffn_down, NULL, NULL,
  50. NULL,
  51. LLM_FFN_SILU, LLM_FFN_PAR, il);
  52. cb(cur, "ffn_out", il);
  53. }
  54. cur = ggml_add(ctx0, cur, ffn_inp);
  55. cur = build_cvec(cur, il);
  56. cb(cur, "l_out", il);
  57. // input for next layer
  58. inpL = cur;
  59. }
  60. cur = inpL;
  61. cur = build_norm(cur,
  62. model.output_norm, NULL,
  63. LLM_NORM_RMS, -1);
  64. cb(cur, "result_norm", -1);
  65. res->t_embd = cur;
  66. // lm_head
  67. cur = build_lora_mm(model.output, cur);
  68. cb(cur, "result_output", -1);
  69. res->t_logits = cur;
  70. ggml_build_forward_expand(gf, cur);
  71. }